1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_print.h" 210 #include "gt/intel_gt_regs.h" 211 #include "gt/intel_lrc.h" 212 #include "gt/intel_lrc_reg.h" 213 #include "gt/intel_rc6.h" 214 #include "gt/intel_ring.h" 215 #include "gt/uc/intel_guc_slpc.h" 216 217 #include "i915_drv.h" 218 #include "i915_file_private.h" 219 #include "i915_perf.h" 220 #include "i915_perf_oa_regs.h" 221 #include "i915_reg.h" 222 #include "i915_mmio_range.h" 223 224 /* HW requires this to be a power of two, between 128k and 16M, though driver 225 * is currently generally designed assuming the largest 16M size is used such 226 * that the overflow cases are unlikely in normal operation. 227 */ 228 #define OA_BUFFER_SIZE SZ_16M 229 230 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 231 232 /** 233 * DOC: OA Tail Pointer Race 234 * 235 * There's a HW race condition between OA unit tail pointer register updates and 236 * writes to memory whereby the tail pointer can sometimes get ahead of what's 237 * been written out to the OA buffer so far (in terms of what's visible to the 238 * CPU). 239 * 240 * Although this can be observed explicitly while copying reports to userspace 241 * by checking for a zeroed report-id field in tail reports, we want to account 242 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 243 * redundant read() attempts. 244 * 245 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 246 * in the OA buffer, starting from the tail reported by the HW until we find a 247 * report with its first 2 dwords not 0 meaning its previous report is 248 * completely in memory and ready to be read. Those dwords are also set to 0 249 * once read and the whole buffer is cleared upon OA buffer initialization. The 250 * first dword is the reason for this report while the second is the timestamp, 251 * making the chances of having those 2 fields at 0 fairly unlikely. A more 252 * detailed explanation is available in oa_buffer_check_unlocked(). 253 * 254 * Most of the implementation details for this workaround are in 255 * oa_buffer_check_unlocked() and _append_oa_reports() 256 * 257 * Note for posterity: previously the driver used to define an effective tail 258 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 259 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 260 * This was flawed considering that the OA unit may also automatically generate 261 * non-periodic reports (such as on context switch) or the OA unit may be 262 * enabled without any periodic sampling. 263 */ 264 #define OA_TAIL_MARGIN_NSEC 100000ULL 265 #define INVALID_TAIL_PTR 0xffffffff 266 267 /* The default frequency for checking whether the OA unit has written new 268 * reports to the circular OA buffer... 269 */ 270 #define DEFAULT_POLL_FREQUENCY_HZ 200 271 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 272 273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 274 static u32 i915_perf_stream_paranoid = true; 275 276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 277 * of the 64bit timestamp bits to trigger reports from) but there's currently 278 * no known use case for sampling as infrequently as once per 47 thousand years. 279 * 280 * Since the timestamps included in OA reports are only 32bits it seems 281 * reasonable to limit the OA exponent where it's still possible to account for 282 * overflow in OA report timestamps. 283 */ 284 #define OA_EXPONENT_MAX 31 285 286 #define INVALID_CTX_ID 0xffffffff 287 288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 289 #define OAREPORT_REASON_MASK 0x3f 290 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 291 #define OAREPORT_REASON_SHIFT 19 292 #define OAREPORT_REASON_TIMER (1<<0) 293 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 294 #define OAREPORT_REASON_CLK_RATIO (1<<5) 295 296 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 297 298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 299 * 300 * The highest sampling frequency we can theoretically program the OA unit 301 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 302 * 303 * Initialized just before we register the sysctl parameter. 304 */ 305 static int oa_sample_rate_hard_limit; 306 307 /* Theoretically we can program the OA unit to sample every 160ns but don't 308 * allow that by default unless root... 309 * 310 * The default threshold of 100000Hz is based on perf's similar 311 * kernel.perf_event_max_sample_rate sysctl parameter. 312 */ 313 static u32 i915_oa_max_sample_rate = 100000; 314 315 /* XXX: beware if future OA HW adds new report formats that the current 316 * code assumes all reports have a power-of-two size and ~(size - 1) can 317 * be used as a mask to align the OA tail pointer. 318 */ 319 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 320 [I915_OA_FORMAT_A13] = { 0, 64 }, 321 [I915_OA_FORMAT_A29] = { 1, 128 }, 322 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 323 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 324 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 325 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 326 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 327 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 328 [I915_OA_FORMAT_A12] = { 0, 64 }, 329 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 330 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 331 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 332 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 333 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 334 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 335 }; 336 337 static const u32 mtl_oa_base[] = { 338 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 339 }; 340 341 #define SAMPLE_OA_REPORT (1<<0) 342 343 /** 344 * struct perf_open_properties - for validated properties given to open a stream 345 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 346 * @single_context: Whether a single or all gpu contexts should be monitored 347 * @hold_preemption: Whether the preemption is disabled for the filtered 348 * context 349 * @ctx_handle: A gem ctx handle for use with @single_context 350 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 351 * @oa_format: An OA unit HW report format 352 * @oa_periodic: Whether to enable periodic OA unit sampling 353 * @oa_period_exponent: The OA unit sampling period is derived from this 354 * @engine: The engine (typically rcs0) being monitored by the OA unit 355 * @has_sseu: Whether @sseu was specified by userspace 356 * @sseu: internal SSEU configuration computed either from the userspace 357 * specified configuration in the opening parameters or a default value 358 * (see get_default_sseu_config()) 359 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 360 * data availability 361 * 362 * As read_properties_unlocked() enumerates and validates the properties given 363 * to open a stream of metrics the configuration is built up in the structure 364 * which starts out zero initialized. 365 */ 366 struct perf_open_properties { 367 u32 sample_flags; 368 369 u64 single_context:1; 370 u64 hold_preemption:1; 371 u64 ctx_handle; 372 373 /* OA sampling state */ 374 int metrics_set; 375 int oa_format; 376 bool oa_periodic; 377 int oa_period_exponent; 378 379 struct intel_engine_cs *engine; 380 381 bool has_sseu; 382 struct intel_sseu sseu; 383 384 u64 poll_oa_period; 385 }; 386 387 struct i915_oa_config_bo { 388 struct llist_node node; 389 390 struct i915_oa_config *oa_config; 391 struct i915_vma *vma; 392 }; 393 394 static struct ctl_table_header *sysctl_header; 395 396 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 397 398 void i915_oa_config_release(struct kref *ref) 399 { 400 struct i915_oa_config *oa_config = 401 container_of(ref, typeof(*oa_config), ref); 402 403 kfree(oa_config->flex_regs); 404 kfree(oa_config->b_counter_regs); 405 kfree(oa_config->mux_regs); 406 407 kfree_rcu(oa_config, rcu); 408 } 409 410 struct i915_oa_config * 411 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 412 { 413 struct i915_oa_config *oa_config; 414 415 rcu_read_lock(); 416 oa_config = idr_find(&perf->metrics_idr, metrics_set); 417 if (oa_config) 418 oa_config = i915_oa_config_get(oa_config); 419 rcu_read_unlock(); 420 421 return oa_config; 422 } 423 424 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 425 { 426 i915_oa_config_put(oa_bo->oa_config); 427 i915_vma_put(oa_bo->vma); 428 kfree(oa_bo); 429 } 430 431 static inline const 432 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 433 { 434 return &stream->engine->oa_group->regs; 435 } 436 437 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 438 { 439 struct intel_uncore *uncore = stream->uncore; 440 441 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 442 GEN12_OAG_OATAILPTR_MASK; 443 } 444 445 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 449 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 450 } 451 452 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 453 { 454 struct intel_uncore *uncore = stream->uncore; 455 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 456 457 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 458 } 459 460 #define oa_report_header_64bit(__s) \ 461 ((__s)->oa_buffer.format->header == HDR_64_BIT) 462 463 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 464 { 465 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 466 } 467 468 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 469 { 470 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 471 (GRAPHICS_VER(stream->perf->i915) == 12 ? 472 OAREPORT_REASON_MASK_EXTENDED : 473 OAREPORT_REASON_MASK); 474 } 475 476 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 477 { 478 if (oa_report_header_64bit(stream)) 479 *(u64 *)report = 0; 480 else 481 *report = 0; 482 } 483 484 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 485 { 486 return !(oa_report_id(stream, report) & 487 stream->perf->gen8_valid_ctx_bit); 488 } 489 490 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 491 { 492 return oa_report_header_64bit(stream) ? 493 *((u64 *)report + 1) : 494 *((u32 *)report + 1); 495 } 496 497 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 498 { 499 if (oa_report_header_64bit(stream)) 500 *(u64 *)&report[2] = 0; 501 else 502 report[1] = 0; 503 } 504 505 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 506 { 507 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 508 509 return ctx_id & stream->specific_ctx_id_mask; 510 } 511 512 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 513 { 514 if (oa_report_header_64bit(stream)) 515 report[4] = INVALID_CTX_ID; 516 else 517 report[2] = INVALID_CTX_ID; 518 } 519 520 /** 521 * oa_buffer_check_unlocked - check for data and update tail ptr state 522 * @stream: i915 stream instance 523 * 524 * This is either called via fops (for blocking reads in user ctx) or the poll 525 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 526 * if there is data available for userspace to read. 527 * 528 * This function is central to providing a workaround for the OA unit tail 529 * pointer having a race with respect to what data is visible to the CPU. 530 * It is responsible for reading tail pointers from the hardware and giving 531 * the pointers time to 'age' before they are made available for reading. 532 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 533 * 534 * Besides returning true when there is data available to read() this function 535 * also updates the tail in the oa_buffer object. 536 * 537 * Note: It's safe to read OA config state here unlocked, assuming that this is 538 * only called while the stream is enabled, while the global OA configuration 539 * can't be modified. 540 * 541 * Returns: %true if the OA buffer contains data, else %false 542 */ 543 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 544 { 545 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 546 int report_size = stream->oa_buffer.format->size; 547 u32 tail, hw_tail; 548 unsigned long flags; 549 bool pollin; 550 u32 partial_report_size; 551 552 /* 553 * We have to consider the (unlikely) possibility that read() errors 554 * could result in an OA buffer reset which might reset the head and 555 * tail state. 556 */ 557 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 558 559 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 560 hw_tail -= gtt_offset; 561 562 /* 563 * The tail pointer increases in 64 byte increments, not in report_size 564 * steps. Also the report size may not be a power of 2. Compute 565 * potentially partially landed report in the OA buffer 566 */ 567 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 568 partial_report_size %= report_size; 569 570 /* Subtract partial amount off the tail */ 571 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 572 573 tail = hw_tail; 574 575 /* 576 * Walk the stream backward until we find a report with report 577 * id and timestamp not at 0. Since the circular buffer pointers 578 * progress by increments of 64 bytes and that reports can be up 579 * to 256 bytes long, we can't tell whether a report has fully 580 * landed in memory before the report id and timestamp of the 581 * following report have effectively landed. 582 * 583 * This is assuming that the writes of the OA unit land in 584 * memory in the order they were written to. 585 * If not : (╯°□°)╯︵ ┻━┻ 586 */ 587 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) { 588 void *report = stream->oa_buffer.vaddr + tail; 589 590 if (oa_report_id(stream, report) || 591 oa_timestamp(stream, report)) 592 break; 593 594 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 595 } 596 597 if (OA_TAKEN(hw_tail, tail) > report_size && 598 __ratelimit(&stream->perf->tail_pointer_race)) 599 drm_notice(&stream->uncore->i915->drm, 600 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 601 stream->oa_buffer.head, tail, hw_tail); 602 603 stream->oa_buffer.tail = tail; 604 605 pollin = OA_TAKEN(stream->oa_buffer.tail, 606 stream->oa_buffer.head) >= report_size; 607 608 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 609 610 return pollin; 611 } 612 613 /** 614 * append_oa_status - Appends a status record to a userspace read() buffer. 615 * @stream: An i915-perf stream opened for OA metrics 616 * @buf: destination buffer given by userspace 617 * @count: the number of bytes userspace wants to read 618 * @offset: (inout): the current position for writing into @buf 619 * @type: The kind of status to report to userspace 620 * 621 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 622 * into the userspace read() buffer. 623 * 624 * The @buf @offset will only be updated on success. 625 * 626 * Returns: 0 on success, negative error code on failure. 627 */ 628 static int append_oa_status(struct i915_perf_stream *stream, 629 char __user *buf, 630 size_t count, 631 size_t *offset, 632 enum drm_i915_perf_record_type type) 633 { 634 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 635 636 if ((count - *offset) < header.size) 637 return -ENOSPC; 638 639 if (copy_to_user(buf + *offset, &header, sizeof(header))) 640 return -EFAULT; 641 642 (*offset) += header.size; 643 644 return 0; 645 } 646 647 /** 648 * append_oa_sample - Copies single OA report into userspace read() buffer. 649 * @stream: An i915-perf stream opened for OA metrics 650 * @buf: destination buffer given by userspace 651 * @count: the number of bytes userspace wants to read 652 * @offset: (inout): the current position for writing into @buf 653 * @report: A single OA report to (optionally) include as part of the sample 654 * 655 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 656 * properties when opening a stream, tracked as `stream->sample_flags`. This 657 * function copies the requested components of a single sample to the given 658 * read() @buf. 659 * 660 * The @buf @offset will only be updated on success. 661 * 662 * Returns: 0 on success, negative error code on failure. 663 */ 664 static int append_oa_sample(struct i915_perf_stream *stream, 665 char __user *buf, 666 size_t count, 667 size_t *offset, 668 const u8 *report) 669 { 670 int report_size = stream->oa_buffer.format->size; 671 struct drm_i915_perf_record_header header; 672 int report_size_partial; 673 u8 *oa_buf_end; 674 675 header.type = DRM_I915_PERF_RECORD_SAMPLE; 676 header.pad = 0; 677 header.size = stream->sample_size; 678 679 if ((count - *offset) < header.size) 680 return -ENOSPC; 681 682 buf += *offset; 683 if (copy_to_user(buf, &header, sizeof(header))) 684 return -EFAULT; 685 buf += sizeof(header); 686 687 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 688 report_size_partial = oa_buf_end - report; 689 690 if (report_size_partial < report_size) { 691 if (copy_to_user(buf, report, report_size_partial)) 692 return -EFAULT; 693 buf += report_size_partial; 694 695 if (copy_to_user(buf, stream->oa_buffer.vaddr, 696 report_size - report_size_partial)) 697 return -EFAULT; 698 } else if (copy_to_user(buf, report, report_size)) { 699 return -EFAULT; 700 } 701 702 (*offset) += header.size; 703 704 return 0; 705 } 706 707 /** 708 * gen8_append_oa_reports - Copies all buffered OA reports into 709 * userspace read() buffer. 710 * @stream: An i915-perf stream opened for OA metrics 711 * @buf: destination buffer given by userspace 712 * @count: the number of bytes userspace wants to read 713 * @offset: (inout): the current position for writing into @buf 714 * 715 * Notably any error condition resulting in a short read (-%ENOSPC or 716 * -%EFAULT) will be returned even though one or more records may 717 * have been successfully copied. In this case it's up to the caller 718 * to decide if the error should be squashed before returning to 719 * userspace. 720 * 721 * Note: reports are consumed from the head, and appended to the 722 * tail, so the tail chases the head?... If you think that's mad 723 * and back-to-front you're not alone, but this follows the 724 * Gen PRM naming convention. 725 * 726 * Returns: 0 on success, negative error code on failure. 727 */ 728 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 729 char __user *buf, 730 size_t count, 731 size_t *offset) 732 { 733 struct intel_uncore *uncore = stream->uncore; 734 int report_size = stream->oa_buffer.format->size; 735 u8 *oa_buf_base = stream->oa_buffer.vaddr; 736 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 737 u32 mask = (OA_BUFFER_SIZE - 1); 738 size_t start_offset = *offset; 739 unsigned long flags; 740 u32 head, tail; 741 int ret = 0; 742 743 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 744 return -EIO; 745 746 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 747 748 head = stream->oa_buffer.head; 749 tail = stream->oa_buffer.tail; 750 751 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 752 753 /* 754 * An out of bounds or misaligned head or tail pointer implies a driver 755 * bug since we validate + align the tail pointers we read from the 756 * hardware and we are in full control of the head pointer which should 757 * only be incremented by multiples of the report size. 758 */ 759 if (drm_WARN_ONCE(&uncore->i915->drm, 760 head > OA_BUFFER_SIZE || 761 tail > OA_BUFFER_SIZE, 762 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 763 head, tail)) 764 return -EIO; 765 766 767 for (/* none */; 768 OA_TAKEN(tail, head); 769 head = (head + report_size) & mask) { 770 u8 *report = oa_buf_base + head; 771 u32 *report32 = (void *)report; 772 u32 ctx_id; 773 u64 reason; 774 775 /* 776 * The reason field includes flags identifying what 777 * triggered this specific report (mostly timer 778 * triggered or e.g. due to a context switch). 779 */ 780 reason = oa_report_reason(stream, report); 781 ctx_id = oa_context_id(stream, report32); 782 783 /* 784 * Squash whatever is in the CTX_ID field if it's marked as 785 * invalid to be sure we avoid false-positive, single-context 786 * filtering below... 787 * 788 * Note: that we don't clear the valid_ctx_bit so userspace can 789 * understand that the ID has been squashed by the kernel. 790 * 791 * Update: 792 * 793 * On XEHP platforms the behavior of context id valid bit has 794 * changed compared to prior platforms. To describe this, we 795 * define a few terms: 796 * 797 * context-switch-report: This is a report with the reason type 798 * being context-switch. It is generated when a context switches 799 * out. 800 * 801 * context-valid-bit: A bit that is set in the report ID field 802 * to indicate that a valid context has been loaded. 803 * 804 * gpu-idle: A condition characterized by a 805 * context-switch-report with context-valid-bit set to 0. 806 * 807 * On prior platforms, context-id-valid bit is set to 0 only 808 * when GPU goes idle. In all other reports, it is set to 1. 809 * 810 * On XEHP platforms, context-valid-bit is set to 1 in a context 811 * switch report if a new context switched in. For all other 812 * reports it is set to 0. 813 * 814 * This change in behavior causes an issue with MMIO triggered 815 * reports. MMIO triggered reports have the markers in the 816 * context ID field and the context-valid-bit is 0. The logic 817 * below to squash the context ID would render the report 818 * useless since the user will not be able to find it in the OA 819 * buffer. Since MMIO triggered reports exist only on XEHP, 820 * we should avoid squashing these for XEHP platforms. 821 */ 822 823 if (oa_report_ctx_invalid(stream, report) && 824 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) { 825 ctx_id = INVALID_CTX_ID; 826 oa_context_id_squash(stream, report32); 827 } 828 829 /* 830 * NB: For Gen 8 the OA unit no longer supports clock gating 831 * off for a specific context and the kernel can't securely 832 * stop the counters from updating as system-wide / global 833 * values. 834 * 835 * Automatic reports now include a context ID so reports can be 836 * filtered on the cpu but it's not worth trying to 837 * automatically subtract/hide counter progress for other 838 * contexts while filtering since we can't stop userspace 839 * issuing MI_REPORT_PERF_COUNT commands which would still 840 * provide a side-band view of the real values. 841 * 842 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 843 * to normalize counters for a single filtered context then it 844 * needs be forwarded bookend context-switch reports so that it 845 * can track switches in between MI_REPORT_PERF_COUNT commands 846 * and can itself subtract/ignore the progress of counters 847 * associated with other contexts. Note that the hardware 848 * automatically triggers reports when switching to a new 849 * context which are tagged with the ID of the newly active 850 * context. To avoid the complexity (and likely fragility) of 851 * reading ahead while parsing reports to try and minimize 852 * forwarding redundant context switch reports (i.e. between 853 * other, unrelated contexts) we simply elect to forward them 854 * all. 855 * 856 * We don't rely solely on the reason field to identify context 857 * switches since it's not-uncommon for periodic samples to 858 * identify a switch before any 'context switch' report. 859 */ 860 if (!stream->ctx || 861 stream->specific_ctx_id == ctx_id || 862 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 863 reason & OAREPORT_REASON_CTX_SWITCH) { 864 865 /* 866 * While filtering for a single context we avoid 867 * leaking the IDs of other contexts. 868 */ 869 if (stream->ctx && 870 stream->specific_ctx_id != ctx_id) { 871 oa_context_id_squash(stream, report32); 872 } 873 874 ret = append_oa_sample(stream, buf, count, offset, 875 report); 876 if (ret) 877 break; 878 879 stream->oa_buffer.last_ctx_id = ctx_id; 880 } 881 882 if (is_power_of_2(report_size)) { 883 /* 884 * Clear out the report id and timestamp as a means 885 * to detect unlanded reports. 886 */ 887 oa_report_id_clear(stream, report32); 888 oa_timestamp_clear(stream, report32); 889 } else { 890 u8 *oa_buf_end = stream->oa_buffer.vaddr + 891 OA_BUFFER_SIZE; 892 u32 part = oa_buf_end - (u8 *)report32; 893 894 /* Zero out the entire report */ 895 if (report_size <= part) { 896 memset(report32, 0, report_size); 897 } else { 898 memset(report32, 0, part); 899 memset(oa_buf_base, 0, report_size - part); 900 } 901 } 902 } 903 904 if (start_offset != *offset) { 905 i915_reg_t oaheadptr; 906 907 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 908 __oa_regs(stream)->oa_head_ptr : 909 GEN8_OAHEADPTR; 910 911 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 912 913 /* 914 * We removed the gtt_offset for the copy loop above, indexing 915 * relative to oa_buf_base so put back here... 916 */ 917 intel_uncore_write(uncore, oaheadptr, 918 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK); 919 stream->oa_buffer.head = head; 920 921 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 922 } 923 924 return ret; 925 } 926 927 /** 928 * gen8_oa_read - copy status records then buffered OA reports 929 * @stream: An i915-perf stream opened for OA metrics 930 * @buf: destination buffer given by userspace 931 * @count: the number of bytes userspace wants to read 932 * @offset: (inout): the current position for writing into @buf 933 * 934 * Checks OA unit status registers and if necessary appends corresponding 935 * status records for userspace (such as for a buffer full condition) and then 936 * initiate appending any buffered OA reports. 937 * 938 * Updates @offset according to the number of bytes successfully copied into 939 * the userspace buffer. 940 * 941 * NB: some data may be successfully copied to the userspace buffer 942 * even if an error is returned, and this is reflected in the 943 * updated @offset. 944 * 945 * Returns: zero on success or a negative error code 946 */ 947 static int gen8_oa_read(struct i915_perf_stream *stream, 948 char __user *buf, 949 size_t count, 950 size_t *offset) 951 { 952 struct intel_uncore *uncore = stream->uncore; 953 u32 oastatus; 954 i915_reg_t oastatus_reg; 955 int ret; 956 957 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 958 return -EIO; 959 960 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 961 __oa_regs(stream)->oa_status : 962 GEN8_OASTATUS; 963 964 oastatus = intel_uncore_read(uncore, oastatus_reg); 965 966 /* 967 * We treat OABUFFER_OVERFLOW as a significant error: 968 * 969 * Although theoretically we could handle this more gracefully 970 * sometimes, some Gens don't correctly suppress certain 971 * automatically triggered reports in this condition and so we 972 * have to assume that old reports are now being trampled 973 * over. 974 * 975 * Considering how we don't currently give userspace control 976 * over the OA buffer size and always configure a large 16MB 977 * buffer, then a buffer overflow does anyway likely indicate 978 * that something has gone quite badly wrong. 979 */ 980 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 981 ret = append_oa_status(stream, buf, count, offset, 982 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 983 if (ret) 984 return ret; 985 986 drm_dbg(&stream->perf->i915->drm, 987 "OA buffer overflow (exponent = %d): force restart\n", 988 stream->period_exponent); 989 990 stream->perf->ops.oa_disable(stream); 991 stream->perf->ops.oa_enable(stream); 992 993 /* 994 * Note: .oa_enable() is expected to re-init the oabuffer and 995 * reset GEN8_OASTATUS for us 996 */ 997 oastatus = intel_uncore_read(uncore, oastatus_reg); 998 } 999 1000 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 1001 ret = append_oa_status(stream, buf, count, offset, 1002 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1003 if (ret) 1004 return ret; 1005 1006 intel_uncore_rmw(uncore, oastatus_reg, 1007 GEN8_OASTATUS_COUNTER_OVERFLOW | 1008 GEN8_OASTATUS_REPORT_LOST, 1009 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 1010 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 1011 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 1012 } 1013 1014 return gen8_append_oa_reports(stream, buf, count, offset); 1015 } 1016 1017 /** 1018 * gen7_append_oa_reports - Copies all buffered OA reports into 1019 * userspace read() buffer. 1020 * @stream: An i915-perf stream opened for OA metrics 1021 * @buf: destination buffer given by userspace 1022 * @count: the number of bytes userspace wants to read 1023 * @offset: (inout): the current position for writing into @buf 1024 * 1025 * Notably any error condition resulting in a short read (-%ENOSPC or 1026 * -%EFAULT) will be returned even though one or more records may 1027 * have been successfully copied. In this case it's up to the caller 1028 * to decide if the error should be squashed before returning to 1029 * userspace. 1030 * 1031 * Note: reports are consumed from the head, and appended to the 1032 * tail, so the tail chases the head?... If you think that's mad 1033 * and back-to-front you're not alone, but this follows the 1034 * Gen PRM naming convention. 1035 * 1036 * Returns: 0 on success, negative error code on failure. 1037 */ 1038 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1039 char __user *buf, 1040 size_t count, 1041 size_t *offset) 1042 { 1043 struct intel_uncore *uncore = stream->uncore; 1044 int report_size = stream->oa_buffer.format->size; 1045 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1046 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1047 u32 mask = (OA_BUFFER_SIZE - 1); 1048 size_t start_offset = *offset; 1049 unsigned long flags; 1050 u32 head, tail; 1051 int ret = 0; 1052 1053 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1054 return -EIO; 1055 1056 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1057 1058 head = stream->oa_buffer.head; 1059 tail = stream->oa_buffer.tail; 1060 1061 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1062 1063 /* An out of bounds or misaligned head or tail pointer implies a driver 1064 * bug since we validate + align the tail pointers we read from the 1065 * hardware and we are in full control of the head pointer which should 1066 * only be incremented by multiples of the report size (notably also 1067 * all a power of two). 1068 */ 1069 if (drm_WARN_ONCE(&uncore->i915->drm, 1070 head > OA_BUFFER_SIZE || head % report_size || 1071 tail > OA_BUFFER_SIZE || tail % report_size, 1072 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1073 head, tail)) 1074 return -EIO; 1075 1076 1077 for (/* none */; 1078 OA_TAKEN(tail, head); 1079 head = (head + report_size) & mask) { 1080 u8 *report = oa_buf_base + head; 1081 u32 *report32 = (void *)report; 1082 1083 /* All the report sizes factor neatly into the buffer 1084 * size so we never expect to see a report split 1085 * between the beginning and end of the buffer. 1086 * 1087 * Given the initial alignment check a misalignment 1088 * here would imply a driver bug that would result 1089 * in an overrun. 1090 */ 1091 if (drm_WARN_ON(&uncore->i915->drm, 1092 (OA_BUFFER_SIZE - head) < report_size)) { 1093 drm_err(&uncore->i915->drm, 1094 "Spurious OA head ptr: non-integral report offset\n"); 1095 break; 1096 } 1097 1098 /* The report-ID field for periodic samples includes 1099 * some undocumented flags related to what triggered 1100 * the report and is never expected to be zero so we 1101 * can check that the report isn't invalid before 1102 * copying it to userspace... 1103 */ 1104 if (report32[0] == 0) { 1105 if (__ratelimit(&stream->perf->spurious_report_rs)) 1106 drm_notice(&uncore->i915->drm, 1107 "Skipping spurious, invalid OA report\n"); 1108 continue; 1109 } 1110 1111 ret = append_oa_sample(stream, buf, count, offset, report); 1112 if (ret) 1113 break; 1114 1115 /* Clear out the first 2 dwords as a mean to detect unlanded 1116 * reports. 1117 */ 1118 report32[0] = 0; 1119 report32[1] = 0; 1120 } 1121 1122 if (start_offset != *offset) { 1123 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1124 1125 intel_uncore_write(uncore, GEN7_OASTATUS2, 1126 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) | 1127 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1128 stream->oa_buffer.head = head; 1129 1130 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1131 } 1132 1133 return ret; 1134 } 1135 1136 /** 1137 * gen7_oa_read - copy status records then buffered OA reports 1138 * @stream: An i915-perf stream opened for OA metrics 1139 * @buf: destination buffer given by userspace 1140 * @count: the number of bytes userspace wants to read 1141 * @offset: (inout): the current position for writing into @buf 1142 * 1143 * Checks Gen 7 specific OA unit status registers and if necessary appends 1144 * corresponding status records for userspace (such as for a buffer full 1145 * condition) and then initiate appending any buffered OA reports. 1146 * 1147 * Updates @offset according to the number of bytes successfully copied into 1148 * the userspace buffer. 1149 * 1150 * Returns: zero on success or a negative error code 1151 */ 1152 static int gen7_oa_read(struct i915_perf_stream *stream, 1153 char __user *buf, 1154 size_t count, 1155 size_t *offset) 1156 { 1157 struct intel_uncore *uncore = stream->uncore; 1158 u32 oastatus1; 1159 int ret; 1160 1161 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1162 return -EIO; 1163 1164 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1165 1166 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1167 * bits while the OA unit is enabled (while the tail pointer 1168 * may be updated asynchronously) so we ignore status bits 1169 * that have already been reported to userspace. 1170 */ 1171 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1172 1173 /* We treat OABUFFER_OVERFLOW as a significant error: 1174 * 1175 * - The status can be interpreted to mean that the buffer is 1176 * currently full (with a higher precedence than OA_TAKEN() 1177 * which will start to report a near-empty buffer after an 1178 * overflow) but it's awkward that we can't clear the status 1179 * on Haswell, so without a reset we won't be able to catch 1180 * the state again. 1181 * 1182 * - Since it also implies the HW has started overwriting old 1183 * reports it may also affect our sanity checks for invalid 1184 * reports when copying to userspace that assume new reports 1185 * are being written to cleared memory. 1186 * 1187 * - In the future we may want to introduce a flight recorder 1188 * mode where the driver will automatically maintain a safe 1189 * guard band between head/tail, avoiding this overflow 1190 * condition, but we avoid the added driver complexity for 1191 * now. 1192 */ 1193 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1194 ret = append_oa_status(stream, buf, count, offset, 1195 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1196 if (ret) 1197 return ret; 1198 1199 drm_dbg(&stream->perf->i915->drm, 1200 "OA buffer overflow (exponent = %d): force restart\n", 1201 stream->period_exponent); 1202 1203 stream->perf->ops.oa_disable(stream); 1204 stream->perf->ops.oa_enable(stream); 1205 1206 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1207 } 1208 1209 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1210 ret = append_oa_status(stream, buf, count, offset, 1211 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1212 if (ret) 1213 return ret; 1214 stream->perf->gen7_latched_oastatus1 |= 1215 GEN7_OASTATUS1_REPORT_LOST; 1216 } 1217 1218 return gen7_append_oa_reports(stream, buf, count, offset); 1219 } 1220 1221 /** 1222 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1223 * @stream: An i915-perf stream opened for OA metrics 1224 * 1225 * Called when userspace tries to read() from a blocking stream FD opened 1226 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1227 * OA buffer and wakes us. 1228 * 1229 * Note: it's acceptable to have this return with some false positives 1230 * since any subsequent read handling will return -EAGAIN if there isn't 1231 * really data ready for userspace yet. 1232 * 1233 * Returns: zero on success or a negative error code 1234 */ 1235 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1236 { 1237 /* We would wait indefinitely if periodic sampling is not enabled */ 1238 if (!stream->periodic) 1239 return -EIO; 1240 1241 return wait_event_interruptible(stream->poll_wq, 1242 oa_buffer_check_unlocked(stream)); 1243 } 1244 1245 /** 1246 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1247 * @stream: An i915-perf stream opened for OA metrics 1248 * @file: An i915 perf stream file 1249 * @wait: poll() state table 1250 * 1251 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1252 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1253 * when it sees data ready to read in the circular OA buffer. 1254 */ 1255 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1256 struct file *file, 1257 poll_table *wait) 1258 { 1259 poll_wait(file, &stream->poll_wq, wait); 1260 } 1261 1262 /** 1263 * i915_oa_read - just calls through to &i915_oa_ops->read 1264 * @stream: An i915-perf stream opened for OA metrics 1265 * @buf: destination buffer given by userspace 1266 * @count: the number of bytes userspace wants to read 1267 * @offset: (inout): the current position for writing into @buf 1268 * 1269 * Updates @offset according to the number of bytes successfully copied into 1270 * the userspace buffer. 1271 * 1272 * Returns: zero on success or a negative error code 1273 */ 1274 static int i915_oa_read(struct i915_perf_stream *stream, 1275 char __user *buf, 1276 size_t count, 1277 size_t *offset) 1278 { 1279 return stream->perf->ops.read(stream, buf, count, offset); 1280 } 1281 1282 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1283 { 1284 struct i915_gem_engines_iter it; 1285 struct i915_gem_context *ctx = stream->ctx; 1286 struct intel_context *ce; 1287 struct i915_gem_ww_ctx ww; 1288 int err = -ENODEV; 1289 1290 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1291 if (ce->engine != stream->engine) /* first match! */ 1292 continue; 1293 1294 err = 0; 1295 break; 1296 } 1297 i915_gem_context_unlock_engines(ctx); 1298 1299 if (err) 1300 return ERR_PTR(err); 1301 1302 i915_gem_ww_ctx_init(&ww, true); 1303 retry: 1304 /* 1305 * As the ID is the gtt offset of the context's vma we 1306 * pin the vma to ensure the ID remains fixed. 1307 */ 1308 err = intel_context_pin_ww(ce, &ww); 1309 if (err == -EDEADLK) { 1310 err = i915_gem_ww_ctx_backoff(&ww); 1311 if (!err) 1312 goto retry; 1313 } 1314 i915_gem_ww_ctx_fini(&ww); 1315 1316 if (err) 1317 return ERR_PTR(err); 1318 1319 stream->pinned_ctx = ce; 1320 return stream->pinned_ctx; 1321 } 1322 1323 static int 1324 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1325 { 1326 u32 *cs, cmd; 1327 1328 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1329 if (GRAPHICS_VER(rq->i915) >= 8) 1330 cmd++; 1331 1332 cs = intel_ring_begin(rq, 4); 1333 if (IS_ERR(cs)) 1334 return PTR_ERR(cs); 1335 1336 *cs++ = cmd; 1337 *cs++ = i915_mmio_reg_offset(reg); 1338 *cs++ = ggtt_offset; 1339 *cs++ = 0; 1340 1341 intel_ring_advance(rq, cs); 1342 1343 return 0; 1344 } 1345 1346 static int 1347 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1348 { 1349 struct i915_request *rq; 1350 int err; 1351 1352 rq = i915_request_create(ce); 1353 if (IS_ERR(rq)) 1354 return PTR_ERR(rq); 1355 1356 i915_request_get(rq); 1357 1358 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1359 1360 i915_request_add(rq); 1361 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1362 err = -ETIME; 1363 1364 i915_request_put(rq); 1365 1366 return err; 1367 } 1368 1369 static int 1370 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1371 { 1372 struct i915_vma *scratch; 1373 u32 *val; 1374 int err; 1375 1376 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1377 if (IS_ERR(scratch)) 1378 return PTR_ERR(scratch); 1379 1380 err = i915_vma_sync(scratch); 1381 if (err) 1382 goto err_scratch; 1383 1384 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1385 i915_ggtt_offset(scratch)); 1386 if (err) 1387 goto err_scratch; 1388 1389 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1390 if (IS_ERR(val)) { 1391 err = PTR_ERR(val); 1392 goto err_scratch; 1393 } 1394 1395 *ctx_id = *val; 1396 i915_gem_object_unpin_map(scratch->obj); 1397 1398 err_scratch: 1399 i915_vma_unpin_and_release(&scratch, 0); 1400 return err; 1401 } 1402 1403 /* 1404 * For execlist mode of submission, pick an unused context id 1405 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1406 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1407 * 1408 * For GuC mode of submission read context id from the upper dword of the 1409 * EXECLIST_STATUS register. Note that we read this value only once and expect 1410 * that the value stays fixed for the entire OA use case. There are cases where 1411 * GuC KMD implementation may deregister a context to reuse it's context id, but 1412 * we prevent that from happening to the OA context by pinning it. 1413 */ 1414 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1415 { 1416 u32 ctx_id, mask; 1417 int ret; 1418 1419 if (intel_engine_uses_guc(stream->engine)) { 1420 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1421 if (ret) 1422 return ret; 1423 1424 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1425 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1426 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) { 1427 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1428 (XEHP_SW_CTX_ID_SHIFT - 32); 1429 1430 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1431 (XEHP_SW_CTX_ID_SHIFT - 32); 1432 } else { 1433 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1434 (GEN11_SW_CTX_ID_SHIFT - 32); 1435 1436 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1437 (GEN11_SW_CTX_ID_SHIFT - 32); 1438 } 1439 stream->specific_ctx_id = ctx_id & mask; 1440 stream->specific_ctx_id_mask = mask; 1441 1442 return 0; 1443 } 1444 1445 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1446 { 1447 u32 idx = *offset; 1448 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1449 bool found = false; 1450 1451 idx++; 1452 for (; idx < len; idx += 2) { 1453 if (state[idx] == reg) { 1454 found = true; 1455 break; 1456 } 1457 } 1458 1459 *offset = idx; 1460 return found; 1461 } 1462 1463 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1464 { 1465 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1466 u32 *state = ce->lrc_reg_state; 1467 1468 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1469 return U32_MAX; 1470 1471 for (offset = 0; offset < len; ) { 1472 if (IS_MI_LRI_CMD(state[offset])) { 1473 /* 1474 * We expect reg-value pairs in MI_LRI command, so 1475 * MI_LRI_LEN() should be even, if not, issue a warning. 1476 */ 1477 drm_WARN_ON(&ce->engine->i915->drm, 1478 MI_LRI_LEN(state[offset]) & 0x1); 1479 1480 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1481 break; 1482 } else { 1483 offset++; 1484 } 1485 } 1486 1487 return offset < len ? offset : U32_MAX; 1488 } 1489 1490 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1491 { 1492 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1493 struct i915_perf *perf = &ce->engine->i915->perf; 1494 u32 offset = perf->ctx_oactxctrl_offset; 1495 1496 /* Do this only once. Failure is stored as offset of U32_MAX */ 1497 if (offset) 1498 goto exit; 1499 1500 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1501 perf->ctx_oactxctrl_offset = offset; 1502 1503 drm_dbg(&ce->engine->i915->drm, 1504 "%s oa ctx control at 0x%08x dword offset\n", 1505 ce->engine->name, offset); 1506 1507 exit: 1508 return offset && offset != U32_MAX ? 0 : -ENODEV; 1509 } 1510 1511 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1512 { 1513 return engine->class == RENDER_CLASS; 1514 } 1515 1516 /** 1517 * oa_get_render_ctx_id - determine and hold ctx hw id 1518 * @stream: An i915-perf stream opened for OA metrics 1519 * 1520 * Determine the render context hw id, and ensure it remains fixed for the 1521 * lifetime of the stream. This ensures that we don't have to worry about 1522 * updating the context ID in OACONTROL on the fly. 1523 * 1524 * Returns: zero on success or a negative error code 1525 */ 1526 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1527 { 1528 struct intel_context *ce; 1529 int ret = 0; 1530 1531 ce = oa_pin_context(stream); 1532 if (IS_ERR(ce)) 1533 return PTR_ERR(ce); 1534 1535 if (engine_supports_mi_query(stream->engine) && 1536 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1537 /* 1538 * We are enabling perf query here. If we don't find the context 1539 * offset here, just return an error. 1540 */ 1541 ret = set_oa_ctx_ctrl_offset(ce); 1542 if (ret) { 1543 intel_context_unpin(ce); 1544 drm_err(&stream->perf->i915->drm, 1545 "Enabling perf query failed for %s\n", 1546 stream->engine->name); 1547 return ret; 1548 } 1549 } 1550 1551 switch (GRAPHICS_VER(ce->engine->i915)) { 1552 case 7: { 1553 /* 1554 * On Haswell we don't do any post processing of the reports 1555 * and don't need to use the mask. 1556 */ 1557 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1558 stream->specific_ctx_id_mask = 0; 1559 break; 1560 } 1561 1562 case 8: 1563 case 9: 1564 if (intel_engine_uses_guc(ce->engine)) { 1565 /* 1566 * When using GuC, the context descriptor we write in 1567 * i915 is read by GuC and rewritten before it's 1568 * actually written into the hardware. The LRCA is 1569 * what is put into the context id field of the 1570 * context descriptor by GuC. Because it's aligned to 1571 * a page, the lower 12bits are always at 0 and 1572 * dropped by GuC. They won't be part of the context 1573 * ID in the OA reports, so squash those lower bits. 1574 */ 1575 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1576 1577 /* 1578 * GuC uses the top bit to signal proxy submission, so 1579 * ignore that bit. 1580 */ 1581 stream->specific_ctx_id_mask = 1582 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1583 } else { 1584 stream->specific_ctx_id_mask = 1585 (1U << GEN8_CTX_ID_WIDTH) - 1; 1586 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1587 } 1588 break; 1589 1590 case 11: 1591 case 12: 1592 ret = gen12_get_render_context_id(stream); 1593 break; 1594 1595 default: 1596 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1597 } 1598 1599 ce->tag = stream->specific_ctx_id; 1600 1601 drm_dbg(&stream->perf->i915->drm, 1602 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1603 stream->specific_ctx_id, 1604 stream->specific_ctx_id_mask); 1605 1606 return ret; 1607 } 1608 1609 /** 1610 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1611 * @stream: An i915-perf stream opened for OA metrics 1612 * 1613 * In case anything needed doing to ensure the context HW ID would remain valid 1614 * for the lifetime of the stream, then that can be undone here. 1615 */ 1616 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1617 { 1618 struct intel_context *ce; 1619 1620 ce = fetch_and_zero(&stream->pinned_ctx); 1621 if (ce) { 1622 ce->tag = 0; /* recomputed on next submission after parking */ 1623 intel_context_unpin(ce); 1624 } 1625 1626 stream->specific_ctx_id = INVALID_CTX_ID; 1627 stream->specific_ctx_id_mask = 0; 1628 } 1629 1630 static void 1631 free_oa_buffer(struct i915_perf_stream *stream) 1632 { 1633 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1634 I915_VMA_RELEASE_MAP); 1635 1636 stream->oa_buffer.vaddr = NULL; 1637 } 1638 1639 static void 1640 free_oa_configs(struct i915_perf_stream *stream) 1641 { 1642 struct i915_oa_config_bo *oa_bo, *tmp; 1643 1644 i915_oa_config_put(stream->oa_config); 1645 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1646 free_oa_config_bo(oa_bo); 1647 } 1648 1649 static void 1650 free_noa_wait(struct i915_perf_stream *stream) 1651 { 1652 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1653 } 1654 1655 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1656 { 1657 return engine->oa_group; 1658 } 1659 1660 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1661 { 1662 return engine->oa_group && engine->oa_group->type == type; 1663 } 1664 1665 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1666 { 1667 struct i915_perf *perf = stream->perf; 1668 struct intel_gt *gt = stream->engine->gt; 1669 struct i915_perf_group *g = stream->engine->oa_group; 1670 int m; 1671 1672 if (WARN_ON(stream != g->exclusive_stream)) 1673 return; 1674 1675 /* 1676 * Unset exclusive_stream first, it will be checked while disabling 1677 * the metric set on gen8+. 1678 * 1679 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1680 */ 1681 WRITE_ONCE(g->exclusive_stream, NULL); 1682 perf->ops.disable_metric_set(stream); 1683 1684 free_oa_buffer(stream); 1685 1686 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1687 intel_engine_pm_put(stream->engine); 1688 1689 if (stream->ctx) 1690 oa_put_render_ctx_id(stream); 1691 1692 free_oa_configs(stream); 1693 free_noa_wait(stream); 1694 1695 m = ratelimit_state_get_miss(&perf->spurious_report_rs); 1696 if (m) 1697 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", m); 1698 } 1699 1700 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1701 { 1702 struct intel_uncore *uncore = stream->uncore; 1703 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1704 unsigned long flags; 1705 1706 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1707 1708 /* Pre-DevBDW: OABUFFER must be set with counters off, 1709 * before OASTATUS1, but after OASTATUS2 1710 */ 1711 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1712 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1713 stream->oa_buffer.head = 0; 1714 1715 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1716 1717 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1718 gtt_offset | OABUFFER_SIZE_16M); 1719 1720 /* Mark that we need updated tail pointers to read from... */ 1721 stream->oa_buffer.tail = 0; 1722 1723 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1724 1725 /* On Haswell we have to track which OASTATUS1 flags we've 1726 * already seen since they can't be cleared while periodic 1727 * sampling is enabled. 1728 */ 1729 stream->perf->gen7_latched_oastatus1 = 0; 1730 1731 /* NB: although the OA buffer will initially be allocated 1732 * zeroed via shmfs (and so this memset is redundant when 1733 * first allocating), we may re-init the OA buffer, either 1734 * when re-enabling a stream or in error/reset paths. 1735 * 1736 * The reason we clear the buffer for each re-init is for the 1737 * sanity check in gen7_append_oa_reports() that looks at the 1738 * report-id field to make sure it's non-zero which relies on 1739 * the assumption that new reports are being written to zeroed 1740 * memory... 1741 */ 1742 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1743 } 1744 1745 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1746 { 1747 struct intel_uncore *uncore = stream->uncore; 1748 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1749 unsigned long flags; 1750 1751 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1752 1753 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1754 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1755 stream->oa_buffer.head = 0; 1756 1757 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1758 1759 /* 1760 * PRM says: 1761 * 1762 * "This MMIO must be set before the OATAILPTR 1763 * register and after the OAHEADPTR register. This is 1764 * to enable proper functionality of the overflow 1765 * bit." 1766 */ 1767 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1768 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1769 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1770 1771 /* Mark that we need updated tail pointers to read from... */ 1772 stream->oa_buffer.tail = 0; 1773 1774 /* 1775 * Reset state used to recognise context switches, affecting which 1776 * reports we will forward to userspace while filtering for a single 1777 * context. 1778 */ 1779 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1780 1781 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1782 1783 /* 1784 * NB: although the OA buffer will initially be allocated 1785 * zeroed via shmfs (and so this memset is redundant when 1786 * first allocating), we may re-init the OA buffer, either 1787 * when re-enabling a stream or in error/reset paths. 1788 * 1789 * The reason we clear the buffer for each re-init is for the 1790 * sanity check in gen8_append_oa_reports() that looks at the 1791 * reason field to make sure it's non-zero which relies on 1792 * the assumption that new reports are being written to zeroed 1793 * memory... 1794 */ 1795 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1796 } 1797 1798 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1799 { 1800 struct intel_uncore *uncore = stream->uncore; 1801 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1802 unsigned long flags; 1803 1804 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1805 1806 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1807 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1808 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1809 stream->oa_buffer.head = 0; 1810 1811 /* 1812 * PRM says: 1813 * 1814 * "This MMIO must be set before the OATAILPTR 1815 * register and after the OAHEADPTR register. This is 1816 * to enable proper functionality of the overflow 1817 * bit." 1818 */ 1819 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1820 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1821 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1822 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1823 1824 /* Mark that we need updated tail pointers to read from... */ 1825 stream->oa_buffer.tail = 0; 1826 1827 /* 1828 * Reset state used to recognise context switches, affecting which 1829 * reports we will forward to userspace while filtering for a single 1830 * context. 1831 */ 1832 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1833 1834 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1835 1836 /* 1837 * NB: although the OA buffer will initially be allocated 1838 * zeroed via shmfs (and so this memset is redundant when 1839 * first allocating), we may re-init the OA buffer, either 1840 * when re-enabling a stream or in error/reset paths. 1841 * 1842 * The reason we clear the buffer for each re-init is for the 1843 * sanity check in gen8_append_oa_reports() that looks at the 1844 * reason field to make sure it's non-zero which relies on 1845 * the assumption that new reports are being written to zeroed 1846 * memory... 1847 */ 1848 memset(stream->oa_buffer.vaddr, 0, 1849 stream->oa_buffer.vma->size); 1850 } 1851 1852 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1853 { 1854 struct drm_i915_private *i915 = stream->perf->i915; 1855 struct intel_gt *gt = stream->engine->gt; 1856 struct drm_i915_gem_object *bo; 1857 struct i915_vma *vma; 1858 int ret; 1859 1860 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1861 return -ENODEV; 1862 1863 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1864 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1865 1866 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1867 if (IS_ERR(bo)) { 1868 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1869 return PTR_ERR(bo); 1870 } 1871 1872 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1873 1874 /* PreHSW required 512K alignment, HSW requires 16M */ 1875 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1876 if (IS_ERR(vma)) { 1877 ret = PTR_ERR(vma); 1878 goto err_unref; 1879 } 1880 1881 /* 1882 * PreHSW required 512K alignment. 1883 * HSW and onwards, align to requested size of OA buffer. 1884 */ 1885 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1886 if (ret) { 1887 gt_err(gt, "Failed to pin OA buffer %d\n", ret); 1888 goto err_unref; 1889 } 1890 1891 stream->oa_buffer.vma = vma; 1892 1893 stream->oa_buffer.vaddr = 1894 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1895 if (IS_ERR(stream->oa_buffer.vaddr)) { 1896 ret = PTR_ERR(stream->oa_buffer.vaddr); 1897 goto err_unpin; 1898 } 1899 1900 return 0; 1901 1902 err_unpin: 1903 __i915_vma_unpin(vma); 1904 1905 err_unref: 1906 i915_gem_object_put(bo); 1907 1908 stream->oa_buffer.vaddr = NULL; 1909 stream->oa_buffer.vma = NULL; 1910 1911 return ret; 1912 } 1913 1914 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1915 bool save, i915_reg_t reg, u32 offset, 1916 u32 dword_count) 1917 { 1918 u32 cmd; 1919 u32 d; 1920 1921 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1922 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1923 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1924 cmd++; 1925 1926 for (d = 0; d < dword_count; d++) { 1927 *cs++ = cmd; 1928 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1929 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1930 *cs++ = 0; 1931 } 1932 1933 return cs; 1934 } 1935 1936 static int alloc_noa_wait(struct i915_perf_stream *stream) 1937 { 1938 struct drm_i915_private *i915 = stream->perf->i915; 1939 struct intel_gt *gt = stream->engine->gt; 1940 struct drm_i915_gem_object *bo; 1941 struct i915_vma *vma; 1942 const u64 delay_ticks = 0xffffffffffffffff - 1943 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1944 atomic64_read(&stream->perf->noa_programming_delay)); 1945 const u32 base = stream->engine->mmio_base; 1946 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1947 u32 *batch, *ts0, *cs, *jump; 1948 struct i915_gem_ww_ctx ww; 1949 int ret, i; 1950 enum { 1951 START_TS, 1952 NOW_TS, 1953 DELTA_TS, 1954 JUMP_PREDICATE, 1955 DELTA_TARGET, 1956 N_CS_GPR 1957 }; 1958 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1959 MI_PREDICATE_RESULT_2_ENGINE(base) : 1960 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1961 1962 /* 1963 * gt->scratch was being used to save/restore the GPR registers, but on 1964 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1965 * causes an engine hang. Instead allocate an additional page here to 1966 * save/restore GPR registers 1967 */ 1968 bo = i915_gem_object_create_internal(i915, 8192); 1969 if (IS_ERR(bo)) { 1970 drm_err(&i915->drm, 1971 "Failed to allocate NOA wait batchbuffer\n"); 1972 return PTR_ERR(bo); 1973 } 1974 1975 i915_gem_ww_ctx_init(&ww, true); 1976 retry: 1977 ret = i915_gem_object_lock(bo, &ww); 1978 if (ret) 1979 goto out_ww; 1980 1981 /* 1982 * We pin in GGTT because we jump into this buffer now because 1983 * multiple OA config BOs will have a jump to this address and it 1984 * needs to be fixed during the lifetime of the i915/perf stream. 1985 */ 1986 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1987 if (IS_ERR(vma)) { 1988 ret = PTR_ERR(vma); 1989 goto out_ww; 1990 } 1991 1992 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1993 if (ret) 1994 goto out_ww; 1995 1996 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1997 if (IS_ERR(batch)) { 1998 ret = PTR_ERR(batch); 1999 goto err_unpin; 2000 } 2001 2002 stream->noa_wait = vma; 2003 2004 #define GPR_SAVE_OFFSET 4096 2005 #define PREDICATE_SAVE_OFFSET 4160 2006 2007 /* Save registers. */ 2008 for (i = 0; i < N_CS_GPR; i++) 2009 cs = save_restore_register( 2010 stream, cs, true /* save */, CS_GPR(i), 2011 GPR_SAVE_OFFSET + 8 * i, 2); 2012 cs = save_restore_register( 2013 stream, cs, true /* save */, mi_predicate_result, 2014 PREDICATE_SAVE_OFFSET, 1); 2015 2016 /* First timestamp snapshot location. */ 2017 ts0 = cs; 2018 2019 /* 2020 * Initial snapshot of the timestamp register to implement the wait. 2021 * We work with 32b values, so clear out the top 32b bits of the 2022 * register because the ALU works 64bits. 2023 */ 2024 *cs++ = MI_LOAD_REGISTER_IMM(1); 2025 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2026 *cs++ = 0; 2027 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2028 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2029 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2030 2031 /* 2032 * This is the location we're going to jump back into until the 2033 * required amount of time has passed. 2034 */ 2035 jump = cs; 2036 2037 /* 2038 * Take another snapshot of the timestamp register. Take care to clear 2039 * up the top 32bits of CS_GPR(1) as we're using it for other 2040 * operations below. 2041 */ 2042 *cs++ = MI_LOAD_REGISTER_IMM(1); 2043 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2044 *cs++ = 0; 2045 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2046 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2047 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2048 2049 /* 2050 * Do a diff between the 2 timestamps and store the result back into 2051 * CS_GPR(1). 2052 */ 2053 *cs++ = MI_MATH(5); 2054 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2055 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2056 *cs++ = MI_MATH_SUB; 2057 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2058 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2059 2060 /* 2061 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2062 * timestamp have rolled over the 32bits) into the predicate register 2063 * to be used for the predicated jump. 2064 */ 2065 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2066 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2067 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2068 2069 if (HAS_MI_SET_PREDICATE(i915)) 2070 *cs++ = MI_SET_PREDICATE | 1; 2071 2072 /* Restart from the beginning if we had timestamps roll over. */ 2073 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2074 MI_BATCH_BUFFER_START : 2075 MI_BATCH_BUFFER_START_GEN8) | 2076 MI_BATCH_PREDICATE; 2077 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2078 *cs++ = 0; 2079 2080 if (HAS_MI_SET_PREDICATE(i915)) 2081 *cs++ = MI_SET_PREDICATE; 2082 2083 /* 2084 * Now add the diff between to previous timestamps and add it to : 2085 * (((1 * << 64) - 1) - delay_ns) 2086 * 2087 * When the Carry Flag contains 1 this means the elapsed time is 2088 * longer than the expected delay, and we can exit the wait loop. 2089 */ 2090 *cs++ = MI_LOAD_REGISTER_IMM(2); 2091 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2092 *cs++ = lower_32_bits(delay_ticks); 2093 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2094 *cs++ = upper_32_bits(delay_ticks); 2095 2096 *cs++ = MI_MATH(4); 2097 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2098 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2099 *cs++ = MI_MATH_ADD; 2100 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2101 2102 *cs++ = MI_ARB_CHECK; 2103 2104 /* 2105 * Transfer the result into the predicate register to be used for the 2106 * predicated jump. 2107 */ 2108 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2109 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2110 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2111 2112 if (HAS_MI_SET_PREDICATE(i915)) 2113 *cs++ = MI_SET_PREDICATE | 1; 2114 2115 /* Predicate the jump. */ 2116 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2117 MI_BATCH_BUFFER_START : 2118 MI_BATCH_BUFFER_START_GEN8) | 2119 MI_BATCH_PREDICATE; 2120 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2121 *cs++ = 0; 2122 2123 if (HAS_MI_SET_PREDICATE(i915)) 2124 *cs++ = MI_SET_PREDICATE; 2125 2126 /* Restore registers. */ 2127 for (i = 0; i < N_CS_GPR; i++) 2128 cs = save_restore_register( 2129 stream, cs, false /* restore */, CS_GPR(i), 2130 GPR_SAVE_OFFSET + 8 * i, 2); 2131 cs = save_restore_register( 2132 stream, cs, false /* restore */, mi_predicate_result, 2133 PREDICATE_SAVE_OFFSET, 1); 2134 2135 /* And return to the ring. */ 2136 *cs++ = MI_BATCH_BUFFER_END; 2137 2138 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2139 2140 i915_gem_object_flush_map(bo); 2141 __i915_gem_object_release_map(bo); 2142 2143 goto out_ww; 2144 2145 err_unpin: 2146 i915_vma_unpin_and_release(&vma, 0); 2147 out_ww: 2148 if (ret == -EDEADLK) { 2149 ret = i915_gem_ww_ctx_backoff(&ww); 2150 if (!ret) 2151 goto retry; 2152 } 2153 i915_gem_ww_ctx_fini(&ww); 2154 if (ret) 2155 i915_gem_object_put(bo); 2156 return ret; 2157 } 2158 2159 static u32 *write_cs_mi_lri(u32 *cs, 2160 const struct i915_oa_reg *reg_data, 2161 u32 n_regs) 2162 { 2163 u32 i; 2164 2165 for (i = 0; i < n_regs; i++) { 2166 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2167 u32 n_lri = min_t(u32, 2168 n_regs - i, 2169 MI_LOAD_REGISTER_IMM_MAX_REGS); 2170 2171 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2172 } 2173 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2174 *cs++ = reg_data[i].value; 2175 } 2176 2177 return cs; 2178 } 2179 2180 static int num_lri_dwords(int num_regs) 2181 { 2182 int count = 0; 2183 2184 if (num_regs > 0) { 2185 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2186 count += num_regs * 2; 2187 } 2188 2189 return count; 2190 } 2191 2192 static struct i915_oa_config_bo * 2193 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2194 struct i915_oa_config *oa_config) 2195 { 2196 struct drm_i915_gem_object *obj; 2197 struct i915_oa_config_bo *oa_bo; 2198 struct i915_gem_ww_ctx ww; 2199 size_t config_length = 0; 2200 u32 *cs; 2201 int err; 2202 2203 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2204 if (!oa_bo) 2205 return ERR_PTR(-ENOMEM); 2206 2207 config_length += num_lri_dwords(oa_config->mux_regs_len); 2208 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2209 config_length += num_lri_dwords(oa_config->flex_regs_len); 2210 config_length += 3; /* MI_BATCH_BUFFER_START */ 2211 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2212 2213 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2214 if (IS_ERR(obj)) { 2215 err = PTR_ERR(obj); 2216 goto err_free; 2217 } 2218 2219 i915_gem_ww_ctx_init(&ww, true); 2220 retry: 2221 err = i915_gem_object_lock(obj, &ww); 2222 if (err) 2223 goto out_ww; 2224 2225 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2226 if (IS_ERR(cs)) { 2227 err = PTR_ERR(cs); 2228 goto out_ww; 2229 } 2230 2231 cs = write_cs_mi_lri(cs, 2232 oa_config->mux_regs, 2233 oa_config->mux_regs_len); 2234 cs = write_cs_mi_lri(cs, 2235 oa_config->b_counter_regs, 2236 oa_config->b_counter_regs_len); 2237 cs = write_cs_mi_lri(cs, 2238 oa_config->flex_regs, 2239 oa_config->flex_regs_len); 2240 2241 /* Jump into the active wait. */ 2242 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2243 MI_BATCH_BUFFER_START : 2244 MI_BATCH_BUFFER_START_GEN8); 2245 *cs++ = i915_ggtt_offset(stream->noa_wait); 2246 *cs++ = 0; 2247 2248 i915_gem_object_flush_map(obj); 2249 __i915_gem_object_release_map(obj); 2250 2251 oa_bo->vma = i915_vma_instance(obj, 2252 &stream->engine->gt->ggtt->vm, 2253 NULL); 2254 if (IS_ERR(oa_bo->vma)) { 2255 err = PTR_ERR(oa_bo->vma); 2256 goto out_ww; 2257 } 2258 2259 oa_bo->oa_config = i915_oa_config_get(oa_config); 2260 llist_add(&oa_bo->node, &stream->oa_config_bos); 2261 2262 out_ww: 2263 if (err == -EDEADLK) { 2264 err = i915_gem_ww_ctx_backoff(&ww); 2265 if (!err) 2266 goto retry; 2267 } 2268 i915_gem_ww_ctx_fini(&ww); 2269 2270 if (err) 2271 i915_gem_object_put(obj); 2272 err_free: 2273 if (err) { 2274 kfree(oa_bo); 2275 return ERR_PTR(err); 2276 } 2277 return oa_bo; 2278 } 2279 2280 static struct i915_vma * 2281 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2282 { 2283 struct i915_oa_config_bo *oa_bo; 2284 2285 /* 2286 * Look for the buffer in the already allocated BOs attached 2287 * to the stream. 2288 */ 2289 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2290 if (oa_bo->oa_config == oa_config && 2291 memcmp(oa_bo->oa_config->uuid, 2292 oa_config->uuid, 2293 sizeof(oa_config->uuid)) == 0) 2294 goto out; 2295 } 2296 2297 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2298 if (IS_ERR(oa_bo)) 2299 return ERR_CAST(oa_bo); 2300 2301 out: 2302 return i915_vma_get(oa_bo->vma); 2303 } 2304 2305 static int 2306 emit_oa_config(struct i915_perf_stream *stream, 2307 struct i915_oa_config *oa_config, 2308 struct intel_context *ce, 2309 struct i915_active *active) 2310 { 2311 struct i915_request *rq; 2312 struct i915_vma *vma; 2313 struct i915_gem_ww_ctx ww; 2314 int err; 2315 2316 vma = get_oa_vma(stream, oa_config); 2317 if (IS_ERR(vma)) 2318 return PTR_ERR(vma); 2319 2320 i915_gem_ww_ctx_init(&ww, true); 2321 retry: 2322 err = i915_gem_object_lock(vma->obj, &ww); 2323 if (err) 2324 goto err; 2325 2326 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2327 if (err) 2328 goto err; 2329 2330 intel_engine_pm_get(ce->engine); 2331 rq = i915_request_create(ce); 2332 intel_engine_pm_put(ce->engine); 2333 if (IS_ERR(rq)) { 2334 err = PTR_ERR(rq); 2335 goto err_vma_unpin; 2336 } 2337 2338 if (!IS_ERR_OR_NULL(active)) { 2339 /* After all individual context modifications */ 2340 err = i915_request_await_active(rq, active, 2341 I915_ACTIVE_AWAIT_ACTIVE); 2342 if (err) 2343 goto err_add_request; 2344 2345 err = i915_active_add_request(active, rq); 2346 if (err) 2347 goto err_add_request; 2348 } 2349 2350 err = i915_vma_move_to_active(vma, rq, 0); 2351 if (err) 2352 goto err_add_request; 2353 2354 err = rq->engine->emit_bb_start(rq, 2355 i915_vma_offset(vma), 0, 2356 I915_DISPATCH_SECURE); 2357 if (err) 2358 goto err_add_request; 2359 2360 err_add_request: 2361 i915_request_add(rq); 2362 err_vma_unpin: 2363 i915_vma_unpin(vma); 2364 err: 2365 if (err == -EDEADLK) { 2366 err = i915_gem_ww_ctx_backoff(&ww); 2367 if (!err) 2368 goto retry; 2369 } 2370 2371 i915_gem_ww_ctx_fini(&ww); 2372 i915_vma_put(vma); 2373 return err; 2374 } 2375 2376 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2377 { 2378 return stream->pinned_ctx ?: stream->engine->kernel_context; 2379 } 2380 2381 static int 2382 hsw_enable_metric_set(struct i915_perf_stream *stream, 2383 struct i915_active *active) 2384 { 2385 struct intel_uncore *uncore = stream->uncore; 2386 2387 /* 2388 * PRM: 2389 * 2390 * OA unit is using “crclk” for its functionality. When trunk 2391 * level clock gating takes place, OA clock would be gated, 2392 * unable to count the events from non-render clock domain. 2393 * Render clock gating must be disabled when OA is enabled to 2394 * count the events from non-render domain. Unit level clock 2395 * gating for RCS should also be disabled. 2396 */ 2397 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2398 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2399 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2400 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2401 2402 return emit_oa_config(stream, 2403 stream->oa_config, oa_context(stream), 2404 active); 2405 } 2406 2407 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2408 { 2409 struct intel_uncore *uncore = stream->uncore; 2410 2411 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2412 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2413 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2414 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2415 2416 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2417 } 2418 2419 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2420 i915_reg_t reg) 2421 { 2422 u32 mmio = i915_mmio_reg_offset(reg); 2423 int i; 2424 2425 /* 2426 * This arbitrary default will select the 'EU FPU0 Pipeline 2427 * Active' event. In the future it's anticipated that there 2428 * will be an explicit 'No Event' we can select, but not yet... 2429 */ 2430 if (!oa_config) 2431 return 0; 2432 2433 for (i = 0; i < oa_config->flex_regs_len; i++) { 2434 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2435 return oa_config->flex_regs[i].value; 2436 } 2437 2438 return 0; 2439 } 2440 /* 2441 * NB: It must always remain pointer safe to run this even if the OA unit 2442 * has been disabled. 2443 * 2444 * It's fine to put out-of-date values into these per-context registers 2445 * in the case that the OA unit has been disabled. 2446 */ 2447 static void 2448 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2449 const struct i915_perf_stream *stream) 2450 { 2451 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2452 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2453 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2454 static const i915_reg_t flex_regs[] = { 2455 EU_PERF_CNTL0, 2456 EU_PERF_CNTL1, 2457 EU_PERF_CNTL2, 2458 EU_PERF_CNTL3, 2459 EU_PERF_CNTL4, 2460 EU_PERF_CNTL5, 2461 EU_PERF_CNTL6, 2462 }; 2463 u32 *reg_state = ce->lrc_reg_state; 2464 int i; 2465 2466 reg_state[ctx_oactxctrl + 1] = 2467 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2468 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2469 GEN8_OA_COUNTER_RESUME; 2470 2471 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2472 reg_state[ctx_flexeu0 + i * 2 + 1] = 2473 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2474 } 2475 2476 struct flex { 2477 i915_reg_t reg; 2478 u32 offset; 2479 u32 value; 2480 }; 2481 2482 static int 2483 gen8_store_flex(struct i915_request *rq, 2484 struct intel_context *ce, 2485 const struct flex *flex, unsigned int count) 2486 { 2487 u32 offset; 2488 u32 *cs; 2489 2490 cs = intel_ring_begin(rq, 4 * count); 2491 if (IS_ERR(cs)) 2492 return PTR_ERR(cs); 2493 2494 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2495 do { 2496 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2497 *cs++ = offset + flex->offset * sizeof(u32); 2498 *cs++ = 0; 2499 *cs++ = flex->value; 2500 } while (flex++, --count); 2501 2502 intel_ring_advance(rq, cs); 2503 2504 return 0; 2505 } 2506 2507 static int 2508 gen8_load_flex(struct i915_request *rq, 2509 struct intel_context *ce, 2510 const struct flex *flex, unsigned int count) 2511 { 2512 u32 *cs; 2513 2514 GEM_BUG_ON(!count || count > 63); 2515 2516 cs = intel_ring_begin(rq, 2 * count + 2); 2517 if (IS_ERR(cs)) 2518 return PTR_ERR(cs); 2519 2520 *cs++ = MI_LOAD_REGISTER_IMM(count); 2521 do { 2522 *cs++ = i915_mmio_reg_offset(flex->reg); 2523 *cs++ = flex->value; 2524 } while (flex++, --count); 2525 *cs++ = MI_NOOP; 2526 2527 intel_ring_advance(rq, cs); 2528 2529 return 0; 2530 } 2531 2532 static int gen8_modify_context(struct intel_context *ce, 2533 const struct flex *flex, unsigned int count) 2534 { 2535 struct i915_request *rq; 2536 int err; 2537 2538 rq = intel_engine_create_kernel_request(ce->engine); 2539 if (IS_ERR(rq)) 2540 return PTR_ERR(rq); 2541 2542 /* Serialise with the remote context */ 2543 err = intel_context_prepare_remote_request(ce, rq); 2544 if (err == 0) 2545 err = gen8_store_flex(rq, ce, flex, count); 2546 2547 i915_request_add(rq); 2548 return err; 2549 } 2550 2551 static int 2552 gen8_modify_self(struct intel_context *ce, 2553 const struct flex *flex, unsigned int count, 2554 struct i915_active *active) 2555 { 2556 struct i915_request *rq; 2557 int err; 2558 2559 intel_engine_pm_get(ce->engine); 2560 rq = i915_request_create(ce); 2561 intel_engine_pm_put(ce->engine); 2562 if (IS_ERR(rq)) 2563 return PTR_ERR(rq); 2564 2565 if (!IS_ERR_OR_NULL(active)) { 2566 err = i915_active_add_request(active, rq); 2567 if (err) 2568 goto err_add_request; 2569 } 2570 2571 err = gen8_load_flex(rq, ce, flex, count); 2572 if (err) 2573 goto err_add_request; 2574 2575 err_add_request: 2576 i915_request_add(rq); 2577 return err; 2578 } 2579 2580 static int gen8_configure_context(struct i915_perf_stream *stream, 2581 struct i915_gem_context *ctx, 2582 struct flex *flex, unsigned int count) 2583 { 2584 struct i915_gem_engines_iter it; 2585 struct intel_context *ce; 2586 int err = 0; 2587 2588 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2589 GEM_BUG_ON(ce == ce->engine->kernel_context); 2590 2591 if (ce->engine->class != RENDER_CLASS) 2592 continue; 2593 2594 /* Otherwise OA settings will be set upon first use */ 2595 if (!intel_context_pin_if_active(ce)) 2596 continue; 2597 2598 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2599 err = gen8_modify_context(ce, flex, count); 2600 2601 intel_context_unpin(ce); 2602 if (err) 2603 break; 2604 } 2605 i915_gem_context_unlock_engines(ctx); 2606 2607 return err; 2608 } 2609 2610 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2611 struct i915_active *active) 2612 { 2613 int err; 2614 struct intel_context *ce = stream->pinned_ctx; 2615 u32 format = stream->oa_buffer.format->format; 2616 u32 offset = stream->perf->ctx_oactxctrl_offset; 2617 struct flex regs_context[] = { 2618 { 2619 GEN8_OACTXCONTROL, 2620 offset + 1, 2621 active ? GEN8_OA_COUNTER_RESUME : 0, 2622 }, 2623 }; 2624 /* Offsets in regs_lri are not used since this configuration is only 2625 * applied using LRI. Initialize the correct offsets for posterity. 2626 */ 2627 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2628 struct flex regs_lri[] = { 2629 { 2630 GEN12_OAR_OACONTROL, 2631 GEN12_OAR_OACONTROL_OFFSET + 1, 2632 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2633 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2634 }, 2635 { 2636 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2637 CTX_CONTEXT_CONTROL, 2638 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2639 active ? 2640 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2641 0) 2642 }, 2643 }; 2644 2645 /* Modify the context image of pinned context with regs_context */ 2646 err = intel_context_lock_pinned(ce); 2647 if (err) 2648 return err; 2649 2650 err = gen8_modify_context(ce, regs_context, 2651 ARRAY_SIZE(regs_context)); 2652 intel_context_unlock_pinned(ce); 2653 if (err) 2654 return err; 2655 2656 /* Apply regs_lri using LRI with pinned context */ 2657 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2658 } 2659 2660 /* 2661 * Manages updating the per-context aspects of the OA stream 2662 * configuration across all contexts. 2663 * 2664 * The awkward consideration here is that OACTXCONTROL controls the 2665 * exponent for periodic sampling which is primarily used for system 2666 * wide profiling where we'd like a consistent sampling period even in 2667 * the face of context switches. 2668 * 2669 * Our approach of updating the register state context (as opposed to 2670 * say using a workaround batch buffer) ensures that the hardware 2671 * won't automatically reload an out-of-date timer exponent even 2672 * transiently before a WA BB could be parsed. 2673 * 2674 * This function needs to: 2675 * - Ensure the currently running context's per-context OA state is 2676 * updated 2677 * - Ensure that all existing contexts will have the correct per-context 2678 * OA state if they are scheduled for use. 2679 * - Ensure any new contexts will be initialized with the correct 2680 * per-context OA state. 2681 * 2682 * Note: it's only the RCS/Render context that has any OA state. 2683 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2684 */ 2685 static int 2686 oa_configure_all_contexts(struct i915_perf_stream *stream, 2687 struct flex *regs, 2688 size_t num_regs, 2689 struct i915_active *active) 2690 { 2691 struct drm_i915_private *i915 = stream->perf->i915; 2692 struct intel_engine_cs *engine; 2693 struct intel_gt *gt = stream->engine->gt; 2694 struct i915_gem_context *ctx, *cn; 2695 int err; 2696 2697 lockdep_assert_held(>->perf.lock); 2698 2699 /* 2700 * The OA register config is setup through the context image. This image 2701 * might be written to by the GPU on context switch (in particular on 2702 * lite-restore). This means we can't safely update a context's image, 2703 * if this context is scheduled/submitted to run on the GPU. 2704 * 2705 * We could emit the OA register config through the batch buffer but 2706 * this might leave small interval of time where the OA unit is 2707 * configured at an invalid sampling period. 2708 * 2709 * Note that since we emit all requests from a single ring, there 2710 * is still an implicit global barrier here that may cause a high 2711 * priority context to wait for an otherwise independent low priority 2712 * context. Contexts idle at the time of reconfiguration are not 2713 * trapped behind the barrier. 2714 */ 2715 spin_lock(&i915->gem.contexts.lock); 2716 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2717 if (!kref_get_unless_zero(&ctx->ref)) 2718 continue; 2719 2720 spin_unlock(&i915->gem.contexts.lock); 2721 2722 err = gen8_configure_context(stream, ctx, regs, num_regs); 2723 if (err) { 2724 i915_gem_context_put(ctx); 2725 return err; 2726 } 2727 2728 spin_lock(&i915->gem.contexts.lock); 2729 list_safe_reset_next(ctx, cn, link); 2730 i915_gem_context_put(ctx); 2731 } 2732 spin_unlock(&i915->gem.contexts.lock); 2733 2734 /* 2735 * After updating all other contexts, we need to modify ourselves. 2736 * If we don't modify the kernel_context, we do not get events while 2737 * idle. 2738 */ 2739 for_each_uabi_engine(engine, i915) { 2740 struct intel_context *ce = engine->kernel_context; 2741 2742 if (engine->class != RENDER_CLASS) 2743 continue; 2744 2745 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2746 2747 err = gen8_modify_self(ce, regs, num_regs, active); 2748 if (err) 2749 return err; 2750 } 2751 2752 return 0; 2753 } 2754 2755 static int 2756 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2757 const struct i915_oa_config *oa_config, 2758 struct i915_active *active) 2759 { 2760 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2761 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2762 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2763 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2764 struct flex regs[] = { 2765 { 2766 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2767 CTX_R_PWR_CLK_STATE, 2768 }, 2769 { 2770 GEN8_OACTXCONTROL, 2771 ctx_oactxctrl + 1, 2772 }, 2773 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2774 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2775 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2776 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2777 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2778 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2779 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2780 }; 2781 #undef ctx_flexeuN 2782 int i; 2783 2784 regs[1].value = 2785 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2786 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2787 GEN8_OA_COUNTER_RESUME; 2788 2789 for (i = 2; i < ARRAY_SIZE(regs); i++) 2790 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2791 2792 return oa_configure_all_contexts(stream, 2793 regs, ARRAY_SIZE(regs), 2794 active); 2795 } 2796 2797 static int 2798 gen8_enable_metric_set(struct i915_perf_stream *stream, 2799 struct i915_active *active) 2800 { 2801 struct intel_uncore *uncore = stream->uncore; 2802 struct i915_oa_config *oa_config = stream->oa_config; 2803 int ret; 2804 2805 /* 2806 * We disable slice/unslice clock ratio change reports on SKL since 2807 * they are too noisy. The HW generates a lot of redundant reports 2808 * where the ratio hasn't really changed causing a lot of redundant 2809 * work to processes and increasing the chances we'll hit buffer 2810 * overruns. 2811 * 2812 * Although we don't currently use the 'disable overrun' OABUFFER 2813 * feature it's worth noting that clock ratio reports have to be 2814 * disabled before considering to use that feature since the HW doesn't 2815 * correctly block these reports. 2816 * 2817 * Currently none of the high-level metrics we have depend on knowing 2818 * this ratio to normalize. 2819 * 2820 * Note: This register is not power context saved and restored, but 2821 * that's OK considering that we disable RC6 while the OA unit is 2822 * enabled. 2823 * 2824 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2825 * be read back from automatically triggered reports, as part of the 2826 * RPT_ID field. 2827 */ 2828 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2829 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2830 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2831 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2832 } 2833 2834 /* 2835 * Update all contexts prior writing the mux configurations as we need 2836 * to make sure all slices/subslices are ON before writing to NOA 2837 * registers. 2838 */ 2839 ret = lrc_configure_all_contexts(stream, oa_config, active); 2840 if (ret) 2841 return ret; 2842 2843 return emit_oa_config(stream, 2844 stream->oa_config, oa_context(stream), 2845 active); 2846 } 2847 2848 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2849 { 2850 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2851 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2852 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2853 } 2854 2855 static int 2856 gen12_enable_metric_set(struct i915_perf_stream *stream, 2857 struct i915_active *active) 2858 { 2859 struct drm_i915_private *i915 = stream->perf->i915; 2860 struct intel_uncore *uncore = stream->uncore; 2861 bool periodic = stream->periodic; 2862 u32 period_exponent = stream->period_exponent; 2863 u32 sqcnt1; 2864 int ret; 2865 2866 /* 2867 * Wa_1508761755 2868 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2869 * Disable thread stall DOP gating and EU DOP gating. 2870 */ 2871 if (IS_DG2(i915)) { 2872 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2873 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2874 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2875 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2876 } 2877 2878 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2879 /* Disable clk ratio reports, like previous Gens. */ 2880 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2881 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2882 /* 2883 * If the user didn't require OA reports, instruct 2884 * the hardware not to emit ctx switch reports. 2885 */ 2886 oag_report_ctx_switches(stream)); 2887 2888 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2889 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2890 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2891 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2892 : 0); 2893 2894 /* 2895 * Initialize Super Queue Internal Cnt Register 2896 * Set PMON Enable in order to collect valid metrics. 2897 * Enable bytes per clock reporting in OA. 2898 */ 2899 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2900 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2901 2902 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2903 2904 /* 2905 * For Gen12, performance counters are context 2906 * saved/restored. Only enable it for the context that 2907 * requested this. 2908 */ 2909 if (stream->ctx) { 2910 ret = gen12_configure_oar_context(stream, active); 2911 if (ret) 2912 return ret; 2913 } 2914 2915 return emit_oa_config(stream, 2916 stream->oa_config, oa_context(stream), 2917 active); 2918 } 2919 2920 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2921 { 2922 struct intel_uncore *uncore = stream->uncore; 2923 2924 /* Reset all contexts' slices/subslices configurations. */ 2925 lrc_configure_all_contexts(stream, NULL, NULL); 2926 2927 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2928 } 2929 2930 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2931 { 2932 struct intel_uncore *uncore = stream->uncore; 2933 2934 /* Reset all contexts' slices/subslices configurations. */ 2935 lrc_configure_all_contexts(stream, NULL, NULL); 2936 2937 /* Make sure we disable noa to save power. */ 2938 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2939 } 2940 2941 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2942 { 2943 struct intel_uncore *uncore = stream->uncore; 2944 struct drm_i915_private *i915 = stream->perf->i915; 2945 u32 sqcnt1; 2946 2947 /* 2948 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating. 2949 */ 2950 if (IS_DG2(i915)) { 2951 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2952 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2953 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2954 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2955 } 2956 2957 /* disable the context save/restore or OAR counters */ 2958 if (stream->ctx) 2959 gen12_configure_oar_context(stream, NULL); 2960 2961 /* Make sure we disable noa to save power. */ 2962 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2963 2964 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2965 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2966 2967 /* Reset PMON Enable to save power. */ 2968 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2969 } 2970 2971 static void gen7_oa_enable(struct i915_perf_stream *stream) 2972 { 2973 struct intel_uncore *uncore = stream->uncore; 2974 struct i915_gem_context *ctx = stream->ctx; 2975 u32 ctx_id = stream->specific_ctx_id; 2976 bool periodic = stream->periodic; 2977 u32 period_exponent = stream->period_exponent; 2978 u32 report_format = stream->oa_buffer.format->format; 2979 2980 /* 2981 * Reset buf pointers so we don't forward reports from before now. 2982 * 2983 * Think carefully if considering trying to avoid this, since it 2984 * also ensures status flags and the buffer itself are cleared 2985 * in error paths, and we have checks for invalid reports based 2986 * on the assumption that certain fields are written to zeroed 2987 * memory which this helps maintains. 2988 */ 2989 gen7_init_oa_buffer(stream); 2990 2991 intel_uncore_write(uncore, GEN7_OACONTROL, 2992 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2993 (period_exponent << 2994 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2995 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2996 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2997 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2998 GEN7_OACONTROL_ENABLE); 2999 } 3000 3001 static void gen8_oa_enable(struct i915_perf_stream *stream) 3002 { 3003 struct intel_uncore *uncore = stream->uncore; 3004 u32 report_format = stream->oa_buffer.format->format; 3005 3006 /* 3007 * Reset buf pointers so we don't forward reports from before now. 3008 * 3009 * Think carefully if considering trying to avoid this, since it 3010 * also ensures status flags and the buffer itself are cleared 3011 * in error paths, and we have checks for invalid reports based 3012 * on the assumption that certain fields are written to zeroed 3013 * memory which this helps maintains. 3014 */ 3015 gen8_init_oa_buffer(stream); 3016 3017 /* 3018 * Note: we don't rely on the hardware to perform single context 3019 * filtering and instead filter on the cpu based on the context-id 3020 * field of reports 3021 */ 3022 intel_uncore_write(uncore, GEN8_OACONTROL, 3023 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3024 GEN8_OA_COUNTER_ENABLE); 3025 } 3026 3027 static void gen12_oa_enable(struct i915_perf_stream *stream) 3028 { 3029 const struct i915_perf_regs *regs; 3030 u32 val; 3031 3032 /* 3033 * If we don't want OA reports from the OA buffer, then we don't even 3034 * need to program the OAG unit. 3035 */ 3036 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3037 return; 3038 3039 gen12_init_oa_buffer(stream); 3040 3041 regs = __oa_regs(stream); 3042 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3043 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3044 3045 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3046 } 3047 3048 /** 3049 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3050 * @stream: An i915 perf stream opened for OA metrics 3051 * 3052 * [Re]enables hardware periodic sampling according to the period configured 3053 * when opening the stream. This also starts a hrtimer that will periodically 3054 * check for data in the circular OA buffer for notifying userspace (e.g. 3055 * during a read() or poll()). 3056 */ 3057 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3058 { 3059 stream->pollin = false; 3060 3061 stream->perf->ops.oa_enable(stream); 3062 3063 if (stream->sample_flags & SAMPLE_OA_REPORT) 3064 hrtimer_start(&stream->poll_check_timer, 3065 ns_to_ktime(stream->poll_oa_period), 3066 HRTIMER_MODE_REL_PINNED); 3067 } 3068 3069 static void gen7_oa_disable(struct i915_perf_stream *stream) 3070 { 3071 struct intel_uncore *uncore = stream->uncore; 3072 3073 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3074 if (intel_wait_for_register(uncore, 3075 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3076 50)) 3077 drm_err(&stream->perf->i915->drm, 3078 "wait for OA to be disabled timed out\n"); 3079 } 3080 3081 static void gen8_oa_disable(struct i915_perf_stream *stream) 3082 { 3083 struct intel_uncore *uncore = stream->uncore; 3084 3085 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3086 if (intel_wait_for_register(uncore, 3087 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3088 50)) 3089 drm_err(&stream->perf->i915->drm, 3090 "wait for OA to be disabled timed out\n"); 3091 } 3092 3093 static void gen12_oa_disable(struct i915_perf_stream *stream) 3094 { 3095 struct intel_uncore *uncore = stream->uncore; 3096 3097 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3098 if (intel_wait_for_register(uncore, 3099 __oa_regs(stream)->oa_ctrl, 3100 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3101 50)) 3102 drm_err(&stream->perf->i915->drm, 3103 "wait for OA to be disabled timed out\n"); 3104 3105 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3106 if (intel_wait_for_register(uncore, 3107 GEN12_OA_TLB_INV_CR, 3108 1, 0, 3109 50)) 3110 drm_err(&stream->perf->i915->drm, 3111 "wait for OA tlb invalidate timed out\n"); 3112 } 3113 3114 /** 3115 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3116 * @stream: An i915 perf stream opened for OA metrics 3117 * 3118 * Stops the OA unit from periodically writing counter reports into the 3119 * circular OA buffer. This also stops the hrtimer that periodically checks for 3120 * data in the circular OA buffer, for notifying userspace. 3121 */ 3122 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3123 { 3124 stream->perf->ops.oa_disable(stream); 3125 3126 if (stream->sample_flags & SAMPLE_OA_REPORT) 3127 hrtimer_cancel(&stream->poll_check_timer); 3128 } 3129 3130 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3131 .destroy = i915_oa_stream_destroy, 3132 .enable = i915_oa_stream_enable, 3133 .disable = i915_oa_stream_disable, 3134 .wait_unlocked = i915_oa_wait_unlocked, 3135 .poll_wait = i915_oa_poll_wait, 3136 .read = i915_oa_read, 3137 }; 3138 3139 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3140 { 3141 struct i915_active *active; 3142 int err; 3143 3144 active = i915_active_create(); 3145 if (!active) 3146 return -ENOMEM; 3147 3148 err = stream->perf->ops.enable_metric_set(stream, active); 3149 if (err == 0) 3150 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3151 3152 i915_active_put(active); 3153 return err; 3154 } 3155 3156 static void 3157 get_default_sseu_config(struct intel_sseu *out_sseu, 3158 struct intel_engine_cs *engine) 3159 { 3160 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3161 3162 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3163 3164 if (GRAPHICS_VER(engine->i915) == 11) { 3165 /* 3166 * We only need subslice count so it doesn't matter which ones 3167 * we select - just turn off low bits in the amount of half of 3168 * all available subslices per slice. 3169 */ 3170 out_sseu->subslice_mask = 3171 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3172 out_sseu->slice_mask = 0x1; 3173 } 3174 } 3175 3176 static int 3177 get_sseu_config(struct intel_sseu *out_sseu, 3178 struct intel_engine_cs *engine, 3179 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3180 { 3181 if (drm_sseu->engine.engine_class != engine->uabi_class || 3182 drm_sseu->engine.engine_instance != engine->uabi_instance) 3183 return -EINVAL; 3184 3185 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3186 } 3187 3188 /* 3189 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3190 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3191 * cases, return the adjusted CS timestamp frequency to the user. 3192 */ 3193 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3194 { 3195 struct intel_gt *gt = to_gt(i915); 3196 3197 /* Wa_18013179988 */ 3198 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 3199 intel_wakeref_t wakeref; 3200 u32 reg, shift; 3201 3202 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3203 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3204 3205 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3206 reg); 3207 3208 return to_gt(i915)->clock_frequency << (3 - shift); 3209 } 3210 3211 return to_gt(i915)->clock_frequency; 3212 } 3213 3214 /** 3215 * i915_oa_stream_init - validate combined props for OA stream and init 3216 * @stream: An i915 perf stream 3217 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3218 * @props: The property state that configures stream (individually validated) 3219 * 3220 * While read_properties_unlocked() validates properties in isolation it 3221 * doesn't ensure that the combination necessarily makes sense. 3222 * 3223 * At this point it has been determined that userspace wants a stream of 3224 * OA metrics, but still we need to further validate the combined 3225 * properties are OK. 3226 * 3227 * If the configuration makes sense then we can allocate memory for 3228 * a circular OA buffer and apply the requested metric set configuration. 3229 * 3230 * Returns: zero on success or a negative error code. 3231 */ 3232 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3233 struct drm_i915_perf_open_param *param, 3234 struct perf_open_properties *props) 3235 { 3236 struct drm_i915_private *i915 = stream->perf->i915; 3237 struct i915_perf *perf = stream->perf; 3238 struct i915_perf_group *g; 3239 int ret; 3240 3241 if (!props->engine) { 3242 drm_dbg(&stream->perf->i915->drm, 3243 "OA engine not specified\n"); 3244 return -EINVAL; 3245 } 3246 g = props->engine->oa_group; 3247 3248 /* 3249 * If the sysfs metrics/ directory wasn't registered for some 3250 * reason then don't let userspace try their luck with config 3251 * IDs 3252 */ 3253 if (!perf->metrics_kobj) { 3254 drm_dbg(&stream->perf->i915->drm, 3255 "OA metrics weren't advertised via sysfs\n"); 3256 return -EINVAL; 3257 } 3258 3259 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3260 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3261 drm_dbg(&stream->perf->i915->drm, 3262 "Only OA report sampling supported\n"); 3263 return -EINVAL; 3264 } 3265 3266 if (!perf->ops.enable_metric_set) { 3267 drm_dbg(&stream->perf->i915->drm, 3268 "OA unit not supported\n"); 3269 return -ENODEV; 3270 } 3271 3272 /* 3273 * To avoid the complexity of having to accurately filter 3274 * counter reports and marshal to the appropriate client 3275 * we currently only allow exclusive access 3276 */ 3277 if (g->exclusive_stream) { 3278 drm_dbg(&stream->perf->i915->drm, 3279 "OA unit already in use\n"); 3280 return -EBUSY; 3281 } 3282 3283 if (!props->oa_format) { 3284 drm_dbg(&stream->perf->i915->drm, 3285 "OA report format not specified\n"); 3286 return -EINVAL; 3287 } 3288 3289 stream->engine = props->engine; 3290 stream->uncore = stream->engine->gt->uncore; 3291 3292 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3293 3294 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3295 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3296 return -EINVAL; 3297 3298 stream->sample_flags = props->sample_flags; 3299 stream->sample_size += stream->oa_buffer.format->size; 3300 3301 stream->hold_preemption = props->hold_preemption; 3302 3303 stream->periodic = props->oa_periodic; 3304 if (stream->periodic) 3305 stream->period_exponent = props->oa_period_exponent; 3306 3307 if (stream->ctx) { 3308 ret = oa_get_render_ctx_id(stream); 3309 if (ret) { 3310 drm_dbg(&stream->perf->i915->drm, 3311 "Invalid context id to filter with\n"); 3312 return ret; 3313 } 3314 } 3315 3316 ret = alloc_noa_wait(stream); 3317 if (ret) { 3318 drm_dbg(&stream->perf->i915->drm, 3319 "Unable to allocate NOA wait batch buffer\n"); 3320 goto err_noa_wait_alloc; 3321 } 3322 3323 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3324 if (!stream->oa_config) { 3325 drm_dbg(&stream->perf->i915->drm, 3326 "Invalid OA config id=%i\n", props->metrics_set); 3327 ret = -EINVAL; 3328 goto err_config; 3329 } 3330 3331 /* PRM - observability performance counters: 3332 * 3333 * OACONTROL, performance counter enable, note: 3334 * 3335 * "When this bit is set, in order to have coherent counts, 3336 * RC6 power state and trunk clock gating must be disabled. 3337 * This can be achieved by programming MMIO registers as 3338 * 0xA094=0 and 0xA090[31]=1" 3339 * 3340 * In our case we are expecting that taking pm + FORCEWAKE 3341 * references will effectively disable RC6. 3342 */ 3343 intel_engine_pm_get(stream->engine); 3344 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3345 3346 ret = alloc_oa_buffer(stream); 3347 if (ret) 3348 goto err_oa_buf_alloc; 3349 3350 stream->ops = &i915_oa_stream_ops; 3351 3352 stream->engine->gt->perf.sseu = props->sseu; 3353 WRITE_ONCE(g->exclusive_stream, stream); 3354 3355 ret = i915_perf_stream_enable_sync(stream); 3356 if (ret) { 3357 drm_dbg(&stream->perf->i915->drm, 3358 "Unable to enable metric set\n"); 3359 goto err_enable; 3360 } 3361 3362 drm_dbg(&stream->perf->i915->drm, 3363 "opening stream oa config uuid=%s\n", 3364 stream->oa_config->uuid); 3365 3366 hrtimer_setup(&stream->poll_check_timer, oa_poll_check_timer_cb, CLOCK_MONOTONIC, 3367 HRTIMER_MODE_REL); 3368 init_waitqueue_head(&stream->poll_wq); 3369 spin_lock_init(&stream->oa_buffer.ptr_lock); 3370 mutex_init(&stream->lock); 3371 3372 return 0; 3373 3374 err_enable: 3375 WRITE_ONCE(g->exclusive_stream, NULL); 3376 perf->ops.disable_metric_set(stream); 3377 3378 free_oa_buffer(stream); 3379 3380 err_oa_buf_alloc: 3381 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3382 intel_engine_pm_put(stream->engine); 3383 3384 free_oa_configs(stream); 3385 3386 err_config: 3387 free_noa_wait(stream); 3388 3389 err_noa_wait_alloc: 3390 if (stream->ctx) 3391 oa_put_render_ctx_id(stream); 3392 3393 return ret; 3394 } 3395 3396 void i915_oa_init_reg_state(const struct intel_context *ce, 3397 const struct intel_engine_cs *engine) 3398 { 3399 struct i915_perf_stream *stream; 3400 3401 if (engine->class != RENDER_CLASS) 3402 return; 3403 3404 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3405 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3406 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3407 gen8_update_reg_state_unlocked(ce, stream); 3408 } 3409 3410 /** 3411 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3412 * @file: An i915 perf stream file 3413 * @buf: destination buffer given by userspace 3414 * @count: the number of bytes userspace wants to read 3415 * @ppos: (inout) file seek position (unused) 3416 * 3417 * The entry point for handling a read() on a stream file descriptor from 3418 * userspace. Most of the work is left to the i915_perf_read_locked() and 3419 * &i915_perf_stream_ops->read but to save having stream implementations (of 3420 * which we might have multiple later) we handle blocking read here. 3421 * 3422 * We can also consistently treat trying to read from a disabled stream 3423 * as an IO error so implementations can assume the stream is enabled 3424 * while reading. 3425 * 3426 * Returns: The number of bytes copied or a negative error code on failure. 3427 */ 3428 static ssize_t i915_perf_read(struct file *file, 3429 char __user *buf, 3430 size_t count, 3431 loff_t *ppos) 3432 { 3433 struct i915_perf_stream *stream = file->private_data; 3434 size_t offset = 0; 3435 int ret; 3436 3437 /* To ensure it's handled consistently we simply treat all reads of a 3438 * disabled stream as an error. In particular it might otherwise lead 3439 * to a deadlock for blocking file descriptors... 3440 */ 3441 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3442 return -EIO; 3443 3444 if (!(file->f_flags & O_NONBLOCK)) { 3445 /* There's the small chance of false positives from 3446 * stream->ops->wait_unlocked. 3447 * 3448 * E.g. with single context filtering since we only wait until 3449 * oabuffer has >= 1 report we don't immediately know whether 3450 * any reports really belong to the current context 3451 */ 3452 do { 3453 ret = stream->ops->wait_unlocked(stream); 3454 if (ret) 3455 return ret; 3456 3457 mutex_lock(&stream->lock); 3458 ret = stream->ops->read(stream, buf, count, &offset); 3459 mutex_unlock(&stream->lock); 3460 } while (!offset && !ret); 3461 } else { 3462 mutex_lock(&stream->lock); 3463 ret = stream->ops->read(stream, buf, count, &offset); 3464 mutex_unlock(&stream->lock); 3465 } 3466 3467 /* We allow the poll checking to sometimes report false positive EPOLLIN 3468 * events where we might actually report EAGAIN on read() if there's 3469 * not really any data available. In this situation though we don't 3470 * want to enter a busy loop between poll() reporting a EPOLLIN event 3471 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3472 * effectively ensures we back off until the next hrtimer callback 3473 * before reporting another EPOLLIN event. 3474 * The exception to this is if ops->read() returned -ENOSPC which means 3475 * that more OA data is available than could fit in the user provided 3476 * buffer. In this case we want the next poll() call to not block. 3477 */ 3478 if (ret != -ENOSPC) 3479 stream->pollin = false; 3480 3481 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3482 return offset ?: (ret ?: -EAGAIN); 3483 } 3484 3485 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3486 { 3487 struct i915_perf_stream *stream = 3488 container_of(hrtimer, typeof(*stream), poll_check_timer); 3489 3490 if (oa_buffer_check_unlocked(stream)) { 3491 stream->pollin = true; 3492 wake_up(&stream->poll_wq); 3493 } 3494 3495 hrtimer_forward_now(hrtimer, 3496 ns_to_ktime(stream->poll_oa_period)); 3497 3498 return HRTIMER_RESTART; 3499 } 3500 3501 /** 3502 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3503 * @stream: An i915 perf stream 3504 * @file: An i915 perf stream file 3505 * @wait: poll() state table 3506 * 3507 * For handling userspace polling on an i915 perf stream, this calls through to 3508 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3509 * will be woken for new stream data. 3510 * 3511 * Returns: any poll events that are ready without sleeping 3512 */ 3513 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3514 struct file *file, 3515 poll_table *wait) 3516 { 3517 __poll_t events = 0; 3518 3519 stream->ops->poll_wait(stream, file, wait); 3520 3521 /* Note: we don't explicitly check whether there's something to read 3522 * here since this path may be very hot depending on what else 3523 * userspace is polling, or on the timeout in use. We rely solely on 3524 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3525 * samples to read. 3526 */ 3527 if (stream->pollin) 3528 events |= EPOLLIN; 3529 3530 return events; 3531 } 3532 3533 /** 3534 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3535 * @file: An i915 perf stream file 3536 * @wait: poll() state table 3537 * 3538 * For handling userspace polling on an i915 perf stream, this ensures 3539 * poll_wait() gets called with a wait queue that will be woken for new stream 3540 * data. 3541 * 3542 * Note: Implementation deferred to i915_perf_poll_locked() 3543 * 3544 * Returns: any poll events that are ready without sleeping 3545 */ 3546 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3547 { 3548 struct i915_perf_stream *stream = file->private_data; 3549 __poll_t ret; 3550 3551 mutex_lock(&stream->lock); 3552 ret = i915_perf_poll_locked(stream, file, wait); 3553 mutex_unlock(&stream->lock); 3554 3555 return ret; 3556 } 3557 3558 /** 3559 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3560 * @stream: A disabled i915 perf stream 3561 * 3562 * [Re]enables the associated capture of data for this stream. 3563 * 3564 * If a stream was previously enabled then there's currently no intention 3565 * to provide userspace any guarantee about the preservation of previously 3566 * buffered data. 3567 */ 3568 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3569 { 3570 if (stream->enabled) 3571 return; 3572 3573 /* Allow stream->ops->enable() to refer to this */ 3574 stream->enabled = true; 3575 3576 if (stream->ops->enable) 3577 stream->ops->enable(stream); 3578 3579 if (stream->hold_preemption) 3580 intel_context_set_nopreempt(stream->pinned_ctx); 3581 } 3582 3583 /** 3584 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3585 * @stream: An enabled i915 perf stream 3586 * 3587 * Disables the associated capture of data for this stream. 3588 * 3589 * The intention is that disabling an re-enabling a stream will ideally be 3590 * cheaper than destroying and re-opening a stream with the same configuration, 3591 * though there are no formal guarantees about what state or buffered data 3592 * must be retained between disabling and re-enabling a stream. 3593 * 3594 * Note: while a stream is disabled it's considered an error for userspace 3595 * to attempt to read from the stream (-EIO). 3596 */ 3597 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3598 { 3599 if (!stream->enabled) 3600 return; 3601 3602 /* Allow stream->ops->disable() to refer to this */ 3603 stream->enabled = false; 3604 3605 if (stream->hold_preemption) 3606 intel_context_clear_nopreempt(stream->pinned_ctx); 3607 3608 if (stream->ops->disable) 3609 stream->ops->disable(stream); 3610 } 3611 3612 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3613 unsigned long metrics_set) 3614 { 3615 struct i915_oa_config *config; 3616 long ret = stream->oa_config->id; 3617 3618 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3619 if (!config) 3620 return -EINVAL; 3621 3622 if (config != stream->oa_config) { 3623 int err; 3624 3625 /* 3626 * If OA is bound to a specific context, emit the 3627 * reconfiguration inline from that context. The update 3628 * will then be ordered with respect to submission on that 3629 * context. 3630 * 3631 * When set globally, we use a low priority kernel context, 3632 * so it will effectively take effect when idle. 3633 */ 3634 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3635 if (!err) 3636 config = xchg(&stream->oa_config, config); 3637 else 3638 ret = err; 3639 } 3640 3641 i915_oa_config_put(config); 3642 3643 return ret; 3644 } 3645 3646 /** 3647 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3648 * @stream: An i915 perf stream 3649 * @cmd: the ioctl request 3650 * @arg: the ioctl data 3651 * 3652 * Returns: zero on success or a negative error code. Returns -EINVAL for 3653 * an unknown ioctl request. 3654 */ 3655 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3656 unsigned int cmd, 3657 unsigned long arg) 3658 { 3659 switch (cmd) { 3660 case I915_PERF_IOCTL_ENABLE: 3661 i915_perf_enable_locked(stream); 3662 return 0; 3663 case I915_PERF_IOCTL_DISABLE: 3664 i915_perf_disable_locked(stream); 3665 return 0; 3666 case I915_PERF_IOCTL_CONFIG: 3667 return i915_perf_config_locked(stream, arg); 3668 } 3669 3670 return -EINVAL; 3671 } 3672 3673 /** 3674 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3675 * @file: An i915 perf stream file 3676 * @cmd: the ioctl request 3677 * @arg: the ioctl data 3678 * 3679 * Implementation deferred to i915_perf_ioctl_locked(). 3680 * 3681 * Returns: zero on success or a negative error code. Returns -EINVAL for 3682 * an unknown ioctl request. 3683 */ 3684 static long i915_perf_ioctl(struct file *file, 3685 unsigned int cmd, 3686 unsigned long arg) 3687 { 3688 struct i915_perf_stream *stream = file->private_data; 3689 long ret; 3690 3691 mutex_lock(&stream->lock); 3692 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3693 mutex_unlock(&stream->lock); 3694 3695 return ret; 3696 } 3697 3698 /** 3699 * i915_perf_destroy_locked - destroy an i915 perf stream 3700 * @stream: An i915 perf stream 3701 * 3702 * Frees all resources associated with the given i915 perf @stream, disabling 3703 * any associated data capture in the process. 3704 * 3705 * Note: The >->perf.lock mutex has been taken to serialize 3706 * with any non-file-operation driver hooks. 3707 */ 3708 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3709 { 3710 if (stream->enabled) 3711 i915_perf_disable_locked(stream); 3712 3713 if (stream->ops->destroy) 3714 stream->ops->destroy(stream); 3715 3716 if (stream->ctx) 3717 i915_gem_context_put(stream->ctx); 3718 3719 kfree(stream); 3720 } 3721 3722 /** 3723 * i915_perf_release - handles userspace close() of a stream file 3724 * @inode: anonymous inode associated with file 3725 * @file: An i915 perf stream file 3726 * 3727 * Cleans up any resources associated with an open i915 perf stream file. 3728 * 3729 * NB: close() can't really fail from the userspace point of view. 3730 * 3731 * Returns: zero on success or a negative error code. 3732 */ 3733 static int i915_perf_release(struct inode *inode, struct file *file) 3734 { 3735 struct i915_perf_stream *stream = file->private_data; 3736 struct i915_perf *perf = stream->perf; 3737 struct intel_gt *gt = stream->engine->gt; 3738 3739 /* 3740 * Within this call, we know that the fd is being closed and we have no 3741 * other user of stream->lock. Use the perf lock to destroy the stream 3742 * here. 3743 */ 3744 mutex_lock(>->perf.lock); 3745 i915_perf_destroy_locked(stream); 3746 mutex_unlock(>->perf.lock); 3747 3748 /* Release the reference the perf stream kept on the driver. */ 3749 drm_dev_put(&perf->i915->drm); 3750 3751 return 0; 3752 } 3753 3754 3755 static const struct file_operations fops = { 3756 .owner = THIS_MODULE, 3757 .release = i915_perf_release, 3758 .poll = i915_perf_poll, 3759 .read = i915_perf_read, 3760 .unlocked_ioctl = i915_perf_ioctl, 3761 /* Our ioctl have no arguments, so it's safe to use the same function 3762 * to handle 32bits compatibility. 3763 */ 3764 .compat_ioctl = i915_perf_ioctl, 3765 }; 3766 3767 3768 /** 3769 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3770 * @perf: i915 perf instance 3771 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3772 * @props: individually validated u64 property value pairs 3773 * @file: drm file 3774 * 3775 * See i915_perf_ioctl_open() for interface details. 3776 * 3777 * Implements further stream config validation and stream initialization on 3778 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3779 * taken to serialize with any non-file-operation driver hooks. 3780 * 3781 * Note: at this point the @props have only been validated in isolation and 3782 * it's still necessary to validate that the combination of properties makes 3783 * sense. 3784 * 3785 * In the case where userspace is interested in OA unit metrics then further 3786 * config validation and stream initialization details will be handled by 3787 * i915_oa_stream_init(). The code here should only validate config state that 3788 * will be relevant to all stream types / backends. 3789 * 3790 * Returns: zero on success or a negative error code. 3791 */ 3792 static int 3793 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3794 struct drm_i915_perf_open_param *param, 3795 struct perf_open_properties *props, 3796 struct drm_file *file) 3797 { 3798 struct i915_gem_context *specific_ctx = NULL; 3799 struct i915_perf_stream *stream = NULL; 3800 unsigned long f_flags = 0; 3801 bool privileged_op = true; 3802 int stream_fd; 3803 int ret; 3804 3805 if (props->single_context) { 3806 u32 ctx_handle = props->ctx_handle; 3807 struct drm_i915_file_private *file_priv = file->driver_priv; 3808 3809 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3810 if (IS_ERR(specific_ctx)) { 3811 drm_dbg(&perf->i915->drm, 3812 "Failed to look up context with ID %u for opening perf stream\n", 3813 ctx_handle); 3814 ret = PTR_ERR(specific_ctx); 3815 goto err; 3816 } 3817 } 3818 3819 /* 3820 * On Haswell the OA unit supports clock gating off for a specific 3821 * context and in this mode there's no visibility of metrics for the 3822 * rest of the system, which we consider acceptable for a 3823 * non-privileged client. 3824 * 3825 * For Gen8->11 the OA unit no longer supports clock gating off for a 3826 * specific context and the kernel can't securely stop the counters 3827 * from updating as system-wide / global values. Even though we can 3828 * filter reports based on the included context ID we can't block 3829 * clients from seeing the raw / global counter values via 3830 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3831 * enable the OA unit by default. 3832 * 3833 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3834 * per context basis. So we can relax requirements there if the user 3835 * doesn't request global stream access (i.e. query based sampling 3836 * using MI_RECORD_PERF_COUNT. 3837 */ 3838 if (IS_HASWELL(perf->i915) && specific_ctx) 3839 privileged_op = false; 3840 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3841 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3842 privileged_op = false; 3843 3844 if (props->hold_preemption) { 3845 if (!props->single_context) { 3846 drm_dbg(&perf->i915->drm, 3847 "preemption disable with no context\n"); 3848 ret = -EINVAL; 3849 goto err; 3850 } 3851 privileged_op = true; 3852 } 3853 3854 /* 3855 * Asking for SSEU configuration is a privileged operation. 3856 */ 3857 if (props->has_sseu) 3858 privileged_op = true; 3859 else 3860 get_default_sseu_config(&props->sseu, props->engine); 3861 3862 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3863 * we check a dev.i915.perf_stream_paranoid sysctl option 3864 * to determine if it's ok to access system wide OA counters 3865 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3866 */ 3867 if (privileged_op && 3868 i915_perf_stream_paranoid && !perfmon_capable()) { 3869 drm_dbg(&perf->i915->drm, 3870 "Insufficient privileges to open i915 perf stream\n"); 3871 ret = -EACCES; 3872 goto err_ctx; 3873 } 3874 3875 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3876 if (!stream) { 3877 ret = -ENOMEM; 3878 goto err_ctx; 3879 } 3880 3881 stream->perf = perf; 3882 stream->ctx = specific_ctx; 3883 stream->poll_oa_period = props->poll_oa_period; 3884 3885 ret = i915_oa_stream_init(stream, param, props); 3886 if (ret) 3887 goto err_alloc; 3888 3889 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3890 * to have _stream_init check the combination of sample flags more 3891 * thoroughly, but still this is the expected result at this point. 3892 */ 3893 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3894 ret = -ENODEV; 3895 goto err_flags; 3896 } 3897 3898 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3899 f_flags |= O_CLOEXEC; 3900 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3901 f_flags |= O_NONBLOCK; 3902 3903 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3904 if (stream_fd < 0) { 3905 ret = stream_fd; 3906 goto err_flags; 3907 } 3908 3909 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3910 i915_perf_enable_locked(stream); 3911 3912 /* Take a reference on the driver that will be kept with stream_fd 3913 * until its release. 3914 */ 3915 drm_dev_get(&perf->i915->drm); 3916 3917 return stream_fd; 3918 3919 err_flags: 3920 if (stream->ops->destroy) 3921 stream->ops->destroy(stream); 3922 err_alloc: 3923 kfree(stream); 3924 err_ctx: 3925 if (specific_ctx) 3926 i915_gem_context_put(specific_ctx); 3927 err: 3928 return ret; 3929 } 3930 3931 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3932 { 3933 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3934 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3935 3936 return div_u64(nom + den - 1, den); 3937 } 3938 3939 static __always_inline bool 3940 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3941 { 3942 return test_bit(format, perf->format_mask); 3943 } 3944 3945 static __always_inline void 3946 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3947 { 3948 __set_bit(format, perf->format_mask); 3949 } 3950 3951 /** 3952 * read_properties_unlocked - validate + copy userspace stream open properties 3953 * @perf: i915 perf instance 3954 * @uprops: The array of u64 key value pairs given by userspace 3955 * @n_props: The number of key value pairs expected in @uprops 3956 * @props: The stream configuration built up while validating properties 3957 * 3958 * Note this function only validates properties in isolation it doesn't 3959 * validate that the combination of properties makes sense or that all 3960 * properties necessary for a particular kind of stream have been set. 3961 * 3962 * Note that there currently aren't any ordering requirements for properties so 3963 * we shouldn't validate or assume anything about ordering here. This doesn't 3964 * rule out defining new properties with ordering requirements in the future. 3965 */ 3966 static int read_properties_unlocked(struct i915_perf *perf, 3967 u64 __user *uprops, 3968 u32 n_props, 3969 struct perf_open_properties *props) 3970 { 3971 struct drm_i915_gem_context_param_sseu user_sseu; 3972 const struct i915_oa_format *f; 3973 u64 __user *uprop = uprops; 3974 bool config_instance = false; 3975 bool config_class = false; 3976 bool config_sseu = false; 3977 u8 class, instance; 3978 u32 i; 3979 int ret; 3980 3981 memset(props, 0, sizeof(struct perf_open_properties)); 3982 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3983 3984 /* Considering that ID = 0 is reserved and assuming that we don't 3985 * (currently) expect any configurations to ever specify duplicate 3986 * values for a particular property ID then the last _PROP_MAX value is 3987 * one greater than the maximum number of properties we expect to get 3988 * from userspace. 3989 */ 3990 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 3991 drm_dbg(&perf->i915->drm, 3992 "Invalid number of i915 perf properties given\n"); 3993 return -EINVAL; 3994 } 3995 3996 /* Defaults when class:instance is not passed */ 3997 class = I915_ENGINE_CLASS_RENDER; 3998 instance = 0; 3999 4000 for (i = 0; i < n_props; i++) { 4001 u64 oa_period, oa_freq_hz; 4002 u64 id, value; 4003 4004 ret = get_user(id, uprop); 4005 if (ret) 4006 return ret; 4007 4008 ret = get_user(value, uprop + 1); 4009 if (ret) 4010 return ret; 4011 4012 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4013 drm_dbg(&perf->i915->drm, 4014 "Unknown i915 perf property ID\n"); 4015 return -EINVAL; 4016 } 4017 4018 switch ((enum drm_i915_perf_property_id)id) { 4019 case DRM_I915_PERF_PROP_CTX_HANDLE: 4020 props->single_context = 1; 4021 props->ctx_handle = value; 4022 break; 4023 case DRM_I915_PERF_PROP_SAMPLE_OA: 4024 if (value) 4025 props->sample_flags |= SAMPLE_OA_REPORT; 4026 break; 4027 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4028 if (value == 0) { 4029 drm_dbg(&perf->i915->drm, 4030 "Unknown OA metric set ID\n"); 4031 return -EINVAL; 4032 } 4033 props->metrics_set = value; 4034 break; 4035 case DRM_I915_PERF_PROP_OA_FORMAT: 4036 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4037 drm_dbg(&perf->i915->drm, 4038 "Out-of-range OA report format %llu\n", 4039 value); 4040 return -EINVAL; 4041 } 4042 if (!oa_format_valid(perf, value)) { 4043 drm_dbg(&perf->i915->drm, 4044 "Unsupported OA report format %llu\n", 4045 value); 4046 return -EINVAL; 4047 } 4048 props->oa_format = value; 4049 break; 4050 case DRM_I915_PERF_PROP_OA_EXPONENT: 4051 if (value > OA_EXPONENT_MAX) { 4052 drm_dbg(&perf->i915->drm, 4053 "OA timer exponent too high (> %u)\n", 4054 OA_EXPONENT_MAX); 4055 return -EINVAL; 4056 } 4057 4058 /* Theoretically we can program the OA unit to sample 4059 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4060 * for BXT. We don't allow such high sampling 4061 * frequencies by default unless root. 4062 */ 4063 4064 BUILD_BUG_ON(sizeof(oa_period) != 8); 4065 oa_period = oa_exponent_to_ns(perf, value); 4066 4067 /* This check is primarily to ensure that oa_period <= 4068 * UINT32_MAX (before passing to do_div which only 4069 * accepts a u32 denominator), but we can also skip 4070 * checking anything < 1Hz which implicitly can't be 4071 * limited via an integer oa_max_sample_rate. 4072 */ 4073 if (oa_period <= NSEC_PER_SEC) { 4074 u64 tmp = NSEC_PER_SEC; 4075 do_div(tmp, oa_period); 4076 oa_freq_hz = tmp; 4077 } else 4078 oa_freq_hz = 0; 4079 4080 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4081 drm_dbg(&perf->i915->drm, 4082 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4083 i915_oa_max_sample_rate); 4084 return -EACCES; 4085 } 4086 4087 props->oa_periodic = true; 4088 props->oa_period_exponent = value; 4089 break; 4090 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4091 props->hold_preemption = !!value; 4092 break; 4093 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4094 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) { 4095 drm_dbg(&perf->i915->drm, 4096 "SSEU config not supported on gfx %x\n", 4097 GRAPHICS_VER_FULL(perf->i915)); 4098 return -ENODEV; 4099 } 4100 4101 if (copy_from_user(&user_sseu, 4102 u64_to_user_ptr(value), 4103 sizeof(user_sseu))) { 4104 drm_dbg(&perf->i915->drm, 4105 "Unable to copy global sseu parameter\n"); 4106 return -EFAULT; 4107 } 4108 config_sseu = true; 4109 break; 4110 } 4111 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4112 if (value < 100000 /* 100us */) { 4113 drm_dbg(&perf->i915->drm, 4114 "OA availability timer too small (%lluns < 100us)\n", 4115 value); 4116 return -EINVAL; 4117 } 4118 props->poll_oa_period = value; 4119 break; 4120 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4121 class = (u8)value; 4122 config_class = true; 4123 break; 4124 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4125 instance = (u8)value; 4126 config_instance = true; 4127 break; 4128 default: 4129 MISSING_CASE(id); 4130 return -EINVAL; 4131 } 4132 4133 uprop += 2; 4134 } 4135 4136 if ((config_class && !config_instance) || 4137 (config_instance && !config_class)) { 4138 drm_dbg(&perf->i915->drm, 4139 "OA engine-class and engine-instance parameters must be passed together\n"); 4140 return -EINVAL; 4141 } 4142 4143 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4144 if (!props->engine) { 4145 drm_dbg(&perf->i915->drm, 4146 "OA engine class and instance invalid %d:%d\n", 4147 class, instance); 4148 return -EINVAL; 4149 } 4150 4151 if (!engine_supports_oa(props->engine)) { 4152 drm_dbg(&perf->i915->drm, 4153 "Engine not supported by OA %d:%d\n", 4154 class, instance); 4155 return -EINVAL; 4156 } 4157 4158 /* 4159 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4160 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4161 * does not work as expected. 4162 */ 4163 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 4164 props->engine->oa_group->type == TYPE_OAM && 4165 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4166 drm_dbg(&perf->i915->drm, 4167 "OAM requires media C6 to be disabled in BIOS\n"); 4168 return -EINVAL; 4169 } 4170 4171 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4172 f = &perf->oa_formats[i]; 4173 if (!engine_supports_oa_format(props->engine, f->type)) { 4174 drm_dbg(&perf->i915->drm, 4175 "Invalid OA format %d for class %d\n", 4176 f->type, props->engine->class); 4177 return -EINVAL; 4178 } 4179 4180 if (config_sseu) { 4181 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4182 if (ret) { 4183 drm_dbg(&perf->i915->drm, 4184 "Invalid SSEU configuration\n"); 4185 return ret; 4186 } 4187 props->has_sseu = true; 4188 } 4189 4190 return 0; 4191 } 4192 4193 /** 4194 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4195 * @dev: drm device 4196 * @data: ioctl data copied from userspace (unvalidated) 4197 * @file: drm file 4198 * 4199 * Validates the stream open parameters given by userspace including flags 4200 * and an array of u64 key, value pair properties. 4201 * 4202 * Very little is assumed up front about the nature of the stream being 4203 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4204 * i915-perf stream is expected to be a suitable interface for other forms of 4205 * buffered data written by the GPU besides periodic OA metrics. 4206 * 4207 * Note we copy the properties from userspace outside of the i915 perf 4208 * mutex to avoid an awkward lockdep with mmap_lock. 4209 * 4210 * Most of the implementation details are handled by 4211 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4212 * mutex for serializing with any non-file-operation driver hooks. 4213 * 4214 * Return: A newly opened i915 Perf stream file descriptor or negative 4215 * error code on failure. 4216 */ 4217 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4218 struct drm_file *file) 4219 { 4220 struct i915_perf *perf = &to_i915(dev)->perf; 4221 struct drm_i915_perf_open_param *param = data; 4222 struct intel_gt *gt; 4223 struct perf_open_properties props; 4224 u32 known_open_flags; 4225 int ret; 4226 4227 if (!perf->i915) 4228 return -ENOTSUPP; 4229 4230 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4231 I915_PERF_FLAG_FD_NONBLOCK | 4232 I915_PERF_FLAG_DISABLED; 4233 if (param->flags & ~known_open_flags) { 4234 drm_dbg(&perf->i915->drm, 4235 "Unknown drm_i915_perf_open_param flag\n"); 4236 return -EINVAL; 4237 } 4238 4239 ret = read_properties_unlocked(perf, 4240 u64_to_user_ptr(param->properties_ptr), 4241 param->num_properties, 4242 &props); 4243 if (ret) 4244 return ret; 4245 4246 gt = props.engine->gt; 4247 4248 mutex_lock(>->perf.lock); 4249 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4250 mutex_unlock(>->perf.lock); 4251 4252 return ret; 4253 } 4254 4255 /** 4256 * i915_perf_register - exposes i915-perf to userspace 4257 * @i915: i915 device instance 4258 * 4259 * In particular OA metric sets are advertised under a sysfs metrics/ 4260 * directory allowing userspace to enumerate valid IDs that can be 4261 * used to open an i915-perf stream. 4262 */ 4263 void i915_perf_register(struct drm_i915_private *i915) 4264 { 4265 struct i915_perf *perf = &i915->perf; 4266 struct intel_gt *gt = to_gt(i915); 4267 4268 if (!perf->i915) 4269 return; 4270 4271 /* To be sure we're synchronized with an attempted 4272 * i915_perf_open_ioctl(); considering that we register after 4273 * being exposed to userspace. 4274 */ 4275 mutex_lock(>->perf.lock); 4276 4277 perf->metrics_kobj = 4278 kobject_create_and_add("metrics", 4279 &i915->drm.primary->kdev->kobj); 4280 4281 mutex_unlock(>->perf.lock); 4282 } 4283 4284 /** 4285 * i915_perf_unregister - hide i915-perf from userspace 4286 * @i915: i915 device instance 4287 * 4288 * i915-perf state cleanup is split up into an 'unregister' and 4289 * 'deinit' phase where the interface is first hidden from 4290 * userspace by i915_perf_unregister() before cleaning up 4291 * remaining state in i915_perf_fini(). 4292 */ 4293 void i915_perf_unregister(struct drm_i915_private *i915) 4294 { 4295 struct i915_perf *perf = &i915->perf; 4296 4297 if (!perf->metrics_kobj) 4298 return; 4299 4300 kobject_put(perf->metrics_kobj); 4301 perf->metrics_kobj = NULL; 4302 } 4303 4304 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4305 { 4306 static const i915_reg_t flex_eu_regs[] = { 4307 EU_PERF_CNTL0, 4308 EU_PERF_CNTL1, 4309 EU_PERF_CNTL2, 4310 EU_PERF_CNTL3, 4311 EU_PERF_CNTL4, 4312 EU_PERF_CNTL5, 4313 EU_PERF_CNTL6, 4314 }; 4315 int i; 4316 4317 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4318 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4319 return true; 4320 } 4321 return false; 4322 } 4323 4324 #define REG_EQUAL(addr, mmio) \ 4325 ((addr) == i915_mmio_reg_offset(mmio)) 4326 4327 static const struct i915_mmio_range gen7_oa_b_counters[] = { 4328 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4329 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4330 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4331 {} 4332 }; 4333 4334 static const struct i915_mmio_range gen12_oa_b_counters[] = { 4335 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4336 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4337 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4338 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4339 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4340 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4341 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4342 {} 4343 }; 4344 4345 static const struct i915_mmio_range mtl_oam_b_counters[] = { 4346 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4347 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4348 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4349 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4350 {} 4351 }; 4352 4353 static const struct i915_mmio_range xehp_oa_b_counters[] = { 4354 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4355 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4356 {} 4357 }; 4358 4359 static const struct i915_mmio_range gen7_oa_mux_regs[] = { 4360 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4361 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4362 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4363 {} 4364 }; 4365 4366 static const struct i915_mmio_range hsw_oa_mux_regs[] = { 4367 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4368 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4369 { .start = 0x25100, .end = 0x2ff90 }, 4370 {} 4371 }; 4372 4373 static const struct i915_mmio_range chv_oa_mux_regs[] = { 4374 { .start = 0x182300, .end = 0x1823a4 }, 4375 {} 4376 }; 4377 4378 static const struct i915_mmio_range gen8_oa_mux_regs[] = { 4379 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4380 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4381 {} 4382 }; 4383 4384 static const struct i915_mmio_range gen11_oa_mux_regs[] = { 4385 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4386 {} 4387 }; 4388 4389 static const struct i915_mmio_range gen12_oa_mux_regs[] = { 4390 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4391 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4392 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4393 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4394 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4395 {} 4396 }; 4397 4398 /* 4399 * Ref: 14010536224: 4400 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4401 */ 4402 static const struct i915_mmio_range mtl_oa_mux_regs[] = { 4403 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4404 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4405 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4406 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4407 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4408 {} 4409 }; 4410 4411 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4412 { 4413 return i915_mmio_range_table_contains(addr, gen7_oa_b_counters); 4414 } 4415 4416 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4417 { 4418 return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) || 4419 i915_mmio_range_table_contains(addr, gen8_oa_mux_regs); 4420 } 4421 4422 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4423 { 4424 return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) || 4425 i915_mmio_range_table_contains(addr, gen8_oa_mux_regs) || 4426 i915_mmio_range_table_contains(addr, gen11_oa_mux_regs); 4427 } 4428 4429 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4430 { 4431 return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) || 4432 i915_mmio_range_table_contains(addr, hsw_oa_mux_regs); 4433 } 4434 4435 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4436 { 4437 return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) || 4438 i915_mmio_range_table_contains(addr, chv_oa_mux_regs); 4439 } 4440 4441 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4442 { 4443 return i915_mmio_range_table_contains(addr, gen12_oa_b_counters); 4444 } 4445 4446 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4447 { 4448 if (HAS_OAM(perf->i915) && 4449 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4450 return i915_mmio_range_table_contains(addr, mtl_oam_b_counters); 4451 4452 return false; 4453 } 4454 4455 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4456 { 4457 return i915_mmio_range_table_contains(addr, xehp_oa_b_counters) || 4458 i915_mmio_range_table_contains(addr, gen12_oa_b_counters) || 4459 mtl_is_valid_oam_b_counter_addr(perf, addr); 4460 } 4461 4462 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4463 { 4464 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4465 return i915_mmio_range_table_contains(addr, mtl_oa_mux_regs); 4466 else 4467 return i915_mmio_range_table_contains(addr, gen12_oa_mux_regs); 4468 } 4469 4470 static u32 mask_reg_value(u32 reg, u32 val) 4471 { 4472 /* 4473 * HALF_SLICE_CHICKEN2 is programmed with a the 4474 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4475 * programmed by userspace doesn't change this. 4476 */ 4477 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4478 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4479 4480 /* 4481 * WAIT_FOR_RC6_EXIT has only one bit fulfilling the function 4482 * indicated by its name and a bunch of selection fields used by OA 4483 * configs. 4484 */ 4485 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4486 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4487 4488 return val; 4489 } 4490 4491 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4492 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4493 u32 __user *regs, 4494 u32 n_regs) 4495 { 4496 struct i915_oa_reg *oa_regs; 4497 int err; 4498 u32 i; 4499 4500 if (!n_regs) 4501 return NULL; 4502 4503 /* No is_valid function means we're not allowing any register to be programmed. */ 4504 GEM_BUG_ON(!is_valid); 4505 if (!is_valid) 4506 return ERR_PTR(-EINVAL); 4507 4508 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4509 if (!oa_regs) 4510 return ERR_PTR(-ENOMEM); 4511 4512 for (i = 0; i < n_regs; i++) { 4513 u32 addr, value; 4514 4515 err = get_user(addr, regs); 4516 if (err) 4517 goto addr_err; 4518 4519 if (!is_valid(perf, addr)) { 4520 drm_dbg(&perf->i915->drm, 4521 "Invalid oa_reg address: %X\n", addr); 4522 err = -EINVAL; 4523 goto addr_err; 4524 } 4525 4526 err = get_user(value, regs + 1); 4527 if (err) 4528 goto addr_err; 4529 4530 oa_regs[i].addr = _MMIO(addr); 4531 oa_regs[i].value = mask_reg_value(addr, value); 4532 4533 regs += 2; 4534 } 4535 4536 return oa_regs; 4537 4538 addr_err: 4539 kfree(oa_regs); 4540 return ERR_PTR(err); 4541 } 4542 4543 static ssize_t show_dynamic_id(struct kobject *kobj, 4544 struct kobj_attribute *attr, 4545 char *buf) 4546 { 4547 struct i915_oa_config *oa_config = 4548 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4549 4550 return sprintf(buf, "%d\n", oa_config->id); 4551 } 4552 4553 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4554 struct i915_oa_config *oa_config) 4555 { 4556 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4557 oa_config->sysfs_metric_id.attr.name = "id"; 4558 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4559 oa_config->sysfs_metric_id.show = show_dynamic_id; 4560 oa_config->sysfs_metric_id.store = NULL; 4561 4562 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4563 oa_config->attrs[1] = NULL; 4564 4565 oa_config->sysfs_metric.name = oa_config->uuid; 4566 oa_config->sysfs_metric.attrs = oa_config->attrs; 4567 4568 return sysfs_create_group(perf->metrics_kobj, 4569 &oa_config->sysfs_metric); 4570 } 4571 4572 /** 4573 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4574 * @dev: drm device 4575 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4576 * userspace (unvalidated) 4577 * @file: drm file 4578 * 4579 * Validates the submitted OA register to be saved into a new OA config that 4580 * can then be used for programming the OA unit and its NOA network. 4581 * 4582 * Returns: A new allocated config number to be used with the perf open ioctl 4583 * or a negative error code on failure. 4584 */ 4585 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4586 struct drm_file *file) 4587 { 4588 struct i915_perf *perf = &to_i915(dev)->perf; 4589 struct drm_i915_perf_oa_config *args = data; 4590 struct i915_oa_config *oa_config, *tmp; 4591 struct i915_oa_reg *regs; 4592 int err, id; 4593 4594 if (!perf->i915) 4595 return -ENOTSUPP; 4596 4597 if (!perf->metrics_kobj) { 4598 drm_dbg(&perf->i915->drm, 4599 "OA metrics weren't advertised via sysfs\n"); 4600 return -EINVAL; 4601 } 4602 4603 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4604 drm_dbg(&perf->i915->drm, 4605 "Insufficient privileges to add i915 OA config\n"); 4606 return -EACCES; 4607 } 4608 4609 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4610 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4611 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4612 drm_dbg(&perf->i915->drm, 4613 "No OA registers given\n"); 4614 return -EINVAL; 4615 } 4616 4617 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4618 if (!oa_config) { 4619 drm_dbg(&perf->i915->drm, 4620 "Failed to allocate memory for the OA config\n"); 4621 return -ENOMEM; 4622 } 4623 4624 oa_config->perf = perf; 4625 kref_init(&oa_config->ref); 4626 4627 if (!uuid_is_valid(args->uuid)) { 4628 drm_dbg(&perf->i915->drm, 4629 "Invalid uuid format for OA config\n"); 4630 err = -EINVAL; 4631 goto reg_err; 4632 } 4633 4634 /* Last character in oa_config->uuid will be 0 because oa_config is 4635 * kzalloc. 4636 */ 4637 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4638 4639 oa_config->mux_regs_len = args->n_mux_regs; 4640 regs = alloc_oa_regs(perf, 4641 perf->ops.is_valid_mux_reg, 4642 u64_to_user_ptr(args->mux_regs_ptr), 4643 args->n_mux_regs); 4644 4645 if (IS_ERR(regs)) { 4646 drm_dbg(&perf->i915->drm, 4647 "Failed to create OA config for mux_regs\n"); 4648 err = PTR_ERR(regs); 4649 goto reg_err; 4650 } 4651 oa_config->mux_regs = regs; 4652 4653 oa_config->b_counter_regs_len = args->n_boolean_regs; 4654 regs = alloc_oa_regs(perf, 4655 perf->ops.is_valid_b_counter_reg, 4656 u64_to_user_ptr(args->boolean_regs_ptr), 4657 args->n_boolean_regs); 4658 4659 if (IS_ERR(regs)) { 4660 drm_dbg(&perf->i915->drm, 4661 "Failed to create OA config for b_counter_regs\n"); 4662 err = PTR_ERR(regs); 4663 goto reg_err; 4664 } 4665 oa_config->b_counter_regs = regs; 4666 4667 if (GRAPHICS_VER(perf->i915) < 8) { 4668 if (args->n_flex_regs != 0) { 4669 err = -EINVAL; 4670 goto reg_err; 4671 } 4672 } else { 4673 oa_config->flex_regs_len = args->n_flex_regs; 4674 regs = alloc_oa_regs(perf, 4675 perf->ops.is_valid_flex_reg, 4676 u64_to_user_ptr(args->flex_regs_ptr), 4677 args->n_flex_regs); 4678 4679 if (IS_ERR(regs)) { 4680 drm_dbg(&perf->i915->drm, 4681 "Failed to create OA config for flex_regs\n"); 4682 err = PTR_ERR(regs); 4683 goto reg_err; 4684 } 4685 oa_config->flex_regs = regs; 4686 } 4687 4688 err = mutex_lock_interruptible(&perf->metrics_lock); 4689 if (err) 4690 goto reg_err; 4691 4692 /* We shouldn't have too many configs, so this iteration shouldn't be 4693 * too costly. 4694 */ 4695 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4696 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4697 drm_dbg(&perf->i915->drm, 4698 "OA config already exists with this uuid\n"); 4699 err = -EADDRINUSE; 4700 goto sysfs_err; 4701 } 4702 } 4703 4704 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4705 if (err) { 4706 drm_dbg(&perf->i915->drm, 4707 "Failed to create sysfs entry for OA config\n"); 4708 goto sysfs_err; 4709 } 4710 4711 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4712 oa_config->id = idr_alloc(&perf->metrics_idr, 4713 oa_config, 2, 4714 0, GFP_KERNEL); 4715 if (oa_config->id < 0) { 4716 drm_dbg(&perf->i915->drm, 4717 "Failed to create sysfs entry for OA config\n"); 4718 err = oa_config->id; 4719 goto sysfs_err; 4720 } 4721 id = oa_config->id; 4722 4723 drm_dbg(&perf->i915->drm, 4724 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4725 mutex_unlock(&perf->metrics_lock); 4726 4727 return id; 4728 4729 sysfs_err: 4730 mutex_unlock(&perf->metrics_lock); 4731 reg_err: 4732 i915_oa_config_put(oa_config); 4733 drm_dbg(&perf->i915->drm, 4734 "Failed to add new OA config\n"); 4735 return err; 4736 } 4737 4738 /** 4739 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4740 * @dev: drm device 4741 * @data: ioctl data (pointer to u64 integer) copied from userspace 4742 * @file: drm file 4743 * 4744 * Configs can be removed while being used, the will stop appearing in sysfs 4745 * and their content will be freed when the stream using the config is closed. 4746 * 4747 * Returns: 0 on success or a negative error code on failure. 4748 */ 4749 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4750 struct drm_file *file) 4751 { 4752 struct i915_perf *perf = &to_i915(dev)->perf; 4753 u64 *arg = data; 4754 struct i915_oa_config *oa_config; 4755 int ret; 4756 4757 if (!perf->i915) 4758 return -ENOTSUPP; 4759 4760 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4761 drm_dbg(&perf->i915->drm, 4762 "Insufficient privileges to remove i915 OA config\n"); 4763 return -EACCES; 4764 } 4765 4766 ret = mutex_lock_interruptible(&perf->metrics_lock); 4767 if (ret) 4768 return ret; 4769 4770 oa_config = idr_find(&perf->metrics_idr, *arg); 4771 if (!oa_config) { 4772 drm_dbg(&perf->i915->drm, 4773 "Failed to remove unknown OA config\n"); 4774 ret = -ENOENT; 4775 goto err_unlock; 4776 } 4777 4778 GEM_BUG_ON(*arg != oa_config->id); 4779 4780 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4781 4782 idr_remove(&perf->metrics_idr, *arg); 4783 4784 mutex_unlock(&perf->metrics_lock); 4785 4786 drm_dbg(&perf->i915->drm, 4787 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4788 4789 i915_oa_config_put(oa_config); 4790 4791 return 0; 4792 4793 err_unlock: 4794 mutex_unlock(&perf->metrics_lock); 4795 return ret; 4796 } 4797 4798 static const struct ctl_table oa_table[] = { 4799 { 4800 .procname = "perf_stream_paranoid", 4801 .data = &i915_perf_stream_paranoid, 4802 .maxlen = sizeof(i915_perf_stream_paranoid), 4803 .mode = 0644, 4804 .proc_handler = proc_dointvec_minmax, 4805 .extra1 = SYSCTL_ZERO, 4806 .extra2 = SYSCTL_ONE, 4807 }, 4808 { 4809 .procname = "oa_max_sample_rate", 4810 .data = &i915_oa_max_sample_rate, 4811 .maxlen = sizeof(i915_oa_max_sample_rate), 4812 .mode = 0644, 4813 .proc_handler = proc_dointvec_minmax, 4814 .extra1 = SYSCTL_ZERO, 4815 .extra2 = &oa_sample_rate_hard_limit, 4816 }, 4817 }; 4818 4819 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4820 { 4821 return 1; 4822 } 4823 4824 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4825 { 4826 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4827 /* 4828 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4829 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4830 */ 4831 drm_WARN_ON(&engine->i915->drm, 4832 engine->gt->type != GT_MEDIA); 4833 4834 return PERF_GROUP_OAM_SAMEDIA_0; 4835 } 4836 4837 return PERF_GROUP_INVALID; 4838 } 4839 4840 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4841 { 4842 switch (engine->class) { 4843 case RENDER_CLASS: 4844 return PERF_GROUP_OAG; 4845 4846 case VIDEO_DECODE_CLASS: 4847 case VIDEO_ENHANCEMENT_CLASS: 4848 return __oam_engine_group(engine); 4849 4850 default: 4851 return PERF_GROUP_INVALID; 4852 } 4853 } 4854 4855 static struct i915_perf_regs __oam_regs(u32 base) 4856 { 4857 return (struct i915_perf_regs) { 4858 base, 4859 GEN12_OAM_HEAD_POINTER(base), 4860 GEN12_OAM_TAIL_POINTER(base), 4861 GEN12_OAM_BUFFER(base), 4862 GEN12_OAM_CONTEXT_CONTROL(base), 4863 GEN12_OAM_CONTROL(base), 4864 GEN12_OAM_DEBUG(base), 4865 GEN12_OAM_STATUS(base), 4866 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4867 }; 4868 } 4869 4870 static struct i915_perf_regs __oag_regs(void) 4871 { 4872 return (struct i915_perf_regs) { 4873 0, 4874 GEN12_OAG_OAHEADPTR, 4875 GEN12_OAG_OATAILPTR, 4876 GEN12_OAG_OABUFFER, 4877 GEN12_OAG_OAGLBCTXCTRL, 4878 GEN12_OAG_OACONTROL, 4879 GEN12_OAG_OA_DEBUG, 4880 GEN12_OAG_OASTATUS, 4881 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4882 }; 4883 } 4884 4885 static void oa_init_groups(struct intel_gt *gt) 4886 { 4887 int i, num_groups = gt->perf.num_perf_groups; 4888 4889 for (i = 0; i < num_groups; i++) { 4890 struct i915_perf_group *g = >->perf.group[i]; 4891 4892 /* Fused off engines can result in a group with num_engines == 0 */ 4893 if (g->num_engines == 0) 4894 continue; 4895 4896 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4897 g->regs = __oag_regs(); 4898 g->type = TYPE_OAG; 4899 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4900 g->regs = __oam_regs(mtl_oa_base[i]); 4901 g->type = TYPE_OAM; 4902 } 4903 } 4904 } 4905 4906 static int oa_init_gt(struct intel_gt *gt) 4907 { 4908 u32 num_groups = num_perf_groups_per_gt(gt); 4909 struct intel_engine_cs *engine; 4910 struct i915_perf_group *g; 4911 intel_engine_mask_t tmp; 4912 4913 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4914 if (!g) 4915 return -ENOMEM; 4916 4917 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 4918 u32 index = __oa_engine_group(engine); 4919 4920 engine->oa_group = NULL; 4921 if (index < num_groups) { 4922 g[index].num_engines++; 4923 engine->oa_group = &g[index]; 4924 } 4925 } 4926 4927 gt->perf.num_perf_groups = num_groups; 4928 gt->perf.group = g; 4929 4930 oa_init_groups(gt); 4931 4932 return 0; 4933 } 4934 4935 static int oa_init_engine_groups(struct i915_perf *perf) 4936 { 4937 struct intel_gt *gt; 4938 int i, ret; 4939 4940 for_each_gt(gt, perf->i915, i) { 4941 ret = oa_init_gt(gt); 4942 if (ret) 4943 return ret; 4944 } 4945 4946 return 0; 4947 } 4948 4949 static void oa_init_supported_formats(struct i915_perf *perf) 4950 { 4951 struct drm_i915_private *i915 = perf->i915; 4952 enum intel_platform platform = INTEL_INFO(i915)->platform; 4953 4954 switch (platform) { 4955 case INTEL_HASWELL: 4956 oa_format_add(perf, I915_OA_FORMAT_A13); 4957 oa_format_add(perf, I915_OA_FORMAT_A13); 4958 oa_format_add(perf, I915_OA_FORMAT_A29); 4959 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4960 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4961 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4962 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4963 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4964 break; 4965 4966 case INTEL_BROADWELL: 4967 case INTEL_CHERRYVIEW: 4968 case INTEL_SKYLAKE: 4969 case INTEL_BROXTON: 4970 case INTEL_KABYLAKE: 4971 case INTEL_GEMINILAKE: 4972 case INTEL_COFFEELAKE: 4973 case INTEL_COMETLAKE: 4974 case INTEL_ICELAKE: 4975 case INTEL_ELKHARTLAKE: 4976 case INTEL_JASPERLAKE: 4977 case INTEL_TIGERLAKE: 4978 case INTEL_ROCKETLAKE: 4979 case INTEL_DG1: 4980 case INTEL_ALDERLAKE_S: 4981 case INTEL_ALDERLAKE_P: 4982 oa_format_add(perf, I915_OA_FORMAT_A12); 4983 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4984 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4985 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4986 break; 4987 4988 case INTEL_DG2: 4989 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 4990 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 4991 break; 4992 4993 case INTEL_METEORLAKE: 4994 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 4995 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 4996 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 4997 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 4998 break; 4999 5000 default: 5001 MISSING_CASE(platform); 5002 } 5003 } 5004 5005 static void i915_perf_init_info(struct drm_i915_private *i915) 5006 { 5007 struct i915_perf *perf = &i915->perf; 5008 5009 switch (GRAPHICS_VER(i915)) { 5010 case 8: 5011 perf->ctx_oactxctrl_offset = 0x120; 5012 perf->ctx_flexeu0_offset = 0x2ce; 5013 perf->gen8_valid_ctx_bit = BIT(25); 5014 break; 5015 case 9: 5016 perf->ctx_oactxctrl_offset = 0x128; 5017 perf->ctx_flexeu0_offset = 0x3de; 5018 perf->gen8_valid_ctx_bit = BIT(16); 5019 break; 5020 case 11: 5021 perf->ctx_oactxctrl_offset = 0x124; 5022 perf->ctx_flexeu0_offset = 0x78e; 5023 perf->gen8_valid_ctx_bit = BIT(16); 5024 break; 5025 case 12: 5026 perf->gen8_valid_ctx_bit = BIT(16); 5027 /* 5028 * Calculate offset at runtime in oa_pin_context for gen12 and 5029 * cache the value in perf->ctx_oactxctrl_offset. 5030 */ 5031 break; 5032 default: 5033 MISSING_CASE(GRAPHICS_VER(i915)); 5034 } 5035 } 5036 5037 /** 5038 * i915_perf_init - initialize i915-perf state on module bind 5039 * @i915: i915 device instance 5040 * 5041 * Initializes i915-perf state without exposing anything to userspace. 5042 * 5043 * Note: i915-perf initialization is split into an 'init' and 'register' 5044 * phase with the i915_perf_register() exposing state to userspace. 5045 */ 5046 int i915_perf_init(struct drm_i915_private *i915) 5047 { 5048 struct i915_perf *perf = &i915->perf; 5049 5050 perf->oa_formats = oa_formats; 5051 if (IS_HASWELL(i915)) { 5052 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5053 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5054 perf->ops.is_valid_flex_reg = NULL; 5055 perf->ops.enable_metric_set = hsw_enable_metric_set; 5056 perf->ops.disable_metric_set = hsw_disable_metric_set; 5057 perf->ops.oa_enable = gen7_oa_enable; 5058 perf->ops.oa_disable = gen7_oa_disable; 5059 perf->ops.read = gen7_oa_read; 5060 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5061 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5062 /* Note: that although we could theoretically also support the 5063 * legacy ringbuffer mode on BDW (and earlier iterations of 5064 * this driver, before upstreaming did this) it didn't seem 5065 * worth the complexity to maintain now that BDW+ enable 5066 * execlist mode by default. 5067 */ 5068 perf->ops.read = gen8_oa_read; 5069 i915_perf_init_info(i915); 5070 5071 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5072 perf->ops.is_valid_b_counter_reg = 5073 gen7_is_valid_b_counter_addr; 5074 perf->ops.is_valid_mux_reg = 5075 gen8_is_valid_mux_addr; 5076 perf->ops.is_valid_flex_reg = 5077 gen8_is_valid_flex_addr; 5078 5079 if (IS_CHERRYVIEW(i915)) { 5080 perf->ops.is_valid_mux_reg = 5081 chv_is_valid_mux_addr; 5082 } 5083 5084 perf->ops.oa_enable = gen8_oa_enable; 5085 perf->ops.oa_disable = gen8_oa_disable; 5086 perf->ops.enable_metric_set = gen8_enable_metric_set; 5087 perf->ops.disable_metric_set = gen8_disable_metric_set; 5088 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5089 } else if (GRAPHICS_VER(i915) == 11) { 5090 perf->ops.is_valid_b_counter_reg = 5091 gen7_is_valid_b_counter_addr; 5092 perf->ops.is_valid_mux_reg = 5093 gen11_is_valid_mux_addr; 5094 perf->ops.is_valid_flex_reg = 5095 gen8_is_valid_flex_addr; 5096 5097 perf->ops.oa_enable = gen8_oa_enable; 5098 perf->ops.oa_disable = gen8_oa_disable; 5099 perf->ops.enable_metric_set = gen8_enable_metric_set; 5100 perf->ops.disable_metric_set = gen11_disable_metric_set; 5101 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5102 } else if (GRAPHICS_VER(i915) == 12) { 5103 perf->ops.is_valid_b_counter_reg = 5104 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5105 xehp_is_valid_b_counter_addr : 5106 gen12_is_valid_b_counter_addr; 5107 perf->ops.is_valid_mux_reg = 5108 gen12_is_valid_mux_addr; 5109 perf->ops.is_valid_flex_reg = 5110 gen8_is_valid_flex_addr; 5111 5112 perf->ops.oa_enable = gen12_oa_enable; 5113 perf->ops.oa_disable = gen12_oa_disable; 5114 perf->ops.enable_metric_set = gen12_enable_metric_set; 5115 perf->ops.disable_metric_set = gen12_disable_metric_set; 5116 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5117 } 5118 } 5119 5120 if (perf->ops.enable_metric_set) { 5121 struct intel_gt *gt; 5122 int i, ret; 5123 5124 for_each_gt(gt, i915, i) 5125 mutex_init(>->perf.lock); 5126 5127 /* Choose a representative limit */ 5128 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5129 5130 mutex_init(&perf->metrics_lock); 5131 idr_init_base(&perf->metrics_idr, 1); 5132 5133 /* We set up some ratelimit state to potentially throttle any 5134 * _NOTES about spurious, invalid OA reports which we don't 5135 * forward to userspace. 5136 * 5137 * We print a _NOTE about any throttling when closing the 5138 * stream instead of waiting until driver _fini which no one 5139 * would ever see. 5140 * 5141 * Using the same limiting factors as printk_ratelimit() 5142 */ 5143 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5144 /* Since we use a DRM_NOTE for spurious reports it would be 5145 * inconsistent to let __ratelimit() automatically print a 5146 * warning for throttling. 5147 */ 5148 ratelimit_set_flags(&perf->spurious_report_rs, 5149 RATELIMIT_MSG_ON_RELEASE); 5150 5151 ratelimit_state_init(&perf->tail_pointer_race, 5152 5 * HZ, 10); 5153 ratelimit_set_flags(&perf->tail_pointer_race, 5154 RATELIMIT_MSG_ON_RELEASE); 5155 5156 atomic64_set(&perf->noa_programming_delay, 5157 500 * 1000 /* 500us */); 5158 5159 perf->i915 = i915; 5160 5161 ret = oa_init_engine_groups(perf); 5162 if (ret) { 5163 drm_err(&i915->drm, 5164 "OA initialization failed %d\n", ret); 5165 return ret; 5166 } 5167 5168 oa_init_supported_formats(perf); 5169 } 5170 5171 return 0; 5172 } 5173 5174 static int destroy_config(int id, void *p, void *data) 5175 { 5176 i915_oa_config_put(p); 5177 return 0; 5178 } 5179 5180 int i915_perf_sysctl_register(void) 5181 { 5182 sysctl_header = register_sysctl("dev/i915", oa_table); 5183 return 0; 5184 } 5185 5186 void i915_perf_sysctl_unregister(void) 5187 { 5188 unregister_sysctl_table(sysctl_header); 5189 } 5190 5191 /** 5192 * i915_perf_fini - Counter part to i915_perf_init() 5193 * @i915: i915 device instance 5194 */ 5195 void i915_perf_fini(struct drm_i915_private *i915) 5196 { 5197 struct i915_perf *perf = &i915->perf; 5198 struct intel_gt *gt; 5199 int i; 5200 5201 if (!perf->i915) 5202 return; 5203 5204 for_each_gt(gt, perf->i915, i) 5205 kfree(gt->perf.group); 5206 5207 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5208 idr_destroy(&perf->metrics_idr); 5209 5210 memset(&perf->ops, 0, sizeof(perf->ops)); 5211 perf->i915 = NULL; 5212 } 5213 5214 /** 5215 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5216 * @i915: The i915 device 5217 * 5218 * This version number is used by userspace to detect available features. 5219 */ 5220 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5221 { 5222 /* 5223 * 1: Initial version 5224 * I915_PERF_IOCTL_ENABLE 5225 * I915_PERF_IOCTL_DISABLE 5226 * 5227 * 2: Added runtime modification of OA config. 5228 * I915_PERF_IOCTL_CONFIG 5229 * 5230 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5231 * preemption on a particular context so that performance data is 5232 * accessible from a delta of MI_RPC reports without looking at the 5233 * OA buffer. 5234 * 5235 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5236 * be run for the duration of the performance recording based on 5237 * their SSEU configuration. 5238 * 5239 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5240 * interval for the hrtimer used to check for OA data. 5241 * 5242 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5243 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5244 * 5245 * 7: Add support for video decode and enhancement classes. 5246 */ 5247 5248 /* 5249 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5250 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5251 * to indicate that OA media is not supported. 5252 */ 5253 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 5254 intel_check_bios_c6_setup(&i915->media_gt->rc6)) 5255 return 6; 5256 5257 return 7; 5258 } 5259 5260 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5261 #include "selftests/i915_perf.c" 5262 #endif 5263