1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_print.h" 210 #include "gt/intel_gt_regs.h" 211 #include "gt/intel_lrc.h" 212 #include "gt/intel_lrc_reg.h" 213 #include "gt/intel_rc6.h" 214 #include "gt/intel_ring.h" 215 #include "gt/uc/intel_guc_slpc.h" 216 217 #include "i915_drv.h" 218 #include "i915_file_private.h" 219 #include "i915_perf.h" 220 #include "i915_perf_oa_regs.h" 221 #include "i915_reg.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 242 * redundant read() attempts. 243 * 244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 245 * in the OA buffer, starting from the tail reported by the HW until we find a 246 * report with its first 2 dwords not 0 meaning its previous report is 247 * completely in memory and ready to be read. Those dwords are also set to 0 248 * once read and the whole buffer is cleared upon OA buffer initialization. The 249 * first dword is the reason for this report while the second is the timestamp, 250 * making the chances of having those 2 fields at 0 fairly unlikely. A more 251 * detailed explanation is available in oa_buffer_check_unlocked(). 252 * 253 * Most of the implementation details for this workaround are in 254 * oa_buffer_check_unlocked() and _append_oa_reports() 255 * 256 * Note for posterity: previously the driver used to define an effective tail 257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 259 * This was flawed considering that the OA unit may also automatically generate 260 * non-periodic reports (such as on context switch) or the OA unit may be 261 * enabled without any periodic sampling. 262 */ 263 #define OA_TAIL_MARGIN_NSEC 100000ULL 264 #define INVALID_TAIL_PTR 0xffffffff 265 266 /* The default frequency for checking whether the OA unit has written new 267 * reports to the circular OA buffer... 268 */ 269 #define DEFAULT_POLL_FREQUENCY_HZ 200 270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 271 272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 273 static u32 i915_perf_stream_paranoid = true; 274 275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 276 * of the 64bit timestamp bits to trigger reports from) but there's currently 277 * no known use case for sampling as infrequently as once per 47 thousand years. 278 * 279 * Since the timestamps included in OA reports are only 32bits it seems 280 * reasonable to limit the OA exponent where it's still possible to account for 281 * overflow in OA report timestamps. 282 */ 283 #define OA_EXPONENT_MAX 31 284 285 #define INVALID_CTX_ID 0xffffffff 286 287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 288 #define OAREPORT_REASON_MASK 0x3f 289 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 290 #define OAREPORT_REASON_SHIFT 19 291 #define OAREPORT_REASON_TIMER (1<<0) 292 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 293 #define OAREPORT_REASON_CLK_RATIO (1<<5) 294 295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 296 297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 298 * 299 * The highest sampling frequency we can theoretically program the OA unit 300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 301 * 302 * Initialized just before we register the sysctl parameter. 303 */ 304 static int oa_sample_rate_hard_limit; 305 306 /* Theoretically we can program the OA unit to sample every 160ns but don't 307 * allow that by default unless root... 308 * 309 * The default threshold of 100000Hz is based on perf's similar 310 * kernel.perf_event_max_sample_rate sysctl parameter. 311 */ 312 static u32 i915_oa_max_sample_rate = 100000; 313 314 /* XXX: beware if future OA HW adds new report formats that the current 315 * code assumes all reports have a power-of-two size and ~(size - 1) can 316 * be used as a mask to align the OA tail pointer. 317 */ 318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 319 [I915_OA_FORMAT_A13] = { 0, 64 }, 320 [I915_OA_FORMAT_A29] = { 1, 128 }, 321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 323 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 326 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 327 [I915_OA_FORMAT_A12] = { 0, 64 }, 328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 334 }; 335 336 static const u32 mtl_oa_base[] = { 337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 338 }; 339 340 #define SAMPLE_OA_REPORT (1<<0) 341 342 /** 343 * struct perf_open_properties - for validated properties given to open a stream 344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 345 * @single_context: Whether a single or all gpu contexts should be monitored 346 * @hold_preemption: Whether the preemption is disabled for the filtered 347 * context 348 * @ctx_handle: A gem ctx handle for use with @single_context 349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 350 * @oa_format: An OA unit HW report format 351 * @oa_periodic: Whether to enable periodic OA unit sampling 352 * @oa_period_exponent: The OA unit sampling period is derived from this 353 * @engine: The engine (typically rcs0) being monitored by the OA unit 354 * @has_sseu: Whether @sseu was specified by userspace 355 * @sseu: internal SSEU configuration computed either from the userspace 356 * specified configuration in the opening parameters or a default value 357 * (see get_default_sseu_config()) 358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 359 * data availability 360 * 361 * As read_properties_unlocked() enumerates and validates the properties given 362 * to open a stream of metrics the configuration is built up in the structure 363 * which starts out zero initialized. 364 */ 365 struct perf_open_properties { 366 u32 sample_flags; 367 368 u64 single_context:1; 369 u64 hold_preemption:1; 370 u64 ctx_handle; 371 372 /* OA sampling state */ 373 int metrics_set; 374 int oa_format; 375 bool oa_periodic; 376 int oa_period_exponent; 377 378 struct intel_engine_cs *engine; 379 380 bool has_sseu; 381 struct intel_sseu sseu; 382 383 u64 poll_oa_period; 384 }; 385 386 struct i915_oa_config_bo { 387 struct llist_node node; 388 389 struct i915_oa_config *oa_config; 390 struct i915_vma *vma; 391 }; 392 393 static struct ctl_table_header *sysctl_header; 394 395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 396 397 void i915_oa_config_release(struct kref *ref) 398 { 399 struct i915_oa_config *oa_config = 400 container_of(ref, typeof(*oa_config), ref); 401 402 kfree(oa_config->flex_regs); 403 kfree(oa_config->b_counter_regs); 404 kfree(oa_config->mux_regs); 405 406 kfree_rcu(oa_config, rcu); 407 } 408 409 struct i915_oa_config * 410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 411 { 412 struct i915_oa_config *oa_config; 413 414 rcu_read_lock(); 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static inline const 431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 432 { 433 return &stream->engine->oa_group->regs; 434 } 435 436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 440 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 441 GEN12_OAG_OATAILPTR_MASK; 442 } 443 444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 445 { 446 struct intel_uncore *uncore = stream->uncore; 447 448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 449 } 450 451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 452 { 453 struct intel_uncore *uncore = stream->uncore; 454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 455 456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 457 } 458 459 #define oa_report_header_64bit(__s) \ 460 ((__s)->oa_buffer.format->header == HDR_64_BIT) 461 462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 463 { 464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 465 } 466 467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 468 { 469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 470 (GRAPHICS_VER(stream->perf->i915) == 12 ? 471 OAREPORT_REASON_MASK_EXTENDED : 472 OAREPORT_REASON_MASK); 473 } 474 475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 476 { 477 if (oa_report_header_64bit(stream)) 478 *(u64 *)report = 0; 479 else 480 *report = 0; 481 } 482 483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 484 { 485 return !(oa_report_id(stream, report) & 486 stream->perf->gen8_valid_ctx_bit); 487 } 488 489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 490 { 491 return oa_report_header_64bit(stream) ? 492 *((u64 *)report + 1) : 493 *((u32 *)report + 1); 494 } 495 496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 497 { 498 if (oa_report_header_64bit(stream)) 499 *(u64 *)&report[2] = 0; 500 else 501 report[1] = 0; 502 } 503 504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 505 { 506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 507 508 return ctx_id & stream->specific_ctx_id_mask; 509 } 510 511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 512 { 513 if (oa_report_header_64bit(stream)) 514 report[4] = INVALID_CTX_ID; 515 else 516 report[2] = INVALID_CTX_ID; 517 } 518 519 /** 520 * oa_buffer_check_unlocked - check for data and update tail ptr state 521 * @stream: i915 stream instance 522 * 523 * This is either called via fops (for blocking reads in user ctx) or the poll 524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 525 * if there is data available for userspace to read. 526 * 527 * This function is central to providing a workaround for the OA unit tail 528 * pointer having a race with respect to what data is visible to the CPU. 529 * It is responsible for reading tail pointers from the hardware and giving 530 * the pointers time to 'age' before they are made available for reading. 531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 532 * 533 * Besides returning true when there is data available to read() this function 534 * also updates the tail in the oa_buffer object. 535 * 536 * Note: It's safe to read OA config state here unlocked, assuming that this is 537 * only called while the stream is enabled, while the global OA configuration 538 * can't be modified. 539 * 540 * Returns: %true if the OA buffer contains data, else %false 541 */ 542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 543 { 544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 545 int report_size = stream->oa_buffer.format->size; 546 u32 tail, hw_tail; 547 unsigned long flags; 548 bool pollin; 549 u32 partial_report_size; 550 551 /* 552 * We have to consider the (unlikely) possibility that read() errors 553 * could result in an OA buffer reset which might reset the head and 554 * tail state. 555 */ 556 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 557 558 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 559 hw_tail -= gtt_offset; 560 561 /* 562 * The tail pointer increases in 64 byte increments, not in report_size 563 * steps. Also the report size may not be a power of 2. Compute 564 * potentially partially landed report in the OA buffer 565 */ 566 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 567 partial_report_size %= report_size; 568 569 /* Subtract partial amount off the tail */ 570 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 571 572 tail = hw_tail; 573 574 /* 575 * Walk the stream backward until we find a report with report 576 * id and timestamp not at 0. Since the circular buffer pointers 577 * progress by increments of 64 bytes and that reports can be up 578 * to 256 bytes long, we can't tell whether a report has fully 579 * landed in memory before the report id and timestamp of the 580 * following report have effectively landed. 581 * 582 * This is assuming that the writes of the OA unit land in 583 * memory in the order they were written to. 584 * If not : (╯°□°)╯︵ ┻━┻ 585 */ 586 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) { 587 void *report = stream->oa_buffer.vaddr + tail; 588 589 if (oa_report_id(stream, report) || 590 oa_timestamp(stream, report)) 591 break; 592 593 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 594 } 595 596 if (OA_TAKEN(hw_tail, tail) > report_size && 597 __ratelimit(&stream->perf->tail_pointer_race)) 598 drm_notice(&stream->uncore->i915->drm, 599 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 600 stream->oa_buffer.head, tail, hw_tail); 601 602 stream->oa_buffer.tail = tail; 603 604 pollin = OA_TAKEN(stream->oa_buffer.tail, 605 stream->oa_buffer.head) >= report_size; 606 607 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 608 609 return pollin; 610 } 611 612 /** 613 * append_oa_status - Appends a status record to a userspace read() buffer. 614 * @stream: An i915-perf stream opened for OA metrics 615 * @buf: destination buffer given by userspace 616 * @count: the number of bytes userspace wants to read 617 * @offset: (inout): the current position for writing into @buf 618 * @type: The kind of status to report to userspace 619 * 620 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 621 * into the userspace read() buffer. 622 * 623 * The @buf @offset will only be updated on success. 624 * 625 * Returns: 0 on success, negative error code on failure. 626 */ 627 static int append_oa_status(struct i915_perf_stream *stream, 628 char __user *buf, 629 size_t count, 630 size_t *offset, 631 enum drm_i915_perf_record_type type) 632 { 633 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 634 635 if ((count - *offset) < header.size) 636 return -ENOSPC; 637 638 if (copy_to_user(buf + *offset, &header, sizeof(header))) 639 return -EFAULT; 640 641 (*offset) += header.size; 642 643 return 0; 644 } 645 646 /** 647 * append_oa_sample - Copies single OA report into userspace read() buffer. 648 * @stream: An i915-perf stream opened for OA metrics 649 * @buf: destination buffer given by userspace 650 * @count: the number of bytes userspace wants to read 651 * @offset: (inout): the current position for writing into @buf 652 * @report: A single OA report to (optionally) include as part of the sample 653 * 654 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 655 * properties when opening a stream, tracked as `stream->sample_flags`. This 656 * function copies the requested components of a single sample to the given 657 * read() @buf. 658 * 659 * The @buf @offset will only be updated on success. 660 * 661 * Returns: 0 on success, negative error code on failure. 662 */ 663 static int append_oa_sample(struct i915_perf_stream *stream, 664 char __user *buf, 665 size_t count, 666 size_t *offset, 667 const u8 *report) 668 { 669 int report_size = stream->oa_buffer.format->size; 670 struct drm_i915_perf_record_header header; 671 int report_size_partial; 672 u8 *oa_buf_end; 673 674 header.type = DRM_I915_PERF_RECORD_SAMPLE; 675 header.pad = 0; 676 header.size = stream->sample_size; 677 678 if ((count - *offset) < header.size) 679 return -ENOSPC; 680 681 buf += *offset; 682 if (copy_to_user(buf, &header, sizeof(header))) 683 return -EFAULT; 684 buf += sizeof(header); 685 686 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 687 report_size_partial = oa_buf_end - report; 688 689 if (report_size_partial < report_size) { 690 if (copy_to_user(buf, report, report_size_partial)) 691 return -EFAULT; 692 buf += report_size_partial; 693 694 if (copy_to_user(buf, stream->oa_buffer.vaddr, 695 report_size - report_size_partial)) 696 return -EFAULT; 697 } else if (copy_to_user(buf, report, report_size)) { 698 return -EFAULT; 699 } 700 701 (*offset) += header.size; 702 703 return 0; 704 } 705 706 /** 707 * gen8_append_oa_reports - Copies all buffered OA reports into 708 * userspace read() buffer. 709 * @stream: An i915-perf stream opened for OA metrics 710 * @buf: destination buffer given by userspace 711 * @count: the number of bytes userspace wants to read 712 * @offset: (inout): the current position for writing into @buf 713 * 714 * Notably any error condition resulting in a short read (-%ENOSPC or 715 * -%EFAULT) will be returned even though one or more records may 716 * have been successfully copied. In this case it's up to the caller 717 * to decide if the error should be squashed before returning to 718 * userspace. 719 * 720 * Note: reports are consumed from the head, and appended to the 721 * tail, so the tail chases the head?... If you think that's mad 722 * and back-to-front you're not alone, but this follows the 723 * Gen PRM naming convention. 724 * 725 * Returns: 0 on success, negative error code on failure. 726 */ 727 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 728 char __user *buf, 729 size_t count, 730 size_t *offset) 731 { 732 struct intel_uncore *uncore = stream->uncore; 733 int report_size = stream->oa_buffer.format->size; 734 u8 *oa_buf_base = stream->oa_buffer.vaddr; 735 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 736 u32 mask = (OA_BUFFER_SIZE - 1); 737 size_t start_offset = *offset; 738 unsigned long flags; 739 u32 head, tail; 740 int ret = 0; 741 742 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 743 return -EIO; 744 745 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 746 747 head = stream->oa_buffer.head; 748 tail = stream->oa_buffer.tail; 749 750 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 751 752 /* 753 * An out of bounds or misaligned head or tail pointer implies a driver 754 * bug since we validate + align the tail pointers we read from the 755 * hardware and we are in full control of the head pointer which should 756 * only be incremented by multiples of the report size. 757 */ 758 if (drm_WARN_ONCE(&uncore->i915->drm, 759 head > OA_BUFFER_SIZE || 760 tail > OA_BUFFER_SIZE, 761 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 762 head, tail)) 763 return -EIO; 764 765 766 for (/* none */; 767 OA_TAKEN(tail, head); 768 head = (head + report_size) & mask) { 769 u8 *report = oa_buf_base + head; 770 u32 *report32 = (void *)report; 771 u32 ctx_id; 772 u64 reason; 773 774 /* 775 * The reason field includes flags identifying what 776 * triggered this specific report (mostly timer 777 * triggered or e.g. due to a context switch). 778 */ 779 reason = oa_report_reason(stream, report); 780 ctx_id = oa_context_id(stream, report32); 781 782 /* 783 * Squash whatever is in the CTX_ID field if it's marked as 784 * invalid to be sure we avoid false-positive, single-context 785 * filtering below... 786 * 787 * Note: that we don't clear the valid_ctx_bit so userspace can 788 * understand that the ID has been squashed by the kernel. 789 * 790 * Update: 791 * 792 * On XEHP platforms the behavior of context id valid bit has 793 * changed compared to prior platforms. To describe this, we 794 * define a few terms: 795 * 796 * context-switch-report: This is a report with the reason type 797 * being context-switch. It is generated when a context switches 798 * out. 799 * 800 * context-valid-bit: A bit that is set in the report ID field 801 * to indicate that a valid context has been loaded. 802 * 803 * gpu-idle: A condition characterized by a 804 * context-switch-report with context-valid-bit set to 0. 805 * 806 * On prior platforms, context-id-valid bit is set to 0 only 807 * when GPU goes idle. In all other reports, it is set to 1. 808 * 809 * On XEHP platforms, context-valid-bit is set to 1 in a context 810 * switch report if a new context switched in. For all other 811 * reports it is set to 0. 812 * 813 * This change in behavior causes an issue with MMIO triggered 814 * reports. MMIO triggered reports have the markers in the 815 * context ID field and the context-valid-bit is 0. The logic 816 * below to squash the context ID would render the report 817 * useless since the user will not be able to find it in the OA 818 * buffer. Since MMIO triggered reports exist only on XEHP, 819 * we should avoid squashing these for XEHP platforms. 820 */ 821 822 if (oa_report_ctx_invalid(stream, report) && 823 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) { 824 ctx_id = INVALID_CTX_ID; 825 oa_context_id_squash(stream, report32); 826 } 827 828 /* 829 * NB: For Gen 8 the OA unit no longer supports clock gating 830 * off for a specific context and the kernel can't securely 831 * stop the counters from updating as system-wide / global 832 * values. 833 * 834 * Automatic reports now include a context ID so reports can be 835 * filtered on the cpu but it's not worth trying to 836 * automatically subtract/hide counter progress for other 837 * contexts while filtering since we can't stop userspace 838 * issuing MI_REPORT_PERF_COUNT commands which would still 839 * provide a side-band view of the real values. 840 * 841 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 842 * to normalize counters for a single filtered context then it 843 * needs be forwarded bookend context-switch reports so that it 844 * can track switches in between MI_REPORT_PERF_COUNT commands 845 * and can itself subtract/ignore the progress of counters 846 * associated with other contexts. Note that the hardware 847 * automatically triggers reports when switching to a new 848 * context which are tagged with the ID of the newly active 849 * context. To avoid the complexity (and likely fragility) of 850 * reading ahead while parsing reports to try and minimize 851 * forwarding redundant context switch reports (i.e. between 852 * other, unrelated contexts) we simply elect to forward them 853 * all. 854 * 855 * We don't rely solely on the reason field to identify context 856 * switches since it's not-uncommon for periodic samples to 857 * identify a switch before any 'context switch' report. 858 */ 859 if (!stream->ctx || 860 stream->specific_ctx_id == ctx_id || 861 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 862 reason & OAREPORT_REASON_CTX_SWITCH) { 863 864 /* 865 * While filtering for a single context we avoid 866 * leaking the IDs of other contexts. 867 */ 868 if (stream->ctx && 869 stream->specific_ctx_id != ctx_id) { 870 oa_context_id_squash(stream, report32); 871 } 872 873 ret = append_oa_sample(stream, buf, count, offset, 874 report); 875 if (ret) 876 break; 877 878 stream->oa_buffer.last_ctx_id = ctx_id; 879 } 880 881 if (is_power_of_2(report_size)) { 882 /* 883 * Clear out the report id and timestamp as a means 884 * to detect unlanded reports. 885 */ 886 oa_report_id_clear(stream, report32); 887 oa_timestamp_clear(stream, report32); 888 } else { 889 u8 *oa_buf_end = stream->oa_buffer.vaddr + 890 OA_BUFFER_SIZE; 891 u32 part = oa_buf_end - (u8 *)report32; 892 893 /* Zero out the entire report */ 894 if (report_size <= part) { 895 memset(report32, 0, report_size); 896 } else { 897 memset(report32, 0, part); 898 memset(oa_buf_base, 0, report_size - part); 899 } 900 } 901 } 902 903 if (start_offset != *offset) { 904 i915_reg_t oaheadptr; 905 906 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 907 __oa_regs(stream)->oa_head_ptr : 908 GEN8_OAHEADPTR; 909 910 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 911 912 /* 913 * We removed the gtt_offset for the copy loop above, indexing 914 * relative to oa_buf_base so put back here... 915 */ 916 intel_uncore_write(uncore, oaheadptr, 917 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK); 918 stream->oa_buffer.head = head; 919 920 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 921 } 922 923 return ret; 924 } 925 926 /** 927 * gen8_oa_read - copy status records then buffered OA reports 928 * @stream: An i915-perf stream opened for OA metrics 929 * @buf: destination buffer given by userspace 930 * @count: the number of bytes userspace wants to read 931 * @offset: (inout): the current position for writing into @buf 932 * 933 * Checks OA unit status registers and if necessary appends corresponding 934 * status records for userspace (such as for a buffer full condition) and then 935 * initiate appending any buffered OA reports. 936 * 937 * Updates @offset according to the number of bytes successfully copied into 938 * the userspace buffer. 939 * 940 * NB: some data may be successfully copied to the userspace buffer 941 * even if an error is returned, and this is reflected in the 942 * updated @offset. 943 * 944 * Returns: zero on success or a negative error code 945 */ 946 static int gen8_oa_read(struct i915_perf_stream *stream, 947 char __user *buf, 948 size_t count, 949 size_t *offset) 950 { 951 struct intel_uncore *uncore = stream->uncore; 952 u32 oastatus; 953 i915_reg_t oastatus_reg; 954 int ret; 955 956 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 957 return -EIO; 958 959 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 960 __oa_regs(stream)->oa_status : 961 GEN8_OASTATUS; 962 963 oastatus = intel_uncore_read(uncore, oastatus_reg); 964 965 /* 966 * We treat OABUFFER_OVERFLOW as a significant error: 967 * 968 * Although theoretically we could handle this more gracefully 969 * sometimes, some Gens don't correctly suppress certain 970 * automatically triggered reports in this condition and so we 971 * have to assume that old reports are now being trampled 972 * over. 973 * 974 * Considering how we don't currently give userspace control 975 * over the OA buffer size and always configure a large 16MB 976 * buffer, then a buffer overflow does anyway likely indicate 977 * that something has gone quite badly wrong. 978 */ 979 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 980 ret = append_oa_status(stream, buf, count, offset, 981 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 982 if (ret) 983 return ret; 984 985 drm_dbg(&stream->perf->i915->drm, 986 "OA buffer overflow (exponent = %d): force restart\n", 987 stream->period_exponent); 988 989 stream->perf->ops.oa_disable(stream); 990 stream->perf->ops.oa_enable(stream); 991 992 /* 993 * Note: .oa_enable() is expected to re-init the oabuffer and 994 * reset GEN8_OASTATUS for us 995 */ 996 oastatus = intel_uncore_read(uncore, oastatus_reg); 997 } 998 999 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 1000 ret = append_oa_status(stream, buf, count, offset, 1001 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1002 if (ret) 1003 return ret; 1004 1005 intel_uncore_rmw(uncore, oastatus_reg, 1006 GEN8_OASTATUS_COUNTER_OVERFLOW | 1007 GEN8_OASTATUS_REPORT_LOST, 1008 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 1009 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 1010 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 1011 } 1012 1013 return gen8_append_oa_reports(stream, buf, count, offset); 1014 } 1015 1016 /** 1017 * gen7_append_oa_reports - Copies all buffered OA reports into 1018 * userspace read() buffer. 1019 * @stream: An i915-perf stream opened for OA metrics 1020 * @buf: destination buffer given by userspace 1021 * @count: the number of bytes userspace wants to read 1022 * @offset: (inout): the current position for writing into @buf 1023 * 1024 * Notably any error condition resulting in a short read (-%ENOSPC or 1025 * -%EFAULT) will be returned even though one or more records may 1026 * have been successfully copied. In this case it's up to the caller 1027 * to decide if the error should be squashed before returning to 1028 * userspace. 1029 * 1030 * Note: reports are consumed from the head, and appended to the 1031 * tail, so the tail chases the head?... If you think that's mad 1032 * and back-to-front you're not alone, but this follows the 1033 * Gen PRM naming convention. 1034 * 1035 * Returns: 0 on success, negative error code on failure. 1036 */ 1037 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1038 char __user *buf, 1039 size_t count, 1040 size_t *offset) 1041 { 1042 struct intel_uncore *uncore = stream->uncore; 1043 int report_size = stream->oa_buffer.format->size; 1044 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1045 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1046 u32 mask = (OA_BUFFER_SIZE - 1); 1047 size_t start_offset = *offset; 1048 unsigned long flags; 1049 u32 head, tail; 1050 int ret = 0; 1051 1052 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1053 return -EIO; 1054 1055 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1056 1057 head = stream->oa_buffer.head; 1058 tail = stream->oa_buffer.tail; 1059 1060 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1061 1062 /* An out of bounds or misaligned head or tail pointer implies a driver 1063 * bug since we validate + align the tail pointers we read from the 1064 * hardware and we are in full control of the head pointer which should 1065 * only be incremented by multiples of the report size (notably also 1066 * all a power of two). 1067 */ 1068 if (drm_WARN_ONCE(&uncore->i915->drm, 1069 head > OA_BUFFER_SIZE || head % report_size || 1070 tail > OA_BUFFER_SIZE || tail % report_size, 1071 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1072 head, tail)) 1073 return -EIO; 1074 1075 1076 for (/* none */; 1077 OA_TAKEN(tail, head); 1078 head = (head + report_size) & mask) { 1079 u8 *report = oa_buf_base + head; 1080 u32 *report32 = (void *)report; 1081 1082 /* All the report sizes factor neatly into the buffer 1083 * size so we never expect to see a report split 1084 * between the beginning and end of the buffer. 1085 * 1086 * Given the initial alignment check a misalignment 1087 * here would imply a driver bug that would result 1088 * in an overrun. 1089 */ 1090 if (drm_WARN_ON(&uncore->i915->drm, 1091 (OA_BUFFER_SIZE - head) < report_size)) { 1092 drm_err(&uncore->i915->drm, 1093 "Spurious OA head ptr: non-integral report offset\n"); 1094 break; 1095 } 1096 1097 /* The report-ID field for periodic samples includes 1098 * some undocumented flags related to what triggered 1099 * the report and is never expected to be zero so we 1100 * can check that the report isn't invalid before 1101 * copying it to userspace... 1102 */ 1103 if (report32[0] == 0) { 1104 if (__ratelimit(&stream->perf->spurious_report_rs)) 1105 drm_notice(&uncore->i915->drm, 1106 "Skipping spurious, invalid OA report\n"); 1107 continue; 1108 } 1109 1110 ret = append_oa_sample(stream, buf, count, offset, report); 1111 if (ret) 1112 break; 1113 1114 /* Clear out the first 2 dwords as a mean to detect unlanded 1115 * reports. 1116 */ 1117 report32[0] = 0; 1118 report32[1] = 0; 1119 } 1120 1121 if (start_offset != *offset) { 1122 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1123 1124 intel_uncore_write(uncore, GEN7_OASTATUS2, 1125 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) | 1126 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1127 stream->oa_buffer.head = head; 1128 1129 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1130 } 1131 1132 return ret; 1133 } 1134 1135 /** 1136 * gen7_oa_read - copy status records then buffered OA reports 1137 * @stream: An i915-perf stream opened for OA metrics 1138 * @buf: destination buffer given by userspace 1139 * @count: the number of bytes userspace wants to read 1140 * @offset: (inout): the current position for writing into @buf 1141 * 1142 * Checks Gen 7 specific OA unit status registers and if necessary appends 1143 * corresponding status records for userspace (such as for a buffer full 1144 * condition) and then initiate appending any buffered OA reports. 1145 * 1146 * Updates @offset according to the number of bytes successfully copied into 1147 * the userspace buffer. 1148 * 1149 * Returns: zero on success or a negative error code 1150 */ 1151 static int gen7_oa_read(struct i915_perf_stream *stream, 1152 char __user *buf, 1153 size_t count, 1154 size_t *offset) 1155 { 1156 struct intel_uncore *uncore = stream->uncore; 1157 u32 oastatus1; 1158 int ret; 1159 1160 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1161 return -EIO; 1162 1163 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1164 1165 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1166 * bits while the OA unit is enabled (while the tail pointer 1167 * may be updated asynchronously) so we ignore status bits 1168 * that have already been reported to userspace. 1169 */ 1170 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1171 1172 /* We treat OABUFFER_OVERFLOW as a significant error: 1173 * 1174 * - The status can be interpreted to mean that the buffer is 1175 * currently full (with a higher precedence than OA_TAKEN() 1176 * which will start to report a near-empty buffer after an 1177 * overflow) but it's awkward that we can't clear the status 1178 * on Haswell, so without a reset we won't be able to catch 1179 * the state again. 1180 * 1181 * - Since it also implies the HW has started overwriting old 1182 * reports it may also affect our sanity checks for invalid 1183 * reports when copying to userspace that assume new reports 1184 * are being written to cleared memory. 1185 * 1186 * - In the future we may want to introduce a flight recorder 1187 * mode where the driver will automatically maintain a safe 1188 * guard band between head/tail, avoiding this overflow 1189 * condition, but we avoid the added driver complexity for 1190 * now. 1191 */ 1192 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1193 ret = append_oa_status(stream, buf, count, offset, 1194 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1195 if (ret) 1196 return ret; 1197 1198 drm_dbg(&stream->perf->i915->drm, 1199 "OA buffer overflow (exponent = %d): force restart\n", 1200 stream->period_exponent); 1201 1202 stream->perf->ops.oa_disable(stream); 1203 stream->perf->ops.oa_enable(stream); 1204 1205 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1206 } 1207 1208 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1209 ret = append_oa_status(stream, buf, count, offset, 1210 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1211 if (ret) 1212 return ret; 1213 stream->perf->gen7_latched_oastatus1 |= 1214 GEN7_OASTATUS1_REPORT_LOST; 1215 } 1216 1217 return gen7_append_oa_reports(stream, buf, count, offset); 1218 } 1219 1220 /** 1221 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1222 * @stream: An i915-perf stream opened for OA metrics 1223 * 1224 * Called when userspace tries to read() from a blocking stream FD opened 1225 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1226 * OA buffer and wakes us. 1227 * 1228 * Note: it's acceptable to have this return with some false positives 1229 * since any subsequent read handling will return -EAGAIN if there isn't 1230 * really data ready for userspace yet. 1231 * 1232 * Returns: zero on success or a negative error code 1233 */ 1234 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1235 { 1236 /* We would wait indefinitely if periodic sampling is not enabled */ 1237 if (!stream->periodic) 1238 return -EIO; 1239 1240 return wait_event_interruptible(stream->poll_wq, 1241 oa_buffer_check_unlocked(stream)); 1242 } 1243 1244 /** 1245 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1246 * @stream: An i915-perf stream opened for OA metrics 1247 * @file: An i915 perf stream file 1248 * @wait: poll() state table 1249 * 1250 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1251 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1252 * when it sees data ready to read in the circular OA buffer. 1253 */ 1254 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1255 struct file *file, 1256 poll_table *wait) 1257 { 1258 poll_wait(file, &stream->poll_wq, wait); 1259 } 1260 1261 /** 1262 * i915_oa_read - just calls through to &i915_oa_ops->read 1263 * @stream: An i915-perf stream opened for OA metrics 1264 * @buf: destination buffer given by userspace 1265 * @count: the number of bytes userspace wants to read 1266 * @offset: (inout): the current position for writing into @buf 1267 * 1268 * Updates @offset according to the number of bytes successfully copied into 1269 * the userspace buffer. 1270 * 1271 * Returns: zero on success or a negative error code 1272 */ 1273 static int i915_oa_read(struct i915_perf_stream *stream, 1274 char __user *buf, 1275 size_t count, 1276 size_t *offset) 1277 { 1278 return stream->perf->ops.read(stream, buf, count, offset); 1279 } 1280 1281 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1282 { 1283 struct i915_gem_engines_iter it; 1284 struct i915_gem_context *ctx = stream->ctx; 1285 struct intel_context *ce; 1286 struct i915_gem_ww_ctx ww; 1287 int err = -ENODEV; 1288 1289 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1290 if (ce->engine != stream->engine) /* first match! */ 1291 continue; 1292 1293 err = 0; 1294 break; 1295 } 1296 i915_gem_context_unlock_engines(ctx); 1297 1298 if (err) 1299 return ERR_PTR(err); 1300 1301 i915_gem_ww_ctx_init(&ww, true); 1302 retry: 1303 /* 1304 * As the ID is the gtt offset of the context's vma we 1305 * pin the vma to ensure the ID remains fixed. 1306 */ 1307 err = intel_context_pin_ww(ce, &ww); 1308 if (err == -EDEADLK) { 1309 err = i915_gem_ww_ctx_backoff(&ww); 1310 if (!err) 1311 goto retry; 1312 } 1313 i915_gem_ww_ctx_fini(&ww); 1314 1315 if (err) 1316 return ERR_PTR(err); 1317 1318 stream->pinned_ctx = ce; 1319 return stream->pinned_ctx; 1320 } 1321 1322 static int 1323 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1324 { 1325 u32 *cs, cmd; 1326 1327 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1328 if (GRAPHICS_VER(rq->i915) >= 8) 1329 cmd++; 1330 1331 cs = intel_ring_begin(rq, 4); 1332 if (IS_ERR(cs)) 1333 return PTR_ERR(cs); 1334 1335 *cs++ = cmd; 1336 *cs++ = i915_mmio_reg_offset(reg); 1337 *cs++ = ggtt_offset; 1338 *cs++ = 0; 1339 1340 intel_ring_advance(rq, cs); 1341 1342 return 0; 1343 } 1344 1345 static int 1346 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1347 { 1348 struct i915_request *rq; 1349 int err; 1350 1351 rq = i915_request_create(ce); 1352 if (IS_ERR(rq)) 1353 return PTR_ERR(rq); 1354 1355 i915_request_get(rq); 1356 1357 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1358 1359 i915_request_add(rq); 1360 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1361 err = -ETIME; 1362 1363 i915_request_put(rq); 1364 1365 return err; 1366 } 1367 1368 static int 1369 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1370 { 1371 struct i915_vma *scratch; 1372 u32 *val; 1373 int err; 1374 1375 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1376 if (IS_ERR(scratch)) 1377 return PTR_ERR(scratch); 1378 1379 err = i915_vma_sync(scratch); 1380 if (err) 1381 goto err_scratch; 1382 1383 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1384 i915_ggtt_offset(scratch)); 1385 if (err) 1386 goto err_scratch; 1387 1388 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1389 if (IS_ERR(val)) { 1390 err = PTR_ERR(val); 1391 goto err_scratch; 1392 } 1393 1394 *ctx_id = *val; 1395 i915_gem_object_unpin_map(scratch->obj); 1396 1397 err_scratch: 1398 i915_vma_unpin_and_release(&scratch, 0); 1399 return err; 1400 } 1401 1402 /* 1403 * For execlist mode of submission, pick an unused context id 1404 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1405 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1406 * 1407 * For GuC mode of submission read context id from the upper dword of the 1408 * EXECLIST_STATUS register. Note that we read this value only once and expect 1409 * that the value stays fixed for the entire OA use case. There are cases where 1410 * GuC KMD implementation may deregister a context to reuse it's context id, but 1411 * we prevent that from happening to the OA context by pinning it. 1412 */ 1413 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1414 { 1415 u32 ctx_id, mask; 1416 int ret; 1417 1418 if (intel_engine_uses_guc(stream->engine)) { 1419 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1420 if (ret) 1421 return ret; 1422 1423 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1424 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1425 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) { 1426 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1427 (XEHP_SW_CTX_ID_SHIFT - 32); 1428 1429 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1430 (XEHP_SW_CTX_ID_SHIFT - 32); 1431 } else { 1432 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1433 (GEN11_SW_CTX_ID_SHIFT - 32); 1434 1435 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1436 (GEN11_SW_CTX_ID_SHIFT - 32); 1437 } 1438 stream->specific_ctx_id = ctx_id & mask; 1439 stream->specific_ctx_id_mask = mask; 1440 1441 return 0; 1442 } 1443 1444 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1445 { 1446 u32 idx = *offset; 1447 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1448 bool found = false; 1449 1450 idx++; 1451 for (; idx < len; idx += 2) { 1452 if (state[idx] == reg) { 1453 found = true; 1454 break; 1455 } 1456 } 1457 1458 *offset = idx; 1459 return found; 1460 } 1461 1462 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1463 { 1464 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1465 u32 *state = ce->lrc_reg_state; 1466 1467 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1468 return U32_MAX; 1469 1470 for (offset = 0; offset < len; ) { 1471 if (IS_MI_LRI_CMD(state[offset])) { 1472 /* 1473 * We expect reg-value pairs in MI_LRI command, so 1474 * MI_LRI_LEN() should be even, if not, issue a warning. 1475 */ 1476 drm_WARN_ON(&ce->engine->i915->drm, 1477 MI_LRI_LEN(state[offset]) & 0x1); 1478 1479 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1480 break; 1481 } else { 1482 offset++; 1483 } 1484 } 1485 1486 return offset < len ? offset : U32_MAX; 1487 } 1488 1489 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1490 { 1491 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1492 struct i915_perf *perf = &ce->engine->i915->perf; 1493 u32 offset = perf->ctx_oactxctrl_offset; 1494 1495 /* Do this only once. Failure is stored as offset of U32_MAX */ 1496 if (offset) 1497 goto exit; 1498 1499 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1500 perf->ctx_oactxctrl_offset = offset; 1501 1502 drm_dbg(&ce->engine->i915->drm, 1503 "%s oa ctx control at 0x%08x dword offset\n", 1504 ce->engine->name, offset); 1505 1506 exit: 1507 return offset && offset != U32_MAX ? 0 : -ENODEV; 1508 } 1509 1510 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1511 { 1512 return engine->class == RENDER_CLASS; 1513 } 1514 1515 /** 1516 * oa_get_render_ctx_id - determine and hold ctx hw id 1517 * @stream: An i915-perf stream opened for OA metrics 1518 * 1519 * Determine the render context hw id, and ensure it remains fixed for the 1520 * lifetime of the stream. This ensures that we don't have to worry about 1521 * updating the context ID in OACONTROL on the fly. 1522 * 1523 * Returns: zero on success or a negative error code 1524 */ 1525 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1526 { 1527 struct intel_context *ce; 1528 int ret = 0; 1529 1530 ce = oa_pin_context(stream); 1531 if (IS_ERR(ce)) 1532 return PTR_ERR(ce); 1533 1534 if (engine_supports_mi_query(stream->engine) && 1535 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1536 /* 1537 * We are enabling perf query here. If we don't find the context 1538 * offset here, just return an error. 1539 */ 1540 ret = set_oa_ctx_ctrl_offset(ce); 1541 if (ret) { 1542 intel_context_unpin(ce); 1543 drm_err(&stream->perf->i915->drm, 1544 "Enabling perf query failed for %s\n", 1545 stream->engine->name); 1546 return ret; 1547 } 1548 } 1549 1550 switch (GRAPHICS_VER(ce->engine->i915)) { 1551 case 7: { 1552 /* 1553 * On Haswell we don't do any post processing of the reports 1554 * and don't need to use the mask. 1555 */ 1556 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1557 stream->specific_ctx_id_mask = 0; 1558 break; 1559 } 1560 1561 case 8: 1562 case 9: 1563 if (intel_engine_uses_guc(ce->engine)) { 1564 /* 1565 * When using GuC, the context descriptor we write in 1566 * i915 is read by GuC and rewritten before it's 1567 * actually written into the hardware. The LRCA is 1568 * what is put into the context id field of the 1569 * context descriptor by GuC. Because it's aligned to 1570 * a page, the lower 12bits are always at 0 and 1571 * dropped by GuC. They won't be part of the context 1572 * ID in the OA reports, so squash those lower bits. 1573 */ 1574 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1575 1576 /* 1577 * GuC uses the top bit to signal proxy submission, so 1578 * ignore that bit. 1579 */ 1580 stream->specific_ctx_id_mask = 1581 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1582 } else { 1583 stream->specific_ctx_id_mask = 1584 (1U << GEN8_CTX_ID_WIDTH) - 1; 1585 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1586 } 1587 break; 1588 1589 case 11: 1590 case 12: 1591 ret = gen12_get_render_context_id(stream); 1592 break; 1593 1594 default: 1595 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1596 } 1597 1598 ce->tag = stream->specific_ctx_id; 1599 1600 drm_dbg(&stream->perf->i915->drm, 1601 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1602 stream->specific_ctx_id, 1603 stream->specific_ctx_id_mask); 1604 1605 return ret; 1606 } 1607 1608 /** 1609 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1610 * @stream: An i915-perf stream opened for OA metrics 1611 * 1612 * In case anything needed doing to ensure the context HW ID would remain valid 1613 * for the lifetime of the stream, then that can be undone here. 1614 */ 1615 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1616 { 1617 struct intel_context *ce; 1618 1619 ce = fetch_and_zero(&stream->pinned_ctx); 1620 if (ce) { 1621 ce->tag = 0; /* recomputed on next submission after parking */ 1622 intel_context_unpin(ce); 1623 } 1624 1625 stream->specific_ctx_id = INVALID_CTX_ID; 1626 stream->specific_ctx_id_mask = 0; 1627 } 1628 1629 static void 1630 free_oa_buffer(struct i915_perf_stream *stream) 1631 { 1632 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1633 I915_VMA_RELEASE_MAP); 1634 1635 stream->oa_buffer.vaddr = NULL; 1636 } 1637 1638 static void 1639 free_oa_configs(struct i915_perf_stream *stream) 1640 { 1641 struct i915_oa_config_bo *oa_bo, *tmp; 1642 1643 i915_oa_config_put(stream->oa_config); 1644 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1645 free_oa_config_bo(oa_bo); 1646 } 1647 1648 static void 1649 free_noa_wait(struct i915_perf_stream *stream) 1650 { 1651 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1652 } 1653 1654 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1655 { 1656 return engine->oa_group; 1657 } 1658 1659 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1660 { 1661 return engine->oa_group && engine->oa_group->type == type; 1662 } 1663 1664 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1665 { 1666 struct i915_perf *perf = stream->perf; 1667 struct intel_gt *gt = stream->engine->gt; 1668 struct i915_perf_group *g = stream->engine->oa_group; 1669 int m; 1670 1671 if (WARN_ON(stream != g->exclusive_stream)) 1672 return; 1673 1674 /* 1675 * Unset exclusive_stream first, it will be checked while disabling 1676 * the metric set on gen8+. 1677 * 1678 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1679 */ 1680 WRITE_ONCE(g->exclusive_stream, NULL); 1681 perf->ops.disable_metric_set(stream); 1682 1683 free_oa_buffer(stream); 1684 1685 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1686 intel_engine_pm_put(stream->engine); 1687 1688 if (stream->ctx) 1689 oa_put_render_ctx_id(stream); 1690 1691 free_oa_configs(stream); 1692 free_noa_wait(stream); 1693 1694 m = ratelimit_state_get_miss(&perf->spurious_report_rs); 1695 if (m) 1696 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", m); 1697 } 1698 1699 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1700 { 1701 struct intel_uncore *uncore = stream->uncore; 1702 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1703 unsigned long flags; 1704 1705 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1706 1707 /* Pre-DevBDW: OABUFFER must be set with counters off, 1708 * before OASTATUS1, but after OASTATUS2 1709 */ 1710 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1711 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1712 stream->oa_buffer.head = 0; 1713 1714 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1715 1716 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1717 gtt_offset | OABUFFER_SIZE_16M); 1718 1719 /* Mark that we need updated tail pointers to read from... */ 1720 stream->oa_buffer.tail = 0; 1721 1722 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1723 1724 /* On Haswell we have to track which OASTATUS1 flags we've 1725 * already seen since they can't be cleared while periodic 1726 * sampling is enabled. 1727 */ 1728 stream->perf->gen7_latched_oastatus1 = 0; 1729 1730 /* NB: although the OA buffer will initially be allocated 1731 * zeroed via shmfs (and so this memset is redundant when 1732 * first allocating), we may re-init the OA buffer, either 1733 * when re-enabling a stream or in error/reset paths. 1734 * 1735 * The reason we clear the buffer for each re-init is for the 1736 * sanity check in gen7_append_oa_reports() that looks at the 1737 * report-id field to make sure it's non-zero which relies on 1738 * the assumption that new reports are being written to zeroed 1739 * memory... 1740 */ 1741 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1742 } 1743 1744 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1745 { 1746 struct intel_uncore *uncore = stream->uncore; 1747 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1748 unsigned long flags; 1749 1750 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1751 1752 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1753 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1754 stream->oa_buffer.head = 0; 1755 1756 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1757 1758 /* 1759 * PRM says: 1760 * 1761 * "This MMIO must be set before the OATAILPTR 1762 * register and after the OAHEADPTR register. This is 1763 * to enable proper functionality of the overflow 1764 * bit." 1765 */ 1766 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1767 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1768 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1769 1770 /* Mark that we need updated tail pointers to read from... */ 1771 stream->oa_buffer.tail = 0; 1772 1773 /* 1774 * Reset state used to recognise context switches, affecting which 1775 * reports we will forward to userspace while filtering for a single 1776 * context. 1777 */ 1778 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1779 1780 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1781 1782 /* 1783 * NB: although the OA buffer will initially be allocated 1784 * zeroed via shmfs (and so this memset is redundant when 1785 * first allocating), we may re-init the OA buffer, either 1786 * when re-enabling a stream or in error/reset paths. 1787 * 1788 * The reason we clear the buffer for each re-init is for the 1789 * sanity check in gen8_append_oa_reports() that looks at the 1790 * reason field to make sure it's non-zero which relies on 1791 * the assumption that new reports are being written to zeroed 1792 * memory... 1793 */ 1794 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1795 } 1796 1797 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1798 { 1799 struct intel_uncore *uncore = stream->uncore; 1800 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1801 unsigned long flags; 1802 1803 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1804 1805 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1806 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1807 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1808 stream->oa_buffer.head = 0; 1809 1810 /* 1811 * PRM says: 1812 * 1813 * "This MMIO must be set before the OATAILPTR 1814 * register and after the OAHEADPTR register. This is 1815 * to enable proper functionality of the overflow 1816 * bit." 1817 */ 1818 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1819 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1820 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1821 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1822 1823 /* Mark that we need updated tail pointers to read from... */ 1824 stream->oa_buffer.tail = 0; 1825 1826 /* 1827 * Reset state used to recognise context switches, affecting which 1828 * reports we will forward to userspace while filtering for a single 1829 * context. 1830 */ 1831 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1832 1833 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1834 1835 /* 1836 * NB: although the OA buffer will initially be allocated 1837 * zeroed via shmfs (and so this memset is redundant when 1838 * first allocating), we may re-init the OA buffer, either 1839 * when re-enabling a stream or in error/reset paths. 1840 * 1841 * The reason we clear the buffer for each re-init is for the 1842 * sanity check in gen8_append_oa_reports() that looks at the 1843 * reason field to make sure it's non-zero which relies on 1844 * the assumption that new reports are being written to zeroed 1845 * memory... 1846 */ 1847 memset(stream->oa_buffer.vaddr, 0, 1848 stream->oa_buffer.vma->size); 1849 } 1850 1851 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1852 { 1853 struct drm_i915_private *i915 = stream->perf->i915; 1854 struct intel_gt *gt = stream->engine->gt; 1855 struct drm_i915_gem_object *bo; 1856 struct i915_vma *vma; 1857 int ret; 1858 1859 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1860 return -ENODEV; 1861 1862 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1863 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1864 1865 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1866 if (IS_ERR(bo)) { 1867 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1868 return PTR_ERR(bo); 1869 } 1870 1871 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1872 1873 /* PreHSW required 512K alignment, HSW requires 16M */ 1874 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1875 if (IS_ERR(vma)) { 1876 ret = PTR_ERR(vma); 1877 goto err_unref; 1878 } 1879 1880 /* 1881 * PreHSW required 512K alignment. 1882 * HSW and onwards, align to requested size of OA buffer. 1883 */ 1884 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1885 if (ret) { 1886 gt_err(gt, "Failed to pin OA buffer %d\n", ret); 1887 goto err_unref; 1888 } 1889 1890 stream->oa_buffer.vma = vma; 1891 1892 stream->oa_buffer.vaddr = 1893 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1894 if (IS_ERR(stream->oa_buffer.vaddr)) { 1895 ret = PTR_ERR(stream->oa_buffer.vaddr); 1896 goto err_unpin; 1897 } 1898 1899 return 0; 1900 1901 err_unpin: 1902 __i915_vma_unpin(vma); 1903 1904 err_unref: 1905 i915_gem_object_put(bo); 1906 1907 stream->oa_buffer.vaddr = NULL; 1908 stream->oa_buffer.vma = NULL; 1909 1910 return ret; 1911 } 1912 1913 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1914 bool save, i915_reg_t reg, u32 offset, 1915 u32 dword_count) 1916 { 1917 u32 cmd; 1918 u32 d; 1919 1920 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1921 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1922 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1923 cmd++; 1924 1925 for (d = 0; d < dword_count; d++) { 1926 *cs++ = cmd; 1927 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1928 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1929 *cs++ = 0; 1930 } 1931 1932 return cs; 1933 } 1934 1935 static int alloc_noa_wait(struct i915_perf_stream *stream) 1936 { 1937 struct drm_i915_private *i915 = stream->perf->i915; 1938 struct intel_gt *gt = stream->engine->gt; 1939 struct drm_i915_gem_object *bo; 1940 struct i915_vma *vma; 1941 const u64 delay_ticks = 0xffffffffffffffff - 1942 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1943 atomic64_read(&stream->perf->noa_programming_delay)); 1944 const u32 base = stream->engine->mmio_base; 1945 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1946 u32 *batch, *ts0, *cs, *jump; 1947 struct i915_gem_ww_ctx ww; 1948 int ret, i; 1949 enum { 1950 START_TS, 1951 NOW_TS, 1952 DELTA_TS, 1953 JUMP_PREDICATE, 1954 DELTA_TARGET, 1955 N_CS_GPR 1956 }; 1957 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1958 MI_PREDICATE_RESULT_2_ENGINE(base) : 1959 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1960 1961 /* 1962 * gt->scratch was being used to save/restore the GPR registers, but on 1963 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1964 * causes an engine hang. Instead allocate an additional page here to 1965 * save/restore GPR registers 1966 */ 1967 bo = i915_gem_object_create_internal(i915, 8192); 1968 if (IS_ERR(bo)) { 1969 drm_err(&i915->drm, 1970 "Failed to allocate NOA wait batchbuffer\n"); 1971 return PTR_ERR(bo); 1972 } 1973 1974 i915_gem_ww_ctx_init(&ww, true); 1975 retry: 1976 ret = i915_gem_object_lock(bo, &ww); 1977 if (ret) 1978 goto out_ww; 1979 1980 /* 1981 * We pin in GGTT because we jump into this buffer now because 1982 * multiple OA config BOs will have a jump to this address and it 1983 * needs to be fixed during the lifetime of the i915/perf stream. 1984 */ 1985 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1986 if (IS_ERR(vma)) { 1987 ret = PTR_ERR(vma); 1988 goto out_ww; 1989 } 1990 1991 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1992 if (ret) 1993 goto out_ww; 1994 1995 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1996 if (IS_ERR(batch)) { 1997 ret = PTR_ERR(batch); 1998 goto err_unpin; 1999 } 2000 2001 stream->noa_wait = vma; 2002 2003 #define GPR_SAVE_OFFSET 4096 2004 #define PREDICATE_SAVE_OFFSET 4160 2005 2006 /* Save registers. */ 2007 for (i = 0; i < N_CS_GPR; i++) 2008 cs = save_restore_register( 2009 stream, cs, true /* save */, CS_GPR(i), 2010 GPR_SAVE_OFFSET + 8 * i, 2); 2011 cs = save_restore_register( 2012 stream, cs, true /* save */, mi_predicate_result, 2013 PREDICATE_SAVE_OFFSET, 1); 2014 2015 /* First timestamp snapshot location. */ 2016 ts0 = cs; 2017 2018 /* 2019 * Initial snapshot of the timestamp register to implement the wait. 2020 * We work with 32b values, so clear out the top 32b bits of the 2021 * register because the ALU works 64bits. 2022 */ 2023 *cs++ = MI_LOAD_REGISTER_IMM(1); 2024 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2025 *cs++ = 0; 2026 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2027 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2028 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2029 2030 /* 2031 * This is the location we're going to jump back into until the 2032 * required amount of time has passed. 2033 */ 2034 jump = cs; 2035 2036 /* 2037 * Take another snapshot of the timestamp register. Take care to clear 2038 * up the top 32bits of CS_GPR(1) as we're using it for other 2039 * operations below. 2040 */ 2041 *cs++ = MI_LOAD_REGISTER_IMM(1); 2042 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2043 *cs++ = 0; 2044 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2045 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2046 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2047 2048 /* 2049 * Do a diff between the 2 timestamps and store the result back into 2050 * CS_GPR(1). 2051 */ 2052 *cs++ = MI_MATH(5); 2053 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2054 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2055 *cs++ = MI_MATH_SUB; 2056 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2057 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2058 2059 /* 2060 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2061 * timestamp have rolled over the 32bits) into the predicate register 2062 * to be used for the predicated jump. 2063 */ 2064 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2065 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2066 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2067 2068 if (HAS_MI_SET_PREDICATE(i915)) 2069 *cs++ = MI_SET_PREDICATE | 1; 2070 2071 /* Restart from the beginning if we had timestamps roll over. */ 2072 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2073 MI_BATCH_BUFFER_START : 2074 MI_BATCH_BUFFER_START_GEN8) | 2075 MI_BATCH_PREDICATE; 2076 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2077 *cs++ = 0; 2078 2079 if (HAS_MI_SET_PREDICATE(i915)) 2080 *cs++ = MI_SET_PREDICATE; 2081 2082 /* 2083 * Now add the diff between to previous timestamps and add it to : 2084 * (((1 * << 64) - 1) - delay_ns) 2085 * 2086 * When the Carry Flag contains 1 this means the elapsed time is 2087 * longer than the expected delay, and we can exit the wait loop. 2088 */ 2089 *cs++ = MI_LOAD_REGISTER_IMM(2); 2090 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2091 *cs++ = lower_32_bits(delay_ticks); 2092 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2093 *cs++ = upper_32_bits(delay_ticks); 2094 2095 *cs++ = MI_MATH(4); 2096 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2097 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2098 *cs++ = MI_MATH_ADD; 2099 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2100 2101 *cs++ = MI_ARB_CHECK; 2102 2103 /* 2104 * Transfer the result into the predicate register to be used for the 2105 * predicated jump. 2106 */ 2107 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2108 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2109 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2110 2111 if (HAS_MI_SET_PREDICATE(i915)) 2112 *cs++ = MI_SET_PREDICATE | 1; 2113 2114 /* Predicate the jump. */ 2115 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2116 MI_BATCH_BUFFER_START : 2117 MI_BATCH_BUFFER_START_GEN8) | 2118 MI_BATCH_PREDICATE; 2119 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2120 *cs++ = 0; 2121 2122 if (HAS_MI_SET_PREDICATE(i915)) 2123 *cs++ = MI_SET_PREDICATE; 2124 2125 /* Restore registers. */ 2126 for (i = 0; i < N_CS_GPR; i++) 2127 cs = save_restore_register( 2128 stream, cs, false /* restore */, CS_GPR(i), 2129 GPR_SAVE_OFFSET + 8 * i, 2); 2130 cs = save_restore_register( 2131 stream, cs, false /* restore */, mi_predicate_result, 2132 PREDICATE_SAVE_OFFSET, 1); 2133 2134 /* And return to the ring. */ 2135 *cs++ = MI_BATCH_BUFFER_END; 2136 2137 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2138 2139 i915_gem_object_flush_map(bo); 2140 __i915_gem_object_release_map(bo); 2141 2142 goto out_ww; 2143 2144 err_unpin: 2145 i915_vma_unpin_and_release(&vma, 0); 2146 out_ww: 2147 if (ret == -EDEADLK) { 2148 ret = i915_gem_ww_ctx_backoff(&ww); 2149 if (!ret) 2150 goto retry; 2151 } 2152 i915_gem_ww_ctx_fini(&ww); 2153 if (ret) 2154 i915_gem_object_put(bo); 2155 return ret; 2156 } 2157 2158 static u32 *write_cs_mi_lri(u32 *cs, 2159 const struct i915_oa_reg *reg_data, 2160 u32 n_regs) 2161 { 2162 u32 i; 2163 2164 for (i = 0; i < n_regs; i++) { 2165 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2166 u32 n_lri = min_t(u32, 2167 n_regs - i, 2168 MI_LOAD_REGISTER_IMM_MAX_REGS); 2169 2170 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2171 } 2172 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2173 *cs++ = reg_data[i].value; 2174 } 2175 2176 return cs; 2177 } 2178 2179 static int num_lri_dwords(int num_regs) 2180 { 2181 int count = 0; 2182 2183 if (num_regs > 0) { 2184 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2185 count += num_regs * 2; 2186 } 2187 2188 return count; 2189 } 2190 2191 static struct i915_oa_config_bo * 2192 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2193 struct i915_oa_config *oa_config) 2194 { 2195 struct drm_i915_gem_object *obj; 2196 struct i915_oa_config_bo *oa_bo; 2197 struct i915_gem_ww_ctx ww; 2198 size_t config_length = 0; 2199 u32 *cs; 2200 int err; 2201 2202 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2203 if (!oa_bo) 2204 return ERR_PTR(-ENOMEM); 2205 2206 config_length += num_lri_dwords(oa_config->mux_regs_len); 2207 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2208 config_length += num_lri_dwords(oa_config->flex_regs_len); 2209 config_length += 3; /* MI_BATCH_BUFFER_START */ 2210 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2211 2212 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2213 if (IS_ERR(obj)) { 2214 err = PTR_ERR(obj); 2215 goto err_free; 2216 } 2217 2218 i915_gem_ww_ctx_init(&ww, true); 2219 retry: 2220 err = i915_gem_object_lock(obj, &ww); 2221 if (err) 2222 goto out_ww; 2223 2224 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2225 if (IS_ERR(cs)) { 2226 err = PTR_ERR(cs); 2227 goto out_ww; 2228 } 2229 2230 cs = write_cs_mi_lri(cs, 2231 oa_config->mux_regs, 2232 oa_config->mux_regs_len); 2233 cs = write_cs_mi_lri(cs, 2234 oa_config->b_counter_regs, 2235 oa_config->b_counter_regs_len); 2236 cs = write_cs_mi_lri(cs, 2237 oa_config->flex_regs, 2238 oa_config->flex_regs_len); 2239 2240 /* Jump into the active wait. */ 2241 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2242 MI_BATCH_BUFFER_START : 2243 MI_BATCH_BUFFER_START_GEN8); 2244 *cs++ = i915_ggtt_offset(stream->noa_wait); 2245 *cs++ = 0; 2246 2247 i915_gem_object_flush_map(obj); 2248 __i915_gem_object_release_map(obj); 2249 2250 oa_bo->vma = i915_vma_instance(obj, 2251 &stream->engine->gt->ggtt->vm, 2252 NULL); 2253 if (IS_ERR(oa_bo->vma)) { 2254 err = PTR_ERR(oa_bo->vma); 2255 goto out_ww; 2256 } 2257 2258 oa_bo->oa_config = i915_oa_config_get(oa_config); 2259 llist_add(&oa_bo->node, &stream->oa_config_bos); 2260 2261 out_ww: 2262 if (err == -EDEADLK) { 2263 err = i915_gem_ww_ctx_backoff(&ww); 2264 if (!err) 2265 goto retry; 2266 } 2267 i915_gem_ww_ctx_fini(&ww); 2268 2269 if (err) 2270 i915_gem_object_put(obj); 2271 err_free: 2272 if (err) { 2273 kfree(oa_bo); 2274 return ERR_PTR(err); 2275 } 2276 return oa_bo; 2277 } 2278 2279 static struct i915_vma * 2280 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2281 { 2282 struct i915_oa_config_bo *oa_bo; 2283 2284 /* 2285 * Look for the buffer in the already allocated BOs attached 2286 * to the stream. 2287 */ 2288 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2289 if (oa_bo->oa_config == oa_config && 2290 memcmp(oa_bo->oa_config->uuid, 2291 oa_config->uuid, 2292 sizeof(oa_config->uuid)) == 0) 2293 goto out; 2294 } 2295 2296 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2297 if (IS_ERR(oa_bo)) 2298 return ERR_CAST(oa_bo); 2299 2300 out: 2301 return i915_vma_get(oa_bo->vma); 2302 } 2303 2304 static int 2305 emit_oa_config(struct i915_perf_stream *stream, 2306 struct i915_oa_config *oa_config, 2307 struct intel_context *ce, 2308 struct i915_active *active) 2309 { 2310 struct i915_request *rq; 2311 struct i915_vma *vma; 2312 struct i915_gem_ww_ctx ww; 2313 int err; 2314 2315 vma = get_oa_vma(stream, oa_config); 2316 if (IS_ERR(vma)) 2317 return PTR_ERR(vma); 2318 2319 i915_gem_ww_ctx_init(&ww, true); 2320 retry: 2321 err = i915_gem_object_lock(vma->obj, &ww); 2322 if (err) 2323 goto err; 2324 2325 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2326 if (err) 2327 goto err; 2328 2329 intel_engine_pm_get(ce->engine); 2330 rq = i915_request_create(ce); 2331 intel_engine_pm_put(ce->engine); 2332 if (IS_ERR(rq)) { 2333 err = PTR_ERR(rq); 2334 goto err_vma_unpin; 2335 } 2336 2337 if (!IS_ERR_OR_NULL(active)) { 2338 /* After all individual context modifications */ 2339 err = i915_request_await_active(rq, active, 2340 I915_ACTIVE_AWAIT_ACTIVE); 2341 if (err) 2342 goto err_add_request; 2343 2344 err = i915_active_add_request(active, rq); 2345 if (err) 2346 goto err_add_request; 2347 } 2348 2349 err = i915_vma_move_to_active(vma, rq, 0); 2350 if (err) 2351 goto err_add_request; 2352 2353 err = rq->engine->emit_bb_start(rq, 2354 i915_vma_offset(vma), 0, 2355 I915_DISPATCH_SECURE); 2356 if (err) 2357 goto err_add_request; 2358 2359 err_add_request: 2360 i915_request_add(rq); 2361 err_vma_unpin: 2362 i915_vma_unpin(vma); 2363 err: 2364 if (err == -EDEADLK) { 2365 err = i915_gem_ww_ctx_backoff(&ww); 2366 if (!err) 2367 goto retry; 2368 } 2369 2370 i915_gem_ww_ctx_fini(&ww); 2371 i915_vma_put(vma); 2372 return err; 2373 } 2374 2375 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2376 { 2377 return stream->pinned_ctx ?: stream->engine->kernel_context; 2378 } 2379 2380 static int 2381 hsw_enable_metric_set(struct i915_perf_stream *stream, 2382 struct i915_active *active) 2383 { 2384 struct intel_uncore *uncore = stream->uncore; 2385 2386 /* 2387 * PRM: 2388 * 2389 * OA unit is using “crclk” for its functionality. When trunk 2390 * level clock gating takes place, OA clock would be gated, 2391 * unable to count the events from non-render clock domain. 2392 * Render clock gating must be disabled when OA is enabled to 2393 * count the events from non-render domain. Unit level clock 2394 * gating for RCS should also be disabled. 2395 */ 2396 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2397 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2398 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2399 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2400 2401 return emit_oa_config(stream, 2402 stream->oa_config, oa_context(stream), 2403 active); 2404 } 2405 2406 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2407 { 2408 struct intel_uncore *uncore = stream->uncore; 2409 2410 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2411 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2412 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2413 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2414 2415 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2416 } 2417 2418 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2419 i915_reg_t reg) 2420 { 2421 u32 mmio = i915_mmio_reg_offset(reg); 2422 int i; 2423 2424 /* 2425 * This arbitrary default will select the 'EU FPU0 Pipeline 2426 * Active' event. In the future it's anticipated that there 2427 * will be an explicit 'No Event' we can select, but not yet... 2428 */ 2429 if (!oa_config) 2430 return 0; 2431 2432 for (i = 0; i < oa_config->flex_regs_len; i++) { 2433 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2434 return oa_config->flex_regs[i].value; 2435 } 2436 2437 return 0; 2438 } 2439 /* 2440 * NB: It must always remain pointer safe to run this even if the OA unit 2441 * has been disabled. 2442 * 2443 * It's fine to put out-of-date values into these per-context registers 2444 * in the case that the OA unit has been disabled. 2445 */ 2446 static void 2447 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2448 const struct i915_perf_stream *stream) 2449 { 2450 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2451 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2452 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2453 static const i915_reg_t flex_regs[] = { 2454 EU_PERF_CNTL0, 2455 EU_PERF_CNTL1, 2456 EU_PERF_CNTL2, 2457 EU_PERF_CNTL3, 2458 EU_PERF_CNTL4, 2459 EU_PERF_CNTL5, 2460 EU_PERF_CNTL6, 2461 }; 2462 u32 *reg_state = ce->lrc_reg_state; 2463 int i; 2464 2465 reg_state[ctx_oactxctrl + 1] = 2466 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2467 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2468 GEN8_OA_COUNTER_RESUME; 2469 2470 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2471 reg_state[ctx_flexeu0 + i * 2 + 1] = 2472 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2473 } 2474 2475 struct flex { 2476 i915_reg_t reg; 2477 u32 offset; 2478 u32 value; 2479 }; 2480 2481 static int 2482 gen8_store_flex(struct i915_request *rq, 2483 struct intel_context *ce, 2484 const struct flex *flex, unsigned int count) 2485 { 2486 u32 offset; 2487 u32 *cs; 2488 2489 cs = intel_ring_begin(rq, 4 * count); 2490 if (IS_ERR(cs)) 2491 return PTR_ERR(cs); 2492 2493 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2494 do { 2495 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2496 *cs++ = offset + flex->offset * sizeof(u32); 2497 *cs++ = 0; 2498 *cs++ = flex->value; 2499 } while (flex++, --count); 2500 2501 intel_ring_advance(rq, cs); 2502 2503 return 0; 2504 } 2505 2506 static int 2507 gen8_load_flex(struct i915_request *rq, 2508 struct intel_context *ce, 2509 const struct flex *flex, unsigned int count) 2510 { 2511 u32 *cs; 2512 2513 GEM_BUG_ON(!count || count > 63); 2514 2515 cs = intel_ring_begin(rq, 2 * count + 2); 2516 if (IS_ERR(cs)) 2517 return PTR_ERR(cs); 2518 2519 *cs++ = MI_LOAD_REGISTER_IMM(count); 2520 do { 2521 *cs++ = i915_mmio_reg_offset(flex->reg); 2522 *cs++ = flex->value; 2523 } while (flex++, --count); 2524 *cs++ = MI_NOOP; 2525 2526 intel_ring_advance(rq, cs); 2527 2528 return 0; 2529 } 2530 2531 static int gen8_modify_context(struct intel_context *ce, 2532 const struct flex *flex, unsigned int count) 2533 { 2534 struct i915_request *rq; 2535 int err; 2536 2537 rq = intel_engine_create_kernel_request(ce->engine); 2538 if (IS_ERR(rq)) 2539 return PTR_ERR(rq); 2540 2541 /* Serialise with the remote context */ 2542 err = intel_context_prepare_remote_request(ce, rq); 2543 if (err == 0) 2544 err = gen8_store_flex(rq, ce, flex, count); 2545 2546 i915_request_add(rq); 2547 return err; 2548 } 2549 2550 static int 2551 gen8_modify_self(struct intel_context *ce, 2552 const struct flex *flex, unsigned int count, 2553 struct i915_active *active) 2554 { 2555 struct i915_request *rq; 2556 int err; 2557 2558 intel_engine_pm_get(ce->engine); 2559 rq = i915_request_create(ce); 2560 intel_engine_pm_put(ce->engine); 2561 if (IS_ERR(rq)) 2562 return PTR_ERR(rq); 2563 2564 if (!IS_ERR_OR_NULL(active)) { 2565 err = i915_active_add_request(active, rq); 2566 if (err) 2567 goto err_add_request; 2568 } 2569 2570 err = gen8_load_flex(rq, ce, flex, count); 2571 if (err) 2572 goto err_add_request; 2573 2574 err_add_request: 2575 i915_request_add(rq); 2576 return err; 2577 } 2578 2579 static int gen8_configure_context(struct i915_perf_stream *stream, 2580 struct i915_gem_context *ctx, 2581 struct flex *flex, unsigned int count) 2582 { 2583 struct i915_gem_engines_iter it; 2584 struct intel_context *ce; 2585 int err = 0; 2586 2587 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2588 GEM_BUG_ON(ce == ce->engine->kernel_context); 2589 2590 if (ce->engine->class != RENDER_CLASS) 2591 continue; 2592 2593 /* Otherwise OA settings will be set upon first use */ 2594 if (!intel_context_pin_if_active(ce)) 2595 continue; 2596 2597 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2598 err = gen8_modify_context(ce, flex, count); 2599 2600 intel_context_unpin(ce); 2601 if (err) 2602 break; 2603 } 2604 i915_gem_context_unlock_engines(ctx); 2605 2606 return err; 2607 } 2608 2609 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2610 struct i915_active *active) 2611 { 2612 int err; 2613 struct intel_context *ce = stream->pinned_ctx; 2614 u32 format = stream->oa_buffer.format->format; 2615 u32 offset = stream->perf->ctx_oactxctrl_offset; 2616 struct flex regs_context[] = { 2617 { 2618 GEN8_OACTXCONTROL, 2619 offset + 1, 2620 active ? GEN8_OA_COUNTER_RESUME : 0, 2621 }, 2622 }; 2623 /* Offsets in regs_lri are not used since this configuration is only 2624 * applied using LRI. Initialize the correct offsets for posterity. 2625 */ 2626 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2627 struct flex regs_lri[] = { 2628 { 2629 GEN12_OAR_OACONTROL, 2630 GEN12_OAR_OACONTROL_OFFSET + 1, 2631 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2632 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2633 }, 2634 { 2635 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2636 CTX_CONTEXT_CONTROL, 2637 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2638 active ? 2639 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2640 0) 2641 }, 2642 }; 2643 2644 /* Modify the context image of pinned context with regs_context */ 2645 err = intel_context_lock_pinned(ce); 2646 if (err) 2647 return err; 2648 2649 err = gen8_modify_context(ce, regs_context, 2650 ARRAY_SIZE(regs_context)); 2651 intel_context_unlock_pinned(ce); 2652 if (err) 2653 return err; 2654 2655 /* Apply regs_lri using LRI with pinned context */ 2656 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2657 } 2658 2659 /* 2660 * Manages updating the per-context aspects of the OA stream 2661 * configuration across all contexts. 2662 * 2663 * The awkward consideration here is that OACTXCONTROL controls the 2664 * exponent for periodic sampling which is primarily used for system 2665 * wide profiling where we'd like a consistent sampling period even in 2666 * the face of context switches. 2667 * 2668 * Our approach of updating the register state context (as opposed to 2669 * say using a workaround batch buffer) ensures that the hardware 2670 * won't automatically reload an out-of-date timer exponent even 2671 * transiently before a WA BB could be parsed. 2672 * 2673 * This function needs to: 2674 * - Ensure the currently running context's per-context OA state is 2675 * updated 2676 * - Ensure that all existing contexts will have the correct per-context 2677 * OA state if they are scheduled for use. 2678 * - Ensure any new contexts will be initialized with the correct 2679 * per-context OA state. 2680 * 2681 * Note: it's only the RCS/Render context that has any OA state. 2682 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2683 */ 2684 static int 2685 oa_configure_all_contexts(struct i915_perf_stream *stream, 2686 struct flex *regs, 2687 size_t num_regs, 2688 struct i915_active *active) 2689 { 2690 struct drm_i915_private *i915 = stream->perf->i915; 2691 struct intel_engine_cs *engine; 2692 struct intel_gt *gt = stream->engine->gt; 2693 struct i915_gem_context *ctx, *cn; 2694 int err; 2695 2696 lockdep_assert_held(>->perf.lock); 2697 2698 /* 2699 * The OA register config is setup through the context image. This image 2700 * might be written to by the GPU on context switch (in particular on 2701 * lite-restore). This means we can't safely update a context's image, 2702 * if this context is scheduled/submitted to run on the GPU. 2703 * 2704 * We could emit the OA register config through the batch buffer but 2705 * this might leave small interval of time where the OA unit is 2706 * configured at an invalid sampling period. 2707 * 2708 * Note that since we emit all requests from a single ring, there 2709 * is still an implicit global barrier here that may cause a high 2710 * priority context to wait for an otherwise independent low priority 2711 * context. Contexts idle at the time of reconfiguration are not 2712 * trapped behind the barrier. 2713 */ 2714 spin_lock(&i915->gem.contexts.lock); 2715 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2716 if (!kref_get_unless_zero(&ctx->ref)) 2717 continue; 2718 2719 spin_unlock(&i915->gem.contexts.lock); 2720 2721 err = gen8_configure_context(stream, ctx, regs, num_regs); 2722 if (err) { 2723 i915_gem_context_put(ctx); 2724 return err; 2725 } 2726 2727 spin_lock(&i915->gem.contexts.lock); 2728 list_safe_reset_next(ctx, cn, link); 2729 i915_gem_context_put(ctx); 2730 } 2731 spin_unlock(&i915->gem.contexts.lock); 2732 2733 /* 2734 * After updating all other contexts, we need to modify ourselves. 2735 * If we don't modify the kernel_context, we do not get events while 2736 * idle. 2737 */ 2738 for_each_uabi_engine(engine, i915) { 2739 struct intel_context *ce = engine->kernel_context; 2740 2741 if (engine->class != RENDER_CLASS) 2742 continue; 2743 2744 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2745 2746 err = gen8_modify_self(ce, regs, num_regs, active); 2747 if (err) 2748 return err; 2749 } 2750 2751 return 0; 2752 } 2753 2754 static int 2755 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2756 const struct i915_oa_config *oa_config, 2757 struct i915_active *active) 2758 { 2759 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2760 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2761 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2762 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2763 struct flex regs[] = { 2764 { 2765 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2766 CTX_R_PWR_CLK_STATE, 2767 }, 2768 { 2769 GEN8_OACTXCONTROL, 2770 ctx_oactxctrl + 1, 2771 }, 2772 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2773 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2774 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2775 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2776 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2777 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2778 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2779 }; 2780 #undef ctx_flexeuN 2781 int i; 2782 2783 regs[1].value = 2784 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2785 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2786 GEN8_OA_COUNTER_RESUME; 2787 2788 for (i = 2; i < ARRAY_SIZE(regs); i++) 2789 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2790 2791 return oa_configure_all_contexts(stream, 2792 regs, ARRAY_SIZE(regs), 2793 active); 2794 } 2795 2796 static int 2797 gen8_enable_metric_set(struct i915_perf_stream *stream, 2798 struct i915_active *active) 2799 { 2800 struct intel_uncore *uncore = stream->uncore; 2801 struct i915_oa_config *oa_config = stream->oa_config; 2802 int ret; 2803 2804 /* 2805 * We disable slice/unslice clock ratio change reports on SKL since 2806 * they are too noisy. The HW generates a lot of redundant reports 2807 * where the ratio hasn't really changed causing a lot of redundant 2808 * work to processes and increasing the chances we'll hit buffer 2809 * overruns. 2810 * 2811 * Although we don't currently use the 'disable overrun' OABUFFER 2812 * feature it's worth noting that clock ratio reports have to be 2813 * disabled before considering to use that feature since the HW doesn't 2814 * correctly block these reports. 2815 * 2816 * Currently none of the high-level metrics we have depend on knowing 2817 * this ratio to normalize. 2818 * 2819 * Note: This register is not power context saved and restored, but 2820 * that's OK considering that we disable RC6 while the OA unit is 2821 * enabled. 2822 * 2823 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2824 * be read back from automatically triggered reports, as part of the 2825 * RPT_ID field. 2826 */ 2827 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2828 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2829 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2830 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2831 } 2832 2833 /* 2834 * Update all contexts prior writing the mux configurations as we need 2835 * to make sure all slices/subslices are ON before writing to NOA 2836 * registers. 2837 */ 2838 ret = lrc_configure_all_contexts(stream, oa_config, active); 2839 if (ret) 2840 return ret; 2841 2842 return emit_oa_config(stream, 2843 stream->oa_config, oa_context(stream), 2844 active); 2845 } 2846 2847 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2848 { 2849 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2850 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2851 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2852 } 2853 2854 static int 2855 gen12_enable_metric_set(struct i915_perf_stream *stream, 2856 struct i915_active *active) 2857 { 2858 struct drm_i915_private *i915 = stream->perf->i915; 2859 struct intel_uncore *uncore = stream->uncore; 2860 bool periodic = stream->periodic; 2861 u32 period_exponent = stream->period_exponent; 2862 u32 sqcnt1; 2863 int ret; 2864 2865 /* 2866 * Wa_1508761755 2867 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2868 * Disable thread stall DOP gating and EU DOP gating. 2869 */ 2870 if (IS_DG2(i915)) { 2871 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2872 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2873 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2874 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2875 } 2876 2877 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2878 /* Disable clk ratio reports, like previous Gens. */ 2879 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2880 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2881 /* 2882 * If the user didn't require OA reports, instruct 2883 * the hardware not to emit ctx switch reports. 2884 */ 2885 oag_report_ctx_switches(stream)); 2886 2887 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2888 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2889 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2890 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2891 : 0); 2892 2893 /* 2894 * Initialize Super Queue Internal Cnt Register 2895 * Set PMON Enable in order to collect valid metrics. 2896 * Enable bytes per clock reporting in OA. 2897 */ 2898 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2899 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2900 2901 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2902 2903 /* 2904 * For Gen12, performance counters are context 2905 * saved/restored. Only enable it for the context that 2906 * requested this. 2907 */ 2908 if (stream->ctx) { 2909 ret = gen12_configure_oar_context(stream, active); 2910 if (ret) 2911 return ret; 2912 } 2913 2914 return emit_oa_config(stream, 2915 stream->oa_config, oa_context(stream), 2916 active); 2917 } 2918 2919 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2920 { 2921 struct intel_uncore *uncore = stream->uncore; 2922 2923 /* Reset all contexts' slices/subslices configurations. */ 2924 lrc_configure_all_contexts(stream, NULL, NULL); 2925 2926 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2927 } 2928 2929 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2930 { 2931 struct intel_uncore *uncore = stream->uncore; 2932 2933 /* Reset all contexts' slices/subslices configurations. */ 2934 lrc_configure_all_contexts(stream, NULL, NULL); 2935 2936 /* Make sure we disable noa to save power. */ 2937 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2938 } 2939 2940 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2941 { 2942 struct intel_uncore *uncore = stream->uncore; 2943 struct drm_i915_private *i915 = stream->perf->i915; 2944 u32 sqcnt1; 2945 2946 /* 2947 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating. 2948 */ 2949 if (IS_DG2(i915)) { 2950 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2951 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2952 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2953 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2954 } 2955 2956 /* disable the context save/restore or OAR counters */ 2957 if (stream->ctx) 2958 gen12_configure_oar_context(stream, NULL); 2959 2960 /* Make sure we disable noa to save power. */ 2961 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2962 2963 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2964 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2965 2966 /* Reset PMON Enable to save power. */ 2967 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2968 } 2969 2970 static void gen7_oa_enable(struct i915_perf_stream *stream) 2971 { 2972 struct intel_uncore *uncore = stream->uncore; 2973 struct i915_gem_context *ctx = stream->ctx; 2974 u32 ctx_id = stream->specific_ctx_id; 2975 bool periodic = stream->periodic; 2976 u32 period_exponent = stream->period_exponent; 2977 u32 report_format = stream->oa_buffer.format->format; 2978 2979 /* 2980 * Reset buf pointers so we don't forward reports from before now. 2981 * 2982 * Think carefully if considering trying to avoid this, since it 2983 * also ensures status flags and the buffer itself are cleared 2984 * in error paths, and we have checks for invalid reports based 2985 * on the assumption that certain fields are written to zeroed 2986 * memory which this helps maintains. 2987 */ 2988 gen7_init_oa_buffer(stream); 2989 2990 intel_uncore_write(uncore, GEN7_OACONTROL, 2991 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2992 (period_exponent << 2993 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2994 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2995 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2996 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2997 GEN7_OACONTROL_ENABLE); 2998 } 2999 3000 static void gen8_oa_enable(struct i915_perf_stream *stream) 3001 { 3002 struct intel_uncore *uncore = stream->uncore; 3003 u32 report_format = stream->oa_buffer.format->format; 3004 3005 /* 3006 * Reset buf pointers so we don't forward reports from before now. 3007 * 3008 * Think carefully if considering trying to avoid this, since it 3009 * also ensures status flags and the buffer itself are cleared 3010 * in error paths, and we have checks for invalid reports based 3011 * on the assumption that certain fields are written to zeroed 3012 * memory which this helps maintains. 3013 */ 3014 gen8_init_oa_buffer(stream); 3015 3016 /* 3017 * Note: we don't rely on the hardware to perform single context 3018 * filtering and instead filter on the cpu based on the context-id 3019 * field of reports 3020 */ 3021 intel_uncore_write(uncore, GEN8_OACONTROL, 3022 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3023 GEN8_OA_COUNTER_ENABLE); 3024 } 3025 3026 static void gen12_oa_enable(struct i915_perf_stream *stream) 3027 { 3028 const struct i915_perf_regs *regs; 3029 u32 val; 3030 3031 /* 3032 * If we don't want OA reports from the OA buffer, then we don't even 3033 * need to program the OAG unit. 3034 */ 3035 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3036 return; 3037 3038 gen12_init_oa_buffer(stream); 3039 3040 regs = __oa_regs(stream); 3041 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3042 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3043 3044 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3045 } 3046 3047 /** 3048 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3049 * @stream: An i915 perf stream opened for OA metrics 3050 * 3051 * [Re]enables hardware periodic sampling according to the period configured 3052 * when opening the stream. This also starts a hrtimer that will periodically 3053 * check for data in the circular OA buffer for notifying userspace (e.g. 3054 * during a read() or poll()). 3055 */ 3056 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3057 { 3058 stream->pollin = false; 3059 3060 stream->perf->ops.oa_enable(stream); 3061 3062 if (stream->sample_flags & SAMPLE_OA_REPORT) 3063 hrtimer_start(&stream->poll_check_timer, 3064 ns_to_ktime(stream->poll_oa_period), 3065 HRTIMER_MODE_REL_PINNED); 3066 } 3067 3068 static void gen7_oa_disable(struct i915_perf_stream *stream) 3069 { 3070 struct intel_uncore *uncore = stream->uncore; 3071 3072 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3073 if (intel_wait_for_register(uncore, 3074 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3075 50)) 3076 drm_err(&stream->perf->i915->drm, 3077 "wait for OA to be disabled timed out\n"); 3078 } 3079 3080 static void gen8_oa_disable(struct i915_perf_stream *stream) 3081 { 3082 struct intel_uncore *uncore = stream->uncore; 3083 3084 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3085 if (intel_wait_for_register(uncore, 3086 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3087 50)) 3088 drm_err(&stream->perf->i915->drm, 3089 "wait for OA to be disabled timed out\n"); 3090 } 3091 3092 static void gen12_oa_disable(struct i915_perf_stream *stream) 3093 { 3094 struct intel_uncore *uncore = stream->uncore; 3095 3096 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3097 if (intel_wait_for_register(uncore, 3098 __oa_regs(stream)->oa_ctrl, 3099 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3100 50)) 3101 drm_err(&stream->perf->i915->drm, 3102 "wait for OA to be disabled timed out\n"); 3103 3104 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3105 if (intel_wait_for_register(uncore, 3106 GEN12_OA_TLB_INV_CR, 3107 1, 0, 3108 50)) 3109 drm_err(&stream->perf->i915->drm, 3110 "wait for OA tlb invalidate timed out\n"); 3111 } 3112 3113 /** 3114 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3115 * @stream: An i915 perf stream opened for OA metrics 3116 * 3117 * Stops the OA unit from periodically writing counter reports into the 3118 * circular OA buffer. This also stops the hrtimer that periodically checks for 3119 * data in the circular OA buffer, for notifying userspace. 3120 */ 3121 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3122 { 3123 stream->perf->ops.oa_disable(stream); 3124 3125 if (stream->sample_flags & SAMPLE_OA_REPORT) 3126 hrtimer_cancel(&stream->poll_check_timer); 3127 } 3128 3129 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3130 .destroy = i915_oa_stream_destroy, 3131 .enable = i915_oa_stream_enable, 3132 .disable = i915_oa_stream_disable, 3133 .wait_unlocked = i915_oa_wait_unlocked, 3134 .poll_wait = i915_oa_poll_wait, 3135 .read = i915_oa_read, 3136 }; 3137 3138 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3139 { 3140 struct i915_active *active; 3141 int err; 3142 3143 active = i915_active_create(); 3144 if (!active) 3145 return -ENOMEM; 3146 3147 err = stream->perf->ops.enable_metric_set(stream, active); 3148 if (err == 0) 3149 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3150 3151 i915_active_put(active); 3152 return err; 3153 } 3154 3155 static void 3156 get_default_sseu_config(struct intel_sseu *out_sseu, 3157 struct intel_engine_cs *engine) 3158 { 3159 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3160 3161 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3162 3163 if (GRAPHICS_VER(engine->i915) == 11) { 3164 /* 3165 * We only need subslice count so it doesn't matter which ones 3166 * we select - just turn off low bits in the amount of half of 3167 * all available subslices per slice. 3168 */ 3169 out_sseu->subslice_mask = 3170 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3171 out_sseu->slice_mask = 0x1; 3172 } 3173 } 3174 3175 static int 3176 get_sseu_config(struct intel_sseu *out_sseu, 3177 struct intel_engine_cs *engine, 3178 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3179 { 3180 if (drm_sseu->engine.engine_class != engine->uabi_class || 3181 drm_sseu->engine.engine_instance != engine->uabi_instance) 3182 return -EINVAL; 3183 3184 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3185 } 3186 3187 /* 3188 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3189 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3190 * cases, return the adjusted CS timestamp frequency to the user. 3191 */ 3192 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3193 { 3194 struct intel_gt *gt = to_gt(i915); 3195 3196 /* Wa_18013179988 */ 3197 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 3198 intel_wakeref_t wakeref; 3199 u32 reg, shift; 3200 3201 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3202 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3203 3204 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3205 reg); 3206 3207 return to_gt(i915)->clock_frequency << (3 - shift); 3208 } 3209 3210 return to_gt(i915)->clock_frequency; 3211 } 3212 3213 /** 3214 * i915_oa_stream_init - validate combined props for OA stream and init 3215 * @stream: An i915 perf stream 3216 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3217 * @props: The property state that configures stream (individually validated) 3218 * 3219 * While read_properties_unlocked() validates properties in isolation it 3220 * doesn't ensure that the combination necessarily makes sense. 3221 * 3222 * At this point it has been determined that userspace wants a stream of 3223 * OA metrics, but still we need to further validate the combined 3224 * properties are OK. 3225 * 3226 * If the configuration makes sense then we can allocate memory for 3227 * a circular OA buffer and apply the requested metric set configuration. 3228 * 3229 * Returns: zero on success or a negative error code. 3230 */ 3231 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3232 struct drm_i915_perf_open_param *param, 3233 struct perf_open_properties *props) 3234 { 3235 struct drm_i915_private *i915 = stream->perf->i915; 3236 struct i915_perf *perf = stream->perf; 3237 struct i915_perf_group *g; 3238 int ret; 3239 3240 if (!props->engine) { 3241 drm_dbg(&stream->perf->i915->drm, 3242 "OA engine not specified\n"); 3243 return -EINVAL; 3244 } 3245 g = props->engine->oa_group; 3246 3247 /* 3248 * If the sysfs metrics/ directory wasn't registered for some 3249 * reason then don't let userspace try their luck with config 3250 * IDs 3251 */ 3252 if (!perf->metrics_kobj) { 3253 drm_dbg(&stream->perf->i915->drm, 3254 "OA metrics weren't advertised via sysfs\n"); 3255 return -EINVAL; 3256 } 3257 3258 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3259 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3260 drm_dbg(&stream->perf->i915->drm, 3261 "Only OA report sampling supported\n"); 3262 return -EINVAL; 3263 } 3264 3265 if (!perf->ops.enable_metric_set) { 3266 drm_dbg(&stream->perf->i915->drm, 3267 "OA unit not supported\n"); 3268 return -ENODEV; 3269 } 3270 3271 /* 3272 * To avoid the complexity of having to accurately filter 3273 * counter reports and marshal to the appropriate client 3274 * we currently only allow exclusive access 3275 */ 3276 if (g->exclusive_stream) { 3277 drm_dbg(&stream->perf->i915->drm, 3278 "OA unit already in use\n"); 3279 return -EBUSY; 3280 } 3281 3282 if (!props->oa_format) { 3283 drm_dbg(&stream->perf->i915->drm, 3284 "OA report format not specified\n"); 3285 return -EINVAL; 3286 } 3287 3288 stream->engine = props->engine; 3289 stream->uncore = stream->engine->gt->uncore; 3290 3291 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3292 3293 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3294 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3295 return -EINVAL; 3296 3297 stream->sample_flags = props->sample_flags; 3298 stream->sample_size += stream->oa_buffer.format->size; 3299 3300 stream->hold_preemption = props->hold_preemption; 3301 3302 stream->periodic = props->oa_periodic; 3303 if (stream->periodic) 3304 stream->period_exponent = props->oa_period_exponent; 3305 3306 if (stream->ctx) { 3307 ret = oa_get_render_ctx_id(stream); 3308 if (ret) { 3309 drm_dbg(&stream->perf->i915->drm, 3310 "Invalid context id to filter with\n"); 3311 return ret; 3312 } 3313 } 3314 3315 ret = alloc_noa_wait(stream); 3316 if (ret) { 3317 drm_dbg(&stream->perf->i915->drm, 3318 "Unable to allocate NOA wait batch buffer\n"); 3319 goto err_noa_wait_alloc; 3320 } 3321 3322 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3323 if (!stream->oa_config) { 3324 drm_dbg(&stream->perf->i915->drm, 3325 "Invalid OA config id=%i\n", props->metrics_set); 3326 ret = -EINVAL; 3327 goto err_config; 3328 } 3329 3330 /* PRM - observability performance counters: 3331 * 3332 * OACONTROL, performance counter enable, note: 3333 * 3334 * "When this bit is set, in order to have coherent counts, 3335 * RC6 power state and trunk clock gating must be disabled. 3336 * This can be achieved by programming MMIO registers as 3337 * 0xA094=0 and 0xA090[31]=1" 3338 * 3339 * In our case we are expecting that taking pm + FORCEWAKE 3340 * references will effectively disable RC6. 3341 */ 3342 intel_engine_pm_get(stream->engine); 3343 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3344 3345 ret = alloc_oa_buffer(stream); 3346 if (ret) 3347 goto err_oa_buf_alloc; 3348 3349 stream->ops = &i915_oa_stream_ops; 3350 3351 stream->engine->gt->perf.sseu = props->sseu; 3352 WRITE_ONCE(g->exclusive_stream, stream); 3353 3354 ret = i915_perf_stream_enable_sync(stream); 3355 if (ret) { 3356 drm_dbg(&stream->perf->i915->drm, 3357 "Unable to enable metric set\n"); 3358 goto err_enable; 3359 } 3360 3361 drm_dbg(&stream->perf->i915->drm, 3362 "opening stream oa config uuid=%s\n", 3363 stream->oa_config->uuid); 3364 3365 hrtimer_setup(&stream->poll_check_timer, oa_poll_check_timer_cb, CLOCK_MONOTONIC, 3366 HRTIMER_MODE_REL); 3367 init_waitqueue_head(&stream->poll_wq); 3368 spin_lock_init(&stream->oa_buffer.ptr_lock); 3369 mutex_init(&stream->lock); 3370 3371 return 0; 3372 3373 err_enable: 3374 WRITE_ONCE(g->exclusive_stream, NULL); 3375 perf->ops.disable_metric_set(stream); 3376 3377 free_oa_buffer(stream); 3378 3379 err_oa_buf_alloc: 3380 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3381 intel_engine_pm_put(stream->engine); 3382 3383 free_oa_configs(stream); 3384 3385 err_config: 3386 free_noa_wait(stream); 3387 3388 err_noa_wait_alloc: 3389 if (stream->ctx) 3390 oa_put_render_ctx_id(stream); 3391 3392 return ret; 3393 } 3394 3395 void i915_oa_init_reg_state(const struct intel_context *ce, 3396 const struct intel_engine_cs *engine) 3397 { 3398 struct i915_perf_stream *stream; 3399 3400 if (engine->class != RENDER_CLASS) 3401 return; 3402 3403 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3404 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3405 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3406 gen8_update_reg_state_unlocked(ce, stream); 3407 } 3408 3409 /** 3410 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3411 * @file: An i915 perf stream file 3412 * @buf: destination buffer given by userspace 3413 * @count: the number of bytes userspace wants to read 3414 * @ppos: (inout) file seek position (unused) 3415 * 3416 * The entry point for handling a read() on a stream file descriptor from 3417 * userspace. Most of the work is left to the i915_perf_read_locked() and 3418 * &i915_perf_stream_ops->read but to save having stream implementations (of 3419 * which we might have multiple later) we handle blocking read here. 3420 * 3421 * We can also consistently treat trying to read from a disabled stream 3422 * as an IO error so implementations can assume the stream is enabled 3423 * while reading. 3424 * 3425 * Returns: The number of bytes copied or a negative error code on failure. 3426 */ 3427 static ssize_t i915_perf_read(struct file *file, 3428 char __user *buf, 3429 size_t count, 3430 loff_t *ppos) 3431 { 3432 struct i915_perf_stream *stream = file->private_data; 3433 size_t offset = 0; 3434 int ret; 3435 3436 /* To ensure it's handled consistently we simply treat all reads of a 3437 * disabled stream as an error. In particular it might otherwise lead 3438 * to a deadlock for blocking file descriptors... 3439 */ 3440 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3441 return -EIO; 3442 3443 if (!(file->f_flags & O_NONBLOCK)) { 3444 /* There's the small chance of false positives from 3445 * stream->ops->wait_unlocked. 3446 * 3447 * E.g. with single context filtering since we only wait until 3448 * oabuffer has >= 1 report we don't immediately know whether 3449 * any reports really belong to the current context 3450 */ 3451 do { 3452 ret = stream->ops->wait_unlocked(stream); 3453 if (ret) 3454 return ret; 3455 3456 mutex_lock(&stream->lock); 3457 ret = stream->ops->read(stream, buf, count, &offset); 3458 mutex_unlock(&stream->lock); 3459 } while (!offset && !ret); 3460 } else { 3461 mutex_lock(&stream->lock); 3462 ret = stream->ops->read(stream, buf, count, &offset); 3463 mutex_unlock(&stream->lock); 3464 } 3465 3466 /* We allow the poll checking to sometimes report false positive EPOLLIN 3467 * events where we might actually report EAGAIN on read() if there's 3468 * not really any data available. In this situation though we don't 3469 * want to enter a busy loop between poll() reporting a EPOLLIN event 3470 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3471 * effectively ensures we back off until the next hrtimer callback 3472 * before reporting another EPOLLIN event. 3473 * The exception to this is if ops->read() returned -ENOSPC which means 3474 * that more OA data is available than could fit in the user provided 3475 * buffer. In this case we want the next poll() call to not block. 3476 */ 3477 if (ret != -ENOSPC) 3478 stream->pollin = false; 3479 3480 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3481 return offset ?: (ret ?: -EAGAIN); 3482 } 3483 3484 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3485 { 3486 struct i915_perf_stream *stream = 3487 container_of(hrtimer, typeof(*stream), poll_check_timer); 3488 3489 if (oa_buffer_check_unlocked(stream)) { 3490 stream->pollin = true; 3491 wake_up(&stream->poll_wq); 3492 } 3493 3494 hrtimer_forward_now(hrtimer, 3495 ns_to_ktime(stream->poll_oa_period)); 3496 3497 return HRTIMER_RESTART; 3498 } 3499 3500 /** 3501 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3502 * @stream: An i915 perf stream 3503 * @file: An i915 perf stream file 3504 * @wait: poll() state table 3505 * 3506 * For handling userspace polling on an i915 perf stream, this calls through to 3507 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3508 * will be woken for new stream data. 3509 * 3510 * Returns: any poll events that are ready without sleeping 3511 */ 3512 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3513 struct file *file, 3514 poll_table *wait) 3515 { 3516 __poll_t events = 0; 3517 3518 stream->ops->poll_wait(stream, file, wait); 3519 3520 /* Note: we don't explicitly check whether there's something to read 3521 * here since this path may be very hot depending on what else 3522 * userspace is polling, or on the timeout in use. We rely solely on 3523 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3524 * samples to read. 3525 */ 3526 if (stream->pollin) 3527 events |= EPOLLIN; 3528 3529 return events; 3530 } 3531 3532 /** 3533 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3534 * @file: An i915 perf stream file 3535 * @wait: poll() state table 3536 * 3537 * For handling userspace polling on an i915 perf stream, this ensures 3538 * poll_wait() gets called with a wait queue that will be woken for new stream 3539 * data. 3540 * 3541 * Note: Implementation deferred to i915_perf_poll_locked() 3542 * 3543 * Returns: any poll events that are ready without sleeping 3544 */ 3545 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3546 { 3547 struct i915_perf_stream *stream = file->private_data; 3548 __poll_t ret; 3549 3550 mutex_lock(&stream->lock); 3551 ret = i915_perf_poll_locked(stream, file, wait); 3552 mutex_unlock(&stream->lock); 3553 3554 return ret; 3555 } 3556 3557 /** 3558 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3559 * @stream: A disabled i915 perf stream 3560 * 3561 * [Re]enables the associated capture of data for this stream. 3562 * 3563 * If a stream was previously enabled then there's currently no intention 3564 * to provide userspace any guarantee about the preservation of previously 3565 * buffered data. 3566 */ 3567 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3568 { 3569 if (stream->enabled) 3570 return; 3571 3572 /* Allow stream->ops->enable() to refer to this */ 3573 stream->enabled = true; 3574 3575 if (stream->ops->enable) 3576 stream->ops->enable(stream); 3577 3578 if (stream->hold_preemption) 3579 intel_context_set_nopreempt(stream->pinned_ctx); 3580 } 3581 3582 /** 3583 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3584 * @stream: An enabled i915 perf stream 3585 * 3586 * Disables the associated capture of data for this stream. 3587 * 3588 * The intention is that disabling an re-enabling a stream will ideally be 3589 * cheaper than destroying and re-opening a stream with the same configuration, 3590 * though there are no formal guarantees about what state or buffered data 3591 * must be retained between disabling and re-enabling a stream. 3592 * 3593 * Note: while a stream is disabled it's considered an error for userspace 3594 * to attempt to read from the stream (-EIO). 3595 */ 3596 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3597 { 3598 if (!stream->enabled) 3599 return; 3600 3601 /* Allow stream->ops->disable() to refer to this */ 3602 stream->enabled = false; 3603 3604 if (stream->hold_preemption) 3605 intel_context_clear_nopreempt(stream->pinned_ctx); 3606 3607 if (stream->ops->disable) 3608 stream->ops->disable(stream); 3609 } 3610 3611 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3612 unsigned long metrics_set) 3613 { 3614 struct i915_oa_config *config; 3615 long ret = stream->oa_config->id; 3616 3617 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3618 if (!config) 3619 return -EINVAL; 3620 3621 if (config != stream->oa_config) { 3622 int err; 3623 3624 /* 3625 * If OA is bound to a specific context, emit the 3626 * reconfiguration inline from that context. The update 3627 * will then be ordered with respect to submission on that 3628 * context. 3629 * 3630 * When set globally, we use a low priority kernel context, 3631 * so it will effectively take effect when idle. 3632 */ 3633 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3634 if (!err) 3635 config = xchg(&stream->oa_config, config); 3636 else 3637 ret = err; 3638 } 3639 3640 i915_oa_config_put(config); 3641 3642 return ret; 3643 } 3644 3645 /** 3646 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3647 * @stream: An i915 perf stream 3648 * @cmd: the ioctl request 3649 * @arg: the ioctl data 3650 * 3651 * Returns: zero on success or a negative error code. Returns -EINVAL for 3652 * an unknown ioctl request. 3653 */ 3654 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3655 unsigned int cmd, 3656 unsigned long arg) 3657 { 3658 switch (cmd) { 3659 case I915_PERF_IOCTL_ENABLE: 3660 i915_perf_enable_locked(stream); 3661 return 0; 3662 case I915_PERF_IOCTL_DISABLE: 3663 i915_perf_disable_locked(stream); 3664 return 0; 3665 case I915_PERF_IOCTL_CONFIG: 3666 return i915_perf_config_locked(stream, arg); 3667 } 3668 3669 return -EINVAL; 3670 } 3671 3672 /** 3673 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3674 * @file: An i915 perf stream file 3675 * @cmd: the ioctl request 3676 * @arg: the ioctl data 3677 * 3678 * Implementation deferred to i915_perf_ioctl_locked(). 3679 * 3680 * Returns: zero on success or a negative error code. Returns -EINVAL for 3681 * an unknown ioctl request. 3682 */ 3683 static long i915_perf_ioctl(struct file *file, 3684 unsigned int cmd, 3685 unsigned long arg) 3686 { 3687 struct i915_perf_stream *stream = file->private_data; 3688 long ret; 3689 3690 mutex_lock(&stream->lock); 3691 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3692 mutex_unlock(&stream->lock); 3693 3694 return ret; 3695 } 3696 3697 /** 3698 * i915_perf_destroy_locked - destroy an i915 perf stream 3699 * @stream: An i915 perf stream 3700 * 3701 * Frees all resources associated with the given i915 perf @stream, disabling 3702 * any associated data capture in the process. 3703 * 3704 * Note: The >->perf.lock mutex has been taken to serialize 3705 * with any non-file-operation driver hooks. 3706 */ 3707 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3708 { 3709 if (stream->enabled) 3710 i915_perf_disable_locked(stream); 3711 3712 if (stream->ops->destroy) 3713 stream->ops->destroy(stream); 3714 3715 if (stream->ctx) 3716 i915_gem_context_put(stream->ctx); 3717 3718 kfree(stream); 3719 } 3720 3721 /** 3722 * i915_perf_release - handles userspace close() of a stream file 3723 * @inode: anonymous inode associated with file 3724 * @file: An i915 perf stream file 3725 * 3726 * Cleans up any resources associated with an open i915 perf stream file. 3727 * 3728 * NB: close() can't really fail from the userspace point of view. 3729 * 3730 * Returns: zero on success or a negative error code. 3731 */ 3732 static int i915_perf_release(struct inode *inode, struct file *file) 3733 { 3734 struct i915_perf_stream *stream = file->private_data; 3735 struct i915_perf *perf = stream->perf; 3736 struct intel_gt *gt = stream->engine->gt; 3737 3738 /* 3739 * Within this call, we know that the fd is being closed and we have no 3740 * other user of stream->lock. Use the perf lock to destroy the stream 3741 * here. 3742 */ 3743 mutex_lock(>->perf.lock); 3744 i915_perf_destroy_locked(stream); 3745 mutex_unlock(>->perf.lock); 3746 3747 /* Release the reference the perf stream kept on the driver. */ 3748 drm_dev_put(&perf->i915->drm); 3749 3750 return 0; 3751 } 3752 3753 3754 static const struct file_operations fops = { 3755 .owner = THIS_MODULE, 3756 .release = i915_perf_release, 3757 .poll = i915_perf_poll, 3758 .read = i915_perf_read, 3759 .unlocked_ioctl = i915_perf_ioctl, 3760 /* Our ioctl have no arguments, so it's safe to use the same function 3761 * to handle 32bits compatibility. 3762 */ 3763 .compat_ioctl = i915_perf_ioctl, 3764 }; 3765 3766 3767 /** 3768 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3769 * @perf: i915 perf instance 3770 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3771 * @props: individually validated u64 property value pairs 3772 * @file: drm file 3773 * 3774 * See i915_perf_ioctl_open() for interface details. 3775 * 3776 * Implements further stream config validation and stream initialization on 3777 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3778 * taken to serialize with any non-file-operation driver hooks. 3779 * 3780 * Note: at this point the @props have only been validated in isolation and 3781 * it's still necessary to validate that the combination of properties makes 3782 * sense. 3783 * 3784 * In the case where userspace is interested in OA unit metrics then further 3785 * config validation and stream initialization details will be handled by 3786 * i915_oa_stream_init(). The code here should only validate config state that 3787 * will be relevant to all stream types / backends. 3788 * 3789 * Returns: zero on success or a negative error code. 3790 */ 3791 static int 3792 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3793 struct drm_i915_perf_open_param *param, 3794 struct perf_open_properties *props, 3795 struct drm_file *file) 3796 { 3797 struct i915_gem_context *specific_ctx = NULL; 3798 struct i915_perf_stream *stream = NULL; 3799 unsigned long f_flags = 0; 3800 bool privileged_op = true; 3801 int stream_fd; 3802 int ret; 3803 3804 if (props->single_context) { 3805 u32 ctx_handle = props->ctx_handle; 3806 struct drm_i915_file_private *file_priv = file->driver_priv; 3807 3808 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3809 if (IS_ERR(specific_ctx)) { 3810 drm_dbg(&perf->i915->drm, 3811 "Failed to look up context with ID %u for opening perf stream\n", 3812 ctx_handle); 3813 ret = PTR_ERR(specific_ctx); 3814 goto err; 3815 } 3816 } 3817 3818 /* 3819 * On Haswell the OA unit supports clock gating off for a specific 3820 * context and in this mode there's no visibility of metrics for the 3821 * rest of the system, which we consider acceptable for a 3822 * non-privileged client. 3823 * 3824 * For Gen8->11 the OA unit no longer supports clock gating off for a 3825 * specific context and the kernel can't securely stop the counters 3826 * from updating as system-wide / global values. Even though we can 3827 * filter reports based on the included context ID we can't block 3828 * clients from seeing the raw / global counter values via 3829 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3830 * enable the OA unit by default. 3831 * 3832 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3833 * per context basis. So we can relax requirements there if the user 3834 * doesn't request global stream access (i.e. query based sampling 3835 * using MI_RECORD_PERF_COUNT. 3836 */ 3837 if (IS_HASWELL(perf->i915) && specific_ctx) 3838 privileged_op = false; 3839 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3840 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3841 privileged_op = false; 3842 3843 if (props->hold_preemption) { 3844 if (!props->single_context) { 3845 drm_dbg(&perf->i915->drm, 3846 "preemption disable with no context\n"); 3847 ret = -EINVAL; 3848 goto err; 3849 } 3850 privileged_op = true; 3851 } 3852 3853 /* 3854 * Asking for SSEU configuration is a privileged operation. 3855 */ 3856 if (props->has_sseu) 3857 privileged_op = true; 3858 else 3859 get_default_sseu_config(&props->sseu, props->engine); 3860 3861 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3862 * we check a dev.i915.perf_stream_paranoid sysctl option 3863 * to determine if it's ok to access system wide OA counters 3864 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3865 */ 3866 if (privileged_op && 3867 i915_perf_stream_paranoid && !perfmon_capable()) { 3868 drm_dbg(&perf->i915->drm, 3869 "Insufficient privileges to open i915 perf stream\n"); 3870 ret = -EACCES; 3871 goto err_ctx; 3872 } 3873 3874 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3875 if (!stream) { 3876 ret = -ENOMEM; 3877 goto err_ctx; 3878 } 3879 3880 stream->perf = perf; 3881 stream->ctx = specific_ctx; 3882 stream->poll_oa_period = props->poll_oa_period; 3883 3884 ret = i915_oa_stream_init(stream, param, props); 3885 if (ret) 3886 goto err_alloc; 3887 3888 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3889 * to have _stream_init check the combination of sample flags more 3890 * thoroughly, but still this is the expected result at this point. 3891 */ 3892 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3893 ret = -ENODEV; 3894 goto err_flags; 3895 } 3896 3897 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3898 f_flags |= O_CLOEXEC; 3899 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3900 f_flags |= O_NONBLOCK; 3901 3902 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3903 if (stream_fd < 0) { 3904 ret = stream_fd; 3905 goto err_flags; 3906 } 3907 3908 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3909 i915_perf_enable_locked(stream); 3910 3911 /* Take a reference on the driver that will be kept with stream_fd 3912 * until its release. 3913 */ 3914 drm_dev_get(&perf->i915->drm); 3915 3916 return stream_fd; 3917 3918 err_flags: 3919 if (stream->ops->destroy) 3920 stream->ops->destroy(stream); 3921 err_alloc: 3922 kfree(stream); 3923 err_ctx: 3924 if (specific_ctx) 3925 i915_gem_context_put(specific_ctx); 3926 err: 3927 return ret; 3928 } 3929 3930 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3931 { 3932 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3933 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3934 3935 return div_u64(nom + den - 1, den); 3936 } 3937 3938 static __always_inline bool 3939 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3940 { 3941 return test_bit(format, perf->format_mask); 3942 } 3943 3944 static __always_inline void 3945 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3946 { 3947 __set_bit(format, perf->format_mask); 3948 } 3949 3950 /** 3951 * read_properties_unlocked - validate + copy userspace stream open properties 3952 * @perf: i915 perf instance 3953 * @uprops: The array of u64 key value pairs given by userspace 3954 * @n_props: The number of key value pairs expected in @uprops 3955 * @props: The stream configuration built up while validating properties 3956 * 3957 * Note this function only validates properties in isolation it doesn't 3958 * validate that the combination of properties makes sense or that all 3959 * properties necessary for a particular kind of stream have been set. 3960 * 3961 * Note that there currently aren't any ordering requirements for properties so 3962 * we shouldn't validate or assume anything about ordering here. This doesn't 3963 * rule out defining new properties with ordering requirements in the future. 3964 */ 3965 static int read_properties_unlocked(struct i915_perf *perf, 3966 u64 __user *uprops, 3967 u32 n_props, 3968 struct perf_open_properties *props) 3969 { 3970 struct drm_i915_gem_context_param_sseu user_sseu; 3971 const struct i915_oa_format *f; 3972 u64 __user *uprop = uprops; 3973 bool config_instance = false; 3974 bool config_class = false; 3975 bool config_sseu = false; 3976 u8 class, instance; 3977 u32 i; 3978 int ret; 3979 3980 memset(props, 0, sizeof(struct perf_open_properties)); 3981 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3982 3983 /* Considering that ID = 0 is reserved and assuming that we don't 3984 * (currently) expect any configurations to ever specify duplicate 3985 * values for a particular property ID then the last _PROP_MAX value is 3986 * one greater than the maximum number of properties we expect to get 3987 * from userspace. 3988 */ 3989 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 3990 drm_dbg(&perf->i915->drm, 3991 "Invalid number of i915 perf properties given\n"); 3992 return -EINVAL; 3993 } 3994 3995 /* Defaults when class:instance is not passed */ 3996 class = I915_ENGINE_CLASS_RENDER; 3997 instance = 0; 3998 3999 for (i = 0; i < n_props; i++) { 4000 u64 oa_period, oa_freq_hz; 4001 u64 id, value; 4002 4003 ret = get_user(id, uprop); 4004 if (ret) 4005 return ret; 4006 4007 ret = get_user(value, uprop + 1); 4008 if (ret) 4009 return ret; 4010 4011 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4012 drm_dbg(&perf->i915->drm, 4013 "Unknown i915 perf property ID\n"); 4014 return -EINVAL; 4015 } 4016 4017 switch ((enum drm_i915_perf_property_id)id) { 4018 case DRM_I915_PERF_PROP_CTX_HANDLE: 4019 props->single_context = 1; 4020 props->ctx_handle = value; 4021 break; 4022 case DRM_I915_PERF_PROP_SAMPLE_OA: 4023 if (value) 4024 props->sample_flags |= SAMPLE_OA_REPORT; 4025 break; 4026 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4027 if (value == 0) { 4028 drm_dbg(&perf->i915->drm, 4029 "Unknown OA metric set ID\n"); 4030 return -EINVAL; 4031 } 4032 props->metrics_set = value; 4033 break; 4034 case DRM_I915_PERF_PROP_OA_FORMAT: 4035 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4036 drm_dbg(&perf->i915->drm, 4037 "Out-of-range OA report format %llu\n", 4038 value); 4039 return -EINVAL; 4040 } 4041 if (!oa_format_valid(perf, value)) { 4042 drm_dbg(&perf->i915->drm, 4043 "Unsupported OA report format %llu\n", 4044 value); 4045 return -EINVAL; 4046 } 4047 props->oa_format = value; 4048 break; 4049 case DRM_I915_PERF_PROP_OA_EXPONENT: 4050 if (value > OA_EXPONENT_MAX) { 4051 drm_dbg(&perf->i915->drm, 4052 "OA timer exponent too high (> %u)\n", 4053 OA_EXPONENT_MAX); 4054 return -EINVAL; 4055 } 4056 4057 /* Theoretically we can program the OA unit to sample 4058 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4059 * for BXT. We don't allow such high sampling 4060 * frequencies by default unless root. 4061 */ 4062 4063 BUILD_BUG_ON(sizeof(oa_period) != 8); 4064 oa_period = oa_exponent_to_ns(perf, value); 4065 4066 /* This check is primarily to ensure that oa_period <= 4067 * UINT32_MAX (before passing to do_div which only 4068 * accepts a u32 denominator), but we can also skip 4069 * checking anything < 1Hz which implicitly can't be 4070 * limited via an integer oa_max_sample_rate. 4071 */ 4072 if (oa_period <= NSEC_PER_SEC) { 4073 u64 tmp = NSEC_PER_SEC; 4074 do_div(tmp, oa_period); 4075 oa_freq_hz = tmp; 4076 } else 4077 oa_freq_hz = 0; 4078 4079 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4080 drm_dbg(&perf->i915->drm, 4081 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4082 i915_oa_max_sample_rate); 4083 return -EACCES; 4084 } 4085 4086 props->oa_periodic = true; 4087 props->oa_period_exponent = value; 4088 break; 4089 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4090 props->hold_preemption = !!value; 4091 break; 4092 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4093 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) { 4094 drm_dbg(&perf->i915->drm, 4095 "SSEU config not supported on gfx %x\n", 4096 GRAPHICS_VER_FULL(perf->i915)); 4097 return -ENODEV; 4098 } 4099 4100 if (copy_from_user(&user_sseu, 4101 u64_to_user_ptr(value), 4102 sizeof(user_sseu))) { 4103 drm_dbg(&perf->i915->drm, 4104 "Unable to copy global sseu parameter\n"); 4105 return -EFAULT; 4106 } 4107 config_sseu = true; 4108 break; 4109 } 4110 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4111 if (value < 100000 /* 100us */) { 4112 drm_dbg(&perf->i915->drm, 4113 "OA availability timer too small (%lluns < 100us)\n", 4114 value); 4115 return -EINVAL; 4116 } 4117 props->poll_oa_period = value; 4118 break; 4119 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4120 class = (u8)value; 4121 config_class = true; 4122 break; 4123 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4124 instance = (u8)value; 4125 config_instance = true; 4126 break; 4127 default: 4128 MISSING_CASE(id); 4129 return -EINVAL; 4130 } 4131 4132 uprop += 2; 4133 } 4134 4135 if ((config_class && !config_instance) || 4136 (config_instance && !config_class)) { 4137 drm_dbg(&perf->i915->drm, 4138 "OA engine-class and engine-instance parameters must be passed together\n"); 4139 return -EINVAL; 4140 } 4141 4142 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4143 if (!props->engine) { 4144 drm_dbg(&perf->i915->drm, 4145 "OA engine class and instance invalid %d:%d\n", 4146 class, instance); 4147 return -EINVAL; 4148 } 4149 4150 if (!engine_supports_oa(props->engine)) { 4151 drm_dbg(&perf->i915->drm, 4152 "Engine not supported by OA %d:%d\n", 4153 class, instance); 4154 return -EINVAL; 4155 } 4156 4157 /* 4158 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4159 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4160 * does not work as expected. 4161 */ 4162 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 4163 props->engine->oa_group->type == TYPE_OAM && 4164 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4165 drm_dbg(&perf->i915->drm, 4166 "OAM requires media C6 to be disabled in BIOS\n"); 4167 return -EINVAL; 4168 } 4169 4170 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4171 f = &perf->oa_formats[i]; 4172 if (!engine_supports_oa_format(props->engine, f->type)) { 4173 drm_dbg(&perf->i915->drm, 4174 "Invalid OA format %d for class %d\n", 4175 f->type, props->engine->class); 4176 return -EINVAL; 4177 } 4178 4179 if (config_sseu) { 4180 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4181 if (ret) { 4182 drm_dbg(&perf->i915->drm, 4183 "Invalid SSEU configuration\n"); 4184 return ret; 4185 } 4186 props->has_sseu = true; 4187 } 4188 4189 return 0; 4190 } 4191 4192 /** 4193 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4194 * @dev: drm device 4195 * @data: ioctl data copied from userspace (unvalidated) 4196 * @file: drm file 4197 * 4198 * Validates the stream open parameters given by userspace including flags 4199 * and an array of u64 key, value pair properties. 4200 * 4201 * Very little is assumed up front about the nature of the stream being 4202 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4203 * i915-perf stream is expected to be a suitable interface for other forms of 4204 * buffered data written by the GPU besides periodic OA metrics. 4205 * 4206 * Note we copy the properties from userspace outside of the i915 perf 4207 * mutex to avoid an awkward lockdep with mmap_lock. 4208 * 4209 * Most of the implementation details are handled by 4210 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4211 * mutex for serializing with any non-file-operation driver hooks. 4212 * 4213 * Return: A newly opened i915 Perf stream file descriptor or negative 4214 * error code on failure. 4215 */ 4216 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4217 struct drm_file *file) 4218 { 4219 struct i915_perf *perf = &to_i915(dev)->perf; 4220 struct drm_i915_perf_open_param *param = data; 4221 struct intel_gt *gt; 4222 struct perf_open_properties props; 4223 u32 known_open_flags; 4224 int ret; 4225 4226 if (!perf->i915) 4227 return -ENOTSUPP; 4228 4229 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4230 I915_PERF_FLAG_FD_NONBLOCK | 4231 I915_PERF_FLAG_DISABLED; 4232 if (param->flags & ~known_open_flags) { 4233 drm_dbg(&perf->i915->drm, 4234 "Unknown drm_i915_perf_open_param flag\n"); 4235 return -EINVAL; 4236 } 4237 4238 ret = read_properties_unlocked(perf, 4239 u64_to_user_ptr(param->properties_ptr), 4240 param->num_properties, 4241 &props); 4242 if (ret) 4243 return ret; 4244 4245 gt = props.engine->gt; 4246 4247 mutex_lock(>->perf.lock); 4248 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4249 mutex_unlock(>->perf.lock); 4250 4251 return ret; 4252 } 4253 4254 /** 4255 * i915_perf_register - exposes i915-perf to userspace 4256 * @i915: i915 device instance 4257 * 4258 * In particular OA metric sets are advertised under a sysfs metrics/ 4259 * directory allowing userspace to enumerate valid IDs that can be 4260 * used to open an i915-perf stream. 4261 */ 4262 void i915_perf_register(struct drm_i915_private *i915) 4263 { 4264 struct i915_perf *perf = &i915->perf; 4265 struct intel_gt *gt = to_gt(i915); 4266 4267 if (!perf->i915) 4268 return; 4269 4270 /* To be sure we're synchronized with an attempted 4271 * i915_perf_open_ioctl(); considering that we register after 4272 * being exposed to userspace. 4273 */ 4274 mutex_lock(>->perf.lock); 4275 4276 perf->metrics_kobj = 4277 kobject_create_and_add("metrics", 4278 &i915->drm.primary->kdev->kobj); 4279 4280 mutex_unlock(>->perf.lock); 4281 } 4282 4283 /** 4284 * i915_perf_unregister - hide i915-perf from userspace 4285 * @i915: i915 device instance 4286 * 4287 * i915-perf state cleanup is split up into an 'unregister' and 4288 * 'deinit' phase where the interface is first hidden from 4289 * userspace by i915_perf_unregister() before cleaning up 4290 * remaining state in i915_perf_fini(). 4291 */ 4292 void i915_perf_unregister(struct drm_i915_private *i915) 4293 { 4294 struct i915_perf *perf = &i915->perf; 4295 4296 if (!perf->metrics_kobj) 4297 return; 4298 4299 kobject_put(perf->metrics_kobj); 4300 perf->metrics_kobj = NULL; 4301 } 4302 4303 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4304 { 4305 static const i915_reg_t flex_eu_regs[] = { 4306 EU_PERF_CNTL0, 4307 EU_PERF_CNTL1, 4308 EU_PERF_CNTL2, 4309 EU_PERF_CNTL3, 4310 EU_PERF_CNTL4, 4311 EU_PERF_CNTL5, 4312 EU_PERF_CNTL6, 4313 }; 4314 int i; 4315 4316 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4317 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4318 return true; 4319 } 4320 return false; 4321 } 4322 4323 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4324 { 4325 while (table->start || table->end) { 4326 if (addr >= table->start && addr <= table->end) 4327 return true; 4328 4329 table++; 4330 } 4331 4332 return false; 4333 } 4334 4335 #define REG_EQUAL(addr, mmio) \ 4336 ((addr) == i915_mmio_reg_offset(mmio)) 4337 4338 static const struct i915_range gen7_oa_b_counters[] = { 4339 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4340 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4341 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4342 {} 4343 }; 4344 4345 static const struct i915_range gen12_oa_b_counters[] = { 4346 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4347 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4348 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4349 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4350 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4351 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4352 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4353 {} 4354 }; 4355 4356 static const struct i915_range mtl_oam_b_counters[] = { 4357 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4358 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4359 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4360 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4361 {} 4362 }; 4363 4364 static const struct i915_range xehp_oa_b_counters[] = { 4365 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4366 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4367 {} 4368 }; 4369 4370 static const struct i915_range gen7_oa_mux_regs[] = { 4371 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4372 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4373 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4374 {} 4375 }; 4376 4377 static const struct i915_range hsw_oa_mux_regs[] = { 4378 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4379 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4380 { .start = 0x25100, .end = 0x2ff90 }, 4381 {} 4382 }; 4383 4384 static const struct i915_range chv_oa_mux_regs[] = { 4385 { .start = 0x182300, .end = 0x1823a4 }, 4386 {} 4387 }; 4388 4389 static const struct i915_range gen8_oa_mux_regs[] = { 4390 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4391 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4392 {} 4393 }; 4394 4395 static const struct i915_range gen11_oa_mux_regs[] = { 4396 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4397 {} 4398 }; 4399 4400 static const struct i915_range gen12_oa_mux_regs[] = { 4401 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4402 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4403 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4404 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4405 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4406 {} 4407 }; 4408 4409 /* 4410 * Ref: 14010536224: 4411 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4412 */ 4413 static const struct i915_range mtl_oa_mux_regs[] = { 4414 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4415 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4416 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4417 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4418 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4419 {} 4420 }; 4421 4422 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4423 { 4424 return reg_in_range_table(addr, gen7_oa_b_counters); 4425 } 4426 4427 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4428 { 4429 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4430 reg_in_range_table(addr, gen8_oa_mux_regs); 4431 } 4432 4433 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4434 { 4435 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4436 reg_in_range_table(addr, gen8_oa_mux_regs) || 4437 reg_in_range_table(addr, gen11_oa_mux_regs); 4438 } 4439 4440 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4441 { 4442 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4443 reg_in_range_table(addr, hsw_oa_mux_regs); 4444 } 4445 4446 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4447 { 4448 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4449 reg_in_range_table(addr, chv_oa_mux_regs); 4450 } 4451 4452 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4453 { 4454 return reg_in_range_table(addr, gen12_oa_b_counters); 4455 } 4456 4457 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4458 { 4459 if (HAS_OAM(perf->i915) && 4460 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4461 return reg_in_range_table(addr, mtl_oam_b_counters); 4462 4463 return false; 4464 } 4465 4466 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4467 { 4468 return reg_in_range_table(addr, xehp_oa_b_counters) || 4469 reg_in_range_table(addr, gen12_oa_b_counters) || 4470 mtl_is_valid_oam_b_counter_addr(perf, addr); 4471 } 4472 4473 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4474 { 4475 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4476 return reg_in_range_table(addr, mtl_oa_mux_regs); 4477 else 4478 return reg_in_range_table(addr, gen12_oa_mux_regs); 4479 } 4480 4481 static u32 mask_reg_value(u32 reg, u32 val) 4482 { 4483 /* 4484 * HALF_SLICE_CHICKEN2 is programmed with a the 4485 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4486 * programmed by userspace doesn't change this. 4487 */ 4488 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4489 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4490 4491 /* 4492 * WAIT_FOR_RC6_EXIT has only one bit fulfilling the function 4493 * indicated by its name and a bunch of selection fields used by OA 4494 * configs. 4495 */ 4496 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4497 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4498 4499 return val; 4500 } 4501 4502 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4503 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4504 u32 __user *regs, 4505 u32 n_regs) 4506 { 4507 struct i915_oa_reg *oa_regs; 4508 int err; 4509 u32 i; 4510 4511 if (!n_regs) 4512 return NULL; 4513 4514 /* No is_valid function means we're not allowing any register to be programmed. */ 4515 GEM_BUG_ON(!is_valid); 4516 if (!is_valid) 4517 return ERR_PTR(-EINVAL); 4518 4519 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4520 if (!oa_regs) 4521 return ERR_PTR(-ENOMEM); 4522 4523 for (i = 0; i < n_regs; i++) { 4524 u32 addr, value; 4525 4526 err = get_user(addr, regs); 4527 if (err) 4528 goto addr_err; 4529 4530 if (!is_valid(perf, addr)) { 4531 drm_dbg(&perf->i915->drm, 4532 "Invalid oa_reg address: %X\n", addr); 4533 err = -EINVAL; 4534 goto addr_err; 4535 } 4536 4537 err = get_user(value, regs + 1); 4538 if (err) 4539 goto addr_err; 4540 4541 oa_regs[i].addr = _MMIO(addr); 4542 oa_regs[i].value = mask_reg_value(addr, value); 4543 4544 regs += 2; 4545 } 4546 4547 return oa_regs; 4548 4549 addr_err: 4550 kfree(oa_regs); 4551 return ERR_PTR(err); 4552 } 4553 4554 static ssize_t show_dynamic_id(struct kobject *kobj, 4555 struct kobj_attribute *attr, 4556 char *buf) 4557 { 4558 struct i915_oa_config *oa_config = 4559 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4560 4561 return sprintf(buf, "%d\n", oa_config->id); 4562 } 4563 4564 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4565 struct i915_oa_config *oa_config) 4566 { 4567 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4568 oa_config->sysfs_metric_id.attr.name = "id"; 4569 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4570 oa_config->sysfs_metric_id.show = show_dynamic_id; 4571 oa_config->sysfs_metric_id.store = NULL; 4572 4573 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4574 oa_config->attrs[1] = NULL; 4575 4576 oa_config->sysfs_metric.name = oa_config->uuid; 4577 oa_config->sysfs_metric.attrs = oa_config->attrs; 4578 4579 return sysfs_create_group(perf->metrics_kobj, 4580 &oa_config->sysfs_metric); 4581 } 4582 4583 /** 4584 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4585 * @dev: drm device 4586 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4587 * userspace (unvalidated) 4588 * @file: drm file 4589 * 4590 * Validates the submitted OA register to be saved into a new OA config that 4591 * can then be used for programming the OA unit and its NOA network. 4592 * 4593 * Returns: A new allocated config number to be used with the perf open ioctl 4594 * or a negative error code on failure. 4595 */ 4596 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4597 struct drm_file *file) 4598 { 4599 struct i915_perf *perf = &to_i915(dev)->perf; 4600 struct drm_i915_perf_oa_config *args = data; 4601 struct i915_oa_config *oa_config, *tmp; 4602 struct i915_oa_reg *regs; 4603 int err, id; 4604 4605 if (!perf->i915) 4606 return -ENOTSUPP; 4607 4608 if (!perf->metrics_kobj) { 4609 drm_dbg(&perf->i915->drm, 4610 "OA metrics weren't advertised via sysfs\n"); 4611 return -EINVAL; 4612 } 4613 4614 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4615 drm_dbg(&perf->i915->drm, 4616 "Insufficient privileges to add i915 OA config\n"); 4617 return -EACCES; 4618 } 4619 4620 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4621 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4622 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4623 drm_dbg(&perf->i915->drm, 4624 "No OA registers given\n"); 4625 return -EINVAL; 4626 } 4627 4628 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4629 if (!oa_config) { 4630 drm_dbg(&perf->i915->drm, 4631 "Failed to allocate memory for the OA config\n"); 4632 return -ENOMEM; 4633 } 4634 4635 oa_config->perf = perf; 4636 kref_init(&oa_config->ref); 4637 4638 if (!uuid_is_valid(args->uuid)) { 4639 drm_dbg(&perf->i915->drm, 4640 "Invalid uuid format for OA config\n"); 4641 err = -EINVAL; 4642 goto reg_err; 4643 } 4644 4645 /* Last character in oa_config->uuid will be 0 because oa_config is 4646 * kzalloc. 4647 */ 4648 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4649 4650 oa_config->mux_regs_len = args->n_mux_regs; 4651 regs = alloc_oa_regs(perf, 4652 perf->ops.is_valid_mux_reg, 4653 u64_to_user_ptr(args->mux_regs_ptr), 4654 args->n_mux_regs); 4655 4656 if (IS_ERR(regs)) { 4657 drm_dbg(&perf->i915->drm, 4658 "Failed to create OA config for mux_regs\n"); 4659 err = PTR_ERR(regs); 4660 goto reg_err; 4661 } 4662 oa_config->mux_regs = regs; 4663 4664 oa_config->b_counter_regs_len = args->n_boolean_regs; 4665 regs = alloc_oa_regs(perf, 4666 perf->ops.is_valid_b_counter_reg, 4667 u64_to_user_ptr(args->boolean_regs_ptr), 4668 args->n_boolean_regs); 4669 4670 if (IS_ERR(regs)) { 4671 drm_dbg(&perf->i915->drm, 4672 "Failed to create OA config for b_counter_regs\n"); 4673 err = PTR_ERR(regs); 4674 goto reg_err; 4675 } 4676 oa_config->b_counter_regs = regs; 4677 4678 if (GRAPHICS_VER(perf->i915) < 8) { 4679 if (args->n_flex_regs != 0) { 4680 err = -EINVAL; 4681 goto reg_err; 4682 } 4683 } else { 4684 oa_config->flex_regs_len = args->n_flex_regs; 4685 regs = alloc_oa_regs(perf, 4686 perf->ops.is_valid_flex_reg, 4687 u64_to_user_ptr(args->flex_regs_ptr), 4688 args->n_flex_regs); 4689 4690 if (IS_ERR(regs)) { 4691 drm_dbg(&perf->i915->drm, 4692 "Failed to create OA config for flex_regs\n"); 4693 err = PTR_ERR(regs); 4694 goto reg_err; 4695 } 4696 oa_config->flex_regs = regs; 4697 } 4698 4699 err = mutex_lock_interruptible(&perf->metrics_lock); 4700 if (err) 4701 goto reg_err; 4702 4703 /* We shouldn't have too many configs, so this iteration shouldn't be 4704 * too costly. 4705 */ 4706 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4707 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4708 drm_dbg(&perf->i915->drm, 4709 "OA config already exists with this uuid\n"); 4710 err = -EADDRINUSE; 4711 goto sysfs_err; 4712 } 4713 } 4714 4715 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4716 if (err) { 4717 drm_dbg(&perf->i915->drm, 4718 "Failed to create sysfs entry for OA config\n"); 4719 goto sysfs_err; 4720 } 4721 4722 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4723 oa_config->id = idr_alloc(&perf->metrics_idr, 4724 oa_config, 2, 4725 0, GFP_KERNEL); 4726 if (oa_config->id < 0) { 4727 drm_dbg(&perf->i915->drm, 4728 "Failed to create sysfs entry for OA config\n"); 4729 err = oa_config->id; 4730 goto sysfs_err; 4731 } 4732 id = oa_config->id; 4733 4734 drm_dbg(&perf->i915->drm, 4735 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4736 mutex_unlock(&perf->metrics_lock); 4737 4738 return id; 4739 4740 sysfs_err: 4741 mutex_unlock(&perf->metrics_lock); 4742 reg_err: 4743 i915_oa_config_put(oa_config); 4744 drm_dbg(&perf->i915->drm, 4745 "Failed to add new OA config\n"); 4746 return err; 4747 } 4748 4749 /** 4750 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4751 * @dev: drm device 4752 * @data: ioctl data (pointer to u64 integer) copied from userspace 4753 * @file: drm file 4754 * 4755 * Configs can be removed while being used, the will stop appearing in sysfs 4756 * and their content will be freed when the stream using the config is closed. 4757 * 4758 * Returns: 0 on success or a negative error code on failure. 4759 */ 4760 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4761 struct drm_file *file) 4762 { 4763 struct i915_perf *perf = &to_i915(dev)->perf; 4764 u64 *arg = data; 4765 struct i915_oa_config *oa_config; 4766 int ret; 4767 4768 if (!perf->i915) 4769 return -ENOTSUPP; 4770 4771 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4772 drm_dbg(&perf->i915->drm, 4773 "Insufficient privileges to remove i915 OA config\n"); 4774 return -EACCES; 4775 } 4776 4777 ret = mutex_lock_interruptible(&perf->metrics_lock); 4778 if (ret) 4779 return ret; 4780 4781 oa_config = idr_find(&perf->metrics_idr, *arg); 4782 if (!oa_config) { 4783 drm_dbg(&perf->i915->drm, 4784 "Failed to remove unknown OA config\n"); 4785 ret = -ENOENT; 4786 goto err_unlock; 4787 } 4788 4789 GEM_BUG_ON(*arg != oa_config->id); 4790 4791 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4792 4793 idr_remove(&perf->metrics_idr, *arg); 4794 4795 mutex_unlock(&perf->metrics_lock); 4796 4797 drm_dbg(&perf->i915->drm, 4798 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4799 4800 i915_oa_config_put(oa_config); 4801 4802 return 0; 4803 4804 err_unlock: 4805 mutex_unlock(&perf->metrics_lock); 4806 return ret; 4807 } 4808 4809 static const struct ctl_table oa_table[] = { 4810 { 4811 .procname = "perf_stream_paranoid", 4812 .data = &i915_perf_stream_paranoid, 4813 .maxlen = sizeof(i915_perf_stream_paranoid), 4814 .mode = 0644, 4815 .proc_handler = proc_dointvec_minmax, 4816 .extra1 = SYSCTL_ZERO, 4817 .extra2 = SYSCTL_ONE, 4818 }, 4819 { 4820 .procname = "oa_max_sample_rate", 4821 .data = &i915_oa_max_sample_rate, 4822 .maxlen = sizeof(i915_oa_max_sample_rate), 4823 .mode = 0644, 4824 .proc_handler = proc_dointvec_minmax, 4825 .extra1 = SYSCTL_ZERO, 4826 .extra2 = &oa_sample_rate_hard_limit, 4827 }, 4828 }; 4829 4830 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4831 { 4832 return 1; 4833 } 4834 4835 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4836 { 4837 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4838 /* 4839 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4840 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4841 */ 4842 drm_WARN_ON(&engine->i915->drm, 4843 engine->gt->type != GT_MEDIA); 4844 4845 return PERF_GROUP_OAM_SAMEDIA_0; 4846 } 4847 4848 return PERF_GROUP_INVALID; 4849 } 4850 4851 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4852 { 4853 switch (engine->class) { 4854 case RENDER_CLASS: 4855 return PERF_GROUP_OAG; 4856 4857 case VIDEO_DECODE_CLASS: 4858 case VIDEO_ENHANCEMENT_CLASS: 4859 return __oam_engine_group(engine); 4860 4861 default: 4862 return PERF_GROUP_INVALID; 4863 } 4864 } 4865 4866 static struct i915_perf_regs __oam_regs(u32 base) 4867 { 4868 return (struct i915_perf_regs) { 4869 base, 4870 GEN12_OAM_HEAD_POINTER(base), 4871 GEN12_OAM_TAIL_POINTER(base), 4872 GEN12_OAM_BUFFER(base), 4873 GEN12_OAM_CONTEXT_CONTROL(base), 4874 GEN12_OAM_CONTROL(base), 4875 GEN12_OAM_DEBUG(base), 4876 GEN12_OAM_STATUS(base), 4877 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4878 }; 4879 } 4880 4881 static struct i915_perf_regs __oag_regs(void) 4882 { 4883 return (struct i915_perf_regs) { 4884 0, 4885 GEN12_OAG_OAHEADPTR, 4886 GEN12_OAG_OATAILPTR, 4887 GEN12_OAG_OABUFFER, 4888 GEN12_OAG_OAGLBCTXCTRL, 4889 GEN12_OAG_OACONTROL, 4890 GEN12_OAG_OA_DEBUG, 4891 GEN12_OAG_OASTATUS, 4892 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4893 }; 4894 } 4895 4896 static void oa_init_groups(struct intel_gt *gt) 4897 { 4898 int i, num_groups = gt->perf.num_perf_groups; 4899 4900 for (i = 0; i < num_groups; i++) { 4901 struct i915_perf_group *g = >->perf.group[i]; 4902 4903 /* Fused off engines can result in a group with num_engines == 0 */ 4904 if (g->num_engines == 0) 4905 continue; 4906 4907 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4908 g->regs = __oag_regs(); 4909 g->type = TYPE_OAG; 4910 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4911 g->regs = __oam_regs(mtl_oa_base[i]); 4912 g->type = TYPE_OAM; 4913 } 4914 } 4915 } 4916 4917 static int oa_init_gt(struct intel_gt *gt) 4918 { 4919 u32 num_groups = num_perf_groups_per_gt(gt); 4920 struct intel_engine_cs *engine; 4921 struct i915_perf_group *g; 4922 intel_engine_mask_t tmp; 4923 4924 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4925 if (!g) 4926 return -ENOMEM; 4927 4928 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 4929 u32 index = __oa_engine_group(engine); 4930 4931 engine->oa_group = NULL; 4932 if (index < num_groups) { 4933 g[index].num_engines++; 4934 engine->oa_group = &g[index]; 4935 } 4936 } 4937 4938 gt->perf.num_perf_groups = num_groups; 4939 gt->perf.group = g; 4940 4941 oa_init_groups(gt); 4942 4943 return 0; 4944 } 4945 4946 static int oa_init_engine_groups(struct i915_perf *perf) 4947 { 4948 struct intel_gt *gt; 4949 int i, ret; 4950 4951 for_each_gt(gt, perf->i915, i) { 4952 ret = oa_init_gt(gt); 4953 if (ret) 4954 return ret; 4955 } 4956 4957 return 0; 4958 } 4959 4960 static void oa_init_supported_formats(struct i915_perf *perf) 4961 { 4962 struct drm_i915_private *i915 = perf->i915; 4963 enum intel_platform platform = INTEL_INFO(i915)->platform; 4964 4965 switch (platform) { 4966 case INTEL_HASWELL: 4967 oa_format_add(perf, I915_OA_FORMAT_A13); 4968 oa_format_add(perf, I915_OA_FORMAT_A13); 4969 oa_format_add(perf, I915_OA_FORMAT_A29); 4970 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4971 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4972 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4973 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4974 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4975 break; 4976 4977 case INTEL_BROADWELL: 4978 case INTEL_CHERRYVIEW: 4979 case INTEL_SKYLAKE: 4980 case INTEL_BROXTON: 4981 case INTEL_KABYLAKE: 4982 case INTEL_GEMINILAKE: 4983 case INTEL_COFFEELAKE: 4984 case INTEL_COMETLAKE: 4985 case INTEL_ICELAKE: 4986 case INTEL_ELKHARTLAKE: 4987 case INTEL_JASPERLAKE: 4988 case INTEL_TIGERLAKE: 4989 case INTEL_ROCKETLAKE: 4990 case INTEL_DG1: 4991 case INTEL_ALDERLAKE_S: 4992 case INTEL_ALDERLAKE_P: 4993 oa_format_add(perf, I915_OA_FORMAT_A12); 4994 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4995 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4996 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4997 break; 4998 4999 case INTEL_DG2: 5000 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5001 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5002 break; 5003 5004 case INTEL_METEORLAKE: 5005 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5006 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5007 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5008 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5009 break; 5010 5011 default: 5012 MISSING_CASE(platform); 5013 } 5014 } 5015 5016 static void i915_perf_init_info(struct drm_i915_private *i915) 5017 { 5018 struct i915_perf *perf = &i915->perf; 5019 5020 switch (GRAPHICS_VER(i915)) { 5021 case 8: 5022 perf->ctx_oactxctrl_offset = 0x120; 5023 perf->ctx_flexeu0_offset = 0x2ce; 5024 perf->gen8_valid_ctx_bit = BIT(25); 5025 break; 5026 case 9: 5027 perf->ctx_oactxctrl_offset = 0x128; 5028 perf->ctx_flexeu0_offset = 0x3de; 5029 perf->gen8_valid_ctx_bit = BIT(16); 5030 break; 5031 case 11: 5032 perf->ctx_oactxctrl_offset = 0x124; 5033 perf->ctx_flexeu0_offset = 0x78e; 5034 perf->gen8_valid_ctx_bit = BIT(16); 5035 break; 5036 case 12: 5037 perf->gen8_valid_ctx_bit = BIT(16); 5038 /* 5039 * Calculate offset at runtime in oa_pin_context for gen12 and 5040 * cache the value in perf->ctx_oactxctrl_offset. 5041 */ 5042 break; 5043 default: 5044 MISSING_CASE(GRAPHICS_VER(i915)); 5045 } 5046 } 5047 5048 /** 5049 * i915_perf_init - initialize i915-perf state on module bind 5050 * @i915: i915 device instance 5051 * 5052 * Initializes i915-perf state without exposing anything to userspace. 5053 * 5054 * Note: i915-perf initialization is split into an 'init' and 'register' 5055 * phase with the i915_perf_register() exposing state to userspace. 5056 */ 5057 int i915_perf_init(struct drm_i915_private *i915) 5058 { 5059 struct i915_perf *perf = &i915->perf; 5060 5061 perf->oa_formats = oa_formats; 5062 if (IS_HASWELL(i915)) { 5063 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5064 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5065 perf->ops.is_valid_flex_reg = NULL; 5066 perf->ops.enable_metric_set = hsw_enable_metric_set; 5067 perf->ops.disable_metric_set = hsw_disable_metric_set; 5068 perf->ops.oa_enable = gen7_oa_enable; 5069 perf->ops.oa_disable = gen7_oa_disable; 5070 perf->ops.read = gen7_oa_read; 5071 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5072 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5073 /* Note: that although we could theoretically also support the 5074 * legacy ringbuffer mode on BDW (and earlier iterations of 5075 * this driver, before upstreaming did this) it didn't seem 5076 * worth the complexity to maintain now that BDW+ enable 5077 * execlist mode by default. 5078 */ 5079 perf->ops.read = gen8_oa_read; 5080 i915_perf_init_info(i915); 5081 5082 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5083 perf->ops.is_valid_b_counter_reg = 5084 gen7_is_valid_b_counter_addr; 5085 perf->ops.is_valid_mux_reg = 5086 gen8_is_valid_mux_addr; 5087 perf->ops.is_valid_flex_reg = 5088 gen8_is_valid_flex_addr; 5089 5090 if (IS_CHERRYVIEW(i915)) { 5091 perf->ops.is_valid_mux_reg = 5092 chv_is_valid_mux_addr; 5093 } 5094 5095 perf->ops.oa_enable = gen8_oa_enable; 5096 perf->ops.oa_disable = gen8_oa_disable; 5097 perf->ops.enable_metric_set = gen8_enable_metric_set; 5098 perf->ops.disable_metric_set = gen8_disable_metric_set; 5099 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5100 } else if (GRAPHICS_VER(i915) == 11) { 5101 perf->ops.is_valid_b_counter_reg = 5102 gen7_is_valid_b_counter_addr; 5103 perf->ops.is_valid_mux_reg = 5104 gen11_is_valid_mux_addr; 5105 perf->ops.is_valid_flex_reg = 5106 gen8_is_valid_flex_addr; 5107 5108 perf->ops.oa_enable = gen8_oa_enable; 5109 perf->ops.oa_disable = gen8_oa_disable; 5110 perf->ops.enable_metric_set = gen8_enable_metric_set; 5111 perf->ops.disable_metric_set = gen11_disable_metric_set; 5112 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5113 } else if (GRAPHICS_VER(i915) == 12) { 5114 perf->ops.is_valid_b_counter_reg = 5115 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5116 xehp_is_valid_b_counter_addr : 5117 gen12_is_valid_b_counter_addr; 5118 perf->ops.is_valid_mux_reg = 5119 gen12_is_valid_mux_addr; 5120 perf->ops.is_valid_flex_reg = 5121 gen8_is_valid_flex_addr; 5122 5123 perf->ops.oa_enable = gen12_oa_enable; 5124 perf->ops.oa_disable = gen12_oa_disable; 5125 perf->ops.enable_metric_set = gen12_enable_metric_set; 5126 perf->ops.disable_metric_set = gen12_disable_metric_set; 5127 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5128 } 5129 } 5130 5131 if (perf->ops.enable_metric_set) { 5132 struct intel_gt *gt; 5133 int i, ret; 5134 5135 for_each_gt(gt, i915, i) 5136 mutex_init(>->perf.lock); 5137 5138 /* Choose a representative limit */ 5139 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5140 5141 mutex_init(&perf->metrics_lock); 5142 idr_init_base(&perf->metrics_idr, 1); 5143 5144 /* We set up some ratelimit state to potentially throttle any 5145 * _NOTES about spurious, invalid OA reports which we don't 5146 * forward to userspace. 5147 * 5148 * We print a _NOTE about any throttling when closing the 5149 * stream instead of waiting until driver _fini which no one 5150 * would ever see. 5151 * 5152 * Using the same limiting factors as printk_ratelimit() 5153 */ 5154 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5155 /* Since we use a DRM_NOTE for spurious reports it would be 5156 * inconsistent to let __ratelimit() automatically print a 5157 * warning for throttling. 5158 */ 5159 ratelimit_set_flags(&perf->spurious_report_rs, 5160 RATELIMIT_MSG_ON_RELEASE); 5161 5162 ratelimit_state_init(&perf->tail_pointer_race, 5163 5 * HZ, 10); 5164 ratelimit_set_flags(&perf->tail_pointer_race, 5165 RATELIMIT_MSG_ON_RELEASE); 5166 5167 atomic64_set(&perf->noa_programming_delay, 5168 500 * 1000 /* 500us */); 5169 5170 perf->i915 = i915; 5171 5172 ret = oa_init_engine_groups(perf); 5173 if (ret) { 5174 drm_err(&i915->drm, 5175 "OA initialization failed %d\n", ret); 5176 return ret; 5177 } 5178 5179 oa_init_supported_formats(perf); 5180 } 5181 5182 return 0; 5183 } 5184 5185 static int destroy_config(int id, void *p, void *data) 5186 { 5187 i915_oa_config_put(p); 5188 return 0; 5189 } 5190 5191 int i915_perf_sysctl_register(void) 5192 { 5193 sysctl_header = register_sysctl("dev/i915", oa_table); 5194 return 0; 5195 } 5196 5197 void i915_perf_sysctl_unregister(void) 5198 { 5199 unregister_sysctl_table(sysctl_header); 5200 } 5201 5202 /** 5203 * i915_perf_fini - Counter part to i915_perf_init() 5204 * @i915: i915 device instance 5205 */ 5206 void i915_perf_fini(struct drm_i915_private *i915) 5207 { 5208 struct i915_perf *perf = &i915->perf; 5209 struct intel_gt *gt; 5210 int i; 5211 5212 if (!perf->i915) 5213 return; 5214 5215 for_each_gt(gt, perf->i915, i) 5216 kfree(gt->perf.group); 5217 5218 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5219 idr_destroy(&perf->metrics_idr); 5220 5221 memset(&perf->ops, 0, sizeof(perf->ops)); 5222 perf->i915 = NULL; 5223 } 5224 5225 /** 5226 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5227 * @i915: The i915 device 5228 * 5229 * This version number is used by userspace to detect available features. 5230 */ 5231 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5232 { 5233 /* 5234 * 1: Initial version 5235 * I915_PERF_IOCTL_ENABLE 5236 * I915_PERF_IOCTL_DISABLE 5237 * 5238 * 2: Added runtime modification of OA config. 5239 * I915_PERF_IOCTL_CONFIG 5240 * 5241 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5242 * preemption on a particular context so that performance data is 5243 * accessible from a delta of MI_RPC reports without looking at the 5244 * OA buffer. 5245 * 5246 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5247 * be run for the duration of the performance recording based on 5248 * their SSEU configuration. 5249 * 5250 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5251 * interval for the hrtimer used to check for OA data. 5252 * 5253 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5254 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5255 * 5256 * 7: Add support for video decode and enhancement classes. 5257 */ 5258 5259 /* 5260 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5261 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5262 * to indicate that OA media is not supported. 5263 */ 5264 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 5265 intel_check_bios_c6_setup(&i915->media_gt->rc6)) 5266 return 6; 5267 5268 return 7; 5269 } 5270 5271 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5272 #include "selftests/i915_perf.c" 5273 #endif 5274