xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision ae64438be1923e3c1102d90fd41db7afcfaf54cc)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_regs.h"
208 #include "gt/intel_lrc.h"
209 #include "gt/intel_lrc_reg.h"
210 #include "gt/intel_ring.h"
211 
212 #include "i915_drv.h"
213 #include "i915_file_private.h"
214 #include "i915_perf.h"
215 #include "i915_perf_oa_regs.h"
216 
217 /* HW requires this to be a power of two, between 128k and 16M, though driver
218  * is currently generally designed assuming the largest 16M size is used such
219  * that the overflow cases are unlikely in normal operation.
220  */
221 #define OA_BUFFER_SIZE		SZ_16M
222 
223 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
224 
225 /**
226  * DOC: OA Tail Pointer Race
227  *
228  * There's a HW race condition between OA unit tail pointer register updates and
229  * writes to memory whereby the tail pointer can sometimes get ahead of what's
230  * been written out to the OA buffer so far (in terms of what's visible to the
231  * CPU).
232  *
233  * Although this can be observed explicitly while copying reports to userspace
234  * by checking for a zeroed report-id field in tail reports, we want to account
235  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
236  * redundant read() attempts.
237  *
238  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
239  * in the OA buffer, starting from the tail reported by the HW until we find a
240  * report with its first 2 dwords not 0 meaning its previous report is
241  * completely in memory and ready to be read. Those dwords are also set to 0
242  * once read and the whole buffer is cleared upon OA buffer initialization. The
243  * first dword is the reason for this report while the second is the timestamp,
244  * making the chances of having those 2 fields at 0 fairly unlikely. A more
245  * detailed explanation is available in oa_buffer_check_unlocked().
246  *
247  * Most of the implementation details for this workaround are in
248  * oa_buffer_check_unlocked() and _append_oa_reports()
249  *
250  * Note for posterity: previously the driver used to define an effective tail
251  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
252  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
253  * This was flawed considering that the OA unit may also automatically generate
254  * non-periodic reports (such as on context switch) or the OA unit may be
255  * enabled without any periodic sampling.
256  */
257 #define OA_TAIL_MARGIN_NSEC	100000ULL
258 #define INVALID_TAIL_PTR	0xffffffff
259 
260 /* The default frequency for checking whether the OA unit has written new
261  * reports to the circular OA buffer...
262  */
263 #define DEFAULT_POLL_FREQUENCY_HZ 200
264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
265 
266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
267 static u32 i915_perf_stream_paranoid = true;
268 
269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
270  * of the 64bit timestamp bits to trigger reports from) but there's currently
271  * no known use case for sampling as infrequently as once per 47 thousand years.
272  *
273  * Since the timestamps included in OA reports are only 32bits it seems
274  * reasonable to limit the OA exponent where it's still possible to account for
275  * overflow in OA report timestamps.
276  */
277 #define OA_EXPONENT_MAX 31
278 
279 #define INVALID_CTX_ID 0xffffffff
280 
281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
282 #define OAREPORT_REASON_MASK           0x3f
283 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
284 #define OAREPORT_REASON_SHIFT          19
285 #define OAREPORT_REASON_TIMER          (1<<0)
286 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
287 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
288 
289 
290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
291  *
292  * The highest sampling frequency we can theoretically program the OA unit
293  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
294  *
295  * Initialized just before we register the sysctl parameter.
296  */
297 static int oa_sample_rate_hard_limit;
298 
299 /* Theoretically we can program the OA unit to sample every 160ns but don't
300  * allow that by default unless root...
301  *
302  * The default threshold of 100000Hz is based on perf's similar
303  * kernel.perf_event_max_sample_rate sysctl parameter.
304  */
305 static u32 i915_oa_max_sample_rate = 100000;
306 
307 /* XXX: beware if future OA HW adds new report formats that the current
308  * code assumes all reports have a power-of-two size and ~(size - 1) can
309  * be used as a mask to align the OA tail pointer.
310  */
311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
312 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
313 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
314 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
315 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
316 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
317 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
318 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
319 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
320 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
321 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
322 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
323 };
324 
325 #define SAMPLE_OA_REPORT      (1<<0)
326 
327 /**
328  * struct perf_open_properties - for validated properties given to open a stream
329  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
330  * @single_context: Whether a single or all gpu contexts should be monitored
331  * @hold_preemption: Whether the preemption is disabled for the filtered
332  *                   context
333  * @ctx_handle: A gem ctx handle for use with @single_context
334  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
335  * @oa_format: An OA unit HW report format
336  * @oa_periodic: Whether to enable periodic OA unit sampling
337  * @oa_period_exponent: The OA unit sampling period is derived from this
338  * @engine: The engine (typically rcs0) being monitored by the OA unit
339  * @has_sseu: Whether @sseu was specified by userspace
340  * @sseu: internal SSEU configuration computed either from the userspace
341  *        specified configuration in the opening parameters or a default value
342  *        (see get_default_sseu_config())
343  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
344  * data availability
345  *
346  * As read_properties_unlocked() enumerates and validates the properties given
347  * to open a stream of metrics the configuration is built up in the structure
348  * which starts out zero initialized.
349  */
350 struct perf_open_properties {
351 	u32 sample_flags;
352 
353 	u64 single_context:1;
354 	u64 hold_preemption:1;
355 	u64 ctx_handle;
356 
357 	/* OA sampling state */
358 	int metrics_set;
359 	int oa_format;
360 	bool oa_periodic;
361 	int oa_period_exponent;
362 
363 	struct intel_engine_cs *engine;
364 
365 	bool has_sseu;
366 	struct intel_sseu sseu;
367 
368 	u64 poll_oa_period;
369 };
370 
371 struct i915_oa_config_bo {
372 	struct llist_node node;
373 
374 	struct i915_oa_config *oa_config;
375 	struct i915_vma *vma;
376 };
377 
378 static struct ctl_table_header *sysctl_header;
379 
380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
381 
382 void i915_oa_config_release(struct kref *ref)
383 {
384 	struct i915_oa_config *oa_config =
385 		container_of(ref, typeof(*oa_config), ref);
386 
387 	kfree(oa_config->flex_regs);
388 	kfree(oa_config->b_counter_regs);
389 	kfree(oa_config->mux_regs);
390 
391 	kfree_rcu(oa_config, rcu);
392 }
393 
394 struct i915_oa_config *
395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396 {
397 	struct i915_oa_config *oa_config;
398 
399 	rcu_read_lock();
400 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
401 	if (oa_config)
402 		oa_config = i915_oa_config_get(oa_config);
403 	rcu_read_unlock();
404 
405 	return oa_config;
406 }
407 
408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
409 {
410 	i915_oa_config_put(oa_bo->oa_config);
411 	i915_vma_put(oa_bo->vma);
412 	kfree(oa_bo);
413 }
414 
415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
416 {
417 	struct intel_uncore *uncore = stream->uncore;
418 
419 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
420 	       GEN12_OAG_OATAILPTR_MASK;
421 }
422 
423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
424 {
425 	struct intel_uncore *uncore = stream->uncore;
426 
427 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
428 }
429 
430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
431 {
432 	struct intel_uncore *uncore = stream->uncore;
433 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
434 
435 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
436 }
437 
438 /**
439  * oa_buffer_check_unlocked - check for data and update tail ptr state
440  * @stream: i915 stream instance
441  *
442  * This is either called via fops (for blocking reads in user ctx) or the poll
443  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
444  * if there is data available for userspace to read.
445  *
446  * This function is central to providing a workaround for the OA unit tail
447  * pointer having a race with respect to what data is visible to the CPU.
448  * It is responsible for reading tail pointers from the hardware and giving
449  * the pointers time to 'age' before they are made available for reading.
450  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451  *
452  * Besides returning true when there is data available to read() this function
453  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
454  * object.
455  *
456  * Note: It's safe to read OA config state here unlocked, assuming that this is
457  * only called while the stream is enabled, while the global OA configuration
458  * can't be modified.
459  *
460  * Returns: %true if the OA buffer contains data, else %false
461  */
462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
463 {
464 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
465 	int report_size = stream->oa_buffer.format_size;
466 	unsigned long flags;
467 	bool pollin;
468 	u32 hw_tail;
469 	u64 now;
470 
471 	/* We have to consider the (unlikely) possibility that read() errors
472 	 * could result in an OA buffer reset which might reset the head and
473 	 * tail state.
474 	 */
475 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
476 
477 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
478 
479 	/* The tail pointer increases in 64 byte increments,
480 	 * not in report_size steps...
481 	 */
482 	hw_tail &= ~(report_size - 1);
483 
484 	now = ktime_get_mono_fast_ns();
485 
486 	if (hw_tail == stream->oa_buffer.aging_tail &&
487 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
488 		/* If the HW tail hasn't move since the last check and the HW
489 		 * tail has been aging for long enough, declare it the new
490 		 * tail.
491 		 */
492 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
493 	} else {
494 		u32 head, tail, aged_tail;
495 
496 		/* NB: The head we observe here might effectively be a little
497 		 * out of date. If a read() is in progress, the head could be
498 		 * anywhere between this head and stream->oa_buffer.tail.
499 		 */
500 		head = stream->oa_buffer.head - gtt_offset;
501 		aged_tail = stream->oa_buffer.tail - gtt_offset;
502 
503 		hw_tail -= gtt_offset;
504 		tail = hw_tail;
505 
506 		/* Walk the stream backward until we find a report with dword 0
507 		 * & 1 not at 0. Since the circular buffer pointers progress by
508 		 * increments of 64 bytes and that reports can be up to 256
509 		 * bytes long, we can't tell whether a report has fully landed
510 		 * in memory before the first 2 dwords of the following report
511 		 * have effectively landed.
512 		 *
513 		 * This is assuming that the writes of the OA unit land in
514 		 * memory in the order they were written to.
515 		 * If not : (╯°□°)╯︵ ┻━┻
516 		 */
517 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
518 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
519 
520 			if (report32[0] != 0 || report32[1] != 0)
521 				break;
522 
523 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
524 		}
525 
526 		if (OA_TAKEN(hw_tail, tail) > report_size &&
527 		    __ratelimit(&stream->perf->tail_pointer_race))
528 			DRM_NOTE("unlanded report(s) head=0x%x "
529 				 "tail=0x%x hw_tail=0x%x\n",
530 				 head, tail, hw_tail);
531 
532 		stream->oa_buffer.tail = gtt_offset + tail;
533 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
534 		stream->oa_buffer.aging_timestamp = now;
535 	}
536 
537 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
538 			  stream->oa_buffer.head - gtt_offset) >= report_size;
539 
540 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
541 
542 	return pollin;
543 }
544 
545 /**
546  * append_oa_status - Appends a status record to a userspace read() buffer.
547  * @stream: An i915-perf stream opened for OA metrics
548  * @buf: destination buffer given by userspace
549  * @count: the number of bytes userspace wants to read
550  * @offset: (inout): the current position for writing into @buf
551  * @type: The kind of status to report to userspace
552  *
553  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
554  * into the userspace read() buffer.
555  *
556  * The @buf @offset will only be updated on success.
557  *
558  * Returns: 0 on success, negative error code on failure.
559  */
560 static int append_oa_status(struct i915_perf_stream *stream,
561 			    char __user *buf,
562 			    size_t count,
563 			    size_t *offset,
564 			    enum drm_i915_perf_record_type type)
565 {
566 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567 
568 	if ((count - *offset) < header.size)
569 		return -ENOSPC;
570 
571 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 		return -EFAULT;
573 
574 	(*offset) += header.size;
575 
576 	return 0;
577 }
578 
579 /**
580  * append_oa_sample - Copies single OA report into userspace read() buffer.
581  * @stream: An i915-perf stream opened for OA metrics
582  * @buf: destination buffer given by userspace
583  * @count: the number of bytes userspace wants to read
584  * @offset: (inout): the current position for writing into @buf
585  * @report: A single OA report to (optionally) include as part of the sample
586  *
587  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
588  * properties when opening a stream, tracked as `stream->sample_flags`. This
589  * function copies the requested components of a single sample to the given
590  * read() @buf.
591  *
592  * The @buf @offset will only be updated on success.
593  *
594  * Returns: 0 on success, negative error code on failure.
595  */
596 static int append_oa_sample(struct i915_perf_stream *stream,
597 			    char __user *buf,
598 			    size_t count,
599 			    size_t *offset,
600 			    const u8 *report)
601 {
602 	int report_size = stream->oa_buffer.format_size;
603 	struct drm_i915_perf_record_header header;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (copy_to_user(buf, report, report_size))
618 		return -EFAULT;
619 
620 	(*offset) += header.size;
621 
622 	return 0;
623 }
624 
625 /**
626  * gen8_append_oa_reports - Copies all buffered OA reports into
627  *			    userspace read() buffer.
628  * @stream: An i915-perf stream opened for OA metrics
629  * @buf: destination buffer given by userspace
630  * @count: the number of bytes userspace wants to read
631  * @offset: (inout): the current position for writing into @buf
632  *
633  * Notably any error condition resulting in a short read (-%ENOSPC or
634  * -%EFAULT) will be returned even though one or more records may
635  * have been successfully copied. In this case it's up to the caller
636  * to decide if the error should be squashed before returning to
637  * userspace.
638  *
639  * Note: reports are consumed from the head, and appended to the
640  * tail, so the tail chases the head?... If you think that's mad
641  * and back-to-front you're not alone, but this follows the
642  * Gen PRM naming convention.
643  *
644  * Returns: 0 on success, negative error code on failure.
645  */
646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 				  char __user *buf,
648 				  size_t count,
649 				  size_t *offset)
650 {
651 	struct intel_uncore *uncore = stream->uncore;
652 	int report_size = stream->oa_buffer.format_size;
653 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
654 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
655 	u32 mask = (OA_BUFFER_SIZE - 1);
656 	size_t start_offset = *offset;
657 	unsigned long flags;
658 	u32 head, tail;
659 	u32 taken;
660 	int ret = 0;
661 
662 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
663 		return -EIO;
664 
665 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
666 
667 	head = stream->oa_buffer.head;
668 	tail = stream->oa_buffer.tail;
669 
670 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
671 
672 	/*
673 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
674 	 * while indexing relative to oa_buf_base.
675 	 */
676 	head -= gtt_offset;
677 	tail -= gtt_offset;
678 
679 	/*
680 	 * An out of bounds or misaligned head or tail pointer implies a driver
681 	 * bug since we validate + align the tail pointers we read from the
682 	 * hardware and we are in full control of the head pointer which should
683 	 * only be incremented by multiples of the report size (notably also
684 	 * all a power of two).
685 	 */
686 	if (drm_WARN_ONCE(&uncore->i915->drm,
687 			  head > OA_BUFFER_SIZE || head % report_size ||
688 			  tail > OA_BUFFER_SIZE || tail % report_size,
689 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
690 			  head, tail))
691 		return -EIO;
692 
693 
694 	for (/* none */;
695 	     (taken = OA_TAKEN(tail, head));
696 	     head = (head + report_size) & mask) {
697 		u8 *report = oa_buf_base + head;
698 		u32 *report32 = (void *)report;
699 		u32 ctx_id;
700 		u32 reason;
701 
702 		/*
703 		 * All the report sizes factor neatly into the buffer
704 		 * size so we never expect to see a report split
705 		 * between the beginning and end of the buffer.
706 		 *
707 		 * Given the initial alignment check a misalignment
708 		 * here would imply a driver bug that would result
709 		 * in an overrun.
710 		 */
711 		if (drm_WARN_ON(&uncore->i915->drm,
712 				(OA_BUFFER_SIZE - head) < report_size)) {
713 			drm_err(&uncore->i915->drm,
714 				"Spurious OA head ptr: non-integral report offset\n");
715 			break;
716 		}
717 
718 		/*
719 		 * The reason field includes flags identifying what
720 		 * triggered this specific report (mostly timer
721 		 * triggered or e.g. due to a context switch).
722 		 *
723 		 * This field is never expected to be zero so we can
724 		 * check that the report isn't invalid before copying
725 		 * it to userspace...
726 		 */
727 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
728 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
729 			   OAREPORT_REASON_MASK_EXTENDED :
730 			   OAREPORT_REASON_MASK));
731 
732 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
733 
734 		/*
735 		 * Squash whatever is in the CTX_ID field if it's marked as
736 		 * invalid to be sure we avoid false-positive, single-context
737 		 * filtering below...
738 		 *
739 		 * Note: that we don't clear the valid_ctx_bit so userspace can
740 		 * understand that the ID has been squashed by the kernel.
741 		 */
742 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
743 		    GRAPHICS_VER(stream->perf->i915) <= 11)
744 			ctx_id = report32[2] = INVALID_CTX_ID;
745 
746 		/*
747 		 * NB: For Gen 8 the OA unit no longer supports clock gating
748 		 * off for a specific context and the kernel can't securely
749 		 * stop the counters from updating as system-wide / global
750 		 * values.
751 		 *
752 		 * Automatic reports now include a context ID so reports can be
753 		 * filtered on the cpu but it's not worth trying to
754 		 * automatically subtract/hide counter progress for other
755 		 * contexts while filtering since we can't stop userspace
756 		 * issuing MI_REPORT_PERF_COUNT commands which would still
757 		 * provide a side-band view of the real values.
758 		 *
759 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
760 		 * to normalize counters for a single filtered context then it
761 		 * needs be forwarded bookend context-switch reports so that it
762 		 * can track switches in between MI_REPORT_PERF_COUNT commands
763 		 * and can itself subtract/ignore the progress of counters
764 		 * associated with other contexts. Note that the hardware
765 		 * automatically triggers reports when switching to a new
766 		 * context which are tagged with the ID of the newly active
767 		 * context. To avoid the complexity (and likely fragility) of
768 		 * reading ahead while parsing reports to try and minimize
769 		 * forwarding redundant context switch reports (i.e. between
770 		 * other, unrelated contexts) we simply elect to forward them
771 		 * all.
772 		 *
773 		 * We don't rely solely on the reason field to identify context
774 		 * switches since it's not-uncommon for periodic samples to
775 		 * identify a switch before any 'context switch' report.
776 		 */
777 		if (!stream->perf->exclusive_stream->ctx ||
778 		    stream->specific_ctx_id == ctx_id ||
779 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
780 		    reason & OAREPORT_REASON_CTX_SWITCH) {
781 
782 			/*
783 			 * While filtering for a single context we avoid
784 			 * leaking the IDs of other contexts.
785 			 */
786 			if (stream->perf->exclusive_stream->ctx &&
787 			    stream->specific_ctx_id != ctx_id) {
788 				report32[2] = INVALID_CTX_ID;
789 			}
790 
791 			ret = append_oa_sample(stream, buf, count, offset,
792 					       report);
793 			if (ret)
794 				break;
795 
796 			stream->oa_buffer.last_ctx_id = ctx_id;
797 		}
798 
799 		/*
800 		 * Clear out the first 2 dword as a mean to detect unlanded
801 		 * reports.
802 		 */
803 		report32[0] = 0;
804 		report32[1] = 0;
805 	}
806 
807 	if (start_offset != *offset) {
808 		i915_reg_t oaheadptr;
809 
810 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
811 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
812 
813 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
814 
815 		/*
816 		 * We removed the gtt_offset for the copy loop above, indexing
817 		 * relative to oa_buf_base so put back here...
818 		 */
819 		head += gtt_offset;
820 		intel_uncore_write(uncore, oaheadptr,
821 				   head & GEN12_OAG_OAHEADPTR_MASK);
822 		stream->oa_buffer.head = head;
823 
824 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
825 	}
826 
827 	return ret;
828 }
829 
830 /**
831  * gen8_oa_read - copy status records then buffered OA reports
832  * @stream: An i915-perf stream opened for OA metrics
833  * @buf: destination buffer given by userspace
834  * @count: the number of bytes userspace wants to read
835  * @offset: (inout): the current position for writing into @buf
836  *
837  * Checks OA unit status registers and if necessary appends corresponding
838  * status records for userspace (such as for a buffer full condition) and then
839  * initiate appending any buffered OA reports.
840  *
841  * Updates @offset according to the number of bytes successfully copied into
842  * the userspace buffer.
843  *
844  * NB: some data may be successfully copied to the userspace buffer
845  * even if an error is returned, and this is reflected in the
846  * updated @offset.
847  *
848  * Returns: zero on success or a negative error code
849  */
850 static int gen8_oa_read(struct i915_perf_stream *stream,
851 			char __user *buf,
852 			size_t count,
853 			size_t *offset)
854 {
855 	struct intel_uncore *uncore = stream->uncore;
856 	u32 oastatus;
857 	i915_reg_t oastatus_reg;
858 	int ret;
859 
860 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
861 		return -EIO;
862 
863 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
864 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
865 
866 	oastatus = intel_uncore_read(uncore, oastatus_reg);
867 
868 	/*
869 	 * We treat OABUFFER_OVERFLOW as a significant error:
870 	 *
871 	 * Although theoretically we could handle this more gracefully
872 	 * sometimes, some Gens don't correctly suppress certain
873 	 * automatically triggered reports in this condition and so we
874 	 * have to assume that old reports are now being trampled
875 	 * over.
876 	 *
877 	 * Considering how we don't currently give userspace control
878 	 * over the OA buffer size and always configure a large 16MB
879 	 * buffer, then a buffer overflow does anyway likely indicate
880 	 * that something has gone quite badly wrong.
881 	 */
882 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
883 		ret = append_oa_status(stream, buf, count, offset,
884 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
885 		if (ret)
886 			return ret;
887 
888 		drm_dbg(&stream->perf->i915->drm,
889 			"OA buffer overflow (exponent = %d): force restart\n",
890 			stream->period_exponent);
891 
892 		stream->perf->ops.oa_disable(stream);
893 		stream->perf->ops.oa_enable(stream);
894 
895 		/*
896 		 * Note: .oa_enable() is expected to re-init the oabuffer and
897 		 * reset GEN8_OASTATUS for us
898 		 */
899 		oastatus = intel_uncore_read(uncore, oastatus_reg);
900 	}
901 
902 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
903 		ret = append_oa_status(stream, buf, count, offset,
904 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
905 		if (ret)
906 			return ret;
907 
908 		intel_uncore_rmw(uncore, oastatus_reg,
909 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
910 				 GEN8_OASTATUS_REPORT_LOST,
911 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
912 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
913 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
914 	}
915 
916 	return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918 
919 /**
920  * gen7_append_oa_reports - Copies all buffered OA reports into
921  *			    userspace read() buffer.
922  * @stream: An i915-perf stream opened for OA metrics
923  * @buf: destination buffer given by userspace
924  * @count: the number of bytes userspace wants to read
925  * @offset: (inout): the current position for writing into @buf
926  *
927  * Notably any error condition resulting in a short read (-%ENOSPC or
928  * -%EFAULT) will be returned even though one or more records may
929  * have been successfully copied. In this case it's up to the caller
930  * to decide if the error should be squashed before returning to
931  * userspace.
932  *
933  * Note: reports are consumed from the head, and appended to the
934  * tail, so the tail chases the head?... If you think that's mad
935  * and back-to-front you're not alone, but this follows the
936  * Gen PRM naming convention.
937  *
938  * Returns: 0 on success, negative error code on failure.
939  */
940 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
941 				  char __user *buf,
942 				  size_t count,
943 				  size_t *offset)
944 {
945 	struct intel_uncore *uncore = stream->uncore;
946 	int report_size = stream->oa_buffer.format_size;
947 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
948 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
949 	u32 mask = (OA_BUFFER_SIZE - 1);
950 	size_t start_offset = *offset;
951 	unsigned long flags;
952 	u32 head, tail;
953 	u32 taken;
954 	int ret = 0;
955 
956 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
957 		return -EIO;
958 
959 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
960 
961 	head = stream->oa_buffer.head;
962 	tail = stream->oa_buffer.tail;
963 
964 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
965 
966 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
967 	 * while indexing relative to oa_buf_base.
968 	 */
969 	head -= gtt_offset;
970 	tail -= gtt_offset;
971 
972 	/* An out of bounds or misaligned head or tail pointer implies a driver
973 	 * bug since we validate + align the tail pointers we read from the
974 	 * hardware and we are in full control of the head pointer which should
975 	 * only be incremented by multiples of the report size (notably also
976 	 * all a power of two).
977 	 */
978 	if (drm_WARN_ONCE(&uncore->i915->drm,
979 			  head > OA_BUFFER_SIZE || head % report_size ||
980 			  tail > OA_BUFFER_SIZE || tail % report_size,
981 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
982 			  head, tail))
983 		return -EIO;
984 
985 
986 	for (/* none */;
987 	     (taken = OA_TAKEN(tail, head));
988 	     head = (head + report_size) & mask) {
989 		u8 *report = oa_buf_base + head;
990 		u32 *report32 = (void *)report;
991 
992 		/* All the report sizes factor neatly into the buffer
993 		 * size so we never expect to see a report split
994 		 * between the beginning and end of the buffer.
995 		 *
996 		 * Given the initial alignment check a misalignment
997 		 * here would imply a driver bug that would result
998 		 * in an overrun.
999 		 */
1000 		if (drm_WARN_ON(&uncore->i915->drm,
1001 				(OA_BUFFER_SIZE - head) < report_size)) {
1002 			drm_err(&uncore->i915->drm,
1003 				"Spurious OA head ptr: non-integral report offset\n");
1004 			break;
1005 		}
1006 
1007 		/* The report-ID field for periodic samples includes
1008 		 * some undocumented flags related to what triggered
1009 		 * the report and is never expected to be zero so we
1010 		 * can check that the report isn't invalid before
1011 		 * copying it to userspace...
1012 		 */
1013 		if (report32[0] == 0) {
1014 			if (__ratelimit(&stream->perf->spurious_report_rs))
1015 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 			continue;
1017 		}
1018 
1019 		ret = append_oa_sample(stream, buf, count, offset, report);
1020 		if (ret)
1021 			break;
1022 
1023 		/* Clear out the first 2 dwords as a mean to detect unlanded
1024 		 * reports.
1025 		 */
1026 		report32[0] = 0;
1027 		report32[1] = 0;
1028 	}
1029 
1030 	if (start_offset != *offset) {
1031 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1032 
1033 		/* We removed the gtt_offset for the copy loop above, indexing
1034 		 * relative to oa_buf_base so put back here...
1035 		 */
1036 		head += gtt_offset;
1037 
1038 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1039 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1040 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1041 		stream->oa_buffer.head = head;
1042 
1043 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * gen7_oa_read - copy status records then buffered OA reports
1051  * @stream: An i915-perf stream opened for OA metrics
1052  * @buf: destination buffer given by userspace
1053  * @count: the number of bytes userspace wants to read
1054  * @offset: (inout): the current position for writing into @buf
1055  *
1056  * Checks Gen 7 specific OA unit status registers and if necessary appends
1057  * corresponding status records for userspace (such as for a buffer full
1058  * condition) and then initiate appending any buffered OA reports.
1059  *
1060  * Updates @offset according to the number of bytes successfully copied into
1061  * the userspace buffer.
1062  *
1063  * Returns: zero on success or a negative error code
1064  */
1065 static int gen7_oa_read(struct i915_perf_stream *stream,
1066 			char __user *buf,
1067 			size_t count,
1068 			size_t *offset)
1069 {
1070 	struct intel_uncore *uncore = stream->uncore;
1071 	u32 oastatus1;
1072 	int ret;
1073 
1074 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1075 		return -EIO;
1076 
1077 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1078 
1079 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1080 	 * bits while the OA unit is enabled (while the tail pointer
1081 	 * may be updated asynchronously) so we ignore status bits
1082 	 * that have already been reported to userspace.
1083 	 */
1084 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1085 
1086 	/* We treat OABUFFER_OVERFLOW as a significant error:
1087 	 *
1088 	 * - The status can be interpreted to mean that the buffer is
1089 	 *   currently full (with a higher precedence than OA_TAKEN()
1090 	 *   which will start to report a near-empty buffer after an
1091 	 *   overflow) but it's awkward that we can't clear the status
1092 	 *   on Haswell, so without a reset we won't be able to catch
1093 	 *   the state again.
1094 	 *
1095 	 * - Since it also implies the HW has started overwriting old
1096 	 *   reports it may also affect our sanity checks for invalid
1097 	 *   reports when copying to userspace that assume new reports
1098 	 *   are being written to cleared memory.
1099 	 *
1100 	 * - In the future we may want to introduce a flight recorder
1101 	 *   mode where the driver will automatically maintain a safe
1102 	 *   guard band between head/tail, avoiding this overflow
1103 	 *   condition, but we avoid the added driver complexity for
1104 	 *   now.
1105 	 */
1106 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1107 		ret = append_oa_status(stream, buf, count, offset,
1108 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1109 		if (ret)
1110 			return ret;
1111 
1112 		drm_dbg(&stream->perf->i915->drm,
1113 			"OA buffer overflow (exponent = %d): force restart\n",
1114 			stream->period_exponent);
1115 
1116 		stream->perf->ops.oa_disable(stream);
1117 		stream->perf->ops.oa_enable(stream);
1118 
1119 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1120 	}
1121 
1122 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123 		ret = append_oa_status(stream, buf, count, offset,
1124 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125 		if (ret)
1126 			return ret;
1127 		stream->perf->gen7_latched_oastatus1 |=
1128 			GEN7_OASTATUS1_REPORT_LOST;
1129 	}
1130 
1131 	return gen7_append_oa_reports(stream, buf, count, offset);
1132 }
1133 
1134 /**
1135  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136  * @stream: An i915-perf stream opened for OA metrics
1137  *
1138  * Called when userspace tries to read() from a blocking stream FD opened
1139  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140  * OA buffer and wakes us.
1141  *
1142  * Note: it's acceptable to have this return with some false positives
1143  * since any subsequent read handling will return -EAGAIN if there isn't
1144  * really data ready for userspace yet.
1145  *
1146  * Returns: zero on success or a negative error code
1147  */
1148 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149 {
1150 	/* We would wait indefinitely if periodic sampling is not enabled */
1151 	if (!stream->periodic)
1152 		return -EIO;
1153 
1154 	return wait_event_interruptible(stream->poll_wq,
1155 					oa_buffer_check_unlocked(stream));
1156 }
1157 
1158 /**
1159  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1160  * @stream: An i915-perf stream opened for OA metrics
1161  * @file: An i915 perf stream file
1162  * @wait: poll() state table
1163  *
1164  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1165  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1166  * when it sees data ready to read in the circular OA buffer.
1167  */
1168 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1169 			      struct file *file,
1170 			      poll_table *wait)
1171 {
1172 	poll_wait(file, &stream->poll_wq, wait);
1173 }
1174 
1175 /**
1176  * i915_oa_read - just calls through to &i915_oa_ops->read
1177  * @stream: An i915-perf stream opened for OA metrics
1178  * @buf: destination buffer given by userspace
1179  * @count: the number of bytes userspace wants to read
1180  * @offset: (inout): the current position for writing into @buf
1181  *
1182  * Updates @offset according to the number of bytes successfully copied into
1183  * the userspace buffer.
1184  *
1185  * Returns: zero on success or a negative error code
1186  */
1187 static int i915_oa_read(struct i915_perf_stream *stream,
1188 			char __user *buf,
1189 			size_t count,
1190 			size_t *offset)
1191 {
1192 	return stream->perf->ops.read(stream, buf, count, offset);
1193 }
1194 
1195 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1196 {
1197 	struct i915_gem_engines_iter it;
1198 	struct i915_gem_context *ctx = stream->ctx;
1199 	struct intel_context *ce;
1200 	struct i915_gem_ww_ctx ww;
1201 	int err = -ENODEV;
1202 
1203 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1204 		if (ce->engine != stream->engine) /* first match! */
1205 			continue;
1206 
1207 		err = 0;
1208 		break;
1209 	}
1210 	i915_gem_context_unlock_engines(ctx);
1211 
1212 	if (err)
1213 		return ERR_PTR(err);
1214 
1215 	i915_gem_ww_ctx_init(&ww, true);
1216 retry:
1217 	/*
1218 	 * As the ID is the gtt offset of the context's vma we
1219 	 * pin the vma to ensure the ID remains fixed.
1220 	 */
1221 	err = intel_context_pin_ww(ce, &ww);
1222 	if (err == -EDEADLK) {
1223 		err = i915_gem_ww_ctx_backoff(&ww);
1224 		if (!err)
1225 			goto retry;
1226 	}
1227 	i915_gem_ww_ctx_fini(&ww);
1228 
1229 	if (err)
1230 		return ERR_PTR(err);
1231 
1232 	stream->pinned_ctx = ce;
1233 	return stream->pinned_ctx;
1234 }
1235 
1236 /**
1237  * oa_get_render_ctx_id - determine and hold ctx hw id
1238  * @stream: An i915-perf stream opened for OA metrics
1239  *
1240  * Determine the render context hw id, and ensure it remains fixed for the
1241  * lifetime of the stream. This ensures that we don't have to worry about
1242  * updating the context ID in OACONTROL on the fly.
1243  *
1244  * Returns: zero on success or a negative error code
1245  */
1246 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1247 {
1248 	struct intel_context *ce;
1249 
1250 	ce = oa_pin_context(stream);
1251 	if (IS_ERR(ce))
1252 		return PTR_ERR(ce);
1253 
1254 	switch (GRAPHICS_VER(ce->engine->i915)) {
1255 	case 7: {
1256 		/*
1257 		 * On Haswell we don't do any post processing of the reports
1258 		 * and don't need to use the mask.
1259 		 */
1260 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1261 		stream->specific_ctx_id_mask = 0;
1262 		break;
1263 	}
1264 
1265 	case 8:
1266 	case 9:
1267 		if (intel_engine_uses_guc(ce->engine)) {
1268 			/*
1269 			 * When using GuC, the context descriptor we write in
1270 			 * i915 is read by GuC and rewritten before it's
1271 			 * actually written into the hardware. The LRCA is
1272 			 * what is put into the context id field of the
1273 			 * context descriptor by GuC. Because it's aligned to
1274 			 * a page, the lower 12bits are always at 0 and
1275 			 * dropped by GuC. They won't be part of the context
1276 			 * ID in the OA reports, so squash those lower bits.
1277 			 */
1278 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1279 
1280 			/*
1281 			 * GuC uses the top bit to signal proxy submission, so
1282 			 * ignore that bit.
1283 			 */
1284 			stream->specific_ctx_id_mask =
1285 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1286 		} else {
1287 			stream->specific_ctx_id_mask =
1288 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1289 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1290 		}
1291 		break;
1292 
1293 	case 11:
1294 	case 12:
1295 		if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) {
1296 			stream->specific_ctx_id_mask =
1297 				((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1298 				(XEHP_SW_CTX_ID_SHIFT - 32);
1299 			stream->specific_ctx_id =
1300 				(XEHP_MAX_CONTEXT_HW_ID - 1) <<
1301 				(XEHP_SW_CTX_ID_SHIFT - 32);
1302 		} else {
1303 			stream->specific_ctx_id_mask =
1304 				((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1305 			/*
1306 			 * Pick an unused context id
1307 			 * 0 - BITS_PER_LONG are used by other contexts
1308 			 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1309 			 */
1310 			stream->specific_ctx_id =
1311 				(GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1312 		}
1313 		break;
1314 
1315 	default:
1316 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1317 	}
1318 
1319 	ce->tag = stream->specific_ctx_id;
1320 
1321 	drm_dbg(&stream->perf->i915->drm,
1322 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1323 		stream->specific_ctx_id,
1324 		stream->specific_ctx_id_mask);
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1331  * @stream: An i915-perf stream opened for OA metrics
1332  *
1333  * In case anything needed doing to ensure the context HW ID would remain valid
1334  * for the lifetime of the stream, then that can be undone here.
1335  */
1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1337 {
1338 	struct intel_context *ce;
1339 
1340 	ce = fetch_and_zero(&stream->pinned_ctx);
1341 	if (ce) {
1342 		ce->tag = 0; /* recomputed on next submission after parking */
1343 		intel_context_unpin(ce);
1344 	}
1345 
1346 	stream->specific_ctx_id = INVALID_CTX_ID;
1347 	stream->specific_ctx_id_mask = 0;
1348 }
1349 
1350 static void
1351 free_oa_buffer(struct i915_perf_stream *stream)
1352 {
1353 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1354 				   I915_VMA_RELEASE_MAP);
1355 
1356 	stream->oa_buffer.vaddr = NULL;
1357 }
1358 
1359 static void
1360 free_oa_configs(struct i915_perf_stream *stream)
1361 {
1362 	struct i915_oa_config_bo *oa_bo, *tmp;
1363 
1364 	i915_oa_config_put(stream->oa_config);
1365 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1366 		free_oa_config_bo(oa_bo);
1367 }
1368 
1369 static void
1370 free_noa_wait(struct i915_perf_stream *stream)
1371 {
1372 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1373 }
1374 
1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1376 {
1377 	struct i915_perf *perf = stream->perf;
1378 
1379 	if (WARN_ON(stream != perf->exclusive_stream))
1380 		return;
1381 
1382 	/*
1383 	 * Unset exclusive_stream first, it will be checked while disabling
1384 	 * the metric set on gen8+.
1385 	 *
1386 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1387 	 */
1388 	WRITE_ONCE(perf->exclusive_stream, NULL);
1389 	perf->ops.disable_metric_set(stream);
1390 
1391 	free_oa_buffer(stream);
1392 
1393 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1394 	intel_engine_pm_put(stream->engine);
1395 
1396 	if (stream->ctx)
1397 		oa_put_render_ctx_id(stream);
1398 
1399 	free_oa_configs(stream);
1400 	free_noa_wait(stream);
1401 
1402 	if (perf->spurious_report_rs.missed) {
1403 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1404 			 perf->spurious_report_rs.missed);
1405 	}
1406 }
1407 
1408 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1409 {
1410 	struct intel_uncore *uncore = stream->uncore;
1411 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1415 
1416 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1417 	 * before OASTATUS1, but after OASTATUS2
1418 	 */
1419 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1420 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1421 	stream->oa_buffer.head = gtt_offset;
1422 
1423 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1424 
1425 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1426 			   gtt_offset | OABUFFER_SIZE_16M);
1427 
1428 	/* Mark that we need updated tail pointers to read from... */
1429 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1430 	stream->oa_buffer.tail = gtt_offset;
1431 
1432 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1433 
1434 	/* On Haswell we have to track which OASTATUS1 flags we've
1435 	 * already seen since they can't be cleared while periodic
1436 	 * sampling is enabled.
1437 	 */
1438 	stream->perf->gen7_latched_oastatus1 = 0;
1439 
1440 	/* NB: although the OA buffer will initially be allocated
1441 	 * zeroed via shmfs (and so this memset is redundant when
1442 	 * first allocating), we may re-init the OA buffer, either
1443 	 * when re-enabling a stream or in error/reset paths.
1444 	 *
1445 	 * The reason we clear the buffer for each re-init is for the
1446 	 * sanity check in gen7_append_oa_reports() that looks at the
1447 	 * report-id field to make sure it's non-zero which relies on
1448 	 * the assumption that new reports are being written to zeroed
1449 	 * memory...
1450 	 */
1451 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1452 }
1453 
1454 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1455 {
1456 	struct intel_uncore *uncore = stream->uncore;
1457 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1458 	unsigned long flags;
1459 
1460 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1461 
1462 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1463 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1464 	stream->oa_buffer.head = gtt_offset;
1465 
1466 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1467 
1468 	/*
1469 	 * PRM says:
1470 	 *
1471 	 *  "This MMIO must be set before the OATAILPTR
1472 	 *  register and after the OAHEADPTR register. This is
1473 	 *  to enable proper functionality of the overflow
1474 	 *  bit."
1475 	 */
1476 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1477 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1478 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1479 
1480 	/* Mark that we need updated tail pointers to read from... */
1481 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1482 	stream->oa_buffer.tail = gtt_offset;
1483 
1484 	/*
1485 	 * Reset state used to recognise context switches, affecting which
1486 	 * reports we will forward to userspace while filtering for a single
1487 	 * context.
1488 	 */
1489 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1490 
1491 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1492 
1493 	/*
1494 	 * NB: although the OA buffer will initially be allocated
1495 	 * zeroed via shmfs (and so this memset is redundant when
1496 	 * first allocating), we may re-init the OA buffer, either
1497 	 * when re-enabling a stream or in error/reset paths.
1498 	 *
1499 	 * The reason we clear the buffer for each re-init is for the
1500 	 * sanity check in gen8_append_oa_reports() that looks at the
1501 	 * reason field to make sure it's non-zero which relies on
1502 	 * the assumption that new reports are being written to zeroed
1503 	 * memory...
1504 	 */
1505 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1506 }
1507 
1508 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1509 {
1510 	struct intel_uncore *uncore = stream->uncore;
1511 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1515 
1516 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1517 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1518 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1519 	stream->oa_buffer.head = gtt_offset;
1520 
1521 	/*
1522 	 * PRM says:
1523 	 *
1524 	 *  "This MMIO must be set before the OATAILPTR
1525 	 *  register and after the OAHEADPTR register. This is
1526 	 *  to enable proper functionality of the overflow
1527 	 *  bit."
1528 	 */
1529 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1530 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1531 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1532 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1533 
1534 	/* Mark that we need updated tail pointers to read from... */
1535 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1536 	stream->oa_buffer.tail = gtt_offset;
1537 
1538 	/*
1539 	 * Reset state used to recognise context switches, affecting which
1540 	 * reports we will forward to userspace while filtering for a single
1541 	 * context.
1542 	 */
1543 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1544 
1545 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1546 
1547 	/*
1548 	 * NB: although the OA buffer will initially be allocated
1549 	 * zeroed via shmfs (and so this memset is redundant when
1550 	 * first allocating), we may re-init the OA buffer, either
1551 	 * when re-enabling a stream or in error/reset paths.
1552 	 *
1553 	 * The reason we clear the buffer for each re-init is for the
1554 	 * sanity check in gen8_append_oa_reports() that looks at the
1555 	 * reason field to make sure it's non-zero which relies on
1556 	 * the assumption that new reports are being written to zeroed
1557 	 * memory...
1558 	 */
1559 	memset(stream->oa_buffer.vaddr, 0,
1560 	       stream->oa_buffer.vma->size);
1561 }
1562 
1563 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1564 {
1565 	struct drm_i915_private *i915 = stream->perf->i915;
1566 	struct drm_i915_gem_object *bo;
1567 	struct i915_vma *vma;
1568 	int ret;
1569 
1570 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1571 		return -ENODEV;
1572 
1573 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1574 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1575 
1576 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1577 	if (IS_ERR(bo)) {
1578 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1579 		return PTR_ERR(bo);
1580 	}
1581 
1582 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1583 
1584 	/* PreHSW required 512K alignment, HSW requires 16M */
1585 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1586 	if (IS_ERR(vma)) {
1587 		ret = PTR_ERR(vma);
1588 		goto err_unref;
1589 	}
1590 	stream->oa_buffer.vma = vma;
1591 
1592 	stream->oa_buffer.vaddr =
1593 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1594 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1595 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1596 		goto err_unpin;
1597 	}
1598 
1599 	return 0;
1600 
1601 err_unpin:
1602 	__i915_vma_unpin(vma);
1603 
1604 err_unref:
1605 	i915_gem_object_put(bo);
1606 
1607 	stream->oa_buffer.vaddr = NULL;
1608 	stream->oa_buffer.vma = NULL;
1609 
1610 	return ret;
1611 }
1612 
1613 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1614 				  bool save, i915_reg_t reg, u32 offset,
1615 				  u32 dword_count)
1616 {
1617 	u32 cmd;
1618 	u32 d;
1619 
1620 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1621 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1622 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1623 		cmd++;
1624 
1625 	for (d = 0; d < dword_count; d++) {
1626 		*cs++ = cmd;
1627 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1628 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1629 						offset) + 4 * d;
1630 		*cs++ = 0;
1631 	}
1632 
1633 	return cs;
1634 }
1635 
1636 static int alloc_noa_wait(struct i915_perf_stream *stream)
1637 {
1638 	struct drm_i915_private *i915 = stream->perf->i915;
1639 	struct drm_i915_gem_object *bo;
1640 	struct i915_vma *vma;
1641 	const u64 delay_ticks = 0xffffffffffffffff -
1642 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1643 		atomic64_read(&stream->perf->noa_programming_delay));
1644 	const u32 base = stream->engine->mmio_base;
1645 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1646 	u32 *batch, *ts0, *cs, *jump;
1647 	struct i915_gem_ww_ctx ww;
1648 	int ret, i;
1649 	enum {
1650 		START_TS,
1651 		NOW_TS,
1652 		DELTA_TS,
1653 		JUMP_PREDICATE,
1654 		DELTA_TARGET,
1655 		N_CS_GPR
1656 	};
1657 
1658 	bo = i915_gem_object_create_internal(i915, 4096);
1659 	if (IS_ERR(bo)) {
1660 		drm_err(&i915->drm,
1661 			"Failed to allocate NOA wait batchbuffer\n");
1662 		return PTR_ERR(bo);
1663 	}
1664 
1665 	i915_gem_ww_ctx_init(&ww, true);
1666 retry:
1667 	ret = i915_gem_object_lock(bo, &ww);
1668 	if (ret)
1669 		goto out_ww;
1670 
1671 	/*
1672 	 * We pin in GGTT because we jump into this buffer now because
1673 	 * multiple OA config BOs will have a jump to this address and it
1674 	 * needs to be fixed during the lifetime of the i915/perf stream.
1675 	 */
1676 	vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1677 	if (IS_ERR(vma)) {
1678 		ret = PTR_ERR(vma);
1679 		goto out_ww;
1680 	}
1681 
1682 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1683 	if (IS_ERR(batch)) {
1684 		ret = PTR_ERR(batch);
1685 		goto err_unpin;
1686 	}
1687 
1688 	/* Save registers. */
1689 	for (i = 0; i < N_CS_GPR; i++)
1690 		cs = save_restore_register(
1691 			stream, cs, true /* save */, CS_GPR(i),
1692 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1693 	cs = save_restore_register(
1694 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1695 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1696 
1697 	/* First timestamp snapshot location. */
1698 	ts0 = cs;
1699 
1700 	/*
1701 	 * Initial snapshot of the timestamp register to implement the wait.
1702 	 * We work with 32b values, so clear out the top 32b bits of the
1703 	 * register because the ALU works 64bits.
1704 	 */
1705 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1706 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1707 	*cs++ = 0;
1708 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1709 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1710 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1711 
1712 	/*
1713 	 * This is the location we're going to jump back into until the
1714 	 * required amount of time has passed.
1715 	 */
1716 	jump = cs;
1717 
1718 	/*
1719 	 * Take another snapshot of the timestamp register. Take care to clear
1720 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1721 	 * operations below.
1722 	 */
1723 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1724 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1725 	*cs++ = 0;
1726 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1727 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1728 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1729 
1730 	/*
1731 	 * Do a diff between the 2 timestamps and store the result back into
1732 	 * CS_GPR(1).
1733 	 */
1734 	*cs++ = MI_MATH(5);
1735 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1736 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1737 	*cs++ = MI_MATH_SUB;
1738 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1739 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1740 
1741 	/*
1742 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1743 	 * timestamp have rolled over the 32bits) into the predicate register
1744 	 * to be used for the predicated jump.
1745 	 */
1746 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1747 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1748 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1749 
1750 	/* Restart from the beginning if we had timestamps roll over. */
1751 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1752 		 MI_BATCH_BUFFER_START :
1753 		 MI_BATCH_BUFFER_START_GEN8) |
1754 		MI_BATCH_PREDICATE;
1755 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1756 	*cs++ = 0;
1757 
1758 	/*
1759 	 * Now add the diff between to previous timestamps and add it to :
1760 	 *      (((1 * << 64) - 1) - delay_ns)
1761 	 *
1762 	 * When the Carry Flag contains 1 this means the elapsed time is
1763 	 * longer than the expected delay, and we can exit the wait loop.
1764 	 */
1765 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1766 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1767 	*cs++ = lower_32_bits(delay_ticks);
1768 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1769 	*cs++ = upper_32_bits(delay_ticks);
1770 
1771 	*cs++ = MI_MATH(4);
1772 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1773 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1774 	*cs++ = MI_MATH_ADD;
1775 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1776 
1777 	*cs++ = MI_ARB_CHECK;
1778 
1779 	/*
1780 	 * Transfer the result into the predicate register to be used for the
1781 	 * predicated jump.
1782 	 */
1783 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1784 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1785 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1786 
1787 	/* Predicate the jump.  */
1788 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1789 		 MI_BATCH_BUFFER_START :
1790 		 MI_BATCH_BUFFER_START_GEN8) |
1791 		MI_BATCH_PREDICATE;
1792 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1793 	*cs++ = 0;
1794 
1795 	/* Restore registers. */
1796 	for (i = 0; i < N_CS_GPR; i++)
1797 		cs = save_restore_register(
1798 			stream, cs, false /* restore */, CS_GPR(i),
1799 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1800 	cs = save_restore_register(
1801 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1802 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1803 
1804 	/* And return to the ring. */
1805 	*cs++ = MI_BATCH_BUFFER_END;
1806 
1807 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1808 
1809 	i915_gem_object_flush_map(bo);
1810 	__i915_gem_object_release_map(bo);
1811 
1812 	stream->noa_wait = vma;
1813 	goto out_ww;
1814 
1815 err_unpin:
1816 	i915_vma_unpin_and_release(&vma, 0);
1817 out_ww:
1818 	if (ret == -EDEADLK) {
1819 		ret = i915_gem_ww_ctx_backoff(&ww);
1820 		if (!ret)
1821 			goto retry;
1822 	}
1823 	i915_gem_ww_ctx_fini(&ww);
1824 	if (ret)
1825 		i915_gem_object_put(bo);
1826 	return ret;
1827 }
1828 
1829 static u32 *write_cs_mi_lri(u32 *cs,
1830 			    const struct i915_oa_reg *reg_data,
1831 			    u32 n_regs)
1832 {
1833 	u32 i;
1834 
1835 	for (i = 0; i < n_regs; i++) {
1836 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1837 			u32 n_lri = min_t(u32,
1838 					  n_regs - i,
1839 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1840 
1841 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1842 		}
1843 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1844 		*cs++ = reg_data[i].value;
1845 	}
1846 
1847 	return cs;
1848 }
1849 
1850 static int num_lri_dwords(int num_regs)
1851 {
1852 	int count = 0;
1853 
1854 	if (num_regs > 0) {
1855 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1856 		count += num_regs * 2;
1857 	}
1858 
1859 	return count;
1860 }
1861 
1862 static struct i915_oa_config_bo *
1863 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1864 		       struct i915_oa_config *oa_config)
1865 {
1866 	struct drm_i915_gem_object *obj;
1867 	struct i915_oa_config_bo *oa_bo;
1868 	struct i915_gem_ww_ctx ww;
1869 	size_t config_length = 0;
1870 	u32 *cs;
1871 	int err;
1872 
1873 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1874 	if (!oa_bo)
1875 		return ERR_PTR(-ENOMEM);
1876 
1877 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1878 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1879 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1880 	config_length += 3; /* MI_BATCH_BUFFER_START */
1881 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1882 
1883 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1884 	if (IS_ERR(obj)) {
1885 		err = PTR_ERR(obj);
1886 		goto err_free;
1887 	}
1888 
1889 	i915_gem_ww_ctx_init(&ww, true);
1890 retry:
1891 	err = i915_gem_object_lock(obj, &ww);
1892 	if (err)
1893 		goto out_ww;
1894 
1895 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1896 	if (IS_ERR(cs)) {
1897 		err = PTR_ERR(cs);
1898 		goto out_ww;
1899 	}
1900 
1901 	cs = write_cs_mi_lri(cs,
1902 			     oa_config->mux_regs,
1903 			     oa_config->mux_regs_len);
1904 	cs = write_cs_mi_lri(cs,
1905 			     oa_config->b_counter_regs,
1906 			     oa_config->b_counter_regs_len);
1907 	cs = write_cs_mi_lri(cs,
1908 			     oa_config->flex_regs,
1909 			     oa_config->flex_regs_len);
1910 
1911 	/* Jump into the active wait. */
1912 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1913 		 MI_BATCH_BUFFER_START :
1914 		 MI_BATCH_BUFFER_START_GEN8);
1915 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1916 	*cs++ = 0;
1917 
1918 	i915_gem_object_flush_map(obj);
1919 	__i915_gem_object_release_map(obj);
1920 
1921 	oa_bo->vma = i915_vma_instance(obj,
1922 				       &stream->engine->gt->ggtt->vm,
1923 				       NULL);
1924 	if (IS_ERR(oa_bo->vma)) {
1925 		err = PTR_ERR(oa_bo->vma);
1926 		goto out_ww;
1927 	}
1928 
1929 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1930 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1931 
1932 out_ww:
1933 	if (err == -EDEADLK) {
1934 		err = i915_gem_ww_ctx_backoff(&ww);
1935 		if (!err)
1936 			goto retry;
1937 	}
1938 	i915_gem_ww_ctx_fini(&ww);
1939 
1940 	if (err)
1941 		i915_gem_object_put(obj);
1942 err_free:
1943 	if (err) {
1944 		kfree(oa_bo);
1945 		return ERR_PTR(err);
1946 	}
1947 	return oa_bo;
1948 }
1949 
1950 static struct i915_vma *
1951 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1952 {
1953 	struct i915_oa_config_bo *oa_bo;
1954 
1955 	/*
1956 	 * Look for the buffer in the already allocated BOs attached
1957 	 * to the stream.
1958 	 */
1959 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1960 		if (oa_bo->oa_config == oa_config &&
1961 		    memcmp(oa_bo->oa_config->uuid,
1962 			   oa_config->uuid,
1963 			   sizeof(oa_config->uuid)) == 0)
1964 			goto out;
1965 	}
1966 
1967 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1968 	if (IS_ERR(oa_bo))
1969 		return ERR_CAST(oa_bo);
1970 
1971 out:
1972 	return i915_vma_get(oa_bo->vma);
1973 }
1974 
1975 static int
1976 emit_oa_config(struct i915_perf_stream *stream,
1977 	       struct i915_oa_config *oa_config,
1978 	       struct intel_context *ce,
1979 	       struct i915_active *active)
1980 {
1981 	struct i915_request *rq;
1982 	struct i915_vma *vma;
1983 	struct i915_gem_ww_ctx ww;
1984 	int err;
1985 
1986 	vma = get_oa_vma(stream, oa_config);
1987 	if (IS_ERR(vma))
1988 		return PTR_ERR(vma);
1989 
1990 	i915_gem_ww_ctx_init(&ww, true);
1991 retry:
1992 	err = i915_gem_object_lock(vma->obj, &ww);
1993 	if (err)
1994 		goto err;
1995 
1996 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1997 	if (err)
1998 		goto err;
1999 
2000 	intel_engine_pm_get(ce->engine);
2001 	rq = i915_request_create(ce);
2002 	intel_engine_pm_put(ce->engine);
2003 	if (IS_ERR(rq)) {
2004 		err = PTR_ERR(rq);
2005 		goto err_vma_unpin;
2006 	}
2007 
2008 	if (!IS_ERR_OR_NULL(active)) {
2009 		/* After all individual context modifications */
2010 		err = i915_request_await_active(rq, active,
2011 						I915_ACTIVE_AWAIT_ACTIVE);
2012 		if (err)
2013 			goto err_add_request;
2014 
2015 		err = i915_active_add_request(active, rq);
2016 		if (err)
2017 			goto err_add_request;
2018 	}
2019 
2020 	err = i915_request_await_object(rq, vma->obj, 0);
2021 	if (!err)
2022 		err = i915_vma_move_to_active(vma, rq, 0);
2023 	if (err)
2024 		goto err_add_request;
2025 
2026 	err = rq->engine->emit_bb_start(rq,
2027 					vma->node.start, 0,
2028 					I915_DISPATCH_SECURE);
2029 	if (err)
2030 		goto err_add_request;
2031 
2032 err_add_request:
2033 	i915_request_add(rq);
2034 err_vma_unpin:
2035 	i915_vma_unpin(vma);
2036 err:
2037 	if (err == -EDEADLK) {
2038 		err = i915_gem_ww_ctx_backoff(&ww);
2039 		if (!err)
2040 			goto retry;
2041 	}
2042 
2043 	i915_gem_ww_ctx_fini(&ww);
2044 	i915_vma_put(vma);
2045 	return err;
2046 }
2047 
2048 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2049 {
2050 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2051 }
2052 
2053 static int
2054 hsw_enable_metric_set(struct i915_perf_stream *stream,
2055 		      struct i915_active *active)
2056 {
2057 	struct intel_uncore *uncore = stream->uncore;
2058 
2059 	/*
2060 	 * PRM:
2061 	 *
2062 	 * OA unit is using “crclk” for its functionality. When trunk
2063 	 * level clock gating takes place, OA clock would be gated,
2064 	 * unable to count the events from non-render clock domain.
2065 	 * Render clock gating must be disabled when OA is enabled to
2066 	 * count the events from non-render domain. Unit level clock
2067 	 * gating for RCS should also be disabled.
2068 	 */
2069 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2070 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2071 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2072 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2073 
2074 	return emit_oa_config(stream,
2075 			      stream->oa_config, oa_context(stream),
2076 			      active);
2077 }
2078 
2079 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2080 {
2081 	struct intel_uncore *uncore = stream->uncore;
2082 
2083 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2084 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2085 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2086 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2087 
2088 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2089 }
2090 
2091 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2092 			      i915_reg_t reg)
2093 {
2094 	u32 mmio = i915_mmio_reg_offset(reg);
2095 	int i;
2096 
2097 	/*
2098 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2099 	 * Active' event. In the future it's anticipated that there
2100 	 * will be an explicit 'No Event' we can select, but not yet...
2101 	 */
2102 	if (!oa_config)
2103 		return 0;
2104 
2105 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2106 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2107 			return oa_config->flex_regs[i].value;
2108 	}
2109 
2110 	return 0;
2111 }
2112 /*
2113  * NB: It must always remain pointer safe to run this even if the OA unit
2114  * has been disabled.
2115  *
2116  * It's fine to put out-of-date values into these per-context registers
2117  * in the case that the OA unit has been disabled.
2118  */
2119 static void
2120 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2121 			       const struct i915_perf_stream *stream)
2122 {
2123 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2124 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2125 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2126 	static const i915_reg_t flex_regs[] = {
2127 		EU_PERF_CNTL0,
2128 		EU_PERF_CNTL1,
2129 		EU_PERF_CNTL2,
2130 		EU_PERF_CNTL3,
2131 		EU_PERF_CNTL4,
2132 		EU_PERF_CNTL5,
2133 		EU_PERF_CNTL6,
2134 	};
2135 	u32 *reg_state = ce->lrc_reg_state;
2136 	int i;
2137 
2138 	reg_state[ctx_oactxctrl + 1] =
2139 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2140 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2141 		GEN8_OA_COUNTER_RESUME;
2142 
2143 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2144 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2145 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2146 }
2147 
2148 struct flex {
2149 	i915_reg_t reg;
2150 	u32 offset;
2151 	u32 value;
2152 };
2153 
2154 static int
2155 gen8_store_flex(struct i915_request *rq,
2156 		struct intel_context *ce,
2157 		const struct flex *flex, unsigned int count)
2158 {
2159 	u32 offset;
2160 	u32 *cs;
2161 
2162 	cs = intel_ring_begin(rq, 4 * count);
2163 	if (IS_ERR(cs))
2164 		return PTR_ERR(cs);
2165 
2166 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2167 	do {
2168 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2169 		*cs++ = offset + flex->offset * sizeof(u32);
2170 		*cs++ = 0;
2171 		*cs++ = flex->value;
2172 	} while (flex++, --count);
2173 
2174 	intel_ring_advance(rq, cs);
2175 
2176 	return 0;
2177 }
2178 
2179 static int
2180 gen8_load_flex(struct i915_request *rq,
2181 	       struct intel_context *ce,
2182 	       const struct flex *flex, unsigned int count)
2183 {
2184 	u32 *cs;
2185 
2186 	GEM_BUG_ON(!count || count > 63);
2187 
2188 	cs = intel_ring_begin(rq, 2 * count + 2);
2189 	if (IS_ERR(cs))
2190 		return PTR_ERR(cs);
2191 
2192 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2193 	do {
2194 		*cs++ = i915_mmio_reg_offset(flex->reg);
2195 		*cs++ = flex->value;
2196 	} while (flex++, --count);
2197 	*cs++ = MI_NOOP;
2198 
2199 	intel_ring_advance(rq, cs);
2200 
2201 	return 0;
2202 }
2203 
2204 static int gen8_modify_context(struct intel_context *ce,
2205 			       const struct flex *flex, unsigned int count)
2206 {
2207 	struct i915_request *rq;
2208 	int err;
2209 
2210 	rq = intel_engine_create_kernel_request(ce->engine);
2211 	if (IS_ERR(rq))
2212 		return PTR_ERR(rq);
2213 
2214 	/* Serialise with the remote context */
2215 	err = intel_context_prepare_remote_request(ce, rq);
2216 	if (err == 0)
2217 		err = gen8_store_flex(rq, ce, flex, count);
2218 
2219 	i915_request_add(rq);
2220 	return err;
2221 }
2222 
2223 static int
2224 gen8_modify_self(struct intel_context *ce,
2225 		 const struct flex *flex, unsigned int count,
2226 		 struct i915_active *active)
2227 {
2228 	struct i915_request *rq;
2229 	int err;
2230 
2231 	intel_engine_pm_get(ce->engine);
2232 	rq = i915_request_create(ce);
2233 	intel_engine_pm_put(ce->engine);
2234 	if (IS_ERR(rq))
2235 		return PTR_ERR(rq);
2236 
2237 	if (!IS_ERR_OR_NULL(active)) {
2238 		err = i915_active_add_request(active, rq);
2239 		if (err)
2240 			goto err_add_request;
2241 	}
2242 
2243 	err = gen8_load_flex(rq, ce, flex, count);
2244 	if (err)
2245 		goto err_add_request;
2246 
2247 err_add_request:
2248 	i915_request_add(rq);
2249 	return err;
2250 }
2251 
2252 static int gen8_configure_context(struct i915_gem_context *ctx,
2253 				  struct flex *flex, unsigned int count)
2254 {
2255 	struct i915_gem_engines_iter it;
2256 	struct intel_context *ce;
2257 	int err = 0;
2258 
2259 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2260 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2261 
2262 		if (ce->engine->class != RENDER_CLASS)
2263 			continue;
2264 
2265 		/* Otherwise OA settings will be set upon first use */
2266 		if (!intel_context_pin_if_active(ce))
2267 			continue;
2268 
2269 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2270 		err = gen8_modify_context(ce, flex, count);
2271 
2272 		intel_context_unpin(ce);
2273 		if (err)
2274 			break;
2275 	}
2276 	i915_gem_context_unlock_engines(ctx);
2277 
2278 	return err;
2279 }
2280 
2281 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2282 				       struct i915_active *active)
2283 {
2284 	int err;
2285 	struct intel_context *ce = stream->pinned_ctx;
2286 	u32 format = stream->oa_buffer.format;
2287 	struct flex regs_context[] = {
2288 		{
2289 			GEN8_OACTXCONTROL,
2290 			stream->perf->ctx_oactxctrl_offset + 1,
2291 			active ? GEN8_OA_COUNTER_RESUME : 0,
2292 		},
2293 	};
2294 	/* Offsets in regs_lri are not used since this configuration is only
2295 	 * applied using LRI. Initialize the correct offsets for posterity.
2296 	 */
2297 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2298 	struct flex regs_lri[] = {
2299 		{
2300 			GEN12_OAR_OACONTROL,
2301 			GEN12_OAR_OACONTROL_OFFSET + 1,
2302 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2303 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2304 		},
2305 		{
2306 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2307 			CTX_CONTEXT_CONTROL,
2308 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2309 				      active ?
2310 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2311 				      0)
2312 		},
2313 	};
2314 
2315 	/* Modify the context image of pinned context with regs_context*/
2316 	err = intel_context_lock_pinned(ce);
2317 	if (err)
2318 		return err;
2319 
2320 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2321 	intel_context_unlock_pinned(ce);
2322 	if (err)
2323 		return err;
2324 
2325 	/* Apply regs_lri using LRI with pinned context */
2326 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2327 }
2328 
2329 /*
2330  * Manages updating the per-context aspects of the OA stream
2331  * configuration across all contexts.
2332  *
2333  * The awkward consideration here is that OACTXCONTROL controls the
2334  * exponent for periodic sampling which is primarily used for system
2335  * wide profiling where we'd like a consistent sampling period even in
2336  * the face of context switches.
2337  *
2338  * Our approach of updating the register state context (as opposed to
2339  * say using a workaround batch buffer) ensures that the hardware
2340  * won't automatically reload an out-of-date timer exponent even
2341  * transiently before a WA BB could be parsed.
2342  *
2343  * This function needs to:
2344  * - Ensure the currently running context's per-context OA state is
2345  *   updated
2346  * - Ensure that all existing contexts will have the correct per-context
2347  *   OA state if they are scheduled for use.
2348  * - Ensure any new contexts will be initialized with the correct
2349  *   per-context OA state.
2350  *
2351  * Note: it's only the RCS/Render context that has any OA state.
2352  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2353  */
2354 static int
2355 oa_configure_all_contexts(struct i915_perf_stream *stream,
2356 			  struct flex *regs,
2357 			  size_t num_regs,
2358 			  struct i915_active *active)
2359 {
2360 	struct drm_i915_private *i915 = stream->perf->i915;
2361 	struct intel_engine_cs *engine;
2362 	struct i915_gem_context *ctx, *cn;
2363 	int err;
2364 
2365 	lockdep_assert_held(&stream->perf->lock);
2366 
2367 	/*
2368 	 * The OA register config is setup through the context image. This image
2369 	 * might be written to by the GPU on context switch (in particular on
2370 	 * lite-restore). This means we can't safely update a context's image,
2371 	 * if this context is scheduled/submitted to run on the GPU.
2372 	 *
2373 	 * We could emit the OA register config through the batch buffer but
2374 	 * this might leave small interval of time where the OA unit is
2375 	 * configured at an invalid sampling period.
2376 	 *
2377 	 * Note that since we emit all requests from a single ring, there
2378 	 * is still an implicit global barrier here that may cause a high
2379 	 * priority context to wait for an otherwise independent low priority
2380 	 * context. Contexts idle at the time of reconfiguration are not
2381 	 * trapped behind the barrier.
2382 	 */
2383 	spin_lock(&i915->gem.contexts.lock);
2384 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2385 		if (!kref_get_unless_zero(&ctx->ref))
2386 			continue;
2387 
2388 		spin_unlock(&i915->gem.contexts.lock);
2389 
2390 		err = gen8_configure_context(ctx, regs, num_regs);
2391 		if (err) {
2392 			i915_gem_context_put(ctx);
2393 			return err;
2394 		}
2395 
2396 		spin_lock(&i915->gem.contexts.lock);
2397 		list_safe_reset_next(ctx, cn, link);
2398 		i915_gem_context_put(ctx);
2399 	}
2400 	spin_unlock(&i915->gem.contexts.lock);
2401 
2402 	/*
2403 	 * After updating all other contexts, we need to modify ourselves.
2404 	 * If we don't modify the kernel_context, we do not get events while
2405 	 * idle.
2406 	 */
2407 	for_each_uabi_engine(engine, i915) {
2408 		struct intel_context *ce = engine->kernel_context;
2409 
2410 		if (engine->class != RENDER_CLASS)
2411 			continue;
2412 
2413 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2414 
2415 		err = gen8_modify_self(ce, regs, num_regs, active);
2416 		if (err)
2417 			return err;
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 static int
2424 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2425 			     const struct i915_oa_config *oa_config,
2426 			     struct i915_active *active)
2427 {
2428 	struct flex regs[] = {
2429 		{
2430 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2431 			CTX_R_PWR_CLK_STATE,
2432 		},
2433 	};
2434 
2435 	return oa_configure_all_contexts(stream,
2436 					 regs, ARRAY_SIZE(regs),
2437 					 active);
2438 }
2439 
2440 static int
2441 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2442 			   const struct i915_oa_config *oa_config,
2443 			   struct i915_active *active)
2444 {
2445 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2446 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2447 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2448 	struct flex regs[] = {
2449 		{
2450 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2451 			CTX_R_PWR_CLK_STATE,
2452 		},
2453 		{
2454 			GEN8_OACTXCONTROL,
2455 			stream->perf->ctx_oactxctrl_offset + 1,
2456 		},
2457 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2458 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2459 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2460 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2461 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2462 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2463 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2464 	};
2465 #undef ctx_flexeuN
2466 	int i;
2467 
2468 	regs[1].value =
2469 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2470 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2471 		GEN8_OA_COUNTER_RESUME;
2472 
2473 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2474 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2475 
2476 	return oa_configure_all_contexts(stream,
2477 					 regs, ARRAY_SIZE(regs),
2478 					 active);
2479 }
2480 
2481 static int
2482 gen8_enable_metric_set(struct i915_perf_stream *stream,
2483 		       struct i915_active *active)
2484 {
2485 	struct intel_uncore *uncore = stream->uncore;
2486 	struct i915_oa_config *oa_config = stream->oa_config;
2487 	int ret;
2488 
2489 	/*
2490 	 * We disable slice/unslice clock ratio change reports on SKL since
2491 	 * they are too noisy. The HW generates a lot of redundant reports
2492 	 * where the ratio hasn't really changed causing a lot of redundant
2493 	 * work to processes and increasing the chances we'll hit buffer
2494 	 * overruns.
2495 	 *
2496 	 * Although we don't currently use the 'disable overrun' OABUFFER
2497 	 * feature it's worth noting that clock ratio reports have to be
2498 	 * disabled before considering to use that feature since the HW doesn't
2499 	 * correctly block these reports.
2500 	 *
2501 	 * Currently none of the high-level metrics we have depend on knowing
2502 	 * this ratio to normalize.
2503 	 *
2504 	 * Note: This register is not power context saved and restored, but
2505 	 * that's OK considering that we disable RC6 while the OA unit is
2506 	 * enabled.
2507 	 *
2508 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2509 	 * be read back from automatically triggered reports, as part of the
2510 	 * RPT_ID field.
2511 	 */
2512 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2513 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2514 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2515 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2516 	}
2517 
2518 	/*
2519 	 * Update all contexts prior writing the mux configurations as we need
2520 	 * to make sure all slices/subslices are ON before writing to NOA
2521 	 * registers.
2522 	 */
2523 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2524 	if (ret)
2525 		return ret;
2526 
2527 	return emit_oa_config(stream,
2528 			      stream->oa_config, oa_context(stream),
2529 			      active);
2530 }
2531 
2532 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2533 {
2534 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2535 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2536 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2537 }
2538 
2539 static int
2540 gen12_enable_metric_set(struct i915_perf_stream *stream,
2541 			struct i915_active *active)
2542 {
2543 	struct intel_uncore *uncore = stream->uncore;
2544 	struct i915_oa_config *oa_config = stream->oa_config;
2545 	bool periodic = stream->periodic;
2546 	u32 period_exponent = stream->period_exponent;
2547 	int ret;
2548 
2549 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2550 			   /* Disable clk ratio reports, like previous Gens. */
2551 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2552 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2553 			   /*
2554 			    * If the user didn't require OA reports, instruct
2555 			    * the hardware not to emit ctx switch reports.
2556 			    */
2557 			   oag_report_ctx_switches(stream));
2558 
2559 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2560 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2561 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2562 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2563 			    : 0);
2564 
2565 	/*
2566 	 * Update all contexts prior writing the mux configurations as we need
2567 	 * to make sure all slices/subslices are ON before writing to NOA
2568 	 * registers.
2569 	 */
2570 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2571 	if (ret)
2572 		return ret;
2573 
2574 	/*
2575 	 * For Gen12, performance counters are context
2576 	 * saved/restored. Only enable it for the context that
2577 	 * requested this.
2578 	 */
2579 	if (stream->ctx) {
2580 		ret = gen12_configure_oar_context(stream, active);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	return emit_oa_config(stream,
2586 			      stream->oa_config, oa_context(stream),
2587 			      active);
2588 }
2589 
2590 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2591 {
2592 	struct intel_uncore *uncore = stream->uncore;
2593 
2594 	/* Reset all contexts' slices/subslices configurations. */
2595 	lrc_configure_all_contexts(stream, NULL, NULL);
2596 
2597 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2598 }
2599 
2600 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2601 {
2602 	struct intel_uncore *uncore = stream->uncore;
2603 
2604 	/* Reset all contexts' slices/subslices configurations. */
2605 	lrc_configure_all_contexts(stream, NULL, NULL);
2606 
2607 	/* Make sure we disable noa to save power. */
2608 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2609 }
2610 
2611 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2612 {
2613 	struct intel_uncore *uncore = stream->uncore;
2614 
2615 	/* Reset all contexts' slices/subslices configurations. */
2616 	gen12_configure_all_contexts(stream, NULL, NULL);
2617 
2618 	/* disable the context save/restore or OAR counters */
2619 	if (stream->ctx)
2620 		gen12_configure_oar_context(stream, NULL);
2621 
2622 	/* Make sure we disable noa to save power. */
2623 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2624 }
2625 
2626 static void gen7_oa_enable(struct i915_perf_stream *stream)
2627 {
2628 	struct intel_uncore *uncore = stream->uncore;
2629 	struct i915_gem_context *ctx = stream->ctx;
2630 	u32 ctx_id = stream->specific_ctx_id;
2631 	bool periodic = stream->periodic;
2632 	u32 period_exponent = stream->period_exponent;
2633 	u32 report_format = stream->oa_buffer.format;
2634 
2635 	/*
2636 	 * Reset buf pointers so we don't forward reports from before now.
2637 	 *
2638 	 * Think carefully if considering trying to avoid this, since it
2639 	 * also ensures status flags and the buffer itself are cleared
2640 	 * in error paths, and we have checks for invalid reports based
2641 	 * on the assumption that certain fields are written to zeroed
2642 	 * memory which this helps maintains.
2643 	 */
2644 	gen7_init_oa_buffer(stream);
2645 
2646 	intel_uncore_write(uncore, GEN7_OACONTROL,
2647 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2648 			   (period_exponent <<
2649 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2650 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2651 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2652 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2653 			   GEN7_OACONTROL_ENABLE);
2654 }
2655 
2656 static void gen8_oa_enable(struct i915_perf_stream *stream)
2657 {
2658 	struct intel_uncore *uncore = stream->uncore;
2659 	u32 report_format = stream->oa_buffer.format;
2660 
2661 	/*
2662 	 * Reset buf pointers so we don't forward reports from before now.
2663 	 *
2664 	 * Think carefully if considering trying to avoid this, since it
2665 	 * also ensures status flags and the buffer itself are cleared
2666 	 * in error paths, and we have checks for invalid reports based
2667 	 * on the assumption that certain fields are written to zeroed
2668 	 * memory which this helps maintains.
2669 	 */
2670 	gen8_init_oa_buffer(stream);
2671 
2672 	/*
2673 	 * Note: we don't rely on the hardware to perform single context
2674 	 * filtering and instead filter on the cpu based on the context-id
2675 	 * field of reports
2676 	 */
2677 	intel_uncore_write(uncore, GEN8_OACONTROL,
2678 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2679 			   GEN8_OA_COUNTER_ENABLE);
2680 }
2681 
2682 static void gen12_oa_enable(struct i915_perf_stream *stream)
2683 {
2684 	struct intel_uncore *uncore = stream->uncore;
2685 	u32 report_format = stream->oa_buffer.format;
2686 
2687 	/*
2688 	 * If we don't want OA reports from the OA buffer, then we don't even
2689 	 * need to program the OAG unit.
2690 	 */
2691 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2692 		return;
2693 
2694 	gen12_init_oa_buffer(stream);
2695 
2696 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2697 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2698 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2699 }
2700 
2701 /**
2702  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2703  * @stream: An i915 perf stream opened for OA metrics
2704  *
2705  * [Re]enables hardware periodic sampling according to the period configured
2706  * when opening the stream. This also starts a hrtimer that will periodically
2707  * check for data in the circular OA buffer for notifying userspace (e.g.
2708  * during a read() or poll()).
2709  */
2710 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2711 {
2712 	stream->pollin = false;
2713 
2714 	stream->perf->ops.oa_enable(stream);
2715 
2716 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2717 		hrtimer_start(&stream->poll_check_timer,
2718 			      ns_to_ktime(stream->poll_oa_period),
2719 			      HRTIMER_MODE_REL_PINNED);
2720 }
2721 
2722 static void gen7_oa_disable(struct i915_perf_stream *stream)
2723 {
2724 	struct intel_uncore *uncore = stream->uncore;
2725 
2726 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2727 	if (intel_wait_for_register(uncore,
2728 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2729 				    50))
2730 		drm_err(&stream->perf->i915->drm,
2731 			"wait for OA to be disabled timed out\n");
2732 }
2733 
2734 static void gen8_oa_disable(struct i915_perf_stream *stream)
2735 {
2736 	struct intel_uncore *uncore = stream->uncore;
2737 
2738 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2739 	if (intel_wait_for_register(uncore,
2740 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2741 				    50))
2742 		drm_err(&stream->perf->i915->drm,
2743 			"wait for OA to be disabled timed out\n");
2744 }
2745 
2746 static void gen12_oa_disable(struct i915_perf_stream *stream)
2747 {
2748 	struct intel_uncore *uncore = stream->uncore;
2749 
2750 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2751 	if (intel_wait_for_register(uncore,
2752 				    GEN12_OAG_OACONTROL,
2753 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2754 				    50))
2755 		drm_err(&stream->perf->i915->drm,
2756 			"wait for OA to be disabled timed out\n");
2757 
2758 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2759 	if (intel_wait_for_register(uncore,
2760 				    GEN12_OA_TLB_INV_CR,
2761 				    1, 0,
2762 				    50))
2763 		drm_err(&stream->perf->i915->drm,
2764 			"wait for OA tlb invalidate timed out\n");
2765 }
2766 
2767 /**
2768  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2769  * @stream: An i915 perf stream opened for OA metrics
2770  *
2771  * Stops the OA unit from periodically writing counter reports into the
2772  * circular OA buffer. This also stops the hrtimer that periodically checks for
2773  * data in the circular OA buffer, for notifying userspace.
2774  */
2775 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2776 {
2777 	stream->perf->ops.oa_disable(stream);
2778 
2779 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2780 		hrtimer_cancel(&stream->poll_check_timer);
2781 }
2782 
2783 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2784 	.destroy = i915_oa_stream_destroy,
2785 	.enable = i915_oa_stream_enable,
2786 	.disable = i915_oa_stream_disable,
2787 	.wait_unlocked = i915_oa_wait_unlocked,
2788 	.poll_wait = i915_oa_poll_wait,
2789 	.read = i915_oa_read,
2790 };
2791 
2792 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2793 {
2794 	struct i915_active *active;
2795 	int err;
2796 
2797 	active = i915_active_create();
2798 	if (!active)
2799 		return -ENOMEM;
2800 
2801 	err = stream->perf->ops.enable_metric_set(stream, active);
2802 	if (err == 0)
2803 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2804 
2805 	i915_active_put(active);
2806 	return err;
2807 }
2808 
2809 static void
2810 get_default_sseu_config(struct intel_sseu *out_sseu,
2811 			struct intel_engine_cs *engine)
2812 {
2813 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2814 
2815 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2816 
2817 	if (GRAPHICS_VER(engine->i915) == 11) {
2818 		/*
2819 		 * We only need subslice count so it doesn't matter which ones
2820 		 * we select - just turn off low bits in the amount of half of
2821 		 * all available subslices per slice.
2822 		 */
2823 		out_sseu->subslice_mask =
2824 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2825 		out_sseu->slice_mask = 0x1;
2826 	}
2827 }
2828 
2829 static int
2830 get_sseu_config(struct intel_sseu *out_sseu,
2831 		struct intel_engine_cs *engine,
2832 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2833 {
2834 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2835 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2836 		return -EINVAL;
2837 
2838 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2839 }
2840 
2841 /**
2842  * i915_oa_stream_init - validate combined props for OA stream and init
2843  * @stream: An i915 perf stream
2844  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2845  * @props: The property state that configures stream (individually validated)
2846  *
2847  * While read_properties_unlocked() validates properties in isolation it
2848  * doesn't ensure that the combination necessarily makes sense.
2849  *
2850  * At this point it has been determined that userspace wants a stream of
2851  * OA metrics, but still we need to further validate the combined
2852  * properties are OK.
2853  *
2854  * If the configuration makes sense then we can allocate memory for
2855  * a circular OA buffer and apply the requested metric set configuration.
2856  *
2857  * Returns: zero on success or a negative error code.
2858  */
2859 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2860 			       struct drm_i915_perf_open_param *param,
2861 			       struct perf_open_properties *props)
2862 {
2863 	struct drm_i915_private *i915 = stream->perf->i915;
2864 	struct i915_perf *perf = stream->perf;
2865 	int format_size;
2866 	int ret;
2867 
2868 	if (!props->engine) {
2869 		drm_dbg(&stream->perf->i915->drm,
2870 			"OA engine not specified\n");
2871 		return -EINVAL;
2872 	}
2873 
2874 	/*
2875 	 * If the sysfs metrics/ directory wasn't registered for some
2876 	 * reason then don't let userspace try their luck with config
2877 	 * IDs
2878 	 */
2879 	if (!perf->metrics_kobj) {
2880 		drm_dbg(&stream->perf->i915->drm,
2881 			"OA metrics weren't advertised via sysfs\n");
2882 		return -EINVAL;
2883 	}
2884 
2885 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2886 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2887 		drm_dbg(&stream->perf->i915->drm,
2888 			"Only OA report sampling supported\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	if (!perf->ops.enable_metric_set) {
2893 		drm_dbg(&stream->perf->i915->drm,
2894 			"OA unit not supported\n");
2895 		return -ENODEV;
2896 	}
2897 
2898 	/*
2899 	 * To avoid the complexity of having to accurately filter
2900 	 * counter reports and marshal to the appropriate client
2901 	 * we currently only allow exclusive access
2902 	 */
2903 	if (perf->exclusive_stream) {
2904 		drm_dbg(&stream->perf->i915->drm,
2905 			"OA unit already in use\n");
2906 		return -EBUSY;
2907 	}
2908 
2909 	if (!props->oa_format) {
2910 		drm_dbg(&stream->perf->i915->drm,
2911 			"OA report format not specified\n");
2912 		return -EINVAL;
2913 	}
2914 
2915 	stream->engine = props->engine;
2916 	stream->uncore = stream->engine->gt->uncore;
2917 
2918 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2919 
2920 	format_size = perf->oa_formats[props->oa_format].size;
2921 
2922 	stream->sample_flags = props->sample_flags;
2923 	stream->sample_size += format_size;
2924 
2925 	stream->oa_buffer.format_size = format_size;
2926 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2927 		return -EINVAL;
2928 
2929 	stream->hold_preemption = props->hold_preemption;
2930 
2931 	stream->oa_buffer.format =
2932 		perf->oa_formats[props->oa_format].format;
2933 
2934 	stream->periodic = props->oa_periodic;
2935 	if (stream->periodic)
2936 		stream->period_exponent = props->oa_period_exponent;
2937 
2938 	if (stream->ctx) {
2939 		ret = oa_get_render_ctx_id(stream);
2940 		if (ret) {
2941 			drm_dbg(&stream->perf->i915->drm,
2942 				"Invalid context id to filter with\n");
2943 			return ret;
2944 		}
2945 	}
2946 
2947 	ret = alloc_noa_wait(stream);
2948 	if (ret) {
2949 		drm_dbg(&stream->perf->i915->drm,
2950 			"Unable to allocate NOA wait batch buffer\n");
2951 		goto err_noa_wait_alloc;
2952 	}
2953 
2954 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2955 	if (!stream->oa_config) {
2956 		drm_dbg(&stream->perf->i915->drm,
2957 			"Invalid OA config id=%i\n", props->metrics_set);
2958 		ret = -EINVAL;
2959 		goto err_config;
2960 	}
2961 
2962 	/* PRM - observability performance counters:
2963 	 *
2964 	 *   OACONTROL, performance counter enable, note:
2965 	 *
2966 	 *   "When this bit is set, in order to have coherent counts,
2967 	 *   RC6 power state and trunk clock gating must be disabled.
2968 	 *   This can be achieved by programming MMIO registers as
2969 	 *   0xA094=0 and 0xA090[31]=1"
2970 	 *
2971 	 *   In our case we are expecting that taking pm + FORCEWAKE
2972 	 *   references will effectively disable RC6.
2973 	 */
2974 	intel_engine_pm_get(stream->engine);
2975 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2976 
2977 	ret = alloc_oa_buffer(stream);
2978 	if (ret)
2979 		goto err_oa_buf_alloc;
2980 
2981 	stream->ops = &i915_oa_stream_ops;
2982 
2983 	perf->sseu = props->sseu;
2984 	WRITE_ONCE(perf->exclusive_stream, stream);
2985 
2986 	ret = i915_perf_stream_enable_sync(stream);
2987 	if (ret) {
2988 		drm_dbg(&stream->perf->i915->drm,
2989 			"Unable to enable metric set\n");
2990 		goto err_enable;
2991 	}
2992 
2993 	drm_dbg(&stream->perf->i915->drm,
2994 		"opening stream oa config uuid=%s\n",
2995 		  stream->oa_config->uuid);
2996 
2997 	hrtimer_init(&stream->poll_check_timer,
2998 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2999 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3000 	init_waitqueue_head(&stream->poll_wq);
3001 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3002 
3003 	return 0;
3004 
3005 err_enable:
3006 	WRITE_ONCE(perf->exclusive_stream, NULL);
3007 	perf->ops.disable_metric_set(stream);
3008 
3009 	free_oa_buffer(stream);
3010 
3011 err_oa_buf_alloc:
3012 	free_oa_configs(stream);
3013 
3014 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3015 	intel_engine_pm_put(stream->engine);
3016 
3017 err_config:
3018 	free_noa_wait(stream);
3019 
3020 err_noa_wait_alloc:
3021 	if (stream->ctx)
3022 		oa_put_render_ctx_id(stream);
3023 
3024 	return ret;
3025 }
3026 
3027 void i915_oa_init_reg_state(const struct intel_context *ce,
3028 			    const struct intel_engine_cs *engine)
3029 {
3030 	struct i915_perf_stream *stream;
3031 
3032 	if (engine->class != RENDER_CLASS)
3033 		return;
3034 
3035 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3036 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3037 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3038 		gen8_update_reg_state_unlocked(ce, stream);
3039 }
3040 
3041 /**
3042  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3043  * @file: An i915 perf stream file
3044  * @buf: destination buffer given by userspace
3045  * @count: the number of bytes userspace wants to read
3046  * @ppos: (inout) file seek position (unused)
3047  *
3048  * The entry point for handling a read() on a stream file descriptor from
3049  * userspace. Most of the work is left to the i915_perf_read_locked() and
3050  * &i915_perf_stream_ops->read but to save having stream implementations (of
3051  * which we might have multiple later) we handle blocking read here.
3052  *
3053  * We can also consistently treat trying to read from a disabled stream
3054  * as an IO error so implementations can assume the stream is enabled
3055  * while reading.
3056  *
3057  * Returns: The number of bytes copied or a negative error code on failure.
3058  */
3059 static ssize_t i915_perf_read(struct file *file,
3060 			      char __user *buf,
3061 			      size_t count,
3062 			      loff_t *ppos)
3063 {
3064 	struct i915_perf_stream *stream = file->private_data;
3065 	struct i915_perf *perf = stream->perf;
3066 	size_t offset = 0;
3067 	int ret;
3068 
3069 	/* To ensure it's handled consistently we simply treat all reads of a
3070 	 * disabled stream as an error. In particular it might otherwise lead
3071 	 * to a deadlock for blocking file descriptors...
3072 	 */
3073 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3074 		return -EIO;
3075 
3076 	if (!(file->f_flags & O_NONBLOCK)) {
3077 		/* There's the small chance of false positives from
3078 		 * stream->ops->wait_unlocked.
3079 		 *
3080 		 * E.g. with single context filtering since we only wait until
3081 		 * oabuffer has >= 1 report we don't immediately know whether
3082 		 * any reports really belong to the current context
3083 		 */
3084 		do {
3085 			ret = stream->ops->wait_unlocked(stream);
3086 			if (ret)
3087 				return ret;
3088 
3089 			mutex_lock(&perf->lock);
3090 			ret = stream->ops->read(stream, buf, count, &offset);
3091 			mutex_unlock(&perf->lock);
3092 		} while (!offset && !ret);
3093 	} else {
3094 		mutex_lock(&perf->lock);
3095 		ret = stream->ops->read(stream, buf, count, &offset);
3096 		mutex_unlock(&perf->lock);
3097 	}
3098 
3099 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3100 	 * events where we might actually report EAGAIN on read() if there's
3101 	 * not really any data available. In this situation though we don't
3102 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3103 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3104 	 * effectively ensures we back off until the next hrtimer callback
3105 	 * before reporting another EPOLLIN event.
3106 	 * The exception to this is if ops->read() returned -ENOSPC which means
3107 	 * that more OA data is available than could fit in the user provided
3108 	 * buffer. In this case we want the next poll() call to not block.
3109 	 */
3110 	if (ret != -ENOSPC)
3111 		stream->pollin = false;
3112 
3113 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3114 	return offset ?: (ret ?: -EAGAIN);
3115 }
3116 
3117 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3118 {
3119 	struct i915_perf_stream *stream =
3120 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3121 
3122 	if (oa_buffer_check_unlocked(stream)) {
3123 		stream->pollin = true;
3124 		wake_up(&stream->poll_wq);
3125 	}
3126 
3127 	hrtimer_forward_now(hrtimer,
3128 			    ns_to_ktime(stream->poll_oa_period));
3129 
3130 	return HRTIMER_RESTART;
3131 }
3132 
3133 /**
3134  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3135  * @stream: An i915 perf stream
3136  * @file: An i915 perf stream file
3137  * @wait: poll() state table
3138  *
3139  * For handling userspace polling on an i915 perf stream, this calls through to
3140  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3141  * will be woken for new stream data.
3142  *
3143  * Note: The &perf->lock mutex has been taken to serialize
3144  * with any non-file-operation driver hooks.
3145  *
3146  * Returns: any poll events that are ready without sleeping
3147  */
3148 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3149 				      struct file *file,
3150 				      poll_table *wait)
3151 {
3152 	__poll_t events = 0;
3153 
3154 	stream->ops->poll_wait(stream, file, wait);
3155 
3156 	/* Note: we don't explicitly check whether there's something to read
3157 	 * here since this path may be very hot depending on what else
3158 	 * userspace is polling, or on the timeout in use. We rely solely on
3159 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3160 	 * samples to read.
3161 	 */
3162 	if (stream->pollin)
3163 		events |= EPOLLIN;
3164 
3165 	return events;
3166 }
3167 
3168 /**
3169  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3170  * @file: An i915 perf stream file
3171  * @wait: poll() state table
3172  *
3173  * For handling userspace polling on an i915 perf stream, this ensures
3174  * poll_wait() gets called with a wait queue that will be woken for new stream
3175  * data.
3176  *
3177  * Note: Implementation deferred to i915_perf_poll_locked()
3178  *
3179  * Returns: any poll events that are ready without sleeping
3180  */
3181 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3182 {
3183 	struct i915_perf_stream *stream = file->private_data;
3184 	struct i915_perf *perf = stream->perf;
3185 	__poll_t ret;
3186 
3187 	mutex_lock(&perf->lock);
3188 	ret = i915_perf_poll_locked(stream, file, wait);
3189 	mutex_unlock(&perf->lock);
3190 
3191 	return ret;
3192 }
3193 
3194 /**
3195  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3196  * @stream: A disabled i915 perf stream
3197  *
3198  * [Re]enables the associated capture of data for this stream.
3199  *
3200  * If a stream was previously enabled then there's currently no intention
3201  * to provide userspace any guarantee about the preservation of previously
3202  * buffered data.
3203  */
3204 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3205 {
3206 	if (stream->enabled)
3207 		return;
3208 
3209 	/* Allow stream->ops->enable() to refer to this */
3210 	stream->enabled = true;
3211 
3212 	if (stream->ops->enable)
3213 		stream->ops->enable(stream);
3214 
3215 	if (stream->hold_preemption)
3216 		intel_context_set_nopreempt(stream->pinned_ctx);
3217 }
3218 
3219 /**
3220  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3221  * @stream: An enabled i915 perf stream
3222  *
3223  * Disables the associated capture of data for this stream.
3224  *
3225  * The intention is that disabling an re-enabling a stream will ideally be
3226  * cheaper than destroying and re-opening a stream with the same configuration,
3227  * though there are no formal guarantees about what state or buffered data
3228  * must be retained between disabling and re-enabling a stream.
3229  *
3230  * Note: while a stream is disabled it's considered an error for userspace
3231  * to attempt to read from the stream (-EIO).
3232  */
3233 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3234 {
3235 	if (!stream->enabled)
3236 		return;
3237 
3238 	/* Allow stream->ops->disable() to refer to this */
3239 	stream->enabled = false;
3240 
3241 	if (stream->hold_preemption)
3242 		intel_context_clear_nopreempt(stream->pinned_ctx);
3243 
3244 	if (stream->ops->disable)
3245 		stream->ops->disable(stream);
3246 }
3247 
3248 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3249 				    unsigned long metrics_set)
3250 {
3251 	struct i915_oa_config *config;
3252 	long ret = stream->oa_config->id;
3253 
3254 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3255 	if (!config)
3256 		return -EINVAL;
3257 
3258 	if (config != stream->oa_config) {
3259 		int err;
3260 
3261 		/*
3262 		 * If OA is bound to a specific context, emit the
3263 		 * reconfiguration inline from that context. The update
3264 		 * will then be ordered with respect to submission on that
3265 		 * context.
3266 		 *
3267 		 * When set globally, we use a low priority kernel context,
3268 		 * so it will effectively take effect when idle.
3269 		 */
3270 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3271 		if (!err)
3272 			config = xchg(&stream->oa_config, config);
3273 		else
3274 			ret = err;
3275 	}
3276 
3277 	i915_oa_config_put(config);
3278 
3279 	return ret;
3280 }
3281 
3282 /**
3283  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3284  * @stream: An i915 perf stream
3285  * @cmd: the ioctl request
3286  * @arg: the ioctl data
3287  *
3288  * Note: The &perf->lock mutex has been taken to serialize
3289  * with any non-file-operation driver hooks.
3290  *
3291  * Returns: zero on success or a negative error code. Returns -EINVAL for
3292  * an unknown ioctl request.
3293  */
3294 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3295 				   unsigned int cmd,
3296 				   unsigned long arg)
3297 {
3298 	switch (cmd) {
3299 	case I915_PERF_IOCTL_ENABLE:
3300 		i915_perf_enable_locked(stream);
3301 		return 0;
3302 	case I915_PERF_IOCTL_DISABLE:
3303 		i915_perf_disable_locked(stream);
3304 		return 0;
3305 	case I915_PERF_IOCTL_CONFIG:
3306 		return i915_perf_config_locked(stream, arg);
3307 	}
3308 
3309 	return -EINVAL;
3310 }
3311 
3312 /**
3313  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3314  * @file: An i915 perf stream file
3315  * @cmd: the ioctl request
3316  * @arg: the ioctl data
3317  *
3318  * Implementation deferred to i915_perf_ioctl_locked().
3319  *
3320  * Returns: zero on success or a negative error code. Returns -EINVAL for
3321  * an unknown ioctl request.
3322  */
3323 static long i915_perf_ioctl(struct file *file,
3324 			    unsigned int cmd,
3325 			    unsigned long arg)
3326 {
3327 	struct i915_perf_stream *stream = file->private_data;
3328 	struct i915_perf *perf = stream->perf;
3329 	long ret;
3330 
3331 	mutex_lock(&perf->lock);
3332 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3333 	mutex_unlock(&perf->lock);
3334 
3335 	return ret;
3336 }
3337 
3338 /**
3339  * i915_perf_destroy_locked - destroy an i915 perf stream
3340  * @stream: An i915 perf stream
3341  *
3342  * Frees all resources associated with the given i915 perf @stream, disabling
3343  * any associated data capture in the process.
3344  *
3345  * Note: The &perf->lock mutex has been taken to serialize
3346  * with any non-file-operation driver hooks.
3347  */
3348 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3349 {
3350 	if (stream->enabled)
3351 		i915_perf_disable_locked(stream);
3352 
3353 	if (stream->ops->destroy)
3354 		stream->ops->destroy(stream);
3355 
3356 	if (stream->ctx)
3357 		i915_gem_context_put(stream->ctx);
3358 
3359 	kfree(stream);
3360 }
3361 
3362 /**
3363  * i915_perf_release - handles userspace close() of a stream file
3364  * @inode: anonymous inode associated with file
3365  * @file: An i915 perf stream file
3366  *
3367  * Cleans up any resources associated with an open i915 perf stream file.
3368  *
3369  * NB: close() can't really fail from the userspace point of view.
3370  *
3371  * Returns: zero on success or a negative error code.
3372  */
3373 static int i915_perf_release(struct inode *inode, struct file *file)
3374 {
3375 	struct i915_perf_stream *stream = file->private_data;
3376 	struct i915_perf *perf = stream->perf;
3377 
3378 	mutex_lock(&perf->lock);
3379 	i915_perf_destroy_locked(stream);
3380 	mutex_unlock(&perf->lock);
3381 
3382 	/* Release the reference the perf stream kept on the driver. */
3383 	drm_dev_put(&perf->i915->drm);
3384 
3385 	return 0;
3386 }
3387 
3388 
3389 static const struct file_operations fops = {
3390 	.owner		= THIS_MODULE,
3391 	.llseek		= no_llseek,
3392 	.release	= i915_perf_release,
3393 	.poll		= i915_perf_poll,
3394 	.read		= i915_perf_read,
3395 	.unlocked_ioctl	= i915_perf_ioctl,
3396 	/* Our ioctl have no arguments, so it's safe to use the same function
3397 	 * to handle 32bits compatibility.
3398 	 */
3399 	.compat_ioctl   = i915_perf_ioctl,
3400 };
3401 
3402 
3403 /**
3404  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3405  * @perf: i915 perf instance
3406  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3407  * @props: individually validated u64 property value pairs
3408  * @file: drm file
3409  *
3410  * See i915_perf_ioctl_open() for interface details.
3411  *
3412  * Implements further stream config validation and stream initialization on
3413  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3414  * taken to serialize with any non-file-operation driver hooks.
3415  *
3416  * Note: at this point the @props have only been validated in isolation and
3417  * it's still necessary to validate that the combination of properties makes
3418  * sense.
3419  *
3420  * In the case where userspace is interested in OA unit metrics then further
3421  * config validation and stream initialization details will be handled by
3422  * i915_oa_stream_init(). The code here should only validate config state that
3423  * will be relevant to all stream types / backends.
3424  *
3425  * Returns: zero on success or a negative error code.
3426  */
3427 static int
3428 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3429 			    struct drm_i915_perf_open_param *param,
3430 			    struct perf_open_properties *props,
3431 			    struct drm_file *file)
3432 {
3433 	struct i915_gem_context *specific_ctx = NULL;
3434 	struct i915_perf_stream *stream = NULL;
3435 	unsigned long f_flags = 0;
3436 	bool privileged_op = true;
3437 	int stream_fd;
3438 	int ret;
3439 
3440 	if (props->single_context) {
3441 		u32 ctx_handle = props->ctx_handle;
3442 		struct drm_i915_file_private *file_priv = file->driver_priv;
3443 
3444 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3445 		if (IS_ERR(specific_ctx)) {
3446 			drm_dbg(&perf->i915->drm,
3447 				"Failed to look up context with ID %u for opening perf stream\n",
3448 				  ctx_handle);
3449 			ret = PTR_ERR(specific_ctx);
3450 			goto err;
3451 		}
3452 	}
3453 
3454 	/*
3455 	 * On Haswell the OA unit supports clock gating off for a specific
3456 	 * context and in this mode there's no visibility of metrics for the
3457 	 * rest of the system, which we consider acceptable for a
3458 	 * non-privileged client.
3459 	 *
3460 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3461 	 * specific context and the kernel can't securely stop the counters
3462 	 * from updating as system-wide / global values. Even though we can
3463 	 * filter reports based on the included context ID we can't block
3464 	 * clients from seeing the raw / global counter values via
3465 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3466 	 * enable the OA unit by default.
3467 	 *
3468 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3469 	 * per context basis. So we can relax requirements there if the user
3470 	 * doesn't request global stream access (i.e. query based sampling
3471 	 * using MI_RECORD_PERF_COUNT.
3472 	 */
3473 	if (IS_HASWELL(perf->i915) && specific_ctx)
3474 		privileged_op = false;
3475 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3476 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3477 		privileged_op = false;
3478 
3479 	if (props->hold_preemption) {
3480 		if (!props->single_context) {
3481 			drm_dbg(&perf->i915->drm,
3482 				"preemption disable with no context\n");
3483 			ret = -EINVAL;
3484 			goto err;
3485 		}
3486 		privileged_op = true;
3487 	}
3488 
3489 	/*
3490 	 * Asking for SSEU configuration is a priviliged operation.
3491 	 */
3492 	if (props->has_sseu)
3493 		privileged_op = true;
3494 	else
3495 		get_default_sseu_config(&props->sseu, props->engine);
3496 
3497 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3498 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3499 	 * to determine if it's ok to access system wide OA counters
3500 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3501 	 */
3502 	if (privileged_op &&
3503 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3504 		drm_dbg(&perf->i915->drm,
3505 			"Insufficient privileges to open i915 perf stream\n");
3506 		ret = -EACCES;
3507 		goto err_ctx;
3508 	}
3509 
3510 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3511 	if (!stream) {
3512 		ret = -ENOMEM;
3513 		goto err_ctx;
3514 	}
3515 
3516 	stream->perf = perf;
3517 	stream->ctx = specific_ctx;
3518 	stream->poll_oa_period = props->poll_oa_period;
3519 
3520 	ret = i915_oa_stream_init(stream, param, props);
3521 	if (ret)
3522 		goto err_alloc;
3523 
3524 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3525 	 * to have _stream_init check the combination of sample flags more
3526 	 * thoroughly, but still this is the expected result at this point.
3527 	 */
3528 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3529 		ret = -ENODEV;
3530 		goto err_flags;
3531 	}
3532 
3533 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3534 		f_flags |= O_CLOEXEC;
3535 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3536 		f_flags |= O_NONBLOCK;
3537 
3538 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3539 	if (stream_fd < 0) {
3540 		ret = stream_fd;
3541 		goto err_flags;
3542 	}
3543 
3544 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3545 		i915_perf_enable_locked(stream);
3546 
3547 	/* Take a reference on the driver that will be kept with stream_fd
3548 	 * until its release.
3549 	 */
3550 	drm_dev_get(&perf->i915->drm);
3551 
3552 	return stream_fd;
3553 
3554 err_flags:
3555 	if (stream->ops->destroy)
3556 		stream->ops->destroy(stream);
3557 err_alloc:
3558 	kfree(stream);
3559 err_ctx:
3560 	if (specific_ctx)
3561 		i915_gem_context_put(specific_ctx);
3562 err:
3563 	return ret;
3564 }
3565 
3566 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3567 {
3568 	return intel_gt_clock_interval_to_ns(to_gt(perf->i915),
3569 					     2ULL << exponent);
3570 }
3571 
3572 static __always_inline bool
3573 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3574 {
3575 	return test_bit(format, perf->format_mask);
3576 }
3577 
3578 static __always_inline void
3579 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3580 {
3581 	__set_bit(format, perf->format_mask);
3582 }
3583 
3584 /**
3585  * read_properties_unlocked - validate + copy userspace stream open properties
3586  * @perf: i915 perf instance
3587  * @uprops: The array of u64 key value pairs given by userspace
3588  * @n_props: The number of key value pairs expected in @uprops
3589  * @props: The stream configuration built up while validating properties
3590  *
3591  * Note this function only validates properties in isolation it doesn't
3592  * validate that the combination of properties makes sense or that all
3593  * properties necessary for a particular kind of stream have been set.
3594  *
3595  * Note that there currently aren't any ordering requirements for properties so
3596  * we shouldn't validate or assume anything about ordering here. This doesn't
3597  * rule out defining new properties with ordering requirements in the future.
3598  */
3599 static int read_properties_unlocked(struct i915_perf *perf,
3600 				    u64 __user *uprops,
3601 				    u32 n_props,
3602 				    struct perf_open_properties *props)
3603 {
3604 	u64 __user *uprop = uprops;
3605 	u32 i;
3606 	int ret;
3607 
3608 	memset(props, 0, sizeof(struct perf_open_properties));
3609 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3610 
3611 	if (!n_props) {
3612 		drm_dbg(&perf->i915->drm,
3613 			"No i915 perf properties given\n");
3614 		return -EINVAL;
3615 	}
3616 
3617 	/* At the moment we only support using i915-perf on the RCS. */
3618 	props->engine = intel_engine_lookup_user(perf->i915,
3619 						 I915_ENGINE_CLASS_RENDER,
3620 						 0);
3621 	if (!props->engine) {
3622 		drm_dbg(&perf->i915->drm,
3623 			"No RENDER-capable engines\n");
3624 		return -EINVAL;
3625 	}
3626 
3627 	/* Considering that ID = 0 is reserved and assuming that we don't
3628 	 * (currently) expect any configurations to ever specify duplicate
3629 	 * values for a particular property ID then the last _PROP_MAX value is
3630 	 * one greater than the maximum number of properties we expect to get
3631 	 * from userspace.
3632 	 */
3633 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3634 		drm_dbg(&perf->i915->drm,
3635 			"More i915 perf properties specified than exist\n");
3636 		return -EINVAL;
3637 	}
3638 
3639 	for (i = 0; i < n_props; i++) {
3640 		u64 oa_period, oa_freq_hz;
3641 		u64 id, value;
3642 
3643 		ret = get_user(id, uprop);
3644 		if (ret)
3645 			return ret;
3646 
3647 		ret = get_user(value, uprop + 1);
3648 		if (ret)
3649 			return ret;
3650 
3651 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3652 			drm_dbg(&perf->i915->drm,
3653 				"Unknown i915 perf property ID\n");
3654 			return -EINVAL;
3655 		}
3656 
3657 		switch ((enum drm_i915_perf_property_id)id) {
3658 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3659 			props->single_context = 1;
3660 			props->ctx_handle = value;
3661 			break;
3662 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3663 			if (value)
3664 				props->sample_flags |= SAMPLE_OA_REPORT;
3665 			break;
3666 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3667 			if (value == 0) {
3668 				drm_dbg(&perf->i915->drm,
3669 					"Unknown OA metric set ID\n");
3670 				return -EINVAL;
3671 			}
3672 			props->metrics_set = value;
3673 			break;
3674 		case DRM_I915_PERF_PROP_OA_FORMAT:
3675 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3676 				drm_dbg(&perf->i915->drm,
3677 					"Out-of-range OA report format %llu\n",
3678 					  value);
3679 				return -EINVAL;
3680 			}
3681 			if (!oa_format_valid(perf, value)) {
3682 				drm_dbg(&perf->i915->drm,
3683 					"Unsupported OA report format %llu\n",
3684 					  value);
3685 				return -EINVAL;
3686 			}
3687 			props->oa_format = value;
3688 			break;
3689 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3690 			if (value > OA_EXPONENT_MAX) {
3691 				drm_dbg(&perf->i915->drm,
3692 					"OA timer exponent too high (> %u)\n",
3693 					 OA_EXPONENT_MAX);
3694 				return -EINVAL;
3695 			}
3696 
3697 			/* Theoretically we can program the OA unit to sample
3698 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3699 			 * for BXT. We don't allow such high sampling
3700 			 * frequencies by default unless root.
3701 			 */
3702 
3703 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3704 			oa_period = oa_exponent_to_ns(perf, value);
3705 
3706 			/* This check is primarily to ensure that oa_period <=
3707 			 * UINT32_MAX (before passing to do_div which only
3708 			 * accepts a u32 denominator), but we can also skip
3709 			 * checking anything < 1Hz which implicitly can't be
3710 			 * limited via an integer oa_max_sample_rate.
3711 			 */
3712 			if (oa_period <= NSEC_PER_SEC) {
3713 				u64 tmp = NSEC_PER_SEC;
3714 				do_div(tmp, oa_period);
3715 				oa_freq_hz = tmp;
3716 			} else
3717 				oa_freq_hz = 0;
3718 
3719 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3720 				drm_dbg(&perf->i915->drm,
3721 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3722 					  i915_oa_max_sample_rate);
3723 				return -EACCES;
3724 			}
3725 
3726 			props->oa_periodic = true;
3727 			props->oa_period_exponent = value;
3728 			break;
3729 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3730 			props->hold_preemption = !!value;
3731 			break;
3732 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3733 			struct drm_i915_gem_context_param_sseu user_sseu;
3734 
3735 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
3736 				drm_dbg(&perf->i915->drm,
3737 					"SSEU config not supported on gfx %x\n",
3738 					GRAPHICS_VER_FULL(perf->i915));
3739 				return -ENODEV;
3740 			}
3741 
3742 			if (copy_from_user(&user_sseu,
3743 					   u64_to_user_ptr(value),
3744 					   sizeof(user_sseu))) {
3745 				drm_dbg(&perf->i915->drm,
3746 					"Unable to copy global sseu parameter\n");
3747 				return -EFAULT;
3748 			}
3749 
3750 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3751 			if (ret) {
3752 				drm_dbg(&perf->i915->drm,
3753 					"Invalid SSEU configuration\n");
3754 				return ret;
3755 			}
3756 			props->has_sseu = true;
3757 			break;
3758 		}
3759 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3760 			if (value < 100000 /* 100us */) {
3761 				drm_dbg(&perf->i915->drm,
3762 					"OA availability timer too small (%lluns < 100us)\n",
3763 					  value);
3764 				return -EINVAL;
3765 			}
3766 			props->poll_oa_period = value;
3767 			break;
3768 		case DRM_I915_PERF_PROP_MAX:
3769 			MISSING_CASE(id);
3770 			return -EINVAL;
3771 		}
3772 
3773 		uprop += 2;
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 /**
3780  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3781  * @dev: drm device
3782  * @data: ioctl data copied from userspace (unvalidated)
3783  * @file: drm file
3784  *
3785  * Validates the stream open parameters given by userspace including flags
3786  * and an array of u64 key, value pair properties.
3787  *
3788  * Very little is assumed up front about the nature of the stream being
3789  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3790  * i915-perf stream is expected to be a suitable interface for other forms of
3791  * buffered data written by the GPU besides periodic OA metrics.
3792  *
3793  * Note we copy the properties from userspace outside of the i915 perf
3794  * mutex to avoid an awkward lockdep with mmap_lock.
3795  *
3796  * Most of the implementation details are handled by
3797  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3798  * mutex for serializing with any non-file-operation driver hooks.
3799  *
3800  * Return: A newly opened i915 Perf stream file descriptor or negative
3801  * error code on failure.
3802  */
3803 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3804 			 struct drm_file *file)
3805 {
3806 	struct i915_perf *perf = &to_i915(dev)->perf;
3807 	struct drm_i915_perf_open_param *param = data;
3808 	struct perf_open_properties props;
3809 	u32 known_open_flags;
3810 	int ret;
3811 
3812 	if (!perf->i915) {
3813 		drm_dbg(&perf->i915->drm,
3814 			"i915 perf interface not available for this system\n");
3815 		return -ENOTSUPP;
3816 	}
3817 
3818 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3819 			   I915_PERF_FLAG_FD_NONBLOCK |
3820 			   I915_PERF_FLAG_DISABLED;
3821 	if (param->flags & ~known_open_flags) {
3822 		drm_dbg(&perf->i915->drm,
3823 			"Unknown drm_i915_perf_open_param flag\n");
3824 		return -EINVAL;
3825 	}
3826 
3827 	ret = read_properties_unlocked(perf,
3828 				       u64_to_user_ptr(param->properties_ptr),
3829 				       param->num_properties,
3830 				       &props);
3831 	if (ret)
3832 		return ret;
3833 
3834 	mutex_lock(&perf->lock);
3835 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3836 	mutex_unlock(&perf->lock);
3837 
3838 	return ret;
3839 }
3840 
3841 /**
3842  * i915_perf_register - exposes i915-perf to userspace
3843  * @i915: i915 device instance
3844  *
3845  * In particular OA metric sets are advertised under a sysfs metrics/
3846  * directory allowing userspace to enumerate valid IDs that can be
3847  * used to open an i915-perf stream.
3848  */
3849 void i915_perf_register(struct drm_i915_private *i915)
3850 {
3851 	struct i915_perf *perf = &i915->perf;
3852 
3853 	if (!perf->i915)
3854 		return;
3855 
3856 	/* To be sure we're synchronized with an attempted
3857 	 * i915_perf_open_ioctl(); considering that we register after
3858 	 * being exposed to userspace.
3859 	 */
3860 	mutex_lock(&perf->lock);
3861 
3862 	perf->metrics_kobj =
3863 		kobject_create_and_add("metrics",
3864 				       &i915->drm.primary->kdev->kobj);
3865 
3866 	mutex_unlock(&perf->lock);
3867 }
3868 
3869 /**
3870  * i915_perf_unregister - hide i915-perf from userspace
3871  * @i915: i915 device instance
3872  *
3873  * i915-perf state cleanup is split up into an 'unregister' and
3874  * 'deinit' phase where the interface is first hidden from
3875  * userspace by i915_perf_unregister() before cleaning up
3876  * remaining state in i915_perf_fini().
3877  */
3878 void i915_perf_unregister(struct drm_i915_private *i915)
3879 {
3880 	struct i915_perf *perf = &i915->perf;
3881 
3882 	if (!perf->metrics_kobj)
3883 		return;
3884 
3885 	kobject_put(perf->metrics_kobj);
3886 	perf->metrics_kobj = NULL;
3887 }
3888 
3889 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3890 {
3891 	static const i915_reg_t flex_eu_regs[] = {
3892 		EU_PERF_CNTL0,
3893 		EU_PERF_CNTL1,
3894 		EU_PERF_CNTL2,
3895 		EU_PERF_CNTL3,
3896 		EU_PERF_CNTL4,
3897 		EU_PERF_CNTL5,
3898 		EU_PERF_CNTL6,
3899 	};
3900 	int i;
3901 
3902 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3903 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3904 			return true;
3905 	}
3906 	return false;
3907 }
3908 
3909 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
3910 {
3911 	while (table->start || table->end) {
3912 		if (addr >= table->start && addr <= table->end)
3913 			return true;
3914 
3915 		table++;
3916 	}
3917 
3918 	return false;
3919 }
3920 
3921 #define REG_EQUAL(addr, mmio) \
3922 	((addr) == i915_mmio_reg_offset(mmio))
3923 
3924 static const struct i915_range gen7_oa_b_counters[] = {
3925 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
3926 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
3927 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
3928 	{}
3929 };
3930 
3931 static const struct i915_range gen12_oa_b_counters[] = {
3932 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
3933 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
3934 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
3935 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
3936 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
3937 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
3938 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
3939 	{}
3940 };
3941 
3942 static const struct i915_range gen7_oa_mux_regs[] = {
3943 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
3944 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
3945 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
3946 	{}
3947 };
3948 
3949 static const struct i915_range hsw_oa_mux_regs[] = {
3950 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
3951 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
3952 	{ .start = 0x25100, .end = 0x2ff90 },
3953 	{}
3954 };
3955 
3956 static const struct i915_range chv_oa_mux_regs[] = {
3957 	{ .start = 0x182300, .end = 0x1823a4 },
3958 	{}
3959 };
3960 
3961 static const struct i915_range gen8_oa_mux_regs[] = {
3962 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
3963 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3964 	{}
3965 };
3966 
3967 static const struct i915_range gen11_oa_mux_regs[] = {
3968 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
3969 	{}
3970 };
3971 
3972 static const struct i915_range gen12_oa_mux_regs[] = {
3973 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
3974 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
3975 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
3976 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
3977 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3978 	{}
3979 };
3980 
3981 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3982 {
3983 	return reg_in_range_table(addr, gen7_oa_b_counters);
3984 }
3985 
3986 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3987 {
3988 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3989 		reg_in_range_table(addr, gen8_oa_mux_regs);
3990 }
3991 
3992 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3993 {
3994 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3995 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
3996 		reg_in_range_table(addr, gen11_oa_mux_regs);
3997 }
3998 
3999 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4000 {
4001 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4002 		reg_in_range_table(addr, hsw_oa_mux_regs);
4003 }
4004 
4005 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4006 {
4007 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4008 		reg_in_range_table(addr, chv_oa_mux_regs);
4009 }
4010 
4011 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4012 {
4013 	return reg_in_range_table(addr, gen12_oa_b_counters);
4014 }
4015 
4016 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4017 {
4018 	return reg_in_range_table(addr, gen12_oa_mux_regs);
4019 }
4020 
4021 static u32 mask_reg_value(u32 reg, u32 val)
4022 {
4023 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4024 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4025 	 * programmed by userspace doesn't change this.
4026 	 */
4027 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4028 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4029 
4030 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4031 	 * indicated by its name and a bunch of selection fields used by OA
4032 	 * configs.
4033 	 */
4034 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4035 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4036 
4037 	return val;
4038 }
4039 
4040 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4041 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4042 					 u32 __user *regs,
4043 					 u32 n_regs)
4044 {
4045 	struct i915_oa_reg *oa_regs;
4046 	int err;
4047 	u32 i;
4048 
4049 	if (!n_regs)
4050 		return NULL;
4051 
4052 	/* No is_valid function means we're not allowing any register to be programmed. */
4053 	GEM_BUG_ON(!is_valid);
4054 	if (!is_valid)
4055 		return ERR_PTR(-EINVAL);
4056 
4057 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4058 	if (!oa_regs)
4059 		return ERR_PTR(-ENOMEM);
4060 
4061 	for (i = 0; i < n_regs; i++) {
4062 		u32 addr, value;
4063 
4064 		err = get_user(addr, regs);
4065 		if (err)
4066 			goto addr_err;
4067 
4068 		if (!is_valid(perf, addr)) {
4069 			drm_dbg(&perf->i915->drm,
4070 				"Invalid oa_reg address: %X\n", addr);
4071 			err = -EINVAL;
4072 			goto addr_err;
4073 		}
4074 
4075 		err = get_user(value, regs + 1);
4076 		if (err)
4077 			goto addr_err;
4078 
4079 		oa_regs[i].addr = _MMIO(addr);
4080 		oa_regs[i].value = mask_reg_value(addr, value);
4081 
4082 		regs += 2;
4083 	}
4084 
4085 	return oa_regs;
4086 
4087 addr_err:
4088 	kfree(oa_regs);
4089 	return ERR_PTR(err);
4090 }
4091 
4092 static ssize_t show_dynamic_id(struct kobject *kobj,
4093 			       struct kobj_attribute *attr,
4094 			       char *buf)
4095 {
4096 	struct i915_oa_config *oa_config =
4097 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4098 
4099 	return sprintf(buf, "%d\n", oa_config->id);
4100 }
4101 
4102 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4103 					 struct i915_oa_config *oa_config)
4104 {
4105 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4106 	oa_config->sysfs_metric_id.attr.name = "id";
4107 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4108 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4109 	oa_config->sysfs_metric_id.store = NULL;
4110 
4111 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4112 	oa_config->attrs[1] = NULL;
4113 
4114 	oa_config->sysfs_metric.name = oa_config->uuid;
4115 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4116 
4117 	return sysfs_create_group(perf->metrics_kobj,
4118 				  &oa_config->sysfs_metric);
4119 }
4120 
4121 /**
4122  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4123  * @dev: drm device
4124  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4125  *        userspace (unvalidated)
4126  * @file: drm file
4127  *
4128  * Validates the submitted OA register to be saved into a new OA config that
4129  * can then be used for programming the OA unit and its NOA network.
4130  *
4131  * Returns: A new allocated config number to be used with the perf open ioctl
4132  * or a negative error code on failure.
4133  */
4134 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4135 			       struct drm_file *file)
4136 {
4137 	struct i915_perf *perf = &to_i915(dev)->perf;
4138 	struct drm_i915_perf_oa_config *args = data;
4139 	struct i915_oa_config *oa_config, *tmp;
4140 	struct i915_oa_reg *regs;
4141 	int err, id;
4142 
4143 	if (!perf->i915) {
4144 		drm_dbg(&perf->i915->drm,
4145 			"i915 perf interface not available for this system\n");
4146 		return -ENOTSUPP;
4147 	}
4148 
4149 	if (!perf->metrics_kobj) {
4150 		drm_dbg(&perf->i915->drm,
4151 			"OA metrics weren't advertised via sysfs\n");
4152 		return -EINVAL;
4153 	}
4154 
4155 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4156 		drm_dbg(&perf->i915->drm,
4157 			"Insufficient privileges to add i915 OA config\n");
4158 		return -EACCES;
4159 	}
4160 
4161 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4162 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4163 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4164 		drm_dbg(&perf->i915->drm,
4165 			"No OA registers given\n");
4166 		return -EINVAL;
4167 	}
4168 
4169 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4170 	if (!oa_config) {
4171 		drm_dbg(&perf->i915->drm,
4172 			"Failed to allocate memory for the OA config\n");
4173 		return -ENOMEM;
4174 	}
4175 
4176 	oa_config->perf = perf;
4177 	kref_init(&oa_config->ref);
4178 
4179 	if (!uuid_is_valid(args->uuid)) {
4180 		drm_dbg(&perf->i915->drm,
4181 			"Invalid uuid format for OA config\n");
4182 		err = -EINVAL;
4183 		goto reg_err;
4184 	}
4185 
4186 	/* Last character in oa_config->uuid will be 0 because oa_config is
4187 	 * kzalloc.
4188 	 */
4189 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4190 
4191 	oa_config->mux_regs_len = args->n_mux_regs;
4192 	regs = alloc_oa_regs(perf,
4193 			     perf->ops.is_valid_mux_reg,
4194 			     u64_to_user_ptr(args->mux_regs_ptr),
4195 			     args->n_mux_regs);
4196 
4197 	if (IS_ERR(regs)) {
4198 		drm_dbg(&perf->i915->drm,
4199 			"Failed to create OA config for mux_regs\n");
4200 		err = PTR_ERR(regs);
4201 		goto reg_err;
4202 	}
4203 	oa_config->mux_regs = regs;
4204 
4205 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4206 	regs = alloc_oa_regs(perf,
4207 			     perf->ops.is_valid_b_counter_reg,
4208 			     u64_to_user_ptr(args->boolean_regs_ptr),
4209 			     args->n_boolean_regs);
4210 
4211 	if (IS_ERR(regs)) {
4212 		drm_dbg(&perf->i915->drm,
4213 			"Failed to create OA config for b_counter_regs\n");
4214 		err = PTR_ERR(regs);
4215 		goto reg_err;
4216 	}
4217 	oa_config->b_counter_regs = regs;
4218 
4219 	if (GRAPHICS_VER(perf->i915) < 8) {
4220 		if (args->n_flex_regs != 0) {
4221 			err = -EINVAL;
4222 			goto reg_err;
4223 		}
4224 	} else {
4225 		oa_config->flex_regs_len = args->n_flex_regs;
4226 		regs = alloc_oa_regs(perf,
4227 				     perf->ops.is_valid_flex_reg,
4228 				     u64_to_user_ptr(args->flex_regs_ptr),
4229 				     args->n_flex_regs);
4230 
4231 		if (IS_ERR(regs)) {
4232 			drm_dbg(&perf->i915->drm,
4233 				"Failed to create OA config for flex_regs\n");
4234 			err = PTR_ERR(regs);
4235 			goto reg_err;
4236 		}
4237 		oa_config->flex_regs = regs;
4238 	}
4239 
4240 	err = mutex_lock_interruptible(&perf->metrics_lock);
4241 	if (err)
4242 		goto reg_err;
4243 
4244 	/* We shouldn't have too many configs, so this iteration shouldn't be
4245 	 * too costly.
4246 	 */
4247 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4248 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4249 			drm_dbg(&perf->i915->drm,
4250 				"OA config already exists with this uuid\n");
4251 			err = -EADDRINUSE;
4252 			goto sysfs_err;
4253 		}
4254 	}
4255 
4256 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4257 	if (err) {
4258 		drm_dbg(&perf->i915->drm,
4259 			"Failed to create sysfs entry for OA config\n");
4260 		goto sysfs_err;
4261 	}
4262 
4263 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4264 	oa_config->id = idr_alloc(&perf->metrics_idr,
4265 				  oa_config, 2,
4266 				  0, GFP_KERNEL);
4267 	if (oa_config->id < 0) {
4268 		drm_dbg(&perf->i915->drm,
4269 			"Failed to create sysfs entry for OA config\n");
4270 		err = oa_config->id;
4271 		goto sysfs_err;
4272 	}
4273 
4274 	mutex_unlock(&perf->metrics_lock);
4275 
4276 	drm_dbg(&perf->i915->drm,
4277 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4278 
4279 	return oa_config->id;
4280 
4281 sysfs_err:
4282 	mutex_unlock(&perf->metrics_lock);
4283 reg_err:
4284 	i915_oa_config_put(oa_config);
4285 	drm_dbg(&perf->i915->drm,
4286 		"Failed to add new OA config\n");
4287 	return err;
4288 }
4289 
4290 /**
4291  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4292  * @dev: drm device
4293  * @data: ioctl data (pointer to u64 integer) copied from userspace
4294  * @file: drm file
4295  *
4296  * Configs can be removed while being used, the will stop appearing in sysfs
4297  * and their content will be freed when the stream using the config is closed.
4298  *
4299  * Returns: 0 on success or a negative error code on failure.
4300  */
4301 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4302 				  struct drm_file *file)
4303 {
4304 	struct i915_perf *perf = &to_i915(dev)->perf;
4305 	u64 *arg = data;
4306 	struct i915_oa_config *oa_config;
4307 	int ret;
4308 
4309 	if (!perf->i915) {
4310 		drm_dbg(&perf->i915->drm,
4311 			"i915 perf interface not available for this system\n");
4312 		return -ENOTSUPP;
4313 	}
4314 
4315 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4316 		drm_dbg(&perf->i915->drm,
4317 			"Insufficient privileges to remove i915 OA config\n");
4318 		return -EACCES;
4319 	}
4320 
4321 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4322 	if (ret)
4323 		return ret;
4324 
4325 	oa_config = idr_find(&perf->metrics_idr, *arg);
4326 	if (!oa_config) {
4327 		drm_dbg(&perf->i915->drm,
4328 			"Failed to remove unknown OA config\n");
4329 		ret = -ENOENT;
4330 		goto err_unlock;
4331 	}
4332 
4333 	GEM_BUG_ON(*arg != oa_config->id);
4334 
4335 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4336 
4337 	idr_remove(&perf->metrics_idr, *arg);
4338 
4339 	mutex_unlock(&perf->metrics_lock);
4340 
4341 	drm_dbg(&perf->i915->drm,
4342 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4343 
4344 	i915_oa_config_put(oa_config);
4345 
4346 	return 0;
4347 
4348 err_unlock:
4349 	mutex_unlock(&perf->metrics_lock);
4350 	return ret;
4351 }
4352 
4353 static struct ctl_table oa_table[] = {
4354 	{
4355 	 .procname = "perf_stream_paranoid",
4356 	 .data = &i915_perf_stream_paranoid,
4357 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4358 	 .mode = 0644,
4359 	 .proc_handler = proc_dointvec_minmax,
4360 	 .extra1 = SYSCTL_ZERO,
4361 	 .extra2 = SYSCTL_ONE,
4362 	 },
4363 	{
4364 	 .procname = "oa_max_sample_rate",
4365 	 .data = &i915_oa_max_sample_rate,
4366 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4367 	 .mode = 0644,
4368 	 .proc_handler = proc_dointvec_minmax,
4369 	 .extra1 = SYSCTL_ZERO,
4370 	 .extra2 = &oa_sample_rate_hard_limit,
4371 	 },
4372 	{}
4373 };
4374 
4375 static void oa_init_supported_formats(struct i915_perf *perf)
4376 {
4377 	struct drm_i915_private *i915 = perf->i915;
4378 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4379 
4380 	switch (platform) {
4381 	case INTEL_HASWELL:
4382 		oa_format_add(perf, I915_OA_FORMAT_A13);
4383 		oa_format_add(perf, I915_OA_FORMAT_A13);
4384 		oa_format_add(perf, I915_OA_FORMAT_A29);
4385 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4386 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4387 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4388 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4389 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4390 		break;
4391 
4392 	case INTEL_BROADWELL:
4393 	case INTEL_CHERRYVIEW:
4394 	case INTEL_SKYLAKE:
4395 	case INTEL_BROXTON:
4396 	case INTEL_KABYLAKE:
4397 	case INTEL_GEMINILAKE:
4398 	case INTEL_COFFEELAKE:
4399 	case INTEL_COMETLAKE:
4400 	case INTEL_ICELAKE:
4401 	case INTEL_ELKHARTLAKE:
4402 	case INTEL_JASPERLAKE:
4403 	case INTEL_TIGERLAKE:
4404 	case INTEL_ROCKETLAKE:
4405 	case INTEL_DG1:
4406 	case INTEL_ALDERLAKE_S:
4407 	case INTEL_ALDERLAKE_P:
4408 		oa_format_add(perf, I915_OA_FORMAT_A12);
4409 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4410 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4411 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4412 		break;
4413 
4414 	default:
4415 		MISSING_CASE(platform);
4416 	}
4417 }
4418 
4419 /**
4420  * i915_perf_init - initialize i915-perf state on module bind
4421  * @i915: i915 device instance
4422  *
4423  * Initializes i915-perf state without exposing anything to userspace.
4424  *
4425  * Note: i915-perf initialization is split into an 'init' and 'register'
4426  * phase with the i915_perf_register() exposing state to userspace.
4427  */
4428 void i915_perf_init(struct drm_i915_private *i915)
4429 {
4430 	struct i915_perf *perf = &i915->perf;
4431 
4432 	/* XXX const struct i915_perf_ops! */
4433 
4434 	/* i915_perf is not enabled for DG2 yet */
4435 	if (IS_DG2(i915))
4436 		return;
4437 
4438 	perf->oa_formats = oa_formats;
4439 	if (IS_HASWELL(i915)) {
4440 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4441 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4442 		perf->ops.is_valid_flex_reg = NULL;
4443 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4444 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4445 		perf->ops.oa_enable = gen7_oa_enable;
4446 		perf->ops.oa_disable = gen7_oa_disable;
4447 		perf->ops.read = gen7_oa_read;
4448 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4449 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4450 		/* Note: that although we could theoretically also support the
4451 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4452 		 * this driver, before upstreaming did this) it didn't seem
4453 		 * worth the complexity to maintain now that BDW+ enable
4454 		 * execlist mode by default.
4455 		 */
4456 		perf->ops.read = gen8_oa_read;
4457 
4458 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4459 			perf->ops.is_valid_b_counter_reg =
4460 				gen7_is_valid_b_counter_addr;
4461 			perf->ops.is_valid_mux_reg =
4462 				gen8_is_valid_mux_addr;
4463 			perf->ops.is_valid_flex_reg =
4464 				gen8_is_valid_flex_addr;
4465 
4466 			if (IS_CHERRYVIEW(i915)) {
4467 				perf->ops.is_valid_mux_reg =
4468 					chv_is_valid_mux_addr;
4469 			}
4470 
4471 			perf->ops.oa_enable = gen8_oa_enable;
4472 			perf->ops.oa_disable = gen8_oa_disable;
4473 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4474 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4475 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4476 
4477 			if (GRAPHICS_VER(i915) == 8) {
4478 				perf->ctx_oactxctrl_offset = 0x120;
4479 				perf->ctx_flexeu0_offset = 0x2ce;
4480 
4481 				perf->gen8_valid_ctx_bit = BIT(25);
4482 			} else {
4483 				perf->ctx_oactxctrl_offset = 0x128;
4484 				perf->ctx_flexeu0_offset = 0x3de;
4485 
4486 				perf->gen8_valid_ctx_bit = BIT(16);
4487 			}
4488 		} else if (GRAPHICS_VER(i915) == 11) {
4489 			perf->ops.is_valid_b_counter_reg =
4490 				gen7_is_valid_b_counter_addr;
4491 			perf->ops.is_valid_mux_reg =
4492 				gen11_is_valid_mux_addr;
4493 			perf->ops.is_valid_flex_reg =
4494 				gen8_is_valid_flex_addr;
4495 
4496 			perf->ops.oa_enable = gen8_oa_enable;
4497 			perf->ops.oa_disable = gen8_oa_disable;
4498 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4499 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4500 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4501 
4502 			perf->ctx_oactxctrl_offset = 0x124;
4503 			perf->ctx_flexeu0_offset = 0x78e;
4504 
4505 			perf->gen8_valid_ctx_bit = BIT(16);
4506 		} else if (GRAPHICS_VER(i915) == 12) {
4507 			perf->ops.is_valid_b_counter_reg =
4508 				gen12_is_valid_b_counter_addr;
4509 			perf->ops.is_valid_mux_reg =
4510 				gen12_is_valid_mux_addr;
4511 			perf->ops.is_valid_flex_reg =
4512 				gen8_is_valid_flex_addr;
4513 
4514 			perf->ops.oa_enable = gen12_oa_enable;
4515 			perf->ops.oa_disable = gen12_oa_disable;
4516 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4517 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4518 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4519 
4520 			perf->ctx_flexeu0_offset = 0;
4521 			perf->ctx_oactxctrl_offset = 0x144;
4522 		}
4523 	}
4524 
4525 	if (perf->ops.enable_metric_set) {
4526 		mutex_init(&perf->lock);
4527 
4528 		/* Choose a representative limit */
4529 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4530 
4531 		mutex_init(&perf->metrics_lock);
4532 		idr_init_base(&perf->metrics_idr, 1);
4533 
4534 		/* We set up some ratelimit state to potentially throttle any
4535 		 * _NOTES about spurious, invalid OA reports which we don't
4536 		 * forward to userspace.
4537 		 *
4538 		 * We print a _NOTE about any throttling when closing the
4539 		 * stream instead of waiting until driver _fini which no one
4540 		 * would ever see.
4541 		 *
4542 		 * Using the same limiting factors as printk_ratelimit()
4543 		 */
4544 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4545 		/* Since we use a DRM_NOTE for spurious reports it would be
4546 		 * inconsistent to let __ratelimit() automatically print a
4547 		 * warning for throttling.
4548 		 */
4549 		ratelimit_set_flags(&perf->spurious_report_rs,
4550 				    RATELIMIT_MSG_ON_RELEASE);
4551 
4552 		ratelimit_state_init(&perf->tail_pointer_race,
4553 				     5 * HZ, 10);
4554 		ratelimit_set_flags(&perf->tail_pointer_race,
4555 				    RATELIMIT_MSG_ON_RELEASE);
4556 
4557 		atomic64_set(&perf->noa_programming_delay,
4558 			     500 * 1000 /* 500us */);
4559 
4560 		perf->i915 = i915;
4561 
4562 		oa_init_supported_formats(perf);
4563 	}
4564 }
4565 
4566 static int destroy_config(int id, void *p, void *data)
4567 {
4568 	i915_oa_config_put(p);
4569 	return 0;
4570 }
4571 
4572 int i915_perf_sysctl_register(void)
4573 {
4574 	sysctl_header = register_sysctl("dev/i915", oa_table);
4575 	return 0;
4576 }
4577 
4578 void i915_perf_sysctl_unregister(void)
4579 {
4580 	unregister_sysctl_table(sysctl_header);
4581 }
4582 
4583 /**
4584  * i915_perf_fini - Counter part to i915_perf_init()
4585  * @i915: i915 device instance
4586  */
4587 void i915_perf_fini(struct drm_i915_private *i915)
4588 {
4589 	struct i915_perf *perf = &i915->perf;
4590 
4591 	if (!perf->i915)
4592 		return;
4593 
4594 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4595 	idr_destroy(&perf->metrics_idr);
4596 
4597 	memset(&perf->ops, 0, sizeof(perf->ops));
4598 	perf->i915 = NULL;
4599 }
4600 
4601 /**
4602  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4603  *
4604  * This version number is used by userspace to detect available features.
4605  */
4606 int i915_perf_ioctl_version(void)
4607 {
4608 	/*
4609 	 * 1: Initial version
4610 	 *   I915_PERF_IOCTL_ENABLE
4611 	 *   I915_PERF_IOCTL_DISABLE
4612 	 *
4613 	 * 2: Added runtime modification of OA config.
4614 	 *   I915_PERF_IOCTL_CONFIG
4615 	 *
4616 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4617 	 *    preemption on a particular context so that performance data is
4618 	 *    accessible from a delta of MI_RPC reports without looking at the
4619 	 *    OA buffer.
4620 	 *
4621 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4622 	 *    be run for the duration of the performance recording based on
4623 	 *    their SSEU configuration.
4624 	 *
4625 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4626 	 *    interval for the hrtimer used to check for OA data.
4627 	 */
4628 	return 5;
4629 }
4630 
4631 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4632 #include "selftests/i915_perf.c"
4633 #endif
4634