xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_execute_cbs;
55 } global;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 static void i915_fence_release(struct dma_fence *fence)
105 {
106 	struct i915_request *rq = to_request(fence);
107 
108 	/*
109 	 * The request is put onto a RCU freelist (i.e. the address
110 	 * is immediately reused), mark the fences as being freed now.
111 	 * Otherwise the debugobjects for the fences are only marked as
112 	 * freed when the slab cache itself is freed, and so we would get
113 	 * caught trying to reuse dead objects.
114 	 */
115 	i915_sw_fence_fini(&rq->submit);
116 	i915_sw_fence_fini(&rq->semaphore);
117 
118 	kmem_cache_free(global.slab_requests, rq);
119 }
120 
121 const struct dma_fence_ops i915_fence_ops = {
122 	.get_driver_name = i915_fence_get_driver_name,
123 	.get_timeline_name = i915_fence_get_timeline_name,
124 	.enable_signaling = i915_fence_enable_signaling,
125 	.signaled = i915_fence_signaled,
126 	.wait = i915_fence_wait,
127 	.release = i915_fence_release,
128 };
129 
130 static void irq_execute_cb(struct irq_work *wrk)
131 {
132 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133 
134 	i915_sw_fence_complete(cb->fence);
135 	kmem_cache_free(global.slab_execute_cbs, cb);
136 }
137 
138 static void irq_execute_cb_hook(struct irq_work *wrk)
139 {
140 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141 
142 	cb->hook(container_of(cb->fence, struct i915_request, submit),
143 		 &cb->signal->fence);
144 	i915_request_put(cb->signal);
145 
146 	irq_execute_cb(wrk);
147 }
148 
149 static void __notify_execute_cb(struct i915_request *rq)
150 {
151 	struct execute_cb *cb;
152 
153 	lockdep_assert_held(&rq->lock);
154 
155 	if (list_empty(&rq->execute_cb))
156 		return;
157 
158 	list_for_each_entry(cb, &rq->execute_cb, link)
159 		irq_work_queue(&cb->work);
160 
161 	/*
162 	 * XXX Rollback on __i915_request_unsubmit()
163 	 *
164 	 * In the future, perhaps when we have an active time-slicing scheduler,
165 	 * it will be interesting to unsubmit parallel execution and remove
166 	 * busywaits from the GPU until their master is restarted. This is
167 	 * quite hairy, we have to carefully rollback the fence and do a
168 	 * preempt-to-idle cycle on the target engine, all the while the
169 	 * master execute_cb may refire.
170 	 */
171 	INIT_LIST_HEAD(&rq->execute_cb);
172 }
173 
174 static inline void
175 remove_from_client(struct i915_request *request)
176 {
177 	struct drm_i915_file_private *file_priv;
178 
179 	if (!READ_ONCE(request->file_priv))
180 		return;
181 
182 	rcu_read_lock();
183 	file_priv = xchg(&request->file_priv, NULL);
184 	if (file_priv) {
185 		spin_lock(&file_priv->mm.lock);
186 		list_del(&request->client_link);
187 		spin_unlock(&file_priv->mm.lock);
188 	}
189 	rcu_read_unlock();
190 }
191 
192 static void free_capture_list(struct i915_request *request)
193 {
194 	struct i915_capture_list *capture;
195 
196 	capture = fetch_and_zero(&request->capture_list);
197 	while (capture) {
198 		struct i915_capture_list *next = capture->next;
199 
200 		kfree(capture);
201 		capture = next;
202 	}
203 }
204 
205 static void __i915_request_fill(struct i915_request *rq, u8 val)
206 {
207 	void *vaddr = rq->ring->vaddr;
208 	u32 head;
209 
210 	head = rq->infix;
211 	if (rq->postfix < head) {
212 		memset(vaddr + head, val, rq->ring->size - head);
213 		head = 0;
214 	}
215 	memset(vaddr + head, val, rq->postfix - head);
216 }
217 
218 static void remove_from_engine(struct i915_request *rq)
219 {
220 	struct intel_engine_cs *engine, *locked;
221 
222 	/*
223 	 * Virtual engines complicate acquiring the engine timeline lock,
224 	 * as their rq->engine pointer is not stable until under that
225 	 * engine lock. The simple ploy we use is to take the lock then
226 	 * check that the rq still belongs to the newly locked engine.
227 	 */
228 	locked = READ_ONCE(rq->engine);
229 	spin_lock_irq(&locked->active.lock);
230 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231 		spin_unlock(&locked->active.lock);
232 		spin_lock(&engine->active.lock);
233 		locked = engine;
234 	}
235 	list_del_init(&rq->sched.link);
236 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238 	spin_unlock_irq(&locked->active.lock);
239 }
240 
241 bool i915_request_retire(struct i915_request *rq)
242 {
243 	if (!i915_request_completed(rq))
244 		return false;
245 
246 	RQ_TRACE(rq, "\n");
247 
248 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249 	trace_i915_request_retire(rq);
250 
251 	/*
252 	 * We know the GPU must have read the request to have
253 	 * sent us the seqno + interrupt, so use the position
254 	 * of tail of the request to update the last known position
255 	 * of the GPU head.
256 	 *
257 	 * Note this requires that we are always called in request
258 	 * completion order.
259 	 */
260 	GEM_BUG_ON(!list_is_first(&rq->link,
261 				  &i915_request_timeline(rq)->requests));
262 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 		/* Poison before we release our space in the ring */
264 		__i915_request_fill(rq, POISON_FREE);
265 	rq->ring->head = rq->postfix;
266 
267 	/*
268 	 * We only loosely track inflight requests across preemption,
269 	 * and so we may find ourselves attempting to retire a _completed_
270 	 * request that we have removed from the HW and put back on a run
271 	 * queue.
272 	 */
273 	remove_from_engine(rq);
274 
275 	spin_lock_irq(&rq->lock);
276 	i915_request_mark_complete(rq);
277 	if (!i915_request_signaled(rq))
278 		dma_fence_signal_locked(&rq->fence);
279 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280 		i915_request_cancel_breadcrumb(rq);
281 	if (i915_request_has_waitboost(rq)) {
282 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283 		atomic_dec(&rq->engine->gt->rps.num_waiters);
284 	}
285 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287 		__notify_execute_cb(rq);
288 	}
289 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290 	spin_unlock_irq(&rq->lock);
291 
292 	remove_from_client(rq);
293 	list_del(&rq->link);
294 
295 	intel_context_exit(rq->context);
296 	intel_context_unpin(rq->context);
297 
298 	free_capture_list(rq);
299 	i915_sched_node_fini(&rq->sched);
300 	i915_request_put(rq);
301 
302 	return true;
303 }
304 
305 void i915_request_retire_upto(struct i915_request *rq)
306 {
307 	struct intel_timeline * const tl = i915_request_timeline(rq);
308 	struct i915_request *tmp;
309 
310 	RQ_TRACE(rq, "\n");
311 
312 	GEM_BUG_ON(!i915_request_completed(rq));
313 
314 	do {
315 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316 	} while (i915_request_retire(tmp) && tmp != rq);
317 }
318 
319 static int
320 __await_execution(struct i915_request *rq,
321 		  struct i915_request *signal,
322 		  void (*hook)(struct i915_request *rq,
323 			       struct dma_fence *signal),
324 		  gfp_t gfp)
325 {
326 	struct execute_cb *cb;
327 
328 	if (i915_request_is_active(signal)) {
329 		if (hook)
330 			hook(rq, &signal->fence);
331 		return 0;
332 	}
333 
334 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335 	if (!cb)
336 		return -ENOMEM;
337 
338 	cb->fence = &rq->submit;
339 	i915_sw_fence_await(cb->fence);
340 	init_irq_work(&cb->work, irq_execute_cb);
341 
342 	if (hook) {
343 		cb->hook = hook;
344 		cb->signal = i915_request_get(signal);
345 		cb->work.func = irq_execute_cb_hook;
346 	}
347 
348 	spin_lock_irq(&signal->lock);
349 	if (i915_request_is_active(signal)) {
350 		if (hook) {
351 			hook(rq, &signal->fence);
352 			i915_request_put(signal);
353 		}
354 		i915_sw_fence_complete(cb->fence);
355 		kmem_cache_free(global.slab_execute_cbs, cb);
356 	} else {
357 		list_add_tail(&cb->link, &signal->execute_cb);
358 	}
359 	spin_unlock_irq(&signal->lock);
360 
361 	/* Copy across semaphore status as we need the same behaviour */
362 	rq->sched.flags |= signal->sched.flags;
363 	return 0;
364 }
365 
366 bool __i915_request_submit(struct i915_request *request)
367 {
368 	struct intel_engine_cs *engine = request->engine;
369 	bool result = false;
370 
371 	RQ_TRACE(request, "\n");
372 
373 	GEM_BUG_ON(!irqs_disabled());
374 	lockdep_assert_held(&engine->active.lock);
375 
376 	/*
377 	 * With the advent of preempt-to-busy, we frequently encounter
378 	 * requests that we have unsubmitted from HW, but left running
379 	 * until the next ack and so have completed in the meantime. On
380 	 * resubmission of that completed request, we can skip
381 	 * updating the payload, and execlists can even skip submitting
382 	 * the request.
383 	 *
384 	 * We must remove the request from the caller's priority queue,
385 	 * and the caller must only call us when the request is in their
386 	 * priority queue, under the active.lock. This ensures that the
387 	 * request has *not* yet been retired and we can safely move
388 	 * the request into the engine->active.list where it will be
389 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
390 	 * request, this would be a horrible use-after-free.)
391 	 */
392 	if (i915_request_completed(request))
393 		goto xfer;
394 
395 	if (intel_context_is_banned(request->context))
396 		i915_request_skip(request, -EIO);
397 
398 	/*
399 	 * Are we using semaphores when the gpu is already saturated?
400 	 *
401 	 * Using semaphores incurs a cost in having the GPU poll a
402 	 * memory location, busywaiting for it to change. The continual
403 	 * memory reads can have a noticeable impact on the rest of the
404 	 * system with the extra bus traffic, stalling the cpu as it too
405 	 * tries to access memory across the bus (perf stat -e bus-cycles).
406 	 *
407 	 * If we installed a semaphore on this request and we only submit
408 	 * the request after the signaler completed, that indicates the
409 	 * system is overloaded and using semaphores at this time only
410 	 * increases the amount of work we are doing. If so, we disable
411 	 * further use of semaphores until we are idle again, whence we
412 	 * optimistically try again.
413 	 */
414 	if (request->sched.semaphores &&
415 	    i915_sw_fence_signaled(&request->semaphore))
416 		engine->saturated |= request->sched.semaphores;
417 
418 	engine->emit_fini_breadcrumb(request,
419 				     request->ring->vaddr + request->postfix);
420 
421 	trace_i915_request_execute(request);
422 	engine->serial++;
423 	result = true;
424 
425 xfer:	/* We may be recursing from the signal callback of another i915 fence */
426 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
427 
428 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
429 		list_move_tail(&request->sched.link, &engine->active.requests);
430 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
431 	}
432 
433 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
434 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
435 	    !i915_request_enable_breadcrumb(request))
436 		intel_engine_signal_breadcrumbs(engine);
437 
438 	__notify_execute_cb(request);
439 
440 	spin_unlock(&request->lock);
441 
442 	return result;
443 }
444 
445 void i915_request_submit(struct i915_request *request)
446 {
447 	struct intel_engine_cs *engine = request->engine;
448 	unsigned long flags;
449 
450 	/* Will be called from irq-context when using foreign fences. */
451 	spin_lock_irqsave(&engine->active.lock, flags);
452 
453 	__i915_request_submit(request);
454 
455 	spin_unlock_irqrestore(&engine->active.lock, flags);
456 }
457 
458 void __i915_request_unsubmit(struct i915_request *request)
459 {
460 	struct intel_engine_cs *engine = request->engine;
461 
462 	RQ_TRACE(request, "\n");
463 
464 	GEM_BUG_ON(!irqs_disabled());
465 	lockdep_assert_held(&engine->active.lock);
466 
467 	/*
468 	 * Only unwind in reverse order, required so that the per-context list
469 	 * is kept in seqno/ring order.
470 	 */
471 
472 	/* We may be recursing from the signal callback of another i915 fence */
473 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
474 
475 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
476 		i915_request_cancel_breadcrumb(request);
477 
478 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
479 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
480 
481 	spin_unlock(&request->lock);
482 
483 	/* We've already spun, don't charge on resubmitting. */
484 	if (request->sched.semaphores && i915_request_started(request)) {
485 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
486 		request->sched.semaphores = 0;
487 	}
488 
489 	/*
490 	 * We don't need to wake_up any waiters on request->execute, they
491 	 * will get woken by any other event or us re-adding this request
492 	 * to the engine timeline (__i915_request_submit()). The waiters
493 	 * should be quite adapt at finding that the request now has a new
494 	 * global_seqno to the one they went to sleep on.
495 	 */
496 }
497 
498 void i915_request_unsubmit(struct i915_request *request)
499 {
500 	struct intel_engine_cs *engine = request->engine;
501 	unsigned long flags;
502 
503 	/* Will be called from irq-context when using foreign fences. */
504 	spin_lock_irqsave(&engine->active.lock, flags);
505 
506 	__i915_request_unsubmit(request);
507 
508 	spin_unlock_irqrestore(&engine->active.lock, flags);
509 }
510 
511 static int __i915_sw_fence_call
512 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
513 {
514 	struct i915_request *request =
515 		container_of(fence, typeof(*request), submit);
516 
517 	switch (state) {
518 	case FENCE_COMPLETE:
519 		trace_i915_request_submit(request);
520 
521 		if (unlikely(fence->error))
522 			i915_request_skip(request, fence->error);
523 
524 		/*
525 		 * We need to serialize use of the submit_request() callback
526 		 * with its hotplugging performed during an emergency
527 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
528 		 * critical section in order to force i915_gem_set_wedged() to
529 		 * wait until the submit_request() is completed before
530 		 * proceeding.
531 		 */
532 		rcu_read_lock();
533 		request->engine->submit_request(request);
534 		rcu_read_unlock();
535 		break;
536 
537 	case FENCE_FREE:
538 		i915_request_put(request);
539 		break;
540 	}
541 
542 	return NOTIFY_DONE;
543 }
544 
545 static int __i915_sw_fence_call
546 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
547 {
548 	struct i915_request *request =
549 		container_of(fence, typeof(*request), semaphore);
550 
551 	switch (state) {
552 	case FENCE_COMPLETE:
553 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
554 		break;
555 
556 	case FENCE_FREE:
557 		i915_request_put(request);
558 		break;
559 	}
560 
561 	return NOTIFY_DONE;
562 }
563 
564 static void retire_requests(struct intel_timeline *tl)
565 {
566 	struct i915_request *rq, *rn;
567 
568 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
569 		if (!i915_request_retire(rq))
570 			break;
571 }
572 
573 static noinline struct i915_request *
574 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
575 {
576 	struct i915_request *rq;
577 
578 	if (list_empty(&tl->requests))
579 		goto out;
580 
581 	if (!gfpflags_allow_blocking(gfp))
582 		goto out;
583 
584 	/* Move our oldest request to the slab-cache (if not in use!) */
585 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
586 	i915_request_retire(rq);
587 
588 	rq = kmem_cache_alloc(global.slab_requests,
589 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
590 	if (rq)
591 		return rq;
592 
593 	/* Ratelimit ourselves to prevent oom from malicious clients */
594 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
595 	cond_synchronize_rcu(rq->rcustate);
596 
597 	/* Retire our old requests in the hope that we free some */
598 	retire_requests(tl);
599 
600 out:
601 	return kmem_cache_alloc(global.slab_requests, gfp);
602 }
603 
604 static void __i915_request_ctor(void *arg)
605 {
606 	struct i915_request *rq = arg;
607 
608 	spin_lock_init(&rq->lock);
609 	i915_sched_node_init(&rq->sched);
610 	i915_sw_fence_init(&rq->submit, submit_notify);
611 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
612 
613 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
614 
615 	rq->file_priv = NULL;
616 	rq->capture_list = NULL;
617 
618 	INIT_LIST_HEAD(&rq->execute_cb);
619 }
620 
621 struct i915_request *
622 __i915_request_create(struct intel_context *ce, gfp_t gfp)
623 {
624 	struct intel_timeline *tl = ce->timeline;
625 	struct i915_request *rq;
626 	u32 seqno;
627 	int ret;
628 
629 	might_sleep_if(gfpflags_allow_blocking(gfp));
630 
631 	/* Check that the caller provided an already pinned context */
632 	__intel_context_pin(ce);
633 
634 	/*
635 	 * Beware: Dragons be flying overhead.
636 	 *
637 	 * We use RCU to look up requests in flight. The lookups may
638 	 * race with the request being allocated from the slab freelist.
639 	 * That is the request we are writing to here, may be in the process
640 	 * of being read by __i915_active_request_get_rcu(). As such,
641 	 * we have to be very careful when overwriting the contents. During
642 	 * the RCU lookup, we change chase the request->engine pointer,
643 	 * read the request->global_seqno and increment the reference count.
644 	 *
645 	 * The reference count is incremented atomically. If it is zero,
646 	 * the lookup knows the request is unallocated and complete. Otherwise,
647 	 * it is either still in use, or has been reallocated and reset
648 	 * with dma_fence_init(). This increment is safe for release as we
649 	 * check that the request we have a reference to and matches the active
650 	 * request.
651 	 *
652 	 * Before we increment the refcount, we chase the request->engine
653 	 * pointer. We must not call kmem_cache_zalloc() or else we set
654 	 * that pointer to NULL and cause a crash during the lookup. If
655 	 * we see the request is completed (based on the value of the
656 	 * old engine and seqno), the lookup is complete and reports NULL.
657 	 * If we decide the request is not completed (new engine or seqno),
658 	 * then we grab a reference and double check that it is still the
659 	 * active request - which it won't be and restart the lookup.
660 	 *
661 	 * Do not use kmem_cache_zalloc() here!
662 	 */
663 	rq = kmem_cache_alloc(global.slab_requests,
664 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
665 	if (unlikely(!rq)) {
666 		rq = request_alloc_slow(tl, gfp);
667 		if (!rq) {
668 			ret = -ENOMEM;
669 			goto err_unreserve;
670 		}
671 	}
672 
673 	rq->i915 = ce->engine->i915;
674 	rq->context = ce;
675 	rq->engine = ce->engine;
676 	rq->ring = ce->ring;
677 	rq->execution_mask = ce->engine->mask;
678 
679 	kref_init(&rq->fence.refcount);
680 	rq->fence.flags = 0;
681 	rq->fence.error = 0;
682 	INIT_LIST_HEAD(&rq->fence.cb_list);
683 
684 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
685 	if (ret)
686 		goto err_free;
687 
688 	rq->fence.context = tl->fence_context;
689 	rq->fence.seqno = seqno;
690 
691 	RCU_INIT_POINTER(rq->timeline, tl);
692 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
693 	rq->hwsp_seqno = tl->hwsp_seqno;
694 
695 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
696 
697 	/* We bump the ref for the fence chain */
698 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
699 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
700 
701 	i915_sched_node_reinit(&rq->sched);
702 
703 	/* No zalloc, everything must be cleared after use */
704 	rq->batch = NULL;
705 	GEM_BUG_ON(rq->file_priv);
706 	GEM_BUG_ON(rq->capture_list);
707 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
708 
709 	/*
710 	 * Reserve space in the ring buffer for all the commands required to
711 	 * eventually emit this request. This is to guarantee that the
712 	 * i915_request_add() call can't fail. Note that the reserve may need
713 	 * to be redone if the request is not actually submitted straight
714 	 * away, e.g. because a GPU scheduler has deferred it.
715 	 *
716 	 * Note that due to how we add reserved_space to intel_ring_begin()
717 	 * we need to double our request to ensure that if we need to wrap
718 	 * around inside i915_request_add() there is sufficient space at
719 	 * the beginning of the ring as well.
720 	 */
721 	rq->reserved_space =
722 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
723 
724 	/*
725 	 * Record the position of the start of the request so that
726 	 * should we detect the updated seqno part-way through the
727 	 * GPU processing the request, we never over-estimate the
728 	 * position of the head.
729 	 */
730 	rq->head = rq->ring->emit;
731 
732 	ret = rq->engine->request_alloc(rq);
733 	if (ret)
734 		goto err_unwind;
735 
736 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
737 
738 	intel_context_mark_active(ce);
739 	return rq;
740 
741 err_unwind:
742 	ce->ring->emit = rq->head;
743 
744 	/* Make sure we didn't add ourselves to external state before freeing */
745 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747 
748 err_free:
749 	kmem_cache_free(global.slab_requests, rq);
750 err_unreserve:
751 	intel_context_unpin(ce);
752 	return ERR_PTR(ret);
753 }
754 
755 struct i915_request *
756 i915_request_create(struct intel_context *ce)
757 {
758 	struct i915_request *rq;
759 	struct intel_timeline *tl;
760 
761 	tl = intel_context_timeline_lock(ce);
762 	if (IS_ERR(tl))
763 		return ERR_CAST(tl);
764 
765 	/* Move our oldest request to the slab-cache (if not in use!) */
766 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
767 	if (!list_is_last(&rq->link, &tl->requests))
768 		i915_request_retire(rq);
769 
770 	intel_context_enter(ce);
771 	rq = __i915_request_create(ce, GFP_KERNEL);
772 	intel_context_exit(ce); /* active reference transferred to request */
773 	if (IS_ERR(rq))
774 		goto err_unlock;
775 
776 	/* Check that we do not interrupt ourselves with a new request */
777 	rq->cookie = lockdep_pin_lock(&tl->mutex);
778 
779 	return rq;
780 
781 err_unlock:
782 	intel_context_timeline_unlock(tl);
783 	return rq;
784 }
785 
786 static int
787 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
788 {
789 	struct dma_fence *fence;
790 	int err;
791 
792 	GEM_BUG_ON(i915_request_timeline(rq) ==
793 		   rcu_access_pointer(signal->timeline));
794 
795 	fence = NULL;
796 	rcu_read_lock();
797 	spin_lock_irq(&signal->lock);
798 	if (!i915_request_started(signal) &&
799 	    !list_is_first(&signal->link,
800 			   &rcu_dereference(signal->timeline)->requests)) {
801 		struct i915_request *prev = list_prev_entry(signal, link);
802 
803 		/*
804 		 * Peek at the request before us in the timeline. That
805 		 * request will only be valid before it is retired, so
806 		 * after acquiring a reference to it, confirm that it is
807 		 * still part of the signaler's timeline.
808 		 */
809 		if (i915_request_get_rcu(prev)) {
810 			if (list_next_entry(prev, link) == signal)
811 				fence = &prev->fence;
812 			else
813 				i915_request_put(prev);
814 		}
815 	}
816 	spin_unlock_irq(&signal->lock);
817 	rcu_read_unlock();
818 	if (!fence)
819 		return 0;
820 
821 	err = 0;
822 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
823 		err = i915_sw_fence_await_dma_fence(&rq->submit,
824 						    fence, 0,
825 						    I915_FENCE_GFP);
826 	dma_fence_put(fence);
827 
828 	return err;
829 }
830 
831 static intel_engine_mask_t
832 already_busywaiting(struct i915_request *rq)
833 {
834 	/*
835 	 * Polling a semaphore causes bus traffic, delaying other users of
836 	 * both the GPU and CPU. We want to limit the impact on others,
837 	 * while taking advantage of early submission to reduce GPU
838 	 * latency. Therefore we restrict ourselves to not using more
839 	 * than one semaphore from each source, and not using a semaphore
840 	 * if we have detected the engine is saturated (i.e. would not be
841 	 * submitted early and cause bus traffic reading an already passed
842 	 * semaphore).
843 	 *
844 	 * See the are-we-too-late? check in __i915_request_submit().
845 	 */
846 	return rq->sched.semaphores | rq->engine->saturated;
847 }
848 
849 static int
850 __emit_semaphore_wait(struct i915_request *to,
851 		      struct i915_request *from,
852 		      u32 seqno)
853 {
854 	const int has_token = INTEL_GEN(to->i915) >= 12;
855 	u32 hwsp_offset;
856 	int len, err;
857 	u32 *cs;
858 
859 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
860 
861 	/* We need to pin the signaler's HWSP until we are finished reading. */
862 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
863 	if (err)
864 		return err;
865 
866 	len = 4;
867 	if (has_token)
868 		len += 2;
869 
870 	cs = intel_ring_begin(to, len);
871 	if (IS_ERR(cs))
872 		return PTR_ERR(cs);
873 
874 	/*
875 	 * Using greater-than-or-equal here means we have to worry
876 	 * about seqno wraparound. To side step that issue, we swap
877 	 * the timeline HWSP upon wrapping, so that everyone listening
878 	 * for the old (pre-wrap) values do not see the much smaller
879 	 * (post-wrap) values than they were expecting (and so wait
880 	 * forever).
881 	 */
882 	*cs++ = (MI_SEMAPHORE_WAIT |
883 		 MI_SEMAPHORE_GLOBAL_GTT |
884 		 MI_SEMAPHORE_POLL |
885 		 MI_SEMAPHORE_SAD_GTE_SDD) +
886 		has_token;
887 	*cs++ = seqno;
888 	*cs++ = hwsp_offset;
889 	*cs++ = 0;
890 	if (has_token) {
891 		*cs++ = 0;
892 		*cs++ = MI_NOOP;
893 	}
894 
895 	intel_ring_advance(to, cs);
896 	return 0;
897 }
898 
899 static int
900 emit_semaphore_wait(struct i915_request *to,
901 		    struct i915_request *from,
902 		    gfp_t gfp)
903 {
904 	if (!intel_context_use_semaphores(to->context))
905 		goto await_fence;
906 
907 	if (!rcu_access_pointer(from->hwsp_cacheline))
908 		goto await_fence;
909 
910 	/* Just emit the first semaphore we see as request space is limited. */
911 	if (already_busywaiting(to) & from->engine->mask)
912 		goto await_fence;
913 
914 	if (i915_request_await_start(to, from) < 0)
915 		goto await_fence;
916 
917 	/* Only submit our spinner after the signaler is running! */
918 	if (__await_execution(to, from, NULL, gfp))
919 		goto await_fence;
920 
921 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
922 		goto await_fence;
923 
924 	to->sched.semaphores |= from->engine->mask;
925 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
926 	return 0;
927 
928 await_fence:
929 	return i915_sw_fence_await_dma_fence(&to->submit,
930 					     &from->fence, 0,
931 					     I915_FENCE_GFP);
932 }
933 
934 static int
935 i915_request_await_request(struct i915_request *to, struct i915_request *from)
936 {
937 	int ret;
938 
939 	GEM_BUG_ON(to == from);
940 	GEM_BUG_ON(to->timeline == from->timeline);
941 
942 	if (i915_request_completed(from))
943 		return 0;
944 
945 	if (to->engine->schedule) {
946 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
947 		if (ret < 0)
948 			return ret;
949 	}
950 
951 	if (to->engine == from->engine)
952 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
953 						       &from->submit,
954 						       I915_FENCE_GFP);
955 	else
956 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
957 	if (ret < 0)
958 		return ret;
959 
960 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
961 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
962 						    &from->fence, 0,
963 						    I915_FENCE_GFP);
964 		if (ret < 0)
965 			return ret;
966 	}
967 
968 	return 0;
969 }
970 
971 int
972 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
973 {
974 	struct dma_fence **child = &fence;
975 	unsigned int nchild = 1;
976 	int ret;
977 
978 	/*
979 	 * Note that if the fence-array was created in signal-on-any mode,
980 	 * we should *not* decompose it into its individual fences. However,
981 	 * we don't currently store which mode the fence-array is operating
982 	 * in. Fortunately, the only user of signal-on-any is private to
983 	 * amdgpu and we should not see any incoming fence-array from
984 	 * sync-file being in signal-on-any mode.
985 	 */
986 	if (dma_fence_is_array(fence)) {
987 		struct dma_fence_array *array = to_dma_fence_array(fence);
988 
989 		child = array->fences;
990 		nchild = array->num_fences;
991 		GEM_BUG_ON(!nchild);
992 	}
993 
994 	do {
995 		fence = *child++;
996 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
997 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
998 			continue;
999 		}
1000 
1001 		/*
1002 		 * Requests on the same timeline are explicitly ordered, along
1003 		 * with their dependencies, by i915_request_add() which ensures
1004 		 * that requests are submitted in-order through each ring.
1005 		 */
1006 		if (fence->context == rq->fence.context)
1007 			continue;
1008 
1009 		/* Squash repeated waits to the same timelines */
1010 		if (fence->context &&
1011 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1012 						 fence))
1013 			continue;
1014 
1015 		if (dma_fence_is_i915(fence))
1016 			ret = i915_request_await_request(rq, to_request(fence));
1017 		else
1018 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1019 							    fence->context ? I915_FENCE_TIMEOUT : 0,
1020 							    I915_FENCE_GFP);
1021 		if (ret < 0)
1022 			return ret;
1023 
1024 		/* Record the latest fence used against each timeline */
1025 		if (fence->context)
1026 			intel_timeline_sync_set(i915_request_timeline(rq),
1027 						fence);
1028 	} while (--nchild);
1029 
1030 	return 0;
1031 }
1032 
1033 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1034 					  struct dma_fence *fence)
1035 {
1036 	return __intel_timeline_sync_is_later(tl,
1037 					      fence->context,
1038 					      fence->seqno - 1);
1039 }
1040 
1041 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1042 					 const struct dma_fence *fence)
1043 {
1044 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1045 }
1046 
1047 static int
1048 __i915_request_await_execution(struct i915_request *to,
1049 			       struct i915_request *from,
1050 			       void (*hook)(struct i915_request *rq,
1051 					    struct dma_fence *signal))
1052 {
1053 	int err;
1054 
1055 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1056 
1057 	/* Submit both requests at the same time */
1058 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1059 	if (err)
1060 		return err;
1061 
1062 	/* Squash repeated depenendices to the same timelines */
1063 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1064 					  &from->fence))
1065 		return 0;
1066 
1067 	/* Ensure both start together [after all semaphores in signal] */
1068 	if (intel_engine_has_semaphores(to->engine))
1069 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1070 	else
1071 		err = i915_request_await_start(to, from);
1072 	if (err < 0)
1073 		return err;
1074 
1075 	/* Couple the dependency tree for PI on this exposed to->fence */
1076 	if (to->engine->schedule) {
1077 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1078 		if (err < 0)
1079 			return err;
1080 	}
1081 
1082 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1083 					     &from->fence);
1084 }
1085 
1086 int
1087 i915_request_await_execution(struct i915_request *rq,
1088 			     struct dma_fence *fence,
1089 			     void (*hook)(struct i915_request *rq,
1090 					  struct dma_fence *signal))
1091 {
1092 	struct dma_fence **child = &fence;
1093 	unsigned int nchild = 1;
1094 	int ret;
1095 
1096 	if (dma_fence_is_array(fence)) {
1097 		struct dma_fence_array *array = to_dma_fence_array(fence);
1098 
1099 		/* XXX Error for signal-on-any fence arrays */
1100 
1101 		child = array->fences;
1102 		nchild = array->num_fences;
1103 		GEM_BUG_ON(!nchild);
1104 	}
1105 
1106 	do {
1107 		fence = *child++;
1108 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1109 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1110 			continue;
1111 		}
1112 
1113 		/*
1114 		 * We don't squash repeated fence dependencies here as we
1115 		 * want to run our callback in all cases.
1116 		 */
1117 
1118 		if (dma_fence_is_i915(fence))
1119 			ret = __i915_request_await_execution(rq,
1120 							     to_request(fence),
1121 							     hook);
1122 		else
1123 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1124 							    I915_FENCE_TIMEOUT,
1125 							    GFP_KERNEL);
1126 		if (ret < 0)
1127 			return ret;
1128 	} while (--nchild);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  * i915_request_await_object - set this request to (async) wait upon a bo
1135  * @to: request we are wishing to use
1136  * @obj: object which may be in use on another ring.
1137  * @write: whether the wait is on behalf of a writer
1138  *
1139  * This code is meant to abstract object synchronization with the GPU.
1140  * Conceptually we serialise writes between engines inside the GPU.
1141  * We only allow one engine to write into a buffer at any time, but
1142  * multiple readers. To ensure each has a coherent view of memory, we must:
1143  *
1144  * - If there is an outstanding write request to the object, the new
1145  *   request must wait for it to complete (either CPU or in hw, requests
1146  *   on the same ring will be naturally ordered).
1147  *
1148  * - If we are a write request (pending_write_domain is set), the new
1149  *   request must wait for outstanding read requests to complete.
1150  *
1151  * Returns 0 if successful, else propagates up the lower layer error.
1152  */
1153 int
1154 i915_request_await_object(struct i915_request *to,
1155 			  struct drm_i915_gem_object *obj,
1156 			  bool write)
1157 {
1158 	struct dma_fence *excl;
1159 	int ret = 0;
1160 
1161 	if (write) {
1162 		struct dma_fence **shared;
1163 		unsigned int count, i;
1164 
1165 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1166 							&excl, &count, &shared);
1167 		if (ret)
1168 			return ret;
1169 
1170 		for (i = 0; i < count; i++) {
1171 			ret = i915_request_await_dma_fence(to, shared[i]);
1172 			if (ret)
1173 				break;
1174 
1175 			dma_fence_put(shared[i]);
1176 		}
1177 
1178 		for (; i < count; i++)
1179 			dma_fence_put(shared[i]);
1180 		kfree(shared);
1181 	} else {
1182 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1183 	}
1184 
1185 	if (excl) {
1186 		if (ret == 0)
1187 			ret = i915_request_await_dma_fence(to, excl);
1188 
1189 		dma_fence_put(excl);
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 void i915_request_skip(struct i915_request *rq, int error)
1196 {
1197 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1198 	dma_fence_set_error(&rq->fence, error);
1199 
1200 	if (rq->infix == rq->postfix)
1201 		return;
1202 
1203 	/*
1204 	 * As this request likely depends on state from the lost
1205 	 * context, clear out all the user operations leaving the
1206 	 * breadcrumb at the end (so we get the fence notifications).
1207 	 */
1208 	__i915_request_fill(rq, 0);
1209 	rq->infix = rq->postfix;
1210 }
1211 
1212 static struct i915_request *
1213 __i915_request_add_to_timeline(struct i915_request *rq)
1214 {
1215 	struct intel_timeline *timeline = i915_request_timeline(rq);
1216 	struct i915_request *prev;
1217 
1218 	/*
1219 	 * Dependency tracking and request ordering along the timeline
1220 	 * is special cased so that we can eliminate redundant ordering
1221 	 * operations while building the request (we know that the timeline
1222 	 * itself is ordered, and here we guarantee it).
1223 	 *
1224 	 * As we know we will need to emit tracking along the timeline,
1225 	 * we embed the hooks into our request struct -- at the cost of
1226 	 * having to have specialised no-allocation interfaces (which will
1227 	 * be beneficial elsewhere).
1228 	 *
1229 	 * A second benefit to open-coding i915_request_await_request is
1230 	 * that we can apply a slight variant of the rules specialised
1231 	 * for timelines that jump between engines (such as virtual engines).
1232 	 * If we consider the case of virtual engine, we must emit a dma-fence
1233 	 * to prevent scheduling of the second request until the first is
1234 	 * complete (to maximise our greedy late load balancing) and this
1235 	 * precludes optimising to use semaphores serialisation of a single
1236 	 * timeline across engines.
1237 	 */
1238 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1239 						  &rq->fence));
1240 	if (prev && !i915_request_completed(prev)) {
1241 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1242 			i915_sw_fence_await_sw_fence(&rq->submit,
1243 						     &prev->submit,
1244 						     &rq->submitq);
1245 		else
1246 			__i915_sw_fence_await_dma_fence(&rq->submit,
1247 							&prev->fence,
1248 							&rq->dmaq);
1249 		if (rq->engine->schedule)
1250 			__i915_sched_node_add_dependency(&rq->sched,
1251 							 &prev->sched,
1252 							 &rq->dep,
1253 							 0);
1254 	}
1255 
1256 	list_add_tail(&rq->link, &timeline->requests);
1257 
1258 	/*
1259 	 * Make sure that no request gazumped us - if it was allocated after
1260 	 * our i915_request_alloc() and called __i915_request_add() before
1261 	 * us, the timeline will hold its seqno which is later than ours.
1262 	 */
1263 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1264 
1265 	return prev;
1266 }
1267 
1268 /*
1269  * NB: This function is not allowed to fail. Doing so would mean the the
1270  * request is not being tracked for completion but the work itself is
1271  * going to happen on the hardware. This would be a Bad Thing(tm).
1272  */
1273 struct i915_request *__i915_request_commit(struct i915_request *rq)
1274 {
1275 	struct intel_engine_cs *engine = rq->engine;
1276 	struct intel_ring *ring = rq->ring;
1277 	u32 *cs;
1278 
1279 	RQ_TRACE(rq, "\n");
1280 
1281 	/*
1282 	 * To ensure that this call will not fail, space for its emissions
1283 	 * should already have been reserved in the ring buffer. Let the ring
1284 	 * know that it is time to use that space up.
1285 	 */
1286 	GEM_BUG_ON(rq->reserved_space > ring->space);
1287 	rq->reserved_space = 0;
1288 	rq->emitted_jiffies = jiffies;
1289 
1290 	/*
1291 	 * Record the position of the start of the breadcrumb so that
1292 	 * should we detect the updated seqno part-way through the
1293 	 * GPU processing the request, we never over-estimate the
1294 	 * position of the ring's HEAD.
1295 	 */
1296 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1297 	GEM_BUG_ON(IS_ERR(cs));
1298 	rq->postfix = intel_ring_offset(rq, cs);
1299 
1300 	return __i915_request_add_to_timeline(rq);
1301 }
1302 
1303 void __i915_request_queue(struct i915_request *rq,
1304 			  const struct i915_sched_attr *attr)
1305 {
1306 	/*
1307 	 * Let the backend know a new request has arrived that may need
1308 	 * to adjust the existing execution schedule due to a high priority
1309 	 * request - i.e. we may want to preempt the current request in order
1310 	 * to run a high priority dependency chain *before* we can execute this
1311 	 * request.
1312 	 *
1313 	 * This is called before the request is ready to run so that we can
1314 	 * decide whether to preempt the entire chain so that it is ready to
1315 	 * run at the earliest possible convenience.
1316 	 */
1317 	i915_sw_fence_commit(&rq->semaphore);
1318 	if (attr && rq->engine->schedule)
1319 		rq->engine->schedule(rq, attr);
1320 	i915_sw_fence_commit(&rq->submit);
1321 }
1322 
1323 void i915_request_add(struct i915_request *rq)
1324 {
1325 	struct intel_timeline * const tl = i915_request_timeline(rq);
1326 	struct i915_sched_attr attr = {};
1327 	struct i915_request *prev;
1328 
1329 	lockdep_assert_held(&tl->mutex);
1330 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1331 
1332 	trace_i915_request_add(rq);
1333 
1334 	prev = __i915_request_commit(rq);
1335 
1336 	if (rcu_access_pointer(rq->context->gem_context))
1337 		attr = i915_request_gem_context(rq)->sched;
1338 
1339 	/*
1340 	 * Boost actual workloads past semaphores!
1341 	 *
1342 	 * With semaphores we spin on one engine waiting for another,
1343 	 * simply to reduce the latency of starting our work when
1344 	 * the signaler completes. However, if there is any other
1345 	 * work that we could be doing on this engine instead, that
1346 	 * is better utilisation and will reduce the overall duration
1347 	 * of the current work. To avoid PI boosting a semaphore
1348 	 * far in the distance past over useful work, we keep a history
1349 	 * of any semaphore use along our dependency chain.
1350 	 */
1351 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1352 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1353 
1354 	/*
1355 	 * Boost priorities to new clients (new request flows).
1356 	 *
1357 	 * Allow interactive/synchronous clients to jump ahead of
1358 	 * the bulk clients. (FQ_CODEL)
1359 	 */
1360 	if (list_empty(&rq->sched.signalers_list))
1361 		attr.priority |= I915_PRIORITY_WAIT;
1362 
1363 	local_bh_disable();
1364 	__i915_request_queue(rq, &attr);
1365 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1366 
1367 	/*
1368 	 * In typical scenarios, we do not expect the previous request on
1369 	 * the timeline to be still tracked by timeline->last_request if it
1370 	 * has been completed. If the completed request is still here, that
1371 	 * implies that request retirement is a long way behind submission,
1372 	 * suggesting that we haven't been retiring frequently enough from
1373 	 * the combination of retire-before-alloc, waiters and the background
1374 	 * retirement worker. So if the last request on this timeline was
1375 	 * already completed, do a catch up pass, flushing the retirement queue
1376 	 * up to this client. Since we have now moved the heaviest operations
1377 	 * during retirement onto secondary workers, such as freeing objects
1378 	 * or contexts, retiring a bunch of requests is mostly list management
1379 	 * (and cache misses), and so we should not be overly penalizing this
1380 	 * client by performing excess work, though we may still performing
1381 	 * work on behalf of others -- but instead we should benefit from
1382 	 * improved resource management. (Well, that's the theory at least.)
1383 	 */
1384 	if (prev &&
1385 	    i915_request_completed(prev) &&
1386 	    rcu_access_pointer(prev->timeline) == tl)
1387 		i915_request_retire_upto(prev);
1388 
1389 	mutex_unlock(&tl->mutex);
1390 }
1391 
1392 static unsigned long local_clock_us(unsigned int *cpu)
1393 {
1394 	unsigned long t;
1395 
1396 	/*
1397 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1398 	 * The result and subsequent calculations are also defined in the same
1399 	 * approximate microseconds units. The principal source of timing
1400 	 * error here is from the simple truncation.
1401 	 *
1402 	 * Note that local_clock() is only defined wrt to the current CPU;
1403 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1404 	 * blocking preemption for the entire busywait, we can detect the CPU
1405 	 * switch and use that as indicator of system load and a reason to
1406 	 * stop busywaiting, see busywait_stop().
1407 	 */
1408 	*cpu = get_cpu();
1409 	t = local_clock() >> 10;
1410 	put_cpu();
1411 
1412 	return t;
1413 }
1414 
1415 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1416 {
1417 	unsigned int this_cpu;
1418 
1419 	if (time_after(local_clock_us(&this_cpu), timeout))
1420 		return true;
1421 
1422 	return this_cpu != cpu;
1423 }
1424 
1425 static bool __i915_spin_request(const struct i915_request * const rq,
1426 				int state, unsigned long timeout_us)
1427 {
1428 	unsigned int cpu;
1429 
1430 	/*
1431 	 * Only wait for the request if we know it is likely to complete.
1432 	 *
1433 	 * We don't track the timestamps around requests, nor the average
1434 	 * request length, so we do not have a good indicator that this
1435 	 * request will complete within the timeout. What we do know is the
1436 	 * order in which requests are executed by the context and so we can
1437 	 * tell if the request has been started. If the request is not even
1438 	 * running yet, it is a fair assumption that it will not complete
1439 	 * within our relatively short timeout.
1440 	 */
1441 	if (!i915_request_is_running(rq))
1442 		return false;
1443 
1444 	/*
1445 	 * When waiting for high frequency requests, e.g. during synchronous
1446 	 * rendering split between the CPU and GPU, the finite amount of time
1447 	 * required to set up the irq and wait upon it limits the response
1448 	 * rate. By busywaiting on the request completion for a short while we
1449 	 * can service the high frequency waits as quick as possible. However,
1450 	 * if it is a slow request, we want to sleep as quickly as possible.
1451 	 * The tradeoff between waiting and sleeping is roughly the time it
1452 	 * takes to sleep on a request, on the order of a microsecond.
1453 	 */
1454 
1455 	timeout_us += local_clock_us(&cpu);
1456 	do {
1457 		if (i915_request_completed(rq))
1458 			return true;
1459 
1460 		if (signal_pending_state(state, current))
1461 			break;
1462 
1463 		if (busywait_stop(timeout_us, cpu))
1464 			break;
1465 
1466 		cpu_relax();
1467 	} while (!need_resched());
1468 
1469 	return false;
1470 }
1471 
1472 struct request_wait {
1473 	struct dma_fence_cb cb;
1474 	struct task_struct *tsk;
1475 };
1476 
1477 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1478 {
1479 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1480 
1481 	wake_up_process(wait->tsk);
1482 }
1483 
1484 /**
1485  * i915_request_wait - wait until execution of request has finished
1486  * @rq: the request to wait upon
1487  * @flags: how to wait
1488  * @timeout: how long to wait in jiffies
1489  *
1490  * i915_request_wait() waits for the request to be completed, for a
1491  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1492  * unbounded wait).
1493  *
1494  * Returns the remaining time (in jiffies) if the request completed, which may
1495  * be zero or -ETIME if the request is unfinished after the timeout expires.
1496  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1497  * pending before the request completes.
1498  */
1499 long i915_request_wait(struct i915_request *rq,
1500 		       unsigned int flags,
1501 		       long timeout)
1502 {
1503 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1504 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1505 	struct request_wait wait;
1506 
1507 	might_sleep();
1508 	GEM_BUG_ON(timeout < 0);
1509 
1510 	if (dma_fence_is_signaled(&rq->fence))
1511 		return timeout;
1512 
1513 	if (!timeout)
1514 		return -ETIME;
1515 
1516 	trace_i915_request_wait_begin(rq, flags);
1517 
1518 	/*
1519 	 * We must never wait on the GPU while holding a lock as we
1520 	 * may need to perform a GPU reset. So while we don't need to
1521 	 * serialise wait/reset with an explicit lock, we do want
1522 	 * lockdep to detect potential dependency cycles.
1523 	 */
1524 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1525 
1526 	/*
1527 	 * Optimistic spin before touching IRQs.
1528 	 *
1529 	 * We may use a rather large value here to offset the penalty of
1530 	 * switching away from the active task. Frequently, the client will
1531 	 * wait upon an old swapbuffer to throttle itself to remain within a
1532 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1533 	 * then it should not be waiting long at all, and a sleep now will incur
1534 	 * extra scheduler latency in producing the next frame. To try to
1535 	 * avoid adding the cost of enabling/disabling the interrupt to the
1536 	 * short wait, we first spin to see if the request would have completed
1537 	 * in the time taken to setup the interrupt.
1538 	 *
1539 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1540 	 * scheduler latency of a context switch, ignoring the secondary
1541 	 * impacts from a context switch such as cache eviction.
1542 	 *
1543 	 * The scheme used for low-latency IO is called "hybrid interrupt
1544 	 * polling". The suggestion there is to sleep until just before you
1545 	 * expect to be woken by the device interrupt and then poll for its
1546 	 * completion. That requires having a good predictor for the request
1547 	 * duration, which we currently lack.
1548 	 */
1549 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1550 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1551 		dma_fence_signal(&rq->fence);
1552 		goto out;
1553 	}
1554 
1555 	/*
1556 	 * This client is about to stall waiting for the GPU. In many cases
1557 	 * this is undesirable and limits the throughput of the system, as
1558 	 * many clients cannot continue processing user input/output whilst
1559 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1560 	 * to the GPU load and thus incurs additional latency for the client.
1561 	 * We can circumvent that by promoting the GPU frequency to maximum
1562 	 * before we sleep. This makes the GPU throttle up much more quickly
1563 	 * (good for benchmarks and user experience, e.g. window animations),
1564 	 * but at a cost of spending more power processing the workload
1565 	 * (bad for battery).
1566 	 */
1567 	if (flags & I915_WAIT_PRIORITY) {
1568 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1569 			intel_rps_boost(rq);
1570 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1571 	}
1572 
1573 	wait.tsk = current;
1574 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1575 		goto out;
1576 
1577 	for (;;) {
1578 		set_current_state(state);
1579 
1580 		if (i915_request_completed(rq)) {
1581 			dma_fence_signal(&rq->fence);
1582 			break;
1583 		}
1584 
1585 		intel_engine_flush_submission(rq->engine);
1586 
1587 		if (signal_pending_state(state, current)) {
1588 			timeout = -ERESTARTSYS;
1589 			break;
1590 		}
1591 
1592 		if (!timeout) {
1593 			timeout = -ETIME;
1594 			break;
1595 		}
1596 
1597 		timeout = io_schedule_timeout(timeout);
1598 	}
1599 	__set_current_state(TASK_RUNNING);
1600 
1601 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1602 
1603 out:
1604 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1605 	trace_i915_request_wait_end(rq);
1606 	return timeout;
1607 }
1608 
1609 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1610 #include "selftests/mock_request.c"
1611 #include "selftests/i915_request.c"
1612 #endif
1613 
1614 static void i915_global_request_shrink(void)
1615 {
1616 	kmem_cache_shrink(global.slab_execute_cbs);
1617 	kmem_cache_shrink(global.slab_requests);
1618 }
1619 
1620 static void i915_global_request_exit(void)
1621 {
1622 	kmem_cache_destroy(global.slab_execute_cbs);
1623 	kmem_cache_destroy(global.slab_requests);
1624 }
1625 
1626 static struct i915_global_request global = { {
1627 	.shrink = i915_global_request_shrink,
1628 	.exit = i915_global_request_exit,
1629 } };
1630 
1631 int __init i915_global_request_init(void)
1632 {
1633 	global.slab_requests =
1634 		kmem_cache_create("i915_request",
1635 				  sizeof(struct i915_request),
1636 				  __alignof__(struct i915_request),
1637 				  SLAB_HWCACHE_ALIGN |
1638 				  SLAB_RECLAIM_ACCOUNT |
1639 				  SLAB_TYPESAFE_BY_RCU,
1640 				  __i915_request_ctor);
1641 	if (!global.slab_requests)
1642 		return -ENOMEM;
1643 
1644 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1645 					     SLAB_HWCACHE_ALIGN |
1646 					     SLAB_RECLAIM_ACCOUNT |
1647 					     SLAB_TYPESAFE_BY_RCU);
1648 	if (!global.slab_execute_cbs)
1649 		goto err_requests;
1650 
1651 	i915_global_register(&global.base);
1652 	return 0;
1653 
1654 err_requests:
1655 	kmem_cache_destroy(global.slab_requests);
1656 	return -ENOMEM;
1657 }
1658