xref: /linux/drivers/gpu/drm/i915/i915_pmu.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2017-2018 Intel Corporation
5  */
6 
7 #include <linux/pm_runtime.h>
8 
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_regs.h"
12 #include "gt/intel_engine_user.h"
13 #include "gt/intel_gt.h"
14 #include "gt/intel_gt_pm.h"
15 #include "gt/intel_gt_regs.h"
16 #include "gt/intel_rc6.h"
17 #include "gt/intel_rps.h"
18 
19 #include "i915_drv.h"
20 #include "i915_pmu.h"
21 
22 /* Frequency for the sampling timer for events which need it. */
23 #define FREQUENCY 200
24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
25 
26 #define ENGINE_SAMPLE_MASK \
27 	(BIT(I915_SAMPLE_BUSY) | \
28 	 BIT(I915_SAMPLE_WAIT) | \
29 	 BIT(I915_SAMPLE_SEMA))
30 
31 static cpumask_t i915_pmu_cpumask;
32 static unsigned int i915_pmu_target_cpu = -1;
33 
34 static struct i915_pmu *event_to_pmu(struct perf_event *event)
35 {
36 	return container_of(event->pmu, struct i915_pmu, base);
37 }
38 
39 static struct drm_i915_private *pmu_to_i915(struct i915_pmu *pmu)
40 {
41 	return container_of(pmu, struct drm_i915_private, pmu);
42 }
43 
44 static u8 engine_config_sample(u64 config)
45 {
46 	return config & I915_PMU_SAMPLE_MASK;
47 }
48 
49 static u8 engine_event_sample(struct perf_event *event)
50 {
51 	return engine_config_sample(event->attr.config);
52 }
53 
54 static u8 engine_event_class(struct perf_event *event)
55 {
56 	return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
57 }
58 
59 static u8 engine_event_instance(struct perf_event *event)
60 {
61 	return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
62 }
63 
64 static bool is_engine_config(const u64 config)
65 {
66 	return config < __I915_PMU_OTHER(0);
67 }
68 
69 static unsigned int config_gt_id(const u64 config)
70 {
71 	return config >> __I915_PMU_GT_SHIFT;
72 }
73 
74 static u64 config_counter(const u64 config)
75 {
76 	return config & ~(~0ULL << __I915_PMU_GT_SHIFT);
77 }
78 
79 static unsigned int other_bit(const u64 config)
80 {
81 	unsigned int val;
82 
83 	switch (config_counter(config)) {
84 	case I915_PMU_ACTUAL_FREQUENCY:
85 		val =  __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
86 		break;
87 	case I915_PMU_REQUESTED_FREQUENCY:
88 		val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
89 		break;
90 	case I915_PMU_RC6_RESIDENCY:
91 		val = __I915_PMU_RC6_RESIDENCY_ENABLED;
92 		break;
93 	default:
94 		/*
95 		 * Events that do not require sampling, or tracking state
96 		 * transitions between enabled and disabled can be ignored.
97 		 */
98 		return -1;
99 	}
100 
101 	return I915_ENGINE_SAMPLE_COUNT +
102 	       config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT +
103 	       val;
104 }
105 
106 static unsigned int config_bit(const u64 config)
107 {
108 	if (is_engine_config(config))
109 		return engine_config_sample(config);
110 	else
111 		return other_bit(config);
112 }
113 
114 static u32 config_mask(const u64 config)
115 {
116 	unsigned int bit = config_bit(config);
117 
118 	if (__builtin_constant_p(config))
119 		BUILD_BUG_ON(bit >
120 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
121 							 enable)) - 1);
122 	else
123 		WARN_ON_ONCE(bit >
124 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
125 							 enable)) - 1);
126 
127 	return BIT(config_bit(config));
128 }
129 
130 static bool is_engine_event(struct perf_event *event)
131 {
132 	return is_engine_config(event->attr.config);
133 }
134 
135 static unsigned int event_bit(struct perf_event *event)
136 {
137 	return config_bit(event->attr.config);
138 }
139 
140 static u32 frequency_enabled_mask(void)
141 {
142 	unsigned int i;
143 	u32 mask = 0;
144 
145 	for (i = 0; i < I915_PMU_MAX_GT; i++)
146 		mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) |
147 			config_mask(__I915_PMU_REQUESTED_FREQUENCY(i));
148 
149 	return mask;
150 }
151 
152 static bool pmu_needs_timer(struct i915_pmu *pmu)
153 {
154 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
155 	u32 enable;
156 
157 	/*
158 	 * Only some counters need the sampling timer.
159 	 *
160 	 * We start with a bitmask of all currently enabled events.
161 	 */
162 	enable = pmu->enable;
163 
164 	/*
165 	 * Mask out all the ones which do not need the timer, or in
166 	 * other words keep all the ones that could need the timer.
167 	 */
168 	enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK;
169 
170 	/*
171 	 * Also there is software busyness tracking available we do not
172 	 * need the timer for I915_SAMPLE_BUSY counter.
173 	 */
174 	if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
175 		enable &= ~BIT(I915_SAMPLE_BUSY);
176 
177 	/*
178 	 * If some bits remain it means we need the sampling timer running.
179 	 */
180 	return enable;
181 }
182 
183 static u64 __get_rc6(struct intel_gt *gt)
184 {
185 	struct drm_i915_private *i915 = gt->i915;
186 	u64 val;
187 
188 	val = intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6);
189 
190 	if (HAS_RC6p(i915))
191 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6p);
192 
193 	if (HAS_RC6pp(i915))
194 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6pp);
195 
196 	return val;
197 }
198 
199 static inline s64 ktime_since_raw(const ktime_t kt)
200 {
201 	return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
202 }
203 
204 static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample)
205 {
206 	return pmu->sample[gt_id][sample].cur;
207 }
208 
209 static void
210 store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val)
211 {
212 	pmu->sample[gt_id][sample].cur = val;
213 }
214 
215 static void
216 add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul)
217 {
218 	pmu->sample[gt_id][sample].cur += mul_u32_u32(val, mul);
219 }
220 
221 static u64 get_rc6(struct intel_gt *gt)
222 {
223 	struct drm_i915_private *i915 = gt->i915;
224 	const unsigned int gt_id = gt->info.id;
225 	struct i915_pmu *pmu = &i915->pmu;
226 	intel_wakeref_t wakeref;
227 	unsigned long flags;
228 	u64 val;
229 
230 	wakeref = intel_gt_pm_get_if_awake(gt);
231 	if (wakeref) {
232 		val = __get_rc6(gt);
233 		intel_gt_pm_put_async(gt, wakeref);
234 	}
235 
236 	spin_lock_irqsave(&pmu->lock, flags);
237 
238 	if (wakeref) {
239 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val);
240 	} else {
241 		/*
242 		 * We think we are runtime suspended.
243 		 *
244 		 * Report the delta from when the device was suspended to now,
245 		 * on top of the last known real value, as the approximated RC6
246 		 * counter value.
247 		 */
248 		val = ktime_since_raw(pmu->sleep_last[gt_id]);
249 		val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6);
250 	}
251 
252 	if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED))
253 		val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED);
254 	else
255 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val);
256 
257 	spin_unlock_irqrestore(&pmu->lock, flags);
258 
259 	return val;
260 }
261 
262 static void init_rc6(struct i915_pmu *pmu)
263 {
264 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
265 	struct intel_gt *gt;
266 	unsigned int i;
267 
268 	for_each_gt(gt, i915, i) {
269 		intel_wakeref_t wakeref;
270 
271 		with_intel_runtime_pm(gt->uncore->rpm, wakeref) {
272 			u64 val = __get_rc6(gt);
273 
274 			store_sample(pmu, i, __I915_SAMPLE_RC6, val);
275 			store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED,
276 				     val);
277 			pmu->sleep_last[i] = ktime_get_raw();
278 		}
279 	}
280 }
281 
282 static void park_rc6(struct intel_gt *gt)
283 {
284 	struct i915_pmu *pmu = &gt->i915->pmu;
285 
286 	store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt));
287 	pmu->sleep_last[gt->info.id] = ktime_get_raw();
288 }
289 
290 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
291 {
292 	if (!pmu->timer_enabled && pmu_needs_timer(pmu)) {
293 		pmu->timer_enabled = true;
294 		pmu->timer_last = ktime_get();
295 		hrtimer_start_range_ns(&pmu->timer,
296 				       ns_to_ktime(PERIOD), 0,
297 				       HRTIMER_MODE_REL_PINNED);
298 	}
299 }
300 
301 void i915_pmu_gt_parked(struct intel_gt *gt)
302 {
303 	struct i915_pmu *pmu = &gt->i915->pmu;
304 
305 	if (!pmu->base.event_init)
306 		return;
307 
308 	spin_lock_irq(&pmu->lock);
309 
310 	park_rc6(gt);
311 
312 	/*
313 	 * Signal sampling timer to stop if only engine events are enabled and
314 	 * GPU went idle.
315 	 */
316 	pmu->unparked &= ~BIT(gt->info.id);
317 	if (pmu->unparked == 0)
318 		pmu->timer_enabled = false;
319 
320 	spin_unlock_irq(&pmu->lock);
321 }
322 
323 void i915_pmu_gt_unparked(struct intel_gt *gt)
324 {
325 	struct i915_pmu *pmu = &gt->i915->pmu;
326 
327 	if (!pmu->base.event_init)
328 		return;
329 
330 	spin_lock_irq(&pmu->lock);
331 
332 	/*
333 	 * Re-enable sampling timer when GPU goes active.
334 	 */
335 	if (pmu->unparked == 0)
336 		__i915_pmu_maybe_start_timer(pmu);
337 
338 	pmu->unparked |= BIT(gt->info.id);
339 
340 	spin_unlock_irq(&pmu->lock);
341 }
342 
343 static void
344 add_sample(struct i915_pmu_sample *sample, u32 val)
345 {
346 	sample->cur += val;
347 }
348 
349 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
350 {
351 	/*
352 	 * We have to avoid concurrent mmio cache line access on gen7 or
353 	 * risk a machine hang. For a fun history lesson dig out the old
354 	 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
355 	 */
356 	return GRAPHICS_VER(i915) == 7;
357 }
358 
359 static void gen3_engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
360 {
361 	struct intel_engine_pmu *pmu = &engine->pmu;
362 	bool busy;
363 	u32 val;
364 
365 	val = ENGINE_READ_FW(engine, RING_CTL);
366 	if (val == 0) /* powerwell off => engine idle */
367 		return;
368 
369 	if (val & RING_WAIT)
370 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
371 	if (val & RING_WAIT_SEMAPHORE)
372 		add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
373 
374 	/* No need to sample when busy stats are supported. */
375 	if (intel_engine_supports_stats(engine))
376 		return;
377 
378 	/*
379 	 * While waiting on a semaphore or event, MI_MODE reports the
380 	 * ring as idle. However, previously using the seqno, and with
381 	 * execlists sampling, we account for the ring waiting as the
382 	 * engine being busy. Therefore, we record the sample as being
383 	 * busy if either waiting or !idle.
384 	 */
385 	busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
386 	if (!busy) {
387 		val = ENGINE_READ_FW(engine, RING_MI_MODE);
388 		busy = !(val & MODE_IDLE);
389 	}
390 	if (busy)
391 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
392 }
393 
394 static void gen2_engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
395 {
396 	struct intel_engine_pmu *pmu = &engine->pmu;
397 	u32 tail, head, acthd;
398 
399 	tail = ENGINE_READ_FW(engine, RING_TAIL);
400 	head = ENGINE_READ_FW(engine, RING_HEAD);
401 	acthd = ENGINE_READ_FW(engine, ACTHD);
402 
403 	if (head & HEAD_WAIT_I8XX)
404 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
405 
406 	if (head & HEAD_WAIT_I8XX || head != acthd ||
407 	    (head & HEAD_ADDR) != (tail & TAIL_ADDR))
408 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
409 }
410 
411 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
412 {
413 	if (GRAPHICS_VER(engine->i915) >= 3)
414 		gen3_engine_sample(engine, period_ns);
415 	else
416 		gen2_engine_sample(engine, period_ns);
417 }
418 
419 static void
420 engines_sample(struct intel_gt *gt, unsigned int period_ns)
421 {
422 	struct drm_i915_private *i915 = gt->i915;
423 	struct intel_engine_cs *engine;
424 	enum intel_engine_id id;
425 	unsigned long flags;
426 
427 	if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
428 		return;
429 
430 	if (!intel_gt_pm_is_awake(gt))
431 		return;
432 
433 	for_each_engine(engine, gt, id) {
434 		if (!engine->pmu.enable)
435 			continue;
436 
437 		if (!intel_engine_pm_get_if_awake(engine))
438 			continue;
439 
440 		if (exclusive_mmio_access(i915)) {
441 			spin_lock_irqsave(&engine->uncore->lock, flags);
442 			engine_sample(engine, period_ns);
443 			spin_unlock_irqrestore(&engine->uncore->lock, flags);
444 		} else {
445 			engine_sample(engine, period_ns);
446 		}
447 
448 		intel_engine_pm_put_async(engine);
449 	}
450 }
451 
452 static bool
453 frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt)
454 {
455 	return pmu->enable &
456 	       (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) |
457 		config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt)));
458 }
459 
460 static void
461 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
462 {
463 	struct drm_i915_private *i915 = gt->i915;
464 	const unsigned int gt_id = gt->info.id;
465 	struct i915_pmu *pmu = &i915->pmu;
466 	struct intel_rps *rps = &gt->rps;
467 	intel_wakeref_t wakeref;
468 
469 	if (!frequency_sampling_enabled(pmu, gt_id))
470 		return;
471 
472 	/* Report 0/0 (actual/requested) frequency while parked. */
473 	wakeref = intel_gt_pm_get_if_awake(gt);
474 	if (!wakeref)
475 		return;
476 
477 	if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) {
478 		u32 val;
479 
480 		/*
481 		 * We take a quick peek here without using forcewake
482 		 * so that we don't perturb the system under observation
483 		 * (forcewake => !rc6 => increased power use). We expect
484 		 * that if the read fails because it is outside of the
485 		 * mmio power well, then it will return 0 -- in which
486 		 * case we assume the system is running at the intended
487 		 * frequency. Fortunately, the read should rarely fail!
488 		 */
489 		val = intel_rps_read_actual_frequency_fw(rps);
490 		if (!val)
491 			val = intel_gpu_freq(rps, rps->cur_freq);
492 
493 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT,
494 				val, period_ns / 1000);
495 	}
496 
497 	if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) {
498 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ,
499 				intel_rps_get_requested_frequency(rps),
500 				period_ns / 1000);
501 	}
502 
503 	intel_gt_pm_put_async(gt, wakeref);
504 }
505 
506 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
507 {
508 	struct i915_pmu *pmu = container_of(hrtimer, struct i915_pmu, timer);
509 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
510 	unsigned int period_ns;
511 	struct intel_gt *gt;
512 	unsigned int i;
513 	ktime_t now;
514 
515 	if (!READ_ONCE(pmu->timer_enabled))
516 		return HRTIMER_NORESTART;
517 
518 	now = ktime_get();
519 	period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
520 	pmu->timer_last = now;
521 
522 	/*
523 	 * Strictly speaking the passed in period may not be 100% accurate for
524 	 * all internal calculation, since some amount of time can be spent on
525 	 * grabbing the forcewake. However the potential error from timer call-
526 	 * back delay greatly dominates this so we keep it simple.
527 	 */
528 
529 	for_each_gt(gt, i915, i) {
530 		if (!(pmu->unparked & BIT(i)))
531 			continue;
532 
533 		engines_sample(gt, period_ns);
534 		frequency_sample(gt, period_ns);
535 	}
536 
537 	hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
538 
539 	return HRTIMER_RESTART;
540 }
541 
542 static void i915_pmu_event_destroy(struct perf_event *event)
543 {
544 	struct i915_pmu *pmu = event_to_pmu(event);
545 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
546 
547 	drm_WARN_ON(&i915->drm, event->parent);
548 
549 	drm_dev_put(&i915->drm);
550 }
551 
552 static int
553 engine_event_status(struct intel_engine_cs *engine,
554 		    enum drm_i915_pmu_engine_sample sample)
555 {
556 	switch (sample) {
557 	case I915_SAMPLE_BUSY:
558 	case I915_SAMPLE_WAIT:
559 		break;
560 	case I915_SAMPLE_SEMA:
561 		if (GRAPHICS_VER(engine->i915) < 6)
562 			return -ENODEV;
563 		break;
564 	default:
565 		return -ENOENT;
566 	}
567 
568 	return 0;
569 }
570 
571 static int
572 config_status(struct drm_i915_private *i915, u64 config)
573 {
574 	struct intel_gt *gt = to_gt(i915);
575 
576 	unsigned int gt_id = config_gt_id(config);
577 	unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0;
578 
579 	if (gt_id > max_gt_id)
580 		return -ENOENT;
581 
582 	switch (config_counter(config)) {
583 	case I915_PMU_ACTUAL_FREQUENCY:
584 		if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
585 			/* Requires a mutex for sampling! */
586 			return -ENODEV;
587 		fallthrough;
588 	case I915_PMU_REQUESTED_FREQUENCY:
589 		if (GRAPHICS_VER(i915) < 6)
590 			return -ENODEV;
591 		break;
592 	case I915_PMU_INTERRUPTS:
593 		if (gt_id)
594 			return -ENOENT;
595 		break;
596 	case I915_PMU_RC6_RESIDENCY:
597 		if (!gt->rc6.supported)
598 			return -ENODEV;
599 		break;
600 	case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
601 		break;
602 	default:
603 		return -ENOENT;
604 	}
605 
606 	return 0;
607 }
608 
609 static int engine_event_init(struct perf_event *event)
610 {
611 	struct i915_pmu *pmu = event_to_pmu(event);
612 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
613 	struct intel_engine_cs *engine;
614 
615 	engine = intel_engine_lookup_user(i915, engine_event_class(event),
616 					  engine_event_instance(event));
617 	if (!engine)
618 		return -ENODEV;
619 
620 	return engine_event_status(engine, engine_event_sample(event));
621 }
622 
623 static int i915_pmu_event_init(struct perf_event *event)
624 {
625 	struct i915_pmu *pmu = event_to_pmu(event);
626 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
627 	int ret;
628 
629 	if (pmu->closed)
630 		return -ENODEV;
631 
632 	if (event->attr.type != event->pmu->type)
633 		return -ENOENT;
634 
635 	/* unsupported modes and filters */
636 	if (event->attr.sample_period) /* no sampling */
637 		return -EINVAL;
638 
639 	if (has_branch_stack(event))
640 		return -EOPNOTSUPP;
641 
642 	if (event->cpu < 0)
643 		return -EINVAL;
644 
645 	/* only allow running on one cpu at a time */
646 	if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
647 		return -EINVAL;
648 
649 	if (is_engine_event(event))
650 		ret = engine_event_init(event);
651 	else
652 		ret = config_status(i915, event->attr.config);
653 	if (ret)
654 		return ret;
655 
656 	if (!event->parent) {
657 		drm_dev_get(&i915->drm);
658 		event->destroy = i915_pmu_event_destroy;
659 	}
660 
661 	return 0;
662 }
663 
664 static u64 __i915_pmu_event_read(struct perf_event *event)
665 {
666 	struct i915_pmu *pmu = event_to_pmu(event);
667 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
668 	u64 val = 0;
669 
670 	if (is_engine_event(event)) {
671 		u8 sample = engine_event_sample(event);
672 		struct intel_engine_cs *engine;
673 
674 		engine = intel_engine_lookup_user(i915,
675 						  engine_event_class(event),
676 						  engine_event_instance(event));
677 
678 		if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
679 			/* Do nothing */
680 		} else if (sample == I915_SAMPLE_BUSY &&
681 			   intel_engine_supports_stats(engine)) {
682 			ktime_t unused;
683 
684 			val = ktime_to_ns(intel_engine_get_busy_time(engine,
685 								     &unused));
686 		} else {
687 			val = engine->pmu.sample[sample].cur;
688 		}
689 	} else {
690 		const unsigned int gt_id = config_gt_id(event->attr.config);
691 		const u64 config = config_counter(event->attr.config);
692 
693 		switch (config) {
694 		case I915_PMU_ACTUAL_FREQUENCY:
695 			val =
696 			   div_u64(read_sample(pmu, gt_id,
697 					       __I915_SAMPLE_FREQ_ACT),
698 				   USEC_PER_SEC /* to MHz */);
699 			break;
700 		case I915_PMU_REQUESTED_FREQUENCY:
701 			val =
702 			   div_u64(read_sample(pmu, gt_id,
703 					       __I915_SAMPLE_FREQ_REQ),
704 				   USEC_PER_SEC /* to MHz */);
705 			break;
706 		case I915_PMU_INTERRUPTS:
707 			val = READ_ONCE(pmu->irq_count);
708 			break;
709 		case I915_PMU_RC6_RESIDENCY:
710 			val = get_rc6(i915->gt[gt_id]);
711 			break;
712 		case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
713 			val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915)));
714 			break;
715 		}
716 	}
717 
718 	return val;
719 }
720 
721 static void i915_pmu_event_read(struct perf_event *event)
722 {
723 	struct i915_pmu *pmu = event_to_pmu(event);
724 	struct hw_perf_event *hwc = &event->hw;
725 	u64 prev, new;
726 
727 	if (pmu->closed) {
728 		event->hw.state = PERF_HES_STOPPED;
729 		return;
730 	}
731 
732 	prev = local64_read(&hwc->prev_count);
733 	do {
734 		new = __i915_pmu_event_read(event);
735 	} while (!local64_try_cmpxchg(&hwc->prev_count, &prev, new));
736 
737 	local64_add(new - prev, &event->count);
738 }
739 
740 static void i915_pmu_enable(struct perf_event *event)
741 {
742 	struct i915_pmu *pmu = event_to_pmu(event);
743 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
744 	const unsigned int bit = event_bit(event);
745 	unsigned long flags;
746 
747 	if (bit == -1)
748 		goto update;
749 
750 	spin_lock_irqsave(&pmu->lock, flags);
751 
752 	/*
753 	 * Update the bitmask of enabled events and increment
754 	 * the event reference counter.
755 	 */
756 	BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
757 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
758 	GEM_BUG_ON(pmu->enable_count[bit] == ~0);
759 
760 	pmu->enable |= BIT(bit);
761 	pmu->enable_count[bit]++;
762 
763 	/*
764 	 * Start the sampling timer if needed and not already enabled.
765 	 */
766 	__i915_pmu_maybe_start_timer(pmu);
767 
768 	/*
769 	 * For per-engine events the bitmask and reference counting
770 	 * is stored per engine.
771 	 */
772 	if (is_engine_event(event)) {
773 		u8 sample = engine_event_sample(event);
774 		struct intel_engine_cs *engine;
775 
776 		engine = intel_engine_lookup_user(i915,
777 						  engine_event_class(event),
778 						  engine_event_instance(event));
779 
780 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
781 			     I915_ENGINE_SAMPLE_COUNT);
782 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
783 			     I915_ENGINE_SAMPLE_COUNT);
784 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
785 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
786 		GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
787 
788 		engine->pmu.enable |= BIT(sample);
789 		engine->pmu.enable_count[sample]++;
790 	}
791 
792 	spin_unlock_irqrestore(&pmu->lock, flags);
793 
794 update:
795 	/*
796 	 * Store the current counter value so we can report the correct delta
797 	 * for all listeners. Even when the event was already enabled and has
798 	 * an existing non-zero value.
799 	 */
800 	local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
801 }
802 
803 static void i915_pmu_disable(struct perf_event *event)
804 {
805 	struct i915_pmu *pmu = event_to_pmu(event);
806 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
807 	const unsigned int bit = event_bit(event);
808 	unsigned long flags;
809 
810 	if (bit == -1)
811 		return;
812 
813 	spin_lock_irqsave(&pmu->lock, flags);
814 
815 	if (is_engine_event(event)) {
816 		u8 sample = engine_event_sample(event);
817 		struct intel_engine_cs *engine;
818 
819 		engine = intel_engine_lookup_user(i915,
820 						  engine_event_class(event),
821 						  engine_event_instance(event));
822 
823 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
824 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
825 		GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
826 
827 		/*
828 		 * Decrement the reference count and clear the enabled
829 		 * bitmask when the last listener on an event goes away.
830 		 */
831 		if (--engine->pmu.enable_count[sample] == 0)
832 			engine->pmu.enable &= ~BIT(sample);
833 	}
834 
835 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
836 	GEM_BUG_ON(pmu->enable_count[bit] == 0);
837 	/*
838 	 * Decrement the reference count and clear the enabled
839 	 * bitmask when the last listener on an event goes away.
840 	 */
841 	if (--pmu->enable_count[bit] == 0) {
842 		pmu->enable &= ~BIT(bit);
843 		pmu->timer_enabled &= pmu_needs_timer(pmu);
844 	}
845 
846 	spin_unlock_irqrestore(&pmu->lock, flags);
847 }
848 
849 static void i915_pmu_event_start(struct perf_event *event, int flags)
850 {
851 	struct i915_pmu *pmu = event_to_pmu(event);
852 
853 	if (pmu->closed)
854 		return;
855 
856 	i915_pmu_enable(event);
857 	event->hw.state = 0;
858 }
859 
860 static void i915_pmu_event_stop(struct perf_event *event, int flags)
861 {
862 	struct i915_pmu *pmu = event_to_pmu(event);
863 
864 	if (pmu->closed)
865 		goto out;
866 
867 	if (flags & PERF_EF_UPDATE)
868 		i915_pmu_event_read(event);
869 
870 	i915_pmu_disable(event);
871 
872 out:
873 	event->hw.state = PERF_HES_STOPPED;
874 }
875 
876 static int i915_pmu_event_add(struct perf_event *event, int flags)
877 {
878 	struct i915_pmu *pmu = event_to_pmu(event);
879 
880 	if (pmu->closed)
881 		return -ENODEV;
882 
883 	if (flags & PERF_EF_START)
884 		i915_pmu_event_start(event, flags);
885 
886 	return 0;
887 }
888 
889 static void i915_pmu_event_del(struct perf_event *event, int flags)
890 {
891 	i915_pmu_event_stop(event, PERF_EF_UPDATE);
892 }
893 
894 static int i915_pmu_event_event_idx(struct perf_event *event)
895 {
896 	return 0;
897 }
898 
899 struct i915_str_attribute {
900 	struct device_attribute attr;
901 	const char *str;
902 };
903 
904 static ssize_t i915_pmu_format_show(struct device *dev,
905 				    struct device_attribute *attr, char *buf)
906 {
907 	struct i915_str_attribute *eattr;
908 
909 	eattr = container_of(attr, struct i915_str_attribute, attr);
910 	return sprintf(buf, "%s\n", eattr->str);
911 }
912 
913 #define I915_PMU_FORMAT_ATTR(_name, _config) \
914 	(&((struct i915_str_attribute[]) { \
915 		{ .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
916 		  .str = _config, } \
917 	})[0].attr.attr)
918 
919 static struct attribute *i915_pmu_format_attrs[] = {
920 	I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
921 	NULL,
922 };
923 
924 static const struct attribute_group i915_pmu_format_attr_group = {
925 	.name = "format",
926 	.attrs = i915_pmu_format_attrs,
927 };
928 
929 struct i915_ext_attribute {
930 	struct device_attribute attr;
931 	unsigned long val;
932 };
933 
934 static ssize_t i915_pmu_event_show(struct device *dev,
935 				   struct device_attribute *attr, char *buf)
936 {
937 	struct i915_ext_attribute *eattr;
938 
939 	eattr = container_of(attr, struct i915_ext_attribute, attr);
940 	return sprintf(buf, "config=0x%lx\n", eattr->val);
941 }
942 
943 static ssize_t cpumask_show(struct device *dev,
944 			    struct device_attribute *attr, char *buf)
945 {
946 	return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
947 }
948 
949 static DEVICE_ATTR_RO(cpumask);
950 
951 static struct attribute *i915_cpumask_attrs[] = {
952 	&dev_attr_cpumask.attr,
953 	NULL,
954 };
955 
956 static const struct attribute_group i915_pmu_cpumask_attr_group = {
957 	.attrs = i915_cpumask_attrs,
958 };
959 
960 #define __event(__counter, __name, __unit) \
961 { \
962 	.counter = (__counter), \
963 	.name = (__name), \
964 	.unit = (__unit), \
965 	.global = false, \
966 }
967 
968 #define __global_event(__counter, __name, __unit) \
969 { \
970 	.counter = (__counter), \
971 	.name = (__name), \
972 	.unit = (__unit), \
973 	.global = true, \
974 }
975 
976 #define __engine_event(__sample, __name) \
977 { \
978 	.sample = (__sample), \
979 	.name = (__name), \
980 }
981 
982 static struct i915_ext_attribute *
983 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
984 {
985 	sysfs_attr_init(&attr->attr.attr);
986 	attr->attr.attr.name = name;
987 	attr->attr.attr.mode = 0444;
988 	attr->attr.show = i915_pmu_event_show;
989 	attr->val = config;
990 
991 	return ++attr;
992 }
993 
994 static struct perf_pmu_events_attr *
995 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
996 	     const char *str)
997 {
998 	sysfs_attr_init(&attr->attr.attr);
999 	attr->attr.attr.name = name;
1000 	attr->attr.attr.mode = 0444;
1001 	attr->attr.show = perf_event_sysfs_show;
1002 	attr->event_str = str;
1003 
1004 	return ++attr;
1005 }
1006 
1007 static struct attribute **
1008 create_event_attributes(struct i915_pmu *pmu)
1009 {
1010 	struct drm_i915_private *i915 = pmu_to_i915(pmu);
1011 	static const struct {
1012 		unsigned int counter;
1013 		const char *name;
1014 		const char *unit;
1015 		bool global;
1016 	} events[] = {
1017 		__event(0, "actual-frequency", "M"),
1018 		__event(1, "requested-frequency", "M"),
1019 		__global_event(2, "interrupts", NULL),
1020 		__event(3, "rc6-residency", "ns"),
1021 		__event(4, "software-gt-awake-time", "ns"),
1022 	};
1023 	static const struct {
1024 		enum drm_i915_pmu_engine_sample sample;
1025 		char *name;
1026 	} engine_events[] = {
1027 		__engine_event(I915_SAMPLE_BUSY, "busy"),
1028 		__engine_event(I915_SAMPLE_SEMA, "sema"),
1029 		__engine_event(I915_SAMPLE_WAIT, "wait"),
1030 	};
1031 	unsigned int count = 0;
1032 	struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
1033 	struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
1034 	struct attribute **attr = NULL, **attr_iter;
1035 	struct intel_engine_cs *engine;
1036 	struct intel_gt *gt;
1037 	unsigned int i, j;
1038 
1039 	/* Count how many counters we will be exposing. */
1040 	for_each_gt(gt, i915, j) {
1041 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1042 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1043 
1044 			if (!config_status(i915, config))
1045 				count++;
1046 		}
1047 	}
1048 
1049 	for_each_uabi_engine(engine, i915) {
1050 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1051 			if (!engine_event_status(engine,
1052 						 engine_events[i].sample))
1053 				count++;
1054 		}
1055 	}
1056 
1057 	/* Allocate attribute objects and table. */
1058 	i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
1059 	if (!i915_attr)
1060 		goto err_alloc;
1061 
1062 	pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
1063 	if (!pmu_attr)
1064 		goto err_alloc;
1065 
1066 	/* Max one pointer of each attribute type plus a termination entry. */
1067 	attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
1068 	if (!attr)
1069 		goto err_alloc;
1070 
1071 	i915_iter = i915_attr;
1072 	pmu_iter = pmu_attr;
1073 	attr_iter = attr;
1074 
1075 	/* Initialize supported non-engine counters. */
1076 	for_each_gt(gt, i915, j) {
1077 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1078 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1079 			char *str;
1080 
1081 			if (config_status(i915, config))
1082 				continue;
1083 
1084 			if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1085 				str = kstrdup(events[i].name, GFP_KERNEL);
1086 			else
1087 				str = kasprintf(GFP_KERNEL, "%s-gt%u",
1088 						events[i].name, j);
1089 			if (!str)
1090 				goto err;
1091 
1092 			*attr_iter++ = &i915_iter->attr.attr;
1093 			i915_iter = add_i915_attr(i915_iter, str, config);
1094 
1095 			if (events[i].unit) {
1096 				if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1097 					str = kasprintf(GFP_KERNEL, "%s.unit",
1098 							events[i].name);
1099 				else
1100 					str = kasprintf(GFP_KERNEL, "%s-gt%u.unit",
1101 							events[i].name, j);
1102 				if (!str)
1103 					goto err;
1104 
1105 				*attr_iter++ = &pmu_iter->attr.attr;
1106 				pmu_iter = add_pmu_attr(pmu_iter, str,
1107 							events[i].unit);
1108 			}
1109 		}
1110 	}
1111 
1112 	/* Initialize supported engine counters. */
1113 	for_each_uabi_engine(engine, i915) {
1114 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1115 			char *str;
1116 
1117 			if (engine_event_status(engine,
1118 						engine_events[i].sample))
1119 				continue;
1120 
1121 			str = kasprintf(GFP_KERNEL, "%s-%s",
1122 					engine->name, engine_events[i].name);
1123 			if (!str)
1124 				goto err;
1125 
1126 			*attr_iter++ = &i915_iter->attr.attr;
1127 			i915_iter =
1128 				add_i915_attr(i915_iter, str,
1129 					      __I915_PMU_ENGINE(engine->uabi_class,
1130 								engine->uabi_instance,
1131 								engine_events[i].sample));
1132 
1133 			str = kasprintf(GFP_KERNEL, "%s-%s.unit",
1134 					engine->name, engine_events[i].name);
1135 			if (!str)
1136 				goto err;
1137 
1138 			*attr_iter++ = &pmu_iter->attr.attr;
1139 			pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1140 		}
1141 	}
1142 
1143 	pmu->i915_attr = i915_attr;
1144 	pmu->pmu_attr = pmu_attr;
1145 
1146 	return attr;
1147 
1148 err:;
1149 	for (attr_iter = attr; *attr_iter; attr_iter++)
1150 		kfree((*attr_iter)->name);
1151 
1152 err_alloc:
1153 	kfree(attr);
1154 	kfree(i915_attr);
1155 	kfree(pmu_attr);
1156 
1157 	return NULL;
1158 }
1159 
1160 static void free_event_attributes(struct i915_pmu *pmu)
1161 {
1162 	struct attribute **attr_iter = pmu->events_attr_group.attrs;
1163 
1164 	for (; *attr_iter; attr_iter++)
1165 		kfree((*attr_iter)->name);
1166 
1167 	kfree(pmu->events_attr_group.attrs);
1168 	kfree(pmu->i915_attr);
1169 	kfree(pmu->pmu_attr);
1170 
1171 	pmu->events_attr_group.attrs = NULL;
1172 	pmu->i915_attr = NULL;
1173 	pmu->pmu_attr = NULL;
1174 }
1175 
1176 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1177 {
1178 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1179 
1180 	GEM_BUG_ON(!pmu->base.event_init);
1181 
1182 	/* Select the first online CPU as a designated reader. */
1183 	if (cpumask_empty(&i915_pmu_cpumask))
1184 		cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1185 
1186 	return 0;
1187 }
1188 
1189 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1190 {
1191 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1192 	unsigned int target = i915_pmu_target_cpu;
1193 
1194 	GEM_BUG_ON(!pmu->base.event_init);
1195 
1196 	/*
1197 	 * Unregistering an instance generates a CPU offline event which we must
1198 	 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1199 	 */
1200 	if (pmu->closed)
1201 		return 0;
1202 
1203 	if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1204 		target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1205 
1206 		/* Migrate events if there is a valid target */
1207 		if (target < nr_cpu_ids) {
1208 			cpumask_set_cpu(target, &i915_pmu_cpumask);
1209 			i915_pmu_target_cpu = target;
1210 		}
1211 	}
1212 
1213 	if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1214 		perf_pmu_migrate_context(&pmu->base, cpu, target);
1215 		pmu->cpuhp.cpu = target;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1222 
1223 int i915_pmu_init(void)
1224 {
1225 	int ret;
1226 
1227 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1228 				      "perf/x86/intel/i915:online",
1229 				      i915_pmu_cpu_online,
1230 				      i915_pmu_cpu_offline);
1231 	if (ret < 0)
1232 		pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1233 			  ret);
1234 	else
1235 		cpuhp_slot = ret;
1236 
1237 	return 0;
1238 }
1239 
1240 void i915_pmu_exit(void)
1241 {
1242 	if (cpuhp_slot != CPUHP_INVALID)
1243 		cpuhp_remove_multi_state(cpuhp_slot);
1244 }
1245 
1246 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1247 {
1248 	if (cpuhp_slot == CPUHP_INVALID)
1249 		return -EINVAL;
1250 
1251 	return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1252 }
1253 
1254 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1255 {
1256 	cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1257 }
1258 
1259 void i915_pmu_register(struct drm_i915_private *i915)
1260 {
1261 	struct i915_pmu *pmu = &i915->pmu;
1262 	const struct attribute_group *attr_groups[] = {
1263 		&i915_pmu_format_attr_group,
1264 		&pmu->events_attr_group,
1265 		&i915_pmu_cpumask_attr_group,
1266 		NULL
1267 	};
1268 
1269 	int ret = -ENOMEM;
1270 
1271 	spin_lock_init(&pmu->lock);
1272 	hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1273 	pmu->timer.function = i915_sample;
1274 	pmu->cpuhp.cpu = -1;
1275 	init_rc6(pmu);
1276 
1277 	if (IS_DGFX(i915)) {
1278 		pmu->name = kasprintf(GFP_KERNEL,
1279 				      "i915_%s",
1280 				      dev_name(i915->drm.dev));
1281 		if (pmu->name) {
1282 			/* tools/perf reserves colons as special. */
1283 			strreplace((char *)pmu->name, ':', '_');
1284 		}
1285 	} else {
1286 		pmu->name = "i915";
1287 	}
1288 	if (!pmu->name)
1289 		goto err;
1290 
1291 	pmu->events_attr_group.name = "events";
1292 	pmu->events_attr_group.attrs = create_event_attributes(pmu);
1293 	if (!pmu->events_attr_group.attrs)
1294 		goto err_name;
1295 
1296 	pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1297 					GFP_KERNEL);
1298 	if (!pmu->base.attr_groups)
1299 		goto err_attr;
1300 
1301 	pmu->base.module	= THIS_MODULE;
1302 	pmu->base.task_ctx_nr	= perf_invalid_context;
1303 	pmu->base.event_init	= i915_pmu_event_init;
1304 	pmu->base.add		= i915_pmu_event_add;
1305 	pmu->base.del		= i915_pmu_event_del;
1306 	pmu->base.start		= i915_pmu_event_start;
1307 	pmu->base.stop		= i915_pmu_event_stop;
1308 	pmu->base.read		= i915_pmu_event_read;
1309 	pmu->base.event_idx	= i915_pmu_event_event_idx;
1310 
1311 	ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1312 	if (ret)
1313 		goto err_groups;
1314 
1315 	ret = i915_pmu_register_cpuhp_state(pmu);
1316 	if (ret)
1317 		goto err_unreg;
1318 
1319 	return;
1320 
1321 err_unreg:
1322 	perf_pmu_unregister(&pmu->base);
1323 err_groups:
1324 	kfree(pmu->base.attr_groups);
1325 err_attr:
1326 	pmu->base.event_init = NULL;
1327 	free_event_attributes(pmu);
1328 err_name:
1329 	if (IS_DGFX(i915))
1330 		kfree(pmu->name);
1331 err:
1332 	drm_notice(&i915->drm, "Failed to register PMU!\n");
1333 }
1334 
1335 void i915_pmu_unregister(struct drm_i915_private *i915)
1336 {
1337 	struct i915_pmu *pmu = &i915->pmu;
1338 
1339 	if (!pmu->base.event_init)
1340 		return;
1341 
1342 	/*
1343 	 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1344 	 * ensures all currently executing ones will have exited before we
1345 	 * proceed with unregistration.
1346 	 */
1347 	pmu->closed = true;
1348 	synchronize_rcu();
1349 
1350 	hrtimer_cancel(&pmu->timer);
1351 
1352 	i915_pmu_unregister_cpuhp_state(pmu);
1353 
1354 	perf_pmu_unregister(&pmu->base);
1355 	pmu->base.event_init = NULL;
1356 	kfree(pmu->base.attr_groups);
1357 	if (IS_DGFX(i915))
1358 		kfree(pmu->name);
1359 	free_event_attributes(pmu);
1360 }
1361