xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 37744feebc086908fd89760650f458ab19071750)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_execute_cbs;
55 } global;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 static void i915_fence_release(struct dma_fence *fence)
105 {
106 	struct i915_request *rq = to_request(fence);
107 
108 	/*
109 	 * The request is put onto a RCU freelist (i.e. the address
110 	 * is immediately reused), mark the fences as being freed now.
111 	 * Otherwise the debugobjects for the fences are only marked as
112 	 * freed when the slab cache itself is freed, and so we would get
113 	 * caught trying to reuse dead objects.
114 	 */
115 	i915_sw_fence_fini(&rq->submit);
116 	i915_sw_fence_fini(&rq->semaphore);
117 
118 	kmem_cache_free(global.slab_requests, rq);
119 }
120 
121 const struct dma_fence_ops i915_fence_ops = {
122 	.get_driver_name = i915_fence_get_driver_name,
123 	.get_timeline_name = i915_fence_get_timeline_name,
124 	.enable_signaling = i915_fence_enable_signaling,
125 	.signaled = i915_fence_signaled,
126 	.wait = i915_fence_wait,
127 	.release = i915_fence_release,
128 };
129 
130 static void irq_execute_cb(struct irq_work *wrk)
131 {
132 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133 
134 	i915_sw_fence_complete(cb->fence);
135 	kmem_cache_free(global.slab_execute_cbs, cb);
136 }
137 
138 static void irq_execute_cb_hook(struct irq_work *wrk)
139 {
140 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141 
142 	cb->hook(container_of(cb->fence, struct i915_request, submit),
143 		 &cb->signal->fence);
144 	i915_request_put(cb->signal);
145 
146 	irq_execute_cb(wrk);
147 }
148 
149 static void __notify_execute_cb(struct i915_request *rq)
150 {
151 	struct execute_cb *cb;
152 
153 	lockdep_assert_held(&rq->lock);
154 
155 	if (list_empty(&rq->execute_cb))
156 		return;
157 
158 	list_for_each_entry(cb, &rq->execute_cb, link)
159 		irq_work_queue(&cb->work);
160 
161 	/*
162 	 * XXX Rollback on __i915_request_unsubmit()
163 	 *
164 	 * In the future, perhaps when we have an active time-slicing scheduler,
165 	 * it will be interesting to unsubmit parallel execution and remove
166 	 * busywaits from the GPU until their master is restarted. This is
167 	 * quite hairy, we have to carefully rollback the fence and do a
168 	 * preempt-to-idle cycle on the target engine, all the while the
169 	 * master execute_cb may refire.
170 	 */
171 	INIT_LIST_HEAD(&rq->execute_cb);
172 }
173 
174 static inline void
175 remove_from_client(struct i915_request *request)
176 {
177 	struct drm_i915_file_private *file_priv;
178 
179 	if (!READ_ONCE(request->file_priv))
180 		return;
181 
182 	rcu_read_lock();
183 	file_priv = xchg(&request->file_priv, NULL);
184 	if (file_priv) {
185 		spin_lock(&file_priv->mm.lock);
186 		list_del(&request->client_link);
187 		spin_unlock(&file_priv->mm.lock);
188 	}
189 	rcu_read_unlock();
190 }
191 
192 static void free_capture_list(struct i915_request *request)
193 {
194 	struct i915_capture_list *capture;
195 
196 	capture = fetch_and_zero(&request->capture_list);
197 	while (capture) {
198 		struct i915_capture_list *next = capture->next;
199 
200 		kfree(capture);
201 		capture = next;
202 	}
203 }
204 
205 static void __i915_request_fill(struct i915_request *rq, u8 val)
206 {
207 	void *vaddr = rq->ring->vaddr;
208 	u32 head;
209 
210 	head = rq->infix;
211 	if (rq->postfix < head) {
212 		memset(vaddr + head, val, rq->ring->size - head);
213 		head = 0;
214 	}
215 	memset(vaddr + head, val, rq->postfix - head);
216 }
217 
218 static void remove_from_engine(struct i915_request *rq)
219 {
220 	struct intel_engine_cs *engine, *locked;
221 
222 	/*
223 	 * Virtual engines complicate acquiring the engine timeline lock,
224 	 * as their rq->engine pointer is not stable until under that
225 	 * engine lock. The simple ploy we use is to take the lock then
226 	 * check that the rq still belongs to the newly locked engine.
227 	 */
228 	locked = READ_ONCE(rq->engine);
229 	spin_lock_irq(&locked->active.lock);
230 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231 		spin_unlock(&locked->active.lock);
232 		spin_lock(&engine->active.lock);
233 		locked = engine;
234 	}
235 	list_del_init(&rq->sched.link);
236 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238 	spin_unlock_irq(&locked->active.lock);
239 }
240 
241 bool i915_request_retire(struct i915_request *rq)
242 {
243 	if (!i915_request_completed(rq))
244 		return false;
245 
246 	RQ_TRACE(rq, "\n");
247 
248 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249 	trace_i915_request_retire(rq);
250 
251 	/*
252 	 * We know the GPU must have read the request to have
253 	 * sent us the seqno + interrupt, so use the position
254 	 * of tail of the request to update the last known position
255 	 * of the GPU head.
256 	 *
257 	 * Note this requires that we are always called in request
258 	 * completion order.
259 	 */
260 	GEM_BUG_ON(!list_is_first(&rq->link,
261 				  &i915_request_timeline(rq)->requests));
262 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 		/* Poison before we release our space in the ring */
264 		__i915_request_fill(rq, POISON_FREE);
265 	rq->ring->head = rq->postfix;
266 
267 	/*
268 	 * We only loosely track inflight requests across preemption,
269 	 * and so we may find ourselves attempting to retire a _completed_
270 	 * request that we have removed from the HW and put back on a run
271 	 * queue.
272 	 */
273 	remove_from_engine(rq);
274 
275 	spin_lock_irq(&rq->lock);
276 	i915_request_mark_complete(rq);
277 	if (!i915_request_signaled(rq))
278 		dma_fence_signal_locked(&rq->fence);
279 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280 		i915_request_cancel_breadcrumb(rq);
281 	if (i915_request_has_waitboost(rq)) {
282 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283 		atomic_dec(&rq->engine->gt->rps.num_waiters);
284 	}
285 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287 		__notify_execute_cb(rq);
288 	}
289 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290 	spin_unlock_irq(&rq->lock);
291 
292 	remove_from_client(rq);
293 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
294 
295 	intel_context_exit(rq->context);
296 	intel_context_unpin(rq->context);
297 
298 	free_capture_list(rq);
299 	i915_sched_node_fini(&rq->sched);
300 	i915_request_put(rq);
301 
302 	return true;
303 }
304 
305 void i915_request_retire_upto(struct i915_request *rq)
306 {
307 	struct intel_timeline * const tl = i915_request_timeline(rq);
308 	struct i915_request *tmp;
309 
310 	RQ_TRACE(rq, "\n");
311 
312 	GEM_BUG_ON(!i915_request_completed(rq));
313 
314 	do {
315 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316 	} while (i915_request_retire(tmp) && tmp != rq);
317 }
318 
319 static int
320 __await_execution(struct i915_request *rq,
321 		  struct i915_request *signal,
322 		  void (*hook)(struct i915_request *rq,
323 			       struct dma_fence *signal),
324 		  gfp_t gfp)
325 {
326 	struct execute_cb *cb;
327 
328 	if (i915_request_is_active(signal)) {
329 		if (hook)
330 			hook(rq, &signal->fence);
331 		return 0;
332 	}
333 
334 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335 	if (!cb)
336 		return -ENOMEM;
337 
338 	cb->fence = &rq->submit;
339 	i915_sw_fence_await(cb->fence);
340 	init_irq_work(&cb->work, irq_execute_cb);
341 
342 	if (hook) {
343 		cb->hook = hook;
344 		cb->signal = i915_request_get(signal);
345 		cb->work.func = irq_execute_cb_hook;
346 	}
347 
348 	spin_lock_irq(&signal->lock);
349 	if (i915_request_is_active(signal)) {
350 		if (hook) {
351 			hook(rq, &signal->fence);
352 			i915_request_put(signal);
353 		}
354 		i915_sw_fence_complete(cb->fence);
355 		kmem_cache_free(global.slab_execute_cbs, cb);
356 	} else {
357 		list_add_tail(&cb->link, &signal->execute_cb);
358 	}
359 	spin_unlock_irq(&signal->lock);
360 
361 	/* Copy across semaphore status as we need the same behaviour */
362 	rq->sched.flags |= signal->sched.flags;
363 	return 0;
364 }
365 
366 static bool fatal_error(int error)
367 {
368 	switch (error) {
369 	case 0: /* not an error! */
370 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
371 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
372 		return false;
373 	default:
374 		return true;
375 	}
376 }
377 
378 void __i915_request_skip(struct i915_request *rq)
379 {
380 	GEM_BUG_ON(!fatal_error(rq->fence.error));
381 
382 	if (rq->infix == rq->postfix)
383 		return;
384 
385 	/*
386 	 * As this request likely depends on state from the lost
387 	 * context, clear out all the user operations leaving the
388 	 * breadcrumb at the end (so we get the fence notifications).
389 	 */
390 	__i915_request_fill(rq, 0);
391 	rq->infix = rq->postfix;
392 }
393 
394 void i915_request_set_error_once(struct i915_request *rq, int error)
395 {
396 	int old;
397 
398 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
399 
400 	if (i915_request_signaled(rq))
401 		return;
402 
403 	old = READ_ONCE(rq->fence.error);
404 	do {
405 		if (fatal_error(old))
406 			return;
407 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
408 }
409 
410 bool __i915_request_submit(struct i915_request *request)
411 {
412 	struct intel_engine_cs *engine = request->engine;
413 	bool result = false;
414 
415 	RQ_TRACE(request, "\n");
416 
417 	GEM_BUG_ON(!irqs_disabled());
418 	lockdep_assert_held(&engine->active.lock);
419 
420 	/*
421 	 * With the advent of preempt-to-busy, we frequently encounter
422 	 * requests that we have unsubmitted from HW, but left running
423 	 * until the next ack and so have completed in the meantime. On
424 	 * resubmission of that completed request, we can skip
425 	 * updating the payload, and execlists can even skip submitting
426 	 * the request.
427 	 *
428 	 * We must remove the request from the caller's priority queue,
429 	 * and the caller must only call us when the request is in their
430 	 * priority queue, under the active.lock. This ensures that the
431 	 * request has *not* yet been retired and we can safely move
432 	 * the request into the engine->active.list where it will be
433 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
434 	 * request, this would be a horrible use-after-free.)
435 	 */
436 	if (i915_request_completed(request))
437 		goto xfer;
438 
439 	if (unlikely(intel_context_is_banned(request->context)))
440 		i915_request_set_error_once(request, -EIO);
441 	if (unlikely(fatal_error(request->fence.error)))
442 		__i915_request_skip(request);
443 
444 	/*
445 	 * Are we using semaphores when the gpu is already saturated?
446 	 *
447 	 * Using semaphores incurs a cost in having the GPU poll a
448 	 * memory location, busywaiting for it to change. The continual
449 	 * memory reads can have a noticeable impact on the rest of the
450 	 * system with the extra bus traffic, stalling the cpu as it too
451 	 * tries to access memory across the bus (perf stat -e bus-cycles).
452 	 *
453 	 * If we installed a semaphore on this request and we only submit
454 	 * the request after the signaler completed, that indicates the
455 	 * system is overloaded and using semaphores at this time only
456 	 * increases the amount of work we are doing. If so, we disable
457 	 * further use of semaphores until we are idle again, whence we
458 	 * optimistically try again.
459 	 */
460 	if (request->sched.semaphores &&
461 	    i915_sw_fence_signaled(&request->semaphore))
462 		engine->saturated |= request->sched.semaphores;
463 
464 	engine->emit_fini_breadcrumb(request,
465 				     request->ring->vaddr + request->postfix);
466 
467 	trace_i915_request_execute(request);
468 	engine->serial++;
469 	result = true;
470 
471 xfer:	/* We may be recursing from the signal callback of another i915 fence */
472 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473 
474 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475 		list_move_tail(&request->sched.link, &engine->active.requests);
476 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
477 	}
478 
479 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481 	    !i915_request_enable_breadcrumb(request))
482 		intel_engine_signal_breadcrumbs(engine);
483 
484 	__notify_execute_cb(request);
485 
486 	spin_unlock(&request->lock);
487 
488 	return result;
489 }
490 
491 void i915_request_submit(struct i915_request *request)
492 {
493 	struct intel_engine_cs *engine = request->engine;
494 	unsigned long flags;
495 
496 	/* Will be called from irq-context when using foreign fences. */
497 	spin_lock_irqsave(&engine->active.lock, flags);
498 
499 	__i915_request_submit(request);
500 
501 	spin_unlock_irqrestore(&engine->active.lock, flags);
502 }
503 
504 void __i915_request_unsubmit(struct i915_request *request)
505 {
506 	struct intel_engine_cs *engine = request->engine;
507 
508 	RQ_TRACE(request, "\n");
509 
510 	GEM_BUG_ON(!irqs_disabled());
511 	lockdep_assert_held(&engine->active.lock);
512 
513 	/*
514 	 * Only unwind in reverse order, required so that the per-context list
515 	 * is kept in seqno/ring order.
516 	 */
517 
518 	/* We may be recursing from the signal callback of another i915 fence */
519 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520 
521 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522 		i915_request_cancel_breadcrumb(request);
523 
524 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
525 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526 
527 	spin_unlock(&request->lock);
528 
529 	/* We've already spun, don't charge on resubmitting. */
530 	if (request->sched.semaphores && i915_request_started(request)) {
531 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
532 		request->sched.semaphores = 0;
533 	}
534 
535 	/*
536 	 * We don't need to wake_up any waiters on request->execute, they
537 	 * will get woken by any other event or us re-adding this request
538 	 * to the engine timeline (__i915_request_submit()). The waiters
539 	 * should be quite adapt at finding that the request now has a new
540 	 * global_seqno to the one they went to sleep on.
541 	 */
542 }
543 
544 void i915_request_unsubmit(struct i915_request *request)
545 {
546 	struct intel_engine_cs *engine = request->engine;
547 	unsigned long flags;
548 
549 	/* Will be called from irq-context when using foreign fences. */
550 	spin_lock_irqsave(&engine->active.lock, flags);
551 
552 	__i915_request_unsubmit(request);
553 
554 	spin_unlock_irqrestore(&engine->active.lock, flags);
555 }
556 
557 static int __i915_sw_fence_call
558 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559 {
560 	struct i915_request *request =
561 		container_of(fence, typeof(*request), submit);
562 
563 	switch (state) {
564 	case FENCE_COMPLETE:
565 		trace_i915_request_submit(request);
566 
567 		if (unlikely(fence->error))
568 			i915_request_set_error_once(request, fence->error);
569 
570 		/*
571 		 * We need to serialize use of the submit_request() callback
572 		 * with its hotplugging performed during an emergency
573 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
574 		 * critical section in order to force i915_gem_set_wedged() to
575 		 * wait until the submit_request() is completed before
576 		 * proceeding.
577 		 */
578 		rcu_read_lock();
579 		request->engine->submit_request(request);
580 		rcu_read_unlock();
581 		break;
582 
583 	case FENCE_FREE:
584 		i915_request_put(request);
585 		break;
586 	}
587 
588 	return NOTIFY_DONE;
589 }
590 
591 static void irq_semaphore_cb(struct irq_work *wrk)
592 {
593 	struct i915_request *rq =
594 		container_of(wrk, typeof(*rq), semaphore_work);
595 
596 	i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
597 	i915_request_put(rq);
598 }
599 
600 static int __i915_sw_fence_call
601 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
602 {
603 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
604 
605 	switch (state) {
606 	case FENCE_COMPLETE:
607 		if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
608 			i915_request_get(rq);
609 			init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
610 			irq_work_queue(&rq->semaphore_work);
611 		}
612 		break;
613 
614 	case FENCE_FREE:
615 		i915_request_put(rq);
616 		break;
617 	}
618 
619 	return NOTIFY_DONE;
620 }
621 
622 static void retire_requests(struct intel_timeline *tl)
623 {
624 	struct i915_request *rq, *rn;
625 
626 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
627 		if (!i915_request_retire(rq))
628 			break;
629 }
630 
631 static noinline struct i915_request *
632 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
633 {
634 	struct i915_request *rq;
635 
636 	if (list_empty(&tl->requests))
637 		goto out;
638 
639 	if (!gfpflags_allow_blocking(gfp))
640 		goto out;
641 
642 	/* Move our oldest request to the slab-cache (if not in use!) */
643 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
644 	i915_request_retire(rq);
645 
646 	rq = kmem_cache_alloc(global.slab_requests,
647 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648 	if (rq)
649 		return rq;
650 
651 	/* Ratelimit ourselves to prevent oom from malicious clients */
652 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
653 	cond_synchronize_rcu(rq->rcustate);
654 
655 	/* Retire our old requests in the hope that we free some */
656 	retire_requests(tl);
657 
658 out:
659 	return kmem_cache_alloc(global.slab_requests, gfp);
660 }
661 
662 static void __i915_request_ctor(void *arg)
663 {
664 	struct i915_request *rq = arg;
665 
666 	spin_lock_init(&rq->lock);
667 	i915_sched_node_init(&rq->sched);
668 	i915_sw_fence_init(&rq->submit, submit_notify);
669 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670 
671 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672 
673 	rq->file_priv = NULL;
674 	rq->capture_list = NULL;
675 
676 	INIT_LIST_HEAD(&rq->execute_cb);
677 }
678 
679 struct i915_request *
680 __i915_request_create(struct intel_context *ce, gfp_t gfp)
681 {
682 	struct intel_timeline *tl = ce->timeline;
683 	struct i915_request *rq;
684 	u32 seqno;
685 	int ret;
686 
687 	might_sleep_if(gfpflags_allow_blocking(gfp));
688 
689 	/* Check that the caller provided an already pinned context */
690 	__intel_context_pin(ce);
691 
692 	/*
693 	 * Beware: Dragons be flying overhead.
694 	 *
695 	 * We use RCU to look up requests in flight. The lookups may
696 	 * race with the request being allocated from the slab freelist.
697 	 * That is the request we are writing to here, may be in the process
698 	 * of being read by __i915_active_request_get_rcu(). As such,
699 	 * we have to be very careful when overwriting the contents. During
700 	 * the RCU lookup, we change chase the request->engine pointer,
701 	 * read the request->global_seqno and increment the reference count.
702 	 *
703 	 * The reference count is incremented atomically. If it is zero,
704 	 * the lookup knows the request is unallocated and complete. Otherwise,
705 	 * it is either still in use, or has been reallocated and reset
706 	 * with dma_fence_init(). This increment is safe for release as we
707 	 * check that the request we have a reference to and matches the active
708 	 * request.
709 	 *
710 	 * Before we increment the refcount, we chase the request->engine
711 	 * pointer. We must not call kmem_cache_zalloc() or else we set
712 	 * that pointer to NULL and cause a crash during the lookup. If
713 	 * we see the request is completed (based on the value of the
714 	 * old engine and seqno), the lookup is complete and reports NULL.
715 	 * If we decide the request is not completed (new engine or seqno),
716 	 * then we grab a reference and double check that it is still the
717 	 * active request - which it won't be and restart the lookup.
718 	 *
719 	 * Do not use kmem_cache_zalloc() here!
720 	 */
721 	rq = kmem_cache_alloc(global.slab_requests,
722 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723 	if (unlikely(!rq)) {
724 		rq = request_alloc_slow(tl, gfp);
725 		if (!rq) {
726 			ret = -ENOMEM;
727 			goto err_unreserve;
728 		}
729 	}
730 
731 	rq->i915 = ce->engine->i915;
732 	rq->context = ce;
733 	rq->engine = ce->engine;
734 	rq->ring = ce->ring;
735 	rq->execution_mask = ce->engine->mask;
736 
737 	kref_init(&rq->fence.refcount);
738 	rq->fence.flags = 0;
739 	rq->fence.error = 0;
740 	INIT_LIST_HEAD(&rq->fence.cb_list);
741 
742 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
743 	if (ret)
744 		goto err_free;
745 
746 	rq->fence.context = tl->fence_context;
747 	rq->fence.seqno = seqno;
748 
749 	RCU_INIT_POINTER(rq->timeline, tl);
750 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751 	rq->hwsp_seqno = tl->hwsp_seqno;
752 	GEM_BUG_ON(i915_request_completed(rq));
753 
754 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755 
756 	/* We bump the ref for the fence chain */
757 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759 
760 	i915_sched_node_reinit(&rq->sched);
761 
762 	/* No zalloc, everything must be cleared after use */
763 	rq->batch = NULL;
764 	GEM_BUG_ON(rq->file_priv);
765 	GEM_BUG_ON(rq->capture_list);
766 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
767 
768 	/*
769 	 * Reserve space in the ring buffer for all the commands required to
770 	 * eventually emit this request. This is to guarantee that the
771 	 * i915_request_add() call can't fail. Note that the reserve may need
772 	 * to be redone if the request is not actually submitted straight
773 	 * away, e.g. because a GPU scheduler has deferred it.
774 	 *
775 	 * Note that due to how we add reserved_space to intel_ring_begin()
776 	 * we need to double our request to ensure that if we need to wrap
777 	 * around inside i915_request_add() there is sufficient space at
778 	 * the beginning of the ring as well.
779 	 */
780 	rq->reserved_space =
781 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782 
783 	/*
784 	 * Record the position of the start of the request so that
785 	 * should we detect the updated seqno part-way through the
786 	 * GPU processing the request, we never over-estimate the
787 	 * position of the head.
788 	 */
789 	rq->head = rq->ring->emit;
790 
791 	ret = rq->engine->request_alloc(rq);
792 	if (ret)
793 		goto err_unwind;
794 
795 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
796 
797 	intel_context_mark_active(ce);
798 	list_add_tail_rcu(&rq->link, &tl->requests);
799 
800 	return rq;
801 
802 err_unwind:
803 	ce->ring->emit = rq->head;
804 
805 	/* Make sure we didn't add ourselves to external state before freeing */
806 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808 
809 err_free:
810 	kmem_cache_free(global.slab_requests, rq);
811 err_unreserve:
812 	intel_context_unpin(ce);
813 	return ERR_PTR(ret);
814 }
815 
816 struct i915_request *
817 i915_request_create(struct intel_context *ce)
818 {
819 	struct i915_request *rq;
820 	struct intel_timeline *tl;
821 
822 	tl = intel_context_timeline_lock(ce);
823 	if (IS_ERR(tl))
824 		return ERR_CAST(tl);
825 
826 	/* Move our oldest request to the slab-cache (if not in use!) */
827 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
828 	if (!list_is_last(&rq->link, &tl->requests))
829 		i915_request_retire(rq);
830 
831 	intel_context_enter(ce);
832 	rq = __i915_request_create(ce, GFP_KERNEL);
833 	intel_context_exit(ce); /* active reference transferred to request */
834 	if (IS_ERR(rq))
835 		goto err_unlock;
836 
837 	/* Check that we do not interrupt ourselves with a new request */
838 	rq->cookie = lockdep_pin_lock(&tl->mutex);
839 
840 	return rq;
841 
842 err_unlock:
843 	intel_context_timeline_unlock(tl);
844 	return rq;
845 }
846 
847 static int
848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849 {
850 	struct dma_fence *fence;
851 	int err;
852 
853 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854 		return 0;
855 
856 	if (i915_request_started(signal))
857 		return 0;
858 
859 	fence = NULL;
860 	rcu_read_lock();
861 	spin_lock_irq(&signal->lock);
862 	do {
863 		struct list_head *pos = READ_ONCE(signal->link.prev);
864 		struct i915_request *prev;
865 
866 		/* Confirm signal has not been retired, the link is valid */
867 		if (unlikely(i915_request_started(signal)))
868 			break;
869 
870 		/* Is signal the earliest request on its timeline? */
871 		if (pos == &rcu_dereference(signal->timeline)->requests)
872 			break;
873 
874 		/*
875 		 * Peek at the request before us in the timeline. That
876 		 * request will only be valid before it is retired, so
877 		 * after acquiring a reference to it, confirm that it is
878 		 * still part of the signaler's timeline.
879 		 */
880 		prev = list_entry(pos, typeof(*prev), link);
881 		if (!i915_request_get_rcu(prev))
882 			break;
883 
884 		/* After the strong barrier, confirm prev is still attached */
885 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886 			i915_request_put(prev);
887 			break;
888 		}
889 
890 		fence = &prev->fence;
891 	} while (0);
892 	spin_unlock_irq(&signal->lock);
893 	rcu_read_unlock();
894 	if (!fence)
895 		return 0;
896 
897 	err = 0;
898 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899 		err = i915_sw_fence_await_dma_fence(&rq->submit,
900 						    fence, 0,
901 						    I915_FENCE_GFP);
902 	dma_fence_put(fence);
903 
904 	return err;
905 }
906 
907 static intel_engine_mask_t
908 already_busywaiting(struct i915_request *rq)
909 {
910 	/*
911 	 * Polling a semaphore causes bus traffic, delaying other users of
912 	 * both the GPU and CPU. We want to limit the impact on others,
913 	 * while taking advantage of early submission to reduce GPU
914 	 * latency. Therefore we restrict ourselves to not using more
915 	 * than one semaphore from each source, and not using a semaphore
916 	 * if we have detected the engine is saturated (i.e. would not be
917 	 * submitted early and cause bus traffic reading an already passed
918 	 * semaphore).
919 	 *
920 	 * See the are-we-too-late? check in __i915_request_submit().
921 	 */
922 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 }
924 
925 static int
926 __emit_semaphore_wait(struct i915_request *to,
927 		      struct i915_request *from,
928 		      u32 seqno)
929 {
930 	const int has_token = INTEL_GEN(to->i915) >= 12;
931 	u32 hwsp_offset;
932 	int len, err;
933 	u32 *cs;
934 
935 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936 
937 	/* We need to pin the signaler's HWSP until we are finished reading. */
938 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
939 	if (err)
940 		return err;
941 
942 	len = 4;
943 	if (has_token)
944 		len += 2;
945 
946 	cs = intel_ring_begin(to, len);
947 	if (IS_ERR(cs))
948 		return PTR_ERR(cs);
949 
950 	/*
951 	 * Using greater-than-or-equal here means we have to worry
952 	 * about seqno wraparound. To side step that issue, we swap
953 	 * the timeline HWSP upon wrapping, so that everyone listening
954 	 * for the old (pre-wrap) values do not see the much smaller
955 	 * (post-wrap) values than they were expecting (and so wait
956 	 * forever).
957 	 */
958 	*cs++ = (MI_SEMAPHORE_WAIT |
959 		 MI_SEMAPHORE_GLOBAL_GTT |
960 		 MI_SEMAPHORE_POLL |
961 		 MI_SEMAPHORE_SAD_GTE_SDD) +
962 		has_token;
963 	*cs++ = seqno;
964 	*cs++ = hwsp_offset;
965 	*cs++ = 0;
966 	if (has_token) {
967 		*cs++ = 0;
968 		*cs++ = MI_NOOP;
969 	}
970 
971 	intel_ring_advance(to, cs);
972 	return 0;
973 }
974 
975 static int
976 emit_semaphore_wait(struct i915_request *to,
977 		    struct i915_request *from,
978 		    gfp_t gfp)
979 {
980 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
981 
982 	if (!intel_context_use_semaphores(to->context))
983 		goto await_fence;
984 
985 	if (!rcu_access_pointer(from->hwsp_cacheline))
986 		goto await_fence;
987 
988 	/* Just emit the first semaphore we see as request space is limited. */
989 	if (already_busywaiting(to) & mask)
990 		goto await_fence;
991 
992 	if (i915_request_await_start(to, from) < 0)
993 		goto await_fence;
994 
995 	/* Only submit our spinner after the signaler is running! */
996 	if (__await_execution(to, from, NULL, gfp))
997 		goto await_fence;
998 
999 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1000 		goto await_fence;
1001 
1002 	to->sched.semaphores |= mask;
1003 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
1004 	return 0;
1005 
1006 await_fence:
1007 	return i915_sw_fence_await_dma_fence(&to->submit,
1008 					     &from->fence, 0,
1009 					     I915_FENCE_GFP);
1010 }
1011 
1012 static int
1013 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1014 {
1015 	int ret;
1016 
1017 	GEM_BUG_ON(to == from);
1018 	GEM_BUG_ON(to->timeline == from->timeline);
1019 
1020 	if (i915_request_completed(from)) {
1021 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1022 		return 0;
1023 	}
1024 
1025 	if (to->engine->schedule) {
1026 		ret = i915_sched_node_add_dependency(&to->sched,
1027 						     &from->sched,
1028 						     I915_DEPENDENCY_EXTERNAL);
1029 		if (ret < 0)
1030 			return ret;
1031 	}
1032 
1033 	if (to->engine == from->engine)
1034 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1035 						       &from->submit,
1036 						       I915_FENCE_GFP);
1037 	else
1038 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1039 	if (ret < 0)
1040 		return ret;
1041 
1042 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
1043 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
1044 						    &from->fence, 0,
1045 						    I915_FENCE_GFP);
1046 		if (ret < 0)
1047 			return ret;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 int
1054 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1055 {
1056 	struct dma_fence **child = &fence;
1057 	unsigned int nchild = 1;
1058 	int ret;
1059 
1060 	/*
1061 	 * Note that if the fence-array was created in signal-on-any mode,
1062 	 * we should *not* decompose it into its individual fences. However,
1063 	 * we don't currently store which mode the fence-array is operating
1064 	 * in. Fortunately, the only user of signal-on-any is private to
1065 	 * amdgpu and we should not see any incoming fence-array from
1066 	 * sync-file being in signal-on-any mode.
1067 	 */
1068 	if (dma_fence_is_array(fence)) {
1069 		struct dma_fence_array *array = to_dma_fence_array(fence);
1070 
1071 		child = array->fences;
1072 		nchild = array->num_fences;
1073 		GEM_BUG_ON(!nchild);
1074 	}
1075 
1076 	do {
1077 		fence = *child++;
1078 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1079 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1080 			continue;
1081 		}
1082 
1083 		/*
1084 		 * Requests on the same timeline are explicitly ordered, along
1085 		 * with their dependencies, by i915_request_add() which ensures
1086 		 * that requests are submitted in-order through each ring.
1087 		 */
1088 		if (fence->context == rq->fence.context)
1089 			continue;
1090 
1091 		/* Squash repeated waits to the same timelines */
1092 		if (fence->context &&
1093 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1094 						 fence))
1095 			continue;
1096 
1097 		if (dma_fence_is_i915(fence))
1098 			ret = i915_request_await_request(rq, to_request(fence));
1099 		else
1100 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1101 							    fence->context ? I915_FENCE_TIMEOUT : 0,
1102 							    I915_FENCE_GFP);
1103 		if (ret < 0)
1104 			return ret;
1105 
1106 		/* Record the latest fence used against each timeline */
1107 		if (fence->context)
1108 			intel_timeline_sync_set(i915_request_timeline(rq),
1109 						fence);
1110 	} while (--nchild);
1111 
1112 	return 0;
1113 }
1114 
1115 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1116 					  struct dma_fence *fence)
1117 {
1118 	return __intel_timeline_sync_is_later(tl,
1119 					      fence->context,
1120 					      fence->seqno - 1);
1121 }
1122 
1123 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1124 					 const struct dma_fence *fence)
1125 {
1126 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1127 }
1128 
1129 static int
1130 __i915_request_await_execution(struct i915_request *to,
1131 			       struct i915_request *from,
1132 			       void (*hook)(struct i915_request *rq,
1133 					    struct dma_fence *signal))
1134 {
1135 	int err;
1136 
1137 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1138 
1139 	/* Submit both requests at the same time */
1140 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1141 	if (err)
1142 		return err;
1143 
1144 	/* Squash repeated depenendices to the same timelines */
1145 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1146 					  &from->fence))
1147 		return 0;
1148 
1149 	/*
1150 	 * Wait until the start of this request.
1151 	 *
1152 	 * The execution cb fires when we submit the request to HW. But in
1153 	 * many cases this may be long before the request itself is ready to
1154 	 * run (consider that we submit 2 requests for the same context, where
1155 	 * the request of interest is behind an indefinite spinner). So we hook
1156 	 * up to both to reduce our queues and keep the execution lag minimised
1157 	 * in the worst case, though we hope that the await_start is elided.
1158 	 */
1159 	err = i915_request_await_start(to, from);
1160 	if (err < 0)
1161 		return err;
1162 
1163 	/*
1164 	 * Ensure both start together [after all semaphores in signal]
1165 	 *
1166 	 * Now that we are queued to the HW at roughly the same time (thanks
1167 	 * to the execute cb) and are ready to run at roughly the same time
1168 	 * (thanks to the await start), our signaler may still be indefinitely
1169 	 * delayed by waiting on a semaphore from a remote engine. If our
1170 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1171 	 * want to start our payload until our signaler also starts theirs.
1172 	 * So we wait.
1173 	 *
1174 	 * However, there is also a second condition for which we need to wait
1175 	 * for the precise start of the signaler. Consider that the signaler
1176 	 * was submitted in a chain of requests following another context
1177 	 * (with just an ordinary intra-engine fence dependency between the
1178 	 * two). In this case the signaler is queued to HW, but not for
1179 	 * immediate execution, and so we must wait until it reaches the
1180 	 * active slot.
1181 	 */
1182 	if (intel_engine_has_semaphores(to->engine)) {
1183 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1184 		if (err < 0)
1185 			return err;
1186 	}
1187 
1188 	/* Couple the dependency tree for PI on this exposed to->fence */
1189 	if (to->engine->schedule) {
1190 		err = i915_sched_node_add_dependency(&to->sched,
1191 						     &from->sched,
1192 						     I915_DEPENDENCY_WEAK);
1193 		if (err < 0)
1194 			return err;
1195 	}
1196 
1197 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1198 					     &from->fence);
1199 }
1200 
1201 int
1202 i915_request_await_execution(struct i915_request *rq,
1203 			     struct dma_fence *fence,
1204 			     void (*hook)(struct i915_request *rq,
1205 					  struct dma_fence *signal))
1206 {
1207 	struct dma_fence **child = &fence;
1208 	unsigned int nchild = 1;
1209 	int ret;
1210 
1211 	if (dma_fence_is_array(fence)) {
1212 		struct dma_fence_array *array = to_dma_fence_array(fence);
1213 
1214 		/* XXX Error for signal-on-any fence arrays */
1215 
1216 		child = array->fences;
1217 		nchild = array->num_fences;
1218 		GEM_BUG_ON(!nchild);
1219 	}
1220 
1221 	do {
1222 		fence = *child++;
1223 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1224 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1225 			continue;
1226 		}
1227 
1228 		/*
1229 		 * We don't squash repeated fence dependencies here as we
1230 		 * want to run our callback in all cases.
1231 		 */
1232 
1233 		if (dma_fence_is_i915(fence))
1234 			ret = __i915_request_await_execution(rq,
1235 							     to_request(fence),
1236 							     hook);
1237 		else
1238 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1239 							    I915_FENCE_TIMEOUT,
1240 							    GFP_KERNEL);
1241 		if (ret < 0)
1242 			return ret;
1243 	} while (--nchild);
1244 
1245 	return 0;
1246 }
1247 
1248 /**
1249  * i915_request_await_object - set this request to (async) wait upon a bo
1250  * @to: request we are wishing to use
1251  * @obj: object which may be in use on another ring.
1252  * @write: whether the wait is on behalf of a writer
1253  *
1254  * This code is meant to abstract object synchronization with the GPU.
1255  * Conceptually we serialise writes between engines inside the GPU.
1256  * We only allow one engine to write into a buffer at any time, but
1257  * multiple readers. To ensure each has a coherent view of memory, we must:
1258  *
1259  * - If there is an outstanding write request to the object, the new
1260  *   request must wait for it to complete (either CPU or in hw, requests
1261  *   on the same ring will be naturally ordered).
1262  *
1263  * - If we are a write request (pending_write_domain is set), the new
1264  *   request must wait for outstanding read requests to complete.
1265  *
1266  * Returns 0 if successful, else propagates up the lower layer error.
1267  */
1268 int
1269 i915_request_await_object(struct i915_request *to,
1270 			  struct drm_i915_gem_object *obj,
1271 			  bool write)
1272 {
1273 	struct dma_fence *excl;
1274 	int ret = 0;
1275 
1276 	if (write) {
1277 		struct dma_fence **shared;
1278 		unsigned int count, i;
1279 
1280 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1281 							&excl, &count, &shared);
1282 		if (ret)
1283 			return ret;
1284 
1285 		for (i = 0; i < count; i++) {
1286 			ret = i915_request_await_dma_fence(to, shared[i]);
1287 			if (ret)
1288 				break;
1289 
1290 			dma_fence_put(shared[i]);
1291 		}
1292 
1293 		for (; i < count; i++)
1294 			dma_fence_put(shared[i]);
1295 		kfree(shared);
1296 	} else {
1297 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1298 	}
1299 
1300 	if (excl) {
1301 		if (ret == 0)
1302 			ret = i915_request_await_dma_fence(to, excl);
1303 
1304 		dma_fence_put(excl);
1305 	}
1306 
1307 	return ret;
1308 }
1309 
1310 static struct i915_request *
1311 __i915_request_add_to_timeline(struct i915_request *rq)
1312 {
1313 	struct intel_timeline *timeline = i915_request_timeline(rq);
1314 	struct i915_request *prev;
1315 
1316 	/*
1317 	 * Dependency tracking and request ordering along the timeline
1318 	 * is special cased so that we can eliminate redundant ordering
1319 	 * operations while building the request (we know that the timeline
1320 	 * itself is ordered, and here we guarantee it).
1321 	 *
1322 	 * As we know we will need to emit tracking along the timeline,
1323 	 * we embed the hooks into our request struct -- at the cost of
1324 	 * having to have specialised no-allocation interfaces (which will
1325 	 * be beneficial elsewhere).
1326 	 *
1327 	 * A second benefit to open-coding i915_request_await_request is
1328 	 * that we can apply a slight variant of the rules specialised
1329 	 * for timelines that jump between engines (such as virtual engines).
1330 	 * If we consider the case of virtual engine, we must emit a dma-fence
1331 	 * to prevent scheduling of the second request until the first is
1332 	 * complete (to maximise our greedy late load balancing) and this
1333 	 * precludes optimising to use semaphores serialisation of a single
1334 	 * timeline across engines.
1335 	 */
1336 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1337 						  &rq->fence));
1338 	if (prev && !i915_request_completed(prev)) {
1339 		/*
1340 		 * The requests are supposed to be kept in order. However,
1341 		 * we need to be wary in case the timeline->last_request
1342 		 * is used as a barrier for external modification to this
1343 		 * context.
1344 		 */
1345 		GEM_BUG_ON(prev->context == rq->context &&
1346 			   i915_seqno_passed(prev->fence.seqno,
1347 					     rq->fence.seqno));
1348 
1349 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1350 			i915_sw_fence_await_sw_fence(&rq->submit,
1351 						     &prev->submit,
1352 						     &rq->submitq);
1353 		else
1354 			__i915_sw_fence_await_dma_fence(&rq->submit,
1355 							&prev->fence,
1356 							&rq->dmaq);
1357 		if (rq->engine->schedule)
1358 			__i915_sched_node_add_dependency(&rq->sched,
1359 							 &prev->sched,
1360 							 &rq->dep,
1361 							 0);
1362 	}
1363 
1364 	/*
1365 	 * Make sure that no request gazumped us - if it was allocated after
1366 	 * our i915_request_alloc() and called __i915_request_add() before
1367 	 * us, the timeline will hold its seqno which is later than ours.
1368 	 */
1369 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1370 
1371 	return prev;
1372 }
1373 
1374 /*
1375  * NB: This function is not allowed to fail. Doing so would mean the the
1376  * request is not being tracked for completion but the work itself is
1377  * going to happen on the hardware. This would be a Bad Thing(tm).
1378  */
1379 struct i915_request *__i915_request_commit(struct i915_request *rq)
1380 {
1381 	struct intel_engine_cs *engine = rq->engine;
1382 	struct intel_ring *ring = rq->ring;
1383 	u32 *cs;
1384 
1385 	RQ_TRACE(rq, "\n");
1386 
1387 	/*
1388 	 * To ensure that this call will not fail, space for its emissions
1389 	 * should already have been reserved in the ring buffer. Let the ring
1390 	 * know that it is time to use that space up.
1391 	 */
1392 	GEM_BUG_ON(rq->reserved_space > ring->space);
1393 	rq->reserved_space = 0;
1394 	rq->emitted_jiffies = jiffies;
1395 
1396 	/*
1397 	 * Record the position of the start of the breadcrumb so that
1398 	 * should we detect the updated seqno part-way through the
1399 	 * GPU processing the request, we never over-estimate the
1400 	 * position of the ring's HEAD.
1401 	 */
1402 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1403 	GEM_BUG_ON(IS_ERR(cs));
1404 	rq->postfix = intel_ring_offset(rq, cs);
1405 
1406 	return __i915_request_add_to_timeline(rq);
1407 }
1408 
1409 void __i915_request_queue(struct i915_request *rq,
1410 			  const struct i915_sched_attr *attr)
1411 {
1412 	/*
1413 	 * Let the backend know a new request has arrived that may need
1414 	 * to adjust the existing execution schedule due to a high priority
1415 	 * request - i.e. we may want to preempt the current request in order
1416 	 * to run a high priority dependency chain *before* we can execute this
1417 	 * request.
1418 	 *
1419 	 * This is called before the request is ready to run so that we can
1420 	 * decide whether to preempt the entire chain so that it is ready to
1421 	 * run at the earliest possible convenience.
1422 	 */
1423 	if (attr && rq->engine->schedule)
1424 		rq->engine->schedule(rq, attr);
1425 	i915_sw_fence_commit(&rq->semaphore);
1426 	i915_sw_fence_commit(&rq->submit);
1427 }
1428 
1429 void i915_request_add(struct i915_request *rq)
1430 {
1431 	struct intel_timeline * const tl = i915_request_timeline(rq);
1432 	struct i915_sched_attr attr = {};
1433 	struct i915_gem_context *ctx;
1434 
1435 	lockdep_assert_held(&tl->mutex);
1436 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1437 
1438 	trace_i915_request_add(rq);
1439 	__i915_request_commit(rq);
1440 
1441 	/* XXX placeholder for selftests */
1442 	rcu_read_lock();
1443 	ctx = rcu_dereference(rq->context->gem_context);
1444 	if (ctx)
1445 		attr = ctx->sched;
1446 	rcu_read_unlock();
1447 
1448 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1449 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1450 	if (list_empty(&rq->sched.signalers_list))
1451 		attr.priority |= I915_PRIORITY_WAIT;
1452 
1453 	local_bh_disable();
1454 	__i915_request_queue(rq, &attr);
1455 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1456 
1457 	mutex_unlock(&tl->mutex);
1458 }
1459 
1460 static unsigned long local_clock_ns(unsigned int *cpu)
1461 {
1462 	unsigned long t;
1463 
1464 	/*
1465 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1466 	 * The result and subsequent calculations are also defined in the same
1467 	 * approximate microseconds units. The principal source of timing
1468 	 * error here is from the simple truncation.
1469 	 *
1470 	 * Note that local_clock() is only defined wrt to the current CPU;
1471 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1472 	 * blocking preemption for the entire busywait, we can detect the CPU
1473 	 * switch and use that as indicator of system load and a reason to
1474 	 * stop busywaiting, see busywait_stop().
1475 	 */
1476 	*cpu = get_cpu();
1477 	t = local_clock();
1478 	put_cpu();
1479 
1480 	return t;
1481 }
1482 
1483 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1484 {
1485 	unsigned int this_cpu;
1486 
1487 	if (time_after(local_clock_ns(&this_cpu), timeout))
1488 		return true;
1489 
1490 	return this_cpu != cpu;
1491 }
1492 
1493 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1494 {
1495 	unsigned long timeout_ns;
1496 	unsigned int cpu;
1497 
1498 	/*
1499 	 * Only wait for the request if we know it is likely to complete.
1500 	 *
1501 	 * We don't track the timestamps around requests, nor the average
1502 	 * request length, so we do not have a good indicator that this
1503 	 * request will complete within the timeout. What we do know is the
1504 	 * order in which requests are executed by the context and so we can
1505 	 * tell if the request has been started. If the request is not even
1506 	 * running yet, it is a fair assumption that it will not complete
1507 	 * within our relatively short timeout.
1508 	 */
1509 	if (!i915_request_is_running(rq))
1510 		return false;
1511 
1512 	/*
1513 	 * When waiting for high frequency requests, e.g. during synchronous
1514 	 * rendering split between the CPU and GPU, the finite amount of time
1515 	 * required to set up the irq and wait upon it limits the response
1516 	 * rate. By busywaiting on the request completion for a short while we
1517 	 * can service the high frequency waits as quick as possible. However,
1518 	 * if it is a slow request, we want to sleep as quickly as possible.
1519 	 * The tradeoff between waiting and sleeping is roughly the time it
1520 	 * takes to sleep on a request, on the order of a microsecond.
1521 	 */
1522 
1523 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1524 	timeout_ns += local_clock_ns(&cpu);
1525 	do {
1526 		if (i915_request_completed(rq))
1527 			return true;
1528 
1529 		if (signal_pending_state(state, current))
1530 			break;
1531 
1532 		if (busywait_stop(timeout_ns, cpu))
1533 			break;
1534 
1535 		cpu_relax();
1536 	} while (!need_resched());
1537 
1538 	return false;
1539 }
1540 
1541 struct request_wait {
1542 	struct dma_fence_cb cb;
1543 	struct task_struct *tsk;
1544 };
1545 
1546 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1547 {
1548 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1549 
1550 	wake_up_process(wait->tsk);
1551 }
1552 
1553 /**
1554  * i915_request_wait - wait until execution of request has finished
1555  * @rq: the request to wait upon
1556  * @flags: how to wait
1557  * @timeout: how long to wait in jiffies
1558  *
1559  * i915_request_wait() waits for the request to be completed, for a
1560  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1561  * unbounded wait).
1562  *
1563  * Returns the remaining time (in jiffies) if the request completed, which may
1564  * be zero or -ETIME if the request is unfinished after the timeout expires.
1565  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1566  * pending before the request completes.
1567  */
1568 long i915_request_wait(struct i915_request *rq,
1569 		       unsigned int flags,
1570 		       long timeout)
1571 {
1572 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1573 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1574 	struct request_wait wait;
1575 
1576 	might_sleep();
1577 	GEM_BUG_ON(timeout < 0);
1578 
1579 	if (dma_fence_is_signaled(&rq->fence))
1580 		return timeout;
1581 
1582 	if (!timeout)
1583 		return -ETIME;
1584 
1585 	trace_i915_request_wait_begin(rq, flags);
1586 
1587 	/*
1588 	 * We must never wait on the GPU while holding a lock as we
1589 	 * may need to perform a GPU reset. So while we don't need to
1590 	 * serialise wait/reset with an explicit lock, we do want
1591 	 * lockdep to detect potential dependency cycles.
1592 	 */
1593 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1594 
1595 	/*
1596 	 * Optimistic spin before touching IRQs.
1597 	 *
1598 	 * We may use a rather large value here to offset the penalty of
1599 	 * switching away from the active task. Frequently, the client will
1600 	 * wait upon an old swapbuffer to throttle itself to remain within a
1601 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1602 	 * then it should not be waiting long at all, and a sleep now will incur
1603 	 * extra scheduler latency in producing the next frame. To try to
1604 	 * avoid adding the cost of enabling/disabling the interrupt to the
1605 	 * short wait, we first spin to see if the request would have completed
1606 	 * in the time taken to setup the interrupt.
1607 	 *
1608 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1609 	 * scheduler latency of a context switch, ignoring the secondary
1610 	 * impacts from a context switch such as cache eviction.
1611 	 *
1612 	 * The scheme used for low-latency IO is called "hybrid interrupt
1613 	 * polling". The suggestion there is to sleep until just before you
1614 	 * expect to be woken by the device interrupt and then poll for its
1615 	 * completion. That requires having a good predictor for the request
1616 	 * duration, which we currently lack.
1617 	 */
1618 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1619 	    __i915_spin_request(rq, state)) {
1620 		dma_fence_signal(&rq->fence);
1621 		goto out;
1622 	}
1623 
1624 	/*
1625 	 * This client is about to stall waiting for the GPU. In many cases
1626 	 * this is undesirable and limits the throughput of the system, as
1627 	 * many clients cannot continue processing user input/output whilst
1628 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1629 	 * to the GPU load and thus incurs additional latency for the client.
1630 	 * We can circumvent that by promoting the GPU frequency to maximum
1631 	 * before we sleep. This makes the GPU throttle up much more quickly
1632 	 * (good for benchmarks and user experience, e.g. window animations),
1633 	 * but at a cost of spending more power processing the workload
1634 	 * (bad for battery).
1635 	 */
1636 	if (flags & I915_WAIT_PRIORITY) {
1637 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1638 			intel_rps_boost(rq);
1639 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1640 	}
1641 
1642 	wait.tsk = current;
1643 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1644 		goto out;
1645 
1646 	for (;;) {
1647 		set_current_state(state);
1648 
1649 		if (i915_request_completed(rq)) {
1650 			dma_fence_signal(&rq->fence);
1651 			break;
1652 		}
1653 
1654 		intel_engine_flush_submission(rq->engine);
1655 
1656 		if (signal_pending_state(state, current)) {
1657 			timeout = -ERESTARTSYS;
1658 			break;
1659 		}
1660 
1661 		if (!timeout) {
1662 			timeout = -ETIME;
1663 			break;
1664 		}
1665 
1666 		timeout = io_schedule_timeout(timeout);
1667 	}
1668 	__set_current_state(TASK_RUNNING);
1669 
1670 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1671 
1672 out:
1673 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1674 	trace_i915_request_wait_end(rq);
1675 	return timeout;
1676 }
1677 
1678 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1679 #include "selftests/mock_request.c"
1680 #include "selftests/i915_request.c"
1681 #endif
1682 
1683 static void i915_global_request_shrink(void)
1684 {
1685 	kmem_cache_shrink(global.slab_execute_cbs);
1686 	kmem_cache_shrink(global.slab_requests);
1687 }
1688 
1689 static void i915_global_request_exit(void)
1690 {
1691 	kmem_cache_destroy(global.slab_execute_cbs);
1692 	kmem_cache_destroy(global.slab_requests);
1693 }
1694 
1695 static struct i915_global_request global = { {
1696 	.shrink = i915_global_request_shrink,
1697 	.exit = i915_global_request_exit,
1698 } };
1699 
1700 int __init i915_global_request_init(void)
1701 {
1702 	global.slab_requests =
1703 		kmem_cache_create("i915_request",
1704 				  sizeof(struct i915_request),
1705 				  __alignof__(struct i915_request),
1706 				  SLAB_HWCACHE_ALIGN |
1707 				  SLAB_RECLAIM_ACCOUNT |
1708 				  SLAB_TYPESAFE_BY_RCU,
1709 				  __i915_request_ctor);
1710 	if (!global.slab_requests)
1711 		return -ENOMEM;
1712 
1713 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1714 					     SLAB_HWCACHE_ALIGN |
1715 					     SLAB_RECLAIM_ACCOUNT |
1716 					     SLAB_TYPESAFE_BY_RCU);
1717 	if (!global.slab_execute_cbs)
1718 		goto err_requests;
1719 
1720 	i915_global_register(&global.base);
1721 	return 0;
1722 
1723 err_requests:
1724 	kmem_cache_destroy(global.slab_requests);
1725 	return -ENOMEM;
1726 }
1727