1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "i915_drv.h" 199 #include "i915_oa_hsw.h" 200 #include "i915_oa_bdw.h" 201 #include "i915_oa_chv.h" 202 #include "i915_oa_sklgt2.h" 203 #include "i915_oa_sklgt3.h" 204 #include "i915_oa_sklgt4.h" 205 #include "i915_oa_bxt.h" 206 #include "i915_oa_kblgt2.h" 207 #include "i915_oa_kblgt3.h" 208 #include "i915_oa_glk.h" 209 #include "i915_oa_cflgt2.h" 210 #include "i915_oa_cflgt3.h" 211 #include "i915_oa_cnl.h" 212 213 /* HW requires this to be a power of two, between 128k and 16M, though driver 214 * is currently generally designed assuming the largest 16M size is used such 215 * that the overflow cases are unlikely in normal operation. 216 */ 217 #define OA_BUFFER_SIZE SZ_16M 218 219 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 220 221 /** 222 * DOC: OA Tail Pointer Race 223 * 224 * There's a HW race condition between OA unit tail pointer register updates and 225 * writes to memory whereby the tail pointer can sometimes get ahead of what's 226 * been written out to the OA buffer so far (in terms of what's visible to the 227 * CPU). 228 * 229 * Although this can be observed explicitly while copying reports to userspace 230 * by checking for a zeroed report-id field in tail reports, we want to account 231 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 232 * read() attempts. 233 * 234 * In effect we define a tail pointer for reading that lags the real tail 235 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 236 * time for the corresponding reports to become visible to the CPU. 237 * 238 * To manage this we actually track two tail pointers: 239 * 1) An 'aging' tail with an associated timestamp that is tracked until we 240 * can trust the corresponding data is visible to the CPU; at which point 241 * it is considered 'aged'. 242 * 2) An 'aged' tail that can be used for read()ing. 243 * 244 * The two separate pointers let us decouple read()s from tail pointer aging. 245 * 246 * The tail pointers are checked and updated at a limited rate within a hrtimer 247 * callback (the same callback that is used for delivering EPOLLIN events) 248 * 249 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 250 * indicates that an updated tail pointer is needed. 251 * 252 * Most of the implementation details for this workaround are in 253 * oa_buffer_check_unlocked() and _append_oa_reports() 254 * 255 * Note for posterity: previously the driver used to define an effective tail 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 258 * This was flawed considering that the OA unit may also automatically generate 259 * non-periodic reports (such as on context switch) or the OA unit may be 260 * enabled without any periodic sampling. 261 */ 262 #define OA_TAIL_MARGIN_NSEC 100000ULL 263 #define INVALID_TAIL_PTR 0xffffffff 264 265 /* frequency for checking whether the OA unit has written new reports to the 266 * circular OA buffer... 267 */ 268 #define POLL_FREQUENCY 200 269 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 270 271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 272 static int zero; 273 static int one = 1; 274 static u32 i915_perf_stream_paranoid = true; 275 276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 277 * of the 64bit timestamp bits to trigger reports from) but there's currently 278 * no known use case for sampling as infrequently as once per 47 thousand years. 279 * 280 * Since the timestamps included in OA reports are only 32bits it seems 281 * reasonable to limit the OA exponent where it's still possible to account for 282 * overflow in OA report timestamps. 283 */ 284 #define OA_EXPONENT_MAX 31 285 286 #define INVALID_CTX_ID 0xffffffff 287 288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 289 #define OAREPORT_REASON_MASK 0x3f 290 #define OAREPORT_REASON_SHIFT 19 291 #define OAREPORT_REASON_TIMER (1<<0) 292 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 293 #define OAREPORT_REASON_CLK_RATIO (1<<5) 294 295 296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 297 * 298 * The highest sampling frequency we can theoretically program the OA unit 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 300 * 301 * Initialized just before we register the sysctl parameter. 302 */ 303 static int oa_sample_rate_hard_limit; 304 305 /* Theoretically we can program the OA unit to sample every 160ns but don't 306 * allow that by default unless root... 307 * 308 * The default threshold of 100000Hz is based on perf's similar 309 * kernel.perf_event_max_sample_rate sysctl parameter. 310 */ 311 static u32 i915_oa_max_sample_rate = 100000; 312 313 /* XXX: beware if future OA HW adds new report formats that the current 314 * code assumes all reports have a power-of-two size and ~(size - 1) can 315 * be used as a mask to align the OA tail pointer. 316 */ 317 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 318 [I915_OA_FORMAT_A13] = { 0, 64 }, 319 [I915_OA_FORMAT_A29] = { 1, 128 }, 320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 322 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 325 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 326 }; 327 328 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 329 [I915_OA_FORMAT_A12] = { 0, 64 }, 330 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 331 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 332 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 333 }; 334 335 #define SAMPLE_OA_REPORT (1<<0) 336 337 /** 338 * struct perf_open_properties - for validated properties given to open a stream 339 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 340 * @single_context: Whether a single or all gpu contexts should be monitored 341 * @ctx_handle: A gem ctx handle for use with @single_context 342 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 343 * @oa_format: An OA unit HW report format 344 * @oa_periodic: Whether to enable periodic OA unit sampling 345 * @oa_period_exponent: The OA unit sampling period is derived from this 346 * 347 * As read_properties_unlocked() enumerates and validates the properties given 348 * to open a stream of metrics the configuration is built up in the structure 349 * which starts out zero initialized. 350 */ 351 struct perf_open_properties { 352 u32 sample_flags; 353 354 u64 single_context:1; 355 u64 ctx_handle; 356 357 /* OA sampling state */ 358 int metrics_set; 359 int oa_format; 360 bool oa_periodic; 361 int oa_period_exponent; 362 }; 363 364 static void free_oa_config(struct drm_i915_private *dev_priv, 365 struct i915_oa_config *oa_config) 366 { 367 if (!PTR_ERR(oa_config->flex_regs)) 368 kfree(oa_config->flex_regs); 369 if (!PTR_ERR(oa_config->b_counter_regs)) 370 kfree(oa_config->b_counter_regs); 371 if (!PTR_ERR(oa_config->mux_regs)) 372 kfree(oa_config->mux_regs); 373 kfree(oa_config); 374 } 375 376 static void put_oa_config(struct drm_i915_private *dev_priv, 377 struct i915_oa_config *oa_config) 378 { 379 if (!atomic_dec_and_test(&oa_config->ref_count)) 380 return; 381 382 free_oa_config(dev_priv, oa_config); 383 } 384 385 static int get_oa_config(struct drm_i915_private *dev_priv, 386 int metrics_set, 387 struct i915_oa_config **out_config) 388 { 389 int ret; 390 391 if (metrics_set == 1) { 392 *out_config = &dev_priv->perf.oa.test_config; 393 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 394 return 0; 395 } 396 397 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 398 if (ret) 399 return ret; 400 401 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 402 if (!*out_config) 403 ret = -EINVAL; 404 else 405 atomic_inc(&(*out_config)->ref_count); 406 407 mutex_unlock(&dev_priv->perf.metrics_lock); 408 409 return ret; 410 } 411 412 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 413 { 414 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 415 } 416 417 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 418 { 419 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 420 421 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 422 } 423 424 /** 425 * oa_buffer_check_unlocked - check for data and update tail ptr state 426 * @dev_priv: i915 device instance 427 * 428 * This is either called via fops (for blocking reads in user ctx) or the poll 429 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 430 * if there is data available for userspace to read. 431 * 432 * This function is central to providing a workaround for the OA unit tail 433 * pointer having a race with respect to what data is visible to the CPU. 434 * It is responsible for reading tail pointers from the hardware and giving 435 * the pointers time to 'age' before they are made available for reading. 436 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 437 * 438 * Besides returning true when there is data available to read() this function 439 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 440 * and .aged_tail_idx state used for reading. 441 * 442 * Note: It's safe to read OA config state here unlocked, assuming that this is 443 * only called while the stream is enabled, while the global OA configuration 444 * can't be modified. 445 * 446 * Returns: %true if the OA buffer contains data, else %false 447 */ 448 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 449 { 450 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 451 unsigned long flags; 452 unsigned int aged_idx; 453 u32 head, hw_tail, aged_tail, aging_tail; 454 u64 now; 455 456 /* We have to consider the (unlikely) possibility that read() errors 457 * could result in an OA buffer reset which might reset the head, 458 * tails[] and aged_tail state. 459 */ 460 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 461 462 /* NB: The head we observe here might effectively be a little out of 463 * date (between head and tails[aged_idx].offset if there is currently 464 * a read() in progress. 465 */ 466 head = dev_priv->perf.oa.oa_buffer.head; 467 468 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 469 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 470 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 471 472 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 473 474 /* The tail pointer increases in 64 byte increments, 475 * not in report_size steps... 476 */ 477 hw_tail &= ~(report_size - 1); 478 479 now = ktime_get_mono_fast_ns(); 480 481 /* Update the aged tail 482 * 483 * Flip the tail pointer available for read()s once the aging tail is 484 * old enough to trust that the corresponding data will be visible to 485 * the CPU... 486 * 487 * Do this before updating the aging pointer in case we may be able to 488 * immediately start aging a new pointer too (if new data has become 489 * available) without needing to wait for a later hrtimer callback. 490 */ 491 if (aging_tail != INVALID_TAIL_PTR && 492 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 493 OA_TAIL_MARGIN_NSEC)) { 494 495 aged_idx ^= 1; 496 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 497 498 aged_tail = aging_tail; 499 500 /* Mark that we need a new pointer to start aging... */ 501 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 502 aging_tail = INVALID_TAIL_PTR; 503 } 504 505 /* Update the aging tail 506 * 507 * We throttle aging tail updates until we have a new tail that 508 * represents >= one report more data than is already available for 509 * reading. This ensures there will be enough data for a successful 510 * read once this new pointer has aged and ensures we will give the new 511 * pointer time to age. 512 */ 513 if (aging_tail == INVALID_TAIL_PTR && 514 (aged_tail == INVALID_TAIL_PTR || 515 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 516 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 517 u32 gtt_offset = i915_ggtt_offset(vma); 518 519 /* Be paranoid and do a bounds check on the pointer read back 520 * from hardware, just in case some spurious hardware condition 521 * could put the tail out of bounds... 522 */ 523 if (hw_tail >= gtt_offset && 524 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 525 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 526 aging_tail = hw_tail; 527 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 528 } else { 529 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 530 hw_tail); 531 } 532 } 533 534 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 535 536 return aged_tail == INVALID_TAIL_PTR ? 537 false : OA_TAKEN(aged_tail, head) >= report_size; 538 } 539 540 /** 541 * append_oa_status - Appends a status record to a userspace read() buffer. 542 * @stream: An i915-perf stream opened for OA metrics 543 * @buf: destination buffer given by userspace 544 * @count: the number of bytes userspace wants to read 545 * @offset: (inout): the current position for writing into @buf 546 * @type: The kind of status to report to userspace 547 * 548 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 549 * into the userspace read() buffer. 550 * 551 * The @buf @offset will only be updated on success. 552 * 553 * Returns: 0 on success, negative error code on failure. 554 */ 555 static int append_oa_status(struct i915_perf_stream *stream, 556 char __user *buf, 557 size_t count, 558 size_t *offset, 559 enum drm_i915_perf_record_type type) 560 { 561 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 562 563 if ((count - *offset) < header.size) 564 return -ENOSPC; 565 566 if (copy_to_user(buf + *offset, &header, sizeof(header))) 567 return -EFAULT; 568 569 (*offset) += header.size; 570 571 return 0; 572 } 573 574 /** 575 * append_oa_sample - Copies single OA report into userspace read() buffer. 576 * @stream: An i915-perf stream opened for OA metrics 577 * @buf: destination buffer given by userspace 578 * @count: the number of bytes userspace wants to read 579 * @offset: (inout): the current position for writing into @buf 580 * @report: A single OA report to (optionally) include as part of the sample 581 * 582 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 583 * properties when opening a stream, tracked as `stream->sample_flags`. This 584 * function copies the requested components of a single sample to the given 585 * read() @buf. 586 * 587 * The @buf @offset will only be updated on success. 588 * 589 * Returns: 0 on success, negative error code on failure. 590 */ 591 static int append_oa_sample(struct i915_perf_stream *stream, 592 char __user *buf, 593 size_t count, 594 size_t *offset, 595 const u8 *report) 596 { 597 struct drm_i915_private *dev_priv = stream->dev_priv; 598 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 599 struct drm_i915_perf_record_header header; 600 u32 sample_flags = stream->sample_flags; 601 602 header.type = DRM_I915_PERF_RECORD_SAMPLE; 603 header.pad = 0; 604 header.size = stream->sample_size; 605 606 if ((count - *offset) < header.size) 607 return -ENOSPC; 608 609 buf += *offset; 610 if (copy_to_user(buf, &header, sizeof(header))) 611 return -EFAULT; 612 buf += sizeof(header); 613 614 if (sample_flags & SAMPLE_OA_REPORT) { 615 if (copy_to_user(buf, report, report_size)) 616 return -EFAULT; 617 } 618 619 (*offset) += header.size; 620 621 return 0; 622 } 623 624 /** 625 * Copies all buffered OA reports into userspace read() buffer. 626 * @stream: An i915-perf stream opened for OA metrics 627 * @buf: destination buffer given by userspace 628 * @count: the number of bytes userspace wants to read 629 * @offset: (inout): the current position for writing into @buf 630 * 631 * Notably any error condition resulting in a short read (-%ENOSPC or 632 * -%EFAULT) will be returned even though one or more records may 633 * have been successfully copied. In this case it's up to the caller 634 * to decide if the error should be squashed before returning to 635 * userspace. 636 * 637 * Note: reports are consumed from the head, and appended to the 638 * tail, so the tail chases the head?... If you think that's mad 639 * and back-to-front you're not alone, but this follows the 640 * Gen PRM naming convention. 641 * 642 * Returns: 0 on success, negative error code on failure. 643 */ 644 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 645 char __user *buf, 646 size_t count, 647 size_t *offset) 648 { 649 struct drm_i915_private *dev_priv = stream->dev_priv; 650 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 651 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 652 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 653 u32 mask = (OA_BUFFER_SIZE - 1); 654 size_t start_offset = *offset; 655 unsigned long flags; 656 unsigned int aged_tail_idx; 657 u32 head, tail; 658 u32 taken; 659 int ret = 0; 660 661 if (WARN_ON(!stream->enabled)) 662 return -EIO; 663 664 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 665 666 head = dev_priv->perf.oa.oa_buffer.head; 667 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 668 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 669 670 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 671 672 /* 673 * An invalid tail pointer here means we're still waiting for the poll 674 * hrtimer callback to give us a pointer 675 */ 676 if (tail == INVALID_TAIL_PTR) 677 return -EAGAIN; 678 679 /* 680 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 681 * while indexing relative to oa_buf_base. 682 */ 683 head -= gtt_offset; 684 tail -= gtt_offset; 685 686 /* 687 * An out of bounds or misaligned head or tail pointer implies a driver 688 * bug since we validate + align the tail pointers we read from the 689 * hardware and we are in full control of the head pointer which should 690 * only be incremented by multiples of the report size (notably also 691 * all a power of two). 692 */ 693 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 694 tail > OA_BUFFER_SIZE || tail % report_size, 695 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 696 head, tail)) 697 return -EIO; 698 699 700 for (/* none */; 701 (taken = OA_TAKEN(tail, head)); 702 head = (head + report_size) & mask) { 703 u8 *report = oa_buf_base + head; 704 u32 *report32 = (void *)report; 705 u32 ctx_id; 706 u32 reason; 707 708 /* 709 * All the report sizes factor neatly into the buffer 710 * size so we never expect to see a report split 711 * between the beginning and end of the buffer. 712 * 713 * Given the initial alignment check a misalignment 714 * here would imply a driver bug that would result 715 * in an overrun. 716 */ 717 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 718 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 719 break; 720 } 721 722 /* 723 * The reason field includes flags identifying what 724 * triggered this specific report (mostly timer 725 * triggered or e.g. due to a context switch). 726 * 727 * This field is never expected to be zero so we can 728 * check that the report isn't invalid before copying 729 * it to userspace... 730 */ 731 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 732 OAREPORT_REASON_MASK); 733 if (reason == 0) { 734 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 735 DRM_NOTE("Skipping spurious, invalid OA report\n"); 736 continue; 737 } 738 739 /* 740 * XXX: Just keep the lower 21 bits for now since I'm not 741 * entirely sure if the HW touches any of the higher bits in 742 * this field 743 */ 744 ctx_id = report32[2] & 0x1fffff; 745 746 /* 747 * Squash whatever is in the CTX_ID field if it's marked as 748 * invalid to be sure we avoid false-positive, single-context 749 * filtering below... 750 * 751 * Note: that we don't clear the valid_ctx_bit so userspace can 752 * understand that the ID has been squashed by the kernel. 753 */ 754 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 755 ctx_id = report32[2] = INVALID_CTX_ID; 756 757 /* 758 * NB: For Gen 8 the OA unit no longer supports clock gating 759 * off for a specific context and the kernel can't securely 760 * stop the counters from updating as system-wide / global 761 * values. 762 * 763 * Automatic reports now include a context ID so reports can be 764 * filtered on the cpu but it's not worth trying to 765 * automatically subtract/hide counter progress for other 766 * contexts while filtering since we can't stop userspace 767 * issuing MI_REPORT_PERF_COUNT commands which would still 768 * provide a side-band view of the real values. 769 * 770 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 771 * to normalize counters for a single filtered context then it 772 * needs be forwarded bookend context-switch reports so that it 773 * can track switches in between MI_REPORT_PERF_COUNT commands 774 * and can itself subtract/ignore the progress of counters 775 * associated with other contexts. Note that the hardware 776 * automatically triggers reports when switching to a new 777 * context which are tagged with the ID of the newly active 778 * context. To avoid the complexity (and likely fragility) of 779 * reading ahead while parsing reports to try and minimize 780 * forwarding redundant context switch reports (i.e. between 781 * other, unrelated contexts) we simply elect to forward them 782 * all. 783 * 784 * We don't rely solely on the reason field to identify context 785 * switches since it's not-uncommon for periodic samples to 786 * identify a switch before any 'context switch' report. 787 */ 788 if (!dev_priv->perf.oa.exclusive_stream->ctx || 789 dev_priv->perf.oa.specific_ctx_id == ctx_id || 790 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 791 dev_priv->perf.oa.specific_ctx_id) || 792 reason & OAREPORT_REASON_CTX_SWITCH) { 793 794 /* 795 * While filtering for a single context we avoid 796 * leaking the IDs of other contexts. 797 */ 798 if (dev_priv->perf.oa.exclusive_stream->ctx && 799 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 800 report32[2] = INVALID_CTX_ID; 801 } 802 803 ret = append_oa_sample(stream, buf, count, offset, 804 report); 805 if (ret) 806 break; 807 808 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 809 } 810 811 /* 812 * The above reason field sanity check is based on 813 * the assumption that the OA buffer is initially 814 * zeroed and we reset the field after copying so the 815 * check is still meaningful once old reports start 816 * being overwritten. 817 */ 818 report32[0] = 0; 819 } 820 821 if (start_offset != *offset) { 822 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 823 824 /* 825 * We removed the gtt_offset for the copy loop above, indexing 826 * relative to oa_buf_base so put back here... 827 */ 828 head += gtt_offset; 829 830 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 831 dev_priv->perf.oa.oa_buffer.head = head; 832 833 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 834 } 835 836 return ret; 837 } 838 839 /** 840 * gen8_oa_read - copy status records then buffered OA reports 841 * @stream: An i915-perf stream opened for OA metrics 842 * @buf: destination buffer given by userspace 843 * @count: the number of bytes userspace wants to read 844 * @offset: (inout): the current position for writing into @buf 845 * 846 * Checks OA unit status registers and if necessary appends corresponding 847 * status records for userspace (such as for a buffer full condition) and then 848 * initiate appending any buffered OA reports. 849 * 850 * Updates @offset according to the number of bytes successfully copied into 851 * the userspace buffer. 852 * 853 * NB: some data may be successfully copied to the userspace buffer 854 * even if an error is returned, and this is reflected in the 855 * updated @offset. 856 * 857 * Returns: zero on success or a negative error code 858 */ 859 static int gen8_oa_read(struct i915_perf_stream *stream, 860 char __user *buf, 861 size_t count, 862 size_t *offset) 863 { 864 struct drm_i915_private *dev_priv = stream->dev_priv; 865 u32 oastatus; 866 int ret; 867 868 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 869 return -EIO; 870 871 oastatus = I915_READ(GEN8_OASTATUS); 872 873 /* 874 * We treat OABUFFER_OVERFLOW as a significant error: 875 * 876 * Although theoretically we could handle this more gracefully 877 * sometimes, some Gens don't correctly suppress certain 878 * automatically triggered reports in this condition and so we 879 * have to assume that old reports are now being trampled 880 * over. 881 * 882 * Considering how we don't currently give userspace control 883 * over the OA buffer size and always configure a large 16MB 884 * buffer, then a buffer overflow does anyway likely indicate 885 * that something has gone quite badly wrong. 886 */ 887 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 888 ret = append_oa_status(stream, buf, count, offset, 889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 890 if (ret) 891 return ret; 892 893 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 894 dev_priv->perf.oa.period_exponent); 895 896 dev_priv->perf.oa.ops.oa_disable(dev_priv); 897 dev_priv->perf.oa.ops.oa_enable(dev_priv); 898 899 /* 900 * Note: .oa_enable() is expected to re-init the oabuffer and 901 * reset GEN8_OASTATUS for us 902 */ 903 oastatus = I915_READ(GEN8_OASTATUS); 904 } 905 906 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 907 ret = append_oa_status(stream, buf, count, offset, 908 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 909 if (ret) 910 return ret; 911 I915_WRITE(GEN8_OASTATUS, 912 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 913 } 914 915 return gen8_append_oa_reports(stream, buf, count, offset); 916 } 917 918 /** 919 * Copies all buffered OA reports into userspace read() buffer. 920 * @stream: An i915-perf stream opened for OA metrics 921 * @buf: destination buffer given by userspace 922 * @count: the number of bytes userspace wants to read 923 * @offset: (inout): the current position for writing into @buf 924 * 925 * Notably any error condition resulting in a short read (-%ENOSPC or 926 * -%EFAULT) will be returned even though one or more records may 927 * have been successfully copied. In this case it's up to the caller 928 * to decide if the error should be squashed before returning to 929 * userspace. 930 * 931 * Note: reports are consumed from the head, and appended to the 932 * tail, so the tail chases the head?... If you think that's mad 933 * and back-to-front you're not alone, but this follows the 934 * Gen PRM naming convention. 935 * 936 * Returns: 0 on success, negative error code on failure. 937 */ 938 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 939 char __user *buf, 940 size_t count, 941 size_t *offset) 942 { 943 struct drm_i915_private *dev_priv = stream->dev_priv; 944 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 945 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 946 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 947 u32 mask = (OA_BUFFER_SIZE - 1); 948 size_t start_offset = *offset; 949 unsigned long flags; 950 unsigned int aged_tail_idx; 951 u32 head, tail; 952 u32 taken; 953 int ret = 0; 954 955 if (WARN_ON(!stream->enabled)) 956 return -EIO; 957 958 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 959 960 head = dev_priv->perf.oa.oa_buffer.head; 961 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 962 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 963 964 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 965 966 /* An invalid tail pointer here means we're still waiting for the poll 967 * hrtimer callback to give us a pointer 968 */ 969 if (tail == INVALID_TAIL_PTR) 970 return -EAGAIN; 971 972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 973 * while indexing relative to oa_buf_base. 974 */ 975 head -= gtt_offset; 976 tail -= gtt_offset; 977 978 /* An out of bounds or misaligned head or tail pointer implies a driver 979 * bug since we validate + align the tail pointers we read from the 980 * hardware and we are in full control of the head pointer which should 981 * only be incremented by multiples of the report size (notably also 982 * all a power of two). 983 */ 984 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 985 tail > OA_BUFFER_SIZE || tail % report_size, 986 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 987 head, tail)) 988 return -EIO; 989 990 991 for (/* none */; 992 (taken = OA_TAKEN(tail, head)); 993 head = (head + report_size) & mask) { 994 u8 *report = oa_buf_base + head; 995 u32 *report32 = (void *)report; 996 997 /* All the report sizes factor neatly into the buffer 998 * size so we never expect to see a report split 999 * between the beginning and end of the buffer. 1000 * 1001 * Given the initial alignment check a misalignment 1002 * here would imply a driver bug that would result 1003 * in an overrun. 1004 */ 1005 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1006 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1007 break; 1008 } 1009 1010 /* The report-ID field for periodic samples includes 1011 * some undocumented flags related to what triggered 1012 * the report and is never expected to be zero so we 1013 * can check that the report isn't invalid before 1014 * copying it to userspace... 1015 */ 1016 if (report32[0] == 0) { 1017 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1018 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1019 continue; 1020 } 1021 1022 ret = append_oa_sample(stream, buf, count, offset, report); 1023 if (ret) 1024 break; 1025 1026 /* The above report-id field sanity check is based on 1027 * the assumption that the OA buffer is initially 1028 * zeroed and we reset the field after copying so the 1029 * check is still meaningful once old reports start 1030 * being overwritten. 1031 */ 1032 report32[0] = 0; 1033 } 1034 1035 if (start_offset != *offset) { 1036 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1037 1038 /* We removed the gtt_offset for the copy loop above, indexing 1039 * relative to oa_buf_base so put back here... 1040 */ 1041 head += gtt_offset; 1042 1043 I915_WRITE(GEN7_OASTATUS2, 1044 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1045 OA_MEM_SELECT_GGTT)); 1046 dev_priv->perf.oa.oa_buffer.head = head; 1047 1048 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1049 } 1050 1051 return ret; 1052 } 1053 1054 /** 1055 * gen7_oa_read - copy status records then buffered OA reports 1056 * @stream: An i915-perf stream opened for OA metrics 1057 * @buf: destination buffer given by userspace 1058 * @count: the number of bytes userspace wants to read 1059 * @offset: (inout): the current position for writing into @buf 1060 * 1061 * Checks Gen 7 specific OA unit status registers and if necessary appends 1062 * corresponding status records for userspace (such as for a buffer full 1063 * condition) and then initiate appending any buffered OA reports. 1064 * 1065 * Updates @offset according to the number of bytes successfully copied into 1066 * the userspace buffer. 1067 * 1068 * Returns: zero on success or a negative error code 1069 */ 1070 static int gen7_oa_read(struct i915_perf_stream *stream, 1071 char __user *buf, 1072 size_t count, 1073 size_t *offset) 1074 { 1075 struct drm_i915_private *dev_priv = stream->dev_priv; 1076 u32 oastatus1; 1077 int ret; 1078 1079 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1080 return -EIO; 1081 1082 oastatus1 = I915_READ(GEN7_OASTATUS1); 1083 1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1085 * bits while the OA unit is enabled (while the tail pointer 1086 * may be updated asynchronously) so we ignore status bits 1087 * that have already been reported to userspace. 1088 */ 1089 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1090 1091 /* We treat OABUFFER_OVERFLOW as a significant error: 1092 * 1093 * - The status can be interpreted to mean that the buffer is 1094 * currently full (with a higher precedence than OA_TAKEN() 1095 * which will start to report a near-empty buffer after an 1096 * overflow) but it's awkward that we can't clear the status 1097 * on Haswell, so without a reset we won't be able to catch 1098 * the state again. 1099 * 1100 * - Since it also implies the HW has started overwriting old 1101 * reports it may also affect our sanity checks for invalid 1102 * reports when copying to userspace that assume new reports 1103 * are being written to cleared memory. 1104 * 1105 * - In the future we may want to introduce a flight recorder 1106 * mode where the driver will automatically maintain a safe 1107 * guard band between head/tail, avoiding this overflow 1108 * condition, but we avoid the added driver complexity for 1109 * now. 1110 */ 1111 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1112 ret = append_oa_status(stream, buf, count, offset, 1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1114 if (ret) 1115 return ret; 1116 1117 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1118 dev_priv->perf.oa.period_exponent); 1119 1120 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1121 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1122 1123 oastatus1 = I915_READ(GEN7_OASTATUS1); 1124 } 1125 1126 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1127 ret = append_oa_status(stream, buf, count, offset, 1128 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1129 if (ret) 1130 return ret; 1131 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1132 GEN7_OASTATUS1_REPORT_LOST; 1133 } 1134 1135 return gen7_append_oa_reports(stream, buf, count, offset); 1136 } 1137 1138 /** 1139 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1140 * @stream: An i915-perf stream opened for OA metrics 1141 * 1142 * Called when userspace tries to read() from a blocking stream FD opened 1143 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1144 * OA buffer and wakes us. 1145 * 1146 * Note: it's acceptable to have this return with some false positives 1147 * since any subsequent read handling will return -EAGAIN if there isn't 1148 * really data ready for userspace yet. 1149 * 1150 * Returns: zero on success or a negative error code 1151 */ 1152 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1153 { 1154 struct drm_i915_private *dev_priv = stream->dev_priv; 1155 1156 /* We would wait indefinitely if periodic sampling is not enabled */ 1157 if (!dev_priv->perf.oa.periodic) 1158 return -EIO; 1159 1160 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1161 oa_buffer_check_unlocked(dev_priv)); 1162 } 1163 1164 /** 1165 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1166 * @stream: An i915-perf stream opened for OA metrics 1167 * @file: An i915 perf stream file 1168 * @wait: poll() state table 1169 * 1170 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1171 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1172 * when it sees data ready to read in the circular OA buffer. 1173 */ 1174 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1175 struct file *file, 1176 poll_table *wait) 1177 { 1178 struct drm_i915_private *dev_priv = stream->dev_priv; 1179 1180 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1181 } 1182 1183 /** 1184 * i915_oa_read - just calls through to &i915_oa_ops->read 1185 * @stream: An i915-perf stream opened for OA metrics 1186 * @buf: destination buffer given by userspace 1187 * @count: the number of bytes userspace wants to read 1188 * @offset: (inout): the current position for writing into @buf 1189 * 1190 * Updates @offset according to the number of bytes successfully copied into 1191 * the userspace buffer. 1192 * 1193 * Returns: zero on success or a negative error code 1194 */ 1195 static int i915_oa_read(struct i915_perf_stream *stream, 1196 char __user *buf, 1197 size_t count, 1198 size_t *offset) 1199 { 1200 struct drm_i915_private *dev_priv = stream->dev_priv; 1201 1202 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1203 } 1204 1205 /** 1206 * oa_get_render_ctx_id - determine and hold ctx hw id 1207 * @stream: An i915-perf stream opened for OA metrics 1208 * 1209 * Determine the render context hw id, and ensure it remains fixed for the 1210 * lifetime of the stream. This ensures that we don't have to worry about 1211 * updating the context ID in OACONTROL on the fly. 1212 * 1213 * Returns: zero on success or a negative error code 1214 */ 1215 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1216 { 1217 struct drm_i915_private *dev_priv = stream->dev_priv; 1218 1219 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 1220 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id; 1221 } else { 1222 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1223 struct intel_ring *ring; 1224 int ret; 1225 1226 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1227 if (ret) 1228 return ret; 1229 1230 /* 1231 * As the ID is the gtt offset of the context's vma we 1232 * pin the vma to ensure the ID remains fixed. 1233 * 1234 * NB: implied RCS engine... 1235 */ 1236 ring = engine->context_pin(engine, stream->ctx); 1237 mutex_unlock(&dev_priv->drm.struct_mutex); 1238 if (IS_ERR(ring)) 1239 return PTR_ERR(ring); 1240 1241 1242 /* 1243 * Explicitly track the ID (instead of calling 1244 * i915_ggtt_offset() on the fly) considering the difference 1245 * with gen8+ and execlists 1246 */ 1247 dev_priv->perf.oa.specific_ctx_id = 1248 i915_ggtt_offset(stream->ctx->engine[engine->id].state); 1249 } 1250 1251 return 0; 1252 } 1253 1254 /** 1255 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1256 * @stream: An i915-perf stream opened for OA metrics 1257 * 1258 * In case anything needed doing to ensure the context HW ID would remain valid 1259 * for the lifetime of the stream, then that can be undone here. 1260 */ 1261 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1262 { 1263 struct drm_i915_private *dev_priv = stream->dev_priv; 1264 1265 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 1266 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1267 } else { 1268 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1269 1270 mutex_lock(&dev_priv->drm.struct_mutex); 1271 1272 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1273 engine->context_unpin(engine, stream->ctx); 1274 1275 mutex_unlock(&dev_priv->drm.struct_mutex); 1276 } 1277 } 1278 1279 static void 1280 free_oa_buffer(struct drm_i915_private *i915) 1281 { 1282 mutex_lock(&i915->drm.struct_mutex); 1283 1284 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj); 1285 i915_vma_unpin(i915->perf.oa.oa_buffer.vma); 1286 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj); 1287 1288 i915->perf.oa.oa_buffer.vma = NULL; 1289 i915->perf.oa.oa_buffer.vaddr = NULL; 1290 1291 mutex_unlock(&i915->drm.struct_mutex); 1292 } 1293 1294 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1295 { 1296 struct drm_i915_private *dev_priv = stream->dev_priv; 1297 1298 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1299 1300 /* 1301 * Unset exclusive_stream first, it will be checked while disabling 1302 * the metric set on gen8+. 1303 */ 1304 mutex_lock(&dev_priv->drm.struct_mutex); 1305 dev_priv->perf.oa.exclusive_stream = NULL; 1306 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1307 mutex_unlock(&dev_priv->drm.struct_mutex); 1308 1309 free_oa_buffer(dev_priv); 1310 1311 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1312 intel_runtime_pm_put(dev_priv); 1313 1314 if (stream->ctx) 1315 oa_put_render_ctx_id(stream); 1316 1317 put_oa_config(dev_priv, stream->oa_config); 1318 1319 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1320 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1321 dev_priv->perf.oa.spurious_report_rs.missed); 1322 } 1323 } 1324 1325 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1326 { 1327 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1328 unsigned long flags; 1329 1330 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1331 1332 /* Pre-DevBDW: OABUFFER must be set with counters off, 1333 * before OASTATUS1, but after OASTATUS2 1334 */ 1335 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */ 1336 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1337 1338 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1339 1340 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1341 1342 /* Mark that we need updated tail pointers to read from... */ 1343 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1344 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1345 1346 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1347 1348 /* On Haswell we have to track which OASTATUS1 flags we've 1349 * already seen since they can't be cleared while periodic 1350 * sampling is enabled. 1351 */ 1352 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1353 1354 /* NB: although the OA buffer will initially be allocated 1355 * zeroed via shmfs (and so this memset is redundant when 1356 * first allocating), we may re-init the OA buffer, either 1357 * when re-enabling a stream or in error/reset paths. 1358 * 1359 * The reason we clear the buffer for each re-init is for the 1360 * sanity check in gen7_append_oa_reports() that looks at the 1361 * report-id field to make sure it's non-zero which relies on 1362 * the assumption that new reports are being written to zeroed 1363 * memory... 1364 */ 1365 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1366 1367 /* Maybe make ->pollin per-stream state if we support multiple 1368 * concurrent streams in the future. 1369 */ 1370 dev_priv->perf.oa.pollin = false; 1371 } 1372 1373 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1374 { 1375 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1376 unsigned long flags; 1377 1378 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1379 1380 I915_WRITE(GEN8_OASTATUS, 0); 1381 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1382 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1383 1384 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1385 1386 /* 1387 * PRM says: 1388 * 1389 * "This MMIO must be set before the OATAILPTR 1390 * register and after the OAHEADPTR register. This is 1391 * to enable proper functionality of the overflow 1392 * bit." 1393 */ 1394 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1395 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT); 1396 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1397 1398 /* Mark that we need updated tail pointers to read from... */ 1399 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1400 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1401 1402 /* 1403 * Reset state used to recognise context switches, affecting which 1404 * reports we will forward to userspace while filtering for a single 1405 * context. 1406 */ 1407 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1408 1409 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1410 1411 /* 1412 * NB: although the OA buffer will initially be allocated 1413 * zeroed via shmfs (and so this memset is redundant when 1414 * first allocating), we may re-init the OA buffer, either 1415 * when re-enabling a stream or in error/reset paths. 1416 * 1417 * The reason we clear the buffer for each re-init is for the 1418 * sanity check in gen8_append_oa_reports() that looks at the 1419 * reason field to make sure it's non-zero which relies on 1420 * the assumption that new reports are being written to zeroed 1421 * memory... 1422 */ 1423 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1424 1425 /* 1426 * Maybe make ->pollin per-stream state if we support multiple 1427 * concurrent streams in the future. 1428 */ 1429 dev_priv->perf.oa.pollin = false; 1430 } 1431 1432 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1433 { 1434 struct drm_i915_gem_object *bo; 1435 struct i915_vma *vma; 1436 int ret; 1437 1438 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1439 return -ENODEV; 1440 1441 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1442 if (ret) 1443 return ret; 1444 1445 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1446 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1447 1448 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 1449 if (IS_ERR(bo)) { 1450 DRM_ERROR("Failed to allocate OA buffer\n"); 1451 ret = PTR_ERR(bo); 1452 goto unlock; 1453 } 1454 1455 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 1456 if (ret) 1457 goto err_unref; 1458 1459 /* PreHSW required 512K alignment, HSW requires 16M */ 1460 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1461 if (IS_ERR(vma)) { 1462 ret = PTR_ERR(vma); 1463 goto err_unref; 1464 } 1465 dev_priv->perf.oa.oa_buffer.vma = vma; 1466 1467 dev_priv->perf.oa.oa_buffer.vaddr = 1468 i915_gem_object_pin_map(bo, I915_MAP_WB); 1469 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1470 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1471 goto err_unpin; 1472 } 1473 1474 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv); 1475 1476 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1477 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1478 dev_priv->perf.oa.oa_buffer.vaddr); 1479 1480 goto unlock; 1481 1482 err_unpin: 1483 __i915_vma_unpin(vma); 1484 1485 err_unref: 1486 i915_gem_object_put(bo); 1487 1488 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1489 dev_priv->perf.oa.oa_buffer.vma = NULL; 1490 1491 unlock: 1492 mutex_unlock(&dev_priv->drm.struct_mutex); 1493 return ret; 1494 } 1495 1496 static void config_oa_regs(struct drm_i915_private *dev_priv, 1497 const struct i915_oa_reg *regs, 1498 u32 n_regs) 1499 { 1500 u32 i; 1501 1502 for (i = 0; i < n_regs; i++) { 1503 const struct i915_oa_reg *reg = regs + i; 1504 1505 I915_WRITE(reg->addr, reg->value); 1506 } 1507 } 1508 1509 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv, 1510 const struct i915_oa_config *oa_config) 1511 { 1512 /* PRM: 1513 * 1514 * OA unit is using “crclk” for its functionality. When trunk 1515 * level clock gating takes place, OA clock would be gated, 1516 * unable to count the events from non-render clock domain. 1517 * Render clock gating must be disabled when OA is enabled to 1518 * count the events from non-render domain. Unit level clock 1519 * gating for RCS should also be disabled. 1520 */ 1521 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1522 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1523 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1524 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1525 1526 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1527 1528 /* It apparently takes a fairly long time for a new MUX 1529 * configuration to be be applied after these register writes. 1530 * This delay duration was derived empirically based on the 1531 * render_basic config but hopefully it covers the maximum 1532 * configuration latency. 1533 * 1534 * As a fallback, the checks in _append_oa_reports() to skip 1535 * invalid OA reports do also seem to work to discard reports 1536 * generated before this config has completed - albeit not 1537 * silently. 1538 * 1539 * Unfortunately this is essentially a magic number, since we 1540 * don't currently know of a reliable mechanism for predicting 1541 * how long the MUX config will take to apply and besides 1542 * seeing invalid reports we don't know of a reliable way to 1543 * explicitly check that the MUX config has landed. 1544 * 1545 * It's even possible we've miss characterized the underlying 1546 * problem - it just seems like the simplest explanation why 1547 * a delay at this location would mitigate any invalid reports. 1548 */ 1549 usleep_range(15000, 20000); 1550 1551 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1552 oa_config->b_counter_regs_len); 1553 1554 return 0; 1555 } 1556 1557 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1558 { 1559 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1560 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1561 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1562 GEN7_DOP_CLOCK_GATE_ENABLE)); 1563 1564 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1565 ~GT_NOA_ENABLE)); 1566 } 1567 1568 /* 1569 * NB: It must always remain pointer safe to run this even if the OA unit 1570 * has been disabled. 1571 * 1572 * It's fine to put out-of-date values into these per-context registers 1573 * in the case that the OA unit has been disabled. 1574 */ 1575 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx, 1576 u32 *reg_state, 1577 const struct i915_oa_config *oa_config) 1578 { 1579 struct drm_i915_private *dev_priv = ctx->i915; 1580 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 1581 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 1582 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1583 u32 flex_mmio[] = { 1584 i915_mmio_reg_offset(EU_PERF_CNTL0), 1585 i915_mmio_reg_offset(EU_PERF_CNTL1), 1586 i915_mmio_reg_offset(EU_PERF_CNTL2), 1587 i915_mmio_reg_offset(EU_PERF_CNTL3), 1588 i915_mmio_reg_offset(EU_PERF_CNTL4), 1589 i915_mmio_reg_offset(EU_PERF_CNTL5), 1590 i915_mmio_reg_offset(EU_PERF_CNTL6), 1591 }; 1592 int i; 1593 1594 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1595 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent << 1596 GEN8_OA_TIMER_PERIOD_SHIFT) | 1597 (dev_priv->perf.oa.periodic ? 1598 GEN8_OA_TIMER_ENABLE : 0) | 1599 GEN8_OA_COUNTER_RESUME; 1600 1601 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1602 u32 state_offset = ctx_flexeu0 + i * 2; 1603 u32 mmio = flex_mmio[i]; 1604 1605 /* 1606 * This arbitrary default will select the 'EU FPU0 Pipeline 1607 * Active' event. In the future it's anticipated that there 1608 * will be an explicit 'No Event' we can select, but not yet... 1609 */ 1610 u32 value = 0; 1611 1612 if (oa_config) { 1613 u32 j; 1614 1615 for (j = 0; j < oa_config->flex_regs_len; j++) { 1616 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1617 value = oa_config->flex_regs[j].value; 1618 break; 1619 } 1620 } 1621 } 1622 1623 reg_state[state_offset] = mmio; 1624 reg_state[state_offset+1] = value; 1625 } 1626 } 1627 1628 /* 1629 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This 1630 * is only used by the kernel context. 1631 */ 1632 static int gen8_emit_oa_config(struct drm_i915_gem_request *req, 1633 const struct i915_oa_config *oa_config) 1634 { 1635 struct drm_i915_private *dev_priv = req->i915; 1636 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1637 u32 flex_mmio[] = { 1638 i915_mmio_reg_offset(EU_PERF_CNTL0), 1639 i915_mmio_reg_offset(EU_PERF_CNTL1), 1640 i915_mmio_reg_offset(EU_PERF_CNTL2), 1641 i915_mmio_reg_offset(EU_PERF_CNTL3), 1642 i915_mmio_reg_offset(EU_PERF_CNTL4), 1643 i915_mmio_reg_offset(EU_PERF_CNTL5), 1644 i915_mmio_reg_offset(EU_PERF_CNTL6), 1645 }; 1646 u32 *cs; 1647 int i; 1648 1649 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4); 1650 if (IS_ERR(cs)) 1651 return PTR_ERR(cs); 1652 1653 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1); 1654 1655 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL); 1656 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1657 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1658 GEN8_OA_COUNTER_RESUME; 1659 1660 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) { 1661 u32 mmio = flex_mmio[i]; 1662 1663 /* 1664 * This arbitrary default will select the 'EU FPU0 Pipeline 1665 * Active' event. In the future it's anticipated that there 1666 * will be an explicit 'No Event' we can select, but not 1667 * yet... 1668 */ 1669 u32 value = 0; 1670 1671 if (oa_config) { 1672 u32 j; 1673 1674 for (j = 0; j < oa_config->flex_regs_len; j++) { 1675 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1676 value = oa_config->flex_regs[j].value; 1677 break; 1678 } 1679 } 1680 } 1681 1682 *cs++ = mmio; 1683 *cs++ = value; 1684 } 1685 1686 *cs++ = MI_NOOP; 1687 intel_ring_advance(req, cs); 1688 1689 return 0; 1690 } 1691 1692 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv, 1693 const struct i915_oa_config *oa_config) 1694 { 1695 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1696 struct i915_gem_timeline *timeline; 1697 struct drm_i915_gem_request *req; 1698 int ret; 1699 1700 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1701 1702 i915_gem_retire_requests(dev_priv); 1703 1704 req = i915_gem_request_alloc(engine, dev_priv->kernel_context); 1705 if (IS_ERR(req)) 1706 return PTR_ERR(req); 1707 1708 ret = gen8_emit_oa_config(req, oa_config); 1709 if (ret) { 1710 i915_add_request(req); 1711 return ret; 1712 } 1713 1714 /* Queue this switch after all other activity */ 1715 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) { 1716 struct drm_i915_gem_request *prev; 1717 struct intel_timeline *tl; 1718 1719 tl = &timeline->engine[engine->id]; 1720 prev = i915_gem_active_raw(&tl->last_request, 1721 &dev_priv->drm.struct_mutex); 1722 if (prev) 1723 i915_sw_fence_await_sw_fence_gfp(&req->submit, 1724 &prev->submit, 1725 GFP_KERNEL); 1726 } 1727 1728 i915_add_request(req); 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * Manages updating the per-context aspects of the OA stream 1735 * configuration across all contexts. 1736 * 1737 * The awkward consideration here is that OACTXCONTROL controls the 1738 * exponent for periodic sampling which is primarily used for system 1739 * wide profiling where we'd like a consistent sampling period even in 1740 * the face of context switches. 1741 * 1742 * Our approach of updating the register state context (as opposed to 1743 * say using a workaround batch buffer) ensures that the hardware 1744 * won't automatically reload an out-of-date timer exponent even 1745 * transiently before a WA BB could be parsed. 1746 * 1747 * This function needs to: 1748 * - Ensure the currently running context's per-context OA state is 1749 * updated 1750 * - Ensure that all existing contexts will have the correct per-context 1751 * OA state if they are scheduled for use. 1752 * - Ensure any new contexts will be initialized with the correct 1753 * per-context OA state. 1754 * 1755 * Note: it's only the RCS/Render context that has any OA state. 1756 */ 1757 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1758 const struct i915_oa_config *oa_config) 1759 { 1760 struct i915_gem_context *ctx; 1761 int ret; 1762 unsigned int wait_flags = I915_WAIT_LOCKED; 1763 1764 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1765 1766 /* Switch away from any user context. */ 1767 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config); 1768 if (ret) 1769 goto out; 1770 1771 /* 1772 * The OA register config is setup through the context image. This image 1773 * might be written to by the GPU on context switch (in particular on 1774 * lite-restore). This means we can't safely update a context's image, 1775 * if this context is scheduled/submitted to run on the GPU. 1776 * 1777 * We could emit the OA register config through the batch buffer but 1778 * this might leave small interval of time where the OA unit is 1779 * configured at an invalid sampling period. 1780 * 1781 * So far the best way to work around this issue seems to be draining 1782 * the GPU from any submitted work. 1783 */ 1784 ret = i915_gem_wait_for_idle(dev_priv, wait_flags); 1785 if (ret) 1786 goto out; 1787 1788 /* Update all contexts now that we've stalled the submission. */ 1789 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1790 struct intel_context *ce = &ctx->engine[RCS]; 1791 u32 *regs; 1792 1793 /* OA settings will be set upon first use */ 1794 if (!ce->state) 1795 continue; 1796 1797 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB); 1798 if (IS_ERR(regs)) { 1799 ret = PTR_ERR(regs); 1800 goto out; 1801 } 1802 1803 ce->state->obj->mm.dirty = true; 1804 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1805 1806 gen8_update_reg_state_unlocked(ctx, regs, oa_config); 1807 1808 i915_gem_object_unpin_map(ce->state->obj); 1809 } 1810 1811 out: 1812 return ret; 1813 } 1814 1815 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv, 1816 const struct i915_oa_config *oa_config) 1817 { 1818 int ret; 1819 1820 /* 1821 * We disable slice/unslice clock ratio change reports on SKL since 1822 * they are too noisy. The HW generates a lot of redundant reports 1823 * where the ratio hasn't really changed causing a lot of redundant 1824 * work to processes and increasing the chances we'll hit buffer 1825 * overruns. 1826 * 1827 * Although we don't currently use the 'disable overrun' OABUFFER 1828 * feature it's worth noting that clock ratio reports have to be 1829 * disabled before considering to use that feature since the HW doesn't 1830 * correctly block these reports. 1831 * 1832 * Currently none of the high-level metrics we have depend on knowing 1833 * this ratio to normalize. 1834 * 1835 * Note: This register is not power context saved and restored, but 1836 * that's OK considering that we disable RC6 while the OA unit is 1837 * enabled. 1838 * 1839 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1840 * be read back from automatically triggered reports, as part of the 1841 * RPT_ID field. 1842 */ 1843 if (IS_GEN9(dev_priv) || IS_GEN10(dev_priv)) { 1844 I915_WRITE(GEN8_OA_DEBUG, 1845 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1846 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1847 } 1848 1849 /* 1850 * Update all contexts prior writing the mux configurations as we need 1851 * to make sure all slices/subslices are ON before writing to NOA 1852 * registers. 1853 */ 1854 ret = gen8_configure_all_contexts(dev_priv, oa_config); 1855 if (ret) 1856 return ret; 1857 1858 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1859 1860 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1861 oa_config->b_counter_regs_len); 1862 1863 return 0; 1864 } 1865 1866 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1867 { 1868 /* Reset all contexts' slices/subslices configurations. */ 1869 gen8_configure_all_contexts(dev_priv, NULL); 1870 1871 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1872 ~GT_NOA_ENABLE)); 1873 1874 } 1875 1876 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv) 1877 { 1878 /* Reset all contexts' slices/subslices configurations. */ 1879 gen8_configure_all_contexts(dev_priv, NULL); 1880 1881 /* Make sure we disable noa to save power. */ 1882 I915_WRITE(RPM_CONFIG1, 1883 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE); 1884 } 1885 1886 static void gen7_oa_enable(struct drm_i915_private *dev_priv) 1887 { 1888 /* 1889 * Reset buf pointers so we don't forward reports from before now. 1890 * 1891 * Think carefully if considering trying to avoid this, since it 1892 * also ensures status flags and the buffer itself are cleared 1893 * in error paths, and we have checks for invalid reports based 1894 * on the assumption that certain fields are written to zeroed 1895 * memory which this helps maintains. 1896 */ 1897 gen7_init_oa_buffer(dev_priv); 1898 1899 if (dev_priv->perf.oa.exclusive_stream->enabled) { 1900 struct i915_gem_context *ctx = 1901 dev_priv->perf.oa.exclusive_stream->ctx; 1902 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1903 1904 bool periodic = dev_priv->perf.oa.periodic; 1905 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1906 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1907 1908 I915_WRITE(GEN7_OACONTROL, 1909 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1910 (period_exponent << 1911 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1912 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1913 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1914 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1915 GEN7_OACONTROL_ENABLE); 1916 } else 1917 I915_WRITE(GEN7_OACONTROL, 0); 1918 } 1919 1920 static void gen8_oa_enable(struct drm_i915_private *dev_priv) 1921 { 1922 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1923 1924 /* 1925 * Reset buf pointers so we don't forward reports from before now. 1926 * 1927 * Think carefully if considering trying to avoid this, since it 1928 * also ensures status flags and the buffer itself are cleared 1929 * in error paths, and we have checks for invalid reports based 1930 * on the assumption that certain fields are written to zeroed 1931 * memory which this helps maintains. 1932 */ 1933 gen8_init_oa_buffer(dev_priv); 1934 1935 /* 1936 * Note: we don't rely on the hardware to perform single context 1937 * filtering and instead filter on the cpu based on the context-id 1938 * field of reports 1939 */ 1940 I915_WRITE(GEN8_OACONTROL, (report_format << 1941 GEN8_OA_REPORT_FORMAT_SHIFT) | 1942 GEN8_OA_COUNTER_ENABLE); 1943 } 1944 1945 /** 1946 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1947 * @stream: An i915 perf stream opened for OA metrics 1948 * 1949 * [Re]enables hardware periodic sampling according to the period configured 1950 * when opening the stream. This also starts a hrtimer that will periodically 1951 * check for data in the circular OA buffer for notifying userspace (e.g. 1952 * during a read() or poll()). 1953 */ 1954 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1955 { 1956 struct drm_i915_private *dev_priv = stream->dev_priv; 1957 1958 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1959 1960 if (dev_priv->perf.oa.periodic) 1961 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1962 ns_to_ktime(POLL_PERIOD), 1963 HRTIMER_MODE_REL_PINNED); 1964 } 1965 1966 static void gen7_oa_disable(struct drm_i915_private *dev_priv) 1967 { 1968 I915_WRITE(GEN7_OACONTROL, 0); 1969 } 1970 1971 static void gen8_oa_disable(struct drm_i915_private *dev_priv) 1972 { 1973 I915_WRITE(GEN8_OACONTROL, 0); 1974 } 1975 1976 /** 1977 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1978 * @stream: An i915 perf stream opened for OA metrics 1979 * 1980 * Stops the OA unit from periodically writing counter reports into the 1981 * circular OA buffer. This also stops the hrtimer that periodically checks for 1982 * data in the circular OA buffer, for notifying userspace. 1983 */ 1984 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1985 { 1986 struct drm_i915_private *dev_priv = stream->dev_priv; 1987 1988 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1989 1990 if (dev_priv->perf.oa.periodic) 1991 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1992 } 1993 1994 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1995 .destroy = i915_oa_stream_destroy, 1996 .enable = i915_oa_stream_enable, 1997 .disable = i915_oa_stream_disable, 1998 .wait_unlocked = i915_oa_wait_unlocked, 1999 .poll_wait = i915_oa_poll_wait, 2000 .read = i915_oa_read, 2001 }; 2002 2003 /** 2004 * i915_oa_stream_init - validate combined props for OA stream and init 2005 * @stream: An i915 perf stream 2006 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2007 * @props: The property state that configures stream (individually validated) 2008 * 2009 * While read_properties_unlocked() validates properties in isolation it 2010 * doesn't ensure that the combination necessarily makes sense. 2011 * 2012 * At this point it has been determined that userspace wants a stream of 2013 * OA metrics, but still we need to further validate the combined 2014 * properties are OK. 2015 * 2016 * If the configuration makes sense then we can allocate memory for 2017 * a circular OA buffer and apply the requested metric set configuration. 2018 * 2019 * Returns: zero on success or a negative error code. 2020 */ 2021 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2022 struct drm_i915_perf_open_param *param, 2023 struct perf_open_properties *props) 2024 { 2025 struct drm_i915_private *dev_priv = stream->dev_priv; 2026 int format_size; 2027 int ret; 2028 2029 /* If the sysfs metrics/ directory wasn't registered for some 2030 * reason then don't let userspace try their luck with config 2031 * IDs 2032 */ 2033 if (!dev_priv->perf.metrics_kobj) { 2034 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2035 return -EINVAL; 2036 } 2037 2038 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2039 DRM_DEBUG("Only OA report sampling supported\n"); 2040 return -EINVAL; 2041 } 2042 2043 if (!dev_priv->perf.oa.ops.init_oa_buffer) { 2044 DRM_DEBUG("OA unit not supported\n"); 2045 return -ENODEV; 2046 } 2047 2048 /* To avoid the complexity of having to accurately filter 2049 * counter reports and marshal to the appropriate client 2050 * we currently only allow exclusive access 2051 */ 2052 if (dev_priv->perf.oa.exclusive_stream) { 2053 DRM_DEBUG("OA unit already in use\n"); 2054 return -EBUSY; 2055 } 2056 2057 if (!props->oa_format) { 2058 DRM_DEBUG("OA report format not specified\n"); 2059 return -EINVAL; 2060 } 2061 2062 /* We set up some ratelimit state to potentially throttle any _NOTES 2063 * about spurious, invalid OA reports which we don't forward to 2064 * userspace. 2065 * 2066 * The initialization is associated with opening the stream (not driver 2067 * init) considering we print a _NOTE about any throttling when closing 2068 * the stream instead of waiting until driver _fini which no one would 2069 * ever see. 2070 * 2071 * Using the same limiting factors as printk_ratelimit() 2072 */ 2073 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2074 5 * HZ, 10); 2075 /* Since we use a DRM_NOTE for spurious reports it would be 2076 * inconsistent to let __ratelimit() automatically print a warning for 2077 * throttling. 2078 */ 2079 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2080 RATELIMIT_MSG_ON_RELEASE); 2081 2082 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2083 2084 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2085 2086 stream->sample_flags |= SAMPLE_OA_REPORT; 2087 stream->sample_size += format_size; 2088 2089 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2090 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2091 return -EINVAL; 2092 2093 dev_priv->perf.oa.oa_buffer.format = 2094 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2095 2096 dev_priv->perf.oa.periodic = props->oa_periodic; 2097 if (dev_priv->perf.oa.periodic) 2098 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2099 2100 if (stream->ctx) { 2101 ret = oa_get_render_ctx_id(stream); 2102 if (ret) 2103 return ret; 2104 } 2105 2106 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2107 if (ret) 2108 goto err_config; 2109 2110 /* PRM - observability performance counters: 2111 * 2112 * OACONTROL, performance counter enable, note: 2113 * 2114 * "When this bit is set, in order to have coherent counts, 2115 * RC6 power state and trunk clock gating must be disabled. 2116 * This can be achieved by programming MMIO registers as 2117 * 0xA094=0 and 0xA090[31]=1" 2118 * 2119 * In our case we are expecting that taking pm + FORCEWAKE 2120 * references will effectively disable RC6. 2121 */ 2122 intel_runtime_pm_get(dev_priv); 2123 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 2124 2125 ret = alloc_oa_buffer(dev_priv); 2126 if (ret) 2127 goto err_oa_buf_alloc; 2128 2129 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2130 if (ret) 2131 goto err_lock; 2132 2133 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv, 2134 stream->oa_config); 2135 if (ret) 2136 goto err_enable; 2137 2138 stream->ops = &i915_oa_stream_ops; 2139 2140 dev_priv->perf.oa.exclusive_stream = stream; 2141 2142 mutex_unlock(&dev_priv->drm.struct_mutex); 2143 2144 return 0; 2145 2146 err_enable: 2147 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2148 mutex_unlock(&dev_priv->drm.struct_mutex); 2149 2150 err_lock: 2151 free_oa_buffer(dev_priv); 2152 2153 err_oa_buf_alloc: 2154 put_oa_config(dev_priv, stream->oa_config); 2155 2156 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 2157 intel_runtime_pm_put(dev_priv); 2158 2159 err_config: 2160 if (stream->ctx) 2161 oa_put_render_ctx_id(stream); 2162 2163 return ret; 2164 } 2165 2166 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2167 struct i915_gem_context *ctx, 2168 u32 *reg_state) 2169 { 2170 struct i915_perf_stream *stream; 2171 2172 if (engine->id != RCS) 2173 return; 2174 2175 stream = engine->i915->perf.oa.exclusive_stream; 2176 if (stream) 2177 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config); 2178 } 2179 2180 /** 2181 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2182 * @stream: An i915 perf stream 2183 * @file: An i915 perf stream file 2184 * @buf: destination buffer given by userspace 2185 * @count: the number of bytes userspace wants to read 2186 * @ppos: (inout) file seek position (unused) 2187 * 2188 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2189 * ensure that if we've successfully copied any data then reporting that takes 2190 * precedence over any internal error status, so the data isn't lost. 2191 * 2192 * For example ret will be -ENOSPC whenever there is more buffered data than 2193 * can be copied to userspace, but that's only interesting if we weren't able 2194 * to copy some data because it implies the userspace buffer is too small to 2195 * receive a single record (and we never split records). 2196 * 2197 * Another case with ret == -EFAULT is more of a grey area since it would seem 2198 * like bad form for userspace to ask us to overrun its buffer, but the user 2199 * knows best: 2200 * 2201 * http://yarchive.net/comp/linux/partial_reads_writes.html 2202 * 2203 * Returns: The number of bytes copied or a negative error code on failure. 2204 */ 2205 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2206 struct file *file, 2207 char __user *buf, 2208 size_t count, 2209 loff_t *ppos) 2210 { 2211 /* Note we keep the offset (aka bytes read) separate from any 2212 * error status so that the final check for whether we return 2213 * the bytes read with a higher precedence than any error (see 2214 * comment below) doesn't need to be handled/duplicated in 2215 * stream->ops->read() implementations. 2216 */ 2217 size_t offset = 0; 2218 int ret = stream->ops->read(stream, buf, count, &offset); 2219 2220 return offset ?: (ret ?: -EAGAIN); 2221 } 2222 2223 /** 2224 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2225 * @file: An i915 perf stream file 2226 * @buf: destination buffer given by userspace 2227 * @count: the number of bytes userspace wants to read 2228 * @ppos: (inout) file seek position (unused) 2229 * 2230 * The entry point for handling a read() on a stream file descriptor from 2231 * userspace. Most of the work is left to the i915_perf_read_locked() and 2232 * &i915_perf_stream_ops->read but to save having stream implementations (of 2233 * which we might have multiple later) we handle blocking read here. 2234 * 2235 * We can also consistently treat trying to read from a disabled stream 2236 * as an IO error so implementations can assume the stream is enabled 2237 * while reading. 2238 * 2239 * Returns: The number of bytes copied or a negative error code on failure. 2240 */ 2241 static ssize_t i915_perf_read(struct file *file, 2242 char __user *buf, 2243 size_t count, 2244 loff_t *ppos) 2245 { 2246 struct i915_perf_stream *stream = file->private_data; 2247 struct drm_i915_private *dev_priv = stream->dev_priv; 2248 ssize_t ret; 2249 2250 /* To ensure it's handled consistently we simply treat all reads of a 2251 * disabled stream as an error. In particular it might otherwise lead 2252 * to a deadlock for blocking file descriptors... 2253 */ 2254 if (!stream->enabled) 2255 return -EIO; 2256 2257 if (!(file->f_flags & O_NONBLOCK)) { 2258 /* There's the small chance of false positives from 2259 * stream->ops->wait_unlocked. 2260 * 2261 * E.g. with single context filtering since we only wait until 2262 * oabuffer has >= 1 report we don't immediately know whether 2263 * any reports really belong to the current context 2264 */ 2265 do { 2266 ret = stream->ops->wait_unlocked(stream); 2267 if (ret) 2268 return ret; 2269 2270 mutex_lock(&dev_priv->perf.lock); 2271 ret = i915_perf_read_locked(stream, file, 2272 buf, count, ppos); 2273 mutex_unlock(&dev_priv->perf.lock); 2274 } while (ret == -EAGAIN); 2275 } else { 2276 mutex_lock(&dev_priv->perf.lock); 2277 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2278 mutex_unlock(&dev_priv->perf.lock); 2279 } 2280 2281 /* We allow the poll checking to sometimes report false positive EPOLLIN 2282 * events where we might actually report EAGAIN on read() if there's 2283 * not really any data available. In this situation though we don't 2284 * want to enter a busy loop between poll() reporting a EPOLLIN event 2285 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2286 * effectively ensures we back off until the next hrtimer callback 2287 * before reporting another EPOLLIN event. 2288 */ 2289 if (ret >= 0 || ret == -EAGAIN) { 2290 /* Maybe make ->pollin per-stream state if we support multiple 2291 * concurrent streams in the future. 2292 */ 2293 dev_priv->perf.oa.pollin = false; 2294 } 2295 2296 return ret; 2297 } 2298 2299 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2300 { 2301 struct drm_i915_private *dev_priv = 2302 container_of(hrtimer, typeof(*dev_priv), 2303 perf.oa.poll_check_timer); 2304 2305 if (oa_buffer_check_unlocked(dev_priv)) { 2306 dev_priv->perf.oa.pollin = true; 2307 wake_up(&dev_priv->perf.oa.poll_wq); 2308 } 2309 2310 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2311 2312 return HRTIMER_RESTART; 2313 } 2314 2315 /** 2316 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2317 * @dev_priv: i915 device instance 2318 * @stream: An i915 perf stream 2319 * @file: An i915 perf stream file 2320 * @wait: poll() state table 2321 * 2322 * For handling userspace polling on an i915 perf stream, this calls through to 2323 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2324 * will be woken for new stream data. 2325 * 2326 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2327 * with any non-file-operation driver hooks. 2328 * 2329 * Returns: any poll events that are ready without sleeping 2330 */ 2331 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2332 struct i915_perf_stream *stream, 2333 struct file *file, 2334 poll_table *wait) 2335 { 2336 __poll_t events = 0; 2337 2338 stream->ops->poll_wait(stream, file, wait); 2339 2340 /* Note: we don't explicitly check whether there's something to read 2341 * here since this path may be very hot depending on what else 2342 * userspace is polling, or on the timeout in use. We rely solely on 2343 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2344 * samples to read. 2345 */ 2346 if (dev_priv->perf.oa.pollin) 2347 events |= EPOLLIN; 2348 2349 return events; 2350 } 2351 2352 /** 2353 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2354 * @file: An i915 perf stream file 2355 * @wait: poll() state table 2356 * 2357 * For handling userspace polling on an i915 perf stream, this ensures 2358 * poll_wait() gets called with a wait queue that will be woken for new stream 2359 * data. 2360 * 2361 * Note: Implementation deferred to i915_perf_poll_locked() 2362 * 2363 * Returns: any poll events that are ready without sleeping 2364 */ 2365 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 2366 { 2367 struct i915_perf_stream *stream = file->private_data; 2368 struct drm_i915_private *dev_priv = stream->dev_priv; 2369 __poll_t ret; 2370 2371 mutex_lock(&dev_priv->perf.lock); 2372 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2373 mutex_unlock(&dev_priv->perf.lock); 2374 2375 return ret; 2376 } 2377 2378 /** 2379 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2380 * @stream: A disabled i915 perf stream 2381 * 2382 * [Re]enables the associated capture of data for this stream. 2383 * 2384 * If a stream was previously enabled then there's currently no intention 2385 * to provide userspace any guarantee about the preservation of previously 2386 * buffered data. 2387 */ 2388 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2389 { 2390 if (stream->enabled) 2391 return; 2392 2393 /* Allow stream->ops->enable() to refer to this */ 2394 stream->enabled = true; 2395 2396 if (stream->ops->enable) 2397 stream->ops->enable(stream); 2398 } 2399 2400 /** 2401 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2402 * @stream: An enabled i915 perf stream 2403 * 2404 * Disables the associated capture of data for this stream. 2405 * 2406 * The intention is that disabling an re-enabling a stream will ideally be 2407 * cheaper than destroying and re-opening a stream with the same configuration, 2408 * though there are no formal guarantees about what state or buffered data 2409 * must be retained between disabling and re-enabling a stream. 2410 * 2411 * Note: while a stream is disabled it's considered an error for userspace 2412 * to attempt to read from the stream (-EIO). 2413 */ 2414 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2415 { 2416 if (!stream->enabled) 2417 return; 2418 2419 /* Allow stream->ops->disable() to refer to this */ 2420 stream->enabled = false; 2421 2422 if (stream->ops->disable) 2423 stream->ops->disable(stream); 2424 } 2425 2426 /** 2427 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2428 * @stream: An i915 perf stream 2429 * @cmd: the ioctl request 2430 * @arg: the ioctl data 2431 * 2432 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2433 * with any non-file-operation driver hooks. 2434 * 2435 * Returns: zero on success or a negative error code. Returns -EINVAL for 2436 * an unknown ioctl request. 2437 */ 2438 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2439 unsigned int cmd, 2440 unsigned long arg) 2441 { 2442 switch (cmd) { 2443 case I915_PERF_IOCTL_ENABLE: 2444 i915_perf_enable_locked(stream); 2445 return 0; 2446 case I915_PERF_IOCTL_DISABLE: 2447 i915_perf_disable_locked(stream); 2448 return 0; 2449 } 2450 2451 return -EINVAL; 2452 } 2453 2454 /** 2455 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2456 * @file: An i915 perf stream file 2457 * @cmd: the ioctl request 2458 * @arg: the ioctl data 2459 * 2460 * Implementation deferred to i915_perf_ioctl_locked(). 2461 * 2462 * Returns: zero on success or a negative error code. Returns -EINVAL for 2463 * an unknown ioctl request. 2464 */ 2465 static long i915_perf_ioctl(struct file *file, 2466 unsigned int cmd, 2467 unsigned long arg) 2468 { 2469 struct i915_perf_stream *stream = file->private_data; 2470 struct drm_i915_private *dev_priv = stream->dev_priv; 2471 long ret; 2472 2473 mutex_lock(&dev_priv->perf.lock); 2474 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2475 mutex_unlock(&dev_priv->perf.lock); 2476 2477 return ret; 2478 } 2479 2480 /** 2481 * i915_perf_destroy_locked - destroy an i915 perf stream 2482 * @stream: An i915 perf stream 2483 * 2484 * Frees all resources associated with the given i915 perf @stream, disabling 2485 * any associated data capture in the process. 2486 * 2487 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2488 * with any non-file-operation driver hooks. 2489 */ 2490 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2491 { 2492 if (stream->enabled) 2493 i915_perf_disable_locked(stream); 2494 2495 if (stream->ops->destroy) 2496 stream->ops->destroy(stream); 2497 2498 list_del(&stream->link); 2499 2500 if (stream->ctx) 2501 i915_gem_context_put(stream->ctx); 2502 2503 kfree(stream); 2504 } 2505 2506 /** 2507 * i915_perf_release - handles userspace close() of a stream file 2508 * @inode: anonymous inode associated with file 2509 * @file: An i915 perf stream file 2510 * 2511 * Cleans up any resources associated with an open i915 perf stream file. 2512 * 2513 * NB: close() can't really fail from the userspace point of view. 2514 * 2515 * Returns: zero on success or a negative error code. 2516 */ 2517 static int i915_perf_release(struct inode *inode, struct file *file) 2518 { 2519 struct i915_perf_stream *stream = file->private_data; 2520 struct drm_i915_private *dev_priv = stream->dev_priv; 2521 2522 mutex_lock(&dev_priv->perf.lock); 2523 i915_perf_destroy_locked(stream); 2524 mutex_unlock(&dev_priv->perf.lock); 2525 2526 return 0; 2527 } 2528 2529 2530 static const struct file_operations fops = { 2531 .owner = THIS_MODULE, 2532 .llseek = no_llseek, 2533 .release = i915_perf_release, 2534 .poll = i915_perf_poll, 2535 .read = i915_perf_read, 2536 .unlocked_ioctl = i915_perf_ioctl, 2537 /* Our ioctl have no arguments, so it's safe to use the same function 2538 * to handle 32bits compatibility. 2539 */ 2540 .compat_ioctl = i915_perf_ioctl, 2541 }; 2542 2543 2544 /** 2545 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2546 * @dev_priv: i915 device instance 2547 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2548 * @props: individually validated u64 property value pairs 2549 * @file: drm file 2550 * 2551 * See i915_perf_ioctl_open() for interface details. 2552 * 2553 * Implements further stream config validation and stream initialization on 2554 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2555 * taken to serialize with any non-file-operation driver hooks. 2556 * 2557 * Note: at this point the @props have only been validated in isolation and 2558 * it's still necessary to validate that the combination of properties makes 2559 * sense. 2560 * 2561 * In the case where userspace is interested in OA unit metrics then further 2562 * config validation and stream initialization details will be handled by 2563 * i915_oa_stream_init(). The code here should only validate config state that 2564 * will be relevant to all stream types / backends. 2565 * 2566 * Returns: zero on success or a negative error code. 2567 */ 2568 static int 2569 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2570 struct drm_i915_perf_open_param *param, 2571 struct perf_open_properties *props, 2572 struct drm_file *file) 2573 { 2574 struct i915_gem_context *specific_ctx = NULL; 2575 struct i915_perf_stream *stream = NULL; 2576 unsigned long f_flags = 0; 2577 bool privileged_op = true; 2578 int stream_fd; 2579 int ret; 2580 2581 if (props->single_context) { 2582 u32 ctx_handle = props->ctx_handle; 2583 struct drm_i915_file_private *file_priv = file->driver_priv; 2584 2585 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2586 if (!specific_ctx) { 2587 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2588 ctx_handle); 2589 ret = -ENOENT; 2590 goto err; 2591 } 2592 } 2593 2594 /* 2595 * On Haswell the OA unit supports clock gating off for a specific 2596 * context and in this mode there's no visibility of metrics for the 2597 * rest of the system, which we consider acceptable for a 2598 * non-privileged client. 2599 * 2600 * For Gen8+ the OA unit no longer supports clock gating off for a 2601 * specific context and the kernel can't securely stop the counters 2602 * from updating as system-wide / global values. Even though we can 2603 * filter reports based on the included context ID we can't block 2604 * clients from seeing the raw / global counter values via 2605 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2606 * enable the OA unit by default. 2607 */ 2608 if (IS_HASWELL(dev_priv) && specific_ctx) 2609 privileged_op = false; 2610 2611 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2612 * we check a dev.i915.perf_stream_paranoid sysctl option 2613 * to determine if it's ok to access system wide OA counters 2614 * without CAP_SYS_ADMIN privileges. 2615 */ 2616 if (privileged_op && 2617 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2618 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2619 ret = -EACCES; 2620 goto err_ctx; 2621 } 2622 2623 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2624 if (!stream) { 2625 ret = -ENOMEM; 2626 goto err_ctx; 2627 } 2628 2629 stream->dev_priv = dev_priv; 2630 stream->ctx = specific_ctx; 2631 2632 ret = i915_oa_stream_init(stream, param, props); 2633 if (ret) 2634 goto err_alloc; 2635 2636 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2637 * to have _stream_init check the combination of sample flags more 2638 * thoroughly, but still this is the expected result at this point. 2639 */ 2640 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2641 ret = -ENODEV; 2642 goto err_flags; 2643 } 2644 2645 list_add(&stream->link, &dev_priv->perf.streams); 2646 2647 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2648 f_flags |= O_CLOEXEC; 2649 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2650 f_flags |= O_NONBLOCK; 2651 2652 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2653 if (stream_fd < 0) { 2654 ret = stream_fd; 2655 goto err_open; 2656 } 2657 2658 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2659 i915_perf_enable_locked(stream); 2660 2661 return stream_fd; 2662 2663 err_open: 2664 list_del(&stream->link); 2665 err_flags: 2666 if (stream->ops->destroy) 2667 stream->ops->destroy(stream); 2668 err_alloc: 2669 kfree(stream); 2670 err_ctx: 2671 if (specific_ctx) 2672 i915_gem_context_put(specific_ctx); 2673 err: 2674 return ret; 2675 } 2676 2677 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2678 { 2679 return div64_u64(1000000000ULL * (2ULL << exponent), 2680 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz); 2681 } 2682 2683 /** 2684 * read_properties_unlocked - validate + copy userspace stream open properties 2685 * @dev_priv: i915 device instance 2686 * @uprops: The array of u64 key value pairs given by userspace 2687 * @n_props: The number of key value pairs expected in @uprops 2688 * @props: The stream configuration built up while validating properties 2689 * 2690 * Note this function only validates properties in isolation it doesn't 2691 * validate that the combination of properties makes sense or that all 2692 * properties necessary for a particular kind of stream have been set. 2693 * 2694 * Note that there currently aren't any ordering requirements for properties so 2695 * we shouldn't validate or assume anything about ordering here. This doesn't 2696 * rule out defining new properties with ordering requirements in the future. 2697 */ 2698 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2699 u64 __user *uprops, 2700 u32 n_props, 2701 struct perf_open_properties *props) 2702 { 2703 u64 __user *uprop = uprops; 2704 u32 i; 2705 2706 memset(props, 0, sizeof(struct perf_open_properties)); 2707 2708 if (!n_props) { 2709 DRM_DEBUG("No i915 perf properties given\n"); 2710 return -EINVAL; 2711 } 2712 2713 /* Considering that ID = 0 is reserved and assuming that we don't 2714 * (currently) expect any configurations to ever specify duplicate 2715 * values for a particular property ID then the last _PROP_MAX value is 2716 * one greater than the maximum number of properties we expect to get 2717 * from userspace. 2718 */ 2719 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2720 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2721 return -EINVAL; 2722 } 2723 2724 for (i = 0; i < n_props; i++) { 2725 u64 oa_period, oa_freq_hz; 2726 u64 id, value; 2727 int ret; 2728 2729 ret = get_user(id, uprop); 2730 if (ret) 2731 return ret; 2732 2733 ret = get_user(value, uprop + 1); 2734 if (ret) 2735 return ret; 2736 2737 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2738 DRM_DEBUG("Unknown i915 perf property ID\n"); 2739 return -EINVAL; 2740 } 2741 2742 switch ((enum drm_i915_perf_property_id)id) { 2743 case DRM_I915_PERF_PROP_CTX_HANDLE: 2744 props->single_context = 1; 2745 props->ctx_handle = value; 2746 break; 2747 case DRM_I915_PERF_PROP_SAMPLE_OA: 2748 props->sample_flags |= SAMPLE_OA_REPORT; 2749 break; 2750 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2751 if (value == 0) { 2752 DRM_DEBUG("Unknown OA metric set ID\n"); 2753 return -EINVAL; 2754 } 2755 props->metrics_set = value; 2756 break; 2757 case DRM_I915_PERF_PROP_OA_FORMAT: 2758 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2759 DRM_DEBUG("Out-of-range OA report format %llu\n", 2760 value); 2761 return -EINVAL; 2762 } 2763 if (!dev_priv->perf.oa.oa_formats[value].size) { 2764 DRM_DEBUG("Unsupported OA report format %llu\n", 2765 value); 2766 return -EINVAL; 2767 } 2768 props->oa_format = value; 2769 break; 2770 case DRM_I915_PERF_PROP_OA_EXPONENT: 2771 if (value > OA_EXPONENT_MAX) { 2772 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2773 OA_EXPONENT_MAX); 2774 return -EINVAL; 2775 } 2776 2777 /* Theoretically we can program the OA unit to sample 2778 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2779 * for BXT. We don't allow such high sampling 2780 * frequencies by default unless root. 2781 */ 2782 2783 BUILD_BUG_ON(sizeof(oa_period) != 8); 2784 oa_period = oa_exponent_to_ns(dev_priv, value); 2785 2786 /* This check is primarily to ensure that oa_period <= 2787 * UINT32_MAX (before passing to do_div which only 2788 * accepts a u32 denominator), but we can also skip 2789 * checking anything < 1Hz which implicitly can't be 2790 * limited via an integer oa_max_sample_rate. 2791 */ 2792 if (oa_period <= NSEC_PER_SEC) { 2793 u64 tmp = NSEC_PER_SEC; 2794 do_div(tmp, oa_period); 2795 oa_freq_hz = tmp; 2796 } else 2797 oa_freq_hz = 0; 2798 2799 if (oa_freq_hz > i915_oa_max_sample_rate && 2800 !capable(CAP_SYS_ADMIN)) { 2801 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2802 i915_oa_max_sample_rate); 2803 return -EACCES; 2804 } 2805 2806 props->oa_periodic = true; 2807 props->oa_period_exponent = value; 2808 break; 2809 case DRM_I915_PERF_PROP_MAX: 2810 MISSING_CASE(id); 2811 return -EINVAL; 2812 } 2813 2814 uprop += 2; 2815 } 2816 2817 return 0; 2818 } 2819 2820 /** 2821 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2822 * @dev: drm device 2823 * @data: ioctl data copied from userspace (unvalidated) 2824 * @file: drm file 2825 * 2826 * Validates the stream open parameters given by userspace including flags 2827 * and an array of u64 key, value pair properties. 2828 * 2829 * Very little is assumed up front about the nature of the stream being 2830 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2831 * i915-perf stream is expected to be a suitable interface for other forms of 2832 * buffered data written by the GPU besides periodic OA metrics. 2833 * 2834 * Note we copy the properties from userspace outside of the i915 perf 2835 * mutex to avoid an awkward lockdep with mmap_sem. 2836 * 2837 * Most of the implementation details are handled by 2838 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2839 * mutex for serializing with any non-file-operation driver hooks. 2840 * 2841 * Return: A newly opened i915 Perf stream file descriptor or negative 2842 * error code on failure. 2843 */ 2844 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2845 struct drm_file *file) 2846 { 2847 struct drm_i915_private *dev_priv = dev->dev_private; 2848 struct drm_i915_perf_open_param *param = data; 2849 struct perf_open_properties props; 2850 u32 known_open_flags; 2851 int ret; 2852 2853 if (!dev_priv->perf.initialized) { 2854 DRM_DEBUG("i915 perf interface not available for this system\n"); 2855 return -ENOTSUPP; 2856 } 2857 2858 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2859 I915_PERF_FLAG_FD_NONBLOCK | 2860 I915_PERF_FLAG_DISABLED; 2861 if (param->flags & ~known_open_flags) { 2862 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2863 return -EINVAL; 2864 } 2865 2866 ret = read_properties_unlocked(dev_priv, 2867 u64_to_user_ptr(param->properties_ptr), 2868 param->num_properties, 2869 &props); 2870 if (ret) 2871 return ret; 2872 2873 mutex_lock(&dev_priv->perf.lock); 2874 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2875 mutex_unlock(&dev_priv->perf.lock); 2876 2877 return ret; 2878 } 2879 2880 /** 2881 * i915_perf_register - exposes i915-perf to userspace 2882 * @dev_priv: i915 device instance 2883 * 2884 * In particular OA metric sets are advertised under a sysfs metrics/ 2885 * directory allowing userspace to enumerate valid IDs that can be 2886 * used to open an i915-perf stream. 2887 */ 2888 void i915_perf_register(struct drm_i915_private *dev_priv) 2889 { 2890 int ret; 2891 2892 if (!dev_priv->perf.initialized) 2893 return; 2894 2895 /* To be sure we're synchronized with an attempted 2896 * i915_perf_open_ioctl(); considering that we register after 2897 * being exposed to userspace. 2898 */ 2899 mutex_lock(&dev_priv->perf.lock); 2900 2901 dev_priv->perf.metrics_kobj = 2902 kobject_create_and_add("metrics", 2903 &dev_priv->drm.primary->kdev->kobj); 2904 if (!dev_priv->perf.metrics_kobj) 2905 goto exit; 2906 2907 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2908 2909 if (IS_HASWELL(dev_priv)) { 2910 i915_perf_load_test_config_hsw(dev_priv); 2911 } else if (IS_BROADWELL(dev_priv)) { 2912 i915_perf_load_test_config_bdw(dev_priv); 2913 } else if (IS_CHERRYVIEW(dev_priv)) { 2914 i915_perf_load_test_config_chv(dev_priv); 2915 } else if (IS_SKYLAKE(dev_priv)) { 2916 if (IS_SKL_GT2(dev_priv)) 2917 i915_perf_load_test_config_sklgt2(dev_priv); 2918 else if (IS_SKL_GT3(dev_priv)) 2919 i915_perf_load_test_config_sklgt3(dev_priv); 2920 else if (IS_SKL_GT4(dev_priv)) 2921 i915_perf_load_test_config_sklgt4(dev_priv); 2922 } else if (IS_BROXTON(dev_priv)) { 2923 i915_perf_load_test_config_bxt(dev_priv); 2924 } else if (IS_KABYLAKE(dev_priv)) { 2925 if (IS_KBL_GT2(dev_priv)) 2926 i915_perf_load_test_config_kblgt2(dev_priv); 2927 else if (IS_KBL_GT3(dev_priv)) 2928 i915_perf_load_test_config_kblgt3(dev_priv); 2929 } else if (IS_GEMINILAKE(dev_priv)) { 2930 i915_perf_load_test_config_glk(dev_priv); 2931 } else if (IS_COFFEELAKE(dev_priv)) { 2932 if (IS_CFL_GT2(dev_priv)) 2933 i915_perf_load_test_config_cflgt2(dev_priv); 2934 if (IS_CFL_GT3(dev_priv)) 2935 i915_perf_load_test_config_cflgt3(dev_priv); 2936 } else if (IS_CANNONLAKE(dev_priv)) { 2937 i915_perf_load_test_config_cnl(dev_priv); 2938 } 2939 2940 if (dev_priv->perf.oa.test_config.id == 0) 2941 goto sysfs_error; 2942 2943 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2944 &dev_priv->perf.oa.test_config.sysfs_metric); 2945 if (ret) 2946 goto sysfs_error; 2947 2948 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2949 2950 goto exit; 2951 2952 sysfs_error: 2953 kobject_put(dev_priv->perf.metrics_kobj); 2954 dev_priv->perf.metrics_kobj = NULL; 2955 2956 exit: 2957 mutex_unlock(&dev_priv->perf.lock); 2958 } 2959 2960 /** 2961 * i915_perf_unregister - hide i915-perf from userspace 2962 * @dev_priv: i915 device instance 2963 * 2964 * i915-perf state cleanup is split up into an 'unregister' and 2965 * 'deinit' phase where the interface is first hidden from 2966 * userspace by i915_perf_unregister() before cleaning up 2967 * remaining state in i915_perf_fini(). 2968 */ 2969 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2970 { 2971 if (!dev_priv->perf.metrics_kobj) 2972 return; 2973 2974 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2975 &dev_priv->perf.oa.test_config.sysfs_metric); 2976 2977 kobject_put(dev_priv->perf.metrics_kobj); 2978 dev_priv->perf.metrics_kobj = NULL; 2979 } 2980 2981 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2982 { 2983 static const i915_reg_t flex_eu_regs[] = { 2984 EU_PERF_CNTL0, 2985 EU_PERF_CNTL1, 2986 EU_PERF_CNTL2, 2987 EU_PERF_CNTL3, 2988 EU_PERF_CNTL4, 2989 EU_PERF_CNTL5, 2990 EU_PERF_CNTL6, 2991 }; 2992 int i; 2993 2994 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2995 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 2996 return true; 2997 } 2998 return false; 2999 } 3000 3001 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 3002 { 3003 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) && 3004 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) || 3005 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) && 3006 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) || 3007 (addr >= i915_mmio_reg_offset(OACEC0_0) && 3008 addr <= i915_mmio_reg_offset(OACEC7_1)); 3009 } 3010 3011 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3012 { 3013 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) || 3014 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) && 3015 addr <= i915_mmio_reg_offset(NOA_WRITE)) || 3016 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) && 3017 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) || 3018 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) && 3019 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI)); 3020 } 3021 3022 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3023 { 3024 return gen7_is_valid_mux_addr(dev_priv, addr) || 3025 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) || 3026 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) && 3027 addr <= i915_mmio_reg_offset(NOA_CONFIG(8))); 3028 } 3029 3030 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3031 { 3032 return gen8_is_valid_mux_addr(dev_priv, addr) || 3033 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) && 3034 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI)); 3035 } 3036 3037 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3038 { 3039 return gen7_is_valid_mux_addr(dev_priv, addr) || 3040 (addr >= 0x25100 && addr <= 0x2FF90) || 3041 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) && 3042 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) || 3043 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0); 3044 } 3045 3046 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3047 { 3048 return gen7_is_valid_mux_addr(dev_priv, addr) || 3049 (addr >= 0x182300 && addr <= 0x1823A4); 3050 } 3051 3052 static uint32_t mask_reg_value(u32 reg, u32 val) 3053 { 3054 /* HALF_SLICE_CHICKEN2 is programmed with a the 3055 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3056 * programmed by userspace doesn't change this. 3057 */ 3058 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg) 3059 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3060 3061 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3062 * indicated by its name and a bunch of selection fields used by OA 3063 * configs. 3064 */ 3065 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg) 3066 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3067 3068 return val; 3069 } 3070 3071 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3072 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3073 u32 __user *regs, 3074 u32 n_regs) 3075 { 3076 struct i915_oa_reg *oa_regs; 3077 int err; 3078 u32 i; 3079 3080 if (!n_regs) 3081 return NULL; 3082 3083 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2)) 3084 return ERR_PTR(-EFAULT); 3085 3086 /* No is_valid function means we're not allowing any register to be programmed. */ 3087 GEM_BUG_ON(!is_valid); 3088 if (!is_valid) 3089 return ERR_PTR(-EINVAL); 3090 3091 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3092 if (!oa_regs) 3093 return ERR_PTR(-ENOMEM); 3094 3095 for (i = 0; i < n_regs; i++) { 3096 u32 addr, value; 3097 3098 err = get_user(addr, regs); 3099 if (err) 3100 goto addr_err; 3101 3102 if (!is_valid(dev_priv, addr)) { 3103 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3104 err = -EINVAL; 3105 goto addr_err; 3106 } 3107 3108 err = get_user(value, regs + 1); 3109 if (err) 3110 goto addr_err; 3111 3112 oa_regs[i].addr = _MMIO(addr); 3113 oa_regs[i].value = mask_reg_value(addr, value); 3114 3115 regs += 2; 3116 } 3117 3118 return oa_regs; 3119 3120 addr_err: 3121 kfree(oa_regs); 3122 return ERR_PTR(err); 3123 } 3124 3125 static ssize_t show_dynamic_id(struct device *dev, 3126 struct device_attribute *attr, 3127 char *buf) 3128 { 3129 struct i915_oa_config *oa_config = 3130 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3131 3132 return sprintf(buf, "%d\n", oa_config->id); 3133 } 3134 3135 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3136 struct i915_oa_config *oa_config) 3137 { 3138 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3139 oa_config->sysfs_metric_id.attr.name = "id"; 3140 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3141 oa_config->sysfs_metric_id.show = show_dynamic_id; 3142 oa_config->sysfs_metric_id.store = NULL; 3143 3144 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3145 oa_config->attrs[1] = NULL; 3146 3147 oa_config->sysfs_metric.name = oa_config->uuid; 3148 oa_config->sysfs_metric.attrs = oa_config->attrs; 3149 3150 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3151 &oa_config->sysfs_metric); 3152 } 3153 3154 /** 3155 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3156 * @dev: drm device 3157 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3158 * userspace (unvalidated) 3159 * @file: drm file 3160 * 3161 * Validates the submitted OA register to be saved into a new OA config that 3162 * can then be used for programming the OA unit and its NOA network. 3163 * 3164 * Returns: A new allocated config number to be used with the perf open ioctl 3165 * or a negative error code on failure. 3166 */ 3167 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3168 struct drm_file *file) 3169 { 3170 struct drm_i915_private *dev_priv = dev->dev_private; 3171 struct drm_i915_perf_oa_config *args = data; 3172 struct i915_oa_config *oa_config, *tmp; 3173 int err, id; 3174 3175 if (!dev_priv->perf.initialized) { 3176 DRM_DEBUG("i915 perf interface not available for this system\n"); 3177 return -ENOTSUPP; 3178 } 3179 3180 if (!dev_priv->perf.metrics_kobj) { 3181 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3182 return -EINVAL; 3183 } 3184 3185 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3186 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3187 return -EACCES; 3188 } 3189 3190 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3191 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3192 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3193 DRM_DEBUG("No OA registers given\n"); 3194 return -EINVAL; 3195 } 3196 3197 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3198 if (!oa_config) { 3199 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3200 return -ENOMEM; 3201 } 3202 3203 atomic_set(&oa_config->ref_count, 1); 3204 3205 if (!uuid_is_valid(args->uuid)) { 3206 DRM_DEBUG("Invalid uuid format for OA config\n"); 3207 err = -EINVAL; 3208 goto reg_err; 3209 } 3210 3211 /* Last character in oa_config->uuid will be 0 because oa_config is 3212 * kzalloc. 3213 */ 3214 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3215 3216 oa_config->mux_regs_len = args->n_mux_regs; 3217 oa_config->mux_regs = 3218 alloc_oa_regs(dev_priv, 3219 dev_priv->perf.oa.ops.is_valid_mux_reg, 3220 u64_to_user_ptr(args->mux_regs_ptr), 3221 args->n_mux_regs); 3222 3223 if (IS_ERR(oa_config->mux_regs)) { 3224 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3225 err = PTR_ERR(oa_config->mux_regs); 3226 goto reg_err; 3227 } 3228 3229 oa_config->b_counter_regs_len = args->n_boolean_regs; 3230 oa_config->b_counter_regs = 3231 alloc_oa_regs(dev_priv, 3232 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3233 u64_to_user_ptr(args->boolean_regs_ptr), 3234 args->n_boolean_regs); 3235 3236 if (IS_ERR(oa_config->b_counter_regs)) { 3237 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3238 err = PTR_ERR(oa_config->b_counter_regs); 3239 goto reg_err; 3240 } 3241 3242 if (INTEL_GEN(dev_priv) < 8) { 3243 if (args->n_flex_regs != 0) { 3244 err = -EINVAL; 3245 goto reg_err; 3246 } 3247 } else { 3248 oa_config->flex_regs_len = args->n_flex_regs; 3249 oa_config->flex_regs = 3250 alloc_oa_regs(dev_priv, 3251 dev_priv->perf.oa.ops.is_valid_flex_reg, 3252 u64_to_user_ptr(args->flex_regs_ptr), 3253 args->n_flex_regs); 3254 3255 if (IS_ERR(oa_config->flex_regs)) { 3256 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3257 err = PTR_ERR(oa_config->flex_regs); 3258 goto reg_err; 3259 } 3260 } 3261 3262 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3263 if (err) 3264 goto reg_err; 3265 3266 /* We shouldn't have too many configs, so this iteration shouldn't be 3267 * too costly. 3268 */ 3269 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3270 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3271 DRM_DEBUG("OA config already exists with this uuid\n"); 3272 err = -EADDRINUSE; 3273 goto sysfs_err; 3274 } 3275 } 3276 3277 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3278 if (err) { 3279 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3280 goto sysfs_err; 3281 } 3282 3283 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3284 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3285 oa_config, 2, 3286 0, GFP_KERNEL); 3287 if (oa_config->id < 0) { 3288 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3289 err = oa_config->id; 3290 goto sysfs_err; 3291 } 3292 3293 mutex_unlock(&dev_priv->perf.metrics_lock); 3294 3295 return oa_config->id; 3296 3297 sysfs_err: 3298 mutex_unlock(&dev_priv->perf.metrics_lock); 3299 reg_err: 3300 put_oa_config(dev_priv, oa_config); 3301 DRM_DEBUG("Failed to add new OA config\n"); 3302 return err; 3303 } 3304 3305 /** 3306 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3307 * @dev: drm device 3308 * @data: ioctl data (pointer to u64 integer) copied from userspace 3309 * @file: drm file 3310 * 3311 * Configs can be removed while being used, the will stop appearing in sysfs 3312 * and their content will be freed when the stream using the config is closed. 3313 * 3314 * Returns: 0 on success or a negative error code on failure. 3315 */ 3316 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3317 struct drm_file *file) 3318 { 3319 struct drm_i915_private *dev_priv = dev->dev_private; 3320 u64 *arg = data; 3321 struct i915_oa_config *oa_config; 3322 int ret; 3323 3324 if (!dev_priv->perf.initialized) { 3325 DRM_DEBUG("i915 perf interface not available for this system\n"); 3326 return -ENOTSUPP; 3327 } 3328 3329 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3330 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3331 return -EACCES; 3332 } 3333 3334 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3335 if (ret) 3336 goto lock_err; 3337 3338 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3339 if (!oa_config) { 3340 DRM_DEBUG("Failed to remove unknown OA config\n"); 3341 ret = -ENOENT; 3342 goto config_err; 3343 } 3344 3345 GEM_BUG_ON(*arg != oa_config->id); 3346 3347 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3348 &oa_config->sysfs_metric); 3349 3350 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3351 put_oa_config(dev_priv, oa_config); 3352 3353 config_err: 3354 mutex_unlock(&dev_priv->perf.metrics_lock); 3355 lock_err: 3356 return ret; 3357 } 3358 3359 static struct ctl_table oa_table[] = { 3360 { 3361 .procname = "perf_stream_paranoid", 3362 .data = &i915_perf_stream_paranoid, 3363 .maxlen = sizeof(i915_perf_stream_paranoid), 3364 .mode = 0644, 3365 .proc_handler = proc_dointvec_minmax, 3366 .extra1 = &zero, 3367 .extra2 = &one, 3368 }, 3369 { 3370 .procname = "oa_max_sample_rate", 3371 .data = &i915_oa_max_sample_rate, 3372 .maxlen = sizeof(i915_oa_max_sample_rate), 3373 .mode = 0644, 3374 .proc_handler = proc_dointvec_minmax, 3375 .extra1 = &zero, 3376 .extra2 = &oa_sample_rate_hard_limit, 3377 }, 3378 {} 3379 }; 3380 3381 static struct ctl_table i915_root[] = { 3382 { 3383 .procname = "i915", 3384 .maxlen = 0, 3385 .mode = 0555, 3386 .child = oa_table, 3387 }, 3388 {} 3389 }; 3390 3391 static struct ctl_table dev_root[] = { 3392 { 3393 .procname = "dev", 3394 .maxlen = 0, 3395 .mode = 0555, 3396 .child = i915_root, 3397 }, 3398 {} 3399 }; 3400 3401 /** 3402 * i915_perf_init - initialize i915-perf state on module load 3403 * @dev_priv: i915 device instance 3404 * 3405 * Initializes i915-perf state without exposing anything to userspace. 3406 * 3407 * Note: i915-perf initialization is split into an 'init' and 'register' 3408 * phase with the i915_perf_register() exposing state to userspace. 3409 */ 3410 void i915_perf_init(struct drm_i915_private *dev_priv) 3411 { 3412 if (IS_HASWELL(dev_priv)) { 3413 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3414 gen7_is_valid_b_counter_addr; 3415 dev_priv->perf.oa.ops.is_valid_mux_reg = 3416 hsw_is_valid_mux_addr; 3417 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3418 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer; 3419 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3420 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3421 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3422 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3423 dev_priv->perf.oa.ops.read = gen7_oa_read; 3424 dev_priv->perf.oa.ops.oa_hw_tail_read = 3425 gen7_oa_hw_tail_read; 3426 3427 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3428 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 3429 /* Note: that although we could theoretically also support the 3430 * legacy ringbuffer mode on BDW (and earlier iterations of 3431 * this driver, before upstreaming did this) it didn't seem 3432 * worth the complexity to maintain now that BDW+ enable 3433 * execlist mode by default. 3434 */ 3435 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3436 3437 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer; 3438 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3439 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3440 dev_priv->perf.oa.ops.read = gen8_oa_read; 3441 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3442 3443 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) { 3444 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3445 gen7_is_valid_b_counter_addr; 3446 dev_priv->perf.oa.ops.is_valid_mux_reg = 3447 gen8_is_valid_mux_addr; 3448 dev_priv->perf.oa.ops.is_valid_flex_reg = 3449 gen8_is_valid_flex_addr; 3450 3451 if (IS_CHERRYVIEW(dev_priv)) { 3452 dev_priv->perf.oa.ops.is_valid_mux_reg = 3453 chv_is_valid_mux_addr; 3454 } 3455 3456 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3457 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3458 3459 if (IS_GEN8(dev_priv)) { 3460 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3461 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3462 3463 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3464 } else { 3465 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3466 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3467 3468 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3469 } 3470 } else if (IS_GEN10(dev_priv)) { 3471 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3472 gen7_is_valid_b_counter_addr; 3473 dev_priv->perf.oa.ops.is_valid_mux_reg = 3474 gen10_is_valid_mux_addr; 3475 dev_priv->perf.oa.ops.is_valid_flex_reg = 3476 gen8_is_valid_flex_addr; 3477 3478 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3479 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set; 3480 3481 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3482 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3483 3484 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3485 } 3486 } 3487 3488 if (dev_priv->perf.oa.ops.enable_metric_set) { 3489 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3490 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3491 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3492 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3493 3494 INIT_LIST_HEAD(&dev_priv->perf.streams); 3495 mutex_init(&dev_priv->perf.lock); 3496 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3497 3498 oa_sample_rate_hard_limit = 1000 * 3499 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2); 3500 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3501 3502 mutex_init(&dev_priv->perf.metrics_lock); 3503 idr_init(&dev_priv->perf.metrics_idr); 3504 3505 dev_priv->perf.initialized = true; 3506 } 3507 } 3508 3509 static int destroy_config(int id, void *p, void *data) 3510 { 3511 struct drm_i915_private *dev_priv = data; 3512 struct i915_oa_config *oa_config = p; 3513 3514 put_oa_config(dev_priv, oa_config); 3515 3516 return 0; 3517 } 3518 3519 /** 3520 * i915_perf_fini - Counter part to i915_perf_init() 3521 * @dev_priv: i915 device instance 3522 */ 3523 void i915_perf_fini(struct drm_i915_private *dev_priv) 3524 { 3525 if (!dev_priv->perf.initialized) 3526 return; 3527 3528 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3529 idr_destroy(&dev_priv->perf.metrics_idr); 3530 3531 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3532 3533 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3534 3535 dev_priv->perf.initialized = false; 3536 } 3537