1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_config.h" 47 #include "i915_deps.h" 48 #include "i915_driver.h" 49 #include "i915_drv.h" 50 #include "i915_trace.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 }; 56 57 static struct kmem_cache *slab_requests; 58 static struct kmem_cache *slab_execute_cbs; 59 60 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 61 { 62 return dev_name(to_request(fence)->i915->drm.dev); 63 } 64 65 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 66 { 67 const struct i915_gem_context *ctx; 68 69 /* 70 * The timeline struct (as part of the ppgtt underneath a context) 71 * may be freed when the request is no longer in use by the GPU. 72 * We could extend the life of a context to beyond that of all 73 * fences, possibly keeping the hw resource around indefinitely, 74 * or we just give them a false name. Since 75 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 76 * lie seems justifiable. 77 */ 78 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 79 return "signaled"; 80 81 ctx = i915_request_gem_context(to_request(fence)); 82 if (!ctx) 83 return "[" DRIVER_NAME "]"; 84 85 return ctx->name; 86 } 87 88 static bool i915_fence_signaled(struct dma_fence *fence) 89 { 90 return i915_request_completed(to_request(fence)); 91 } 92 93 static bool i915_fence_enable_signaling(struct dma_fence *fence) 94 { 95 return i915_request_enable_breadcrumb(to_request(fence)); 96 } 97 98 static signed long i915_fence_wait(struct dma_fence *fence, 99 bool interruptible, 100 signed long timeout) 101 { 102 return i915_request_wait_timeout(to_request(fence), 103 interruptible | I915_WAIT_PRIORITY, 104 timeout); 105 } 106 107 struct kmem_cache *i915_request_slab_cache(void) 108 { 109 return slab_requests; 110 } 111 112 static void i915_fence_release(struct dma_fence *fence) 113 { 114 struct i915_request *rq = to_request(fence); 115 116 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 117 rq->guc_prio != GUC_PRIO_FINI); 118 119 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 120 if (rq->batch_res) { 121 i915_vma_resource_put(rq->batch_res); 122 rq->batch_res = NULL; 123 } 124 125 /* 126 * The request is put onto a RCU freelist (i.e. the address 127 * is immediately reused), mark the fences as being freed now. 128 * Otherwise the debugobjects for the fences are only marked as 129 * freed when the slab cache itself is freed, and so we would get 130 * caught trying to reuse dead objects. 131 */ 132 i915_sw_fence_fini(&rq->submit); 133 i915_sw_fence_fini(&rq->semaphore); 134 135 /* 136 * Keep one request on each engine for reserved use under mempressure. 137 * 138 * We do not hold a reference to the engine here and so have to be 139 * very careful in what rq->engine we poke. The virtual engine is 140 * referenced via the rq->context and we released that ref during 141 * i915_request_retire(), ergo we must not dereference a virtual 142 * engine here. Not that we would want to, as the only consumer of 143 * the reserved engine->request_pool is the power management parking, 144 * which must-not-fail, and that is only run on the physical engines. 145 * 146 * Since the request must have been executed to be have completed, 147 * we know that it will have been processed by the HW and will 148 * not be unsubmitted again, so rq->engine and rq->execution_mask 149 * at this point is stable. rq->execution_mask will be a single 150 * bit if the last and _only_ engine it could execution on was a 151 * physical engine, if it's multiple bits then it started on and 152 * could still be on a virtual engine. Thus if the mask is not a 153 * power-of-two we assume that rq->engine may still be a virtual 154 * engine and so a dangling invalid pointer that we cannot dereference 155 * 156 * For example, consider the flow of a bonded request through a virtual 157 * engine. The request is created with a wide engine mask (all engines 158 * that we might execute on). On processing the bond, the request mask 159 * is reduced to one or more engines. If the request is subsequently 160 * bound to a single engine, it will then be constrained to only 161 * execute on that engine and never returned to the virtual engine 162 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 163 * know that if the rq->execution_mask is a single bit, rq->engine 164 * can be a physical engine with the exact corresponding mask. 165 */ 166 if (is_power_of_2(rq->execution_mask) && 167 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 168 return; 169 170 kmem_cache_free(slab_requests, rq); 171 } 172 173 const struct dma_fence_ops i915_fence_ops = { 174 .get_driver_name = i915_fence_get_driver_name, 175 .get_timeline_name = i915_fence_get_timeline_name, 176 .enable_signaling = i915_fence_enable_signaling, 177 .signaled = i915_fence_signaled, 178 .wait = i915_fence_wait, 179 .release = i915_fence_release, 180 }; 181 182 static void irq_execute_cb(struct irq_work *wrk) 183 { 184 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 185 186 i915_sw_fence_complete(cb->fence); 187 kmem_cache_free(slab_execute_cbs, cb); 188 } 189 190 static __always_inline void 191 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 192 { 193 struct execute_cb *cb, *cn; 194 195 if (llist_empty(&rq->execute_cb)) 196 return; 197 198 llist_for_each_entry_safe(cb, cn, 199 llist_del_all(&rq->execute_cb), 200 work.node.llist) 201 fn(&cb->work); 202 } 203 204 static void __notify_execute_cb_irq(struct i915_request *rq) 205 { 206 __notify_execute_cb(rq, irq_work_queue); 207 } 208 209 static bool irq_work_imm(struct irq_work *wrk) 210 { 211 wrk->func(wrk); 212 return false; 213 } 214 215 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 216 { 217 __notify_execute_cb(rq, irq_work_imm); 218 } 219 220 static void __i915_request_fill(struct i915_request *rq, u8 val) 221 { 222 void *vaddr = rq->ring->vaddr; 223 u32 head; 224 225 head = rq->infix; 226 if (rq->postfix < head) { 227 memset(vaddr + head, val, rq->ring->size - head); 228 head = 0; 229 } 230 memset(vaddr + head, val, rq->postfix - head); 231 } 232 233 /** 234 * i915_request_active_engine 235 * @rq: request to inspect 236 * @active: pointer in which to return the active engine 237 * 238 * Fills the currently active engine to the @active pointer if the request 239 * is active and still not completed. 240 * 241 * Returns true if request was active or false otherwise. 242 */ 243 bool 244 i915_request_active_engine(struct i915_request *rq, 245 struct intel_engine_cs **active) 246 { 247 struct intel_engine_cs *engine, *locked; 248 bool ret = false; 249 250 /* 251 * Serialise with __i915_request_submit() so that it sees 252 * is-banned?, or we know the request is already inflight. 253 * 254 * Note that rq->engine is unstable, and so we double 255 * check that we have acquired the lock on the final engine. 256 */ 257 locked = READ_ONCE(rq->engine); 258 spin_lock_irq(&locked->sched_engine->lock); 259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 260 spin_unlock(&locked->sched_engine->lock); 261 locked = engine; 262 spin_lock(&locked->sched_engine->lock); 263 } 264 265 if (i915_request_is_active(rq)) { 266 if (!__i915_request_is_complete(rq)) 267 *active = locked; 268 ret = true; 269 } 270 271 spin_unlock_irq(&locked->sched_engine->lock); 272 273 return ret; 274 } 275 276 static void __rq_init_watchdog(struct i915_request *rq) 277 { 278 rq->watchdog.timer.function = NULL; 279 } 280 281 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 282 { 283 struct i915_request *rq = 284 container_of(hrtimer, struct i915_request, watchdog.timer); 285 struct intel_gt *gt = rq->engine->gt; 286 287 if (!i915_request_completed(rq)) { 288 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 289 queue_work(gt->i915->unordered_wq, >->watchdog.work); 290 } else { 291 i915_request_put(rq); 292 } 293 294 return HRTIMER_NORESTART; 295 } 296 297 static void __rq_arm_watchdog(struct i915_request *rq) 298 { 299 struct i915_request_watchdog *wdg = &rq->watchdog; 300 struct intel_context *ce = rq->context; 301 302 if (!ce->watchdog.timeout_us) 303 return; 304 305 i915_request_get(rq); 306 307 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 308 wdg->timer.function = __rq_watchdog_expired; 309 hrtimer_start_range_ns(&wdg->timer, 310 ns_to_ktime(ce->watchdog.timeout_us * 311 NSEC_PER_USEC), 312 NSEC_PER_MSEC, 313 HRTIMER_MODE_REL); 314 } 315 316 static void __rq_cancel_watchdog(struct i915_request *rq) 317 { 318 struct i915_request_watchdog *wdg = &rq->watchdog; 319 320 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 321 i915_request_put(rq); 322 } 323 324 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 325 326 /** 327 * i915_request_free_capture_list - Free a capture list 328 * @capture: Pointer to the first list item or NULL 329 * 330 */ 331 void i915_request_free_capture_list(struct i915_capture_list *capture) 332 { 333 while (capture) { 334 struct i915_capture_list *next = capture->next; 335 336 i915_vma_resource_put(capture->vma_res); 337 kfree(capture); 338 capture = next; 339 } 340 } 341 342 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 343 344 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 345 346 #else 347 348 #define i915_request_free_capture_list(_a) do {} while (0) 349 350 #define assert_capture_list_is_null(_a) do {} while (0) 351 352 #define clear_capture_list(_rq) do {} while (0) 353 354 #endif 355 356 bool i915_request_retire(struct i915_request *rq) 357 { 358 if (!__i915_request_is_complete(rq)) 359 return false; 360 361 RQ_TRACE(rq, "\n"); 362 363 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 364 trace_i915_request_retire(rq); 365 i915_request_mark_complete(rq); 366 367 __rq_cancel_watchdog(rq); 368 369 /* 370 * We know the GPU must have read the request to have 371 * sent us the seqno + interrupt, so use the position 372 * of tail of the request to update the last known position 373 * of the GPU head. 374 * 375 * Note this requires that we are always called in request 376 * completion order. 377 */ 378 GEM_BUG_ON(!list_is_first(&rq->link, 379 &i915_request_timeline(rq)->requests)); 380 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 381 /* Poison before we release our space in the ring */ 382 __i915_request_fill(rq, POISON_FREE); 383 rq->ring->head = rq->postfix; 384 385 if (!i915_request_signaled(rq)) { 386 spin_lock_irq(&rq->lock); 387 dma_fence_signal_locked(&rq->fence); 388 spin_unlock_irq(&rq->lock); 389 } 390 391 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 392 intel_rps_dec_waiters(&rq->engine->gt->rps); 393 394 /* 395 * We only loosely track inflight requests across preemption, 396 * and so we may find ourselves attempting to retire a _completed_ 397 * request that we have removed from the HW and put back on a run 398 * queue. 399 * 400 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 401 * after removing the breadcrumb and signaling it, so that we do not 402 * inadvertently attach the breadcrumb to a completed request. 403 */ 404 rq->engine->remove_active_request(rq); 405 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 406 407 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 408 409 intel_context_exit(rq->context); 410 intel_context_unpin(rq->context); 411 412 i915_sched_node_fini(&rq->sched); 413 i915_request_put(rq); 414 415 return true; 416 } 417 418 void i915_request_retire_upto(struct i915_request *rq) 419 { 420 struct intel_timeline * const tl = i915_request_timeline(rq); 421 struct i915_request *tmp; 422 423 RQ_TRACE(rq, "\n"); 424 GEM_BUG_ON(!__i915_request_is_complete(rq)); 425 426 do { 427 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 428 GEM_BUG_ON(!i915_request_completed(tmp)); 429 } while (i915_request_retire(tmp) && tmp != rq); 430 } 431 432 static struct i915_request * const * 433 __engine_active(struct intel_engine_cs *engine) 434 { 435 return READ_ONCE(engine->execlists.active); 436 } 437 438 static bool __request_in_flight(const struct i915_request *signal) 439 { 440 struct i915_request * const *port, *rq; 441 bool inflight = false; 442 443 if (!i915_request_is_ready(signal)) 444 return false; 445 446 /* 447 * Even if we have unwound the request, it may still be on 448 * the GPU (preempt-to-busy). If that request is inside an 449 * unpreemptible critical section, it will not be removed. Some 450 * GPU functions may even be stuck waiting for the paired request 451 * (__await_execution) to be submitted and cannot be preempted 452 * until the bond is executing. 453 * 454 * As we know that there are always preemption points between 455 * requests, we know that only the currently executing request 456 * may be still active even though we have cleared the flag. 457 * However, we can't rely on our tracking of ELSP[0] to know 458 * which request is currently active and so maybe stuck, as 459 * the tracking maybe an event behind. Instead assume that 460 * if the context is still inflight, then it is still active 461 * even if the active flag has been cleared. 462 * 463 * To further complicate matters, if there a pending promotion, the HW 464 * may either perform a context switch to the second inflight execlists, 465 * or it may switch to the pending set of execlists. In the case of the 466 * latter, it may send the ACK and we process the event copying the 467 * pending[] over top of inflight[], _overwriting_ our *active. Since 468 * this implies the HW is arbitrating and not struck in *active, we do 469 * not worry about complete accuracy, but we do require no read/write 470 * tearing of the pointer [the read of the pointer must be valid, even 471 * as the array is being overwritten, for which we require the writes 472 * to avoid tearing.] 473 * 474 * Note that the read of *execlists->active may race with the promotion 475 * of execlists->pending[] to execlists->inflight[], overwritting 476 * the value at *execlists->active. This is fine. The promotion implies 477 * that we received an ACK from the HW, and so the context is not 478 * stuck -- if we do not see ourselves in *active, the inflight status 479 * is valid. If instead we see ourselves being copied into *active, 480 * we are inflight and may signal the callback. 481 */ 482 if (!intel_context_inflight(signal->context)) 483 return false; 484 485 rcu_read_lock(); 486 for (port = __engine_active(signal->engine); 487 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 488 port++) { 489 if (rq->context == signal->context) { 490 inflight = i915_seqno_passed(rq->fence.seqno, 491 signal->fence.seqno); 492 break; 493 } 494 } 495 rcu_read_unlock(); 496 497 return inflight; 498 } 499 500 static int 501 __await_execution(struct i915_request *rq, 502 struct i915_request *signal, 503 gfp_t gfp) 504 { 505 struct execute_cb *cb; 506 507 if (i915_request_is_active(signal)) 508 return 0; 509 510 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 511 if (!cb) 512 return -ENOMEM; 513 514 cb->fence = &rq->submit; 515 i915_sw_fence_await(cb->fence); 516 init_irq_work(&cb->work, irq_execute_cb); 517 518 /* 519 * Register the callback first, then see if the signaler is already 520 * active. This ensures that if we race with the 521 * __notify_execute_cb from i915_request_submit() and we are not 522 * included in that list, we get a second bite of the cherry and 523 * execute it ourselves. After this point, a future 524 * i915_request_submit() will notify us. 525 * 526 * In i915_request_retire() we set the ACTIVE bit on a completed 527 * request (then flush the execute_cb). So by registering the 528 * callback first, then checking the ACTIVE bit, we serialise with 529 * the completed/retired request. 530 */ 531 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 532 if (i915_request_is_active(signal) || 533 __request_in_flight(signal)) 534 i915_request_notify_execute_cb_imm(signal); 535 } 536 537 return 0; 538 } 539 540 static bool fatal_error(int error) 541 { 542 switch (error) { 543 case 0: /* not an error! */ 544 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 545 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 546 return false; 547 default: 548 return true; 549 } 550 } 551 552 void __i915_request_skip(struct i915_request *rq) 553 { 554 GEM_BUG_ON(!fatal_error(rq->fence.error)); 555 556 if (rq->infix == rq->postfix) 557 return; 558 559 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 560 561 /* 562 * As this request likely depends on state from the lost 563 * context, clear out all the user operations leaving the 564 * breadcrumb at the end (so we get the fence notifications). 565 */ 566 __i915_request_fill(rq, 0); 567 rq->infix = rq->postfix; 568 } 569 570 bool i915_request_set_error_once(struct i915_request *rq, int error) 571 { 572 int old; 573 574 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 575 576 if (i915_request_signaled(rq)) 577 return false; 578 579 old = READ_ONCE(rq->fence.error); 580 do { 581 if (fatal_error(old)) 582 return false; 583 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 584 585 return true; 586 } 587 588 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 589 { 590 if (__i915_request_is_complete(rq)) 591 return NULL; 592 593 GEM_BUG_ON(i915_request_signaled(rq)); 594 595 /* As soon as the request is completed, it may be retired */ 596 rq = i915_request_get(rq); 597 598 i915_request_set_error_once(rq, -EIO); 599 i915_request_mark_complete(rq); 600 601 return rq; 602 } 603 604 bool __i915_request_submit(struct i915_request *request) 605 { 606 struct intel_engine_cs *engine = request->engine; 607 bool result = false; 608 609 RQ_TRACE(request, "\n"); 610 611 GEM_BUG_ON(!irqs_disabled()); 612 lockdep_assert_held(&engine->sched_engine->lock); 613 614 /* 615 * With the advent of preempt-to-busy, we frequently encounter 616 * requests that we have unsubmitted from HW, but left running 617 * until the next ack and so have completed in the meantime. On 618 * resubmission of that completed request, we can skip 619 * updating the payload, and execlists can even skip submitting 620 * the request. 621 * 622 * We must remove the request from the caller's priority queue, 623 * and the caller must only call us when the request is in their 624 * priority queue, under the sched_engine->lock. This ensures that the 625 * request has *not* yet been retired and we can safely move 626 * the request into the engine->active.list where it will be 627 * dropped upon retiring. (Otherwise if resubmit a *retired* 628 * request, this would be a horrible use-after-free.) 629 */ 630 if (__i915_request_is_complete(request)) { 631 list_del_init(&request->sched.link); 632 goto active; 633 } 634 635 if (unlikely(!intel_context_is_schedulable(request->context))) 636 i915_request_set_error_once(request, -EIO); 637 638 if (unlikely(fatal_error(request->fence.error))) 639 __i915_request_skip(request); 640 641 /* 642 * Are we using semaphores when the gpu is already saturated? 643 * 644 * Using semaphores incurs a cost in having the GPU poll a 645 * memory location, busywaiting for it to change. The continual 646 * memory reads can have a noticeable impact on the rest of the 647 * system with the extra bus traffic, stalling the cpu as it too 648 * tries to access memory across the bus (perf stat -e bus-cycles). 649 * 650 * If we installed a semaphore on this request and we only submit 651 * the request after the signaler completed, that indicates the 652 * system is overloaded and using semaphores at this time only 653 * increases the amount of work we are doing. If so, we disable 654 * further use of semaphores until we are idle again, whence we 655 * optimistically try again. 656 */ 657 if (request->sched.semaphores && 658 i915_sw_fence_signaled(&request->semaphore)) 659 engine->saturated |= request->sched.semaphores; 660 661 engine->emit_fini_breadcrumb(request, 662 request->ring->vaddr + request->postfix); 663 664 trace_i915_request_execute(request); 665 if (engine->bump_serial) 666 engine->bump_serial(engine); 667 else 668 engine->serial++; 669 670 result = true; 671 672 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 673 engine->add_active_request(request); 674 active: 675 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 676 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 677 678 /* 679 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 680 * 681 * In the future, perhaps when we have an active time-slicing scheduler, 682 * it will be interesting to unsubmit parallel execution and remove 683 * busywaits from the GPU until their master is restarted. This is 684 * quite hairy, we have to carefully rollback the fence and do a 685 * preempt-to-idle cycle on the target engine, all the while the 686 * master execute_cb may refire. 687 */ 688 __notify_execute_cb_irq(request); 689 690 /* We may be recursing from the signal callback of another i915 fence */ 691 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 692 i915_request_enable_breadcrumb(request); 693 694 return result; 695 } 696 697 void i915_request_submit(struct i915_request *request) 698 { 699 struct intel_engine_cs *engine = request->engine; 700 unsigned long flags; 701 702 /* Will be called from irq-context when using foreign fences. */ 703 spin_lock_irqsave(&engine->sched_engine->lock, flags); 704 705 __i915_request_submit(request); 706 707 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 708 } 709 710 void __i915_request_unsubmit(struct i915_request *request) 711 { 712 struct intel_engine_cs *engine = request->engine; 713 714 /* 715 * Only unwind in reverse order, required so that the per-context list 716 * is kept in seqno/ring order. 717 */ 718 RQ_TRACE(request, "\n"); 719 720 GEM_BUG_ON(!irqs_disabled()); 721 lockdep_assert_held(&engine->sched_engine->lock); 722 723 /* 724 * Before we remove this breadcrumb from the signal list, we have 725 * to ensure that a concurrent dma_fence_enable_signaling() does not 726 * attach itself. We first mark the request as no longer active and 727 * make sure that is visible to other cores, and then remove the 728 * breadcrumb if attached. 729 */ 730 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 731 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 732 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 733 i915_request_cancel_breadcrumb(request); 734 735 /* We've already spun, don't charge on resubmitting. */ 736 if (request->sched.semaphores && __i915_request_has_started(request)) 737 request->sched.semaphores = 0; 738 739 /* 740 * We don't need to wake_up any waiters on request->execute, they 741 * will get woken by any other event or us re-adding this request 742 * to the engine timeline (__i915_request_submit()). The waiters 743 * should be quite adapt at finding that the request now has a new 744 * global_seqno to the one they went to sleep on. 745 */ 746 } 747 748 void i915_request_unsubmit(struct i915_request *request) 749 { 750 struct intel_engine_cs *engine = request->engine; 751 unsigned long flags; 752 753 /* Will be called from irq-context when using foreign fences. */ 754 spin_lock_irqsave(&engine->sched_engine->lock, flags); 755 756 __i915_request_unsubmit(request); 757 758 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 759 } 760 761 void i915_request_cancel(struct i915_request *rq, int error) 762 { 763 if (!i915_request_set_error_once(rq, error)) 764 return; 765 766 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 767 768 intel_context_cancel_request(rq->context, rq); 769 } 770 771 static int 772 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 773 { 774 struct i915_request *request = 775 container_of(fence, typeof(*request), submit); 776 777 switch (state) { 778 case FENCE_COMPLETE: 779 trace_i915_request_submit(request); 780 781 if (unlikely(fence->error)) 782 i915_request_set_error_once(request, fence->error); 783 else 784 __rq_arm_watchdog(request); 785 786 /* 787 * We need to serialize use of the submit_request() callback 788 * with its hotplugging performed during an emergency 789 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 790 * critical section in order to force i915_gem_set_wedged() to 791 * wait until the submit_request() is completed before 792 * proceeding. 793 */ 794 rcu_read_lock(); 795 request->engine->submit_request(request); 796 rcu_read_unlock(); 797 break; 798 799 case FENCE_FREE: 800 i915_request_put(request); 801 break; 802 } 803 804 return NOTIFY_DONE; 805 } 806 807 static int 808 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 809 { 810 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 811 812 switch (state) { 813 case FENCE_COMPLETE: 814 break; 815 816 case FENCE_FREE: 817 i915_request_put(rq); 818 break; 819 } 820 821 return NOTIFY_DONE; 822 } 823 824 static void retire_requests(struct intel_timeline *tl) 825 { 826 struct i915_request *rq, *rn; 827 828 list_for_each_entry_safe(rq, rn, &tl->requests, link) 829 if (!i915_request_retire(rq)) 830 break; 831 } 832 833 static noinline struct i915_request * 834 request_alloc_slow(struct intel_timeline *tl, 835 struct i915_request **rsvd, 836 gfp_t gfp) 837 { 838 struct i915_request *rq; 839 840 /* If we cannot wait, dip into our reserves */ 841 if (!gfpflags_allow_blocking(gfp)) { 842 rq = xchg(rsvd, NULL); 843 if (!rq) /* Use the normal failure path for one final WARN */ 844 goto out; 845 846 return rq; 847 } 848 849 if (list_empty(&tl->requests)) 850 goto out; 851 852 /* Move our oldest request to the slab-cache (if not in use!) */ 853 rq = list_first_entry(&tl->requests, typeof(*rq), link); 854 i915_request_retire(rq); 855 856 rq = kmem_cache_alloc(slab_requests, 857 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 858 if (rq) 859 return rq; 860 861 /* Ratelimit ourselves to prevent oom from malicious clients */ 862 rq = list_last_entry(&tl->requests, typeof(*rq), link); 863 cond_synchronize_rcu(rq->rcustate); 864 865 /* Retire our old requests in the hope that we free some */ 866 retire_requests(tl); 867 868 out: 869 return kmem_cache_alloc(slab_requests, gfp); 870 } 871 872 static void __i915_request_ctor(void *arg) 873 { 874 struct i915_request *rq = arg; 875 876 spin_lock_init(&rq->lock); 877 i915_sched_node_init(&rq->sched); 878 i915_sw_fence_init(&rq->submit, submit_notify); 879 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 880 881 clear_capture_list(rq); 882 rq->batch_res = NULL; 883 884 init_llist_head(&rq->execute_cb); 885 } 886 887 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 888 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 889 #else 890 #define clear_batch_ptr(_a) do {} while (0) 891 #endif 892 893 struct i915_request * 894 __i915_request_create(struct intel_context *ce, gfp_t gfp) 895 { 896 struct intel_timeline *tl = ce->timeline; 897 struct i915_request *rq; 898 u32 seqno; 899 int ret; 900 901 might_alloc(gfp); 902 903 /* Check that the caller provided an already pinned context */ 904 __intel_context_pin(ce); 905 906 /* 907 * Beware: Dragons be flying overhead. 908 * 909 * We use RCU to look up requests in flight. The lookups may 910 * race with the request being allocated from the slab freelist. 911 * That is the request we are writing to here, may be in the process 912 * of being read by __i915_active_request_get_rcu(). As such, 913 * we have to be very careful when overwriting the contents. During 914 * the RCU lookup, we change chase the request->engine pointer, 915 * read the request->global_seqno and increment the reference count. 916 * 917 * The reference count is incremented atomically. If it is zero, 918 * the lookup knows the request is unallocated and complete. Otherwise, 919 * it is either still in use, or has been reallocated and reset 920 * with dma_fence_init(). This increment is safe for release as we 921 * check that the request we have a reference to and matches the active 922 * request. 923 * 924 * Before we increment the refcount, we chase the request->engine 925 * pointer. We must not call kmem_cache_zalloc() or else we set 926 * that pointer to NULL and cause a crash during the lookup. If 927 * we see the request is completed (based on the value of the 928 * old engine and seqno), the lookup is complete and reports NULL. 929 * If we decide the request is not completed (new engine or seqno), 930 * then we grab a reference and double check that it is still the 931 * active request - which it won't be and restart the lookup. 932 * 933 * Do not use kmem_cache_zalloc() here! 934 */ 935 rq = kmem_cache_alloc(slab_requests, 936 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 937 if (unlikely(!rq)) { 938 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 939 if (!rq) { 940 ret = -ENOMEM; 941 goto err_unreserve; 942 } 943 } 944 945 rq->context = ce; 946 rq->engine = ce->engine; 947 rq->ring = ce->ring; 948 rq->execution_mask = ce->engine->mask; 949 rq->i915 = ce->engine->i915; 950 951 ret = intel_timeline_get_seqno(tl, rq, &seqno); 952 if (ret) 953 goto err_free; 954 955 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 956 tl->fence_context, seqno); 957 958 RCU_INIT_POINTER(rq->timeline, tl); 959 rq->hwsp_seqno = tl->hwsp_seqno; 960 GEM_BUG_ON(__i915_request_is_complete(rq)); 961 962 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 963 964 rq->guc_prio = GUC_PRIO_INIT; 965 966 /* We bump the ref for the fence chain */ 967 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 968 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 969 970 i915_sched_node_reinit(&rq->sched); 971 972 /* No zalloc, everything must be cleared after use */ 973 clear_batch_ptr(rq); 974 __rq_init_watchdog(rq); 975 assert_capture_list_is_null(rq); 976 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 977 GEM_BUG_ON(rq->batch_res); 978 979 /* 980 * Reserve space in the ring buffer for all the commands required to 981 * eventually emit this request. This is to guarantee that the 982 * i915_request_add() call can't fail. Note that the reserve may need 983 * to be redone if the request is not actually submitted straight 984 * away, e.g. because a GPU scheduler has deferred it. 985 * 986 * Note that due to how we add reserved_space to intel_ring_begin() 987 * we need to double our request to ensure that if we need to wrap 988 * around inside i915_request_add() there is sufficient space at 989 * the beginning of the ring as well. 990 */ 991 rq->reserved_space = 992 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 993 994 /* 995 * Record the position of the start of the request so that 996 * should we detect the updated seqno part-way through the 997 * GPU processing the request, we never over-estimate the 998 * position of the head. 999 */ 1000 rq->head = rq->ring->emit; 1001 1002 ret = rq->engine->request_alloc(rq); 1003 if (ret) 1004 goto err_unwind; 1005 1006 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1007 1008 intel_context_mark_active(ce); 1009 list_add_tail_rcu(&rq->link, &tl->requests); 1010 1011 return rq; 1012 1013 err_unwind: 1014 ce->ring->emit = rq->head; 1015 1016 /* Make sure we didn't add ourselves to external state before freeing */ 1017 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1018 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1019 1020 err_free: 1021 kmem_cache_free(slab_requests, rq); 1022 err_unreserve: 1023 intel_context_unpin(ce); 1024 return ERR_PTR(ret); 1025 } 1026 1027 struct i915_request * 1028 i915_request_create(struct intel_context *ce) 1029 { 1030 struct i915_request *rq; 1031 struct intel_timeline *tl; 1032 1033 tl = intel_context_timeline_lock(ce); 1034 if (IS_ERR(tl)) 1035 return ERR_CAST(tl); 1036 1037 /* Move our oldest request to the slab-cache (if not in use!) */ 1038 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1039 if (!list_is_last(&rq->link, &tl->requests)) 1040 i915_request_retire(rq); 1041 1042 intel_context_enter(ce); 1043 rq = __i915_request_create(ce, GFP_KERNEL); 1044 intel_context_exit(ce); /* active reference transferred to request */ 1045 if (IS_ERR(rq)) 1046 goto err_unlock; 1047 1048 /* Check that we do not interrupt ourselves with a new request */ 1049 rq->cookie = lockdep_pin_lock(&tl->mutex); 1050 1051 return rq; 1052 1053 err_unlock: 1054 intel_context_timeline_unlock(tl); 1055 return rq; 1056 } 1057 1058 static int 1059 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1060 { 1061 struct dma_fence *fence; 1062 int err; 1063 1064 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1065 return 0; 1066 1067 if (i915_request_started(signal)) 1068 return 0; 1069 1070 /* 1071 * The caller holds a reference on @signal, but we do not serialise 1072 * against it being retired and removed from the lists. 1073 * 1074 * We do not hold a reference to the request before @signal, and 1075 * so must be very careful to ensure that it is not _recycled_ as 1076 * we follow the link backwards. 1077 */ 1078 fence = NULL; 1079 rcu_read_lock(); 1080 do { 1081 struct list_head *pos = READ_ONCE(signal->link.prev); 1082 struct i915_request *prev; 1083 1084 /* Confirm signal has not been retired, the link is valid */ 1085 if (unlikely(__i915_request_has_started(signal))) 1086 break; 1087 1088 /* Is signal the earliest request on its timeline? */ 1089 if (pos == &rcu_dereference(signal->timeline)->requests) 1090 break; 1091 1092 /* 1093 * Peek at the request before us in the timeline. That 1094 * request will only be valid before it is retired, so 1095 * after acquiring a reference to it, confirm that it is 1096 * still part of the signaler's timeline. 1097 */ 1098 prev = list_entry(pos, typeof(*prev), link); 1099 if (!i915_request_get_rcu(prev)) 1100 break; 1101 1102 /* After the strong barrier, confirm prev is still attached */ 1103 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1104 i915_request_put(prev); 1105 break; 1106 } 1107 1108 fence = &prev->fence; 1109 } while (0); 1110 rcu_read_unlock(); 1111 if (!fence) 1112 return 0; 1113 1114 err = 0; 1115 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1116 err = i915_sw_fence_await_dma_fence(&rq->submit, 1117 fence, 0, 1118 I915_FENCE_GFP); 1119 dma_fence_put(fence); 1120 1121 return err; 1122 } 1123 1124 static intel_engine_mask_t 1125 already_busywaiting(struct i915_request *rq) 1126 { 1127 /* 1128 * Polling a semaphore causes bus traffic, delaying other users of 1129 * both the GPU and CPU. We want to limit the impact on others, 1130 * while taking advantage of early submission to reduce GPU 1131 * latency. Therefore we restrict ourselves to not using more 1132 * than one semaphore from each source, and not using a semaphore 1133 * if we have detected the engine is saturated (i.e. would not be 1134 * submitted early and cause bus traffic reading an already passed 1135 * semaphore). 1136 * 1137 * See the are-we-too-late? check in __i915_request_submit(). 1138 */ 1139 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1140 } 1141 1142 static int 1143 __emit_semaphore_wait(struct i915_request *to, 1144 struct i915_request *from, 1145 u32 seqno) 1146 { 1147 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1148 u32 hwsp_offset; 1149 int len, err; 1150 u32 *cs; 1151 1152 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1153 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1154 1155 /* We need to pin the signaler's HWSP until we are finished reading. */ 1156 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1157 if (err) 1158 return err; 1159 1160 len = 4; 1161 if (has_token) 1162 len += 2; 1163 1164 cs = intel_ring_begin(to, len); 1165 if (IS_ERR(cs)) 1166 return PTR_ERR(cs); 1167 1168 /* 1169 * Using greater-than-or-equal here means we have to worry 1170 * about seqno wraparound. To side step that issue, we swap 1171 * the timeline HWSP upon wrapping, so that everyone listening 1172 * for the old (pre-wrap) values do not see the much smaller 1173 * (post-wrap) values than they were expecting (and so wait 1174 * forever). 1175 */ 1176 *cs++ = (MI_SEMAPHORE_WAIT | 1177 MI_SEMAPHORE_GLOBAL_GTT | 1178 MI_SEMAPHORE_POLL | 1179 MI_SEMAPHORE_SAD_GTE_SDD) + 1180 has_token; 1181 *cs++ = seqno; 1182 *cs++ = hwsp_offset; 1183 *cs++ = 0; 1184 if (has_token) { 1185 *cs++ = 0; 1186 *cs++ = MI_NOOP; 1187 } 1188 1189 intel_ring_advance(to, cs); 1190 return 0; 1191 } 1192 1193 static bool 1194 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1195 { 1196 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1197 } 1198 1199 static int 1200 emit_semaphore_wait(struct i915_request *to, 1201 struct i915_request *from, 1202 gfp_t gfp) 1203 { 1204 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1205 struct i915_sw_fence *wait = &to->submit; 1206 1207 if (!can_use_semaphore_wait(to, from)) 1208 goto await_fence; 1209 1210 if (!intel_context_use_semaphores(to->context)) 1211 goto await_fence; 1212 1213 if (i915_request_has_initial_breadcrumb(to)) 1214 goto await_fence; 1215 1216 /* 1217 * If this or its dependents are waiting on an external fence 1218 * that may fail catastrophically, then we want to avoid using 1219 * semaphores as they bypass the fence signaling metadata, and we 1220 * lose the fence->error propagation. 1221 */ 1222 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1223 goto await_fence; 1224 1225 /* Just emit the first semaphore we see as request space is limited. */ 1226 if (already_busywaiting(to) & mask) 1227 goto await_fence; 1228 1229 if (i915_request_await_start(to, from) < 0) 1230 goto await_fence; 1231 1232 /* Only submit our spinner after the signaler is running! */ 1233 if (__await_execution(to, from, gfp)) 1234 goto await_fence; 1235 1236 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1237 goto await_fence; 1238 1239 to->sched.semaphores |= mask; 1240 wait = &to->semaphore; 1241 1242 await_fence: 1243 return i915_sw_fence_await_dma_fence(wait, 1244 &from->fence, 0, 1245 I915_FENCE_GFP); 1246 } 1247 1248 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1249 struct dma_fence *fence) 1250 { 1251 return __intel_timeline_sync_is_later(tl, 1252 fence->context, 1253 fence->seqno - 1); 1254 } 1255 1256 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1257 const struct dma_fence *fence) 1258 { 1259 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1260 } 1261 1262 static int 1263 __i915_request_await_execution(struct i915_request *to, 1264 struct i915_request *from) 1265 { 1266 int err; 1267 1268 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1269 1270 /* Submit both requests at the same time */ 1271 err = __await_execution(to, from, I915_FENCE_GFP); 1272 if (err) 1273 return err; 1274 1275 /* Squash repeated depenendices to the same timelines */ 1276 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1277 &from->fence)) 1278 return 0; 1279 1280 /* 1281 * Wait until the start of this request. 1282 * 1283 * The execution cb fires when we submit the request to HW. But in 1284 * many cases this may be long before the request itself is ready to 1285 * run (consider that we submit 2 requests for the same context, where 1286 * the request of interest is behind an indefinite spinner). So we hook 1287 * up to both to reduce our queues and keep the execution lag minimised 1288 * in the worst case, though we hope that the await_start is elided. 1289 */ 1290 err = i915_request_await_start(to, from); 1291 if (err < 0) 1292 return err; 1293 1294 /* 1295 * Ensure both start together [after all semaphores in signal] 1296 * 1297 * Now that we are queued to the HW at roughly the same time (thanks 1298 * to the execute cb) and are ready to run at roughly the same time 1299 * (thanks to the await start), our signaler may still be indefinitely 1300 * delayed by waiting on a semaphore from a remote engine. If our 1301 * signaler depends on a semaphore, so indirectly do we, and we do not 1302 * want to start our payload until our signaler also starts theirs. 1303 * So we wait. 1304 * 1305 * However, there is also a second condition for which we need to wait 1306 * for the precise start of the signaler. Consider that the signaler 1307 * was submitted in a chain of requests following another context 1308 * (with just an ordinary intra-engine fence dependency between the 1309 * two). In this case the signaler is queued to HW, but not for 1310 * immediate execution, and so we must wait until it reaches the 1311 * active slot. 1312 */ 1313 if (can_use_semaphore_wait(to, from) && 1314 intel_engine_has_semaphores(to->engine) && 1315 !i915_request_has_initial_breadcrumb(to)) { 1316 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1317 if (err < 0) 1318 return err; 1319 } 1320 1321 /* Couple the dependency tree for PI on this exposed to->fence */ 1322 if (to->engine->sched_engine->schedule) { 1323 err = i915_sched_node_add_dependency(&to->sched, 1324 &from->sched, 1325 I915_DEPENDENCY_WEAK); 1326 if (err < 0) 1327 return err; 1328 } 1329 1330 return intel_timeline_sync_set_start(i915_request_timeline(to), 1331 &from->fence); 1332 } 1333 1334 static void mark_external(struct i915_request *rq) 1335 { 1336 /* 1337 * The downside of using semaphores is that we lose metadata passing 1338 * along the signaling chain. This is particularly nasty when we 1339 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1340 * fatal errors we want to scrub the request before it is executed, 1341 * which means that we cannot preload the request onto HW and have 1342 * it wait upon a semaphore. 1343 */ 1344 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1345 } 1346 1347 static int 1348 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1349 { 1350 mark_external(rq); 1351 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1352 i915_fence_context_timeout(rq->i915, 1353 fence->context), 1354 I915_FENCE_GFP); 1355 } 1356 1357 static int 1358 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1359 { 1360 struct dma_fence *iter; 1361 int err = 0; 1362 1363 if (!to_dma_fence_chain(fence)) 1364 return __i915_request_await_external(rq, fence); 1365 1366 dma_fence_chain_for_each(iter, fence) { 1367 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1368 1369 if (!dma_fence_is_i915(chain->fence)) { 1370 err = __i915_request_await_external(rq, iter); 1371 break; 1372 } 1373 1374 err = i915_request_await_dma_fence(rq, chain->fence); 1375 if (err < 0) 1376 break; 1377 } 1378 1379 dma_fence_put(iter); 1380 return err; 1381 } 1382 1383 static inline bool is_parallel_rq(struct i915_request *rq) 1384 { 1385 return intel_context_is_parallel(rq->context); 1386 } 1387 1388 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1389 { 1390 return intel_context_to_parent(rq->context); 1391 } 1392 1393 static bool is_same_parallel_context(struct i915_request *to, 1394 struct i915_request *from) 1395 { 1396 if (is_parallel_rq(to)) 1397 return request_to_parent(to) == request_to_parent(from); 1398 1399 return false; 1400 } 1401 1402 int 1403 i915_request_await_execution(struct i915_request *rq, 1404 struct dma_fence *fence) 1405 { 1406 struct dma_fence **child = &fence; 1407 unsigned int nchild = 1; 1408 int ret; 1409 1410 if (dma_fence_is_array(fence)) { 1411 struct dma_fence_array *array = to_dma_fence_array(fence); 1412 1413 /* XXX Error for signal-on-any fence arrays */ 1414 1415 child = array->fences; 1416 nchild = array->num_fences; 1417 GEM_BUG_ON(!nchild); 1418 } 1419 1420 do { 1421 fence = *child++; 1422 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1423 continue; 1424 1425 if (fence->context == rq->fence.context) 1426 continue; 1427 1428 /* 1429 * We don't squash repeated fence dependencies here as we 1430 * want to run our callback in all cases. 1431 */ 1432 1433 if (dma_fence_is_i915(fence)) { 1434 if (is_same_parallel_context(rq, to_request(fence))) 1435 continue; 1436 ret = __i915_request_await_execution(rq, 1437 to_request(fence)); 1438 } else { 1439 ret = i915_request_await_external(rq, fence); 1440 } 1441 if (ret < 0) 1442 return ret; 1443 } while (--nchild); 1444 1445 return 0; 1446 } 1447 1448 static int 1449 await_request_submit(struct i915_request *to, struct i915_request *from) 1450 { 1451 /* 1452 * If we are waiting on a virtual engine, then it may be 1453 * constrained to execute on a single engine *prior* to submission. 1454 * When it is submitted, it will be first submitted to the virtual 1455 * engine and then passed to the physical engine. We cannot allow 1456 * the waiter to be submitted immediately to the physical engine 1457 * as it may then bypass the virtual request. 1458 */ 1459 if (to->engine == READ_ONCE(from->engine)) 1460 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1461 &from->submit, 1462 I915_FENCE_GFP); 1463 else 1464 return __i915_request_await_execution(to, from); 1465 } 1466 1467 static int 1468 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1469 { 1470 int ret; 1471 1472 GEM_BUG_ON(to == from); 1473 GEM_BUG_ON(to->timeline == from->timeline); 1474 1475 if (i915_request_completed(from)) { 1476 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1477 return 0; 1478 } 1479 1480 if (to->engine->sched_engine->schedule) { 1481 ret = i915_sched_node_add_dependency(&to->sched, 1482 &from->sched, 1483 I915_DEPENDENCY_EXTERNAL); 1484 if (ret < 0) 1485 return ret; 1486 } 1487 1488 if (!intel_engine_uses_guc(to->engine) && 1489 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1490 ret = await_request_submit(to, from); 1491 else 1492 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1493 if (ret < 0) 1494 return ret; 1495 1496 return 0; 1497 } 1498 1499 int 1500 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1501 { 1502 struct dma_fence **child = &fence; 1503 unsigned int nchild = 1; 1504 int ret; 1505 1506 /* 1507 * Note that if the fence-array was created in signal-on-any mode, 1508 * we should *not* decompose it into its individual fences. However, 1509 * we don't currently store which mode the fence-array is operating 1510 * in. Fortunately, the only user of signal-on-any is private to 1511 * amdgpu and we should not see any incoming fence-array from 1512 * sync-file being in signal-on-any mode. 1513 */ 1514 if (dma_fence_is_array(fence)) { 1515 struct dma_fence_array *array = to_dma_fence_array(fence); 1516 1517 child = array->fences; 1518 nchild = array->num_fences; 1519 GEM_BUG_ON(!nchild); 1520 } 1521 1522 do { 1523 fence = *child++; 1524 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1525 continue; 1526 1527 /* 1528 * Requests on the same timeline are explicitly ordered, along 1529 * with their dependencies, by i915_request_add() which ensures 1530 * that requests are submitted in-order through each ring. 1531 */ 1532 if (fence->context == rq->fence.context) 1533 continue; 1534 1535 /* Squash repeated waits to the same timelines */ 1536 if (fence->context && 1537 intel_timeline_sync_is_later(i915_request_timeline(rq), 1538 fence)) 1539 continue; 1540 1541 if (dma_fence_is_i915(fence)) { 1542 if (is_same_parallel_context(rq, to_request(fence))) 1543 continue; 1544 ret = i915_request_await_request(rq, to_request(fence)); 1545 } else { 1546 ret = i915_request_await_external(rq, fence); 1547 } 1548 if (ret < 0) 1549 return ret; 1550 1551 /* Record the latest fence used against each timeline */ 1552 if (fence->context) 1553 intel_timeline_sync_set(i915_request_timeline(rq), 1554 fence); 1555 } while (--nchild); 1556 1557 return 0; 1558 } 1559 1560 /** 1561 * i915_request_await_deps - set this request to (async) wait upon a struct 1562 * i915_deps dma_fence collection 1563 * @rq: request we are wishing to use 1564 * @deps: The struct i915_deps containing the dependencies. 1565 * 1566 * Returns 0 if successful, negative error code on error. 1567 */ 1568 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1569 { 1570 int i, err; 1571 1572 for (i = 0; i < deps->num_deps; ++i) { 1573 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1574 if (err) 1575 return err; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /** 1582 * i915_request_await_object - set this request to (async) wait upon a bo 1583 * @to: request we are wishing to use 1584 * @obj: object which may be in use on another ring. 1585 * @write: whether the wait is on behalf of a writer 1586 * 1587 * This code is meant to abstract object synchronization with the GPU. 1588 * Conceptually we serialise writes between engines inside the GPU. 1589 * We only allow one engine to write into a buffer at any time, but 1590 * multiple readers. To ensure each has a coherent view of memory, we must: 1591 * 1592 * - If there is an outstanding write request to the object, the new 1593 * request must wait for it to complete (either CPU or in hw, requests 1594 * on the same ring will be naturally ordered). 1595 * 1596 * - If we are a write request (pending_write_domain is set), the new 1597 * request must wait for outstanding read requests to complete. 1598 * 1599 * Returns 0 if successful, else propagates up the lower layer error. 1600 */ 1601 int 1602 i915_request_await_object(struct i915_request *to, 1603 struct drm_i915_gem_object *obj, 1604 bool write) 1605 { 1606 struct dma_resv_iter cursor; 1607 struct dma_fence *fence; 1608 int ret = 0; 1609 1610 dma_resv_for_each_fence(&cursor, obj->base.resv, 1611 dma_resv_usage_rw(write), fence) { 1612 ret = i915_request_await_dma_fence(to, fence); 1613 if (ret) 1614 break; 1615 } 1616 1617 return ret; 1618 } 1619 1620 static void i915_request_await_huc(struct i915_request *rq) 1621 { 1622 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1623 1624 /* don't stall kernel submissions! */ 1625 if (!rcu_access_pointer(rq->context->gem_context)) 1626 return; 1627 1628 if (intel_huc_wait_required(huc)) 1629 i915_sw_fence_await_sw_fence(&rq->submit, 1630 &huc->delayed_load.fence, 1631 &rq->hucq); 1632 } 1633 1634 static struct i915_request * 1635 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1636 struct intel_timeline *timeline) 1637 { 1638 struct i915_request *prev; 1639 1640 GEM_BUG_ON(!is_parallel_rq(rq)); 1641 1642 prev = request_to_parent(rq)->parallel.last_rq; 1643 if (prev) { 1644 if (!__i915_request_is_complete(prev)) { 1645 i915_sw_fence_await_sw_fence(&rq->submit, 1646 &prev->submit, 1647 &rq->submitq); 1648 1649 if (rq->engine->sched_engine->schedule) 1650 __i915_sched_node_add_dependency(&rq->sched, 1651 &prev->sched, 1652 &rq->dep, 1653 0); 1654 } 1655 i915_request_put(prev); 1656 } 1657 1658 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1659 1660 /* 1661 * Users have to put a reference potentially got by 1662 * __i915_active_fence_set() to the returned request 1663 * when no longer needed 1664 */ 1665 return to_request(__i915_active_fence_set(&timeline->last_request, 1666 &rq->fence)); 1667 } 1668 1669 static struct i915_request * 1670 __i915_request_ensure_ordering(struct i915_request *rq, 1671 struct intel_timeline *timeline) 1672 { 1673 struct i915_request *prev; 1674 1675 GEM_BUG_ON(is_parallel_rq(rq)); 1676 1677 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1678 &rq->fence)); 1679 1680 if (prev && !__i915_request_is_complete(prev)) { 1681 bool uses_guc = intel_engine_uses_guc(rq->engine); 1682 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1683 rq->engine->mask); 1684 bool same_context = prev->context == rq->context; 1685 1686 /* 1687 * The requests are supposed to be kept in order. However, 1688 * we need to be wary in case the timeline->last_request 1689 * is used as a barrier for external modification to this 1690 * context. 1691 */ 1692 GEM_BUG_ON(same_context && 1693 i915_seqno_passed(prev->fence.seqno, 1694 rq->fence.seqno)); 1695 1696 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1697 i915_sw_fence_await_sw_fence(&rq->submit, 1698 &prev->submit, 1699 &rq->submitq); 1700 else 1701 __i915_sw_fence_await_dma_fence(&rq->submit, 1702 &prev->fence, 1703 &rq->dmaq); 1704 if (rq->engine->sched_engine->schedule) 1705 __i915_sched_node_add_dependency(&rq->sched, 1706 &prev->sched, 1707 &rq->dep, 1708 0); 1709 } 1710 1711 /* 1712 * Users have to put the reference to prev potentially got 1713 * by __i915_active_fence_set() when no longer needed 1714 */ 1715 return prev; 1716 } 1717 1718 static struct i915_request * 1719 __i915_request_add_to_timeline(struct i915_request *rq) 1720 { 1721 struct intel_timeline *timeline = i915_request_timeline(rq); 1722 struct i915_request *prev; 1723 1724 /* 1725 * Media workloads may require HuC, so stall them until HuC loading is 1726 * complete. Note that HuC not being loaded when a user submission 1727 * arrives can only happen when HuC is loaded via GSC and in that case 1728 * we still expect the window between us starting to accept submissions 1729 * and HuC loading completion to be small (a few hundred ms). 1730 */ 1731 if (rq->engine->class == VIDEO_DECODE_CLASS) 1732 i915_request_await_huc(rq); 1733 1734 /* 1735 * Dependency tracking and request ordering along the timeline 1736 * is special cased so that we can eliminate redundant ordering 1737 * operations while building the request (we know that the timeline 1738 * itself is ordered, and here we guarantee it). 1739 * 1740 * As we know we will need to emit tracking along the timeline, 1741 * we embed the hooks into our request struct -- at the cost of 1742 * having to have specialised no-allocation interfaces (which will 1743 * be beneficial elsewhere). 1744 * 1745 * A second benefit to open-coding i915_request_await_request is 1746 * that we can apply a slight variant of the rules specialised 1747 * for timelines that jump between engines (such as virtual engines). 1748 * If we consider the case of virtual engine, we must emit a dma-fence 1749 * to prevent scheduling of the second request until the first is 1750 * complete (to maximise our greedy late load balancing) and this 1751 * precludes optimising to use semaphores serialisation of a single 1752 * timeline across engines. 1753 * 1754 * We do not order parallel submission requests on the timeline as each 1755 * parallel submission context has its own timeline and the ordering 1756 * rules for parallel requests are that they must be submitted in the 1757 * order received from the execbuf IOCTL. So rather than using the 1758 * timeline we store a pointer to last request submitted in the 1759 * relationship in the gem context and insert a submission fence 1760 * between that request and request passed into this function or 1761 * alternatively we use completion fence if gem context has a single 1762 * timeline and this is the first submission of an execbuf IOCTL. 1763 */ 1764 if (likely(!is_parallel_rq(rq))) 1765 prev = __i915_request_ensure_ordering(rq, timeline); 1766 else 1767 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1768 if (prev) 1769 i915_request_put(prev); 1770 1771 /* 1772 * Make sure that no request gazumped us - if it was allocated after 1773 * our i915_request_alloc() and called __i915_request_add() before 1774 * us, the timeline will hold its seqno which is later than ours. 1775 */ 1776 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1777 1778 return prev; 1779 } 1780 1781 /* 1782 * NB: This function is not allowed to fail. Doing so would mean the the 1783 * request is not being tracked for completion but the work itself is 1784 * going to happen on the hardware. This would be a Bad Thing(tm). 1785 */ 1786 struct i915_request *__i915_request_commit(struct i915_request *rq) 1787 { 1788 struct intel_engine_cs *engine = rq->engine; 1789 struct intel_ring *ring = rq->ring; 1790 u32 *cs; 1791 1792 RQ_TRACE(rq, "\n"); 1793 1794 /* 1795 * To ensure that this call will not fail, space for its emissions 1796 * should already have been reserved in the ring buffer. Let the ring 1797 * know that it is time to use that space up. 1798 */ 1799 GEM_BUG_ON(rq->reserved_space > ring->space); 1800 rq->reserved_space = 0; 1801 rq->emitted_jiffies = jiffies; 1802 1803 /* 1804 * Record the position of the start of the breadcrumb so that 1805 * should we detect the updated seqno part-way through the 1806 * GPU processing the request, we never over-estimate the 1807 * position of the ring's HEAD. 1808 */ 1809 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1810 GEM_BUG_ON(IS_ERR(cs)); 1811 rq->postfix = intel_ring_offset(rq, cs); 1812 1813 return __i915_request_add_to_timeline(rq); 1814 } 1815 1816 void __i915_request_queue_bh(struct i915_request *rq) 1817 { 1818 i915_sw_fence_commit(&rq->semaphore); 1819 i915_sw_fence_commit(&rq->submit); 1820 } 1821 1822 void __i915_request_queue(struct i915_request *rq, 1823 const struct i915_sched_attr *attr) 1824 { 1825 /* 1826 * Let the backend know a new request has arrived that may need 1827 * to adjust the existing execution schedule due to a high priority 1828 * request - i.e. we may want to preempt the current request in order 1829 * to run a high priority dependency chain *before* we can execute this 1830 * request. 1831 * 1832 * This is called before the request is ready to run so that we can 1833 * decide whether to preempt the entire chain so that it is ready to 1834 * run at the earliest possible convenience. 1835 */ 1836 if (attr && rq->engine->sched_engine->schedule) 1837 rq->engine->sched_engine->schedule(rq, attr); 1838 1839 local_bh_disable(); 1840 __i915_request_queue_bh(rq); 1841 local_bh_enable(); /* kick tasklets */ 1842 } 1843 1844 void i915_request_add(struct i915_request *rq) 1845 { 1846 struct intel_timeline * const tl = i915_request_timeline(rq); 1847 struct i915_sched_attr attr = {}; 1848 struct i915_gem_context *ctx; 1849 1850 lockdep_assert_held(&tl->mutex); 1851 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1852 1853 trace_i915_request_add(rq); 1854 __i915_request_commit(rq); 1855 1856 /* XXX placeholder for selftests */ 1857 rcu_read_lock(); 1858 ctx = rcu_dereference(rq->context->gem_context); 1859 if (ctx) 1860 attr = ctx->sched; 1861 rcu_read_unlock(); 1862 1863 __i915_request_queue(rq, &attr); 1864 1865 mutex_unlock(&tl->mutex); 1866 } 1867 1868 static unsigned long local_clock_ns(unsigned int *cpu) 1869 { 1870 unsigned long t; 1871 1872 /* 1873 * Cheaply and approximately convert from nanoseconds to microseconds. 1874 * The result and subsequent calculations are also defined in the same 1875 * approximate microseconds units. The principal source of timing 1876 * error here is from the simple truncation. 1877 * 1878 * Note that local_clock() is only defined wrt to the current CPU; 1879 * the comparisons are no longer valid if we switch CPUs. Instead of 1880 * blocking preemption for the entire busywait, we can detect the CPU 1881 * switch and use that as indicator of system load and a reason to 1882 * stop busywaiting, see busywait_stop(). 1883 */ 1884 *cpu = get_cpu(); 1885 t = local_clock(); 1886 put_cpu(); 1887 1888 return t; 1889 } 1890 1891 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1892 { 1893 unsigned int this_cpu; 1894 1895 if (time_after(local_clock_ns(&this_cpu), timeout)) 1896 return true; 1897 1898 return this_cpu != cpu; 1899 } 1900 1901 static bool __i915_spin_request(struct i915_request * const rq, int state) 1902 { 1903 unsigned long timeout_ns; 1904 unsigned int cpu; 1905 1906 /* 1907 * Only wait for the request if we know it is likely to complete. 1908 * 1909 * We don't track the timestamps around requests, nor the average 1910 * request length, so we do not have a good indicator that this 1911 * request will complete within the timeout. What we do know is the 1912 * order in which requests are executed by the context and so we can 1913 * tell if the request has been started. If the request is not even 1914 * running yet, it is a fair assumption that it will not complete 1915 * within our relatively short timeout. 1916 */ 1917 if (!i915_request_is_running(rq)) 1918 return false; 1919 1920 /* 1921 * When waiting for high frequency requests, e.g. during synchronous 1922 * rendering split between the CPU and GPU, the finite amount of time 1923 * required to set up the irq and wait upon it limits the response 1924 * rate. By busywaiting on the request completion for a short while we 1925 * can service the high frequency waits as quick as possible. However, 1926 * if it is a slow request, we want to sleep as quickly as possible. 1927 * The tradeoff between waiting and sleeping is roughly the time it 1928 * takes to sleep on a request, on the order of a microsecond. 1929 */ 1930 1931 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1932 timeout_ns += local_clock_ns(&cpu); 1933 do { 1934 if (dma_fence_is_signaled(&rq->fence)) 1935 return true; 1936 1937 if (signal_pending_state(state, current)) 1938 break; 1939 1940 if (busywait_stop(timeout_ns, cpu)) 1941 break; 1942 1943 cpu_relax(); 1944 } while (!need_resched()); 1945 1946 return false; 1947 } 1948 1949 struct request_wait { 1950 struct dma_fence_cb cb; 1951 struct task_struct *tsk; 1952 }; 1953 1954 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1955 { 1956 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1957 1958 wake_up_process(fetch_and_zero(&wait->tsk)); 1959 } 1960 1961 /** 1962 * i915_request_wait_timeout - wait until execution of request has finished 1963 * @rq: the request to wait upon 1964 * @flags: how to wait 1965 * @timeout: how long to wait in jiffies 1966 * 1967 * i915_request_wait_timeout() waits for the request to be completed, for a 1968 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1969 * unbounded wait). 1970 * 1971 * Returns the remaining time (in jiffies) if the request completed, which may 1972 * be zero if the request is unfinished after the timeout expires. 1973 * If the timeout is 0, it will return 1 if the fence is signaled. 1974 * 1975 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1976 * pending before the request completes. 1977 * 1978 * NOTE: This function has the same wait semantics as dma-fence. 1979 */ 1980 long i915_request_wait_timeout(struct i915_request *rq, 1981 unsigned int flags, 1982 long timeout) 1983 { 1984 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1985 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1986 struct request_wait wait; 1987 1988 might_sleep(); 1989 GEM_BUG_ON(timeout < 0); 1990 1991 if (dma_fence_is_signaled(&rq->fence)) 1992 return timeout ?: 1; 1993 1994 if (!timeout) 1995 return -ETIME; 1996 1997 trace_i915_request_wait_begin(rq, flags); 1998 1999 /* 2000 * We must never wait on the GPU while holding a lock as we 2001 * may need to perform a GPU reset. So while we don't need to 2002 * serialise wait/reset with an explicit lock, we do want 2003 * lockdep to detect potential dependency cycles. 2004 */ 2005 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2006 2007 /* 2008 * Optimistic spin before touching IRQs. 2009 * 2010 * We may use a rather large value here to offset the penalty of 2011 * switching away from the active task. Frequently, the client will 2012 * wait upon an old swapbuffer to throttle itself to remain within a 2013 * frame of the gpu. If the client is running in lockstep with the gpu, 2014 * then it should not be waiting long at all, and a sleep now will incur 2015 * extra scheduler latency in producing the next frame. To try to 2016 * avoid adding the cost of enabling/disabling the interrupt to the 2017 * short wait, we first spin to see if the request would have completed 2018 * in the time taken to setup the interrupt. 2019 * 2020 * We need upto 5us to enable the irq, and upto 20us to hide the 2021 * scheduler latency of a context switch, ignoring the secondary 2022 * impacts from a context switch such as cache eviction. 2023 * 2024 * The scheme used for low-latency IO is called "hybrid interrupt 2025 * polling". The suggestion there is to sleep until just before you 2026 * expect to be woken by the device interrupt and then poll for its 2027 * completion. That requires having a good predictor for the request 2028 * duration, which we currently lack. 2029 */ 2030 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2031 __i915_spin_request(rq, state)) 2032 goto out; 2033 2034 /* 2035 * This client is about to stall waiting for the GPU. In many cases 2036 * this is undesirable and limits the throughput of the system, as 2037 * many clients cannot continue processing user input/output whilst 2038 * blocked. RPS autotuning may take tens of milliseconds to respond 2039 * to the GPU load and thus incurs additional latency for the client. 2040 * We can circumvent that by promoting the GPU frequency to maximum 2041 * before we sleep. This makes the GPU throttle up much more quickly 2042 * (good for benchmarks and user experience, e.g. window animations), 2043 * but at a cost of spending more power processing the workload 2044 * (bad for battery). 2045 */ 2046 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2047 intel_rps_boost(rq); 2048 2049 wait.tsk = current; 2050 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2051 goto out; 2052 2053 /* 2054 * Flush the submission tasklet, but only if it may help this request. 2055 * 2056 * We sometimes experience some latency between the HW interrupts and 2057 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2058 * be due to lazy CS events), so lets run the tasklet manually if there 2059 * is a chance it may submit this request. If the request is not ready 2060 * to run, as it is waiting for other fences to be signaled, flushing 2061 * the tasklet is busy work without any advantage for this client. 2062 * 2063 * If the HW is being lazy, this is the last chance before we go to 2064 * sleep to catch any pending events. We will check periodically in 2065 * the heartbeat to flush the submission tasklets as a last resort 2066 * for unhappy HW. 2067 */ 2068 if (i915_request_is_ready(rq)) 2069 __intel_engine_flush_submission(rq->engine, false); 2070 2071 for (;;) { 2072 set_current_state(state); 2073 2074 if (dma_fence_is_signaled(&rq->fence)) 2075 break; 2076 2077 if (signal_pending_state(state, current)) { 2078 timeout = -ERESTARTSYS; 2079 break; 2080 } 2081 2082 if (!timeout) { 2083 timeout = -ETIME; 2084 break; 2085 } 2086 2087 timeout = io_schedule_timeout(timeout); 2088 } 2089 __set_current_state(TASK_RUNNING); 2090 2091 if (READ_ONCE(wait.tsk)) 2092 dma_fence_remove_callback(&rq->fence, &wait.cb); 2093 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2094 2095 out: 2096 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2097 trace_i915_request_wait_end(rq); 2098 return timeout; 2099 } 2100 2101 /** 2102 * i915_request_wait - wait until execution of request has finished 2103 * @rq: the request to wait upon 2104 * @flags: how to wait 2105 * @timeout: how long to wait in jiffies 2106 * 2107 * i915_request_wait() waits for the request to be completed, for a 2108 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2109 * unbounded wait). 2110 * 2111 * Returns the remaining time (in jiffies) if the request completed, which may 2112 * be zero or -ETIME if the request is unfinished after the timeout expires. 2113 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2114 * pending before the request completes. 2115 * 2116 * NOTE: This function behaves differently from dma-fence wait semantics for 2117 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2118 */ 2119 long i915_request_wait(struct i915_request *rq, 2120 unsigned int flags, 2121 long timeout) 2122 { 2123 long ret = i915_request_wait_timeout(rq, flags, timeout); 2124 2125 if (!ret) 2126 return -ETIME; 2127 2128 if (ret > 0 && !timeout) 2129 return 0; 2130 2131 return ret; 2132 } 2133 2134 static int print_sched_attr(const struct i915_sched_attr *attr, 2135 char *buf, int x, int len) 2136 { 2137 if (attr->priority == I915_PRIORITY_INVALID) 2138 return x; 2139 2140 x += snprintf(buf + x, len - x, 2141 " prio=%d", attr->priority); 2142 2143 return x; 2144 } 2145 2146 static char queue_status(const struct i915_request *rq) 2147 { 2148 if (i915_request_is_active(rq)) 2149 return 'E'; 2150 2151 if (i915_request_is_ready(rq)) 2152 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2153 2154 return 'U'; 2155 } 2156 2157 static const char *run_status(const struct i915_request *rq) 2158 { 2159 if (__i915_request_is_complete(rq)) 2160 return "!"; 2161 2162 if (__i915_request_has_started(rq)) 2163 return "*"; 2164 2165 if (!i915_sw_fence_signaled(&rq->semaphore)) 2166 return "&"; 2167 2168 return ""; 2169 } 2170 2171 static const char *fence_status(const struct i915_request *rq) 2172 { 2173 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2174 return "+"; 2175 2176 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2177 return "-"; 2178 2179 return ""; 2180 } 2181 2182 void i915_request_show(struct drm_printer *m, 2183 const struct i915_request *rq, 2184 const char *prefix, 2185 int indent) 2186 { 2187 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2188 char buf[80] = ""; 2189 int x = 0; 2190 2191 /* 2192 * The prefix is used to show the queue status, for which we use 2193 * the following flags: 2194 * 2195 * U [Unready] 2196 * - initial status upon being submitted by the user 2197 * 2198 * - the request is not ready for execution as it is waiting 2199 * for external fences 2200 * 2201 * R [Ready] 2202 * - all fences the request was waiting on have been signaled, 2203 * and the request is now ready for execution and will be 2204 * in a backend queue 2205 * 2206 * - a ready request may still need to wait on semaphores 2207 * [internal fences] 2208 * 2209 * V [Ready/virtual] 2210 * - same as ready, but queued over multiple backends 2211 * 2212 * E [Executing] 2213 * - the request has been transferred from the backend queue and 2214 * submitted for execution on HW 2215 * 2216 * - a completed request may still be regarded as executing, its 2217 * status may not be updated until it is retired and removed 2218 * from the lists 2219 */ 2220 2221 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2222 2223 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2224 prefix, indent, " ", 2225 queue_status(rq), 2226 rq->fence.context, rq->fence.seqno, 2227 run_status(rq), 2228 fence_status(rq), 2229 buf, 2230 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2231 name); 2232 } 2233 2234 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2235 { 2236 u32 ring = ENGINE_READ(engine, RING_START); 2237 2238 return ring == i915_ggtt_offset(rq->ring->vma); 2239 } 2240 2241 static bool match_ring(struct i915_request *rq) 2242 { 2243 struct intel_engine_cs *engine; 2244 bool found; 2245 int i; 2246 2247 if (!intel_engine_is_virtual(rq->engine)) 2248 return engine_match_ring(rq->engine, rq); 2249 2250 found = false; 2251 i = 0; 2252 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2253 found = engine_match_ring(engine, rq); 2254 if (found) 2255 break; 2256 } 2257 2258 return found; 2259 } 2260 2261 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2262 { 2263 if (i915_request_completed(rq)) 2264 return I915_REQUEST_COMPLETE; 2265 2266 if (!i915_request_started(rq)) 2267 return I915_REQUEST_PENDING; 2268 2269 if (match_ring(rq)) 2270 return I915_REQUEST_ACTIVE; 2271 2272 return I915_REQUEST_QUEUED; 2273 } 2274 2275 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2276 #include "selftests/mock_request.c" 2277 #include "selftests/i915_request.c" 2278 #endif 2279 2280 void i915_request_module_exit(void) 2281 { 2282 kmem_cache_destroy(slab_execute_cbs); 2283 kmem_cache_destroy(slab_requests); 2284 } 2285 2286 int __init i915_request_module_init(void) 2287 { 2288 slab_requests = 2289 kmem_cache_create("i915_request", 2290 sizeof(struct i915_request), 2291 __alignof__(struct i915_request), 2292 SLAB_HWCACHE_ALIGN | 2293 SLAB_RECLAIM_ACCOUNT | 2294 SLAB_TYPESAFE_BY_RCU, 2295 __i915_request_ctor); 2296 if (!slab_requests) 2297 return -ENOMEM; 2298 2299 slab_execute_cbs = KMEM_CACHE(execute_cb, 2300 SLAB_HWCACHE_ALIGN | 2301 SLAB_RECLAIM_ACCOUNT | 2302 SLAB_TYPESAFE_BY_RCU); 2303 if (!slab_execute_cbs) 2304 goto err_requests; 2305 2306 return 0; 2307 2308 err_requests: 2309 kmem_cache_destroy(slab_requests); 2310 return -ENOMEM; 2311 } 2312