1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2017-2018 Intel Corporation 5 */ 6 7 #include <linux/pm_runtime.h> 8 9 #include "gt/intel_engine.h" 10 #include "gt/intel_engine_pm.h" 11 #include "gt/intel_engine_regs.h" 12 #include "gt/intel_engine_user.h" 13 #include "gt/intel_gt.h" 14 #include "gt/intel_gt_pm.h" 15 #include "gt/intel_gt_regs.h" 16 #include "gt/intel_rc6.h" 17 #include "gt/intel_rps.h" 18 19 #include "i915_drv.h" 20 #include "i915_pmu.h" 21 22 /* Frequency for the sampling timer for events which need it. */ 23 #define FREQUENCY 200 24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) 25 26 #define ENGINE_SAMPLE_MASK \ 27 (BIT(I915_SAMPLE_BUSY) | \ 28 BIT(I915_SAMPLE_WAIT) | \ 29 BIT(I915_SAMPLE_SEMA)) 30 31 static cpumask_t i915_pmu_cpumask; 32 static unsigned int i915_pmu_target_cpu = -1; 33 34 static struct i915_pmu *event_to_pmu(struct perf_event *event) 35 { 36 return container_of(event->pmu, struct i915_pmu, base); 37 } 38 39 static struct drm_i915_private *pmu_to_i915(struct i915_pmu *pmu) 40 { 41 return container_of(pmu, struct drm_i915_private, pmu); 42 } 43 44 static u8 engine_config_sample(u64 config) 45 { 46 return config & I915_PMU_SAMPLE_MASK; 47 } 48 49 static u8 engine_event_sample(struct perf_event *event) 50 { 51 return engine_config_sample(event->attr.config); 52 } 53 54 static u8 engine_event_class(struct perf_event *event) 55 { 56 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; 57 } 58 59 static u8 engine_event_instance(struct perf_event *event) 60 { 61 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; 62 } 63 64 static bool is_engine_config(const u64 config) 65 { 66 return config < __I915_PMU_OTHER(0); 67 } 68 69 static unsigned int config_gt_id(const u64 config) 70 { 71 return config >> __I915_PMU_GT_SHIFT; 72 } 73 74 static u64 config_counter(const u64 config) 75 { 76 return config & ~(~0ULL << __I915_PMU_GT_SHIFT); 77 } 78 79 static unsigned int other_bit(const u64 config) 80 { 81 unsigned int val; 82 83 switch (config_counter(config)) { 84 case I915_PMU_ACTUAL_FREQUENCY: 85 val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED; 86 break; 87 case I915_PMU_REQUESTED_FREQUENCY: 88 val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED; 89 break; 90 case I915_PMU_RC6_RESIDENCY: 91 val = __I915_PMU_RC6_RESIDENCY_ENABLED; 92 break; 93 default: 94 /* 95 * Events that do not require sampling, or tracking state 96 * transitions between enabled and disabled can be ignored. 97 */ 98 return -1; 99 } 100 101 return I915_ENGINE_SAMPLE_COUNT + 102 config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT + 103 val; 104 } 105 106 static unsigned int config_bit(const u64 config) 107 { 108 if (is_engine_config(config)) 109 return engine_config_sample(config); 110 else 111 return other_bit(config); 112 } 113 114 static u32 config_mask(const u64 config) 115 { 116 unsigned int bit = config_bit(config); 117 118 if (__builtin_constant_p(config)) 119 BUILD_BUG_ON(bit > 120 BITS_PER_TYPE(typeof_member(struct i915_pmu, 121 enable)) - 1); 122 else 123 WARN_ON_ONCE(bit > 124 BITS_PER_TYPE(typeof_member(struct i915_pmu, 125 enable)) - 1); 126 127 return BIT(config_bit(config)); 128 } 129 130 static bool is_engine_event(struct perf_event *event) 131 { 132 return is_engine_config(event->attr.config); 133 } 134 135 static unsigned int event_bit(struct perf_event *event) 136 { 137 return config_bit(event->attr.config); 138 } 139 140 static u32 frequency_enabled_mask(void) 141 { 142 unsigned int i; 143 u32 mask = 0; 144 145 for (i = 0; i < I915_PMU_MAX_GT; i++) 146 mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) | 147 config_mask(__I915_PMU_REQUESTED_FREQUENCY(i)); 148 149 return mask; 150 } 151 152 static bool pmu_needs_timer(struct i915_pmu *pmu) 153 { 154 struct drm_i915_private *i915 = pmu_to_i915(pmu); 155 u32 enable; 156 157 /* 158 * Only some counters need the sampling timer. 159 * 160 * We start with a bitmask of all currently enabled events. 161 */ 162 enable = pmu->enable; 163 164 /* 165 * Mask out all the ones which do not need the timer, or in 166 * other words keep all the ones that could need the timer. 167 */ 168 enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK; 169 170 /* 171 * Also there is software busyness tracking available we do not 172 * need the timer for I915_SAMPLE_BUSY counter. 173 */ 174 if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) 175 enable &= ~BIT(I915_SAMPLE_BUSY); 176 177 /* 178 * If some bits remain it means we need the sampling timer running. 179 */ 180 return enable; 181 } 182 183 static u64 __get_rc6(struct intel_gt *gt) 184 { 185 struct drm_i915_private *i915 = gt->i915; 186 u64 val; 187 188 val = intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6); 189 190 if (HAS_RC6p(i915)) 191 val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6p); 192 193 if (HAS_RC6pp(i915)) 194 val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6pp); 195 196 return val; 197 } 198 199 static inline s64 ktime_since_raw(const ktime_t kt) 200 { 201 return ktime_to_ns(ktime_sub(ktime_get_raw(), kt)); 202 } 203 204 static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample) 205 { 206 return pmu->sample[gt_id][sample].cur; 207 } 208 209 static void 210 store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val) 211 { 212 pmu->sample[gt_id][sample].cur = val; 213 } 214 215 static void 216 add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul) 217 { 218 pmu->sample[gt_id][sample].cur += mul_u32_u32(val, mul); 219 } 220 221 static u64 get_rc6(struct intel_gt *gt) 222 { 223 struct drm_i915_private *i915 = gt->i915; 224 const unsigned int gt_id = gt->info.id; 225 struct i915_pmu *pmu = &i915->pmu; 226 intel_wakeref_t wakeref; 227 unsigned long flags; 228 u64 val; 229 230 wakeref = intel_gt_pm_get_if_awake(gt); 231 if (wakeref) { 232 val = __get_rc6(gt); 233 intel_gt_pm_put_async(gt, wakeref); 234 } 235 236 spin_lock_irqsave(&pmu->lock, flags); 237 238 if (wakeref) { 239 store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val); 240 } else { 241 /* 242 * We think we are runtime suspended. 243 * 244 * Report the delta from when the device was suspended to now, 245 * on top of the last known real value, as the approximated RC6 246 * counter value. 247 */ 248 val = ktime_since_raw(pmu->sleep_last[gt_id]); 249 val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6); 250 } 251 252 if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED)) 253 val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED); 254 else 255 store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val); 256 257 spin_unlock_irqrestore(&pmu->lock, flags); 258 259 return val; 260 } 261 262 static void init_rc6(struct i915_pmu *pmu) 263 { 264 struct drm_i915_private *i915 = pmu_to_i915(pmu); 265 struct intel_gt *gt; 266 unsigned int i; 267 268 for_each_gt(gt, i915, i) { 269 intel_wakeref_t wakeref; 270 271 with_intel_runtime_pm(gt->uncore->rpm, wakeref) { 272 u64 val = __get_rc6(gt); 273 274 store_sample(pmu, i, __I915_SAMPLE_RC6, val); 275 store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED, 276 val); 277 pmu->sleep_last[i] = ktime_get_raw(); 278 } 279 } 280 } 281 282 static void park_rc6(struct intel_gt *gt) 283 { 284 struct i915_pmu *pmu = >->i915->pmu; 285 286 store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt)); 287 pmu->sleep_last[gt->info.id] = ktime_get_raw(); 288 } 289 290 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) 291 { 292 if (!pmu->timer_enabled && pmu_needs_timer(pmu)) { 293 pmu->timer_enabled = true; 294 pmu->timer_last = ktime_get(); 295 hrtimer_start_range_ns(&pmu->timer, 296 ns_to_ktime(PERIOD), 0, 297 HRTIMER_MODE_REL_PINNED); 298 } 299 } 300 301 void i915_pmu_gt_parked(struct intel_gt *gt) 302 { 303 struct i915_pmu *pmu = >->i915->pmu; 304 305 if (!pmu->base.event_init) 306 return; 307 308 spin_lock_irq(&pmu->lock); 309 310 park_rc6(gt); 311 312 /* 313 * Signal sampling timer to stop if only engine events are enabled and 314 * GPU went idle. 315 */ 316 pmu->unparked &= ~BIT(gt->info.id); 317 if (pmu->unparked == 0) 318 pmu->timer_enabled = false; 319 320 spin_unlock_irq(&pmu->lock); 321 } 322 323 void i915_pmu_gt_unparked(struct intel_gt *gt) 324 { 325 struct i915_pmu *pmu = >->i915->pmu; 326 327 if (!pmu->base.event_init) 328 return; 329 330 spin_lock_irq(&pmu->lock); 331 332 /* 333 * Re-enable sampling timer when GPU goes active. 334 */ 335 if (pmu->unparked == 0) 336 __i915_pmu_maybe_start_timer(pmu); 337 338 pmu->unparked |= BIT(gt->info.id); 339 340 spin_unlock_irq(&pmu->lock); 341 } 342 343 static void 344 add_sample(struct i915_pmu_sample *sample, u32 val) 345 { 346 sample->cur += val; 347 } 348 349 static bool exclusive_mmio_access(const struct drm_i915_private *i915) 350 { 351 /* 352 * We have to avoid concurrent mmio cache line access on gen7 or 353 * risk a machine hang. For a fun history lesson dig out the old 354 * userspace intel_gpu_top and run it on Ivybridge or Haswell! 355 */ 356 return GRAPHICS_VER(i915) == 7; 357 } 358 359 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 360 { 361 struct intel_engine_pmu *pmu = &engine->pmu; 362 bool busy; 363 u32 val; 364 365 val = ENGINE_READ_FW(engine, RING_CTL); 366 if (val == 0) /* powerwell off => engine idle */ 367 return; 368 369 if (val & RING_WAIT) 370 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 371 if (val & RING_WAIT_SEMAPHORE) 372 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); 373 374 /* No need to sample when busy stats are supported. */ 375 if (intel_engine_supports_stats(engine)) 376 return; 377 378 /* 379 * While waiting on a semaphore or event, MI_MODE reports the 380 * ring as idle. However, previously using the seqno, and with 381 * execlists sampling, we account for the ring waiting as the 382 * engine being busy. Therefore, we record the sample as being 383 * busy if either waiting or !idle. 384 */ 385 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); 386 if (!busy) { 387 val = ENGINE_READ_FW(engine, RING_MI_MODE); 388 busy = !(val & MODE_IDLE); 389 } 390 if (busy) 391 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 392 } 393 394 static void 395 engines_sample(struct intel_gt *gt, unsigned int period_ns) 396 { 397 struct drm_i915_private *i915 = gt->i915; 398 struct intel_engine_cs *engine; 399 enum intel_engine_id id; 400 unsigned long flags; 401 402 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) 403 return; 404 405 if (!intel_gt_pm_is_awake(gt)) 406 return; 407 408 for_each_engine(engine, gt, id) { 409 if (!engine->pmu.enable) 410 continue; 411 412 if (!intel_engine_pm_get_if_awake(engine)) 413 continue; 414 415 if (exclusive_mmio_access(i915)) { 416 spin_lock_irqsave(&engine->uncore->lock, flags); 417 engine_sample(engine, period_ns); 418 spin_unlock_irqrestore(&engine->uncore->lock, flags); 419 } else { 420 engine_sample(engine, period_ns); 421 } 422 423 intel_engine_pm_put_async(engine); 424 } 425 } 426 427 static bool 428 frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt) 429 { 430 return pmu->enable & 431 (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) | 432 config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt))); 433 } 434 435 static void 436 frequency_sample(struct intel_gt *gt, unsigned int period_ns) 437 { 438 struct drm_i915_private *i915 = gt->i915; 439 const unsigned int gt_id = gt->info.id; 440 struct i915_pmu *pmu = &i915->pmu; 441 struct intel_rps *rps = >->rps; 442 intel_wakeref_t wakeref; 443 444 if (!frequency_sampling_enabled(pmu, gt_id)) 445 return; 446 447 /* Report 0/0 (actual/requested) frequency while parked. */ 448 wakeref = intel_gt_pm_get_if_awake(gt); 449 if (!wakeref) 450 return; 451 452 if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) { 453 u32 val; 454 455 /* 456 * We take a quick peek here without using forcewake 457 * so that we don't perturb the system under observation 458 * (forcewake => !rc6 => increased power use). We expect 459 * that if the read fails because it is outside of the 460 * mmio power well, then it will return 0 -- in which 461 * case we assume the system is running at the intended 462 * frequency. Fortunately, the read should rarely fail! 463 */ 464 val = intel_rps_read_actual_frequency_fw(rps); 465 if (!val) 466 val = intel_gpu_freq(rps, rps->cur_freq); 467 468 add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT, 469 val, period_ns / 1000); 470 } 471 472 if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) { 473 add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ, 474 intel_rps_get_requested_frequency(rps), 475 period_ns / 1000); 476 } 477 478 intel_gt_pm_put_async(gt, wakeref); 479 } 480 481 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) 482 { 483 struct i915_pmu *pmu = container_of(hrtimer, struct i915_pmu, timer); 484 struct drm_i915_private *i915 = pmu_to_i915(pmu); 485 unsigned int period_ns; 486 struct intel_gt *gt; 487 unsigned int i; 488 ktime_t now; 489 490 if (!READ_ONCE(pmu->timer_enabled)) 491 return HRTIMER_NORESTART; 492 493 now = ktime_get(); 494 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); 495 pmu->timer_last = now; 496 497 /* 498 * Strictly speaking the passed in period may not be 100% accurate for 499 * all internal calculation, since some amount of time can be spent on 500 * grabbing the forcewake. However the potential error from timer call- 501 * back delay greatly dominates this so we keep it simple. 502 */ 503 504 for_each_gt(gt, i915, i) { 505 if (!(pmu->unparked & BIT(i))) 506 continue; 507 508 engines_sample(gt, period_ns); 509 frequency_sample(gt, period_ns); 510 } 511 512 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); 513 514 return HRTIMER_RESTART; 515 } 516 517 static void i915_pmu_event_destroy(struct perf_event *event) 518 { 519 struct i915_pmu *pmu = event_to_pmu(event); 520 struct drm_i915_private *i915 = pmu_to_i915(pmu); 521 522 drm_WARN_ON(&i915->drm, event->parent); 523 524 drm_dev_put(&i915->drm); 525 } 526 527 static int 528 engine_event_status(struct intel_engine_cs *engine, 529 enum drm_i915_pmu_engine_sample sample) 530 { 531 switch (sample) { 532 case I915_SAMPLE_BUSY: 533 case I915_SAMPLE_WAIT: 534 break; 535 case I915_SAMPLE_SEMA: 536 if (GRAPHICS_VER(engine->i915) < 6) 537 return -ENODEV; 538 break; 539 default: 540 return -ENOENT; 541 } 542 543 return 0; 544 } 545 546 static int 547 config_status(struct drm_i915_private *i915, u64 config) 548 { 549 struct intel_gt *gt = to_gt(i915); 550 551 unsigned int gt_id = config_gt_id(config); 552 unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0; 553 554 if (gt_id > max_gt_id) 555 return -ENOENT; 556 557 switch (config_counter(config)) { 558 case I915_PMU_ACTUAL_FREQUENCY: 559 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 560 /* Requires a mutex for sampling! */ 561 return -ENODEV; 562 fallthrough; 563 case I915_PMU_REQUESTED_FREQUENCY: 564 if (GRAPHICS_VER(i915) < 6) 565 return -ENODEV; 566 break; 567 case I915_PMU_INTERRUPTS: 568 if (gt_id) 569 return -ENOENT; 570 break; 571 case I915_PMU_RC6_RESIDENCY: 572 if (!gt->rc6.supported) 573 return -ENODEV; 574 break; 575 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 576 break; 577 default: 578 return -ENOENT; 579 } 580 581 return 0; 582 } 583 584 static int engine_event_init(struct perf_event *event) 585 { 586 struct i915_pmu *pmu = event_to_pmu(event); 587 struct drm_i915_private *i915 = pmu_to_i915(pmu); 588 struct intel_engine_cs *engine; 589 590 engine = intel_engine_lookup_user(i915, engine_event_class(event), 591 engine_event_instance(event)); 592 if (!engine) 593 return -ENODEV; 594 595 return engine_event_status(engine, engine_event_sample(event)); 596 } 597 598 static int i915_pmu_event_init(struct perf_event *event) 599 { 600 struct i915_pmu *pmu = event_to_pmu(event); 601 struct drm_i915_private *i915 = pmu_to_i915(pmu); 602 int ret; 603 604 if (pmu->closed) 605 return -ENODEV; 606 607 if (event->attr.type != event->pmu->type) 608 return -ENOENT; 609 610 /* unsupported modes and filters */ 611 if (event->attr.sample_period) /* no sampling */ 612 return -EINVAL; 613 614 if (has_branch_stack(event)) 615 return -EOPNOTSUPP; 616 617 if (event->cpu < 0) 618 return -EINVAL; 619 620 /* only allow running on one cpu at a time */ 621 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) 622 return -EINVAL; 623 624 if (is_engine_event(event)) 625 ret = engine_event_init(event); 626 else 627 ret = config_status(i915, event->attr.config); 628 if (ret) 629 return ret; 630 631 if (!event->parent) { 632 drm_dev_get(&i915->drm); 633 event->destroy = i915_pmu_event_destroy; 634 } 635 636 return 0; 637 } 638 639 static u64 __i915_pmu_event_read(struct perf_event *event) 640 { 641 struct i915_pmu *pmu = event_to_pmu(event); 642 struct drm_i915_private *i915 = pmu_to_i915(pmu); 643 u64 val = 0; 644 645 if (is_engine_event(event)) { 646 u8 sample = engine_event_sample(event); 647 struct intel_engine_cs *engine; 648 649 engine = intel_engine_lookup_user(i915, 650 engine_event_class(event), 651 engine_event_instance(event)); 652 653 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { 654 /* Do nothing */ 655 } else if (sample == I915_SAMPLE_BUSY && 656 intel_engine_supports_stats(engine)) { 657 ktime_t unused; 658 659 val = ktime_to_ns(intel_engine_get_busy_time(engine, 660 &unused)); 661 } else { 662 val = engine->pmu.sample[sample].cur; 663 } 664 } else { 665 const unsigned int gt_id = config_gt_id(event->attr.config); 666 const u64 config = config_counter(event->attr.config); 667 668 switch (config) { 669 case I915_PMU_ACTUAL_FREQUENCY: 670 val = 671 div_u64(read_sample(pmu, gt_id, 672 __I915_SAMPLE_FREQ_ACT), 673 USEC_PER_SEC /* to MHz */); 674 break; 675 case I915_PMU_REQUESTED_FREQUENCY: 676 val = 677 div_u64(read_sample(pmu, gt_id, 678 __I915_SAMPLE_FREQ_REQ), 679 USEC_PER_SEC /* to MHz */); 680 break; 681 case I915_PMU_INTERRUPTS: 682 val = READ_ONCE(pmu->irq_count); 683 break; 684 case I915_PMU_RC6_RESIDENCY: 685 val = get_rc6(i915->gt[gt_id]); 686 break; 687 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 688 val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915))); 689 break; 690 } 691 } 692 693 return val; 694 } 695 696 static void i915_pmu_event_read(struct perf_event *event) 697 { 698 struct i915_pmu *pmu = event_to_pmu(event); 699 struct hw_perf_event *hwc = &event->hw; 700 u64 prev, new; 701 702 if (pmu->closed) { 703 event->hw.state = PERF_HES_STOPPED; 704 return; 705 } 706 707 prev = local64_read(&hwc->prev_count); 708 do { 709 new = __i915_pmu_event_read(event); 710 } while (!local64_try_cmpxchg(&hwc->prev_count, &prev, new)); 711 712 local64_add(new - prev, &event->count); 713 } 714 715 static void i915_pmu_enable(struct perf_event *event) 716 { 717 struct i915_pmu *pmu = event_to_pmu(event); 718 struct drm_i915_private *i915 = pmu_to_i915(pmu); 719 const unsigned int bit = event_bit(event); 720 unsigned long flags; 721 722 if (bit == -1) 723 goto update; 724 725 spin_lock_irqsave(&pmu->lock, flags); 726 727 /* 728 * Update the bitmask of enabled events and increment 729 * the event reference counter. 730 */ 731 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); 732 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 733 GEM_BUG_ON(pmu->enable_count[bit] == ~0); 734 735 pmu->enable |= BIT(bit); 736 pmu->enable_count[bit]++; 737 738 /* 739 * Start the sampling timer if needed and not already enabled. 740 */ 741 __i915_pmu_maybe_start_timer(pmu); 742 743 /* 744 * For per-engine events the bitmask and reference counting 745 * is stored per engine. 746 */ 747 if (is_engine_event(event)) { 748 u8 sample = engine_event_sample(event); 749 struct intel_engine_cs *engine; 750 751 engine = intel_engine_lookup_user(i915, 752 engine_event_class(event), 753 engine_event_instance(event)); 754 755 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != 756 I915_ENGINE_SAMPLE_COUNT); 757 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != 758 I915_ENGINE_SAMPLE_COUNT); 759 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 760 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 761 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); 762 763 engine->pmu.enable |= BIT(sample); 764 engine->pmu.enable_count[sample]++; 765 } 766 767 spin_unlock_irqrestore(&pmu->lock, flags); 768 769 update: 770 /* 771 * Store the current counter value so we can report the correct delta 772 * for all listeners. Even when the event was already enabled and has 773 * an existing non-zero value. 774 */ 775 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); 776 } 777 778 static void i915_pmu_disable(struct perf_event *event) 779 { 780 struct i915_pmu *pmu = event_to_pmu(event); 781 struct drm_i915_private *i915 = pmu_to_i915(pmu); 782 const unsigned int bit = event_bit(event); 783 unsigned long flags; 784 785 if (bit == -1) 786 return; 787 788 spin_lock_irqsave(&pmu->lock, flags); 789 790 if (is_engine_event(event)) { 791 u8 sample = engine_event_sample(event); 792 struct intel_engine_cs *engine; 793 794 engine = intel_engine_lookup_user(i915, 795 engine_event_class(event), 796 engine_event_instance(event)); 797 798 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 799 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 800 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); 801 802 /* 803 * Decrement the reference count and clear the enabled 804 * bitmask when the last listener on an event goes away. 805 */ 806 if (--engine->pmu.enable_count[sample] == 0) 807 engine->pmu.enable &= ~BIT(sample); 808 } 809 810 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 811 GEM_BUG_ON(pmu->enable_count[bit] == 0); 812 /* 813 * Decrement the reference count and clear the enabled 814 * bitmask when the last listener on an event goes away. 815 */ 816 if (--pmu->enable_count[bit] == 0) { 817 pmu->enable &= ~BIT(bit); 818 pmu->timer_enabled &= pmu_needs_timer(pmu); 819 } 820 821 spin_unlock_irqrestore(&pmu->lock, flags); 822 } 823 824 static void i915_pmu_event_start(struct perf_event *event, int flags) 825 { 826 struct i915_pmu *pmu = event_to_pmu(event); 827 828 if (pmu->closed) 829 return; 830 831 i915_pmu_enable(event); 832 event->hw.state = 0; 833 } 834 835 static void i915_pmu_event_stop(struct perf_event *event, int flags) 836 { 837 struct drm_i915_private *i915 = 838 container_of(event->pmu, typeof(*i915), pmu.base); 839 struct i915_pmu *pmu = &i915->pmu; 840 841 if (pmu->closed) 842 goto out; 843 844 if (flags & PERF_EF_UPDATE) 845 i915_pmu_event_read(event); 846 i915_pmu_disable(event); 847 848 out: 849 event->hw.state = PERF_HES_STOPPED; 850 } 851 852 static int i915_pmu_event_add(struct perf_event *event, int flags) 853 { 854 struct i915_pmu *pmu = event_to_pmu(event); 855 856 if (pmu->closed) 857 return -ENODEV; 858 859 if (flags & PERF_EF_START) 860 i915_pmu_event_start(event, flags); 861 862 return 0; 863 } 864 865 static void i915_pmu_event_del(struct perf_event *event, int flags) 866 { 867 i915_pmu_event_stop(event, PERF_EF_UPDATE); 868 } 869 870 static int i915_pmu_event_event_idx(struct perf_event *event) 871 { 872 return 0; 873 } 874 875 struct i915_str_attribute { 876 struct device_attribute attr; 877 const char *str; 878 }; 879 880 static ssize_t i915_pmu_format_show(struct device *dev, 881 struct device_attribute *attr, char *buf) 882 { 883 struct i915_str_attribute *eattr; 884 885 eattr = container_of(attr, struct i915_str_attribute, attr); 886 return sprintf(buf, "%s\n", eattr->str); 887 } 888 889 #define I915_PMU_FORMAT_ATTR(_name, _config) \ 890 (&((struct i915_str_attribute[]) { \ 891 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ 892 .str = _config, } \ 893 })[0].attr.attr) 894 895 static struct attribute *i915_pmu_format_attrs[] = { 896 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), 897 NULL, 898 }; 899 900 static const struct attribute_group i915_pmu_format_attr_group = { 901 .name = "format", 902 .attrs = i915_pmu_format_attrs, 903 }; 904 905 struct i915_ext_attribute { 906 struct device_attribute attr; 907 unsigned long val; 908 }; 909 910 static ssize_t i915_pmu_event_show(struct device *dev, 911 struct device_attribute *attr, char *buf) 912 { 913 struct i915_ext_attribute *eattr; 914 915 eattr = container_of(attr, struct i915_ext_attribute, attr); 916 return sprintf(buf, "config=0x%lx\n", eattr->val); 917 } 918 919 static ssize_t cpumask_show(struct device *dev, 920 struct device_attribute *attr, char *buf) 921 { 922 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); 923 } 924 925 static DEVICE_ATTR_RO(cpumask); 926 927 static struct attribute *i915_cpumask_attrs[] = { 928 &dev_attr_cpumask.attr, 929 NULL, 930 }; 931 932 static const struct attribute_group i915_pmu_cpumask_attr_group = { 933 .attrs = i915_cpumask_attrs, 934 }; 935 936 #define __event(__counter, __name, __unit) \ 937 { \ 938 .counter = (__counter), \ 939 .name = (__name), \ 940 .unit = (__unit), \ 941 .global = false, \ 942 } 943 944 #define __global_event(__counter, __name, __unit) \ 945 { \ 946 .counter = (__counter), \ 947 .name = (__name), \ 948 .unit = (__unit), \ 949 .global = true, \ 950 } 951 952 #define __engine_event(__sample, __name) \ 953 { \ 954 .sample = (__sample), \ 955 .name = (__name), \ 956 } 957 958 static struct i915_ext_attribute * 959 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) 960 { 961 sysfs_attr_init(&attr->attr.attr); 962 attr->attr.attr.name = name; 963 attr->attr.attr.mode = 0444; 964 attr->attr.show = i915_pmu_event_show; 965 attr->val = config; 966 967 return ++attr; 968 } 969 970 static struct perf_pmu_events_attr * 971 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, 972 const char *str) 973 { 974 sysfs_attr_init(&attr->attr.attr); 975 attr->attr.attr.name = name; 976 attr->attr.attr.mode = 0444; 977 attr->attr.show = perf_event_sysfs_show; 978 attr->event_str = str; 979 980 return ++attr; 981 } 982 983 static struct attribute ** 984 create_event_attributes(struct i915_pmu *pmu) 985 { 986 struct drm_i915_private *i915 = pmu_to_i915(pmu); 987 static const struct { 988 unsigned int counter; 989 const char *name; 990 const char *unit; 991 bool global; 992 } events[] = { 993 __event(0, "actual-frequency", "M"), 994 __event(1, "requested-frequency", "M"), 995 __global_event(2, "interrupts", NULL), 996 __event(3, "rc6-residency", "ns"), 997 __event(4, "software-gt-awake-time", "ns"), 998 }; 999 static const struct { 1000 enum drm_i915_pmu_engine_sample sample; 1001 char *name; 1002 } engine_events[] = { 1003 __engine_event(I915_SAMPLE_BUSY, "busy"), 1004 __engine_event(I915_SAMPLE_SEMA, "sema"), 1005 __engine_event(I915_SAMPLE_WAIT, "wait"), 1006 }; 1007 unsigned int count = 0; 1008 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; 1009 struct i915_ext_attribute *i915_attr = NULL, *i915_iter; 1010 struct attribute **attr = NULL, **attr_iter; 1011 struct intel_engine_cs *engine; 1012 struct intel_gt *gt; 1013 unsigned int i, j; 1014 1015 /* Count how many counters we will be exposing. */ 1016 for_each_gt(gt, i915, j) { 1017 for (i = 0; i < ARRAY_SIZE(events); i++) { 1018 u64 config = ___I915_PMU_OTHER(j, events[i].counter); 1019 1020 if (!config_status(i915, config)) 1021 count++; 1022 } 1023 } 1024 1025 for_each_uabi_engine(engine, i915) { 1026 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 1027 if (!engine_event_status(engine, 1028 engine_events[i].sample)) 1029 count++; 1030 } 1031 } 1032 1033 /* Allocate attribute objects and table. */ 1034 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); 1035 if (!i915_attr) 1036 goto err_alloc; 1037 1038 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); 1039 if (!pmu_attr) 1040 goto err_alloc; 1041 1042 /* Max one pointer of each attribute type plus a termination entry. */ 1043 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); 1044 if (!attr) 1045 goto err_alloc; 1046 1047 i915_iter = i915_attr; 1048 pmu_iter = pmu_attr; 1049 attr_iter = attr; 1050 1051 /* Initialize supported non-engine counters. */ 1052 for_each_gt(gt, i915, j) { 1053 for (i = 0; i < ARRAY_SIZE(events); i++) { 1054 u64 config = ___I915_PMU_OTHER(j, events[i].counter); 1055 char *str; 1056 1057 if (config_status(i915, config)) 1058 continue; 1059 1060 if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) 1061 str = kstrdup(events[i].name, GFP_KERNEL); 1062 else 1063 str = kasprintf(GFP_KERNEL, "%s-gt%u", 1064 events[i].name, j); 1065 if (!str) 1066 goto err; 1067 1068 *attr_iter++ = &i915_iter->attr.attr; 1069 i915_iter = add_i915_attr(i915_iter, str, config); 1070 1071 if (events[i].unit) { 1072 if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) 1073 str = kasprintf(GFP_KERNEL, "%s.unit", 1074 events[i].name); 1075 else 1076 str = kasprintf(GFP_KERNEL, "%s-gt%u.unit", 1077 events[i].name, j); 1078 if (!str) 1079 goto err; 1080 1081 *attr_iter++ = &pmu_iter->attr.attr; 1082 pmu_iter = add_pmu_attr(pmu_iter, str, 1083 events[i].unit); 1084 } 1085 } 1086 } 1087 1088 /* Initialize supported engine counters. */ 1089 for_each_uabi_engine(engine, i915) { 1090 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 1091 char *str; 1092 1093 if (engine_event_status(engine, 1094 engine_events[i].sample)) 1095 continue; 1096 1097 str = kasprintf(GFP_KERNEL, "%s-%s", 1098 engine->name, engine_events[i].name); 1099 if (!str) 1100 goto err; 1101 1102 *attr_iter++ = &i915_iter->attr.attr; 1103 i915_iter = 1104 add_i915_attr(i915_iter, str, 1105 __I915_PMU_ENGINE(engine->uabi_class, 1106 engine->uabi_instance, 1107 engine_events[i].sample)); 1108 1109 str = kasprintf(GFP_KERNEL, "%s-%s.unit", 1110 engine->name, engine_events[i].name); 1111 if (!str) 1112 goto err; 1113 1114 *attr_iter++ = &pmu_iter->attr.attr; 1115 pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); 1116 } 1117 } 1118 1119 pmu->i915_attr = i915_attr; 1120 pmu->pmu_attr = pmu_attr; 1121 1122 return attr; 1123 1124 err:; 1125 for (attr_iter = attr; *attr_iter; attr_iter++) 1126 kfree((*attr_iter)->name); 1127 1128 err_alloc: 1129 kfree(attr); 1130 kfree(i915_attr); 1131 kfree(pmu_attr); 1132 1133 return NULL; 1134 } 1135 1136 static void free_event_attributes(struct i915_pmu *pmu) 1137 { 1138 struct attribute **attr_iter = pmu->events_attr_group.attrs; 1139 1140 for (; *attr_iter; attr_iter++) 1141 kfree((*attr_iter)->name); 1142 1143 kfree(pmu->events_attr_group.attrs); 1144 kfree(pmu->i915_attr); 1145 kfree(pmu->pmu_attr); 1146 1147 pmu->events_attr_group.attrs = NULL; 1148 pmu->i915_attr = NULL; 1149 pmu->pmu_attr = NULL; 1150 } 1151 1152 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1153 { 1154 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1155 1156 GEM_BUG_ON(!pmu->base.event_init); 1157 1158 /* Select the first online CPU as a designated reader. */ 1159 if (cpumask_empty(&i915_pmu_cpumask)) 1160 cpumask_set_cpu(cpu, &i915_pmu_cpumask); 1161 1162 return 0; 1163 } 1164 1165 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) 1166 { 1167 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1168 unsigned int target = i915_pmu_target_cpu; 1169 1170 GEM_BUG_ON(!pmu->base.event_init); 1171 1172 /* 1173 * Unregistering an instance generates a CPU offline event which we must 1174 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask. 1175 */ 1176 if (pmu->closed) 1177 return 0; 1178 1179 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { 1180 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); 1181 1182 /* Migrate events if there is a valid target */ 1183 if (target < nr_cpu_ids) { 1184 cpumask_set_cpu(target, &i915_pmu_cpumask); 1185 i915_pmu_target_cpu = target; 1186 } 1187 } 1188 1189 if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) { 1190 perf_pmu_migrate_context(&pmu->base, cpu, target); 1191 pmu->cpuhp.cpu = target; 1192 } 1193 1194 return 0; 1195 } 1196 1197 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; 1198 1199 int i915_pmu_init(void) 1200 { 1201 int ret; 1202 1203 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1204 "perf/x86/intel/i915:online", 1205 i915_pmu_cpu_online, 1206 i915_pmu_cpu_offline); 1207 if (ret < 0) 1208 pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n", 1209 ret); 1210 else 1211 cpuhp_slot = ret; 1212 1213 return 0; 1214 } 1215 1216 void i915_pmu_exit(void) 1217 { 1218 if (cpuhp_slot != CPUHP_INVALID) 1219 cpuhp_remove_multi_state(cpuhp_slot); 1220 } 1221 1222 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) 1223 { 1224 if (cpuhp_slot == CPUHP_INVALID) 1225 return -EINVAL; 1226 1227 return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node); 1228 } 1229 1230 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) 1231 { 1232 cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node); 1233 } 1234 1235 static bool is_igp(struct drm_i915_private *i915) 1236 { 1237 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1238 1239 /* IGP is 0000:00:02.0 */ 1240 return pci_domain_nr(pdev->bus) == 0 && 1241 pdev->bus->number == 0 && 1242 PCI_SLOT(pdev->devfn) == 2 && 1243 PCI_FUNC(pdev->devfn) == 0; 1244 } 1245 1246 void i915_pmu_register(struct drm_i915_private *i915) 1247 { 1248 struct i915_pmu *pmu = &i915->pmu; 1249 const struct attribute_group *attr_groups[] = { 1250 &i915_pmu_format_attr_group, 1251 &pmu->events_attr_group, 1252 &i915_pmu_cpumask_attr_group, 1253 NULL 1254 }; 1255 1256 int ret = -ENOMEM; 1257 1258 if (GRAPHICS_VER(i915) <= 2) { 1259 drm_info(&i915->drm, "PMU not supported for this GPU."); 1260 return; 1261 } 1262 1263 spin_lock_init(&pmu->lock); 1264 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1265 pmu->timer.function = i915_sample; 1266 pmu->cpuhp.cpu = -1; 1267 init_rc6(pmu); 1268 1269 if (!is_igp(i915)) { 1270 pmu->name = kasprintf(GFP_KERNEL, 1271 "i915_%s", 1272 dev_name(i915->drm.dev)); 1273 if (pmu->name) { 1274 /* tools/perf reserves colons as special. */ 1275 strreplace((char *)pmu->name, ':', '_'); 1276 } 1277 } else { 1278 pmu->name = "i915"; 1279 } 1280 if (!pmu->name) 1281 goto err; 1282 1283 pmu->events_attr_group.name = "events"; 1284 pmu->events_attr_group.attrs = create_event_attributes(pmu); 1285 if (!pmu->events_attr_group.attrs) 1286 goto err_name; 1287 1288 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), 1289 GFP_KERNEL); 1290 if (!pmu->base.attr_groups) 1291 goto err_attr; 1292 1293 pmu->base.module = THIS_MODULE; 1294 pmu->base.task_ctx_nr = perf_invalid_context; 1295 pmu->base.event_init = i915_pmu_event_init; 1296 pmu->base.add = i915_pmu_event_add; 1297 pmu->base.del = i915_pmu_event_del; 1298 pmu->base.start = i915_pmu_event_start; 1299 pmu->base.stop = i915_pmu_event_stop; 1300 pmu->base.read = i915_pmu_event_read; 1301 pmu->base.event_idx = i915_pmu_event_event_idx; 1302 1303 ret = perf_pmu_register(&pmu->base, pmu->name, -1); 1304 if (ret) 1305 goto err_groups; 1306 1307 ret = i915_pmu_register_cpuhp_state(pmu); 1308 if (ret) 1309 goto err_unreg; 1310 1311 return; 1312 1313 err_unreg: 1314 perf_pmu_unregister(&pmu->base); 1315 err_groups: 1316 kfree(pmu->base.attr_groups); 1317 err_attr: 1318 pmu->base.event_init = NULL; 1319 free_event_attributes(pmu); 1320 err_name: 1321 if (!is_igp(i915)) 1322 kfree(pmu->name); 1323 err: 1324 drm_notice(&i915->drm, "Failed to register PMU!\n"); 1325 } 1326 1327 void i915_pmu_unregister(struct drm_i915_private *i915) 1328 { 1329 struct i915_pmu *pmu = &i915->pmu; 1330 1331 if (!pmu->base.event_init) 1332 return; 1333 1334 /* 1335 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu 1336 * ensures all currently executing ones will have exited before we 1337 * proceed with unregistration. 1338 */ 1339 pmu->closed = true; 1340 synchronize_rcu(); 1341 1342 hrtimer_cancel(&pmu->timer); 1343 1344 i915_pmu_unregister_cpuhp_state(pmu); 1345 1346 perf_pmu_unregister(&pmu->base); 1347 pmu->base.event_init = NULL; 1348 kfree(pmu->base.attr_groups); 1349 if (!is_igp(i915)) 1350 kfree(pmu->name); 1351 free_event_attributes(pmu); 1352 } 1353