1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 225 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 226 spin_unlock_irq(&locked->active.lock); 227 } 228 229 bool i915_request_retire(struct i915_request *rq) 230 { 231 if (!i915_request_completed(rq)) 232 return false; 233 234 RQ_TRACE(rq, "\n"); 235 236 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 237 trace_i915_request_retire(rq); 238 239 /* 240 * We know the GPU must have read the request to have 241 * sent us the seqno + interrupt, so use the position 242 * of tail of the request to update the last known position 243 * of the GPU head. 244 * 245 * Note this requires that we are always called in request 246 * completion order. 247 */ 248 GEM_BUG_ON(!list_is_first(&rq->link, 249 &i915_request_timeline(rq)->requests)); 250 rq->ring->head = rq->postfix; 251 252 /* 253 * We only loosely track inflight requests across preemption, 254 * and so we may find ourselves attempting to retire a _completed_ 255 * request that we have removed from the HW and put back on a run 256 * queue. 257 */ 258 remove_from_engine(rq); 259 260 spin_lock_irq(&rq->lock); 261 i915_request_mark_complete(rq); 262 if (!i915_request_signaled(rq)) 263 dma_fence_signal_locked(&rq->fence); 264 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 265 i915_request_cancel_breadcrumb(rq); 266 if (i915_request_has_waitboost(rq)) { 267 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 268 atomic_dec(&rq->engine->gt->rps.num_waiters); 269 } 270 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 271 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 272 __notify_execute_cb(rq); 273 } 274 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 275 spin_unlock_irq(&rq->lock); 276 277 remove_from_client(rq); 278 list_del(&rq->link); 279 280 intel_context_exit(rq->context); 281 intel_context_unpin(rq->context); 282 283 free_capture_list(rq); 284 i915_sched_node_fini(&rq->sched); 285 i915_request_put(rq); 286 287 return true; 288 } 289 290 void i915_request_retire_upto(struct i915_request *rq) 291 { 292 struct intel_timeline * const tl = i915_request_timeline(rq); 293 struct i915_request *tmp; 294 295 RQ_TRACE(rq, "\n"); 296 297 GEM_BUG_ON(!i915_request_completed(rq)); 298 299 do { 300 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 301 } while (i915_request_retire(tmp) && tmp != rq); 302 } 303 304 static int 305 __await_execution(struct i915_request *rq, 306 struct i915_request *signal, 307 void (*hook)(struct i915_request *rq, 308 struct dma_fence *signal), 309 gfp_t gfp) 310 { 311 struct execute_cb *cb; 312 313 if (i915_request_is_active(signal)) { 314 if (hook) 315 hook(rq, &signal->fence); 316 return 0; 317 } 318 319 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 320 if (!cb) 321 return -ENOMEM; 322 323 cb->fence = &rq->submit; 324 i915_sw_fence_await(cb->fence); 325 init_irq_work(&cb->work, irq_execute_cb); 326 327 if (hook) { 328 cb->hook = hook; 329 cb->signal = i915_request_get(signal); 330 cb->work.func = irq_execute_cb_hook; 331 } 332 333 spin_lock_irq(&signal->lock); 334 if (i915_request_is_active(signal)) { 335 if (hook) { 336 hook(rq, &signal->fence); 337 i915_request_put(signal); 338 } 339 i915_sw_fence_complete(cb->fence); 340 kmem_cache_free(global.slab_execute_cbs, cb); 341 } else { 342 list_add_tail(&cb->link, &signal->execute_cb); 343 } 344 spin_unlock_irq(&signal->lock); 345 346 /* Copy across semaphore status as we need the same behaviour */ 347 rq->sched.flags |= signal->sched.flags; 348 return 0; 349 } 350 351 bool __i915_request_submit(struct i915_request *request) 352 { 353 struct intel_engine_cs *engine = request->engine; 354 bool result = false; 355 356 RQ_TRACE(request, "\n"); 357 358 GEM_BUG_ON(!irqs_disabled()); 359 lockdep_assert_held(&engine->active.lock); 360 361 /* 362 * With the advent of preempt-to-busy, we frequently encounter 363 * requests that we have unsubmitted from HW, but left running 364 * until the next ack and so have completed in the meantime. On 365 * resubmission of that completed request, we can skip 366 * updating the payload, and execlists can even skip submitting 367 * the request. 368 * 369 * We must remove the request from the caller's priority queue, 370 * and the caller must only call us when the request is in their 371 * priority queue, under the active.lock. This ensures that the 372 * request has *not* yet been retired and we can safely move 373 * the request into the engine->active.list where it will be 374 * dropped upon retiring. (Otherwise if resubmit a *retired* 375 * request, this would be a horrible use-after-free.) 376 */ 377 if (i915_request_completed(request)) 378 goto xfer; 379 380 if (intel_context_is_banned(request->context)) 381 i915_request_skip(request, -EIO); 382 383 /* 384 * Are we using semaphores when the gpu is already saturated? 385 * 386 * Using semaphores incurs a cost in having the GPU poll a 387 * memory location, busywaiting for it to change. The continual 388 * memory reads can have a noticeable impact on the rest of the 389 * system with the extra bus traffic, stalling the cpu as it too 390 * tries to access memory across the bus (perf stat -e bus-cycles). 391 * 392 * If we installed a semaphore on this request and we only submit 393 * the request after the signaler completed, that indicates the 394 * system is overloaded and using semaphores at this time only 395 * increases the amount of work we are doing. If so, we disable 396 * further use of semaphores until we are idle again, whence we 397 * optimistically try again. 398 */ 399 if (request->sched.semaphores && 400 i915_sw_fence_signaled(&request->semaphore)) 401 engine->saturated |= request->sched.semaphores; 402 403 engine->emit_fini_breadcrumb(request, 404 request->ring->vaddr + request->postfix); 405 406 trace_i915_request_execute(request); 407 engine->serial++; 408 result = true; 409 410 xfer: /* We may be recursing from the signal callback of another i915 fence */ 411 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 412 413 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 414 list_move_tail(&request->sched.link, &engine->active.requests); 415 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 416 } 417 418 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 419 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 420 !i915_request_enable_breadcrumb(request)) 421 intel_engine_signal_breadcrumbs(engine); 422 423 __notify_execute_cb(request); 424 425 spin_unlock(&request->lock); 426 427 return result; 428 } 429 430 void i915_request_submit(struct i915_request *request) 431 { 432 struct intel_engine_cs *engine = request->engine; 433 unsigned long flags; 434 435 /* Will be called from irq-context when using foreign fences. */ 436 spin_lock_irqsave(&engine->active.lock, flags); 437 438 __i915_request_submit(request); 439 440 spin_unlock_irqrestore(&engine->active.lock, flags); 441 } 442 443 void __i915_request_unsubmit(struct i915_request *request) 444 { 445 struct intel_engine_cs *engine = request->engine; 446 447 RQ_TRACE(request, "\n"); 448 449 GEM_BUG_ON(!irqs_disabled()); 450 lockdep_assert_held(&engine->active.lock); 451 452 /* 453 * Only unwind in reverse order, required so that the per-context list 454 * is kept in seqno/ring order. 455 */ 456 457 /* We may be recursing from the signal callback of another i915 fence */ 458 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 459 460 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 461 i915_request_cancel_breadcrumb(request); 462 463 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 464 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 465 466 spin_unlock(&request->lock); 467 468 /* We've already spun, don't charge on resubmitting. */ 469 if (request->sched.semaphores && i915_request_started(request)) { 470 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 471 request->sched.semaphores = 0; 472 } 473 474 /* 475 * We don't need to wake_up any waiters on request->execute, they 476 * will get woken by any other event or us re-adding this request 477 * to the engine timeline (__i915_request_submit()). The waiters 478 * should be quite adapt at finding that the request now has a new 479 * global_seqno to the one they went to sleep on. 480 */ 481 } 482 483 void i915_request_unsubmit(struct i915_request *request) 484 { 485 struct intel_engine_cs *engine = request->engine; 486 unsigned long flags; 487 488 /* Will be called from irq-context when using foreign fences. */ 489 spin_lock_irqsave(&engine->active.lock, flags); 490 491 __i915_request_unsubmit(request); 492 493 spin_unlock_irqrestore(&engine->active.lock, flags); 494 } 495 496 static int __i915_sw_fence_call 497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 498 { 499 struct i915_request *request = 500 container_of(fence, typeof(*request), submit); 501 502 switch (state) { 503 case FENCE_COMPLETE: 504 trace_i915_request_submit(request); 505 506 if (unlikely(fence->error)) 507 i915_request_skip(request, fence->error); 508 509 /* 510 * We need to serialize use of the submit_request() callback 511 * with its hotplugging performed during an emergency 512 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 513 * critical section in order to force i915_gem_set_wedged() to 514 * wait until the submit_request() is completed before 515 * proceeding. 516 */ 517 rcu_read_lock(); 518 request->engine->submit_request(request); 519 rcu_read_unlock(); 520 break; 521 522 case FENCE_FREE: 523 i915_request_put(request); 524 break; 525 } 526 527 return NOTIFY_DONE; 528 } 529 530 static int __i915_sw_fence_call 531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 532 { 533 struct i915_request *request = 534 container_of(fence, typeof(*request), semaphore); 535 536 switch (state) { 537 case FENCE_COMPLETE: 538 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 539 break; 540 541 case FENCE_FREE: 542 i915_request_put(request); 543 break; 544 } 545 546 return NOTIFY_DONE; 547 } 548 549 static void retire_requests(struct intel_timeline *tl) 550 { 551 struct i915_request *rq, *rn; 552 553 list_for_each_entry_safe(rq, rn, &tl->requests, link) 554 if (!i915_request_retire(rq)) 555 break; 556 } 557 558 static noinline struct i915_request * 559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 560 { 561 struct i915_request *rq; 562 563 if (list_empty(&tl->requests)) 564 goto out; 565 566 if (!gfpflags_allow_blocking(gfp)) 567 goto out; 568 569 /* Move our oldest request to the slab-cache (if not in use!) */ 570 rq = list_first_entry(&tl->requests, typeof(*rq), link); 571 i915_request_retire(rq); 572 573 rq = kmem_cache_alloc(global.slab_requests, 574 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 575 if (rq) 576 return rq; 577 578 /* Ratelimit ourselves to prevent oom from malicious clients */ 579 rq = list_last_entry(&tl->requests, typeof(*rq), link); 580 cond_synchronize_rcu(rq->rcustate); 581 582 /* Retire our old requests in the hope that we free some */ 583 retire_requests(tl); 584 585 out: 586 return kmem_cache_alloc(global.slab_requests, gfp); 587 } 588 589 static void __i915_request_ctor(void *arg) 590 { 591 struct i915_request *rq = arg; 592 593 spin_lock_init(&rq->lock); 594 i915_sched_node_init(&rq->sched); 595 i915_sw_fence_init(&rq->submit, submit_notify); 596 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 597 598 rq->file_priv = NULL; 599 rq->capture_list = NULL; 600 601 INIT_LIST_HEAD(&rq->execute_cb); 602 } 603 604 struct i915_request * 605 __i915_request_create(struct intel_context *ce, gfp_t gfp) 606 { 607 struct intel_timeline *tl = ce->timeline; 608 struct i915_request *rq; 609 u32 seqno; 610 int ret; 611 612 might_sleep_if(gfpflags_allow_blocking(gfp)); 613 614 /* Check that the caller provided an already pinned context */ 615 __intel_context_pin(ce); 616 617 /* 618 * Beware: Dragons be flying overhead. 619 * 620 * We use RCU to look up requests in flight. The lookups may 621 * race with the request being allocated from the slab freelist. 622 * That is the request we are writing to here, may be in the process 623 * of being read by __i915_active_request_get_rcu(). As such, 624 * we have to be very careful when overwriting the contents. During 625 * the RCU lookup, we change chase the request->engine pointer, 626 * read the request->global_seqno and increment the reference count. 627 * 628 * The reference count is incremented atomically. If it is zero, 629 * the lookup knows the request is unallocated and complete. Otherwise, 630 * it is either still in use, or has been reallocated and reset 631 * with dma_fence_init(). This increment is safe for release as we 632 * check that the request we have a reference to and matches the active 633 * request. 634 * 635 * Before we increment the refcount, we chase the request->engine 636 * pointer. We must not call kmem_cache_zalloc() or else we set 637 * that pointer to NULL and cause a crash during the lookup. If 638 * we see the request is completed (based on the value of the 639 * old engine and seqno), the lookup is complete and reports NULL. 640 * If we decide the request is not completed (new engine or seqno), 641 * then we grab a reference and double check that it is still the 642 * active request - which it won't be and restart the lookup. 643 * 644 * Do not use kmem_cache_zalloc() here! 645 */ 646 rq = kmem_cache_alloc(global.slab_requests, 647 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 648 if (unlikely(!rq)) { 649 rq = request_alloc_slow(tl, gfp); 650 if (!rq) { 651 ret = -ENOMEM; 652 goto err_unreserve; 653 } 654 } 655 656 ret = intel_timeline_get_seqno(tl, rq, &seqno); 657 if (ret) 658 goto err_free; 659 660 rq->i915 = ce->engine->i915; 661 rq->context = ce; 662 rq->engine = ce->engine; 663 rq->ring = ce->ring; 664 rq->execution_mask = ce->engine->mask; 665 666 RCU_INIT_POINTER(rq->timeline, tl); 667 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 668 rq->hwsp_seqno = tl->hwsp_seqno; 669 670 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 671 672 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 673 tl->fence_context, seqno); 674 675 /* We bump the ref for the fence chain */ 676 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 677 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 678 679 i915_sched_node_reinit(&rq->sched); 680 681 /* No zalloc, everything must be cleared after use */ 682 rq->batch = NULL; 683 GEM_BUG_ON(rq->file_priv); 684 GEM_BUG_ON(rq->capture_list); 685 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 686 687 /* 688 * Reserve space in the ring buffer for all the commands required to 689 * eventually emit this request. This is to guarantee that the 690 * i915_request_add() call can't fail. Note that the reserve may need 691 * to be redone if the request is not actually submitted straight 692 * away, e.g. because a GPU scheduler has deferred it. 693 * 694 * Note that due to how we add reserved_space to intel_ring_begin() 695 * we need to double our request to ensure that if we need to wrap 696 * around inside i915_request_add() there is sufficient space at 697 * the beginning of the ring as well. 698 */ 699 rq->reserved_space = 700 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 701 702 /* 703 * Record the position of the start of the request so that 704 * should we detect the updated seqno part-way through the 705 * GPU processing the request, we never over-estimate the 706 * position of the head. 707 */ 708 rq->head = rq->ring->emit; 709 710 ret = rq->engine->request_alloc(rq); 711 if (ret) 712 goto err_unwind; 713 714 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 715 716 intel_context_mark_active(ce); 717 return rq; 718 719 err_unwind: 720 ce->ring->emit = rq->head; 721 722 /* Make sure we didn't add ourselves to external state before freeing */ 723 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 724 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 725 726 err_free: 727 kmem_cache_free(global.slab_requests, rq); 728 err_unreserve: 729 intel_context_unpin(ce); 730 return ERR_PTR(ret); 731 } 732 733 struct i915_request * 734 i915_request_create(struct intel_context *ce) 735 { 736 struct i915_request *rq; 737 struct intel_timeline *tl; 738 739 tl = intel_context_timeline_lock(ce); 740 if (IS_ERR(tl)) 741 return ERR_CAST(tl); 742 743 /* Move our oldest request to the slab-cache (if not in use!) */ 744 rq = list_first_entry(&tl->requests, typeof(*rq), link); 745 if (!list_is_last(&rq->link, &tl->requests)) 746 i915_request_retire(rq); 747 748 intel_context_enter(ce); 749 rq = __i915_request_create(ce, GFP_KERNEL); 750 intel_context_exit(ce); /* active reference transferred to request */ 751 if (IS_ERR(rq)) 752 goto err_unlock; 753 754 /* Check that we do not interrupt ourselves with a new request */ 755 rq->cookie = lockdep_pin_lock(&tl->mutex); 756 757 return rq; 758 759 err_unlock: 760 intel_context_timeline_unlock(tl); 761 return rq; 762 } 763 764 static int 765 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 766 { 767 struct dma_fence *fence; 768 int err; 769 770 GEM_BUG_ON(i915_request_timeline(rq) == 771 rcu_access_pointer(signal->timeline)); 772 773 fence = NULL; 774 rcu_read_lock(); 775 spin_lock_irq(&signal->lock); 776 if (!i915_request_started(signal) && 777 !list_is_first(&signal->link, 778 &rcu_dereference(signal->timeline)->requests)) { 779 struct i915_request *prev = list_prev_entry(signal, link); 780 781 /* 782 * Peek at the request before us in the timeline. That 783 * request will only be valid before it is retired, so 784 * after acquiring a reference to it, confirm that it is 785 * still part of the signaler's timeline. 786 */ 787 if (i915_request_get_rcu(prev)) { 788 if (list_next_entry(prev, link) == signal) 789 fence = &prev->fence; 790 else 791 i915_request_put(prev); 792 } 793 } 794 spin_unlock_irq(&signal->lock); 795 rcu_read_unlock(); 796 if (!fence) 797 return 0; 798 799 err = 0; 800 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 801 err = i915_sw_fence_await_dma_fence(&rq->submit, 802 fence, 0, 803 I915_FENCE_GFP); 804 dma_fence_put(fence); 805 806 return err; 807 } 808 809 static intel_engine_mask_t 810 already_busywaiting(struct i915_request *rq) 811 { 812 /* 813 * Polling a semaphore causes bus traffic, delaying other users of 814 * both the GPU and CPU. We want to limit the impact on others, 815 * while taking advantage of early submission to reduce GPU 816 * latency. Therefore we restrict ourselves to not using more 817 * than one semaphore from each source, and not using a semaphore 818 * if we have detected the engine is saturated (i.e. would not be 819 * submitted early and cause bus traffic reading an already passed 820 * semaphore). 821 * 822 * See the are-we-too-late? check in __i915_request_submit(). 823 */ 824 return rq->sched.semaphores | rq->engine->saturated; 825 } 826 827 static int 828 __emit_semaphore_wait(struct i915_request *to, 829 struct i915_request *from, 830 u32 seqno) 831 { 832 const int has_token = INTEL_GEN(to->i915) >= 12; 833 u32 hwsp_offset; 834 int len, err; 835 u32 *cs; 836 837 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 838 839 /* We need to pin the signaler's HWSP until we are finished reading. */ 840 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 841 if (err) 842 return err; 843 844 len = 4; 845 if (has_token) 846 len += 2; 847 848 cs = intel_ring_begin(to, len); 849 if (IS_ERR(cs)) 850 return PTR_ERR(cs); 851 852 /* 853 * Using greater-than-or-equal here means we have to worry 854 * about seqno wraparound. To side step that issue, we swap 855 * the timeline HWSP upon wrapping, so that everyone listening 856 * for the old (pre-wrap) values do not see the much smaller 857 * (post-wrap) values than they were expecting (and so wait 858 * forever). 859 */ 860 *cs++ = (MI_SEMAPHORE_WAIT | 861 MI_SEMAPHORE_GLOBAL_GTT | 862 MI_SEMAPHORE_POLL | 863 MI_SEMAPHORE_SAD_GTE_SDD) + 864 has_token; 865 *cs++ = seqno; 866 *cs++ = hwsp_offset; 867 *cs++ = 0; 868 if (has_token) { 869 *cs++ = 0; 870 *cs++ = MI_NOOP; 871 } 872 873 intel_ring_advance(to, cs); 874 return 0; 875 } 876 877 static int 878 emit_semaphore_wait(struct i915_request *to, 879 struct i915_request *from, 880 gfp_t gfp) 881 { 882 /* Just emit the first semaphore we see as request space is limited. */ 883 if (already_busywaiting(to) & from->engine->mask) 884 goto await_fence; 885 886 if (i915_request_await_start(to, from) < 0) 887 goto await_fence; 888 889 /* Only submit our spinner after the signaler is running! */ 890 if (__await_execution(to, from, NULL, gfp)) 891 goto await_fence; 892 893 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 894 goto await_fence; 895 896 to->sched.semaphores |= from->engine->mask; 897 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 898 return 0; 899 900 await_fence: 901 return i915_sw_fence_await_dma_fence(&to->submit, 902 &from->fence, 0, 903 I915_FENCE_GFP); 904 } 905 906 static int 907 i915_request_await_request(struct i915_request *to, struct i915_request *from) 908 { 909 int ret; 910 911 GEM_BUG_ON(to == from); 912 GEM_BUG_ON(to->timeline == from->timeline); 913 914 if (i915_request_completed(from)) 915 return 0; 916 917 if (to->engine->schedule) { 918 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 919 if (ret < 0) 920 return ret; 921 } 922 923 if (to->engine == from->engine) 924 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 925 &from->submit, 926 I915_FENCE_GFP); 927 else if (intel_context_use_semaphores(to->context)) 928 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 929 else 930 ret = i915_sw_fence_await_dma_fence(&to->submit, 931 &from->fence, 0, 932 I915_FENCE_GFP); 933 if (ret < 0) 934 return ret; 935 936 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 937 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 938 &from->fence, 0, 939 I915_FENCE_GFP); 940 if (ret < 0) 941 return ret; 942 } 943 944 return 0; 945 } 946 947 int 948 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 949 { 950 struct dma_fence **child = &fence; 951 unsigned int nchild = 1; 952 int ret; 953 954 /* 955 * Note that if the fence-array was created in signal-on-any mode, 956 * we should *not* decompose it into its individual fences. However, 957 * we don't currently store which mode the fence-array is operating 958 * in. Fortunately, the only user of signal-on-any is private to 959 * amdgpu and we should not see any incoming fence-array from 960 * sync-file being in signal-on-any mode. 961 */ 962 if (dma_fence_is_array(fence)) { 963 struct dma_fence_array *array = to_dma_fence_array(fence); 964 965 child = array->fences; 966 nchild = array->num_fences; 967 GEM_BUG_ON(!nchild); 968 } 969 970 do { 971 fence = *child++; 972 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 973 i915_sw_fence_set_error_once(&rq->submit, fence->error); 974 continue; 975 } 976 977 /* 978 * Requests on the same timeline are explicitly ordered, along 979 * with their dependencies, by i915_request_add() which ensures 980 * that requests are submitted in-order through each ring. 981 */ 982 if (fence->context == rq->fence.context) 983 continue; 984 985 /* Squash repeated waits to the same timelines */ 986 if (fence->context && 987 intel_timeline_sync_is_later(i915_request_timeline(rq), 988 fence)) 989 continue; 990 991 if (dma_fence_is_i915(fence)) 992 ret = i915_request_await_request(rq, to_request(fence)); 993 else 994 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 995 fence->context ? I915_FENCE_TIMEOUT : 0, 996 I915_FENCE_GFP); 997 if (ret < 0) 998 return ret; 999 1000 /* Record the latest fence used against each timeline */ 1001 if (fence->context) 1002 intel_timeline_sync_set(i915_request_timeline(rq), 1003 fence); 1004 } while (--nchild); 1005 1006 return 0; 1007 } 1008 1009 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1010 struct dma_fence *fence) 1011 { 1012 return __intel_timeline_sync_is_later(tl, 1013 fence->context, 1014 fence->seqno - 1); 1015 } 1016 1017 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1018 const struct dma_fence *fence) 1019 { 1020 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1021 } 1022 1023 static int 1024 __i915_request_await_execution(struct i915_request *to, 1025 struct i915_request *from, 1026 void (*hook)(struct i915_request *rq, 1027 struct dma_fence *signal)) 1028 { 1029 int err; 1030 1031 /* Submit both requests at the same time */ 1032 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1033 if (err) 1034 return err; 1035 1036 /* Squash repeated depenendices to the same timelines */ 1037 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1038 &from->fence)) 1039 return 0; 1040 1041 /* Ensure both start together [after all semaphores in signal] */ 1042 if (intel_engine_has_semaphores(to->engine)) 1043 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1044 else 1045 err = i915_request_await_start(to, from); 1046 if (err < 0) 1047 return err; 1048 1049 /* Couple the dependency tree for PI on this exposed to->fence */ 1050 if (to->engine->schedule) { 1051 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1052 if (err < 0) 1053 return err; 1054 } 1055 1056 return intel_timeline_sync_set_start(i915_request_timeline(to), 1057 &from->fence); 1058 } 1059 1060 int 1061 i915_request_await_execution(struct i915_request *rq, 1062 struct dma_fence *fence, 1063 void (*hook)(struct i915_request *rq, 1064 struct dma_fence *signal)) 1065 { 1066 struct dma_fence **child = &fence; 1067 unsigned int nchild = 1; 1068 int ret; 1069 1070 if (dma_fence_is_array(fence)) { 1071 struct dma_fence_array *array = to_dma_fence_array(fence); 1072 1073 /* XXX Error for signal-on-any fence arrays */ 1074 1075 child = array->fences; 1076 nchild = array->num_fences; 1077 GEM_BUG_ON(!nchild); 1078 } 1079 1080 do { 1081 fence = *child++; 1082 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1083 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1084 continue; 1085 } 1086 1087 /* 1088 * We don't squash repeated fence dependencies here as we 1089 * want to run our callback in all cases. 1090 */ 1091 1092 if (dma_fence_is_i915(fence)) 1093 ret = __i915_request_await_execution(rq, 1094 to_request(fence), 1095 hook); 1096 else 1097 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1098 I915_FENCE_TIMEOUT, 1099 GFP_KERNEL); 1100 if (ret < 0) 1101 return ret; 1102 } while (--nchild); 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * i915_request_await_object - set this request to (async) wait upon a bo 1109 * @to: request we are wishing to use 1110 * @obj: object which may be in use on another ring. 1111 * @write: whether the wait is on behalf of a writer 1112 * 1113 * This code is meant to abstract object synchronization with the GPU. 1114 * Conceptually we serialise writes between engines inside the GPU. 1115 * We only allow one engine to write into a buffer at any time, but 1116 * multiple readers. To ensure each has a coherent view of memory, we must: 1117 * 1118 * - If there is an outstanding write request to the object, the new 1119 * request must wait for it to complete (either CPU or in hw, requests 1120 * on the same ring will be naturally ordered). 1121 * 1122 * - If we are a write request (pending_write_domain is set), the new 1123 * request must wait for outstanding read requests to complete. 1124 * 1125 * Returns 0 if successful, else propagates up the lower layer error. 1126 */ 1127 int 1128 i915_request_await_object(struct i915_request *to, 1129 struct drm_i915_gem_object *obj, 1130 bool write) 1131 { 1132 struct dma_fence *excl; 1133 int ret = 0; 1134 1135 if (write) { 1136 struct dma_fence **shared; 1137 unsigned int count, i; 1138 1139 ret = dma_resv_get_fences_rcu(obj->base.resv, 1140 &excl, &count, &shared); 1141 if (ret) 1142 return ret; 1143 1144 for (i = 0; i < count; i++) { 1145 ret = i915_request_await_dma_fence(to, shared[i]); 1146 if (ret) 1147 break; 1148 1149 dma_fence_put(shared[i]); 1150 } 1151 1152 for (; i < count; i++) 1153 dma_fence_put(shared[i]); 1154 kfree(shared); 1155 } else { 1156 excl = dma_resv_get_excl_rcu(obj->base.resv); 1157 } 1158 1159 if (excl) { 1160 if (ret == 0) 1161 ret = i915_request_await_dma_fence(to, excl); 1162 1163 dma_fence_put(excl); 1164 } 1165 1166 return ret; 1167 } 1168 1169 void i915_request_skip(struct i915_request *rq, int error) 1170 { 1171 void *vaddr = rq->ring->vaddr; 1172 u32 head; 1173 1174 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1175 dma_fence_set_error(&rq->fence, error); 1176 1177 if (rq->infix == rq->postfix) 1178 return; 1179 1180 /* 1181 * As this request likely depends on state from the lost 1182 * context, clear out all the user operations leaving the 1183 * breadcrumb at the end (so we get the fence notifications). 1184 */ 1185 head = rq->infix; 1186 if (rq->postfix < head) { 1187 memset(vaddr + head, 0, rq->ring->size - head); 1188 head = 0; 1189 } 1190 memset(vaddr + head, 0, rq->postfix - head); 1191 rq->infix = rq->postfix; 1192 } 1193 1194 static struct i915_request * 1195 __i915_request_add_to_timeline(struct i915_request *rq) 1196 { 1197 struct intel_timeline *timeline = i915_request_timeline(rq); 1198 struct i915_request *prev; 1199 1200 /* 1201 * Dependency tracking and request ordering along the timeline 1202 * is special cased so that we can eliminate redundant ordering 1203 * operations while building the request (we know that the timeline 1204 * itself is ordered, and here we guarantee it). 1205 * 1206 * As we know we will need to emit tracking along the timeline, 1207 * we embed the hooks into our request struct -- at the cost of 1208 * having to have specialised no-allocation interfaces (which will 1209 * be beneficial elsewhere). 1210 * 1211 * A second benefit to open-coding i915_request_await_request is 1212 * that we can apply a slight variant of the rules specialised 1213 * for timelines that jump between engines (such as virtual engines). 1214 * If we consider the case of virtual engine, we must emit a dma-fence 1215 * to prevent scheduling of the second request until the first is 1216 * complete (to maximise our greedy late load balancing) and this 1217 * precludes optimising to use semaphores serialisation of a single 1218 * timeline across engines. 1219 */ 1220 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1221 &rq->fence)); 1222 if (prev && !i915_request_completed(prev)) { 1223 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1224 i915_sw_fence_await_sw_fence(&rq->submit, 1225 &prev->submit, 1226 &rq->submitq); 1227 else 1228 __i915_sw_fence_await_dma_fence(&rq->submit, 1229 &prev->fence, 1230 &rq->dmaq); 1231 if (rq->engine->schedule) 1232 __i915_sched_node_add_dependency(&rq->sched, 1233 &prev->sched, 1234 &rq->dep, 1235 0); 1236 } 1237 1238 list_add_tail(&rq->link, &timeline->requests); 1239 1240 /* 1241 * Make sure that no request gazumped us - if it was allocated after 1242 * our i915_request_alloc() and called __i915_request_add() before 1243 * us, the timeline will hold its seqno which is later than ours. 1244 */ 1245 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1246 1247 return prev; 1248 } 1249 1250 /* 1251 * NB: This function is not allowed to fail. Doing so would mean the the 1252 * request is not being tracked for completion but the work itself is 1253 * going to happen on the hardware. This would be a Bad Thing(tm). 1254 */ 1255 struct i915_request *__i915_request_commit(struct i915_request *rq) 1256 { 1257 struct intel_engine_cs *engine = rq->engine; 1258 struct intel_ring *ring = rq->ring; 1259 u32 *cs; 1260 1261 RQ_TRACE(rq, "\n"); 1262 1263 /* 1264 * To ensure that this call will not fail, space for its emissions 1265 * should already have been reserved in the ring buffer. Let the ring 1266 * know that it is time to use that space up. 1267 */ 1268 GEM_BUG_ON(rq->reserved_space > ring->space); 1269 rq->reserved_space = 0; 1270 rq->emitted_jiffies = jiffies; 1271 1272 /* 1273 * Record the position of the start of the breadcrumb so that 1274 * should we detect the updated seqno part-way through the 1275 * GPU processing the request, we never over-estimate the 1276 * position of the ring's HEAD. 1277 */ 1278 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1279 GEM_BUG_ON(IS_ERR(cs)); 1280 rq->postfix = intel_ring_offset(rq, cs); 1281 1282 return __i915_request_add_to_timeline(rq); 1283 } 1284 1285 void __i915_request_queue(struct i915_request *rq, 1286 const struct i915_sched_attr *attr) 1287 { 1288 /* 1289 * Let the backend know a new request has arrived that may need 1290 * to adjust the existing execution schedule due to a high priority 1291 * request - i.e. we may want to preempt the current request in order 1292 * to run a high priority dependency chain *before* we can execute this 1293 * request. 1294 * 1295 * This is called before the request is ready to run so that we can 1296 * decide whether to preempt the entire chain so that it is ready to 1297 * run at the earliest possible convenience. 1298 */ 1299 i915_sw_fence_commit(&rq->semaphore); 1300 if (attr && rq->engine->schedule) 1301 rq->engine->schedule(rq, attr); 1302 i915_sw_fence_commit(&rq->submit); 1303 } 1304 1305 void i915_request_add(struct i915_request *rq) 1306 { 1307 struct intel_timeline * const tl = i915_request_timeline(rq); 1308 struct i915_sched_attr attr = {}; 1309 struct i915_request *prev; 1310 1311 lockdep_assert_held(&tl->mutex); 1312 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1313 1314 trace_i915_request_add(rq); 1315 1316 prev = __i915_request_commit(rq); 1317 1318 if (rcu_access_pointer(rq->context->gem_context)) 1319 attr = i915_request_gem_context(rq)->sched; 1320 1321 /* 1322 * Boost actual workloads past semaphores! 1323 * 1324 * With semaphores we spin on one engine waiting for another, 1325 * simply to reduce the latency of starting our work when 1326 * the signaler completes. However, if there is any other 1327 * work that we could be doing on this engine instead, that 1328 * is better utilisation and will reduce the overall duration 1329 * of the current work. To avoid PI boosting a semaphore 1330 * far in the distance past over useful work, we keep a history 1331 * of any semaphore use along our dependency chain. 1332 */ 1333 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1334 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1335 1336 /* 1337 * Boost priorities to new clients (new request flows). 1338 * 1339 * Allow interactive/synchronous clients to jump ahead of 1340 * the bulk clients. (FQ_CODEL) 1341 */ 1342 if (list_empty(&rq->sched.signalers_list)) 1343 attr.priority |= I915_PRIORITY_WAIT; 1344 1345 local_bh_disable(); 1346 __i915_request_queue(rq, &attr); 1347 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1348 1349 /* 1350 * In typical scenarios, we do not expect the previous request on 1351 * the timeline to be still tracked by timeline->last_request if it 1352 * has been completed. If the completed request is still here, that 1353 * implies that request retirement is a long way behind submission, 1354 * suggesting that we haven't been retiring frequently enough from 1355 * the combination of retire-before-alloc, waiters and the background 1356 * retirement worker. So if the last request on this timeline was 1357 * already completed, do a catch up pass, flushing the retirement queue 1358 * up to this client. Since we have now moved the heaviest operations 1359 * during retirement onto secondary workers, such as freeing objects 1360 * or contexts, retiring a bunch of requests is mostly list management 1361 * (and cache misses), and so we should not be overly penalizing this 1362 * client by performing excess work, though we may still performing 1363 * work on behalf of others -- but instead we should benefit from 1364 * improved resource management. (Well, that's the theory at least.) 1365 */ 1366 if (prev && 1367 i915_request_completed(prev) && 1368 rcu_access_pointer(prev->timeline) == tl) 1369 i915_request_retire_upto(prev); 1370 1371 mutex_unlock(&tl->mutex); 1372 } 1373 1374 static unsigned long local_clock_us(unsigned int *cpu) 1375 { 1376 unsigned long t; 1377 1378 /* 1379 * Cheaply and approximately convert from nanoseconds to microseconds. 1380 * The result and subsequent calculations are also defined in the same 1381 * approximate microseconds units. The principal source of timing 1382 * error here is from the simple truncation. 1383 * 1384 * Note that local_clock() is only defined wrt to the current CPU; 1385 * the comparisons are no longer valid if we switch CPUs. Instead of 1386 * blocking preemption for the entire busywait, we can detect the CPU 1387 * switch and use that as indicator of system load and a reason to 1388 * stop busywaiting, see busywait_stop(). 1389 */ 1390 *cpu = get_cpu(); 1391 t = local_clock() >> 10; 1392 put_cpu(); 1393 1394 return t; 1395 } 1396 1397 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1398 { 1399 unsigned int this_cpu; 1400 1401 if (time_after(local_clock_us(&this_cpu), timeout)) 1402 return true; 1403 1404 return this_cpu != cpu; 1405 } 1406 1407 static bool __i915_spin_request(const struct i915_request * const rq, 1408 int state, unsigned long timeout_us) 1409 { 1410 unsigned int cpu; 1411 1412 /* 1413 * Only wait for the request if we know it is likely to complete. 1414 * 1415 * We don't track the timestamps around requests, nor the average 1416 * request length, so we do not have a good indicator that this 1417 * request will complete within the timeout. What we do know is the 1418 * order in which requests are executed by the context and so we can 1419 * tell if the request has been started. If the request is not even 1420 * running yet, it is a fair assumption that it will not complete 1421 * within our relatively short timeout. 1422 */ 1423 if (!i915_request_is_running(rq)) 1424 return false; 1425 1426 /* 1427 * When waiting for high frequency requests, e.g. during synchronous 1428 * rendering split between the CPU and GPU, the finite amount of time 1429 * required to set up the irq and wait upon it limits the response 1430 * rate. By busywaiting on the request completion for a short while we 1431 * can service the high frequency waits as quick as possible. However, 1432 * if it is a slow request, we want to sleep as quickly as possible. 1433 * The tradeoff between waiting and sleeping is roughly the time it 1434 * takes to sleep on a request, on the order of a microsecond. 1435 */ 1436 1437 timeout_us += local_clock_us(&cpu); 1438 do { 1439 if (i915_request_completed(rq)) 1440 return true; 1441 1442 if (signal_pending_state(state, current)) 1443 break; 1444 1445 if (busywait_stop(timeout_us, cpu)) 1446 break; 1447 1448 cpu_relax(); 1449 } while (!need_resched()); 1450 1451 return false; 1452 } 1453 1454 struct request_wait { 1455 struct dma_fence_cb cb; 1456 struct task_struct *tsk; 1457 }; 1458 1459 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1460 { 1461 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1462 1463 wake_up_process(wait->tsk); 1464 } 1465 1466 /** 1467 * i915_request_wait - wait until execution of request has finished 1468 * @rq: the request to wait upon 1469 * @flags: how to wait 1470 * @timeout: how long to wait in jiffies 1471 * 1472 * i915_request_wait() waits for the request to be completed, for a 1473 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1474 * unbounded wait). 1475 * 1476 * Returns the remaining time (in jiffies) if the request completed, which may 1477 * be zero or -ETIME if the request is unfinished after the timeout expires. 1478 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1479 * pending before the request completes. 1480 */ 1481 long i915_request_wait(struct i915_request *rq, 1482 unsigned int flags, 1483 long timeout) 1484 { 1485 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1486 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1487 struct request_wait wait; 1488 1489 might_sleep(); 1490 GEM_BUG_ON(timeout < 0); 1491 1492 if (dma_fence_is_signaled(&rq->fence)) 1493 return timeout; 1494 1495 if (!timeout) 1496 return -ETIME; 1497 1498 trace_i915_request_wait_begin(rq, flags); 1499 1500 /* 1501 * We must never wait on the GPU while holding a lock as we 1502 * may need to perform a GPU reset. So while we don't need to 1503 * serialise wait/reset with an explicit lock, we do want 1504 * lockdep to detect potential dependency cycles. 1505 */ 1506 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1507 1508 /* 1509 * Optimistic spin before touching IRQs. 1510 * 1511 * We may use a rather large value here to offset the penalty of 1512 * switching away from the active task. Frequently, the client will 1513 * wait upon an old swapbuffer to throttle itself to remain within a 1514 * frame of the gpu. If the client is running in lockstep with the gpu, 1515 * then it should not be waiting long at all, and a sleep now will incur 1516 * extra scheduler latency in producing the next frame. To try to 1517 * avoid adding the cost of enabling/disabling the interrupt to the 1518 * short wait, we first spin to see if the request would have completed 1519 * in the time taken to setup the interrupt. 1520 * 1521 * We need upto 5us to enable the irq, and upto 20us to hide the 1522 * scheduler latency of a context switch, ignoring the secondary 1523 * impacts from a context switch such as cache eviction. 1524 * 1525 * The scheme used for low-latency IO is called "hybrid interrupt 1526 * polling". The suggestion there is to sleep until just before you 1527 * expect to be woken by the device interrupt and then poll for its 1528 * completion. That requires having a good predictor for the request 1529 * duration, which we currently lack. 1530 */ 1531 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1532 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1533 dma_fence_signal(&rq->fence); 1534 goto out; 1535 } 1536 1537 /* 1538 * This client is about to stall waiting for the GPU. In many cases 1539 * this is undesirable and limits the throughput of the system, as 1540 * many clients cannot continue processing user input/output whilst 1541 * blocked. RPS autotuning may take tens of milliseconds to respond 1542 * to the GPU load and thus incurs additional latency for the client. 1543 * We can circumvent that by promoting the GPU frequency to maximum 1544 * before we sleep. This makes the GPU throttle up much more quickly 1545 * (good for benchmarks and user experience, e.g. window animations), 1546 * but at a cost of spending more power processing the workload 1547 * (bad for battery). 1548 */ 1549 if (flags & I915_WAIT_PRIORITY) { 1550 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1551 intel_rps_boost(rq); 1552 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1553 } 1554 1555 wait.tsk = current; 1556 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1557 goto out; 1558 1559 for (;;) { 1560 set_current_state(state); 1561 1562 if (i915_request_completed(rq)) { 1563 dma_fence_signal(&rq->fence); 1564 break; 1565 } 1566 1567 if (signal_pending_state(state, current)) { 1568 timeout = -ERESTARTSYS; 1569 break; 1570 } 1571 1572 if (!timeout) { 1573 timeout = -ETIME; 1574 break; 1575 } 1576 1577 intel_engine_flush_submission(rq->engine); 1578 timeout = io_schedule_timeout(timeout); 1579 } 1580 __set_current_state(TASK_RUNNING); 1581 1582 dma_fence_remove_callback(&rq->fence, &wait.cb); 1583 1584 out: 1585 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1586 trace_i915_request_wait_end(rq); 1587 return timeout; 1588 } 1589 1590 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1591 #include "selftests/mock_request.c" 1592 #include "selftests/i915_request.c" 1593 #endif 1594 1595 static void i915_global_request_shrink(void) 1596 { 1597 kmem_cache_shrink(global.slab_dependencies); 1598 kmem_cache_shrink(global.slab_execute_cbs); 1599 kmem_cache_shrink(global.slab_requests); 1600 } 1601 1602 static void i915_global_request_exit(void) 1603 { 1604 kmem_cache_destroy(global.slab_dependencies); 1605 kmem_cache_destroy(global.slab_execute_cbs); 1606 kmem_cache_destroy(global.slab_requests); 1607 } 1608 1609 static struct i915_global_request global = { { 1610 .shrink = i915_global_request_shrink, 1611 .exit = i915_global_request_exit, 1612 } }; 1613 1614 int __init i915_global_request_init(void) 1615 { 1616 global.slab_requests = 1617 kmem_cache_create("i915_request", 1618 sizeof(struct i915_request), 1619 __alignof__(struct i915_request), 1620 SLAB_HWCACHE_ALIGN | 1621 SLAB_RECLAIM_ACCOUNT | 1622 SLAB_TYPESAFE_BY_RCU, 1623 __i915_request_ctor); 1624 if (!global.slab_requests) 1625 return -ENOMEM; 1626 1627 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1628 SLAB_HWCACHE_ALIGN | 1629 SLAB_RECLAIM_ACCOUNT | 1630 SLAB_TYPESAFE_BY_RCU); 1631 if (!global.slab_execute_cbs) 1632 goto err_requests; 1633 1634 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1635 SLAB_HWCACHE_ALIGN | 1636 SLAB_RECLAIM_ACCOUNT); 1637 if (!global.slab_dependencies) 1638 goto err_execute_cbs; 1639 1640 i915_global_register(&global.base); 1641 return 0; 1642 1643 err_execute_cbs: 1644 kmem_cache_destroy(global.slab_execute_cbs); 1645 err_requests: 1646 kmem_cache_destroy(global.slab_requests); 1647 return -ENOMEM; 1648 } 1649