1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2017-2018 Intel Corporation 5 */ 6 7 #include <linux/pm_runtime.h> 8 9 #include "gt/intel_engine.h" 10 #include "gt/intel_engine_pm.h" 11 #include "gt/intel_engine_regs.h" 12 #include "gt/intel_engine_user.h" 13 #include "gt/intel_gt.h" 14 #include "gt/intel_gt_pm.h" 15 #include "gt/intel_gt_regs.h" 16 #include "gt/intel_rc6.h" 17 #include "gt/intel_rps.h" 18 19 #include "i915_drv.h" 20 #include "i915_pmu.h" 21 22 /* Frequency for the sampling timer for events which need it. */ 23 #define FREQUENCY 200 24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) 25 26 #define ENGINE_SAMPLE_MASK \ 27 (BIT(I915_SAMPLE_BUSY) | \ 28 BIT(I915_SAMPLE_WAIT) | \ 29 BIT(I915_SAMPLE_SEMA)) 30 31 static cpumask_t i915_pmu_cpumask; 32 static unsigned int i915_pmu_target_cpu = -1; 33 34 static struct i915_pmu *event_to_pmu(struct perf_event *event) 35 { 36 return container_of(event->pmu, struct i915_pmu, base); 37 } 38 39 static struct drm_i915_private *pmu_to_i915(struct i915_pmu *pmu) 40 { 41 return container_of(pmu, struct drm_i915_private, pmu); 42 } 43 44 static u8 engine_config_sample(u64 config) 45 { 46 return config & I915_PMU_SAMPLE_MASK; 47 } 48 49 static u8 engine_event_sample(struct perf_event *event) 50 { 51 return engine_config_sample(event->attr.config); 52 } 53 54 static u8 engine_event_class(struct perf_event *event) 55 { 56 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; 57 } 58 59 static u8 engine_event_instance(struct perf_event *event) 60 { 61 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; 62 } 63 64 static bool is_engine_config(const u64 config) 65 { 66 return config < __I915_PMU_OTHER(0); 67 } 68 69 static unsigned int config_gt_id(const u64 config) 70 { 71 return config >> __I915_PMU_GT_SHIFT; 72 } 73 74 static u64 config_counter(const u64 config) 75 { 76 return config & ~(~0ULL << __I915_PMU_GT_SHIFT); 77 } 78 79 static unsigned int other_bit(const u64 config) 80 { 81 unsigned int val; 82 83 switch (config_counter(config)) { 84 case I915_PMU_ACTUAL_FREQUENCY: 85 val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED; 86 break; 87 case I915_PMU_REQUESTED_FREQUENCY: 88 val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED; 89 break; 90 case I915_PMU_RC6_RESIDENCY: 91 val = __I915_PMU_RC6_RESIDENCY_ENABLED; 92 break; 93 default: 94 /* 95 * Events that do not require sampling, or tracking state 96 * transitions between enabled and disabled can be ignored. 97 */ 98 return -1; 99 } 100 101 return I915_ENGINE_SAMPLE_COUNT + 102 config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT + 103 val; 104 } 105 106 static unsigned int config_bit(const u64 config) 107 { 108 if (is_engine_config(config)) 109 return engine_config_sample(config); 110 else 111 return other_bit(config); 112 } 113 114 static u32 config_mask(const u64 config) 115 { 116 unsigned int bit = config_bit(config); 117 118 if (__builtin_constant_p(config)) 119 BUILD_BUG_ON(bit > 120 BITS_PER_TYPE(typeof_member(struct i915_pmu, 121 enable)) - 1); 122 else 123 WARN_ON_ONCE(bit > 124 BITS_PER_TYPE(typeof_member(struct i915_pmu, 125 enable)) - 1); 126 127 return BIT(config_bit(config)); 128 } 129 130 static bool is_engine_event(struct perf_event *event) 131 { 132 return is_engine_config(event->attr.config); 133 } 134 135 static unsigned int event_bit(struct perf_event *event) 136 { 137 return config_bit(event->attr.config); 138 } 139 140 static u32 frequency_enabled_mask(void) 141 { 142 unsigned int i; 143 u32 mask = 0; 144 145 for (i = 0; i < I915_PMU_MAX_GT; i++) 146 mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) | 147 config_mask(__I915_PMU_REQUESTED_FREQUENCY(i)); 148 149 return mask; 150 } 151 152 static bool pmu_needs_timer(struct i915_pmu *pmu) 153 { 154 struct drm_i915_private *i915 = pmu_to_i915(pmu); 155 u32 enable; 156 157 /* 158 * Only some counters need the sampling timer. 159 * 160 * We start with a bitmask of all currently enabled events. 161 */ 162 enable = pmu->enable; 163 164 /* 165 * Mask out all the ones which do not need the timer, or in 166 * other words keep all the ones that could need the timer. 167 */ 168 enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK; 169 170 /* 171 * Also there is software busyness tracking available we do not 172 * need the timer for I915_SAMPLE_BUSY counter. 173 */ 174 if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) 175 enable &= ~BIT(I915_SAMPLE_BUSY); 176 177 /* 178 * If some bits remain it means we need the sampling timer running. 179 */ 180 return enable; 181 } 182 183 static u64 __get_rc6(struct intel_gt *gt) 184 { 185 struct drm_i915_private *i915 = gt->i915; 186 u64 val; 187 188 val = intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6); 189 190 if (HAS_RC6p(i915)) 191 val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6p); 192 193 if (HAS_RC6pp(i915)) 194 val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6pp); 195 196 return val; 197 } 198 199 static inline s64 ktime_since_raw(const ktime_t kt) 200 { 201 return ktime_to_ns(ktime_sub(ktime_get_raw(), kt)); 202 } 203 204 static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample) 205 { 206 return pmu->sample[gt_id][sample].cur; 207 } 208 209 static void 210 store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val) 211 { 212 pmu->sample[gt_id][sample].cur = val; 213 } 214 215 static void 216 add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul) 217 { 218 pmu->sample[gt_id][sample].cur += mul_u32_u32(val, mul); 219 } 220 221 static u64 get_rc6(struct intel_gt *gt) 222 { 223 struct drm_i915_private *i915 = gt->i915; 224 const unsigned int gt_id = gt->info.id; 225 struct i915_pmu *pmu = &i915->pmu; 226 intel_wakeref_t wakeref; 227 unsigned long flags; 228 u64 val; 229 230 wakeref = intel_gt_pm_get_if_awake(gt); 231 if (wakeref) { 232 val = __get_rc6(gt); 233 intel_gt_pm_put_async(gt, wakeref); 234 } 235 236 spin_lock_irqsave(&pmu->lock, flags); 237 238 if (wakeref) { 239 store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val); 240 } else { 241 /* 242 * We think we are runtime suspended. 243 * 244 * Report the delta from when the device was suspended to now, 245 * on top of the last known real value, as the approximated RC6 246 * counter value. 247 */ 248 val = ktime_since_raw(pmu->sleep_last[gt_id]); 249 val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6); 250 } 251 252 if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED)) 253 val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED); 254 else 255 store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val); 256 257 spin_unlock_irqrestore(&pmu->lock, flags); 258 259 return val; 260 } 261 262 static void init_rc6(struct i915_pmu *pmu) 263 { 264 struct drm_i915_private *i915 = pmu_to_i915(pmu); 265 struct intel_gt *gt; 266 unsigned int i; 267 268 for_each_gt(gt, i915, i) { 269 intel_wakeref_t wakeref; 270 271 with_intel_runtime_pm(gt->uncore->rpm, wakeref) { 272 u64 val = __get_rc6(gt); 273 274 store_sample(pmu, i, __I915_SAMPLE_RC6, val); 275 store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED, 276 val); 277 pmu->sleep_last[i] = ktime_get_raw(); 278 } 279 } 280 } 281 282 static void park_rc6(struct intel_gt *gt) 283 { 284 struct i915_pmu *pmu = >->i915->pmu; 285 286 store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt)); 287 pmu->sleep_last[gt->info.id] = ktime_get_raw(); 288 } 289 290 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) 291 { 292 if (!pmu->timer_enabled && pmu_needs_timer(pmu)) { 293 pmu->timer_enabled = true; 294 pmu->timer_last = ktime_get(); 295 hrtimer_start_range_ns(&pmu->timer, 296 ns_to_ktime(PERIOD), 0, 297 HRTIMER_MODE_REL_PINNED); 298 } 299 } 300 301 void i915_pmu_gt_parked(struct intel_gt *gt) 302 { 303 struct i915_pmu *pmu = >->i915->pmu; 304 305 if (!pmu->base.event_init) 306 return; 307 308 spin_lock_irq(&pmu->lock); 309 310 park_rc6(gt); 311 312 /* 313 * Signal sampling timer to stop if only engine events are enabled and 314 * GPU went idle. 315 */ 316 pmu->unparked &= ~BIT(gt->info.id); 317 if (pmu->unparked == 0) 318 pmu->timer_enabled = false; 319 320 spin_unlock_irq(&pmu->lock); 321 } 322 323 void i915_pmu_gt_unparked(struct intel_gt *gt) 324 { 325 struct i915_pmu *pmu = >->i915->pmu; 326 327 if (!pmu->base.event_init) 328 return; 329 330 spin_lock_irq(&pmu->lock); 331 332 /* 333 * Re-enable sampling timer when GPU goes active. 334 */ 335 if (pmu->unparked == 0) 336 __i915_pmu_maybe_start_timer(pmu); 337 338 pmu->unparked |= BIT(gt->info.id); 339 340 spin_unlock_irq(&pmu->lock); 341 } 342 343 static void 344 add_sample(struct i915_pmu_sample *sample, u32 val) 345 { 346 sample->cur += val; 347 } 348 349 static bool exclusive_mmio_access(const struct drm_i915_private *i915) 350 { 351 /* 352 * We have to avoid concurrent mmio cache line access on gen7 or 353 * risk a machine hang. For a fun history lesson dig out the old 354 * userspace intel_gpu_top and run it on Ivybridge or Haswell! 355 */ 356 return GRAPHICS_VER(i915) == 7; 357 } 358 359 static void gen3_engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 360 { 361 struct intel_engine_pmu *pmu = &engine->pmu; 362 bool busy; 363 u32 val; 364 365 val = ENGINE_READ_FW(engine, RING_CTL); 366 if (val == 0) /* powerwell off => engine idle */ 367 return; 368 369 if (val & RING_WAIT) 370 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 371 if (val & RING_WAIT_SEMAPHORE) 372 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); 373 374 /* No need to sample when busy stats are supported. */ 375 if (intel_engine_supports_stats(engine)) 376 return; 377 378 /* 379 * While waiting on a semaphore or event, MI_MODE reports the 380 * ring as idle. However, previously using the seqno, and with 381 * execlists sampling, we account for the ring waiting as the 382 * engine being busy. Therefore, we record the sample as being 383 * busy if either waiting or !idle. 384 */ 385 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); 386 if (!busy) { 387 val = ENGINE_READ_FW(engine, RING_MI_MODE); 388 busy = !(val & MODE_IDLE); 389 } 390 if (busy) 391 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 392 } 393 394 static void gen2_engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 395 { 396 struct intel_engine_pmu *pmu = &engine->pmu; 397 u32 tail, head, acthd; 398 399 tail = ENGINE_READ_FW(engine, RING_TAIL); 400 head = ENGINE_READ_FW(engine, RING_HEAD); 401 acthd = ENGINE_READ_FW(engine, ACTHD); 402 403 if (head & HEAD_WAIT_I8XX) 404 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 405 406 if (head & HEAD_WAIT_I8XX || head != acthd || 407 (head & HEAD_ADDR) != (tail & TAIL_ADDR)) 408 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 409 } 410 411 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 412 { 413 if (GRAPHICS_VER(engine->i915) >= 3) 414 gen3_engine_sample(engine, period_ns); 415 else 416 gen2_engine_sample(engine, period_ns); 417 } 418 419 static void 420 engines_sample(struct intel_gt *gt, unsigned int period_ns) 421 { 422 struct drm_i915_private *i915 = gt->i915; 423 struct intel_engine_cs *engine; 424 enum intel_engine_id id; 425 unsigned long flags; 426 427 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) 428 return; 429 430 if (!intel_gt_pm_is_awake(gt)) 431 return; 432 433 for_each_engine(engine, gt, id) { 434 if (!engine->pmu.enable) 435 continue; 436 437 if (!intel_engine_pm_get_if_awake(engine)) 438 continue; 439 440 if (exclusive_mmio_access(i915)) { 441 spin_lock_irqsave(&engine->uncore->lock, flags); 442 engine_sample(engine, period_ns); 443 spin_unlock_irqrestore(&engine->uncore->lock, flags); 444 } else { 445 engine_sample(engine, period_ns); 446 } 447 448 intel_engine_pm_put_async(engine); 449 } 450 } 451 452 static bool 453 frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt) 454 { 455 return pmu->enable & 456 (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) | 457 config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt))); 458 } 459 460 static void 461 frequency_sample(struct intel_gt *gt, unsigned int period_ns) 462 { 463 struct drm_i915_private *i915 = gt->i915; 464 const unsigned int gt_id = gt->info.id; 465 struct i915_pmu *pmu = &i915->pmu; 466 struct intel_rps *rps = >->rps; 467 intel_wakeref_t wakeref; 468 469 if (!frequency_sampling_enabled(pmu, gt_id)) 470 return; 471 472 /* Report 0/0 (actual/requested) frequency while parked. */ 473 wakeref = intel_gt_pm_get_if_awake(gt); 474 if (!wakeref) 475 return; 476 477 if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) { 478 u32 val; 479 480 /* 481 * We take a quick peek here without using forcewake 482 * so that we don't perturb the system under observation 483 * (forcewake => !rc6 => increased power use). We expect 484 * that if the read fails because it is outside of the 485 * mmio power well, then it will return 0 -- in which 486 * case we assume the system is running at the intended 487 * frequency. Fortunately, the read should rarely fail! 488 */ 489 val = intel_rps_read_actual_frequency_fw(rps); 490 if (!val) 491 val = intel_gpu_freq(rps, rps->cur_freq); 492 493 add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT, 494 val, period_ns / 1000); 495 } 496 497 if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) { 498 add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ, 499 intel_rps_get_requested_frequency(rps), 500 period_ns / 1000); 501 } 502 503 intel_gt_pm_put_async(gt, wakeref); 504 } 505 506 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) 507 { 508 struct i915_pmu *pmu = container_of(hrtimer, struct i915_pmu, timer); 509 struct drm_i915_private *i915 = pmu_to_i915(pmu); 510 unsigned int period_ns; 511 struct intel_gt *gt; 512 unsigned int i; 513 ktime_t now; 514 515 if (!READ_ONCE(pmu->timer_enabled)) 516 return HRTIMER_NORESTART; 517 518 now = ktime_get(); 519 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); 520 pmu->timer_last = now; 521 522 /* 523 * Strictly speaking the passed in period may not be 100% accurate for 524 * all internal calculation, since some amount of time can be spent on 525 * grabbing the forcewake. However the potential error from timer call- 526 * back delay greatly dominates this so we keep it simple. 527 */ 528 529 for_each_gt(gt, i915, i) { 530 if (!(pmu->unparked & BIT(i))) 531 continue; 532 533 engines_sample(gt, period_ns); 534 frequency_sample(gt, period_ns); 535 } 536 537 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); 538 539 return HRTIMER_RESTART; 540 } 541 542 static void i915_pmu_event_destroy(struct perf_event *event) 543 { 544 struct i915_pmu *pmu = event_to_pmu(event); 545 struct drm_i915_private *i915 = pmu_to_i915(pmu); 546 547 drm_WARN_ON(&i915->drm, event->parent); 548 549 drm_dev_put(&i915->drm); 550 } 551 552 static int 553 engine_event_status(struct intel_engine_cs *engine, 554 enum drm_i915_pmu_engine_sample sample) 555 { 556 switch (sample) { 557 case I915_SAMPLE_BUSY: 558 case I915_SAMPLE_WAIT: 559 break; 560 case I915_SAMPLE_SEMA: 561 if (GRAPHICS_VER(engine->i915) < 6) 562 return -ENODEV; 563 break; 564 default: 565 return -ENOENT; 566 } 567 568 return 0; 569 } 570 571 static int 572 config_status(struct drm_i915_private *i915, u64 config) 573 { 574 struct intel_gt *gt = to_gt(i915); 575 576 unsigned int gt_id = config_gt_id(config); 577 unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0; 578 579 if (gt_id > max_gt_id) 580 return -ENOENT; 581 582 switch (config_counter(config)) { 583 case I915_PMU_ACTUAL_FREQUENCY: 584 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 585 /* Requires a mutex for sampling! */ 586 return -ENODEV; 587 fallthrough; 588 case I915_PMU_REQUESTED_FREQUENCY: 589 if (GRAPHICS_VER(i915) < 6) 590 return -ENODEV; 591 break; 592 case I915_PMU_INTERRUPTS: 593 if (gt_id) 594 return -ENOENT; 595 break; 596 case I915_PMU_RC6_RESIDENCY: 597 if (!gt->rc6.supported) 598 return -ENODEV; 599 break; 600 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 601 break; 602 default: 603 return -ENOENT; 604 } 605 606 return 0; 607 } 608 609 static int engine_event_init(struct perf_event *event) 610 { 611 struct i915_pmu *pmu = event_to_pmu(event); 612 struct drm_i915_private *i915 = pmu_to_i915(pmu); 613 struct intel_engine_cs *engine; 614 615 engine = intel_engine_lookup_user(i915, engine_event_class(event), 616 engine_event_instance(event)); 617 if (!engine) 618 return -ENODEV; 619 620 return engine_event_status(engine, engine_event_sample(event)); 621 } 622 623 static int i915_pmu_event_init(struct perf_event *event) 624 { 625 struct i915_pmu *pmu = event_to_pmu(event); 626 struct drm_i915_private *i915 = pmu_to_i915(pmu); 627 int ret; 628 629 if (pmu->closed) 630 return -ENODEV; 631 632 if (event->attr.type != event->pmu->type) 633 return -ENOENT; 634 635 /* unsupported modes and filters */ 636 if (event->attr.sample_period) /* no sampling */ 637 return -EINVAL; 638 639 if (has_branch_stack(event)) 640 return -EOPNOTSUPP; 641 642 if (event->cpu < 0) 643 return -EINVAL; 644 645 /* only allow running on one cpu at a time */ 646 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) 647 return -EINVAL; 648 649 if (is_engine_event(event)) 650 ret = engine_event_init(event); 651 else 652 ret = config_status(i915, event->attr.config); 653 if (ret) 654 return ret; 655 656 if (!event->parent) { 657 drm_dev_get(&i915->drm); 658 event->destroy = i915_pmu_event_destroy; 659 } 660 661 return 0; 662 } 663 664 static u64 __i915_pmu_event_read(struct perf_event *event) 665 { 666 struct i915_pmu *pmu = event_to_pmu(event); 667 struct drm_i915_private *i915 = pmu_to_i915(pmu); 668 u64 val = 0; 669 670 if (is_engine_event(event)) { 671 u8 sample = engine_event_sample(event); 672 struct intel_engine_cs *engine; 673 674 engine = intel_engine_lookup_user(i915, 675 engine_event_class(event), 676 engine_event_instance(event)); 677 678 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { 679 /* Do nothing */ 680 } else if (sample == I915_SAMPLE_BUSY && 681 intel_engine_supports_stats(engine)) { 682 ktime_t unused; 683 684 val = ktime_to_ns(intel_engine_get_busy_time(engine, 685 &unused)); 686 } else { 687 val = engine->pmu.sample[sample].cur; 688 } 689 } else { 690 const unsigned int gt_id = config_gt_id(event->attr.config); 691 const u64 config = config_counter(event->attr.config); 692 693 switch (config) { 694 case I915_PMU_ACTUAL_FREQUENCY: 695 val = 696 div_u64(read_sample(pmu, gt_id, 697 __I915_SAMPLE_FREQ_ACT), 698 USEC_PER_SEC /* to MHz */); 699 break; 700 case I915_PMU_REQUESTED_FREQUENCY: 701 val = 702 div_u64(read_sample(pmu, gt_id, 703 __I915_SAMPLE_FREQ_REQ), 704 USEC_PER_SEC /* to MHz */); 705 break; 706 case I915_PMU_INTERRUPTS: 707 val = READ_ONCE(pmu->irq_count); 708 break; 709 case I915_PMU_RC6_RESIDENCY: 710 val = get_rc6(i915->gt[gt_id]); 711 break; 712 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 713 val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915))); 714 break; 715 } 716 } 717 718 return val; 719 } 720 721 static void i915_pmu_event_read(struct perf_event *event) 722 { 723 struct i915_pmu *pmu = event_to_pmu(event); 724 struct hw_perf_event *hwc = &event->hw; 725 u64 prev, new; 726 727 if (pmu->closed) { 728 event->hw.state = PERF_HES_STOPPED; 729 return; 730 } 731 732 prev = local64_read(&hwc->prev_count); 733 do { 734 new = __i915_pmu_event_read(event); 735 } while (!local64_try_cmpxchg(&hwc->prev_count, &prev, new)); 736 737 local64_add(new - prev, &event->count); 738 } 739 740 static void i915_pmu_enable(struct perf_event *event) 741 { 742 struct i915_pmu *pmu = event_to_pmu(event); 743 struct drm_i915_private *i915 = pmu_to_i915(pmu); 744 const unsigned int bit = event_bit(event); 745 unsigned long flags; 746 747 if (bit == -1) 748 goto update; 749 750 spin_lock_irqsave(&pmu->lock, flags); 751 752 /* 753 * Update the bitmask of enabled events and increment 754 * the event reference counter. 755 */ 756 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); 757 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 758 GEM_BUG_ON(pmu->enable_count[bit] == ~0); 759 760 pmu->enable |= BIT(bit); 761 pmu->enable_count[bit]++; 762 763 /* 764 * Start the sampling timer if needed and not already enabled. 765 */ 766 __i915_pmu_maybe_start_timer(pmu); 767 768 /* 769 * For per-engine events the bitmask and reference counting 770 * is stored per engine. 771 */ 772 if (is_engine_event(event)) { 773 u8 sample = engine_event_sample(event); 774 struct intel_engine_cs *engine; 775 776 engine = intel_engine_lookup_user(i915, 777 engine_event_class(event), 778 engine_event_instance(event)); 779 780 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != 781 I915_ENGINE_SAMPLE_COUNT); 782 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != 783 I915_ENGINE_SAMPLE_COUNT); 784 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 785 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 786 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); 787 788 engine->pmu.enable |= BIT(sample); 789 engine->pmu.enable_count[sample]++; 790 } 791 792 spin_unlock_irqrestore(&pmu->lock, flags); 793 794 update: 795 /* 796 * Store the current counter value so we can report the correct delta 797 * for all listeners. Even when the event was already enabled and has 798 * an existing non-zero value. 799 */ 800 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); 801 } 802 803 static void i915_pmu_disable(struct perf_event *event) 804 { 805 struct i915_pmu *pmu = event_to_pmu(event); 806 struct drm_i915_private *i915 = pmu_to_i915(pmu); 807 const unsigned int bit = event_bit(event); 808 unsigned long flags; 809 810 if (bit == -1) 811 return; 812 813 spin_lock_irqsave(&pmu->lock, flags); 814 815 if (is_engine_event(event)) { 816 u8 sample = engine_event_sample(event); 817 struct intel_engine_cs *engine; 818 819 engine = intel_engine_lookup_user(i915, 820 engine_event_class(event), 821 engine_event_instance(event)); 822 823 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 824 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 825 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); 826 827 /* 828 * Decrement the reference count and clear the enabled 829 * bitmask when the last listener on an event goes away. 830 */ 831 if (--engine->pmu.enable_count[sample] == 0) 832 engine->pmu.enable &= ~BIT(sample); 833 } 834 835 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 836 GEM_BUG_ON(pmu->enable_count[bit] == 0); 837 /* 838 * Decrement the reference count and clear the enabled 839 * bitmask when the last listener on an event goes away. 840 */ 841 if (--pmu->enable_count[bit] == 0) { 842 pmu->enable &= ~BIT(bit); 843 pmu->timer_enabled &= pmu_needs_timer(pmu); 844 } 845 846 spin_unlock_irqrestore(&pmu->lock, flags); 847 } 848 849 static void i915_pmu_event_start(struct perf_event *event, int flags) 850 { 851 struct i915_pmu *pmu = event_to_pmu(event); 852 853 if (pmu->closed) 854 return; 855 856 i915_pmu_enable(event); 857 event->hw.state = 0; 858 } 859 860 static void i915_pmu_event_stop(struct perf_event *event, int flags) 861 { 862 struct i915_pmu *pmu = event_to_pmu(event); 863 864 if (pmu->closed) 865 goto out; 866 867 if (flags & PERF_EF_UPDATE) 868 i915_pmu_event_read(event); 869 870 i915_pmu_disable(event); 871 872 out: 873 event->hw.state = PERF_HES_STOPPED; 874 } 875 876 static int i915_pmu_event_add(struct perf_event *event, int flags) 877 { 878 struct i915_pmu *pmu = event_to_pmu(event); 879 880 if (pmu->closed) 881 return -ENODEV; 882 883 if (flags & PERF_EF_START) 884 i915_pmu_event_start(event, flags); 885 886 return 0; 887 } 888 889 static void i915_pmu_event_del(struct perf_event *event, int flags) 890 { 891 i915_pmu_event_stop(event, PERF_EF_UPDATE); 892 } 893 894 static int i915_pmu_event_event_idx(struct perf_event *event) 895 { 896 return 0; 897 } 898 899 struct i915_str_attribute { 900 struct device_attribute attr; 901 const char *str; 902 }; 903 904 static ssize_t i915_pmu_format_show(struct device *dev, 905 struct device_attribute *attr, char *buf) 906 { 907 struct i915_str_attribute *eattr; 908 909 eattr = container_of(attr, struct i915_str_attribute, attr); 910 return sprintf(buf, "%s\n", eattr->str); 911 } 912 913 #define I915_PMU_FORMAT_ATTR(_name, _config) \ 914 (&((struct i915_str_attribute[]) { \ 915 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ 916 .str = _config, } \ 917 })[0].attr.attr) 918 919 static struct attribute *i915_pmu_format_attrs[] = { 920 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), 921 NULL, 922 }; 923 924 static const struct attribute_group i915_pmu_format_attr_group = { 925 .name = "format", 926 .attrs = i915_pmu_format_attrs, 927 }; 928 929 struct i915_ext_attribute { 930 struct device_attribute attr; 931 unsigned long val; 932 }; 933 934 static ssize_t i915_pmu_event_show(struct device *dev, 935 struct device_attribute *attr, char *buf) 936 { 937 struct i915_ext_attribute *eattr; 938 939 eattr = container_of(attr, struct i915_ext_attribute, attr); 940 return sprintf(buf, "config=0x%lx\n", eattr->val); 941 } 942 943 static ssize_t cpumask_show(struct device *dev, 944 struct device_attribute *attr, char *buf) 945 { 946 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); 947 } 948 949 static DEVICE_ATTR_RO(cpumask); 950 951 static struct attribute *i915_cpumask_attrs[] = { 952 &dev_attr_cpumask.attr, 953 NULL, 954 }; 955 956 static const struct attribute_group i915_pmu_cpumask_attr_group = { 957 .attrs = i915_cpumask_attrs, 958 }; 959 960 #define __event(__counter, __name, __unit) \ 961 { \ 962 .counter = (__counter), \ 963 .name = (__name), \ 964 .unit = (__unit), \ 965 .global = false, \ 966 } 967 968 #define __global_event(__counter, __name, __unit) \ 969 { \ 970 .counter = (__counter), \ 971 .name = (__name), \ 972 .unit = (__unit), \ 973 .global = true, \ 974 } 975 976 #define __engine_event(__sample, __name) \ 977 { \ 978 .sample = (__sample), \ 979 .name = (__name), \ 980 } 981 982 static struct i915_ext_attribute * 983 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) 984 { 985 sysfs_attr_init(&attr->attr.attr); 986 attr->attr.attr.name = name; 987 attr->attr.attr.mode = 0444; 988 attr->attr.show = i915_pmu_event_show; 989 attr->val = config; 990 991 return ++attr; 992 } 993 994 static struct perf_pmu_events_attr * 995 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, 996 const char *str) 997 { 998 sysfs_attr_init(&attr->attr.attr); 999 attr->attr.attr.name = name; 1000 attr->attr.attr.mode = 0444; 1001 attr->attr.show = perf_event_sysfs_show; 1002 attr->event_str = str; 1003 1004 return ++attr; 1005 } 1006 1007 static struct attribute ** 1008 create_event_attributes(struct i915_pmu *pmu) 1009 { 1010 struct drm_i915_private *i915 = pmu_to_i915(pmu); 1011 static const struct { 1012 unsigned int counter; 1013 const char *name; 1014 const char *unit; 1015 bool global; 1016 } events[] = { 1017 __event(0, "actual-frequency", "M"), 1018 __event(1, "requested-frequency", "M"), 1019 __global_event(2, "interrupts", NULL), 1020 __event(3, "rc6-residency", "ns"), 1021 __event(4, "software-gt-awake-time", "ns"), 1022 }; 1023 static const struct { 1024 enum drm_i915_pmu_engine_sample sample; 1025 char *name; 1026 } engine_events[] = { 1027 __engine_event(I915_SAMPLE_BUSY, "busy"), 1028 __engine_event(I915_SAMPLE_SEMA, "sema"), 1029 __engine_event(I915_SAMPLE_WAIT, "wait"), 1030 }; 1031 unsigned int count = 0; 1032 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; 1033 struct i915_ext_attribute *i915_attr = NULL, *i915_iter; 1034 struct attribute **attr = NULL, **attr_iter; 1035 struct intel_engine_cs *engine; 1036 struct intel_gt *gt; 1037 unsigned int i, j; 1038 1039 /* Count how many counters we will be exposing. */ 1040 for_each_gt(gt, i915, j) { 1041 for (i = 0; i < ARRAY_SIZE(events); i++) { 1042 u64 config = ___I915_PMU_OTHER(j, events[i].counter); 1043 1044 if (!config_status(i915, config)) 1045 count++; 1046 } 1047 } 1048 1049 for_each_uabi_engine(engine, i915) { 1050 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 1051 if (!engine_event_status(engine, 1052 engine_events[i].sample)) 1053 count++; 1054 } 1055 } 1056 1057 /* Allocate attribute objects and table. */ 1058 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); 1059 if (!i915_attr) 1060 goto err_alloc; 1061 1062 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); 1063 if (!pmu_attr) 1064 goto err_alloc; 1065 1066 /* Max one pointer of each attribute type plus a termination entry. */ 1067 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); 1068 if (!attr) 1069 goto err_alloc; 1070 1071 i915_iter = i915_attr; 1072 pmu_iter = pmu_attr; 1073 attr_iter = attr; 1074 1075 /* Initialize supported non-engine counters. */ 1076 for_each_gt(gt, i915, j) { 1077 for (i = 0; i < ARRAY_SIZE(events); i++) { 1078 u64 config = ___I915_PMU_OTHER(j, events[i].counter); 1079 char *str; 1080 1081 if (config_status(i915, config)) 1082 continue; 1083 1084 if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) 1085 str = kstrdup(events[i].name, GFP_KERNEL); 1086 else 1087 str = kasprintf(GFP_KERNEL, "%s-gt%u", 1088 events[i].name, j); 1089 if (!str) 1090 goto err; 1091 1092 *attr_iter++ = &i915_iter->attr.attr; 1093 i915_iter = add_i915_attr(i915_iter, str, config); 1094 1095 if (events[i].unit) { 1096 if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) 1097 str = kasprintf(GFP_KERNEL, "%s.unit", 1098 events[i].name); 1099 else 1100 str = kasprintf(GFP_KERNEL, "%s-gt%u.unit", 1101 events[i].name, j); 1102 if (!str) 1103 goto err; 1104 1105 *attr_iter++ = &pmu_iter->attr.attr; 1106 pmu_iter = add_pmu_attr(pmu_iter, str, 1107 events[i].unit); 1108 } 1109 } 1110 } 1111 1112 /* Initialize supported engine counters. */ 1113 for_each_uabi_engine(engine, i915) { 1114 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 1115 char *str; 1116 1117 if (engine_event_status(engine, 1118 engine_events[i].sample)) 1119 continue; 1120 1121 str = kasprintf(GFP_KERNEL, "%s-%s", 1122 engine->name, engine_events[i].name); 1123 if (!str) 1124 goto err; 1125 1126 *attr_iter++ = &i915_iter->attr.attr; 1127 i915_iter = 1128 add_i915_attr(i915_iter, str, 1129 __I915_PMU_ENGINE(engine->uabi_class, 1130 engine->uabi_instance, 1131 engine_events[i].sample)); 1132 1133 str = kasprintf(GFP_KERNEL, "%s-%s.unit", 1134 engine->name, engine_events[i].name); 1135 if (!str) 1136 goto err; 1137 1138 *attr_iter++ = &pmu_iter->attr.attr; 1139 pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); 1140 } 1141 } 1142 1143 pmu->i915_attr = i915_attr; 1144 pmu->pmu_attr = pmu_attr; 1145 1146 return attr; 1147 1148 err:; 1149 for (attr_iter = attr; *attr_iter; attr_iter++) 1150 kfree((*attr_iter)->name); 1151 1152 err_alloc: 1153 kfree(attr); 1154 kfree(i915_attr); 1155 kfree(pmu_attr); 1156 1157 return NULL; 1158 } 1159 1160 static void free_event_attributes(struct i915_pmu *pmu) 1161 { 1162 struct attribute **attr_iter = pmu->events_attr_group.attrs; 1163 1164 for (; *attr_iter; attr_iter++) 1165 kfree((*attr_iter)->name); 1166 1167 kfree(pmu->events_attr_group.attrs); 1168 kfree(pmu->i915_attr); 1169 kfree(pmu->pmu_attr); 1170 1171 pmu->events_attr_group.attrs = NULL; 1172 pmu->i915_attr = NULL; 1173 pmu->pmu_attr = NULL; 1174 } 1175 1176 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1177 { 1178 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1179 1180 GEM_BUG_ON(!pmu->base.event_init); 1181 1182 /* Select the first online CPU as a designated reader. */ 1183 if (cpumask_empty(&i915_pmu_cpumask)) 1184 cpumask_set_cpu(cpu, &i915_pmu_cpumask); 1185 1186 return 0; 1187 } 1188 1189 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) 1190 { 1191 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1192 unsigned int target = i915_pmu_target_cpu; 1193 1194 GEM_BUG_ON(!pmu->base.event_init); 1195 1196 /* 1197 * Unregistering an instance generates a CPU offline event which we must 1198 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask. 1199 */ 1200 if (pmu->closed) 1201 return 0; 1202 1203 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { 1204 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); 1205 1206 /* Migrate events if there is a valid target */ 1207 if (target < nr_cpu_ids) { 1208 cpumask_set_cpu(target, &i915_pmu_cpumask); 1209 i915_pmu_target_cpu = target; 1210 } 1211 } 1212 1213 if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) { 1214 perf_pmu_migrate_context(&pmu->base, cpu, target); 1215 pmu->cpuhp.cpu = target; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; 1222 1223 int i915_pmu_init(void) 1224 { 1225 int ret; 1226 1227 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1228 "perf/x86/intel/i915:online", 1229 i915_pmu_cpu_online, 1230 i915_pmu_cpu_offline); 1231 if (ret < 0) 1232 pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n", 1233 ret); 1234 else 1235 cpuhp_slot = ret; 1236 1237 return 0; 1238 } 1239 1240 void i915_pmu_exit(void) 1241 { 1242 if (cpuhp_slot != CPUHP_INVALID) 1243 cpuhp_remove_multi_state(cpuhp_slot); 1244 } 1245 1246 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) 1247 { 1248 if (cpuhp_slot == CPUHP_INVALID) 1249 return -EINVAL; 1250 1251 return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node); 1252 } 1253 1254 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) 1255 { 1256 cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node); 1257 } 1258 1259 void i915_pmu_register(struct drm_i915_private *i915) 1260 { 1261 struct i915_pmu *pmu = &i915->pmu; 1262 const struct attribute_group *attr_groups[] = { 1263 &i915_pmu_format_attr_group, 1264 &pmu->events_attr_group, 1265 &i915_pmu_cpumask_attr_group, 1266 NULL 1267 }; 1268 1269 int ret = -ENOMEM; 1270 1271 spin_lock_init(&pmu->lock); 1272 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1273 pmu->timer.function = i915_sample; 1274 pmu->cpuhp.cpu = -1; 1275 init_rc6(pmu); 1276 1277 if (IS_DGFX(i915)) { 1278 pmu->name = kasprintf(GFP_KERNEL, 1279 "i915_%s", 1280 dev_name(i915->drm.dev)); 1281 if (pmu->name) { 1282 /* tools/perf reserves colons as special. */ 1283 strreplace((char *)pmu->name, ':', '_'); 1284 } 1285 } else { 1286 pmu->name = "i915"; 1287 } 1288 if (!pmu->name) 1289 goto err; 1290 1291 pmu->events_attr_group.name = "events"; 1292 pmu->events_attr_group.attrs = create_event_attributes(pmu); 1293 if (!pmu->events_attr_group.attrs) 1294 goto err_name; 1295 1296 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), 1297 GFP_KERNEL); 1298 if (!pmu->base.attr_groups) 1299 goto err_attr; 1300 1301 pmu->base.module = THIS_MODULE; 1302 pmu->base.task_ctx_nr = perf_invalid_context; 1303 pmu->base.event_init = i915_pmu_event_init; 1304 pmu->base.add = i915_pmu_event_add; 1305 pmu->base.del = i915_pmu_event_del; 1306 pmu->base.start = i915_pmu_event_start; 1307 pmu->base.stop = i915_pmu_event_stop; 1308 pmu->base.read = i915_pmu_event_read; 1309 pmu->base.event_idx = i915_pmu_event_event_idx; 1310 1311 ret = perf_pmu_register(&pmu->base, pmu->name, -1); 1312 if (ret) 1313 goto err_groups; 1314 1315 ret = i915_pmu_register_cpuhp_state(pmu); 1316 if (ret) 1317 goto err_unreg; 1318 1319 return; 1320 1321 err_unreg: 1322 perf_pmu_unregister(&pmu->base); 1323 err_groups: 1324 kfree(pmu->base.attr_groups); 1325 err_attr: 1326 pmu->base.event_init = NULL; 1327 free_event_attributes(pmu); 1328 err_name: 1329 if (IS_DGFX(i915)) 1330 kfree(pmu->name); 1331 err: 1332 drm_notice(&i915->drm, "Failed to register PMU!\n"); 1333 } 1334 1335 void i915_pmu_unregister(struct drm_i915_private *i915) 1336 { 1337 struct i915_pmu *pmu = &i915->pmu; 1338 1339 if (!pmu->base.event_init) 1340 return; 1341 1342 /* 1343 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu 1344 * ensures all currently executing ones will have exited before we 1345 * proceed with unregistration. 1346 */ 1347 pmu->closed = true; 1348 synchronize_rcu(); 1349 1350 hrtimer_cancel(&pmu->timer); 1351 1352 i915_pmu_unregister_cpuhp_state(pmu); 1353 1354 perf_pmu_unregister(&pmu->base); 1355 pmu->base.event_init = NULL; 1356 kfree(pmu->base.attr_groups); 1357 if (IS_DGFX(i915)) 1358 kfree(pmu->name); 1359 free_event_attributes(pmu); 1360 } 1361