xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision ed5c2f5fd10dda07263f79f338a512c0f49f76f5)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_regs.h"
208 #include "gt/intel_lrc.h"
209 #include "gt/intel_lrc_reg.h"
210 #include "gt/intel_ring.h"
211 
212 #include "i915_drv.h"
213 #include "i915_file_private.h"
214 #include "i915_perf.h"
215 #include "i915_perf_oa_regs.h"
216 
217 /* HW requires this to be a power of two, between 128k and 16M, though driver
218  * is currently generally designed assuming the largest 16M size is used such
219  * that the overflow cases are unlikely in normal operation.
220  */
221 #define OA_BUFFER_SIZE		SZ_16M
222 
223 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
224 
225 /**
226  * DOC: OA Tail Pointer Race
227  *
228  * There's a HW race condition between OA unit tail pointer register updates and
229  * writes to memory whereby the tail pointer can sometimes get ahead of what's
230  * been written out to the OA buffer so far (in terms of what's visible to the
231  * CPU).
232  *
233  * Although this can be observed explicitly while copying reports to userspace
234  * by checking for a zeroed report-id field in tail reports, we want to account
235  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
236  * redundant read() attempts.
237  *
238  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
239  * in the OA buffer, starting from the tail reported by the HW until we find a
240  * report with its first 2 dwords not 0 meaning its previous report is
241  * completely in memory and ready to be read. Those dwords are also set to 0
242  * once read and the whole buffer is cleared upon OA buffer initialization. The
243  * first dword is the reason for this report while the second is the timestamp,
244  * making the chances of having those 2 fields at 0 fairly unlikely. A more
245  * detailed explanation is available in oa_buffer_check_unlocked().
246  *
247  * Most of the implementation details for this workaround are in
248  * oa_buffer_check_unlocked() and _append_oa_reports()
249  *
250  * Note for posterity: previously the driver used to define an effective tail
251  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
252  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
253  * This was flawed considering that the OA unit may also automatically generate
254  * non-periodic reports (such as on context switch) or the OA unit may be
255  * enabled without any periodic sampling.
256  */
257 #define OA_TAIL_MARGIN_NSEC	100000ULL
258 #define INVALID_TAIL_PTR	0xffffffff
259 
260 /* The default frequency for checking whether the OA unit has written new
261  * reports to the circular OA buffer...
262  */
263 #define DEFAULT_POLL_FREQUENCY_HZ 200
264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
265 
266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
267 static u32 i915_perf_stream_paranoid = true;
268 
269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
270  * of the 64bit timestamp bits to trigger reports from) but there's currently
271  * no known use case for sampling as infrequently as once per 47 thousand years.
272  *
273  * Since the timestamps included in OA reports are only 32bits it seems
274  * reasonable to limit the OA exponent where it's still possible to account for
275  * overflow in OA report timestamps.
276  */
277 #define OA_EXPONENT_MAX 31
278 
279 #define INVALID_CTX_ID 0xffffffff
280 
281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
282 #define OAREPORT_REASON_MASK           0x3f
283 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
284 #define OAREPORT_REASON_SHIFT          19
285 #define OAREPORT_REASON_TIMER          (1<<0)
286 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
287 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
288 
289 
290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
291  *
292  * The highest sampling frequency we can theoretically program the OA unit
293  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
294  *
295  * Initialized just before we register the sysctl parameter.
296  */
297 static int oa_sample_rate_hard_limit;
298 
299 /* Theoretically we can program the OA unit to sample every 160ns but don't
300  * allow that by default unless root...
301  *
302  * The default threshold of 100000Hz is based on perf's similar
303  * kernel.perf_event_max_sample_rate sysctl parameter.
304  */
305 static u32 i915_oa_max_sample_rate = 100000;
306 
307 /* XXX: beware if future OA HW adds new report formats that the current
308  * code assumes all reports have a power-of-two size and ~(size - 1) can
309  * be used as a mask to align the OA tail pointer.
310  */
311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
312 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
313 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
314 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
315 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
316 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
317 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
318 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
319 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
320 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
321 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
322 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
323 };
324 
325 #define SAMPLE_OA_REPORT      (1<<0)
326 
327 /**
328  * struct perf_open_properties - for validated properties given to open a stream
329  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
330  * @single_context: Whether a single or all gpu contexts should be monitored
331  * @hold_preemption: Whether the preemption is disabled for the filtered
332  *                   context
333  * @ctx_handle: A gem ctx handle for use with @single_context
334  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
335  * @oa_format: An OA unit HW report format
336  * @oa_periodic: Whether to enable periodic OA unit sampling
337  * @oa_period_exponent: The OA unit sampling period is derived from this
338  * @engine: The engine (typically rcs0) being monitored by the OA unit
339  * @has_sseu: Whether @sseu was specified by userspace
340  * @sseu: internal SSEU configuration computed either from the userspace
341  *        specified configuration in the opening parameters or a default value
342  *        (see get_default_sseu_config())
343  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
344  * data availability
345  *
346  * As read_properties_unlocked() enumerates and validates the properties given
347  * to open a stream of metrics the configuration is built up in the structure
348  * which starts out zero initialized.
349  */
350 struct perf_open_properties {
351 	u32 sample_flags;
352 
353 	u64 single_context:1;
354 	u64 hold_preemption:1;
355 	u64 ctx_handle;
356 
357 	/* OA sampling state */
358 	int metrics_set;
359 	int oa_format;
360 	bool oa_periodic;
361 	int oa_period_exponent;
362 
363 	struct intel_engine_cs *engine;
364 
365 	bool has_sseu;
366 	struct intel_sseu sseu;
367 
368 	u64 poll_oa_period;
369 };
370 
371 struct i915_oa_config_bo {
372 	struct llist_node node;
373 
374 	struct i915_oa_config *oa_config;
375 	struct i915_vma *vma;
376 };
377 
378 static struct ctl_table_header *sysctl_header;
379 
380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
381 
382 void i915_oa_config_release(struct kref *ref)
383 {
384 	struct i915_oa_config *oa_config =
385 		container_of(ref, typeof(*oa_config), ref);
386 
387 	kfree(oa_config->flex_regs);
388 	kfree(oa_config->b_counter_regs);
389 	kfree(oa_config->mux_regs);
390 
391 	kfree_rcu(oa_config, rcu);
392 }
393 
394 struct i915_oa_config *
395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396 {
397 	struct i915_oa_config *oa_config;
398 
399 	rcu_read_lock();
400 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
401 	if (oa_config)
402 		oa_config = i915_oa_config_get(oa_config);
403 	rcu_read_unlock();
404 
405 	return oa_config;
406 }
407 
408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
409 {
410 	i915_oa_config_put(oa_bo->oa_config);
411 	i915_vma_put(oa_bo->vma);
412 	kfree(oa_bo);
413 }
414 
415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
416 {
417 	struct intel_uncore *uncore = stream->uncore;
418 
419 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
420 	       GEN12_OAG_OATAILPTR_MASK;
421 }
422 
423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
424 {
425 	struct intel_uncore *uncore = stream->uncore;
426 
427 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
428 }
429 
430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
431 {
432 	struct intel_uncore *uncore = stream->uncore;
433 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
434 
435 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
436 }
437 
438 /**
439  * oa_buffer_check_unlocked - check for data and update tail ptr state
440  * @stream: i915 stream instance
441  *
442  * This is either called via fops (for blocking reads in user ctx) or the poll
443  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
444  * if there is data available for userspace to read.
445  *
446  * This function is central to providing a workaround for the OA unit tail
447  * pointer having a race with respect to what data is visible to the CPU.
448  * It is responsible for reading tail pointers from the hardware and giving
449  * the pointers time to 'age' before they are made available for reading.
450  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451  *
452  * Besides returning true when there is data available to read() this function
453  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
454  * object.
455  *
456  * Note: It's safe to read OA config state here unlocked, assuming that this is
457  * only called while the stream is enabled, while the global OA configuration
458  * can't be modified.
459  *
460  * Returns: %true if the OA buffer contains data, else %false
461  */
462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
463 {
464 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
465 	int report_size = stream->oa_buffer.format_size;
466 	unsigned long flags;
467 	bool pollin;
468 	u32 hw_tail;
469 	u64 now;
470 
471 	/* We have to consider the (unlikely) possibility that read() errors
472 	 * could result in an OA buffer reset which might reset the head and
473 	 * tail state.
474 	 */
475 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
476 
477 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
478 
479 	/* The tail pointer increases in 64 byte increments,
480 	 * not in report_size steps...
481 	 */
482 	hw_tail &= ~(report_size - 1);
483 
484 	now = ktime_get_mono_fast_ns();
485 
486 	if (hw_tail == stream->oa_buffer.aging_tail &&
487 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
488 		/* If the HW tail hasn't move since the last check and the HW
489 		 * tail has been aging for long enough, declare it the new
490 		 * tail.
491 		 */
492 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
493 	} else {
494 		u32 head, tail, aged_tail;
495 
496 		/* NB: The head we observe here might effectively be a little
497 		 * out of date. If a read() is in progress, the head could be
498 		 * anywhere between this head and stream->oa_buffer.tail.
499 		 */
500 		head = stream->oa_buffer.head - gtt_offset;
501 		aged_tail = stream->oa_buffer.tail - gtt_offset;
502 
503 		hw_tail -= gtt_offset;
504 		tail = hw_tail;
505 
506 		/* Walk the stream backward until we find a report with dword 0
507 		 * & 1 not at 0. Since the circular buffer pointers progress by
508 		 * increments of 64 bytes and that reports can be up to 256
509 		 * bytes long, we can't tell whether a report has fully landed
510 		 * in memory before the first 2 dwords of the following report
511 		 * have effectively landed.
512 		 *
513 		 * This is assuming that the writes of the OA unit land in
514 		 * memory in the order they were written to.
515 		 * If not : (╯°□°)╯︵ ┻━┻
516 		 */
517 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
518 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
519 
520 			if (report32[0] != 0 || report32[1] != 0)
521 				break;
522 
523 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
524 		}
525 
526 		if (OA_TAKEN(hw_tail, tail) > report_size &&
527 		    __ratelimit(&stream->perf->tail_pointer_race))
528 			DRM_NOTE("unlanded report(s) head=0x%x "
529 				 "tail=0x%x hw_tail=0x%x\n",
530 				 head, tail, hw_tail);
531 
532 		stream->oa_buffer.tail = gtt_offset + tail;
533 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
534 		stream->oa_buffer.aging_timestamp = now;
535 	}
536 
537 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
538 			  stream->oa_buffer.head - gtt_offset) >= report_size;
539 
540 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
541 
542 	return pollin;
543 }
544 
545 /**
546  * append_oa_status - Appends a status record to a userspace read() buffer.
547  * @stream: An i915-perf stream opened for OA metrics
548  * @buf: destination buffer given by userspace
549  * @count: the number of bytes userspace wants to read
550  * @offset: (inout): the current position for writing into @buf
551  * @type: The kind of status to report to userspace
552  *
553  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
554  * into the userspace read() buffer.
555  *
556  * The @buf @offset will only be updated on success.
557  *
558  * Returns: 0 on success, negative error code on failure.
559  */
560 static int append_oa_status(struct i915_perf_stream *stream,
561 			    char __user *buf,
562 			    size_t count,
563 			    size_t *offset,
564 			    enum drm_i915_perf_record_type type)
565 {
566 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567 
568 	if ((count - *offset) < header.size)
569 		return -ENOSPC;
570 
571 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 		return -EFAULT;
573 
574 	(*offset) += header.size;
575 
576 	return 0;
577 }
578 
579 /**
580  * append_oa_sample - Copies single OA report into userspace read() buffer.
581  * @stream: An i915-perf stream opened for OA metrics
582  * @buf: destination buffer given by userspace
583  * @count: the number of bytes userspace wants to read
584  * @offset: (inout): the current position for writing into @buf
585  * @report: A single OA report to (optionally) include as part of the sample
586  *
587  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
588  * properties when opening a stream, tracked as `stream->sample_flags`. This
589  * function copies the requested components of a single sample to the given
590  * read() @buf.
591  *
592  * The @buf @offset will only be updated on success.
593  *
594  * Returns: 0 on success, negative error code on failure.
595  */
596 static int append_oa_sample(struct i915_perf_stream *stream,
597 			    char __user *buf,
598 			    size_t count,
599 			    size_t *offset,
600 			    const u8 *report)
601 {
602 	int report_size = stream->oa_buffer.format_size;
603 	struct drm_i915_perf_record_header header;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (copy_to_user(buf, report, report_size))
618 		return -EFAULT;
619 
620 	(*offset) += header.size;
621 
622 	return 0;
623 }
624 
625 /**
626  * gen8_append_oa_reports - Copies all buffered OA reports into
627  *			    userspace read() buffer.
628  * @stream: An i915-perf stream opened for OA metrics
629  * @buf: destination buffer given by userspace
630  * @count: the number of bytes userspace wants to read
631  * @offset: (inout): the current position for writing into @buf
632  *
633  * Notably any error condition resulting in a short read (-%ENOSPC or
634  * -%EFAULT) will be returned even though one or more records may
635  * have been successfully copied. In this case it's up to the caller
636  * to decide if the error should be squashed before returning to
637  * userspace.
638  *
639  * Note: reports are consumed from the head, and appended to the
640  * tail, so the tail chases the head?... If you think that's mad
641  * and back-to-front you're not alone, but this follows the
642  * Gen PRM naming convention.
643  *
644  * Returns: 0 on success, negative error code on failure.
645  */
646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 				  char __user *buf,
648 				  size_t count,
649 				  size_t *offset)
650 {
651 	struct intel_uncore *uncore = stream->uncore;
652 	int report_size = stream->oa_buffer.format_size;
653 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
654 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
655 	u32 mask = (OA_BUFFER_SIZE - 1);
656 	size_t start_offset = *offset;
657 	unsigned long flags;
658 	u32 head, tail;
659 	u32 taken;
660 	int ret = 0;
661 
662 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
663 		return -EIO;
664 
665 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
666 
667 	head = stream->oa_buffer.head;
668 	tail = stream->oa_buffer.tail;
669 
670 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
671 
672 	/*
673 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
674 	 * while indexing relative to oa_buf_base.
675 	 */
676 	head -= gtt_offset;
677 	tail -= gtt_offset;
678 
679 	/*
680 	 * An out of bounds or misaligned head or tail pointer implies a driver
681 	 * bug since we validate + align the tail pointers we read from the
682 	 * hardware and we are in full control of the head pointer which should
683 	 * only be incremented by multiples of the report size (notably also
684 	 * all a power of two).
685 	 */
686 	if (drm_WARN_ONCE(&uncore->i915->drm,
687 			  head > OA_BUFFER_SIZE || head % report_size ||
688 			  tail > OA_BUFFER_SIZE || tail % report_size,
689 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
690 			  head, tail))
691 		return -EIO;
692 
693 
694 	for (/* none */;
695 	     (taken = OA_TAKEN(tail, head));
696 	     head = (head + report_size) & mask) {
697 		u8 *report = oa_buf_base + head;
698 		u32 *report32 = (void *)report;
699 		u32 ctx_id;
700 		u32 reason;
701 
702 		/*
703 		 * All the report sizes factor neatly into the buffer
704 		 * size so we never expect to see a report split
705 		 * between the beginning and end of the buffer.
706 		 *
707 		 * Given the initial alignment check a misalignment
708 		 * here would imply a driver bug that would result
709 		 * in an overrun.
710 		 */
711 		if (drm_WARN_ON(&uncore->i915->drm,
712 				(OA_BUFFER_SIZE - head) < report_size)) {
713 			drm_err(&uncore->i915->drm,
714 				"Spurious OA head ptr: non-integral report offset\n");
715 			break;
716 		}
717 
718 		/*
719 		 * The reason field includes flags identifying what
720 		 * triggered this specific report (mostly timer
721 		 * triggered or e.g. due to a context switch).
722 		 *
723 		 * This field is never expected to be zero so we can
724 		 * check that the report isn't invalid before copying
725 		 * it to userspace...
726 		 */
727 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
728 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
729 			   OAREPORT_REASON_MASK_EXTENDED :
730 			   OAREPORT_REASON_MASK));
731 
732 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
733 
734 		/*
735 		 * Squash whatever is in the CTX_ID field if it's marked as
736 		 * invalid to be sure we avoid false-positive, single-context
737 		 * filtering below...
738 		 *
739 		 * Note: that we don't clear the valid_ctx_bit so userspace can
740 		 * understand that the ID has been squashed by the kernel.
741 		 */
742 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
743 		    GRAPHICS_VER(stream->perf->i915) <= 11)
744 			ctx_id = report32[2] = INVALID_CTX_ID;
745 
746 		/*
747 		 * NB: For Gen 8 the OA unit no longer supports clock gating
748 		 * off for a specific context and the kernel can't securely
749 		 * stop the counters from updating as system-wide / global
750 		 * values.
751 		 *
752 		 * Automatic reports now include a context ID so reports can be
753 		 * filtered on the cpu but it's not worth trying to
754 		 * automatically subtract/hide counter progress for other
755 		 * contexts while filtering since we can't stop userspace
756 		 * issuing MI_REPORT_PERF_COUNT commands which would still
757 		 * provide a side-band view of the real values.
758 		 *
759 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
760 		 * to normalize counters for a single filtered context then it
761 		 * needs be forwarded bookend context-switch reports so that it
762 		 * can track switches in between MI_REPORT_PERF_COUNT commands
763 		 * and can itself subtract/ignore the progress of counters
764 		 * associated with other contexts. Note that the hardware
765 		 * automatically triggers reports when switching to a new
766 		 * context which are tagged with the ID of the newly active
767 		 * context. To avoid the complexity (and likely fragility) of
768 		 * reading ahead while parsing reports to try and minimize
769 		 * forwarding redundant context switch reports (i.e. between
770 		 * other, unrelated contexts) we simply elect to forward them
771 		 * all.
772 		 *
773 		 * We don't rely solely on the reason field to identify context
774 		 * switches since it's not-uncommon for periodic samples to
775 		 * identify a switch before any 'context switch' report.
776 		 */
777 		if (!stream->perf->exclusive_stream->ctx ||
778 		    stream->specific_ctx_id == ctx_id ||
779 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
780 		    reason & OAREPORT_REASON_CTX_SWITCH) {
781 
782 			/*
783 			 * While filtering for a single context we avoid
784 			 * leaking the IDs of other contexts.
785 			 */
786 			if (stream->perf->exclusive_stream->ctx &&
787 			    stream->specific_ctx_id != ctx_id) {
788 				report32[2] = INVALID_CTX_ID;
789 			}
790 
791 			ret = append_oa_sample(stream, buf, count, offset,
792 					       report);
793 			if (ret)
794 				break;
795 
796 			stream->oa_buffer.last_ctx_id = ctx_id;
797 		}
798 
799 		/*
800 		 * Clear out the first 2 dword as a mean to detect unlanded
801 		 * reports.
802 		 */
803 		report32[0] = 0;
804 		report32[1] = 0;
805 	}
806 
807 	if (start_offset != *offset) {
808 		i915_reg_t oaheadptr;
809 
810 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
811 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
812 
813 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
814 
815 		/*
816 		 * We removed the gtt_offset for the copy loop above, indexing
817 		 * relative to oa_buf_base so put back here...
818 		 */
819 		head += gtt_offset;
820 		intel_uncore_write(uncore, oaheadptr,
821 				   head & GEN12_OAG_OAHEADPTR_MASK);
822 		stream->oa_buffer.head = head;
823 
824 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
825 	}
826 
827 	return ret;
828 }
829 
830 /**
831  * gen8_oa_read - copy status records then buffered OA reports
832  * @stream: An i915-perf stream opened for OA metrics
833  * @buf: destination buffer given by userspace
834  * @count: the number of bytes userspace wants to read
835  * @offset: (inout): the current position for writing into @buf
836  *
837  * Checks OA unit status registers and if necessary appends corresponding
838  * status records for userspace (such as for a buffer full condition) and then
839  * initiate appending any buffered OA reports.
840  *
841  * Updates @offset according to the number of bytes successfully copied into
842  * the userspace buffer.
843  *
844  * NB: some data may be successfully copied to the userspace buffer
845  * even if an error is returned, and this is reflected in the
846  * updated @offset.
847  *
848  * Returns: zero on success or a negative error code
849  */
850 static int gen8_oa_read(struct i915_perf_stream *stream,
851 			char __user *buf,
852 			size_t count,
853 			size_t *offset)
854 {
855 	struct intel_uncore *uncore = stream->uncore;
856 	u32 oastatus;
857 	i915_reg_t oastatus_reg;
858 	int ret;
859 
860 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
861 		return -EIO;
862 
863 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
864 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
865 
866 	oastatus = intel_uncore_read(uncore, oastatus_reg);
867 
868 	/*
869 	 * We treat OABUFFER_OVERFLOW as a significant error:
870 	 *
871 	 * Although theoretically we could handle this more gracefully
872 	 * sometimes, some Gens don't correctly suppress certain
873 	 * automatically triggered reports in this condition and so we
874 	 * have to assume that old reports are now being trampled
875 	 * over.
876 	 *
877 	 * Considering how we don't currently give userspace control
878 	 * over the OA buffer size and always configure a large 16MB
879 	 * buffer, then a buffer overflow does anyway likely indicate
880 	 * that something has gone quite badly wrong.
881 	 */
882 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
883 		ret = append_oa_status(stream, buf, count, offset,
884 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
885 		if (ret)
886 			return ret;
887 
888 		drm_dbg(&stream->perf->i915->drm,
889 			"OA buffer overflow (exponent = %d): force restart\n",
890 			stream->period_exponent);
891 
892 		stream->perf->ops.oa_disable(stream);
893 		stream->perf->ops.oa_enable(stream);
894 
895 		/*
896 		 * Note: .oa_enable() is expected to re-init the oabuffer and
897 		 * reset GEN8_OASTATUS for us
898 		 */
899 		oastatus = intel_uncore_read(uncore, oastatus_reg);
900 	}
901 
902 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
903 		ret = append_oa_status(stream, buf, count, offset,
904 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
905 		if (ret)
906 			return ret;
907 
908 		intel_uncore_rmw(uncore, oastatus_reg,
909 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
910 				 GEN8_OASTATUS_REPORT_LOST,
911 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
912 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
913 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
914 	}
915 
916 	return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918 
919 /**
920  * gen7_append_oa_reports - Copies all buffered OA reports into
921  *			    userspace read() buffer.
922  * @stream: An i915-perf stream opened for OA metrics
923  * @buf: destination buffer given by userspace
924  * @count: the number of bytes userspace wants to read
925  * @offset: (inout): the current position for writing into @buf
926  *
927  * Notably any error condition resulting in a short read (-%ENOSPC or
928  * -%EFAULT) will be returned even though one or more records may
929  * have been successfully copied. In this case it's up to the caller
930  * to decide if the error should be squashed before returning to
931  * userspace.
932  *
933  * Note: reports are consumed from the head, and appended to the
934  * tail, so the tail chases the head?... If you think that's mad
935  * and back-to-front you're not alone, but this follows the
936  * Gen PRM naming convention.
937  *
938  * Returns: 0 on success, negative error code on failure.
939  */
940 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
941 				  char __user *buf,
942 				  size_t count,
943 				  size_t *offset)
944 {
945 	struct intel_uncore *uncore = stream->uncore;
946 	int report_size = stream->oa_buffer.format_size;
947 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
948 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
949 	u32 mask = (OA_BUFFER_SIZE - 1);
950 	size_t start_offset = *offset;
951 	unsigned long flags;
952 	u32 head, tail;
953 	u32 taken;
954 	int ret = 0;
955 
956 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
957 		return -EIO;
958 
959 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
960 
961 	head = stream->oa_buffer.head;
962 	tail = stream->oa_buffer.tail;
963 
964 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
965 
966 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
967 	 * while indexing relative to oa_buf_base.
968 	 */
969 	head -= gtt_offset;
970 	tail -= gtt_offset;
971 
972 	/* An out of bounds or misaligned head or tail pointer implies a driver
973 	 * bug since we validate + align the tail pointers we read from the
974 	 * hardware and we are in full control of the head pointer which should
975 	 * only be incremented by multiples of the report size (notably also
976 	 * all a power of two).
977 	 */
978 	if (drm_WARN_ONCE(&uncore->i915->drm,
979 			  head > OA_BUFFER_SIZE || head % report_size ||
980 			  tail > OA_BUFFER_SIZE || tail % report_size,
981 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
982 			  head, tail))
983 		return -EIO;
984 
985 
986 	for (/* none */;
987 	     (taken = OA_TAKEN(tail, head));
988 	     head = (head + report_size) & mask) {
989 		u8 *report = oa_buf_base + head;
990 		u32 *report32 = (void *)report;
991 
992 		/* All the report sizes factor neatly into the buffer
993 		 * size so we never expect to see a report split
994 		 * between the beginning and end of the buffer.
995 		 *
996 		 * Given the initial alignment check a misalignment
997 		 * here would imply a driver bug that would result
998 		 * in an overrun.
999 		 */
1000 		if (drm_WARN_ON(&uncore->i915->drm,
1001 				(OA_BUFFER_SIZE - head) < report_size)) {
1002 			drm_err(&uncore->i915->drm,
1003 				"Spurious OA head ptr: non-integral report offset\n");
1004 			break;
1005 		}
1006 
1007 		/* The report-ID field for periodic samples includes
1008 		 * some undocumented flags related to what triggered
1009 		 * the report and is never expected to be zero so we
1010 		 * can check that the report isn't invalid before
1011 		 * copying it to userspace...
1012 		 */
1013 		if (report32[0] == 0) {
1014 			if (__ratelimit(&stream->perf->spurious_report_rs))
1015 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 			continue;
1017 		}
1018 
1019 		ret = append_oa_sample(stream, buf, count, offset, report);
1020 		if (ret)
1021 			break;
1022 
1023 		/* Clear out the first 2 dwords as a mean to detect unlanded
1024 		 * reports.
1025 		 */
1026 		report32[0] = 0;
1027 		report32[1] = 0;
1028 	}
1029 
1030 	if (start_offset != *offset) {
1031 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1032 
1033 		/* We removed the gtt_offset for the copy loop above, indexing
1034 		 * relative to oa_buf_base so put back here...
1035 		 */
1036 		head += gtt_offset;
1037 
1038 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1039 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1040 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1041 		stream->oa_buffer.head = head;
1042 
1043 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * gen7_oa_read - copy status records then buffered OA reports
1051  * @stream: An i915-perf stream opened for OA metrics
1052  * @buf: destination buffer given by userspace
1053  * @count: the number of bytes userspace wants to read
1054  * @offset: (inout): the current position for writing into @buf
1055  *
1056  * Checks Gen 7 specific OA unit status registers and if necessary appends
1057  * corresponding status records for userspace (such as for a buffer full
1058  * condition) and then initiate appending any buffered OA reports.
1059  *
1060  * Updates @offset according to the number of bytes successfully copied into
1061  * the userspace buffer.
1062  *
1063  * Returns: zero on success or a negative error code
1064  */
1065 static int gen7_oa_read(struct i915_perf_stream *stream,
1066 			char __user *buf,
1067 			size_t count,
1068 			size_t *offset)
1069 {
1070 	struct intel_uncore *uncore = stream->uncore;
1071 	u32 oastatus1;
1072 	int ret;
1073 
1074 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1075 		return -EIO;
1076 
1077 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1078 
1079 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1080 	 * bits while the OA unit is enabled (while the tail pointer
1081 	 * may be updated asynchronously) so we ignore status bits
1082 	 * that have already been reported to userspace.
1083 	 */
1084 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1085 
1086 	/* We treat OABUFFER_OVERFLOW as a significant error:
1087 	 *
1088 	 * - The status can be interpreted to mean that the buffer is
1089 	 *   currently full (with a higher precedence than OA_TAKEN()
1090 	 *   which will start to report a near-empty buffer after an
1091 	 *   overflow) but it's awkward that we can't clear the status
1092 	 *   on Haswell, so without a reset we won't be able to catch
1093 	 *   the state again.
1094 	 *
1095 	 * - Since it also implies the HW has started overwriting old
1096 	 *   reports it may also affect our sanity checks for invalid
1097 	 *   reports when copying to userspace that assume new reports
1098 	 *   are being written to cleared memory.
1099 	 *
1100 	 * - In the future we may want to introduce a flight recorder
1101 	 *   mode where the driver will automatically maintain a safe
1102 	 *   guard band between head/tail, avoiding this overflow
1103 	 *   condition, but we avoid the added driver complexity for
1104 	 *   now.
1105 	 */
1106 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1107 		ret = append_oa_status(stream, buf, count, offset,
1108 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1109 		if (ret)
1110 			return ret;
1111 
1112 		drm_dbg(&stream->perf->i915->drm,
1113 			"OA buffer overflow (exponent = %d): force restart\n",
1114 			stream->period_exponent);
1115 
1116 		stream->perf->ops.oa_disable(stream);
1117 		stream->perf->ops.oa_enable(stream);
1118 
1119 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1120 	}
1121 
1122 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123 		ret = append_oa_status(stream, buf, count, offset,
1124 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125 		if (ret)
1126 			return ret;
1127 		stream->perf->gen7_latched_oastatus1 |=
1128 			GEN7_OASTATUS1_REPORT_LOST;
1129 	}
1130 
1131 	return gen7_append_oa_reports(stream, buf, count, offset);
1132 }
1133 
1134 /**
1135  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136  * @stream: An i915-perf stream opened for OA metrics
1137  *
1138  * Called when userspace tries to read() from a blocking stream FD opened
1139  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140  * OA buffer and wakes us.
1141  *
1142  * Note: it's acceptable to have this return with some false positives
1143  * since any subsequent read handling will return -EAGAIN if there isn't
1144  * really data ready for userspace yet.
1145  *
1146  * Returns: zero on success or a negative error code
1147  */
1148 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149 {
1150 	/* We would wait indefinitely if periodic sampling is not enabled */
1151 	if (!stream->periodic)
1152 		return -EIO;
1153 
1154 	return wait_event_interruptible(stream->poll_wq,
1155 					oa_buffer_check_unlocked(stream));
1156 }
1157 
1158 /**
1159  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1160  * @stream: An i915-perf stream opened for OA metrics
1161  * @file: An i915 perf stream file
1162  * @wait: poll() state table
1163  *
1164  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1165  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1166  * when it sees data ready to read in the circular OA buffer.
1167  */
1168 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1169 			      struct file *file,
1170 			      poll_table *wait)
1171 {
1172 	poll_wait(file, &stream->poll_wq, wait);
1173 }
1174 
1175 /**
1176  * i915_oa_read - just calls through to &i915_oa_ops->read
1177  * @stream: An i915-perf stream opened for OA metrics
1178  * @buf: destination buffer given by userspace
1179  * @count: the number of bytes userspace wants to read
1180  * @offset: (inout): the current position for writing into @buf
1181  *
1182  * Updates @offset according to the number of bytes successfully copied into
1183  * the userspace buffer.
1184  *
1185  * Returns: zero on success or a negative error code
1186  */
1187 static int i915_oa_read(struct i915_perf_stream *stream,
1188 			char __user *buf,
1189 			size_t count,
1190 			size_t *offset)
1191 {
1192 	return stream->perf->ops.read(stream, buf, count, offset);
1193 }
1194 
1195 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1196 {
1197 	struct i915_gem_engines_iter it;
1198 	struct i915_gem_context *ctx = stream->ctx;
1199 	struct intel_context *ce;
1200 	struct i915_gem_ww_ctx ww;
1201 	int err = -ENODEV;
1202 
1203 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1204 		if (ce->engine != stream->engine) /* first match! */
1205 			continue;
1206 
1207 		err = 0;
1208 		break;
1209 	}
1210 	i915_gem_context_unlock_engines(ctx);
1211 
1212 	if (err)
1213 		return ERR_PTR(err);
1214 
1215 	i915_gem_ww_ctx_init(&ww, true);
1216 retry:
1217 	/*
1218 	 * As the ID is the gtt offset of the context's vma we
1219 	 * pin the vma to ensure the ID remains fixed.
1220 	 */
1221 	err = intel_context_pin_ww(ce, &ww);
1222 	if (err == -EDEADLK) {
1223 		err = i915_gem_ww_ctx_backoff(&ww);
1224 		if (!err)
1225 			goto retry;
1226 	}
1227 	i915_gem_ww_ctx_fini(&ww);
1228 
1229 	if (err)
1230 		return ERR_PTR(err);
1231 
1232 	stream->pinned_ctx = ce;
1233 	return stream->pinned_ctx;
1234 }
1235 
1236 /**
1237  * oa_get_render_ctx_id - determine and hold ctx hw id
1238  * @stream: An i915-perf stream opened for OA metrics
1239  *
1240  * Determine the render context hw id, and ensure it remains fixed for the
1241  * lifetime of the stream. This ensures that we don't have to worry about
1242  * updating the context ID in OACONTROL on the fly.
1243  *
1244  * Returns: zero on success or a negative error code
1245  */
1246 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1247 {
1248 	struct intel_context *ce;
1249 
1250 	ce = oa_pin_context(stream);
1251 	if (IS_ERR(ce))
1252 		return PTR_ERR(ce);
1253 
1254 	switch (GRAPHICS_VER(ce->engine->i915)) {
1255 	case 7: {
1256 		/*
1257 		 * On Haswell we don't do any post processing of the reports
1258 		 * and don't need to use the mask.
1259 		 */
1260 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1261 		stream->specific_ctx_id_mask = 0;
1262 		break;
1263 	}
1264 
1265 	case 8:
1266 	case 9:
1267 		if (intel_engine_uses_guc(ce->engine)) {
1268 			/*
1269 			 * When using GuC, the context descriptor we write in
1270 			 * i915 is read by GuC and rewritten before it's
1271 			 * actually written into the hardware. The LRCA is
1272 			 * what is put into the context id field of the
1273 			 * context descriptor by GuC. Because it's aligned to
1274 			 * a page, the lower 12bits are always at 0 and
1275 			 * dropped by GuC. They won't be part of the context
1276 			 * ID in the OA reports, so squash those lower bits.
1277 			 */
1278 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1279 
1280 			/*
1281 			 * GuC uses the top bit to signal proxy submission, so
1282 			 * ignore that bit.
1283 			 */
1284 			stream->specific_ctx_id_mask =
1285 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1286 		} else {
1287 			stream->specific_ctx_id_mask =
1288 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1289 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1290 		}
1291 		break;
1292 
1293 	case 11:
1294 	case 12:
1295 		if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) {
1296 			stream->specific_ctx_id_mask =
1297 				((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1298 				(XEHP_SW_CTX_ID_SHIFT - 32);
1299 			stream->specific_ctx_id =
1300 				(XEHP_MAX_CONTEXT_HW_ID - 1) <<
1301 				(XEHP_SW_CTX_ID_SHIFT - 32);
1302 		} else {
1303 			stream->specific_ctx_id_mask =
1304 				((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1305 			/*
1306 			 * Pick an unused context id
1307 			 * 0 - BITS_PER_LONG are used by other contexts
1308 			 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1309 			 */
1310 			stream->specific_ctx_id =
1311 				(GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1312 		}
1313 		break;
1314 
1315 	default:
1316 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1317 	}
1318 
1319 	ce->tag = stream->specific_ctx_id;
1320 
1321 	drm_dbg(&stream->perf->i915->drm,
1322 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1323 		stream->specific_ctx_id,
1324 		stream->specific_ctx_id_mask);
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1331  * @stream: An i915-perf stream opened for OA metrics
1332  *
1333  * In case anything needed doing to ensure the context HW ID would remain valid
1334  * for the lifetime of the stream, then that can be undone here.
1335  */
1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1337 {
1338 	struct intel_context *ce;
1339 
1340 	ce = fetch_and_zero(&stream->pinned_ctx);
1341 	if (ce) {
1342 		ce->tag = 0; /* recomputed on next submission after parking */
1343 		intel_context_unpin(ce);
1344 	}
1345 
1346 	stream->specific_ctx_id = INVALID_CTX_ID;
1347 	stream->specific_ctx_id_mask = 0;
1348 }
1349 
1350 static void
1351 free_oa_buffer(struct i915_perf_stream *stream)
1352 {
1353 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1354 				   I915_VMA_RELEASE_MAP);
1355 
1356 	stream->oa_buffer.vaddr = NULL;
1357 }
1358 
1359 static void
1360 free_oa_configs(struct i915_perf_stream *stream)
1361 {
1362 	struct i915_oa_config_bo *oa_bo, *tmp;
1363 
1364 	i915_oa_config_put(stream->oa_config);
1365 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1366 		free_oa_config_bo(oa_bo);
1367 }
1368 
1369 static void
1370 free_noa_wait(struct i915_perf_stream *stream)
1371 {
1372 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1373 }
1374 
1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1376 {
1377 	struct i915_perf *perf = stream->perf;
1378 
1379 	BUG_ON(stream != perf->exclusive_stream);
1380 
1381 	/*
1382 	 * Unset exclusive_stream first, it will be checked while disabling
1383 	 * the metric set on gen8+.
1384 	 *
1385 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1386 	 */
1387 	WRITE_ONCE(perf->exclusive_stream, NULL);
1388 	perf->ops.disable_metric_set(stream);
1389 
1390 	free_oa_buffer(stream);
1391 
1392 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1393 	intel_engine_pm_put(stream->engine);
1394 
1395 	if (stream->ctx)
1396 		oa_put_render_ctx_id(stream);
1397 
1398 	free_oa_configs(stream);
1399 	free_noa_wait(stream);
1400 
1401 	if (perf->spurious_report_rs.missed) {
1402 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1403 			 perf->spurious_report_rs.missed);
1404 	}
1405 }
1406 
1407 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1408 {
1409 	struct intel_uncore *uncore = stream->uncore;
1410 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1411 	unsigned long flags;
1412 
1413 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1414 
1415 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1416 	 * before OASTATUS1, but after OASTATUS2
1417 	 */
1418 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1419 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1420 	stream->oa_buffer.head = gtt_offset;
1421 
1422 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1423 
1424 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1425 			   gtt_offset | OABUFFER_SIZE_16M);
1426 
1427 	/* Mark that we need updated tail pointers to read from... */
1428 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1429 	stream->oa_buffer.tail = gtt_offset;
1430 
1431 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1432 
1433 	/* On Haswell we have to track which OASTATUS1 flags we've
1434 	 * already seen since they can't be cleared while periodic
1435 	 * sampling is enabled.
1436 	 */
1437 	stream->perf->gen7_latched_oastatus1 = 0;
1438 
1439 	/* NB: although the OA buffer will initially be allocated
1440 	 * zeroed via shmfs (and so this memset is redundant when
1441 	 * first allocating), we may re-init the OA buffer, either
1442 	 * when re-enabling a stream or in error/reset paths.
1443 	 *
1444 	 * The reason we clear the buffer for each re-init is for the
1445 	 * sanity check in gen7_append_oa_reports() that looks at the
1446 	 * report-id field to make sure it's non-zero which relies on
1447 	 * the assumption that new reports are being written to zeroed
1448 	 * memory...
1449 	 */
1450 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1451 }
1452 
1453 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1454 {
1455 	struct intel_uncore *uncore = stream->uncore;
1456 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1460 
1461 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1462 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1463 	stream->oa_buffer.head = gtt_offset;
1464 
1465 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1466 
1467 	/*
1468 	 * PRM says:
1469 	 *
1470 	 *  "This MMIO must be set before the OATAILPTR
1471 	 *  register and after the OAHEADPTR register. This is
1472 	 *  to enable proper functionality of the overflow
1473 	 *  bit."
1474 	 */
1475 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1476 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1477 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1478 
1479 	/* Mark that we need updated tail pointers to read from... */
1480 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1481 	stream->oa_buffer.tail = gtt_offset;
1482 
1483 	/*
1484 	 * Reset state used to recognise context switches, affecting which
1485 	 * reports we will forward to userspace while filtering for a single
1486 	 * context.
1487 	 */
1488 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1489 
1490 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1491 
1492 	/*
1493 	 * NB: although the OA buffer will initially be allocated
1494 	 * zeroed via shmfs (and so this memset is redundant when
1495 	 * first allocating), we may re-init the OA buffer, either
1496 	 * when re-enabling a stream or in error/reset paths.
1497 	 *
1498 	 * The reason we clear the buffer for each re-init is for the
1499 	 * sanity check in gen8_append_oa_reports() that looks at the
1500 	 * reason field to make sure it's non-zero which relies on
1501 	 * the assumption that new reports are being written to zeroed
1502 	 * memory...
1503 	 */
1504 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1505 }
1506 
1507 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1508 {
1509 	struct intel_uncore *uncore = stream->uncore;
1510 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1511 	unsigned long flags;
1512 
1513 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1514 
1515 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1516 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1517 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1518 	stream->oa_buffer.head = gtt_offset;
1519 
1520 	/*
1521 	 * PRM says:
1522 	 *
1523 	 *  "This MMIO must be set before the OATAILPTR
1524 	 *  register and after the OAHEADPTR register. This is
1525 	 *  to enable proper functionality of the overflow
1526 	 *  bit."
1527 	 */
1528 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1529 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1530 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1531 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1532 
1533 	/* Mark that we need updated tail pointers to read from... */
1534 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1535 	stream->oa_buffer.tail = gtt_offset;
1536 
1537 	/*
1538 	 * Reset state used to recognise context switches, affecting which
1539 	 * reports we will forward to userspace while filtering for a single
1540 	 * context.
1541 	 */
1542 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1543 
1544 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1545 
1546 	/*
1547 	 * NB: although the OA buffer will initially be allocated
1548 	 * zeroed via shmfs (and so this memset is redundant when
1549 	 * first allocating), we may re-init the OA buffer, either
1550 	 * when re-enabling a stream or in error/reset paths.
1551 	 *
1552 	 * The reason we clear the buffer for each re-init is for the
1553 	 * sanity check in gen8_append_oa_reports() that looks at the
1554 	 * reason field to make sure it's non-zero which relies on
1555 	 * the assumption that new reports are being written to zeroed
1556 	 * memory...
1557 	 */
1558 	memset(stream->oa_buffer.vaddr, 0,
1559 	       stream->oa_buffer.vma->size);
1560 }
1561 
1562 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1563 {
1564 	struct drm_i915_private *i915 = stream->perf->i915;
1565 	struct drm_i915_gem_object *bo;
1566 	struct i915_vma *vma;
1567 	int ret;
1568 
1569 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1570 		return -ENODEV;
1571 
1572 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1573 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1574 
1575 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1576 	if (IS_ERR(bo)) {
1577 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1578 		return PTR_ERR(bo);
1579 	}
1580 
1581 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1582 
1583 	/* PreHSW required 512K alignment, HSW requires 16M */
1584 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1585 	if (IS_ERR(vma)) {
1586 		ret = PTR_ERR(vma);
1587 		goto err_unref;
1588 	}
1589 	stream->oa_buffer.vma = vma;
1590 
1591 	stream->oa_buffer.vaddr =
1592 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1593 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1594 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1595 		goto err_unpin;
1596 	}
1597 
1598 	return 0;
1599 
1600 err_unpin:
1601 	__i915_vma_unpin(vma);
1602 
1603 err_unref:
1604 	i915_gem_object_put(bo);
1605 
1606 	stream->oa_buffer.vaddr = NULL;
1607 	stream->oa_buffer.vma = NULL;
1608 
1609 	return ret;
1610 }
1611 
1612 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1613 				  bool save, i915_reg_t reg, u32 offset,
1614 				  u32 dword_count)
1615 {
1616 	u32 cmd;
1617 	u32 d;
1618 
1619 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1620 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1621 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1622 		cmd++;
1623 
1624 	for (d = 0; d < dword_count; d++) {
1625 		*cs++ = cmd;
1626 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1627 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1628 						offset) + 4 * d;
1629 		*cs++ = 0;
1630 	}
1631 
1632 	return cs;
1633 }
1634 
1635 static int alloc_noa_wait(struct i915_perf_stream *stream)
1636 {
1637 	struct drm_i915_private *i915 = stream->perf->i915;
1638 	struct drm_i915_gem_object *bo;
1639 	struct i915_vma *vma;
1640 	const u64 delay_ticks = 0xffffffffffffffff -
1641 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1642 		atomic64_read(&stream->perf->noa_programming_delay));
1643 	const u32 base = stream->engine->mmio_base;
1644 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1645 	u32 *batch, *ts0, *cs, *jump;
1646 	struct i915_gem_ww_ctx ww;
1647 	int ret, i;
1648 	enum {
1649 		START_TS,
1650 		NOW_TS,
1651 		DELTA_TS,
1652 		JUMP_PREDICATE,
1653 		DELTA_TARGET,
1654 		N_CS_GPR
1655 	};
1656 
1657 	bo = i915_gem_object_create_internal(i915, 4096);
1658 	if (IS_ERR(bo)) {
1659 		drm_err(&i915->drm,
1660 			"Failed to allocate NOA wait batchbuffer\n");
1661 		return PTR_ERR(bo);
1662 	}
1663 
1664 	i915_gem_ww_ctx_init(&ww, true);
1665 retry:
1666 	ret = i915_gem_object_lock(bo, &ww);
1667 	if (ret)
1668 		goto out_ww;
1669 
1670 	/*
1671 	 * We pin in GGTT because we jump into this buffer now because
1672 	 * multiple OA config BOs will have a jump to this address and it
1673 	 * needs to be fixed during the lifetime of the i915/perf stream.
1674 	 */
1675 	vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1676 	if (IS_ERR(vma)) {
1677 		ret = PTR_ERR(vma);
1678 		goto out_ww;
1679 	}
1680 
1681 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1682 	if (IS_ERR(batch)) {
1683 		ret = PTR_ERR(batch);
1684 		goto err_unpin;
1685 	}
1686 
1687 	/* Save registers. */
1688 	for (i = 0; i < N_CS_GPR; i++)
1689 		cs = save_restore_register(
1690 			stream, cs, true /* save */, CS_GPR(i),
1691 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1692 	cs = save_restore_register(
1693 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1694 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1695 
1696 	/* First timestamp snapshot location. */
1697 	ts0 = cs;
1698 
1699 	/*
1700 	 * Initial snapshot of the timestamp register to implement the wait.
1701 	 * We work with 32b values, so clear out the top 32b bits of the
1702 	 * register because the ALU works 64bits.
1703 	 */
1704 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1705 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1706 	*cs++ = 0;
1707 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1708 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1709 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1710 
1711 	/*
1712 	 * This is the location we're going to jump back into until the
1713 	 * required amount of time has passed.
1714 	 */
1715 	jump = cs;
1716 
1717 	/*
1718 	 * Take another snapshot of the timestamp register. Take care to clear
1719 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1720 	 * operations below.
1721 	 */
1722 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1723 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1724 	*cs++ = 0;
1725 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1726 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1727 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1728 
1729 	/*
1730 	 * Do a diff between the 2 timestamps and store the result back into
1731 	 * CS_GPR(1).
1732 	 */
1733 	*cs++ = MI_MATH(5);
1734 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1735 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1736 	*cs++ = MI_MATH_SUB;
1737 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1738 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1739 
1740 	/*
1741 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1742 	 * timestamp have rolled over the 32bits) into the predicate register
1743 	 * to be used for the predicated jump.
1744 	 */
1745 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1746 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1747 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1748 
1749 	/* Restart from the beginning if we had timestamps roll over. */
1750 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1751 		 MI_BATCH_BUFFER_START :
1752 		 MI_BATCH_BUFFER_START_GEN8) |
1753 		MI_BATCH_PREDICATE;
1754 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1755 	*cs++ = 0;
1756 
1757 	/*
1758 	 * Now add the diff between to previous timestamps and add it to :
1759 	 *      (((1 * << 64) - 1) - delay_ns)
1760 	 *
1761 	 * When the Carry Flag contains 1 this means the elapsed time is
1762 	 * longer than the expected delay, and we can exit the wait loop.
1763 	 */
1764 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1765 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1766 	*cs++ = lower_32_bits(delay_ticks);
1767 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1768 	*cs++ = upper_32_bits(delay_ticks);
1769 
1770 	*cs++ = MI_MATH(4);
1771 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1772 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1773 	*cs++ = MI_MATH_ADD;
1774 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1775 
1776 	*cs++ = MI_ARB_CHECK;
1777 
1778 	/*
1779 	 * Transfer the result into the predicate register to be used for the
1780 	 * predicated jump.
1781 	 */
1782 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1783 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1784 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1785 
1786 	/* Predicate the jump.  */
1787 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1788 		 MI_BATCH_BUFFER_START :
1789 		 MI_BATCH_BUFFER_START_GEN8) |
1790 		MI_BATCH_PREDICATE;
1791 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1792 	*cs++ = 0;
1793 
1794 	/* Restore registers. */
1795 	for (i = 0; i < N_CS_GPR; i++)
1796 		cs = save_restore_register(
1797 			stream, cs, false /* restore */, CS_GPR(i),
1798 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1799 	cs = save_restore_register(
1800 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1801 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1802 
1803 	/* And return to the ring. */
1804 	*cs++ = MI_BATCH_BUFFER_END;
1805 
1806 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1807 
1808 	i915_gem_object_flush_map(bo);
1809 	__i915_gem_object_release_map(bo);
1810 
1811 	stream->noa_wait = vma;
1812 	goto out_ww;
1813 
1814 err_unpin:
1815 	i915_vma_unpin_and_release(&vma, 0);
1816 out_ww:
1817 	if (ret == -EDEADLK) {
1818 		ret = i915_gem_ww_ctx_backoff(&ww);
1819 		if (!ret)
1820 			goto retry;
1821 	}
1822 	i915_gem_ww_ctx_fini(&ww);
1823 	if (ret)
1824 		i915_gem_object_put(bo);
1825 	return ret;
1826 }
1827 
1828 static u32 *write_cs_mi_lri(u32 *cs,
1829 			    const struct i915_oa_reg *reg_data,
1830 			    u32 n_regs)
1831 {
1832 	u32 i;
1833 
1834 	for (i = 0; i < n_regs; i++) {
1835 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1836 			u32 n_lri = min_t(u32,
1837 					  n_regs - i,
1838 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1839 
1840 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1841 		}
1842 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1843 		*cs++ = reg_data[i].value;
1844 	}
1845 
1846 	return cs;
1847 }
1848 
1849 static int num_lri_dwords(int num_regs)
1850 {
1851 	int count = 0;
1852 
1853 	if (num_regs > 0) {
1854 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1855 		count += num_regs * 2;
1856 	}
1857 
1858 	return count;
1859 }
1860 
1861 static struct i915_oa_config_bo *
1862 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1863 		       struct i915_oa_config *oa_config)
1864 {
1865 	struct drm_i915_gem_object *obj;
1866 	struct i915_oa_config_bo *oa_bo;
1867 	struct i915_gem_ww_ctx ww;
1868 	size_t config_length = 0;
1869 	u32 *cs;
1870 	int err;
1871 
1872 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1873 	if (!oa_bo)
1874 		return ERR_PTR(-ENOMEM);
1875 
1876 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1877 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1878 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1879 	config_length += 3; /* MI_BATCH_BUFFER_START */
1880 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1881 
1882 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1883 	if (IS_ERR(obj)) {
1884 		err = PTR_ERR(obj);
1885 		goto err_free;
1886 	}
1887 
1888 	i915_gem_ww_ctx_init(&ww, true);
1889 retry:
1890 	err = i915_gem_object_lock(obj, &ww);
1891 	if (err)
1892 		goto out_ww;
1893 
1894 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1895 	if (IS_ERR(cs)) {
1896 		err = PTR_ERR(cs);
1897 		goto out_ww;
1898 	}
1899 
1900 	cs = write_cs_mi_lri(cs,
1901 			     oa_config->mux_regs,
1902 			     oa_config->mux_regs_len);
1903 	cs = write_cs_mi_lri(cs,
1904 			     oa_config->b_counter_regs,
1905 			     oa_config->b_counter_regs_len);
1906 	cs = write_cs_mi_lri(cs,
1907 			     oa_config->flex_regs,
1908 			     oa_config->flex_regs_len);
1909 
1910 	/* Jump into the active wait. */
1911 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1912 		 MI_BATCH_BUFFER_START :
1913 		 MI_BATCH_BUFFER_START_GEN8);
1914 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1915 	*cs++ = 0;
1916 
1917 	i915_gem_object_flush_map(obj);
1918 	__i915_gem_object_release_map(obj);
1919 
1920 	oa_bo->vma = i915_vma_instance(obj,
1921 				       &stream->engine->gt->ggtt->vm,
1922 				       NULL);
1923 	if (IS_ERR(oa_bo->vma)) {
1924 		err = PTR_ERR(oa_bo->vma);
1925 		goto out_ww;
1926 	}
1927 
1928 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1929 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1930 
1931 out_ww:
1932 	if (err == -EDEADLK) {
1933 		err = i915_gem_ww_ctx_backoff(&ww);
1934 		if (!err)
1935 			goto retry;
1936 	}
1937 	i915_gem_ww_ctx_fini(&ww);
1938 
1939 	if (err)
1940 		i915_gem_object_put(obj);
1941 err_free:
1942 	if (err) {
1943 		kfree(oa_bo);
1944 		return ERR_PTR(err);
1945 	}
1946 	return oa_bo;
1947 }
1948 
1949 static struct i915_vma *
1950 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1951 {
1952 	struct i915_oa_config_bo *oa_bo;
1953 
1954 	/*
1955 	 * Look for the buffer in the already allocated BOs attached
1956 	 * to the stream.
1957 	 */
1958 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1959 		if (oa_bo->oa_config == oa_config &&
1960 		    memcmp(oa_bo->oa_config->uuid,
1961 			   oa_config->uuid,
1962 			   sizeof(oa_config->uuid)) == 0)
1963 			goto out;
1964 	}
1965 
1966 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1967 	if (IS_ERR(oa_bo))
1968 		return ERR_CAST(oa_bo);
1969 
1970 out:
1971 	return i915_vma_get(oa_bo->vma);
1972 }
1973 
1974 static int
1975 emit_oa_config(struct i915_perf_stream *stream,
1976 	       struct i915_oa_config *oa_config,
1977 	       struct intel_context *ce,
1978 	       struct i915_active *active)
1979 {
1980 	struct i915_request *rq;
1981 	struct i915_vma *vma;
1982 	struct i915_gem_ww_ctx ww;
1983 	int err;
1984 
1985 	vma = get_oa_vma(stream, oa_config);
1986 	if (IS_ERR(vma))
1987 		return PTR_ERR(vma);
1988 
1989 	i915_gem_ww_ctx_init(&ww, true);
1990 retry:
1991 	err = i915_gem_object_lock(vma->obj, &ww);
1992 	if (err)
1993 		goto err;
1994 
1995 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1996 	if (err)
1997 		goto err;
1998 
1999 	intel_engine_pm_get(ce->engine);
2000 	rq = i915_request_create(ce);
2001 	intel_engine_pm_put(ce->engine);
2002 	if (IS_ERR(rq)) {
2003 		err = PTR_ERR(rq);
2004 		goto err_vma_unpin;
2005 	}
2006 
2007 	if (!IS_ERR_OR_NULL(active)) {
2008 		/* After all individual context modifications */
2009 		err = i915_request_await_active(rq, active,
2010 						I915_ACTIVE_AWAIT_ACTIVE);
2011 		if (err)
2012 			goto err_add_request;
2013 
2014 		err = i915_active_add_request(active, rq);
2015 		if (err)
2016 			goto err_add_request;
2017 	}
2018 
2019 	err = i915_request_await_object(rq, vma->obj, 0);
2020 	if (!err)
2021 		err = i915_vma_move_to_active(vma, rq, 0);
2022 	if (err)
2023 		goto err_add_request;
2024 
2025 	err = rq->engine->emit_bb_start(rq,
2026 					vma->node.start, 0,
2027 					I915_DISPATCH_SECURE);
2028 	if (err)
2029 		goto err_add_request;
2030 
2031 err_add_request:
2032 	i915_request_add(rq);
2033 err_vma_unpin:
2034 	i915_vma_unpin(vma);
2035 err:
2036 	if (err == -EDEADLK) {
2037 		err = i915_gem_ww_ctx_backoff(&ww);
2038 		if (!err)
2039 			goto retry;
2040 	}
2041 
2042 	i915_gem_ww_ctx_fini(&ww);
2043 	i915_vma_put(vma);
2044 	return err;
2045 }
2046 
2047 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2048 {
2049 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2050 }
2051 
2052 static int
2053 hsw_enable_metric_set(struct i915_perf_stream *stream,
2054 		      struct i915_active *active)
2055 {
2056 	struct intel_uncore *uncore = stream->uncore;
2057 
2058 	/*
2059 	 * PRM:
2060 	 *
2061 	 * OA unit is using “crclk” for its functionality. When trunk
2062 	 * level clock gating takes place, OA clock would be gated,
2063 	 * unable to count the events from non-render clock domain.
2064 	 * Render clock gating must be disabled when OA is enabled to
2065 	 * count the events from non-render domain. Unit level clock
2066 	 * gating for RCS should also be disabled.
2067 	 */
2068 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2069 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2070 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2071 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2072 
2073 	return emit_oa_config(stream,
2074 			      stream->oa_config, oa_context(stream),
2075 			      active);
2076 }
2077 
2078 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2079 {
2080 	struct intel_uncore *uncore = stream->uncore;
2081 
2082 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2083 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2084 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2085 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2086 
2087 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2088 }
2089 
2090 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2091 			      i915_reg_t reg)
2092 {
2093 	u32 mmio = i915_mmio_reg_offset(reg);
2094 	int i;
2095 
2096 	/*
2097 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2098 	 * Active' event. In the future it's anticipated that there
2099 	 * will be an explicit 'No Event' we can select, but not yet...
2100 	 */
2101 	if (!oa_config)
2102 		return 0;
2103 
2104 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2105 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2106 			return oa_config->flex_regs[i].value;
2107 	}
2108 
2109 	return 0;
2110 }
2111 /*
2112  * NB: It must always remain pointer safe to run this even if the OA unit
2113  * has been disabled.
2114  *
2115  * It's fine to put out-of-date values into these per-context registers
2116  * in the case that the OA unit has been disabled.
2117  */
2118 static void
2119 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2120 			       const struct i915_perf_stream *stream)
2121 {
2122 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2123 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2124 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2125 	static const i915_reg_t flex_regs[] = {
2126 		EU_PERF_CNTL0,
2127 		EU_PERF_CNTL1,
2128 		EU_PERF_CNTL2,
2129 		EU_PERF_CNTL3,
2130 		EU_PERF_CNTL4,
2131 		EU_PERF_CNTL5,
2132 		EU_PERF_CNTL6,
2133 	};
2134 	u32 *reg_state = ce->lrc_reg_state;
2135 	int i;
2136 
2137 	reg_state[ctx_oactxctrl + 1] =
2138 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2139 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2140 		GEN8_OA_COUNTER_RESUME;
2141 
2142 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2143 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2144 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2145 }
2146 
2147 struct flex {
2148 	i915_reg_t reg;
2149 	u32 offset;
2150 	u32 value;
2151 };
2152 
2153 static int
2154 gen8_store_flex(struct i915_request *rq,
2155 		struct intel_context *ce,
2156 		const struct flex *flex, unsigned int count)
2157 {
2158 	u32 offset;
2159 	u32 *cs;
2160 
2161 	cs = intel_ring_begin(rq, 4 * count);
2162 	if (IS_ERR(cs))
2163 		return PTR_ERR(cs);
2164 
2165 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2166 	do {
2167 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2168 		*cs++ = offset + flex->offset * sizeof(u32);
2169 		*cs++ = 0;
2170 		*cs++ = flex->value;
2171 	} while (flex++, --count);
2172 
2173 	intel_ring_advance(rq, cs);
2174 
2175 	return 0;
2176 }
2177 
2178 static int
2179 gen8_load_flex(struct i915_request *rq,
2180 	       struct intel_context *ce,
2181 	       const struct flex *flex, unsigned int count)
2182 {
2183 	u32 *cs;
2184 
2185 	GEM_BUG_ON(!count || count > 63);
2186 
2187 	cs = intel_ring_begin(rq, 2 * count + 2);
2188 	if (IS_ERR(cs))
2189 		return PTR_ERR(cs);
2190 
2191 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2192 	do {
2193 		*cs++ = i915_mmio_reg_offset(flex->reg);
2194 		*cs++ = flex->value;
2195 	} while (flex++, --count);
2196 	*cs++ = MI_NOOP;
2197 
2198 	intel_ring_advance(rq, cs);
2199 
2200 	return 0;
2201 }
2202 
2203 static int gen8_modify_context(struct intel_context *ce,
2204 			       const struct flex *flex, unsigned int count)
2205 {
2206 	struct i915_request *rq;
2207 	int err;
2208 
2209 	rq = intel_engine_create_kernel_request(ce->engine);
2210 	if (IS_ERR(rq))
2211 		return PTR_ERR(rq);
2212 
2213 	/* Serialise with the remote context */
2214 	err = intel_context_prepare_remote_request(ce, rq);
2215 	if (err == 0)
2216 		err = gen8_store_flex(rq, ce, flex, count);
2217 
2218 	i915_request_add(rq);
2219 	return err;
2220 }
2221 
2222 static int
2223 gen8_modify_self(struct intel_context *ce,
2224 		 const struct flex *flex, unsigned int count,
2225 		 struct i915_active *active)
2226 {
2227 	struct i915_request *rq;
2228 	int err;
2229 
2230 	intel_engine_pm_get(ce->engine);
2231 	rq = i915_request_create(ce);
2232 	intel_engine_pm_put(ce->engine);
2233 	if (IS_ERR(rq))
2234 		return PTR_ERR(rq);
2235 
2236 	if (!IS_ERR_OR_NULL(active)) {
2237 		err = i915_active_add_request(active, rq);
2238 		if (err)
2239 			goto err_add_request;
2240 	}
2241 
2242 	err = gen8_load_flex(rq, ce, flex, count);
2243 	if (err)
2244 		goto err_add_request;
2245 
2246 err_add_request:
2247 	i915_request_add(rq);
2248 	return err;
2249 }
2250 
2251 static int gen8_configure_context(struct i915_gem_context *ctx,
2252 				  struct flex *flex, unsigned int count)
2253 {
2254 	struct i915_gem_engines_iter it;
2255 	struct intel_context *ce;
2256 	int err = 0;
2257 
2258 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2259 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2260 
2261 		if (ce->engine->class != RENDER_CLASS)
2262 			continue;
2263 
2264 		/* Otherwise OA settings will be set upon first use */
2265 		if (!intel_context_pin_if_active(ce))
2266 			continue;
2267 
2268 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2269 		err = gen8_modify_context(ce, flex, count);
2270 
2271 		intel_context_unpin(ce);
2272 		if (err)
2273 			break;
2274 	}
2275 	i915_gem_context_unlock_engines(ctx);
2276 
2277 	return err;
2278 }
2279 
2280 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2281 				       struct i915_active *active)
2282 {
2283 	int err;
2284 	struct intel_context *ce = stream->pinned_ctx;
2285 	u32 format = stream->oa_buffer.format;
2286 	struct flex regs_context[] = {
2287 		{
2288 			GEN8_OACTXCONTROL,
2289 			stream->perf->ctx_oactxctrl_offset + 1,
2290 			active ? GEN8_OA_COUNTER_RESUME : 0,
2291 		},
2292 	};
2293 	/* Offsets in regs_lri are not used since this configuration is only
2294 	 * applied using LRI. Initialize the correct offsets for posterity.
2295 	 */
2296 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2297 	struct flex regs_lri[] = {
2298 		{
2299 			GEN12_OAR_OACONTROL,
2300 			GEN12_OAR_OACONTROL_OFFSET + 1,
2301 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2302 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2303 		},
2304 		{
2305 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2306 			CTX_CONTEXT_CONTROL,
2307 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2308 				      active ?
2309 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2310 				      0)
2311 		},
2312 	};
2313 
2314 	/* Modify the context image of pinned context with regs_context*/
2315 	err = intel_context_lock_pinned(ce);
2316 	if (err)
2317 		return err;
2318 
2319 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2320 	intel_context_unlock_pinned(ce);
2321 	if (err)
2322 		return err;
2323 
2324 	/* Apply regs_lri using LRI with pinned context */
2325 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2326 }
2327 
2328 /*
2329  * Manages updating the per-context aspects of the OA stream
2330  * configuration across all contexts.
2331  *
2332  * The awkward consideration here is that OACTXCONTROL controls the
2333  * exponent for periodic sampling which is primarily used for system
2334  * wide profiling where we'd like a consistent sampling period even in
2335  * the face of context switches.
2336  *
2337  * Our approach of updating the register state context (as opposed to
2338  * say using a workaround batch buffer) ensures that the hardware
2339  * won't automatically reload an out-of-date timer exponent even
2340  * transiently before a WA BB could be parsed.
2341  *
2342  * This function needs to:
2343  * - Ensure the currently running context's per-context OA state is
2344  *   updated
2345  * - Ensure that all existing contexts will have the correct per-context
2346  *   OA state if they are scheduled for use.
2347  * - Ensure any new contexts will be initialized with the correct
2348  *   per-context OA state.
2349  *
2350  * Note: it's only the RCS/Render context that has any OA state.
2351  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2352  */
2353 static int
2354 oa_configure_all_contexts(struct i915_perf_stream *stream,
2355 			  struct flex *regs,
2356 			  size_t num_regs,
2357 			  struct i915_active *active)
2358 {
2359 	struct drm_i915_private *i915 = stream->perf->i915;
2360 	struct intel_engine_cs *engine;
2361 	struct i915_gem_context *ctx, *cn;
2362 	int err;
2363 
2364 	lockdep_assert_held(&stream->perf->lock);
2365 
2366 	/*
2367 	 * The OA register config is setup through the context image. This image
2368 	 * might be written to by the GPU on context switch (in particular on
2369 	 * lite-restore). This means we can't safely update a context's image,
2370 	 * if this context is scheduled/submitted to run on the GPU.
2371 	 *
2372 	 * We could emit the OA register config through the batch buffer but
2373 	 * this might leave small interval of time where the OA unit is
2374 	 * configured at an invalid sampling period.
2375 	 *
2376 	 * Note that since we emit all requests from a single ring, there
2377 	 * is still an implicit global barrier here that may cause a high
2378 	 * priority context to wait for an otherwise independent low priority
2379 	 * context. Contexts idle at the time of reconfiguration are not
2380 	 * trapped behind the barrier.
2381 	 */
2382 	spin_lock(&i915->gem.contexts.lock);
2383 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2384 		if (!kref_get_unless_zero(&ctx->ref))
2385 			continue;
2386 
2387 		spin_unlock(&i915->gem.contexts.lock);
2388 
2389 		err = gen8_configure_context(ctx, regs, num_regs);
2390 		if (err) {
2391 			i915_gem_context_put(ctx);
2392 			return err;
2393 		}
2394 
2395 		spin_lock(&i915->gem.contexts.lock);
2396 		list_safe_reset_next(ctx, cn, link);
2397 		i915_gem_context_put(ctx);
2398 	}
2399 	spin_unlock(&i915->gem.contexts.lock);
2400 
2401 	/*
2402 	 * After updating all other contexts, we need to modify ourselves.
2403 	 * If we don't modify the kernel_context, we do not get events while
2404 	 * idle.
2405 	 */
2406 	for_each_uabi_engine(engine, i915) {
2407 		struct intel_context *ce = engine->kernel_context;
2408 
2409 		if (engine->class != RENDER_CLASS)
2410 			continue;
2411 
2412 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2413 
2414 		err = gen8_modify_self(ce, regs, num_regs, active);
2415 		if (err)
2416 			return err;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int
2423 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2424 			     const struct i915_oa_config *oa_config,
2425 			     struct i915_active *active)
2426 {
2427 	struct flex regs[] = {
2428 		{
2429 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2430 			CTX_R_PWR_CLK_STATE,
2431 		},
2432 	};
2433 
2434 	return oa_configure_all_contexts(stream,
2435 					 regs, ARRAY_SIZE(regs),
2436 					 active);
2437 }
2438 
2439 static int
2440 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2441 			   const struct i915_oa_config *oa_config,
2442 			   struct i915_active *active)
2443 {
2444 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2445 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2446 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2447 	struct flex regs[] = {
2448 		{
2449 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2450 			CTX_R_PWR_CLK_STATE,
2451 		},
2452 		{
2453 			GEN8_OACTXCONTROL,
2454 			stream->perf->ctx_oactxctrl_offset + 1,
2455 		},
2456 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2457 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2458 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2459 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2460 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2461 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2462 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2463 	};
2464 #undef ctx_flexeuN
2465 	int i;
2466 
2467 	regs[1].value =
2468 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2469 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2470 		GEN8_OA_COUNTER_RESUME;
2471 
2472 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2473 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2474 
2475 	return oa_configure_all_contexts(stream,
2476 					 regs, ARRAY_SIZE(regs),
2477 					 active);
2478 }
2479 
2480 static int
2481 gen8_enable_metric_set(struct i915_perf_stream *stream,
2482 		       struct i915_active *active)
2483 {
2484 	struct intel_uncore *uncore = stream->uncore;
2485 	struct i915_oa_config *oa_config = stream->oa_config;
2486 	int ret;
2487 
2488 	/*
2489 	 * We disable slice/unslice clock ratio change reports on SKL since
2490 	 * they are too noisy. The HW generates a lot of redundant reports
2491 	 * where the ratio hasn't really changed causing a lot of redundant
2492 	 * work to processes and increasing the chances we'll hit buffer
2493 	 * overruns.
2494 	 *
2495 	 * Although we don't currently use the 'disable overrun' OABUFFER
2496 	 * feature it's worth noting that clock ratio reports have to be
2497 	 * disabled before considering to use that feature since the HW doesn't
2498 	 * correctly block these reports.
2499 	 *
2500 	 * Currently none of the high-level metrics we have depend on knowing
2501 	 * this ratio to normalize.
2502 	 *
2503 	 * Note: This register is not power context saved and restored, but
2504 	 * that's OK considering that we disable RC6 while the OA unit is
2505 	 * enabled.
2506 	 *
2507 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2508 	 * be read back from automatically triggered reports, as part of the
2509 	 * RPT_ID field.
2510 	 */
2511 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2512 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2513 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2514 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2515 	}
2516 
2517 	/*
2518 	 * Update all contexts prior writing the mux configurations as we need
2519 	 * to make sure all slices/subslices are ON before writing to NOA
2520 	 * registers.
2521 	 */
2522 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2523 	if (ret)
2524 		return ret;
2525 
2526 	return emit_oa_config(stream,
2527 			      stream->oa_config, oa_context(stream),
2528 			      active);
2529 }
2530 
2531 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2532 {
2533 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2534 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2535 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2536 }
2537 
2538 static int
2539 gen12_enable_metric_set(struct i915_perf_stream *stream,
2540 			struct i915_active *active)
2541 {
2542 	struct intel_uncore *uncore = stream->uncore;
2543 	struct i915_oa_config *oa_config = stream->oa_config;
2544 	bool periodic = stream->periodic;
2545 	u32 period_exponent = stream->period_exponent;
2546 	int ret;
2547 
2548 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2549 			   /* Disable clk ratio reports, like previous Gens. */
2550 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2551 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2552 			   /*
2553 			    * If the user didn't require OA reports, instruct
2554 			    * the hardware not to emit ctx switch reports.
2555 			    */
2556 			   oag_report_ctx_switches(stream));
2557 
2558 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2559 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2560 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2561 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2562 			    : 0);
2563 
2564 	/*
2565 	 * Update all contexts prior writing the mux configurations as we need
2566 	 * to make sure all slices/subslices are ON before writing to NOA
2567 	 * registers.
2568 	 */
2569 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2570 	if (ret)
2571 		return ret;
2572 
2573 	/*
2574 	 * For Gen12, performance counters are context
2575 	 * saved/restored. Only enable it for the context that
2576 	 * requested this.
2577 	 */
2578 	if (stream->ctx) {
2579 		ret = gen12_configure_oar_context(stream, active);
2580 		if (ret)
2581 			return ret;
2582 	}
2583 
2584 	return emit_oa_config(stream,
2585 			      stream->oa_config, oa_context(stream),
2586 			      active);
2587 }
2588 
2589 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2590 {
2591 	struct intel_uncore *uncore = stream->uncore;
2592 
2593 	/* Reset all contexts' slices/subslices configurations. */
2594 	lrc_configure_all_contexts(stream, NULL, NULL);
2595 
2596 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2597 }
2598 
2599 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2600 {
2601 	struct intel_uncore *uncore = stream->uncore;
2602 
2603 	/* Reset all contexts' slices/subslices configurations. */
2604 	lrc_configure_all_contexts(stream, NULL, NULL);
2605 
2606 	/* Make sure we disable noa to save power. */
2607 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2608 }
2609 
2610 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2611 {
2612 	struct intel_uncore *uncore = stream->uncore;
2613 
2614 	/* Reset all contexts' slices/subslices configurations. */
2615 	gen12_configure_all_contexts(stream, NULL, NULL);
2616 
2617 	/* disable the context save/restore or OAR counters */
2618 	if (stream->ctx)
2619 		gen12_configure_oar_context(stream, NULL);
2620 
2621 	/* Make sure we disable noa to save power. */
2622 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2623 }
2624 
2625 static void gen7_oa_enable(struct i915_perf_stream *stream)
2626 {
2627 	struct intel_uncore *uncore = stream->uncore;
2628 	struct i915_gem_context *ctx = stream->ctx;
2629 	u32 ctx_id = stream->specific_ctx_id;
2630 	bool periodic = stream->periodic;
2631 	u32 period_exponent = stream->period_exponent;
2632 	u32 report_format = stream->oa_buffer.format;
2633 
2634 	/*
2635 	 * Reset buf pointers so we don't forward reports from before now.
2636 	 *
2637 	 * Think carefully if considering trying to avoid this, since it
2638 	 * also ensures status flags and the buffer itself are cleared
2639 	 * in error paths, and we have checks for invalid reports based
2640 	 * on the assumption that certain fields are written to zeroed
2641 	 * memory which this helps maintains.
2642 	 */
2643 	gen7_init_oa_buffer(stream);
2644 
2645 	intel_uncore_write(uncore, GEN7_OACONTROL,
2646 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2647 			   (period_exponent <<
2648 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2649 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2650 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2651 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2652 			   GEN7_OACONTROL_ENABLE);
2653 }
2654 
2655 static void gen8_oa_enable(struct i915_perf_stream *stream)
2656 {
2657 	struct intel_uncore *uncore = stream->uncore;
2658 	u32 report_format = stream->oa_buffer.format;
2659 
2660 	/*
2661 	 * Reset buf pointers so we don't forward reports from before now.
2662 	 *
2663 	 * Think carefully if considering trying to avoid this, since it
2664 	 * also ensures status flags and the buffer itself are cleared
2665 	 * in error paths, and we have checks for invalid reports based
2666 	 * on the assumption that certain fields are written to zeroed
2667 	 * memory which this helps maintains.
2668 	 */
2669 	gen8_init_oa_buffer(stream);
2670 
2671 	/*
2672 	 * Note: we don't rely on the hardware to perform single context
2673 	 * filtering and instead filter on the cpu based on the context-id
2674 	 * field of reports
2675 	 */
2676 	intel_uncore_write(uncore, GEN8_OACONTROL,
2677 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2678 			   GEN8_OA_COUNTER_ENABLE);
2679 }
2680 
2681 static void gen12_oa_enable(struct i915_perf_stream *stream)
2682 {
2683 	struct intel_uncore *uncore = stream->uncore;
2684 	u32 report_format = stream->oa_buffer.format;
2685 
2686 	/*
2687 	 * If we don't want OA reports from the OA buffer, then we don't even
2688 	 * need to program the OAG unit.
2689 	 */
2690 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2691 		return;
2692 
2693 	gen12_init_oa_buffer(stream);
2694 
2695 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2696 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2697 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2698 }
2699 
2700 /**
2701  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2702  * @stream: An i915 perf stream opened for OA metrics
2703  *
2704  * [Re]enables hardware periodic sampling according to the period configured
2705  * when opening the stream. This also starts a hrtimer that will periodically
2706  * check for data in the circular OA buffer for notifying userspace (e.g.
2707  * during a read() or poll()).
2708  */
2709 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2710 {
2711 	stream->pollin = false;
2712 
2713 	stream->perf->ops.oa_enable(stream);
2714 
2715 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2716 		hrtimer_start(&stream->poll_check_timer,
2717 			      ns_to_ktime(stream->poll_oa_period),
2718 			      HRTIMER_MODE_REL_PINNED);
2719 }
2720 
2721 static void gen7_oa_disable(struct i915_perf_stream *stream)
2722 {
2723 	struct intel_uncore *uncore = stream->uncore;
2724 
2725 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2726 	if (intel_wait_for_register(uncore,
2727 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2728 				    50))
2729 		drm_err(&stream->perf->i915->drm,
2730 			"wait for OA to be disabled timed out\n");
2731 }
2732 
2733 static void gen8_oa_disable(struct i915_perf_stream *stream)
2734 {
2735 	struct intel_uncore *uncore = stream->uncore;
2736 
2737 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2738 	if (intel_wait_for_register(uncore,
2739 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2740 				    50))
2741 		drm_err(&stream->perf->i915->drm,
2742 			"wait for OA to be disabled timed out\n");
2743 }
2744 
2745 static void gen12_oa_disable(struct i915_perf_stream *stream)
2746 {
2747 	struct intel_uncore *uncore = stream->uncore;
2748 
2749 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2750 	if (intel_wait_for_register(uncore,
2751 				    GEN12_OAG_OACONTROL,
2752 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2753 				    50))
2754 		drm_err(&stream->perf->i915->drm,
2755 			"wait for OA to be disabled timed out\n");
2756 
2757 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2758 	if (intel_wait_for_register(uncore,
2759 				    GEN12_OA_TLB_INV_CR,
2760 				    1, 0,
2761 				    50))
2762 		drm_err(&stream->perf->i915->drm,
2763 			"wait for OA tlb invalidate timed out\n");
2764 }
2765 
2766 /**
2767  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2768  * @stream: An i915 perf stream opened for OA metrics
2769  *
2770  * Stops the OA unit from periodically writing counter reports into the
2771  * circular OA buffer. This also stops the hrtimer that periodically checks for
2772  * data in the circular OA buffer, for notifying userspace.
2773  */
2774 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2775 {
2776 	stream->perf->ops.oa_disable(stream);
2777 
2778 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2779 		hrtimer_cancel(&stream->poll_check_timer);
2780 }
2781 
2782 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2783 	.destroy = i915_oa_stream_destroy,
2784 	.enable = i915_oa_stream_enable,
2785 	.disable = i915_oa_stream_disable,
2786 	.wait_unlocked = i915_oa_wait_unlocked,
2787 	.poll_wait = i915_oa_poll_wait,
2788 	.read = i915_oa_read,
2789 };
2790 
2791 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2792 {
2793 	struct i915_active *active;
2794 	int err;
2795 
2796 	active = i915_active_create();
2797 	if (!active)
2798 		return -ENOMEM;
2799 
2800 	err = stream->perf->ops.enable_metric_set(stream, active);
2801 	if (err == 0)
2802 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2803 
2804 	i915_active_put(active);
2805 	return err;
2806 }
2807 
2808 static void
2809 get_default_sseu_config(struct intel_sseu *out_sseu,
2810 			struct intel_engine_cs *engine)
2811 {
2812 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2813 
2814 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2815 
2816 	if (GRAPHICS_VER(engine->i915) == 11) {
2817 		/*
2818 		 * We only need subslice count so it doesn't matter which ones
2819 		 * we select - just turn off low bits in the amount of half of
2820 		 * all available subslices per slice.
2821 		 */
2822 		out_sseu->subslice_mask =
2823 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2824 		out_sseu->slice_mask = 0x1;
2825 	}
2826 }
2827 
2828 static int
2829 get_sseu_config(struct intel_sseu *out_sseu,
2830 		struct intel_engine_cs *engine,
2831 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2832 {
2833 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2834 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2835 		return -EINVAL;
2836 
2837 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2838 }
2839 
2840 /**
2841  * i915_oa_stream_init - validate combined props for OA stream and init
2842  * @stream: An i915 perf stream
2843  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2844  * @props: The property state that configures stream (individually validated)
2845  *
2846  * While read_properties_unlocked() validates properties in isolation it
2847  * doesn't ensure that the combination necessarily makes sense.
2848  *
2849  * At this point it has been determined that userspace wants a stream of
2850  * OA metrics, but still we need to further validate the combined
2851  * properties are OK.
2852  *
2853  * If the configuration makes sense then we can allocate memory for
2854  * a circular OA buffer and apply the requested metric set configuration.
2855  *
2856  * Returns: zero on success or a negative error code.
2857  */
2858 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2859 			       struct drm_i915_perf_open_param *param,
2860 			       struct perf_open_properties *props)
2861 {
2862 	struct drm_i915_private *i915 = stream->perf->i915;
2863 	struct i915_perf *perf = stream->perf;
2864 	int format_size;
2865 	int ret;
2866 
2867 	if (!props->engine) {
2868 		drm_dbg(&stream->perf->i915->drm,
2869 			"OA engine not specified\n");
2870 		return -EINVAL;
2871 	}
2872 
2873 	/*
2874 	 * If the sysfs metrics/ directory wasn't registered for some
2875 	 * reason then don't let userspace try their luck with config
2876 	 * IDs
2877 	 */
2878 	if (!perf->metrics_kobj) {
2879 		drm_dbg(&stream->perf->i915->drm,
2880 			"OA metrics weren't advertised via sysfs\n");
2881 		return -EINVAL;
2882 	}
2883 
2884 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2885 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2886 		drm_dbg(&stream->perf->i915->drm,
2887 			"Only OA report sampling supported\n");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (!perf->ops.enable_metric_set) {
2892 		drm_dbg(&stream->perf->i915->drm,
2893 			"OA unit not supported\n");
2894 		return -ENODEV;
2895 	}
2896 
2897 	/*
2898 	 * To avoid the complexity of having to accurately filter
2899 	 * counter reports and marshal to the appropriate client
2900 	 * we currently only allow exclusive access
2901 	 */
2902 	if (perf->exclusive_stream) {
2903 		drm_dbg(&stream->perf->i915->drm,
2904 			"OA unit already in use\n");
2905 		return -EBUSY;
2906 	}
2907 
2908 	if (!props->oa_format) {
2909 		drm_dbg(&stream->perf->i915->drm,
2910 			"OA report format not specified\n");
2911 		return -EINVAL;
2912 	}
2913 
2914 	stream->engine = props->engine;
2915 	stream->uncore = stream->engine->gt->uncore;
2916 
2917 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2918 
2919 	format_size = perf->oa_formats[props->oa_format].size;
2920 
2921 	stream->sample_flags = props->sample_flags;
2922 	stream->sample_size += format_size;
2923 
2924 	stream->oa_buffer.format_size = format_size;
2925 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2926 		return -EINVAL;
2927 
2928 	stream->hold_preemption = props->hold_preemption;
2929 
2930 	stream->oa_buffer.format =
2931 		perf->oa_formats[props->oa_format].format;
2932 
2933 	stream->periodic = props->oa_periodic;
2934 	if (stream->periodic)
2935 		stream->period_exponent = props->oa_period_exponent;
2936 
2937 	if (stream->ctx) {
2938 		ret = oa_get_render_ctx_id(stream);
2939 		if (ret) {
2940 			drm_dbg(&stream->perf->i915->drm,
2941 				"Invalid context id to filter with\n");
2942 			return ret;
2943 		}
2944 	}
2945 
2946 	ret = alloc_noa_wait(stream);
2947 	if (ret) {
2948 		drm_dbg(&stream->perf->i915->drm,
2949 			"Unable to allocate NOA wait batch buffer\n");
2950 		goto err_noa_wait_alloc;
2951 	}
2952 
2953 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2954 	if (!stream->oa_config) {
2955 		drm_dbg(&stream->perf->i915->drm,
2956 			"Invalid OA config id=%i\n", props->metrics_set);
2957 		ret = -EINVAL;
2958 		goto err_config;
2959 	}
2960 
2961 	/* PRM - observability performance counters:
2962 	 *
2963 	 *   OACONTROL, performance counter enable, note:
2964 	 *
2965 	 *   "When this bit is set, in order to have coherent counts,
2966 	 *   RC6 power state and trunk clock gating must be disabled.
2967 	 *   This can be achieved by programming MMIO registers as
2968 	 *   0xA094=0 and 0xA090[31]=1"
2969 	 *
2970 	 *   In our case we are expecting that taking pm + FORCEWAKE
2971 	 *   references will effectively disable RC6.
2972 	 */
2973 	intel_engine_pm_get(stream->engine);
2974 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2975 
2976 	ret = alloc_oa_buffer(stream);
2977 	if (ret)
2978 		goto err_oa_buf_alloc;
2979 
2980 	stream->ops = &i915_oa_stream_ops;
2981 
2982 	perf->sseu = props->sseu;
2983 	WRITE_ONCE(perf->exclusive_stream, stream);
2984 
2985 	ret = i915_perf_stream_enable_sync(stream);
2986 	if (ret) {
2987 		drm_dbg(&stream->perf->i915->drm,
2988 			"Unable to enable metric set\n");
2989 		goto err_enable;
2990 	}
2991 
2992 	drm_dbg(&stream->perf->i915->drm,
2993 		"opening stream oa config uuid=%s\n",
2994 		  stream->oa_config->uuid);
2995 
2996 	hrtimer_init(&stream->poll_check_timer,
2997 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2998 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2999 	init_waitqueue_head(&stream->poll_wq);
3000 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3001 
3002 	return 0;
3003 
3004 err_enable:
3005 	WRITE_ONCE(perf->exclusive_stream, NULL);
3006 	perf->ops.disable_metric_set(stream);
3007 
3008 	free_oa_buffer(stream);
3009 
3010 err_oa_buf_alloc:
3011 	free_oa_configs(stream);
3012 
3013 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3014 	intel_engine_pm_put(stream->engine);
3015 
3016 err_config:
3017 	free_noa_wait(stream);
3018 
3019 err_noa_wait_alloc:
3020 	if (stream->ctx)
3021 		oa_put_render_ctx_id(stream);
3022 
3023 	return ret;
3024 }
3025 
3026 void i915_oa_init_reg_state(const struct intel_context *ce,
3027 			    const struct intel_engine_cs *engine)
3028 {
3029 	struct i915_perf_stream *stream;
3030 
3031 	if (engine->class != RENDER_CLASS)
3032 		return;
3033 
3034 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3035 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3036 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3037 		gen8_update_reg_state_unlocked(ce, stream);
3038 }
3039 
3040 /**
3041  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3042  * @file: An i915 perf stream file
3043  * @buf: destination buffer given by userspace
3044  * @count: the number of bytes userspace wants to read
3045  * @ppos: (inout) file seek position (unused)
3046  *
3047  * The entry point for handling a read() on a stream file descriptor from
3048  * userspace. Most of the work is left to the i915_perf_read_locked() and
3049  * &i915_perf_stream_ops->read but to save having stream implementations (of
3050  * which we might have multiple later) we handle blocking read here.
3051  *
3052  * We can also consistently treat trying to read from a disabled stream
3053  * as an IO error so implementations can assume the stream is enabled
3054  * while reading.
3055  *
3056  * Returns: The number of bytes copied or a negative error code on failure.
3057  */
3058 static ssize_t i915_perf_read(struct file *file,
3059 			      char __user *buf,
3060 			      size_t count,
3061 			      loff_t *ppos)
3062 {
3063 	struct i915_perf_stream *stream = file->private_data;
3064 	struct i915_perf *perf = stream->perf;
3065 	size_t offset = 0;
3066 	int ret;
3067 
3068 	/* To ensure it's handled consistently we simply treat all reads of a
3069 	 * disabled stream as an error. In particular it might otherwise lead
3070 	 * to a deadlock for blocking file descriptors...
3071 	 */
3072 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3073 		return -EIO;
3074 
3075 	if (!(file->f_flags & O_NONBLOCK)) {
3076 		/* There's the small chance of false positives from
3077 		 * stream->ops->wait_unlocked.
3078 		 *
3079 		 * E.g. with single context filtering since we only wait until
3080 		 * oabuffer has >= 1 report we don't immediately know whether
3081 		 * any reports really belong to the current context
3082 		 */
3083 		do {
3084 			ret = stream->ops->wait_unlocked(stream);
3085 			if (ret)
3086 				return ret;
3087 
3088 			mutex_lock(&perf->lock);
3089 			ret = stream->ops->read(stream, buf, count, &offset);
3090 			mutex_unlock(&perf->lock);
3091 		} while (!offset && !ret);
3092 	} else {
3093 		mutex_lock(&perf->lock);
3094 		ret = stream->ops->read(stream, buf, count, &offset);
3095 		mutex_unlock(&perf->lock);
3096 	}
3097 
3098 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3099 	 * events where we might actually report EAGAIN on read() if there's
3100 	 * not really any data available. In this situation though we don't
3101 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3102 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3103 	 * effectively ensures we back off until the next hrtimer callback
3104 	 * before reporting another EPOLLIN event.
3105 	 * The exception to this is if ops->read() returned -ENOSPC which means
3106 	 * that more OA data is available than could fit in the user provided
3107 	 * buffer. In this case we want the next poll() call to not block.
3108 	 */
3109 	if (ret != -ENOSPC)
3110 		stream->pollin = false;
3111 
3112 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3113 	return offset ?: (ret ?: -EAGAIN);
3114 }
3115 
3116 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3117 {
3118 	struct i915_perf_stream *stream =
3119 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3120 
3121 	if (oa_buffer_check_unlocked(stream)) {
3122 		stream->pollin = true;
3123 		wake_up(&stream->poll_wq);
3124 	}
3125 
3126 	hrtimer_forward_now(hrtimer,
3127 			    ns_to_ktime(stream->poll_oa_period));
3128 
3129 	return HRTIMER_RESTART;
3130 }
3131 
3132 /**
3133  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3134  * @stream: An i915 perf stream
3135  * @file: An i915 perf stream file
3136  * @wait: poll() state table
3137  *
3138  * For handling userspace polling on an i915 perf stream, this calls through to
3139  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3140  * will be woken for new stream data.
3141  *
3142  * Note: The &perf->lock mutex has been taken to serialize
3143  * with any non-file-operation driver hooks.
3144  *
3145  * Returns: any poll events that are ready without sleeping
3146  */
3147 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3148 				      struct file *file,
3149 				      poll_table *wait)
3150 {
3151 	__poll_t events = 0;
3152 
3153 	stream->ops->poll_wait(stream, file, wait);
3154 
3155 	/* Note: we don't explicitly check whether there's something to read
3156 	 * here since this path may be very hot depending on what else
3157 	 * userspace is polling, or on the timeout in use. We rely solely on
3158 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3159 	 * samples to read.
3160 	 */
3161 	if (stream->pollin)
3162 		events |= EPOLLIN;
3163 
3164 	return events;
3165 }
3166 
3167 /**
3168  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3169  * @file: An i915 perf stream file
3170  * @wait: poll() state table
3171  *
3172  * For handling userspace polling on an i915 perf stream, this ensures
3173  * poll_wait() gets called with a wait queue that will be woken for new stream
3174  * data.
3175  *
3176  * Note: Implementation deferred to i915_perf_poll_locked()
3177  *
3178  * Returns: any poll events that are ready without sleeping
3179  */
3180 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3181 {
3182 	struct i915_perf_stream *stream = file->private_data;
3183 	struct i915_perf *perf = stream->perf;
3184 	__poll_t ret;
3185 
3186 	mutex_lock(&perf->lock);
3187 	ret = i915_perf_poll_locked(stream, file, wait);
3188 	mutex_unlock(&perf->lock);
3189 
3190 	return ret;
3191 }
3192 
3193 /**
3194  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3195  * @stream: A disabled i915 perf stream
3196  *
3197  * [Re]enables the associated capture of data for this stream.
3198  *
3199  * If a stream was previously enabled then there's currently no intention
3200  * to provide userspace any guarantee about the preservation of previously
3201  * buffered data.
3202  */
3203 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3204 {
3205 	if (stream->enabled)
3206 		return;
3207 
3208 	/* Allow stream->ops->enable() to refer to this */
3209 	stream->enabled = true;
3210 
3211 	if (stream->ops->enable)
3212 		stream->ops->enable(stream);
3213 
3214 	if (stream->hold_preemption)
3215 		intel_context_set_nopreempt(stream->pinned_ctx);
3216 }
3217 
3218 /**
3219  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3220  * @stream: An enabled i915 perf stream
3221  *
3222  * Disables the associated capture of data for this stream.
3223  *
3224  * The intention is that disabling an re-enabling a stream will ideally be
3225  * cheaper than destroying and re-opening a stream with the same configuration,
3226  * though there are no formal guarantees about what state or buffered data
3227  * must be retained between disabling and re-enabling a stream.
3228  *
3229  * Note: while a stream is disabled it's considered an error for userspace
3230  * to attempt to read from the stream (-EIO).
3231  */
3232 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3233 {
3234 	if (!stream->enabled)
3235 		return;
3236 
3237 	/* Allow stream->ops->disable() to refer to this */
3238 	stream->enabled = false;
3239 
3240 	if (stream->hold_preemption)
3241 		intel_context_clear_nopreempt(stream->pinned_ctx);
3242 
3243 	if (stream->ops->disable)
3244 		stream->ops->disable(stream);
3245 }
3246 
3247 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3248 				    unsigned long metrics_set)
3249 {
3250 	struct i915_oa_config *config;
3251 	long ret = stream->oa_config->id;
3252 
3253 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3254 	if (!config)
3255 		return -EINVAL;
3256 
3257 	if (config != stream->oa_config) {
3258 		int err;
3259 
3260 		/*
3261 		 * If OA is bound to a specific context, emit the
3262 		 * reconfiguration inline from that context. The update
3263 		 * will then be ordered with respect to submission on that
3264 		 * context.
3265 		 *
3266 		 * When set globally, we use a low priority kernel context,
3267 		 * so it will effectively take effect when idle.
3268 		 */
3269 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3270 		if (!err)
3271 			config = xchg(&stream->oa_config, config);
3272 		else
3273 			ret = err;
3274 	}
3275 
3276 	i915_oa_config_put(config);
3277 
3278 	return ret;
3279 }
3280 
3281 /**
3282  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3283  * @stream: An i915 perf stream
3284  * @cmd: the ioctl request
3285  * @arg: the ioctl data
3286  *
3287  * Note: The &perf->lock mutex has been taken to serialize
3288  * with any non-file-operation driver hooks.
3289  *
3290  * Returns: zero on success or a negative error code. Returns -EINVAL for
3291  * an unknown ioctl request.
3292  */
3293 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3294 				   unsigned int cmd,
3295 				   unsigned long arg)
3296 {
3297 	switch (cmd) {
3298 	case I915_PERF_IOCTL_ENABLE:
3299 		i915_perf_enable_locked(stream);
3300 		return 0;
3301 	case I915_PERF_IOCTL_DISABLE:
3302 		i915_perf_disable_locked(stream);
3303 		return 0;
3304 	case I915_PERF_IOCTL_CONFIG:
3305 		return i915_perf_config_locked(stream, arg);
3306 	}
3307 
3308 	return -EINVAL;
3309 }
3310 
3311 /**
3312  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3313  * @file: An i915 perf stream file
3314  * @cmd: the ioctl request
3315  * @arg: the ioctl data
3316  *
3317  * Implementation deferred to i915_perf_ioctl_locked().
3318  *
3319  * Returns: zero on success or a negative error code. Returns -EINVAL for
3320  * an unknown ioctl request.
3321  */
3322 static long i915_perf_ioctl(struct file *file,
3323 			    unsigned int cmd,
3324 			    unsigned long arg)
3325 {
3326 	struct i915_perf_stream *stream = file->private_data;
3327 	struct i915_perf *perf = stream->perf;
3328 	long ret;
3329 
3330 	mutex_lock(&perf->lock);
3331 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3332 	mutex_unlock(&perf->lock);
3333 
3334 	return ret;
3335 }
3336 
3337 /**
3338  * i915_perf_destroy_locked - destroy an i915 perf stream
3339  * @stream: An i915 perf stream
3340  *
3341  * Frees all resources associated with the given i915 perf @stream, disabling
3342  * any associated data capture in the process.
3343  *
3344  * Note: The &perf->lock mutex has been taken to serialize
3345  * with any non-file-operation driver hooks.
3346  */
3347 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3348 {
3349 	if (stream->enabled)
3350 		i915_perf_disable_locked(stream);
3351 
3352 	if (stream->ops->destroy)
3353 		stream->ops->destroy(stream);
3354 
3355 	if (stream->ctx)
3356 		i915_gem_context_put(stream->ctx);
3357 
3358 	kfree(stream);
3359 }
3360 
3361 /**
3362  * i915_perf_release - handles userspace close() of a stream file
3363  * @inode: anonymous inode associated with file
3364  * @file: An i915 perf stream file
3365  *
3366  * Cleans up any resources associated with an open i915 perf stream file.
3367  *
3368  * NB: close() can't really fail from the userspace point of view.
3369  *
3370  * Returns: zero on success or a negative error code.
3371  */
3372 static int i915_perf_release(struct inode *inode, struct file *file)
3373 {
3374 	struct i915_perf_stream *stream = file->private_data;
3375 	struct i915_perf *perf = stream->perf;
3376 
3377 	mutex_lock(&perf->lock);
3378 	i915_perf_destroy_locked(stream);
3379 	mutex_unlock(&perf->lock);
3380 
3381 	/* Release the reference the perf stream kept on the driver. */
3382 	drm_dev_put(&perf->i915->drm);
3383 
3384 	return 0;
3385 }
3386 
3387 
3388 static const struct file_operations fops = {
3389 	.owner		= THIS_MODULE,
3390 	.llseek		= no_llseek,
3391 	.release	= i915_perf_release,
3392 	.poll		= i915_perf_poll,
3393 	.read		= i915_perf_read,
3394 	.unlocked_ioctl	= i915_perf_ioctl,
3395 	/* Our ioctl have no arguments, so it's safe to use the same function
3396 	 * to handle 32bits compatibility.
3397 	 */
3398 	.compat_ioctl   = i915_perf_ioctl,
3399 };
3400 
3401 
3402 /**
3403  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3404  * @perf: i915 perf instance
3405  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3406  * @props: individually validated u64 property value pairs
3407  * @file: drm file
3408  *
3409  * See i915_perf_ioctl_open() for interface details.
3410  *
3411  * Implements further stream config validation and stream initialization on
3412  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3413  * taken to serialize with any non-file-operation driver hooks.
3414  *
3415  * Note: at this point the @props have only been validated in isolation and
3416  * it's still necessary to validate that the combination of properties makes
3417  * sense.
3418  *
3419  * In the case where userspace is interested in OA unit metrics then further
3420  * config validation and stream initialization details will be handled by
3421  * i915_oa_stream_init(). The code here should only validate config state that
3422  * will be relevant to all stream types / backends.
3423  *
3424  * Returns: zero on success or a negative error code.
3425  */
3426 static int
3427 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3428 			    struct drm_i915_perf_open_param *param,
3429 			    struct perf_open_properties *props,
3430 			    struct drm_file *file)
3431 {
3432 	struct i915_gem_context *specific_ctx = NULL;
3433 	struct i915_perf_stream *stream = NULL;
3434 	unsigned long f_flags = 0;
3435 	bool privileged_op = true;
3436 	int stream_fd;
3437 	int ret;
3438 
3439 	if (props->single_context) {
3440 		u32 ctx_handle = props->ctx_handle;
3441 		struct drm_i915_file_private *file_priv = file->driver_priv;
3442 
3443 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3444 		if (IS_ERR(specific_ctx)) {
3445 			drm_dbg(&perf->i915->drm,
3446 				"Failed to look up context with ID %u for opening perf stream\n",
3447 				  ctx_handle);
3448 			ret = PTR_ERR(specific_ctx);
3449 			goto err;
3450 		}
3451 	}
3452 
3453 	/*
3454 	 * On Haswell the OA unit supports clock gating off for a specific
3455 	 * context and in this mode there's no visibility of metrics for the
3456 	 * rest of the system, which we consider acceptable for a
3457 	 * non-privileged client.
3458 	 *
3459 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3460 	 * specific context and the kernel can't securely stop the counters
3461 	 * from updating as system-wide / global values. Even though we can
3462 	 * filter reports based on the included context ID we can't block
3463 	 * clients from seeing the raw / global counter values via
3464 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3465 	 * enable the OA unit by default.
3466 	 *
3467 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3468 	 * per context basis. So we can relax requirements there if the user
3469 	 * doesn't request global stream access (i.e. query based sampling
3470 	 * using MI_RECORD_PERF_COUNT.
3471 	 */
3472 	if (IS_HASWELL(perf->i915) && specific_ctx)
3473 		privileged_op = false;
3474 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3475 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3476 		privileged_op = false;
3477 
3478 	if (props->hold_preemption) {
3479 		if (!props->single_context) {
3480 			drm_dbg(&perf->i915->drm,
3481 				"preemption disable with no context\n");
3482 			ret = -EINVAL;
3483 			goto err;
3484 		}
3485 		privileged_op = true;
3486 	}
3487 
3488 	/*
3489 	 * Asking for SSEU configuration is a priviliged operation.
3490 	 */
3491 	if (props->has_sseu)
3492 		privileged_op = true;
3493 	else
3494 		get_default_sseu_config(&props->sseu, props->engine);
3495 
3496 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3497 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3498 	 * to determine if it's ok to access system wide OA counters
3499 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3500 	 */
3501 	if (privileged_op &&
3502 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3503 		drm_dbg(&perf->i915->drm,
3504 			"Insufficient privileges to open i915 perf stream\n");
3505 		ret = -EACCES;
3506 		goto err_ctx;
3507 	}
3508 
3509 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3510 	if (!stream) {
3511 		ret = -ENOMEM;
3512 		goto err_ctx;
3513 	}
3514 
3515 	stream->perf = perf;
3516 	stream->ctx = specific_ctx;
3517 	stream->poll_oa_period = props->poll_oa_period;
3518 
3519 	ret = i915_oa_stream_init(stream, param, props);
3520 	if (ret)
3521 		goto err_alloc;
3522 
3523 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3524 	 * to have _stream_init check the combination of sample flags more
3525 	 * thoroughly, but still this is the expected result at this point.
3526 	 */
3527 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3528 		ret = -ENODEV;
3529 		goto err_flags;
3530 	}
3531 
3532 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3533 		f_flags |= O_CLOEXEC;
3534 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3535 		f_flags |= O_NONBLOCK;
3536 
3537 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3538 	if (stream_fd < 0) {
3539 		ret = stream_fd;
3540 		goto err_flags;
3541 	}
3542 
3543 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3544 		i915_perf_enable_locked(stream);
3545 
3546 	/* Take a reference on the driver that will be kept with stream_fd
3547 	 * until its release.
3548 	 */
3549 	drm_dev_get(&perf->i915->drm);
3550 
3551 	return stream_fd;
3552 
3553 err_flags:
3554 	if (stream->ops->destroy)
3555 		stream->ops->destroy(stream);
3556 err_alloc:
3557 	kfree(stream);
3558 err_ctx:
3559 	if (specific_ctx)
3560 		i915_gem_context_put(specific_ctx);
3561 err:
3562 	return ret;
3563 }
3564 
3565 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3566 {
3567 	return intel_gt_clock_interval_to_ns(to_gt(perf->i915),
3568 					     2ULL << exponent);
3569 }
3570 
3571 static __always_inline bool
3572 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3573 {
3574 	return test_bit(format, perf->format_mask);
3575 }
3576 
3577 static __always_inline void
3578 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3579 {
3580 	__set_bit(format, perf->format_mask);
3581 }
3582 
3583 /**
3584  * read_properties_unlocked - validate + copy userspace stream open properties
3585  * @perf: i915 perf instance
3586  * @uprops: The array of u64 key value pairs given by userspace
3587  * @n_props: The number of key value pairs expected in @uprops
3588  * @props: The stream configuration built up while validating properties
3589  *
3590  * Note this function only validates properties in isolation it doesn't
3591  * validate that the combination of properties makes sense or that all
3592  * properties necessary for a particular kind of stream have been set.
3593  *
3594  * Note that there currently aren't any ordering requirements for properties so
3595  * we shouldn't validate or assume anything about ordering here. This doesn't
3596  * rule out defining new properties with ordering requirements in the future.
3597  */
3598 static int read_properties_unlocked(struct i915_perf *perf,
3599 				    u64 __user *uprops,
3600 				    u32 n_props,
3601 				    struct perf_open_properties *props)
3602 {
3603 	u64 __user *uprop = uprops;
3604 	u32 i;
3605 	int ret;
3606 
3607 	memset(props, 0, sizeof(struct perf_open_properties));
3608 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3609 
3610 	if (!n_props) {
3611 		drm_dbg(&perf->i915->drm,
3612 			"No i915 perf properties given\n");
3613 		return -EINVAL;
3614 	}
3615 
3616 	/* At the moment we only support using i915-perf on the RCS. */
3617 	props->engine = intel_engine_lookup_user(perf->i915,
3618 						 I915_ENGINE_CLASS_RENDER,
3619 						 0);
3620 	if (!props->engine) {
3621 		drm_dbg(&perf->i915->drm,
3622 			"No RENDER-capable engines\n");
3623 		return -EINVAL;
3624 	}
3625 
3626 	/* Considering that ID = 0 is reserved and assuming that we don't
3627 	 * (currently) expect any configurations to ever specify duplicate
3628 	 * values for a particular property ID then the last _PROP_MAX value is
3629 	 * one greater than the maximum number of properties we expect to get
3630 	 * from userspace.
3631 	 */
3632 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3633 		drm_dbg(&perf->i915->drm,
3634 			"More i915 perf properties specified than exist\n");
3635 		return -EINVAL;
3636 	}
3637 
3638 	for (i = 0; i < n_props; i++) {
3639 		u64 oa_period, oa_freq_hz;
3640 		u64 id, value;
3641 
3642 		ret = get_user(id, uprop);
3643 		if (ret)
3644 			return ret;
3645 
3646 		ret = get_user(value, uprop + 1);
3647 		if (ret)
3648 			return ret;
3649 
3650 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3651 			drm_dbg(&perf->i915->drm,
3652 				"Unknown i915 perf property ID\n");
3653 			return -EINVAL;
3654 		}
3655 
3656 		switch ((enum drm_i915_perf_property_id)id) {
3657 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3658 			props->single_context = 1;
3659 			props->ctx_handle = value;
3660 			break;
3661 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3662 			if (value)
3663 				props->sample_flags |= SAMPLE_OA_REPORT;
3664 			break;
3665 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3666 			if (value == 0) {
3667 				drm_dbg(&perf->i915->drm,
3668 					"Unknown OA metric set ID\n");
3669 				return -EINVAL;
3670 			}
3671 			props->metrics_set = value;
3672 			break;
3673 		case DRM_I915_PERF_PROP_OA_FORMAT:
3674 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3675 				drm_dbg(&perf->i915->drm,
3676 					"Out-of-range OA report format %llu\n",
3677 					  value);
3678 				return -EINVAL;
3679 			}
3680 			if (!oa_format_valid(perf, value)) {
3681 				drm_dbg(&perf->i915->drm,
3682 					"Unsupported OA report format %llu\n",
3683 					  value);
3684 				return -EINVAL;
3685 			}
3686 			props->oa_format = value;
3687 			break;
3688 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3689 			if (value > OA_EXPONENT_MAX) {
3690 				drm_dbg(&perf->i915->drm,
3691 					"OA timer exponent too high (> %u)\n",
3692 					 OA_EXPONENT_MAX);
3693 				return -EINVAL;
3694 			}
3695 
3696 			/* Theoretically we can program the OA unit to sample
3697 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3698 			 * for BXT. We don't allow such high sampling
3699 			 * frequencies by default unless root.
3700 			 */
3701 
3702 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3703 			oa_period = oa_exponent_to_ns(perf, value);
3704 
3705 			/* This check is primarily to ensure that oa_period <=
3706 			 * UINT32_MAX (before passing to do_div which only
3707 			 * accepts a u32 denominator), but we can also skip
3708 			 * checking anything < 1Hz which implicitly can't be
3709 			 * limited via an integer oa_max_sample_rate.
3710 			 */
3711 			if (oa_period <= NSEC_PER_SEC) {
3712 				u64 tmp = NSEC_PER_SEC;
3713 				do_div(tmp, oa_period);
3714 				oa_freq_hz = tmp;
3715 			} else
3716 				oa_freq_hz = 0;
3717 
3718 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3719 				drm_dbg(&perf->i915->drm,
3720 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3721 					  i915_oa_max_sample_rate);
3722 				return -EACCES;
3723 			}
3724 
3725 			props->oa_periodic = true;
3726 			props->oa_period_exponent = value;
3727 			break;
3728 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3729 			props->hold_preemption = !!value;
3730 			break;
3731 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3732 			struct drm_i915_gem_context_param_sseu user_sseu;
3733 
3734 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
3735 				drm_dbg(&perf->i915->drm,
3736 					"SSEU config not supported on gfx %x\n",
3737 					GRAPHICS_VER_FULL(perf->i915));
3738 				return -ENODEV;
3739 			}
3740 
3741 			if (copy_from_user(&user_sseu,
3742 					   u64_to_user_ptr(value),
3743 					   sizeof(user_sseu))) {
3744 				drm_dbg(&perf->i915->drm,
3745 					"Unable to copy global sseu parameter\n");
3746 				return -EFAULT;
3747 			}
3748 
3749 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3750 			if (ret) {
3751 				drm_dbg(&perf->i915->drm,
3752 					"Invalid SSEU configuration\n");
3753 				return ret;
3754 			}
3755 			props->has_sseu = true;
3756 			break;
3757 		}
3758 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3759 			if (value < 100000 /* 100us */) {
3760 				drm_dbg(&perf->i915->drm,
3761 					"OA availability timer too small (%lluns < 100us)\n",
3762 					  value);
3763 				return -EINVAL;
3764 			}
3765 			props->poll_oa_period = value;
3766 			break;
3767 		case DRM_I915_PERF_PROP_MAX:
3768 			MISSING_CASE(id);
3769 			return -EINVAL;
3770 		}
3771 
3772 		uprop += 2;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 /**
3779  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3780  * @dev: drm device
3781  * @data: ioctl data copied from userspace (unvalidated)
3782  * @file: drm file
3783  *
3784  * Validates the stream open parameters given by userspace including flags
3785  * and an array of u64 key, value pair properties.
3786  *
3787  * Very little is assumed up front about the nature of the stream being
3788  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3789  * i915-perf stream is expected to be a suitable interface for other forms of
3790  * buffered data written by the GPU besides periodic OA metrics.
3791  *
3792  * Note we copy the properties from userspace outside of the i915 perf
3793  * mutex to avoid an awkward lockdep with mmap_lock.
3794  *
3795  * Most of the implementation details are handled by
3796  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3797  * mutex for serializing with any non-file-operation driver hooks.
3798  *
3799  * Return: A newly opened i915 Perf stream file descriptor or negative
3800  * error code on failure.
3801  */
3802 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3803 			 struct drm_file *file)
3804 {
3805 	struct i915_perf *perf = &to_i915(dev)->perf;
3806 	struct drm_i915_perf_open_param *param = data;
3807 	struct perf_open_properties props;
3808 	u32 known_open_flags;
3809 	int ret;
3810 
3811 	if (!perf->i915) {
3812 		drm_dbg(&perf->i915->drm,
3813 			"i915 perf interface not available for this system\n");
3814 		return -ENOTSUPP;
3815 	}
3816 
3817 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3818 			   I915_PERF_FLAG_FD_NONBLOCK |
3819 			   I915_PERF_FLAG_DISABLED;
3820 	if (param->flags & ~known_open_flags) {
3821 		drm_dbg(&perf->i915->drm,
3822 			"Unknown drm_i915_perf_open_param flag\n");
3823 		return -EINVAL;
3824 	}
3825 
3826 	ret = read_properties_unlocked(perf,
3827 				       u64_to_user_ptr(param->properties_ptr),
3828 				       param->num_properties,
3829 				       &props);
3830 	if (ret)
3831 		return ret;
3832 
3833 	mutex_lock(&perf->lock);
3834 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3835 	mutex_unlock(&perf->lock);
3836 
3837 	return ret;
3838 }
3839 
3840 /**
3841  * i915_perf_register - exposes i915-perf to userspace
3842  * @i915: i915 device instance
3843  *
3844  * In particular OA metric sets are advertised under a sysfs metrics/
3845  * directory allowing userspace to enumerate valid IDs that can be
3846  * used to open an i915-perf stream.
3847  */
3848 void i915_perf_register(struct drm_i915_private *i915)
3849 {
3850 	struct i915_perf *perf = &i915->perf;
3851 
3852 	if (!perf->i915)
3853 		return;
3854 
3855 	/* To be sure we're synchronized with an attempted
3856 	 * i915_perf_open_ioctl(); considering that we register after
3857 	 * being exposed to userspace.
3858 	 */
3859 	mutex_lock(&perf->lock);
3860 
3861 	perf->metrics_kobj =
3862 		kobject_create_and_add("metrics",
3863 				       &i915->drm.primary->kdev->kobj);
3864 
3865 	mutex_unlock(&perf->lock);
3866 }
3867 
3868 /**
3869  * i915_perf_unregister - hide i915-perf from userspace
3870  * @i915: i915 device instance
3871  *
3872  * i915-perf state cleanup is split up into an 'unregister' and
3873  * 'deinit' phase where the interface is first hidden from
3874  * userspace by i915_perf_unregister() before cleaning up
3875  * remaining state in i915_perf_fini().
3876  */
3877 void i915_perf_unregister(struct drm_i915_private *i915)
3878 {
3879 	struct i915_perf *perf = &i915->perf;
3880 
3881 	if (!perf->metrics_kobj)
3882 		return;
3883 
3884 	kobject_put(perf->metrics_kobj);
3885 	perf->metrics_kobj = NULL;
3886 }
3887 
3888 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3889 {
3890 	static const i915_reg_t flex_eu_regs[] = {
3891 		EU_PERF_CNTL0,
3892 		EU_PERF_CNTL1,
3893 		EU_PERF_CNTL2,
3894 		EU_PERF_CNTL3,
3895 		EU_PERF_CNTL4,
3896 		EU_PERF_CNTL5,
3897 		EU_PERF_CNTL6,
3898 	};
3899 	int i;
3900 
3901 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3902 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3903 			return true;
3904 	}
3905 	return false;
3906 }
3907 
3908 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
3909 {
3910 	while (table->start || table->end) {
3911 		if (addr >= table->start && addr <= table->end)
3912 			return true;
3913 
3914 		table++;
3915 	}
3916 
3917 	return false;
3918 }
3919 
3920 #define REG_EQUAL(addr, mmio) \
3921 	((addr) == i915_mmio_reg_offset(mmio))
3922 
3923 static const struct i915_range gen7_oa_b_counters[] = {
3924 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
3925 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
3926 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
3927 	{}
3928 };
3929 
3930 static const struct i915_range gen12_oa_b_counters[] = {
3931 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
3932 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
3933 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
3934 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
3935 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
3936 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
3937 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
3938 	{}
3939 };
3940 
3941 static const struct i915_range gen7_oa_mux_regs[] = {
3942 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
3943 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
3944 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
3945 	{}
3946 };
3947 
3948 static const struct i915_range hsw_oa_mux_regs[] = {
3949 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
3950 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
3951 	{ .start = 0x25100, .end = 0x2ff90 },
3952 	{}
3953 };
3954 
3955 static const struct i915_range chv_oa_mux_regs[] = {
3956 	{ .start = 0x182300, .end = 0x1823a4 },
3957 	{}
3958 };
3959 
3960 static const struct i915_range gen8_oa_mux_regs[] = {
3961 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
3962 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3963 	{}
3964 };
3965 
3966 static const struct i915_range gen11_oa_mux_regs[] = {
3967 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
3968 	{}
3969 };
3970 
3971 static const struct i915_range gen12_oa_mux_regs[] = {
3972 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
3973 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
3974 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
3975 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
3976 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3977 	{}
3978 };
3979 
3980 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3981 {
3982 	return reg_in_range_table(addr, gen7_oa_b_counters);
3983 }
3984 
3985 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3986 {
3987 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3988 		reg_in_range_table(addr, gen8_oa_mux_regs);
3989 }
3990 
3991 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3992 {
3993 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3994 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
3995 		reg_in_range_table(addr, gen11_oa_mux_regs);
3996 }
3997 
3998 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3999 {
4000 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4001 		reg_in_range_table(addr, hsw_oa_mux_regs);
4002 }
4003 
4004 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4005 {
4006 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4007 		reg_in_range_table(addr, chv_oa_mux_regs);
4008 }
4009 
4010 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4011 {
4012 	return reg_in_range_table(addr, gen12_oa_b_counters);
4013 }
4014 
4015 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4016 {
4017 	return reg_in_range_table(addr, gen12_oa_mux_regs);
4018 }
4019 
4020 static u32 mask_reg_value(u32 reg, u32 val)
4021 {
4022 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4023 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4024 	 * programmed by userspace doesn't change this.
4025 	 */
4026 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4027 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4028 
4029 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4030 	 * indicated by its name and a bunch of selection fields used by OA
4031 	 * configs.
4032 	 */
4033 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4034 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4035 
4036 	return val;
4037 }
4038 
4039 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4040 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4041 					 u32 __user *regs,
4042 					 u32 n_regs)
4043 {
4044 	struct i915_oa_reg *oa_regs;
4045 	int err;
4046 	u32 i;
4047 
4048 	if (!n_regs)
4049 		return NULL;
4050 
4051 	/* No is_valid function means we're not allowing any register to be programmed. */
4052 	GEM_BUG_ON(!is_valid);
4053 	if (!is_valid)
4054 		return ERR_PTR(-EINVAL);
4055 
4056 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4057 	if (!oa_regs)
4058 		return ERR_PTR(-ENOMEM);
4059 
4060 	for (i = 0; i < n_regs; i++) {
4061 		u32 addr, value;
4062 
4063 		err = get_user(addr, regs);
4064 		if (err)
4065 			goto addr_err;
4066 
4067 		if (!is_valid(perf, addr)) {
4068 			drm_dbg(&perf->i915->drm,
4069 				"Invalid oa_reg address: %X\n", addr);
4070 			err = -EINVAL;
4071 			goto addr_err;
4072 		}
4073 
4074 		err = get_user(value, regs + 1);
4075 		if (err)
4076 			goto addr_err;
4077 
4078 		oa_regs[i].addr = _MMIO(addr);
4079 		oa_regs[i].value = mask_reg_value(addr, value);
4080 
4081 		regs += 2;
4082 	}
4083 
4084 	return oa_regs;
4085 
4086 addr_err:
4087 	kfree(oa_regs);
4088 	return ERR_PTR(err);
4089 }
4090 
4091 static ssize_t show_dynamic_id(struct kobject *kobj,
4092 			       struct kobj_attribute *attr,
4093 			       char *buf)
4094 {
4095 	struct i915_oa_config *oa_config =
4096 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4097 
4098 	return sprintf(buf, "%d\n", oa_config->id);
4099 }
4100 
4101 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4102 					 struct i915_oa_config *oa_config)
4103 {
4104 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4105 	oa_config->sysfs_metric_id.attr.name = "id";
4106 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4107 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4108 	oa_config->sysfs_metric_id.store = NULL;
4109 
4110 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4111 	oa_config->attrs[1] = NULL;
4112 
4113 	oa_config->sysfs_metric.name = oa_config->uuid;
4114 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4115 
4116 	return sysfs_create_group(perf->metrics_kobj,
4117 				  &oa_config->sysfs_metric);
4118 }
4119 
4120 /**
4121  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4122  * @dev: drm device
4123  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4124  *        userspace (unvalidated)
4125  * @file: drm file
4126  *
4127  * Validates the submitted OA register to be saved into a new OA config that
4128  * can then be used for programming the OA unit and its NOA network.
4129  *
4130  * Returns: A new allocated config number to be used with the perf open ioctl
4131  * or a negative error code on failure.
4132  */
4133 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4134 			       struct drm_file *file)
4135 {
4136 	struct i915_perf *perf = &to_i915(dev)->perf;
4137 	struct drm_i915_perf_oa_config *args = data;
4138 	struct i915_oa_config *oa_config, *tmp;
4139 	struct i915_oa_reg *regs;
4140 	int err, id;
4141 
4142 	if (!perf->i915) {
4143 		drm_dbg(&perf->i915->drm,
4144 			"i915 perf interface not available for this system\n");
4145 		return -ENOTSUPP;
4146 	}
4147 
4148 	if (!perf->metrics_kobj) {
4149 		drm_dbg(&perf->i915->drm,
4150 			"OA metrics weren't advertised via sysfs\n");
4151 		return -EINVAL;
4152 	}
4153 
4154 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4155 		drm_dbg(&perf->i915->drm,
4156 			"Insufficient privileges to add i915 OA config\n");
4157 		return -EACCES;
4158 	}
4159 
4160 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4161 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4162 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4163 		drm_dbg(&perf->i915->drm,
4164 			"No OA registers given\n");
4165 		return -EINVAL;
4166 	}
4167 
4168 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4169 	if (!oa_config) {
4170 		drm_dbg(&perf->i915->drm,
4171 			"Failed to allocate memory for the OA config\n");
4172 		return -ENOMEM;
4173 	}
4174 
4175 	oa_config->perf = perf;
4176 	kref_init(&oa_config->ref);
4177 
4178 	if (!uuid_is_valid(args->uuid)) {
4179 		drm_dbg(&perf->i915->drm,
4180 			"Invalid uuid format for OA config\n");
4181 		err = -EINVAL;
4182 		goto reg_err;
4183 	}
4184 
4185 	/* Last character in oa_config->uuid will be 0 because oa_config is
4186 	 * kzalloc.
4187 	 */
4188 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4189 
4190 	oa_config->mux_regs_len = args->n_mux_regs;
4191 	regs = alloc_oa_regs(perf,
4192 			     perf->ops.is_valid_mux_reg,
4193 			     u64_to_user_ptr(args->mux_regs_ptr),
4194 			     args->n_mux_regs);
4195 
4196 	if (IS_ERR(regs)) {
4197 		drm_dbg(&perf->i915->drm,
4198 			"Failed to create OA config for mux_regs\n");
4199 		err = PTR_ERR(regs);
4200 		goto reg_err;
4201 	}
4202 	oa_config->mux_regs = regs;
4203 
4204 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4205 	regs = alloc_oa_regs(perf,
4206 			     perf->ops.is_valid_b_counter_reg,
4207 			     u64_to_user_ptr(args->boolean_regs_ptr),
4208 			     args->n_boolean_regs);
4209 
4210 	if (IS_ERR(regs)) {
4211 		drm_dbg(&perf->i915->drm,
4212 			"Failed to create OA config for b_counter_regs\n");
4213 		err = PTR_ERR(regs);
4214 		goto reg_err;
4215 	}
4216 	oa_config->b_counter_regs = regs;
4217 
4218 	if (GRAPHICS_VER(perf->i915) < 8) {
4219 		if (args->n_flex_regs != 0) {
4220 			err = -EINVAL;
4221 			goto reg_err;
4222 		}
4223 	} else {
4224 		oa_config->flex_regs_len = args->n_flex_regs;
4225 		regs = alloc_oa_regs(perf,
4226 				     perf->ops.is_valid_flex_reg,
4227 				     u64_to_user_ptr(args->flex_regs_ptr),
4228 				     args->n_flex_regs);
4229 
4230 		if (IS_ERR(regs)) {
4231 			drm_dbg(&perf->i915->drm,
4232 				"Failed to create OA config for flex_regs\n");
4233 			err = PTR_ERR(regs);
4234 			goto reg_err;
4235 		}
4236 		oa_config->flex_regs = regs;
4237 	}
4238 
4239 	err = mutex_lock_interruptible(&perf->metrics_lock);
4240 	if (err)
4241 		goto reg_err;
4242 
4243 	/* We shouldn't have too many configs, so this iteration shouldn't be
4244 	 * too costly.
4245 	 */
4246 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4247 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4248 			drm_dbg(&perf->i915->drm,
4249 				"OA config already exists with this uuid\n");
4250 			err = -EADDRINUSE;
4251 			goto sysfs_err;
4252 		}
4253 	}
4254 
4255 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4256 	if (err) {
4257 		drm_dbg(&perf->i915->drm,
4258 			"Failed to create sysfs entry for OA config\n");
4259 		goto sysfs_err;
4260 	}
4261 
4262 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4263 	oa_config->id = idr_alloc(&perf->metrics_idr,
4264 				  oa_config, 2,
4265 				  0, GFP_KERNEL);
4266 	if (oa_config->id < 0) {
4267 		drm_dbg(&perf->i915->drm,
4268 			"Failed to create sysfs entry for OA config\n");
4269 		err = oa_config->id;
4270 		goto sysfs_err;
4271 	}
4272 
4273 	mutex_unlock(&perf->metrics_lock);
4274 
4275 	drm_dbg(&perf->i915->drm,
4276 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4277 
4278 	return oa_config->id;
4279 
4280 sysfs_err:
4281 	mutex_unlock(&perf->metrics_lock);
4282 reg_err:
4283 	i915_oa_config_put(oa_config);
4284 	drm_dbg(&perf->i915->drm,
4285 		"Failed to add new OA config\n");
4286 	return err;
4287 }
4288 
4289 /**
4290  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4291  * @dev: drm device
4292  * @data: ioctl data (pointer to u64 integer) copied from userspace
4293  * @file: drm file
4294  *
4295  * Configs can be removed while being used, the will stop appearing in sysfs
4296  * and their content will be freed when the stream using the config is closed.
4297  *
4298  * Returns: 0 on success or a negative error code on failure.
4299  */
4300 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4301 				  struct drm_file *file)
4302 {
4303 	struct i915_perf *perf = &to_i915(dev)->perf;
4304 	u64 *arg = data;
4305 	struct i915_oa_config *oa_config;
4306 	int ret;
4307 
4308 	if (!perf->i915) {
4309 		drm_dbg(&perf->i915->drm,
4310 			"i915 perf interface not available for this system\n");
4311 		return -ENOTSUPP;
4312 	}
4313 
4314 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4315 		drm_dbg(&perf->i915->drm,
4316 			"Insufficient privileges to remove i915 OA config\n");
4317 		return -EACCES;
4318 	}
4319 
4320 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4321 	if (ret)
4322 		return ret;
4323 
4324 	oa_config = idr_find(&perf->metrics_idr, *arg);
4325 	if (!oa_config) {
4326 		drm_dbg(&perf->i915->drm,
4327 			"Failed to remove unknown OA config\n");
4328 		ret = -ENOENT;
4329 		goto err_unlock;
4330 	}
4331 
4332 	GEM_BUG_ON(*arg != oa_config->id);
4333 
4334 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4335 
4336 	idr_remove(&perf->metrics_idr, *arg);
4337 
4338 	mutex_unlock(&perf->metrics_lock);
4339 
4340 	drm_dbg(&perf->i915->drm,
4341 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4342 
4343 	i915_oa_config_put(oa_config);
4344 
4345 	return 0;
4346 
4347 err_unlock:
4348 	mutex_unlock(&perf->metrics_lock);
4349 	return ret;
4350 }
4351 
4352 static struct ctl_table oa_table[] = {
4353 	{
4354 	 .procname = "perf_stream_paranoid",
4355 	 .data = &i915_perf_stream_paranoid,
4356 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4357 	 .mode = 0644,
4358 	 .proc_handler = proc_dointvec_minmax,
4359 	 .extra1 = SYSCTL_ZERO,
4360 	 .extra2 = SYSCTL_ONE,
4361 	 },
4362 	{
4363 	 .procname = "oa_max_sample_rate",
4364 	 .data = &i915_oa_max_sample_rate,
4365 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4366 	 .mode = 0644,
4367 	 .proc_handler = proc_dointvec_minmax,
4368 	 .extra1 = SYSCTL_ZERO,
4369 	 .extra2 = &oa_sample_rate_hard_limit,
4370 	 },
4371 	{}
4372 };
4373 
4374 static void oa_init_supported_formats(struct i915_perf *perf)
4375 {
4376 	struct drm_i915_private *i915 = perf->i915;
4377 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4378 
4379 	switch (platform) {
4380 	case INTEL_HASWELL:
4381 		oa_format_add(perf, I915_OA_FORMAT_A13);
4382 		oa_format_add(perf, I915_OA_FORMAT_A13);
4383 		oa_format_add(perf, I915_OA_FORMAT_A29);
4384 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4385 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4386 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4387 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4388 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4389 		break;
4390 
4391 	case INTEL_BROADWELL:
4392 	case INTEL_CHERRYVIEW:
4393 	case INTEL_SKYLAKE:
4394 	case INTEL_BROXTON:
4395 	case INTEL_KABYLAKE:
4396 	case INTEL_GEMINILAKE:
4397 	case INTEL_COFFEELAKE:
4398 	case INTEL_COMETLAKE:
4399 	case INTEL_ICELAKE:
4400 	case INTEL_ELKHARTLAKE:
4401 	case INTEL_JASPERLAKE:
4402 	case INTEL_TIGERLAKE:
4403 	case INTEL_ROCKETLAKE:
4404 	case INTEL_DG1:
4405 	case INTEL_ALDERLAKE_S:
4406 	case INTEL_ALDERLAKE_P:
4407 		oa_format_add(perf, I915_OA_FORMAT_A12);
4408 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4409 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4410 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4411 		break;
4412 
4413 	default:
4414 		MISSING_CASE(platform);
4415 	}
4416 }
4417 
4418 /**
4419  * i915_perf_init - initialize i915-perf state on module bind
4420  * @i915: i915 device instance
4421  *
4422  * Initializes i915-perf state without exposing anything to userspace.
4423  *
4424  * Note: i915-perf initialization is split into an 'init' and 'register'
4425  * phase with the i915_perf_register() exposing state to userspace.
4426  */
4427 void i915_perf_init(struct drm_i915_private *i915)
4428 {
4429 	struct i915_perf *perf = &i915->perf;
4430 
4431 	/* XXX const struct i915_perf_ops! */
4432 
4433 	/* i915_perf is not enabled for DG2 yet */
4434 	if (IS_DG2(i915))
4435 		return;
4436 
4437 	perf->oa_formats = oa_formats;
4438 	if (IS_HASWELL(i915)) {
4439 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4440 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4441 		perf->ops.is_valid_flex_reg = NULL;
4442 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4443 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4444 		perf->ops.oa_enable = gen7_oa_enable;
4445 		perf->ops.oa_disable = gen7_oa_disable;
4446 		perf->ops.read = gen7_oa_read;
4447 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4448 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4449 		/* Note: that although we could theoretically also support the
4450 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4451 		 * this driver, before upstreaming did this) it didn't seem
4452 		 * worth the complexity to maintain now that BDW+ enable
4453 		 * execlist mode by default.
4454 		 */
4455 		perf->ops.read = gen8_oa_read;
4456 
4457 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4458 			perf->ops.is_valid_b_counter_reg =
4459 				gen7_is_valid_b_counter_addr;
4460 			perf->ops.is_valid_mux_reg =
4461 				gen8_is_valid_mux_addr;
4462 			perf->ops.is_valid_flex_reg =
4463 				gen8_is_valid_flex_addr;
4464 
4465 			if (IS_CHERRYVIEW(i915)) {
4466 				perf->ops.is_valid_mux_reg =
4467 					chv_is_valid_mux_addr;
4468 			}
4469 
4470 			perf->ops.oa_enable = gen8_oa_enable;
4471 			perf->ops.oa_disable = gen8_oa_disable;
4472 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4473 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4474 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4475 
4476 			if (GRAPHICS_VER(i915) == 8) {
4477 				perf->ctx_oactxctrl_offset = 0x120;
4478 				perf->ctx_flexeu0_offset = 0x2ce;
4479 
4480 				perf->gen8_valid_ctx_bit = BIT(25);
4481 			} else {
4482 				perf->ctx_oactxctrl_offset = 0x128;
4483 				perf->ctx_flexeu0_offset = 0x3de;
4484 
4485 				perf->gen8_valid_ctx_bit = BIT(16);
4486 			}
4487 		} else if (GRAPHICS_VER(i915) == 11) {
4488 			perf->ops.is_valid_b_counter_reg =
4489 				gen7_is_valid_b_counter_addr;
4490 			perf->ops.is_valid_mux_reg =
4491 				gen11_is_valid_mux_addr;
4492 			perf->ops.is_valid_flex_reg =
4493 				gen8_is_valid_flex_addr;
4494 
4495 			perf->ops.oa_enable = gen8_oa_enable;
4496 			perf->ops.oa_disable = gen8_oa_disable;
4497 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4498 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4499 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4500 
4501 			perf->ctx_oactxctrl_offset = 0x124;
4502 			perf->ctx_flexeu0_offset = 0x78e;
4503 
4504 			perf->gen8_valid_ctx_bit = BIT(16);
4505 		} else if (GRAPHICS_VER(i915) == 12) {
4506 			perf->ops.is_valid_b_counter_reg =
4507 				gen12_is_valid_b_counter_addr;
4508 			perf->ops.is_valid_mux_reg =
4509 				gen12_is_valid_mux_addr;
4510 			perf->ops.is_valid_flex_reg =
4511 				gen8_is_valid_flex_addr;
4512 
4513 			perf->ops.oa_enable = gen12_oa_enable;
4514 			perf->ops.oa_disable = gen12_oa_disable;
4515 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4516 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4517 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4518 
4519 			perf->ctx_flexeu0_offset = 0;
4520 			perf->ctx_oactxctrl_offset = 0x144;
4521 		}
4522 	}
4523 
4524 	if (perf->ops.enable_metric_set) {
4525 		mutex_init(&perf->lock);
4526 
4527 		/* Choose a representative limit */
4528 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4529 
4530 		mutex_init(&perf->metrics_lock);
4531 		idr_init_base(&perf->metrics_idr, 1);
4532 
4533 		/* We set up some ratelimit state to potentially throttle any
4534 		 * _NOTES about spurious, invalid OA reports which we don't
4535 		 * forward to userspace.
4536 		 *
4537 		 * We print a _NOTE about any throttling when closing the
4538 		 * stream instead of waiting until driver _fini which no one
4539 		 * would ever see.
4540 		 *
4541 		 * Using the same limiting factors as printk_ratelimit()
4542 		 */
4543 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4544 		/* Since we use a DRM_NOTE for spurious reports it would be
4545 		 * inconsistent to let __ratelimit() automatically print a
4546 		 * warning for throttling.
4547 		 */
4548 		ratelimit_set_flags(&perf->spurious_report_rs,
4549 				    RATELIMIT_MSG_ON_RELEASE);
4550 
4551 		ratelimit_state_init(&perf->tail_pointer_race,
4552 				     5 * HZ, 10);
4553 		ratelimit_set_flags(&perf->tail_pointer_race,
4554 				    RATELIMIT_MSG_ON_RELEASE);
4555 
4556 		atomic64_set(&perf->noa_programming_delay,
4557 			     500 * 1000 /* 500us */);
4558 
4559 		perf->i915 = i915;
4560 
4561 		oa_init_supported_formats(perf);
4562 	}
4563 }
4564 
4565 static int destroy_config(int id, void *p, void *data)
4566 {
4567 	i915_oa_config_put(p);
4568 	return 0;
4569 }
4570 
4571 int i915_perf_sysctl_register(void)
4572 {
4573 	sysctl_header = register_sysctl("dev/i915", oa_table);
4574 	return 0;
4575 }
4576 
4577 void i915_perf_sysctl_unregister(void)
4578 {
4579 	unregister_sysctl_table(sysctl_header);
4580 }
4581 
4582 /**
4583  * i915_perf_fini - Counter part to i915_perf_init()
4584  * @i915: i915 device instance
4585  */
4586 void i915_perf_fini(struct drm_i915_private *i915)
4587 {
4588 	struct i915_perf *perf = &i915->perf;
4589 
4590 	if (!perf->i915)
4591 		return;
4592 
4593 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4594 	idr_destroy(&perf->metrics_idr);
4595 
4596 	memset(&perf->ops, 0, sizeof(perf->ops));
4597 	perf->i915 = NULL;
4598 }
4599 
4600 /**
4601  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4602  *
4603  * This version number is used by userspace to detect available features.
4604  */
4605 int i915_perf_ioctl_version(void)
4606 {
4607 	/*
4608 	 * 1: Initial version
4609 	 *   I915_PERF_IOCTL_ENABLE
4610 	 *   I915_PERF_IOCTL_DISABLE
4611 	 *
4612 	 * 2: Added runtime modification of OA config.
4613 	 *   I915_PERF_IOCTL_CONFIG
4614 	 *
4615 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4616 	 *    preemption on a particular context so that performance data is
4617 	 *    accessible from a delta of MI_RPC reports without looking at the
4618 	 *    OA buffer.
4619 	 *
4620 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4621 	 *    be run for the duration of the performance recording based on
4622 	 *    their SSEU configuration.
4623 	 *
4624 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4625 	 *    interval for the hrtimer used to check for OA data.
4626 	 */
4627 	return 5;
4628 }
4629 
4630 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4631 #include "selftests/i915_perf.c"
4632 #endif
4633