xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_print.h"
210 #include "gt/intel_gt_regs.h"
211 #include "gt/intel_lrc.h"
212 #include "gt/intel_lrc_reg.h"
213 #include "gt/intel_rc6.h"
214 #include "gt/intel_ring.h"
215 #include "gt/uc/intel_guc_slpc.h"
216 
217 #include "i915_drv.h"
218 #include "i915_file_private.h"
219 #include "i915_perf.h"
220 #include "i915_perf_oa_regs.h"
221 #include "i915_reg.h"
222 #include "i915_mmio_range.h"
223 
224 /* HW requires this to be a power of two, between 128k and 16M, though driver
225  * is currently generally designed assuming the largest 16M size is used such
226  * that the overflow cases are unlikely in normal operation.
227  */
228 #define OA_BUFFER_SIZE		SZ_16M
229 
230 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
231 
232 /**
233  * DOC: OA Tail Pointer Race
234  *
235  * There's a HW race condition between OA unit tail pointer register updates and
236  * writes to memory whereby the tail pointer can sometimes get ahead of what's
237  * been written out to the OA buffer so far (in terms of what's visible to the
238  * CPU).
239  *
240  * Although this can be observed explicitly while copying reports to userspace
241  * by checking for a zeroed report-id field in tail reports, we want to account
242  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
243  * redundant read() attempts.
244  *
245  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
246  * in the OA buffer, starting from the tail reported by the HW until we find a
247  * report with its first 2 dwords not 0 meaning its previous report is
248  * completely in memory and ready to be read. Those dwords are also set to 0
249  * once read and the whole buffer is cleared upon OA buffer initialization. The
250  * first dword is the reason for this report while the second is the timestamp,
251  * making the chances of having those 2 fields at 0 fairly unlikely. A more
252  * detailed explanation is available in oa_buffer_check_unlocked().
253  *
254  * Most of the implementation details for this workaround are in
255  * oa_buffer_check_unlocked() and _append_oa_reports()
256  *
257  * Note for posterity: previously the driver used to define an effective tail
258  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
259  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
260  * This was flawed considering that the OA unit may also automatically generate
261  * non-periodic reports (such as on context switch) or the OA unit may be
262  * enabled without any periodic sampling.
263  */
264 #define OA_TAIL_MARGIN_NSEC	100000ULL
265 #define INVALID_TAIL_PTR	0xffffffff
266 
267 /* The default frequency for checking whether the OA unit has written new
268  * reports to the circular OA buffer...
269  */
270 #define DEFAULT_POLL_FREQUENCY_HZ 200
271 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
272 
273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
274 static u32 i915_perf_stream_paranoid = true;
275 
276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
277  * of the 64bit timestamp bits to trigger reports from) but there's currently
278  * no known use case for sampling as infrequently as once per 47 thousand years.
279  *
280  * Since the timestamps included in OA reports are only 32bits it seems
281  * reasonable to limit the OA exponent where it's still possible to account for
282  * overflow in OA report timestamps.
283  */
284 #define OA_EXPONENT_MAX 31
285 
286 #define INVALID_CTX_ID 0xffffffff
287 
288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
289 #define OAREPORT_REASON_MASK           0x3f
290 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
291 #define OAREPORT_REASON_SHIFT          19
292 #define OAREPORT_REASON_TIMER          (1<<0)
293 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
294 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
295 
296 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
297 
298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
299  *
300  * The highest sampling frequency we can theoretically program the OA unit
301  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
302  *
303  * Initialized just before we register the sysctl parameter.
304  */
305 static int oa_sample_rate_hard_limit;
306 
307 /* Theoretically we can program the OA unit to sample every 160ns but don't
308  * allow that by default unless root...
309  *
310  * The default threshold of 100000Hz is based on perf's similar
311  * kernel.perf_event_max_sample_rate sysctl parameter.
312  */
313 static u32 i915_oa_max_sample_rate = 100000;
314 
315 /* XXX: beware if future OA HW adds new report formats that the current
316  * code assumes all reports have a power-of-two size and ~(size - 1) can
317  * be used as a mask to align the OA tail pointer.
318  */
319 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
320 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
321 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
322 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
323 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
324 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
325 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
326 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
327 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
328 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
329 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
330 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
331 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
332 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
333 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
334 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
335 };
336 
337 static const u32 mtl_oa_base[] = {
338 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
339 };
340 
341 #define SAMPLE_OA_REPORT      (1<<0)
342 
343 /**
344  * struct perf_open_properties - for validated properties given to open a stream
345  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
346  * @single_context: Whether a single or all gpu contexts should be monitored
347  * @hold_preemption: Whether the preemption is disabled for the filtered
348  *                   context
349  * @ctx_handle: A gem ctx handle for use with @single_context
350  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
351  * @oa_format: An OA unit HW report format
352  * @oa_periodic: Whether to enable periodic OA unit sampling
353  * @oa_period_exponent: The OA unit sampling period is derived from this
354  * @engine: The engine (typically rcs0) being monitored by the OA unit
355  * @has_sseu: Whether @sseu was specified by userspace
356  * @sseu: internal SSEU configuration computed either from the userspace
357  *        specified configuration in the opening parameters or a default value
358  *        (see get_default_sseu_config())
359  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
360  * data availability
361  *
362  * As read_properties_unlocked() enumerates and validates the properties given
363  * to open a stream of metrics the configuration is built up in the structure
364  * which starts out zero initialized.
365  */
366 struct perf_open_properties {
367 	u32 sample_flags;
368 
369 	u64 single_context:1;
370 	u64 hold_preemption:1;
371 	u64 ctx_handle;
372 
373 	/* OA sampling state */
374 	int metrics_set;
375 	int oa_format;
376 	bool oa_periodic;
377 	int oa_period_exponent;
378 
379 	struct intel_engine_cs *engine;
380 
381 	bool has_sseu;
382 	struct intel_sseu sseu;
383 
384 	u64 poll_oa_period;
385 };
386 
387 struct i915_oa_config_bo {
388 	struct llist_node node;
389 
390 	struct i915_oa_config *oa_config;
391 	struct i915_vma *vma;
392 };
393 
394 static struct ctl_table_header *sysctl_header;
395 
396 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
397 
398 void i915_oa_config_release(struct kref *ref)
399 {
400 	struct i915_oa_config *oa_config =
401 		container_of(ref, typeof(*oa_config), ref);
402 
403 	kfree(oa_config->flex_regs);
404 	kfree(oa_config->b_counter_regs);
405 	kfree(oa_config->mux_regs);
406 
407 	kfree_rcu(oa_config, rcu);
408 }
409 
410 struct i915_oa_config *
411 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
412 {
413 	struct i915_oa_config *oa_config;
414 
415 	rcu_read_lock();
416 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
417 	if (oa_config)
418 		oa_config = i915_oa_config_get(oa_config);
419 	rcu_read_unlock();
420 
421 	return oa_config;
422 }
423 
424 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
425 {
426 	i915_oa_config_put(oa_bo->oa_config);
427 	i915_vma_put(oa_bo->vma);
428 	kfree(oa_bo);
429 }
430 
431 static inline const
432 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
433 {
434 	return &stream->engine->oa_group->regs;
435 }
436 
437 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
438 {
439 	struct intel_uncore *uncore = stream->uncore;
440 
441 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
442 	       GEN12_OAG_OATAILPTR_MASK;
443 }
444 
445 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
446 {
447 	struct intel_uncore *uncore = stream->uncore;
448 
449 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
450 }
451 
452 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
453 {
454 	struct intel_uncore *uncore = stream->uncore;
455 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
456 
457 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
458 }
459 
460 #define oa_report_header_64bit(__s) \
461 	((__s)->oa_buffer.format->header == HDR_64_BIT)
462 
463 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
464 {
465 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
466 }
467 
468 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
469 {
470 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
471 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
472 		OAREPORT_REASON_MASK_EXTENDED :
473 		OAREPORT_REASON_MASK);
474 }
475 
476 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
477 {
478 	if (oa_report_header_64bit(stream))
479 		*(u64 *)report = 0;
480 	else
481 		*report = 0;
482 }
483 
484 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
485 {
486 	return !(oa_report_id(stream, report) &
487 	       stream->perf->gen8_valid_ctx_bit);
488 }
489 
490 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
491 {
492 	return oa_report_header_64bit(stream) ?
493 		*((u64 *)report + 1) :
494 		*((u32 *)report + 1);
495 }
496 
497 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
498 {
499 	if (oa_report_header_64bit(stream))
500 		*(u64 *)&report[2] = 0;
501 	else
502 		report[1] = 0;
503 }
504 
505 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
506 {
507 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
508 
509 	return ctx_id & stream->specific_ctx_id_mask;
510 }
511 
512 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
513 {
514 	if (oa_report_header_64bit(stream))
515 		report[4] = INVALID_CTX_ID;
516 	else
517 		report[2] = INVALID_CTX_ID;
518 }
519 
520 /**
521  * oa_buffer_check_unlocked - check for data and update tail ptr state
522  * @stream: i915 stream instance
523  *
524  * This is either called via fops (for blocking reads in user ctx) or the poll
525  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
526  * if there is data available for userspace to read.
527  *
528  * This function is central to providing a workaround for the OA unit tail
529  * pointer having a race with respect to what data is visible to the CPU.
530  * It is responsible for reading tail pointers from the hardware and giving
531  * the pointers time to 'age' before they are made available for reading.
532  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
533  *
534  * Besides returning true when there is data available to read() this function
535  * also updates the tail in the oa_buffer object.
536  *
537  * Note: It's safe to read OA config state here unlocked, assuming that this is
538  * only called while the stream is enabled, while the global OA configuration
539  * can't be modified.
540  *
541  * Returns: %true if the OA buffer contains data, else %false
542  */
543 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
544 {
545 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
546 	int report_size = stream->oa_buffer.format->size;
547 	u32 tail, hw_tail;
548 	unsigned long flags;
549 	bool pollin;
550 	u32 partial_report_size;
551 
552 	/*
553 	 * We have to consider the (unlikely) possibility that read() errors
554 	 * could result in an OA buffer reset which might reset the head and
555 	 * tail state.
556 	 */
557 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
558 
559 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
560 	hw_tail -= gtt_offset;
561 
562 	/*
563 	 * The tail pointer increases in 64 byte increments, not in report_size
564 	 * steps. Also the report size may not be a power of 2. Compute
565 	 * potentially partially landed report in the OA buffer
566 	 */
567 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
568 	partial_report_size %= report_size;
569 
570 	/* Subtract partial amount off the tail */
571 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
572 
573 	tail = hw_tail;
574 
575 	/*
576 	 * Walk the stream backward until we find a report with report
577 	 * id and timestamp not at 0. Since the circular buffer pointers
578 	 * progress by increments of 64 bytes and that reports can be up
579 	 * to 256 bytes long, we can't tell whether a report has fully
580 	 * landed in memory before the report id and timestamp of the
581 	 * following report have effectively landed.
582 	 *
583 	 * This is assuming that the writes of the OA unit land in
584 	 * memory in the order they were written to.
585 	 * If not : (╯°□°)╯︵ ┻━┻
586 	 */
587 	while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
588 		void *report = stream->oa_buffer.vaddr + tail;
589 
590 		if (oa_report_id(stream, report) ||
591 		    oa_timestamp(stream, report))
592 			break;
593 
594 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
595 	}
596 
597 	if (OA_TAKEN(hw_tail, tail) > report_size &&
598 	    __ratelimit(&stream->perf->tail_pointer_race))
599 		drm_notice(&stream->uncore->i915->drm,
600 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
601 		 stream->oa_buffer.head, tail, hw_tail);
602 
603 	stream->oa_buffer.tail = tail;
604 
605 	pollin = OA_TAKEN(stream->oa_buffer.tail,
606 			  stream->oa_buffer.head) >= report_size;
607 
608 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
609 
610 	return pollin;
611 }
612 
613 /**
614  * append_oa_status - Appends a status record to a userspace read() buffer.
615  * @stream: An i915-perf stream opened for OA metrics
616  * @buf: destination buffer given by userspace
617  * @count: the number of bytes userspace wants to read
618  * @offset: (inout): the current position for writing into @buf
619  * @type: The kind of status to report to userspace
620  *
621  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
622  * into the userspace read() buffer.
623  *
624  * The @buf @offset will only be updated on success.
625  *
626  * Returns: 0 on success, negative error code on failure.
627  */
628 static int append_oa_status(struct i915_perf_stream *stream,
629 			    char __user *buf,
630 			    size_t count,
631 			    size_t *offset,
632 			    enum drm_i915_perf_record_type type)
633 {
634 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
635 
636 	if ((count - *offset) < header.size)
637 		return -ENOSPC;
638 
639 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
640 		return -EFAULT;
641 
642 	(*offset) += header.size;
643 
644 	return 0;
645 }
646 
647 /**
648  * append_oa_sample - Copies single OA report into userspace read() buffer.
649  * @stream: An i915-perf stream opened for OA metrics
650  * @buf: destination buffer given by userspace
651  * @count: the number of bytes userspace wants to read
652  * @offset: (inout): the current position for writing into @buf
653  * @report: A single OA report to (optionally) include as part of the sample
654  *
655  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
656  * properties when opening a stream, tracked as `stream->sample_flags`. This
657  * function copies the requested components of a single sample to the given
658  * read() @buf.
659  *
660  * The @buf @offset will only be updated on success.
661  *
662  * Returns: 0 on success, negative error code on failure.
663  */
664 static int append_oa_sample(struct i915_perf_stream *stream,
665 			    char __user *buf,
666 			    size_t count,
667 			    size_t *offset,
668 			    const u8 *report)
669 {
670 	int report_size = stream->oa_buffer.format->size;
671 	struct drm_i915_perf_record_header header;
672 	int report_size_partial;
673 	u8 *oa_buf_end;
674 
675 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
676 	header.pad = 0;
677 	header.size = stream->sample_size;
678 
679 	if ((count - *offset) < header.size)
680 		return -ENOSPC;
681 
682 	buf += *offset;
683 	if (copy_to_user(buf, &header, sizeof(header)))
684 		return -EFAULT;
685 	buf += sizeof(header);
686 
687 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
688 	report_size_partial = oa_buf_end - report;
689 
690 	if (report_size_partial < report_size) {
691 		if (copy_to_user(buf, report, report_size_partial))
692 			return -EFAULT;
693 		buf += report_size_partial;
694 
695 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
696 				 report_size - report_size_partial))
697 			return -EFAULT;
698 	} else if (copy_to_user(buf, report, report_size)) {
699 		return -EFAULT;
700 	}
701 
702 	(*offset) += header.size;
703 
704 	return 0;
705 }
706 
707 /**
708  * gen8_append_oa_reports - Copies all buffered OA reports into
709  *			    userspace read() buffer.
710  * @stream: An i915-perf stream opened for OA metrics
711  * @buf: destination buffer given by userspace
712  * @count: the number of bytes userspace wants to read
713  * @offset: (inout): the current position for writing into @buf
714  *
715  * Notably any error condition resulting in a short read (-%ENOSPC or
716  * -%EFAULT) will be returned even though one or more records may
717  * have been successfully copied. In this case it's up to the caller
718  * to decide if the error should be squashed before returning to
719  * userspace.
720  *
721  * Note: reports are consumed from the head, and appended to the
722  * tail, so the tail chases the head?... If you think that's mad
723  * and back-to-front you're not alone, but this follows the
724  * Gen PRM naming convention.
725  *
726  * Returns: 0 on success, negative error code on failure.
727  */
728 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
729 				  char __user *buf,
730 				  size_t count,
731 				  size_t *offset)
732 {
733 	struct intel_uncore *uncore = stream->uncore;
734 	int report_size = stream->oa_buffer.format->size;
735 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
736 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
737 	u32 mask = (OA_BUFFER_SIZE - 1);
738 	size_t start_offset = *offset;
739 	unsigned long flags;
740 	u32 head, tail;
741 	int ret = 0;
742 
743 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
744 		return -EIO;
745 
746 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
747 
748 	head = stream->oa_buffer.head;
749 	tail = stream->oa_buffer.tail;
750 
751 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
752 
753 	/*
754 	 * An out of bounds or misaligned head or tail pointer implies a driver
755 	 * bug since we validate + align the tail pointers we read from the
756 	 * hardware and we are in full control of the head pointer which should
757 	 * only be incremented by multiples of the report size.
758 	 */
759 	if (drm_WARN_ONCE(&uncore->i915->drm,
760 			  head > OA_BUFFER_SIZE ||
761 			  tail > OA_BUFFER_SIZE,
762 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
763 			  head, tail))
764 		return -EIO;
765 
766 
767 	for (/* none */;
768 	     OA_TAKEN(tail, head);
769 	     head = (head + report_size) & mask) {
770 		u8 *report = oa_buf_base + head;
771 		u32 *report32 = (void *)report;
772 		u32 ctx_id;
773 		u64 reason;
774 
775 		/*
776 		 * The reason field includes flags identifying what
777 		 * triggered this specific report (mostly timer
778 		 * triggered or e.g. due to a context switch).
779 		 */
780 		reason = oa_report_reason(stream, report);
781 		ctx_id = oa_context_id(stream, report32);
782 
783 		/*
784 		 * Squash whatever is in the CTX_ID field if it's marked as
785 		 * invalid to be sure we avoid false-positive, single-context
786 		 * filtering below...
787 		 *
788 		 * Note: that we don't clear the valid_ctx_bit so userspace can
789 		 * understand that the ID has been squashed by the kernel.
790 		 *
791 		 * Update:
792 		 *
793 		 * On XEHP platforms the behavior of context id valid bit has
794 		 * changed compared to prior platforms. To describe this, we
795 		 * define a few terms:
796 		 *
797 		 * context-switch-report: This is a report with the reason type
798 		 * being context-switch. It is generated when a context switches
799 		 * out.
800 		 *
801 		 * context-valid-bit: A bit that is set in the report ID field
802 		 * to indicate that a valid context has been loaded.
803 		 *
804 		 * gpu-idle: A condition characterized by a
805 		 * context-switch-report with context-valid-bit set to 0.
806 		 *
807 		 * On prior platforms, context-id-valid bit is set to 0 only
808 		 * when GPU goes idle. In all other reports, it is set to 1.
809 		 *
810 		 * On XEHP platforms, context-valid-bit is set to 1 in a context
811 		 * switch report if a new context switched in. For all other
812 		 * reports it is set to 0.
813 		 *
814 		 * This change in behavior causes an issue with MMIO triggered
815 		 * reports. MMIO triggered reports have the markers in the
816 		 * context ID field and the context-valid-bit is 0. The logic
817 		 * below to squash the context ID would render the report
818 		 * useless since the user will not be able to find it in the OA
819 		 * buffer. Since MMIO triggered reports exist only on XEHP,
820 		 * we should avoid squashing these for XEHP platforms.
821 		 */
822 
823 		if (oa_report_ctx_invalid(stream, report) &&
824 		    GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) {
825 			ctx_id = INVALID_CTX_ID;
826 			oa_context_id_squash(stream, report32);
827 		}
828 
829 		/*
830 		 * NB: For Gen 8 the OA unit no longer supports clock gating
831 		 * off for a specific context and the kernel can't securely
832 		 * stop the counters from updating as system-wide / global
833 		 * values.
834 		 *
835 		 * Automatic reports now include a context ID so reports can be
836 		 * filtered on the cpu but it's not worth trying to
837 		 * automatically subtract/hide counter progress for other
838 		 * contexts while filtering since we can't stop userspace
839 		 * issuing MI_REPORT_PERF_COUNT commands which would still
840 		 * provide a side-band view of the real values.
841 		 *
842 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
843 		 * to normalize counters for a single filtered context then it
844 		 * needs be forwarded bookend context-switch reports so that it
845 		 * can track switches in between MI_REPORT_PERF_COUNT commands
846 		 * and can itself subtract/ignore the progress of counters
847 		 * associated with other contexts. Note that the hardware
848 		 * automatically triggers reports when switching to a new
849 		 * context which are tagged with the ID of the newly active
850 		 * context. To avoid the complexity (and likely fragility) of
851 		 * reading ahead while parsing reports to try and minimize
852 		 * forwarding redundant context switch reports (i.e. between
853 		 * other, unrelated contexts) we simply elect to forward them
854 		 * all.
855 		 *
856 		 * We don't rely solely on the reason field to identify context
857 		 * switches since it's not-uncommon for periodic samples to
858 		 * identify a switch before any 'context switch' report.
859 		 */
860 		if (!stream->ctx ||
861 		    stream->specific_ctx_id == ctx_id ||
862 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
863 		    reason & OAREPORT_REASON_CTX_SWITCH) {
864 
865 			/*
866 			 * While filtering for a single context we avoid
867 			 * leaking the IDs of other contexts.
868 			 */
869 			if (stream->ctx &&
870 			    stream->specific_ctx_id != ctx_id) {
871 				oa_context_id_squash(stream, report32);
872 			}
873 
874 			ret = append_oa_sample(stream, buf, count, offset,
875 					       report);
876 			if (ret)
877 				break;
878 
879 			stream->oa_buffer.last_ctx_id = ctx_id;
880 		}
881 
882 		if (is_power_of_2(report_size)) {
883 			/*
884 			 * Clear out the report id and timestamp as a means
885 			 * to detect unlanded reports.
886 			 */
887 			oa_report_id_clear(stream, report32);
888 			oa_timestamp_clear(stream, report32);
889 		} else {
890 			u8 *oa_buf_end = stream->oa_buffer.vaddr +
891 					 OA_BUFFER_SIZE;
892 			u32 part = oa_buf_end - (u8 *)report32;
893 
894 			/* Zero out the entire report */
895 			if (report_size <= part) {
896 				memset(report32, 0, report_size);
897 			} else {
898 				memset(report32, 0, part);
899 				memset(oa_buf_base, 0, report_size - part);
900 			}
901 		}
902 	}
903 
904 	if (start_offset != *offset) {
905 		i915_reg_t oaheadptr;
906 
907 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
908 			    __oa_regs(stream)->oa_head_ptr :
909 			    GEN8_OAHEADPTR;
910 
911 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
912 
913 		/*
914 		 * We removed the gtt_offset for the copy loop above, indexing
915 		 * relative to oa_buf_base so put back here...
916 		 */
917 		intel_uncore_write(uncore, oaheadptr,
918 				   (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
919 		stream->oa_buffer.head = head;
920 
921 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
922 	}
923 
924 	return ret;
925 }
926 
927 /**
928  * gen8_oa_read - copy status records then buffered OA reports
929  * @stream: An i915-perf stream opened for OA metrics
930  * @buf: destination buffer given by userspace
931  * @count: the number of bytes userspace wants to read
932  * @offset: (inout): the current position for writing into @buf
933  *
934  * Checks OA unit status registers and if necessary appends corresponding
935  * status records for userspace (such as for a buffer full condition) and then
936  * initiate appending any buffered OA reports.
937  *
938  * Updates @offset according to the number of bytes successfully copied into
939  * the userspace buffer.
940  *
941  * NB: some data may be successfully copied to the userspace buffer
942  * even if an error is returned, and this is reflected in the
943  * updated @offset.
944  *
945  * Returns: zero on success or a negative error code
946  */
947 static int gen8_oa_read(struct i915_perf_stream *stream,
948 			char __user *buf,
949 			size_t count,
950 			size_t *offset)
951 {
952 	struct intel_uncore *uncore = stream->uncore;
953 	u32 oastatus;
954 	i915_reg_t oastatus_reg;
955 	int ret;
956 
957 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
958 		return -EIO;
959 
960 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
961 		       __oa_regs(stream)->oa_status :
962 		       GEN8_OASTATUS;
963 
964 	oastatus = intel_uncore_read(uncore, oastatus_reg);
965 
966 	/*
967 	 * We treat OABUFFER_OVERFLOW as a significant error:
968 	 *
969 	 * Although theoretically we could handle this more gracefully
970 	 * sometimes, some Gens don't correctly suppress certain
971 	 * automatically triggered reports in this condition and so we
972 	 * have to assume that old reports are now being trampled
973 	 * over.
974 	 *
975 	 * Considering how we don't currently give userspace control
976 	 * over the OA buffer size and always configure a large 16MB
977 	 * buffer, then a buffer overflow does anyway likely indicate
978 	 * that something has gone quite badly wrong.
979 	 */
980 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
981 		ret = append_oa_status(stream, buf, count, offset,
982 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
983 		if (ret)
984 			return ret;
985 
986 		drm_dbg(&stream->perf->i915->drm,
987 			"OA buffer overflow (exponent = %d): force restart\n",
988 			stream->period_exponent);
989 
990 		stream->perf->ops.oa_disable(stream);
991 		stream->perf->ops.oa_enable(stream);
992 
993 		/*
994 		 * Note: .oa_enable() is expected to re-init the oabuffer and
995 		 * reset GEN8_OASTATUS for us
996 		 */
997 		oastatus = intel_uncore_read(uncore, oastatus_reg);
998 	}
999 
1000 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
1001 		ret = append_oa_status(stream, buf, count, offset,
1002 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1003 		if (ret)
1004 			return ret;
1005 
1006 		intel_uncore_rmw(uncore, oastatus_reg,
1007 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
1008 				 GEN8_OASTATUS_REPORT_LOST,
1009 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1010 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1011 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1012 	}
1013 
1014 	return gen8_append_oa_reports(stream, buf, count, offset);
1015 }
1016 
1017 /**
1018  * gen7_append_oa_reports - Copies all buffered OA reports into
1019  *			    userspace read() buffer.
1020  * @stream: An i915-perf stream opened for OA metrics
1021  * @buf: destination buffer given by userspace
1022  * @count: the number of bytes userspace wants to read
1023  * @offset: (inout): the current position for writing into @buf
1024  *
1025  * Notably any error condition resulting in a short read (-%ENOSPC or
1026  * -%EFAULT) will be returned even though one or more records may
1027  * have been successfully copied. In this case it's up to the caller
1028  * to decide if the error should be squashed before returning to
1029  * userspace.
1030  *
1031  * Note: reports are consumed from the head, and appended to the
1032  * tail, so the tail chases the head?... If you think that's mad
1033  * and back-to-front you're not alone, but this follows the
1034  * Gen PRM naming convention.
1035  *
1036  * Returns: 0 on success, negative error code on failure.
1037  */
1038 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1039 				  char __user *buf,
1040 				  size_t count,
1041 				  size_t *offset)
1042 {
1043 	struct intel_uncore *uncore = stream->uncore;
1044 	int report_size = stream->oa_buffer.format->size;
1045 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1046 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1047 	u32 mask = (OA_BUFFER_SIZE - 1);
1048 	size_t start_offset = *offset;
1049 	unsigned long flags;
1050 	u32 head, tail;
1051 	int ret = 0;
1052 
1053 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1054 		return -EIO;
1055 
1056 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1057 
1058 	head = stream->oa_buffer.head;
1059 	tail = stream->oa_buffer.tail;
1060 
1061 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1062 
1063 	/* An out of bounds or misaligned head or tail pointer implies a driver
1064 	 * bug since we validate + align the tail pointers we read from the
1065 	 * hardware and we are in full control of the head pointer which should
1066 	 * only be incremented by multiples of the report size (notably also
1067 	 * all a power of two).
1068 	 */
1069 	if (drm_WARN_ONCE(&uncore->i915->drm,
1070 			  head > OA_BUFFER_SIZE || head % report_size ||
1071 			  tail > OA_BUFFER_SIZE || tail % report_size,
1072 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1073 			  head, tail))
1074 		return -EIO;
1075 
1076 
1077 	for (/* none */;
1078 	     OA_TAKEN(tail, head);
1079 	     head = (head + report_size) & mask) {
1080 		u8 *report = oa_buf_base + head;
1081 		u32 *report32 = (void *)report;
1082 
1083 		/* All the report sizes factor neatly into the buffer
1084 		 * size so we never expect to see a report split
1085 		 * between the beginning and end of the buffer.
1086 		 *
1087 		 * Given the initial alignment check a misalignment
1088 		 * here would imply a driver bug that would result
1089 		 * in an overrun.
1090 		 */
1091 		if (drm_WARN_ON(&uncore->i915->drm,
1092 				(OA_BUFFER_SIZE - head) < report_size)) {
1093 			drm_err(&uncore->i915->drm,
1094 				"Spurious OA head ptr: non-integral report offset\n");
1095 			break;
1096 		}
1097 
1098 		/* The report-ID field for periodic samples includes
1099 		 * some undocumented flags related to what triggered
1100 		 * the report and is never expected to be zero so we
1101 		 * can check that the report isn't invalid before
1102 		 * copying it to userspace...
1103 		 */
1104 		if (report32[0] == 0) {
1105 			if (__ratelimit(&stream->perf->spurious_report_rs))
1106 				drm_notice(&uncore->i915->drm,
1107 					   "Skipping spurious, invalid OA report\n");
1108 			continue;
1109 		}
1110 
1111 		ret = append_oa_sample(stream, buf, count, offset, report);
1112 		if (ret)
1113 			break;
1114 
1115 		/* Clear out the first 2 dwords as a mean to detect unlanded
1116 		 * reports.
1117 		 */
1118 		report32[0] = 0;
1119 		report32[1] = 0;
1120 	}
1121 
1122 	if (start_offset != *offset) {
1123 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1124 
1125 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1126 				   ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1127 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1128 		stream->oa_buffer.head = head;
1129 
1130 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 /**
1137  * gen7_oa_read - copy status records then buffered OA reports
1138  * @stream: An i915-perf stream opened for OA metrics
1139  * @buf: destination buffer given by userspace
1140  * @count: the number of bytes userspace wants to read
1141  * @offset: (inout): the current position for writing into @buf
1142  *
1143  * Checks Gen 7 specific OA unit status registers and if necessary appends
1144  * corresponding status records for userspace (such as for a buffer full
1145  * condition) and then initiate appending any buffered OA reports.
1146  *
1147  * Updates @offset according to the number of bytes successfully copied into
1148  * the userspace buffer.
1149  *
1150  * Returns: zero on success or a negative error code
1151  */
1152 static int gen7_oa_read(struct i915_perf_stream *stream,
1153 			char __user *buf,
1154 			size_t count,
1155 			size_t *offset)
1156 {
1157 	struct intel_uncore *uncore = stream->uncore;
1158 	u32 oastatus1;
1159 	int ret;
1160 
1161 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1162 		return -EIO;
1163 
1164 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1165 
1166 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1167 	 * bits while the OA unit is enabled (while the tail pointer
1168 	 * may be updated asynchronously) so we ignore status bits
1169 	 * that have already been reported to userspace.
1170 	 */
1171 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1172 
1173 	/* We treat OABUFFER_OVERFLOW as a significant error:
1174 	 *
1175 	 * - The status can be interpreted to mean that the buffer is
1176 	 *   currently full (with a higher precedence than OA_TAKEN()
1177 	 *   which will start to report a near-empty buffer after an
1178 	 *   overflow) but it's awkward that we can't clear the status
1179 	 *   on Haswell, so without a reset we won't be able to catch
1180 	 *   the state again.
1181 	 *
1182 	 * - Since it also implies the HW has started overwriting old
1183 	 *   reports it may also affect our sanity checks for invalid
1184 	 *   reports when copying to userspace that assume new reports
1185 	 *   are being written to cleared memory.
1186 	 *
1187 	 * - In the future we may want to introduce a flight recorder
1188 	 *   mode where the driver will automatically maintain a safe
1189 	 *   guard band between head/tail, avoiding this overflow
1190 	 *   condition, but we avoid the added driver complexity for
1191 	 *   now.
1192 	 */
1193 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1194 		ret = append_oa_status(stream, buf, count, offset,
1195 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1196 		if (ret)
1197 			return ret;
1198 
1199 		drm_dbg(&stream->perf->i915->drm,
1200 			"OA buffer overflow (exponent = %d): force restart\n",
1201 			stream->period_exponent);
1202 
1203 		stream->perf->ops.oa_disable(stream);
1204 		stream->perf->ops.oa_enable(stream);
1205 
1206 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1207 	}
1208 
1209 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1210 		ret = append_oa_status(stream, buf, count, offset,
1211 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1212 		if (ret)
1213 			return ret;
1214 		stream->perf->gen7_latched_oastatus1 |=
1215 			GEN7_OASTATUS1_REPORT_LOST;
1216 	}
1217 
1218 	return gen7_append_oa_reports(stream, buf, count, offset);
1219 }
1220 
1221 /**
1222  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1223  * @stream: An i915-perf stream opened for OA metrics
1224  *
1225  * Called when userspace tries to read() from a blocking stream FD opened
1226  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1227  * OA buffer and wakes us.
1228  *
1229  * Note: it's acceptable to have this return with some false positives
1230  * since any subsequent read handling will return -EAGAIN if there isn't
1231  * really data ready for userspace yet.
1232  *
1233  * Returns: zero on success or a negative error code
1234  */
1235 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1236 {
1237 	/* We would wait indefinitely if periodic sampling is not enabled */
1238 	if (!stream->periodic)
1239 		return -EIO;
1240 
1241 	return wait_event_interruptible(stream->poll_wq,
1242 					oa_buffer_check_unlocked(stream));
1243 }
1244 
1245 /**
1246  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1247  * @stream: An i915-perf stream opened for OA metrics
1248  * @file: An i915 perf stream file
1249  * @wait: poll() state table
1250  *
1251  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1252  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1253  * when it sees data ready to read in the circular OA buffer.
1254  */
1255 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1256 			      struct file *file,
1257 			      poll_table *wait)
1258 {
1259 	poll_wait(file, &stream->poll_wq, wait);
1260 }
1261 
1262 /**
1263  * i915_oa_read - just calls through to &i915_oa_ops->read
1264  * @stream: An i915-perf stream opened for OA metrics
1265  * @buf: destination buffer given by userspace
1266  * @count: the number of bytes userspace wants to read
1267  * @offset: (inout): the current position for writing into @buf
1268  *
1269  * Updates @offset according to the number of bytes successfully copied into
1270  * the userspace buffer.
1271  *
1272  * Returns: zero on success or a negative error code
1273  */
1274 static int i915_oa_read(struct i915_perf_stream *stream,
1275 			char __user *buf,
1276 			size_t count,
1277 			size_t *offset)
1278 {
1279 	return stream->perf->ops.read(stream, buf, count, offset);
1280 }
1281 
1282 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1283 {
1284 	struct i915_gem_engines_iter it;
1285 	struct i915_gem_context *ctx = stream->ctx;
1286 	struct intel_context *ce;
1287 	struct i915_gem_ww_ctx ww;
1288 	int err = -ENODEV;
1289 
1290 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1291 		if (ce->engine != stream->engine) /* first match! */
1292 			continue;
1293 
1294 		err = 0;
1295 		break;
1296 	}
1297 	i915_gem_context_unlock_engines(ctx);
1298 
1299 	if (err)
1300 		return ERR_PTR(err);
1301 
1302 	i915_gem_ww_ctx_init(&ww, true);
1303 retry:
1304 	/*
1305 	 * As the ID is the gtt offset of the context's vma we
1306 	 * pin the vma to ensure the ID remains fixed.
1307 	 */
1308 	err = intel_context_pin_ww(ce, &ww);
1309 	if (err == -EDEADLK) {
1310 		err = i915_gem_ww_ctx_backoff(&ww);
1311 		if (!err)
1312 			goto retry;
1313 	}
1314 	i915_gem_ww_ctx_fini(&ww);
1315 
1316 	if (err)
1317 		return ERR_PTR(err);
1318 
1319 	stream->pinned_ctx = ce;
1320 	return stream->pinned_ctx;
1321 }
1322 
1323 static int
1324 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1325 {
1326 	u32 *cs, cmd;
1327 
1328 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1329 	if (GRAPHICS_VER(rq->i915) >= 8)
1330 		cmd++;
1331 
1332 	cs = intel_ring_begin(rq, 4);
1333 	if (IS_ERR(cs))
1334 		return PTR_ERR(cs);
1335 
1336 	*cs++ = cmd;
1337 	*cs++ = i915_mmio_reg_offset(reg);
1338 	*cs++ = ggtt_offset;
1339 	*cs++ = 0;
1340 
1341 	intel_ring_advance(rq, cs);
1342 
1343 	return 0;
1344 }
1345 
1346 static int
1347 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1348 {
1349 	struct i915_request *rq;
1350 	int err;
1351 
1352 	rq = i915_request_create(ce);
1353 	if (IS_ERR(rq))
1354 		return PTR_ERR(rq);
1355 
1356 	i915_request_get(rq);
1357 
1358 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1359 
1360 	i915_request_add(rq);
1361 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1362 		err = -ETIME;
1363 
1364 	i915_request_put(rq);
1365 
1366 	return err;
1367 }
1368 
1369 static int
1370 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1371 {
1372 	struct i915_vma *scratch;
1373 	u32 *val;
1374 	int err;
1375 
1376 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1377 	if (IS_ERR(scratch))
1378 		return PTR_ERR(scratch);
1379 
1380 	err = i915_vma_sync(scratch);
1381 	if (err)
1382 		goto err_scratch;
1383 
1384 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1385 			 i915_ggtt_offset(scratch));
1386 	if (err)
1387 		goto err_scratch;
1388 
1389 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1390 	if (IS_ERR(val)) {
1391 		err = PTR_ERR(val);
1392 		goto err_scratch;
1393 	}
1394 
1395 	*ctx_id = *val;
1396 	i915_gem_object_unpin_map(scratch->obj);
1397 
1398 err_scratch:
1399 	i915_vma_unpin_and_release(&scratch, 0);
1400 	return err;
1401 }
1402 
1403 /*
1404  * For execlist mode of submission, pick an unused context id
1405  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1406  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1407  *
1408  * For GuC mode of submission read context id from the upper dword of the
1409  * EXECLIST_STATUS register. Note that we read this value only once and expect
1410  * that the value stays fixed for the entire OA use case. There are cases where
1411  * GuC KMD implementation may deregister a context to reuse it's context id, but
1412  * we prevent that from happening to the OA context by pinning it.
1413  */
1414 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1415 {
1416 	u32 ctx_id, mask;
1417 	int ret;
1418 
1419 	if (intel_engine_uses_guc(stream->engine)) {
1420 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1421 		if (ret)
1422 			return ret;
1423 
1424 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1425 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1426 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) {
1427 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1428 			(XEHP_SW_CTX_ID_SHIFT - 32);
1429 
1430 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1431 			(XEHP_SW_CTX_ID_SHIFT - 32);
1432 	} else {
1433 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1434 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1435 
1436 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1437 			(GEN11_SW_CTX_ID_SHIFT - 32);
1438 	}
1439 	stream->specific_ctx_id = ctx_id & mask;
1440 	stream->specific_ctx_id_mask = mask;
1441 
1442 	return 0;
1443 }
1444 
1445 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1446 {
1447 	u32 idx = *offset;
1448 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1449 	bool found = false;
1450 
1451 	idx++;
1452 	for (; idx < len; idx += 2) {
1453 		if (state[idx] == reg) {
1454 			found = true;
1455 			break;
1456 		}
1457 	}
1458 
1459 	*offset = idx;
1460 	return found;
1461 }
1462 
1463 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1464 {
1465 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1466 	u32 *state = ce->lrc_reg_state;
1467 
1468 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1469 		return U32_MAX;
1470 
1471 	for (offset = 0; offset < len; ) {
1472 		if (IS_MI_LRI_CMD(state[offset])) {
1473 			/*
1474 			 * We expect reg-value pairs in MI_LRI command, so
1475 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1476 			 */
1477 			drm_WARN_ON(&ce->engine->i915->drm,
1478 				    MI_LRI_LEN(state[offset]) & 0x1);
1479 
1480 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1481 				break;
1482 		} else {
1483 			offset++;
1484 		}
1485 	}
1486 
1487 	return offset < len ? offset : U32_MAX;
1488 }
1489 
1490 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1491 {
1492 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1493 	struct i915_perf *perf = &ce->engine->i915->perf;
1494 	u32 offset = perf->ctx_oactxctrl_offset;
1495 
1496 	/* Do this only once. Failure is stored as offset of U32_MAX */
1497 	if (offset)
1498 		goto exit;
1499 
1500 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1501 	perf->ctx_oactxctrl_offset = offset;
1502 
1503 	drm_dbg(&ce->engine->i915->drm,
1504 		"%s oa ctx control at 0x%08x dword offset\n",
1505 		ce->engine->name, offset);
1506 
1507 exit:
1508 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1509 }
1510 
1511 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1512 {
1513 	return engine->class == RENDER_CLASS;
1514 }
1515 
1516 /**
1517  * oa_get_render_ctx_id - determine and hold ctx hw id
1518  * @stream: An i915-perf stream opened for OA metrics
1519  *
1520  * Determine the render context hw id, and ensure it remains fixed for the
1521  * lifetime of the stream. This ensures that we don't have to worry about
1522  * updating the context ID in OACONTROL on the fly.
1523  *
1524  * Returns: zero on success or a negative error code
1525  */
1526 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1527 {
1528 	struct intel_context *ce;
1529 	int ret = 0;
1530 
1531 	ce = oa_pin_context(stream);
1532 	if (IS_ERR(ce))
1533 		return PTR_ERR(ce);
1534 
1535 	if (engine_supports_mi_query(stream->engine) &&
1536 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1537 		/*
1538 		 * We are enabling perf query here. If we don't find the context
1539 		 * offset here, just return an error.
1540 		 */
1541 		ret = set_oa_ctx_ctrl_offset(ce);
1542 		if (ret) {
1543 			intel_context_unpin(ce);
1544 			drm_err(&stream->perf->i915->drm,
1545 				"Enabling perf query failed for %s\n",
1546 				stream->engine->name);
1547 			return ret;
1548 		}
1549 	}
1550 
1551 	switch (GRAPHICS_VER(ce->engine->i915)) {
1552 	case 7: {
1553 		/*
1554 		 * On Haswell we don't do any post processing of the reports
1555 		 * and don't need to use the mask.
1556 		 */
1557 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1558 		stream->specific_ctx_id_mask = 0;
1559 		break;
1560 	}
1561 
1562 	case 8:
1563 	case 9:
1564 		if (intel_engine_uses_guc(ce->engine)) {
1565 			/*
1566 			 * When using GuC, the context descriptor we write in
1567 			 * i915 is read by GuC and rewritten before it's
1568 			 * actually written into the hardware. The LRCA is
1569 			 * what is put into the context id field of the
1570 			 * context descriptor by GuC. Because it's aligned to
1571 			 * a page, the lower 12bits are always at 0 and
1572 			 * dropped by GuC. They won't be part of the context
1573 			 * ID in the OA reports, so squash those lower bits.
1574 			 */
1575 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1576 
1577 			/*
1578 			 * GuC uses the top bit to signal proxy submission, so
1579 			 * ignore that bit.
1580 			 */
1581 			stream->specific_ctx_id_mask =
1582 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1583 		} else {
1584 			stream->specific_ctx_id_mask =
1585 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1586 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1587 		}
1588 		break;
1589 
1590 	case 11:
1591 	case 12:
1592 		ret = gen12_get_render_context_id(stream);
1593 		break;
1594 
1595 	default:
1596 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1597 	}
1598 
1599 	ce->tag = stream->specific_ctx_id;
1600 
1601 	drm_dbg(&stream->perf->i915->drm,
1602 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1603 		stream->specific_ctx_id,
1604 		stream->specific_ctx_id_mask);
1605 
1606 	return ret;
1607 }
1608 
1609 /**
1610  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1611  * @stream: An i915-perf stream opened for OA metrics
1612  *
1613  * In case anything needed doing to ensure the context HW ID would remain valid
1614  * for the lifetime of the stream, then that can be undone here.
1615  */
1616 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1617 {
1618 	struct intel_context *ce;
1619 
1620 	ce = fetch_and_zero(&stream->pinned_ctx);
1621 	if (ce) {
1622 		ce->tag = 0; /* recomputed on next submission after parking */
1623 		intel_context_unpin(ce);
1624 	}
1625 
1626 	stream->specific_ctx_id = INVALID_CTX_ID;
1627 	stream->specific_ctx_id_mask = 0;
1628 }
1629 
1630 static void
1631 free_oa_buffer(struct i915_perf_stream *stream)
1632 {
1633 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1634 				   I915_VMA_RELEASE_MAP);
1635 
1636 	stream->oa_buffer.vaddr = NULL;
1637 }
1638 
1639 static void
1640 free_oa_configs(struct i915_perf_stream *stream)
1641 {
1642 	struct i915_oa_config_bo *oa_bo, *tmp;
1643 
1644 	i915_oa_config_put(stream->oa_config);
1645 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1646 		free_oa_config_bo(oa_bo);
1647 }
1648 
1649 static void
1650 free_noa_wait(struct i915_perf_stream *stream)
1651 {
1652 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1653 }
1654 
1655 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1656 {
1657 	return engine->oa_group;
1658 }
1659 
1660 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1661 {
1662 	return engine->oa_group && engine->oa_group->type == type;
1663 }
1664 
1665 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1666 {
1667 	struct i915_perf *perf = stream->perf;
1668 	struct intel_gt *gt = stream->engine->gt;
1669 	struct i915_perf_group *g = stream->engine->oa_group;
1670 	int m;
1671 
1672 	if (WARN_ON(stream != g->exclusive_stream))
1673 		return;
1674 
1675 	/*
1676 	 * Unset exclusive_stream first, it will be checked while disabling
1677 	 * the metric set on gen8+.
1678 	 *
1679 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1680 	 */
1681 	WRITE_ONCE(g->exclusive_stream, NULL);
1682 	perf->ops.disable_metric_set(stream);
1683 
1684 	free_oa_buffer(stream);
1685 
1686 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1687 	intel_engine_pm_put(stream->engine);
1688 
1689 	if (stream->ctx)
1690 		oa_put_render_ctx_id(stream);
1691 
1692 	free_oa_configs(stream);
1693 	free_noa_wait(stream);
1694 
1695 	m = ratelimit_state_get_miss(&perf->spurious_report_rs);
1696 	if (m)
1697 		gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", m);
1698 }
1699 
1700 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1701 {
1702 	struct intel_uncore *uncore = stream->uncore;
1703 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1704 	unsigned long flags;
1705 
1706 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1707 
1708 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1709 	 * before OASTATUS1, but after OASTATUS2
1710 	 */
1711 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1712 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1713 	stream->oa_buffer.head = 0;
1714 
1715 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1716 
1717 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1718 			   gtt_offset | OABUFFER_SIZE_16M);
1719 
1720 	/* Mark that we need updated tail pointers to read from... */
1721 	stream->oa_buffer.tail = 0;
1722 
1723 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1724 
1725 	/* On Haswell we have to track which OASTATUS1 flags we've
1726 	 * already seen since they can't be cleared while periodic
1727 	 * sampling is enabled.
1728 	 */
1729 	stream->perf->gen7_latched_oastatus1 = 0;
1730 
1731 	/* NB: although the OA buffer will initially be allocated
1732 	 * zeroed via shmfs (and so this memset is redundant when
1733 	 * first allocating), we may re-init the OA buffer, either
1734 	 * when re-enabling a stream or in error/reset paths.
1735 	 *
1736 	 * The reason we clear the buffer for each re-init is for the
1737 	 * sanity check in gen7_append_oa_reports() that looks at the
1738 	 * report-id field to make sure it's non-zero which relies on
1739 	 * the assumption that new reports are being written to zeroed
1740 	 * memory...
1741 	 */
1742 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1743 }
1744 
1745 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1746 {
1747 	struct intel_uncore *uncore = stream->uncore;
1748 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1749 	unsigned long flags;
1750 
1751 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1752 
1753 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1754 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1755 	stream->oa_buffer.head = 0;
1756 
1757 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1758 
1759 	/*
1760 	 * PRM says:
1761 	 *
1762 	 *  "This MMIO must be set before the OATAILPTR
1763 	 *  register and after the OAHEADPTR register. This is
1764 	 *  to enable proper functionality of the overflow
1765 	 *  bit."
1766 	 */
1767 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1768 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1769 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1770 
1771 	/* Mark that we need updated tail pointers to read from... */
1772 	stream->oa_buffer.tail = 0;
1773 
1774 	/*
1775 	 * Reset state used to recognise context switches, affecting which
1776 	 * reports we will forward to userspace while filtering for a single
1777 	 * context.
1778 	 */
1779 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1780 
1781 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1782 
1783 	/*
1784 	 * NB: although the OA buffer will initially be allocated
1785 	 * zeroed via shmfs (and so this memset is redundant when
1786 	 * first allocating), we may re-init the OA buffer, either
1787 	 * when re-enabling a stream or in error/reset paths.
1788 	 *
1789 	 * The reason we clear the buffer for each re-init is for the
1790 	 * sanity check in gen8_append_oa_reports() that looks at the
1791 	 * reason field to make sure it's non-zero which relies on
1792 	 * the assumption that new reports are being written to zeroed
1793 	 * memory...
1794 	 */
1795 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1796 }
1797 
1798 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1799 {
1800 	struct intel_uncore *uncore = stream->uncore;
1801 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1802 	unsigned long flags;
1803 
1804 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1805 
1806 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1807 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1808 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1809 	stream->oa_buffer.head = 0;
1810 
1811 	/*
1812 	 * PRM says:
1813 	 *
1814 	 *  "This MMIO must be set before the OATAILPTR
1815 	 *  register and after the OAHEADPTR register. This is
1816 	 *  to enable proper functionality of the overflow
1817 	 *  bit."
1818 	 */
1819 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1820 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1821 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1822 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1823 
1824 	/* Mark that we need updated tail pointers to read from... */
1825 	stream->oa_buffer.tail = 0;
1826 
1827 	/*
1828 	 * Reset state used to recognise context switches, affecting which
1829 	 * reports we will forward to userspace while filtering for a single
1830 	 * context.
1831 	 */
1832 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1833 
1834 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1835 
1836 	/*
1837 	 * NB: although the OA buffer will initially be allocated
1838 	 * zeroed via shmfs (and so this memset is redundant when
1839 	 * first allocating), we may re-init the OA buffer, either
1840 	 * when re-enabling a stream or in error/reset paths.
1841 	 *
1842 	 * The reason we clear the buffer for each re-init is for the
1843 	 * sanity check in gen8_append_oa_reports() that looks at the
1844 	 * reason field to make sure it's non-zero which relies on
1845 	 * the assumption that new reports are being written to zeroed
1846 	 * memory...
1847 	 */
1848 	memset(stream->oa_buffer.vaddr, 0,
1849 	       stream->oa_buffer.vma->size);
1850 }
1851 
1852 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1853 {
1854 	struct drm_i915_private *i915 = stream->perf->i915;
1855 	struct intel_gt *gt = stream->engine->gt;
1856 	struct drm_i915_gem_object *bo;
1857 	struct i915_vma *vma;
1858 	int ret;
1859 
1860 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1861 		return -ENODEV;
1862 
1863 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1864 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1865 
1866 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1867 	if (IS_ERR(bo)) {
1868 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1869 		return PTR_ERR(bo);
1870 	}
1871 
1872 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1873 
1874 	/* PreHSW required 512K alignment, HSW requires 16M */
1875 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1876 	if (IS_ERR(vma)) {
1877 		ret = PTR_ERR(vma);
1878 		goto err_unref;
1879 	}
1880 
1881 	/*
1882 	 * PreHSW required 512K alignment.
1883 	 * HSW and onwards, align to requested size of OA buffer.
1884 	 */
1885 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1886 	if (ret) {
1887 		gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1888 		goto err_unref;
1889 	}
1890 
1891 	stream->oa_buffer.vma = vma;
1892 
1893 	stream->oa_buffer.vaddr =
1894 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1895 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1896 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1897 		goto err_unpin;
1898 	}
1899 
1900 	return 0;
1901 
1902 err_unpin:
1903 	__i915_vma_unpin(vma);
1904 
1905 err_unref:
1906 	i915_gem_object_put(bo);
1907 
1908 	stream->oa_buffer.vaddr = NULL;
1909 	stream->oa_buffer.vma = NULL;
1910 
1911 	return ret;
1912 }
1913 
1914 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1915 				  bool save, i915_reg_t reg, u32 offset,
1916 				  u32 dword_count)
1917 {
1918 	u32 cmd;
1919 	u32 d;
1920 
1921 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1922 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1923 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1924 		cmd++;
1925 
1926 	for (d = 0; d < dword_count; d++) {
1927 		*cs++ = cmd;
1928 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1929 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1930 		*cs++ = 0;
1931 	}
1932 
1933 	return cs;
1934 }
1935 
1936 static int alloc_noa_wait(struct i915_perf_stream *stream)
1937 {
1938 	struct drm_i915_private *i915 = stream->perf->i915;
1939 	struct intel_gt *gt = stream->engine->gt;
1940 	struct drm_i915_gem_object *bo;
1941 	struct i915_vma *vma;
1942 	const u64 delay_ticks = 0xffffffffffffffff -
1943 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1944 		atomic64_read(&stream->perf->noa_programming_delay));
1945 	const u32 base = stream->engine->mmio_base;
1946 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1947 	u32 *batch, *ts0, *cs, *jump;
1948 	struct i915_gem_ww_ctx ww;
1949 	int ret, i;
1950 	enum {
1951 		START_TS,
1952 		NOW_TS,
1953 		DELTA_TS,
1954 		JUMP_PREDICATE,
1955 		DELTA_TARGET,
1956 		N_CS_GPR
1957 	};
1958 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1959 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1960 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1961 
1962 	/*
1963 	 * gt->scratch was being used to save/restore the GPR registers, but on
1964 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1965 	 * causes an engine hang. Instead allocate an additional page here to
1966 	 * save/restore GPR registers
1967 	 */
1968 	bo = i915_gem_object_create_internal(i915, 8192);
1969 	if (IS_ERR(bo)) {
1970 		drm_err(&i915->drm,
1971 			"Failed to allocate NOA wait batchbuffer\n");
1972 		return PTR_ERR(bo);
1973 	}
1974 
1975 	i915_gem_ww_ctx_init(&ww, true);
1976 retry:
1977 	ret = i915_gem_object_lock(bo, &ww);
1978 	if (ret)
1979 		goto out_ww;
1980 
1981 	/*
1982 	 * We pin in GGTT because we jump into this buffer now because
1983 	 * multiple OA config BOs will have a jump to this address and it
1984 	 * needs to be fixed during the lifetime of the i915/perf stream.
1985 	 */
1986 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1987 	if (IS_ERR(vma)) {
1988 		ret = PTR_ERR(vma);
1989 		goto out_ww;
1990 	}
1991 
1992 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1993 	if (ret)
1994 		goto out_ww;
1995 
1996 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1997 	if (IS_ERR(batch)) {
1998 		ret = PTR_ERR(batch);
1999 		goto err_unpin;
2000 	}
2001 
2002 	stream->noa_wait = vma;
2003 
2004 #define GPR_SAVE_OFFSET 4096
2005 #define PREDICATE_SAVE_OFFSET 4160
2006 
2007 	/* Save registers. */
2008 	for (i = 0; i < N_CS_GPR; i++)
2009 		cs = save_restore_register(
2010 			stream, cs, true /* save */, CS_GPR(i),
2011 			GPR_SAVE_OFFSET + 8 * i, 2);
2012 	cs = save_restore_register(
2013 		stream, cs, true /* save */, mi_predicate_result,
2014 		PREDICATE_SAVE_OFFSET, 1);
2015 
2016 	/* First timestamp snapshot location. */
2017 	ts0 = cs;
2018 
2019 	/*
2020 	 * Initial snapshot of the timestamp register to implement the wait.
2021 	 * We work with 32b values, so clear out the top 32b bits of the
2022 	 * register because the ALU works 64bits.
2023 	 */
2024 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2025 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2026 	*cs++ = 0;
2027 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2028 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2029 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2030 
2031 	/*
2032 	 * This is the location we're going to jump back into until the
2033 	 * required amount of time has passed.
2034 	 */
2035 	jump = cs;
2036 
2037 	/*
2038 	 * Take another snapshot of the timestamp register. Take care to clear
2039 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2040 	 * operations below.
2041 	 */
2042 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2043 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2044 	*cs++ = 0;
2045 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2046 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2047 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2048 
2049 	/*
2050 	 * Do a diff between the 2 timestamps and store the result back into
2051 	 * CS_GPR(1).
2052 	 */
2053 	*cs++ = MI_MATH(5);
2054 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2055 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2056 	*cs++ = MI_MATH_SUB;
2057 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2058 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2059 
2060 	/*
2061 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2062 	 * timestamp have rolled over the 32bits) into the predicate register
2063 	 * to be used for the predicated jump.
2064 	 */
2065 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2066 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2067 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2068 
2069 	if (HAS_MI_SET_PREDICATE(i915))
2070 		*cs++ = MI_SET_PREDICATE | 1;
2071 
2072 	/* Restart from the beginning if we had timestamps roll over. */
2073 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2074 		 MI_BATCH_BUFFER_START :
2075 		 MI_BATCH_BUFFER_START_GEN8) |
2076 		MI_BATCH_PREDICATE;
2077 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2078 	*cs++ = 0;
2079 
2080 	if (HAS_MI_SET_PREDICATE(i915))
2081 		*cs++ = MI_SET_PREDICATE;
2082 
2083 	/*
2084 	 * Now add the diff between to previous timestamps and add it to :
2085 	 *      (((1 * << 64) - 1) - delay_ns)
2086 	 *
2087 	 * When the Carry Flag contains 1 this means the elapsed time is
2088 	 * longer than the expected delay, and we can exit the wait loop.
2089 	 */
2090 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2091 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2092 	*cs++ = lower_32_bits(delay_ticks);
2093 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2094 	*cs++ = upper_32_bits(delay_ticks);
2095 
2096 	*cs++ = MI_MATH(4);
2097 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2098 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2099 	*cs++ = MI_MATH_ADD;
2100 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2101 
2102 	*cs++ = MI_ARB_CHECK;
2103 
2104 	/*
2105 	 * Transfer the result into the predicate register to be used for the
2106 	 * predicated jump.
2107 	 */
2108 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2109 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2110 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2111 
2112 	if (HAS_MI_SET_PREDICATE(i915))
2113 		*cs++ = MI_SET_PREDICATE | 1;
2114 
2115 	/* Predicate the jump.  */
2116 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2117 		 MI_BATCH_BUFFER_START :
2118 		 MI_BATCH_BUFFER_START_GEN8) |
2119 		MI_BATCH_PREDICATE;
2120 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2121 	*cs++ = 0;
2122 
2123 	if (HAS_MI_SET_PREDICATE(i915))
2124 		*cs++ = MI_SET_PREDICATE;
2125 
2126 	/* Restore registers. */
2127 	for (i = 0; i < N_CS_GPR; i++)
2128 		cs = save_restore_register(
2129 			stream, cs, false /* restore */, CS_GPR(i),
2130 			GPR_SAVE_OFFSET + 8 * i, 2);
2131 	cs = save_restore_register(
2132 		stream, cs, false /* restore */, mi_predicate_result,
2133 		PREDICATE_SAVE_OFFSET, 1);
2134 
2135 	/* And return to the ring. */
2136 	*cs++ = MI_BATCH_BUFFER_END;
2137 
2138 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2139 
2140 	i915_gem_object_flush_map(bo);
2141 	__i915_gem_object_release_map(bo);
2142 
2143 	goto out_ww;
2144 
2145 err_unpin:
2146 	i915_vma_unpin_and_release(&vma, 0);
2147 out_ww:
2148 	if (ret == -EDEADLK) {
2149 		ret = i915_gem_ww_ctx_backoff(&ww);
2150 		if (!ret)
2151 			goto retry;
2152 	}
2153 	i915_gem_ww_ctx_fini(&ww);
2154 	if (ret)
2155 		i915_gem_object_put(bo);
2156 	return ret;
2157 }
2158 
2159 static u32 *write_cs_mi_lri(u32 *cs,
2160 			    const struct i915_oa_reg *reg_data,
2161 			    u32 n_regs)
2162 {
2163 	u32 i;
2164 
2165 	for (i = 0; i < n_regs; i++) {
2166 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2167 			u32 n_lri = min_t(u32,
2168 					  n_regs - i,
2169 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2170 
2171 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2172 		}
2173 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2174 		*cs++ = reg_data[i].value;
2175 	}
2176 
2177 	return cs;
2178 }
2179 
2180 static int num_lri_dwords(int num_regs)
2181 {
2182 	int count = 0;
2183 
2184 	if (num_regs > 0) {
2185 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2186 		count += num_regs * 2;
2187 	}
2188 
2189 	return count;
2190 }
2191 
2192 static struct i915_oa_config_bo *
2193 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2194 		       struct i915_oa_config *oa_config)
2195 {
2196 	struct drm_i915_gem_object *obj;
2197 	struct i915_oa_config_bo *oa_bo;
2198 	struct i915_gem_ww_ctx ww;
2199 	size_t config_length = 0;
2200 	u32 *cs;
2201 	int err;
2202 
2203 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2204 	if (!oa_bo)
2205 		return ERR_PTR(-ENOMEM);
2206 
2207 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2208 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2209 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2210 	config_length += 3; /* MI_BATCH_BUFFER_START */
2211 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2212 
2213 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2214 	if (IS_ERR(obj)) {
2215 		err = PTR_ERR(obj);
2216 		goto err_free;
2217 	}
2218 
2219 	i915_gem_ww_ctx_init(&ww, true);
2220 retry:
2221 	err = i915_gem_object_lock(obj, &ww);
2222 	if (err)
2223 		goto out_ww;
2224 
2225 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2226 	if (IS_ERR(cs)) {
2227 		err = PTR_ERR(cs);
2228 		goto out_ww;
2229 	}
2230 
2231 	cs = write_cs_mi_lri(cs,
2232 			     oa_config->mux_regs,
2233 			     oa_config->mux_regs_len);
2234 	cs = write_cs_mi_lri(cs,
2235 			     oa_config->b_counter_regs,
2236 			     oa_config->b_counter_regs_len);
2237 	cs = write_cs_mi_lri(cs,
2238 			     oa_config->flex_regs,
2239 			     oa_config->flex_regs_len);
2240 
2241 	/* Jump into the active wait. */
2242 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2243 		 MI_BATCH_BUFFER_START :
2244 		 MI_BATCH_BUFFER_START_GEN8);
2245 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2246 	*cs++ = 0;
2247 
2248 	i915_gem_object_flush_map(obj);
2249 	__i915_gem_object_release_map(obj);
2250 
2251 	oa_bo->vma = i915_vma_instance(obj,
2252 				       &stream->engine->gt->ggtt->vm,
2253 				       NULL);
2254 	if (IS_ERR(oa_bo->vma)) {
2255 		err = PTR_ERR(oa_bo->vma);
2256 		goto out_ww;
2257 	}
2258 
2259 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2260 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2261 
2262 out_ww:
2263 	if (err == -EDEADLK) {
2264 		err = i915_gem_ww_ctx_backoff(&ww);
2265 		if (!err)
2266 			goto retry;
2267 	}
2268 	i915_gem_ww_ctx_fini(&ww);
2269 
2270 	if (err)
2271 		i915_gem_object_put(obj);
2272 err_free:
2273 	if (err) {
2274 		kfree(oa_bo);
2275 		return ERR_PTR(err);
2276 	}
2277 	return oa_bo;
2278 }
2279 
2280 static struct i915_vma *
2281 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2282 {
2283 	struct i915_oa_config_bo *oa_bo;
2284 
2285 	/*
2286 	 * Look for the buffer in the already allocated BOs attached
2287 	 * to the stream.
2288 	 */
2289 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2290 		if (oa_bo->oa_config == oa_config &&
2291 		    memcmp(oa_bo->oa_config->uuid,
2292 			   oa_config->uuid,
2293 			   sizeof(oa_config->uuid)) == 0)
2294 			goto out;
2295 	}
2296 
2297 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2298 	if (IS_ERR(oa_bo))
2299 		return ERR_CAST(oa_bo);
2300 
2301 out:
2302 	return i915_vma_get(oa_bo->vma);
2303 }
2304 
2305 static int
2306 emit_oa_config(struct i915_perf_stream *stream,
2307 	       struct i915_oa_config *oa_config,
2308 	       struct intel_context *ce,
2309 	       struct i915_active *active)
2310 {
2311 	struct i915_request *rq;
2312 	struct i915_vma *vma;
2313 	struct i915_gem_ww_ctx ww;
2314 	int err;
2315 
2316 	vma = get_oa_vma(stream, oa_config);
2317 	if (IS_ERR(vma))
2318 		return PTR_ERR(vma);
2319 
2320 	i915_gem_ww_ctx_init(&ww, true);
2321 retry:
2322 	err = i915_gem_object_lock(vma->obj, &ww);
2323 	if (err)
2324 		goto err;
2325 
2326 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2327 	if (err)
2328 		goto err;
2329 
2330 	intel_engine_pm_get(ce->engine);
2331 	rq = i915_request_create(ce);
2332 	intel_engine_pm_put(ce->engine);
2333 	if (IS_ERR(rq)) {
2334 		err = PTR_ERR(rq);
2335 		goto err_vma_unpin;
2336 	}
2337 
2338 	if (!IS_ERR_OR_NULL(active)) {
2339 		/* After all individual context modifications */
2340 		err = i915_request_await_active(rq, active,
2341 						I915_ACTIVE_AWAIT_ACTIVE);
2342 		if (err)
2343 			goto err_add_request;
2344 
2345 		err = i915_active_add_request(active, rq);
2346 		if (err)
2347 			goto err_add_request;
2348 	}
2349 
2350 	err = i915_vma_move_to_active(vma, rq, 0);
2351 	if (err)
2352 		goto err_add_request;
2353 
2354 	err = rq->engine->emit_bb_start(rq,
2355 					i915_vma_offset(vma), 0,
2356 					I915_DISPATCH_SECURE);
2357 	if (err)
2358 		goto err_add_request;
2359 
2360 err_add_request:
2361 	i915_request_add(rq);
2362 err_vma_unpin:
2363 	i915_vma_unpin(vma);
2364 err:
2365 	if (err == -EDEADLK) {
2366 		err = i915_gem_ww_ctx_backoff(&ww);
2367 		if (!err)
2368 			goto retry;
2369 	}
2370 
2371 	i915_gem_ww_ctx_fini(&ww);
2372 	i915_vma_put(vma);
2373 	return err;
2374 }
2375 
2376 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2377 {
2378 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2379 }
2380 
2381 static int
2382 hsw_enable_metric_set(struct i915_perf_stream *stream,
2383 		      struct i915_active *active)
2384 {
2385 	struct intel_uncore *uncore = stream->uncore;
2386 
2387 	/*
2388 	 * PRM:
2389 	 *
2390 	 * OA unit is using “crclk” for its functionality. When trunk
2391 	 * level clock gating takes place, OA clock would be gated,
2392 	 * unable to count the events from non-render clock domain.
2393 	 * Render clock gating must be disabled when OA is enabled to
2394 	 * count the events from non-render domain. Unit level clock
2395 	 * gating for RCS should also be disabled.
2396 	 */
2397 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2398 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2399 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2400 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2401 
2402 	return emit_oa_config(stream,
2403 			      stream->oa_config, oa_context(stream),
2404 			      active);
2405 }
2406 
2407 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2408 {
2409 	struct intel_uncore *uncore = stream->uncore;
2410 
2411 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2412 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2413 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2414 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2415 
2416 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2417 }
2418 
2419 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2420 			      i915_reg_t reg)
2421 {
2422 	u32 mmio = i915_mmio_reg_offset(reg);
2423 	int i;
2424 
2425 	/*
2426 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2427 	 * Active' event. In the future it's anticipated that there
2428 	 * will be an explicit 'No Event' we can select, but not yet...
2429 	 */
2430 	if (!oa_config)
2431 		return 0;
2432 
2433 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2434 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2435 			return oa_config->flex_regs[i].value;
2436 	}
2437 
2438 	return 0;
2439 }
2440 /*
2441  * NB: It must always remain pointer safe to run this even if the OA unit
2442  * has been disabled.
2443  *
2444  * It's fine to put out-of-date values into these per-context registers
2445  * in the case that the OA unit has been disabled.
2446  */
2447 static void
2448 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2449 			       const struct i915_perf_stream *stream)
2450 {
2451 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2452 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2453 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2454 	static const i915_reg_t flex_regs[] = {
2455 		EU_PERF_CNTL0,
2456 		EU_PERF_CNTL1,
2457 		EU_PERF_CNTL2,
2458 		EU_PERF_CNTL3,
2459 		EU_PERF_CNTL4,
2460 		EU_PERF_CNTL5,
2461 		EU_PERF_CNTL6,
2462 	};
2463 	u32 *reg_state = ce->lrc_reg_state;
2464 	int i;
2465 
2466 	reg_state[ctx_oactxctrl + 1] =
2467 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2468 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2469 		GEN8_OA_COUNTER_RESUME;
2470 
2471 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2472 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2473 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2474 }
2475 
2476 struct flex {
2477 	i915_reg_t reg;
2478 	u32 offset;
2479 	u32 value;
2480 };
2481 
2482 static int
2483 gen8_store_flex(struct i915_request *rq,
2484 		struct intel_context *ce,
2485 		const struct flex *flex, unsigned int count)
2486 {
2487 	u32 offset;
2488 	u32 *cs;
2489 
2490 	cs = intel_ring_begin(rq, 4 * count);
2491 	if (IS_ERR(cs))
2492 		return PTR_ERR(cs);
2493 
2494 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2495 	do {
2496 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2497 		*cs++ = offset + flex->offset * sizeof(u32);
2498 		*cs++ = 0;
2499 		*cs++ = flex->value;
2500 	} while (flex++, --count);
2501 
2502 	intel_ring_advance(rq, cs);
2503 
2504 	return 0;
2505 }
2506 
2507 static int
2508 gen8_load_flex(struct i915_request *rq,
2509 	       struct intel_context *ce,
2510 	       const struct flex *flex, unsigned int count)
2511 {
2512 	u32 *cs;
2513 
2514 	GEM_BUG_ON(!count || count > 63);
2515 
2516 	cs = intel_ring_begin(rq, 2 * count + 2);
2517 	if (IS_ERR(cs))
2518 		return PTR_ERR(cs);
2519 
2520 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2521 	do {
2522 		*cs++ = i915_mmio_reg_offset(flex->reg);
2523 		*cs++ = flex->value;
2524 	} while (flex++, --count);
2525 	*cs++ = MI_NOOP;
2526 
2527 	intel_ring_advance(rq, cs);
2528 
2529 	return 0;
2530 }
2531 
2532 static int gen8_modify_context(struct intel_context *ce,
2533 			       const struct flex *flex, unsigned int count)
2534 {
2535 	struct i915_request *rq;
2536 	int err;
2537 
2538 	rq = intel_engine_create_kernel_request(ce->engine);
2539 	if (IS_ERR(rq))
2540 		return PTR_ERR(rq);
2541 
2542 	/* Serialise with the remote context */
2543 	err = intel_context_prepare_remote_request(ce, rq);
2544 	if (err == 0)
2545 		err = gen8_store_flex(rq, ce, flex, count);
2546 
2547 	i915_request_add(rq);
2548 	return err;
2549 }
2550 
2551 static int
2552 gen8_modify_self(struct intel_context *ce,
2553 		 const struct flex *flex, unsigned int count,
2554 		 struct i915_active *active)
2555 {
2556 	struct i915_request *rq;
2557 	int err;
2558 
2559 	intel_engine_pm_get(ce->engine);
2560 	rq = i915_request_create(ce);
2561 	intel_engine_pm_put(ce->engine);
2562 	if (IS_ERR(rq))
2563 		return PTR_ERR(rq);
2564 
2565 	if (!IS_ERR_OR_NULL(active)) {
2566 		err = i915_active_add_request(active, rq);
2567 		if (err)
2568 			goto err_add_request;
2569 	}
2570 
2571 	err = gen8_load_flex(rq, ce, flex, count);
2572 	if (err)
2573 		goto err_add_request;
2574 
2575 err_add_request:
2576 	i915_request_add(rq);
2577 	return err;
2578 }
2579 
2580 static int gen8_configure_context(struct i915_perf_stream *stream,
2581 				  struct i915_gem_context *ctx,
2582 				  struct flex *flex, unsigned int count)
2583 {
2584 	struct i915_gem_engines_iter it;
2585 	struct intel_context *ce;
2586 	int err = 0;
2587 
2588 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2589 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2590 
2591 		if (ce->engine->class != RENDER_CLASS)
2592 			continue;
2593 
2594 		/* Otherwise OA settings will be set upon first use */
2595 		if (!intel_context_pin_if_active(ce))
2596 			continue;
2597 
2598 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2599 		err = gen8_modify_context(ce, flex, count);
2600 
2601 		intel_context_unpin(ce);
2602 		if (err)
2603 			break;
2604 	}
2605 	i915_gem_context_unlock_engines(ctx);
2606 
2607 	return err;
2608 }
2609 
2610 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2611 				       struct i915_active *active)
2612 {
2613 	int err;
2614 	struct intel_context *ce = stream->pinned_ctx;
2615 	u32 format = stream->oa_buffer.format->format;
2616 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2617 	struct flex regs_context[] = {
2618 		{
2619 			GEN8_OACTXCONTROL,
2620 			offset + 1,
2621 			active ? GEN8_OA_COUNTER_RESUME : 0,
2622 		},
2623 	};
2624 	/* Offsets in regs_lri are not used since this configuration is only
2625 	 * applied using LRI. Initialize the correct offsets for posterity.
2626 	 */
2627 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2628 	struct flex regs_lri[] = {
2629 		{
2630 			GEN12_OAR_OACONTROL,
2631 			GEN12_OAR_OACONTROL_OFFSET + 1,
2632 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2633 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2634 		},
2635 		{
2636 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2637 			CTX_CONTEXT_CONTROL,
2638 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2639 				      active ?
2640 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2641 				      0)
2642 		},
2643 	};
2644 
2645 	/* Modify the context image of pinned context with regs_context */
2646 	err = intel_context_lock_pinned(ce);
2647 	if (err)
2648 		return err;
2649 
2650 	err = gen8_modify_context(ce, regs_context,
2651 				  ARRAY_SIZE(regs_context));
2652 	intel_context_unlock_pinned(ce);
2653 	if (err)
2654 		return err;
2655 
2656 	/* Apply regs_lri using LRI with pinned context */
2657 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2658 }
2659 
2660 /*
2661  * Manages updating the per-context aspects of the OA stream
2662  * configuration across all contexts.
2663  *
2664  * The awkward consideration here is that OACTXCONTROL controls the
2665  * exponent for periodic sampling which is primarily used for system
2666  * wide profiling where we'd like a consistent sampling period even in
2667  * the face of context switches.
2668  *
2669  * Our approach of updating the register state context (as opposed to
2670  * say using a workaround batch buffer) ensures that the hardware
2671  * won't automatically reload an out-of-date timer exponent even
2672  * transiently before a WA BB could be parsed.
2673  *
2674  * This function needs to:
2675  * - Ensure the currently running context's per-context OA state is
2676  *   updated
2677  * - Ensure that all existing contexts will have the correct per-context
2678  *   OA state if they are scheduled for use.
2679  * - Ensure any new contexts will be initialized with the correct
2680  *   per-context OA state.
2681  *
2682  * Note: it's only the RCS/Render context that has any OA state.
2683  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2684  */
2685 static int
2686 oa_configure_all_contexts(struct i915_perf_stream *stream,
2687 			  struct flex *regs,
2688 			  size_t num_regs,
2689 			  struct i915_active *active)
2690 {
2691 	struct drm_i915_private *i915 = stream->perf->i915;
2692 	struct intel_engine_cs *engine;
2693 	struct intel_gt *gt = stream->engine->gt;
2694 	struct i915_gem_context *ctx, *cn;
2695 	int err;
2696 
2697 	lockdep_assert_held(&gt->perf.lock);
2698 
2699 	/*
2700 	 * The OA register config is setup through the context image. This image
2701 	 * might be written to by the GPU on context switch (in particular on
2702 	 * lite-restore). This means we can't safely update a context's image,
2703 	 * if this context is scheduled/submitted to run on the GPU.
2704 	 *
2705 	 * We could emit the OA register config through the batch buffer but
2706 	 * this might leave small interval of time where the OA unit is
2707 	 * configured at an invalid sampling period.
2708 	 *
2709 	 * Note that since we emit all requests from a single ring, there
2710 	 * is still an implicit global barrier here that may cause a high
2711 	 * priority context to wait for an otherwise independent low priority
2712 	 * context. Contexts idle at the time of reconfiguration are not
2713 	 * trapped behind the barrier.
2714 	 */
2715 	spin_lock(&i915->gem.contexts.lock);
2716 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2717 		if (!kref_get_unless_zero(&ctx->ref))
2718 			continue;
2719 
2720 		spin_unlock(&i915->gem.contexts.lock);
2721 
2722 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2723 		if (err) {
2724 			i915_gem_context_put(ctx);
2725 			return err;
2726 		}
2727 
2728 		spin_lock(&i915->gem.contexts.lock);
2729 		list_safe_reset_next(ctx, cn, link);
2730 		i915_gem_context_put(ctx);
2731 	}
2732 	spin_unlock(&i915->gem.contexts.lock);
2733 
2734 	/*
2735 	 * After updating all other contexts, we need to modify ourselves.
2736 	 * If we don't modify the kernel_context, we do not get events while
2737 	 * idle.
2738 	 */
2739 	for_each_uabi_engine(engine, i915) {
2740 		struct intel_context *ce = engine->kernel_context;
2741 
2742 		if (engine->class != RENDER_CLASS)
2743 			continue;
2744 
2745 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2746 
2747 		err = gen8_modify_self(ce, regs, num_regs, active);
2748 		if (err)
2749 			return err;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static int
2756 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2757 			   const struct i915_oa_config *oa_config,
2758 			   struct i915_active *active)
2759 {
2760 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2761 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2762 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2763 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2764 	struct flex regs[] = {
2765 		{
2766 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2767 			CTX_R_PWR_CLK_STATE,
2768 		},
2769 		{
2770 			GEN8_OACTXCONTROL,
2771 			ctx_oactxctrl + 1,
2772 		},
2773 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2774 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2775 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2776 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2777 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2778 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2779 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2780 	};
2781 #undef ctx_flexeuN
2782 	int i;
2783 
2784 	regs[1].value =
2785 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2786 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2787 		GEN8_OA_COUNTER_RESUME;
2788 
2789 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2790 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2791 
2792 	return oa_configure_all_contexts(stream,
2793 					 regs, ARRAY_SIZE(regs),
2794 					 active);
2795 }
2796 
2797 static int
2798 gen8_enable_metric_set(struct i915_perf_stream *stream,
2799 		       struct i915_active *active)
2800 {
2801 	struct intel_uncore *uncore = stream->uncore;
2802 	struct i915_oa_config *oa_config = stream->oa_config;
2803 	int ret;
2804 
2805 	/*
2806 	 * We disable slice/unslice clock ratio change reports on SKL since
2807 	 * they are too noisy. The HW generates a lot of redundant reports
2808 	 * where the ratio hasn't really changed causing a lot of redundant
2809 	 * work to processes and increasing the chances we'll hit buffer
2810 	 * overruns.
2811 	 *
2812 	 * Although we don't currently use the 'disable overrun' OABUFFER
2813 	 * feature it's worth noting that clock ratio reports have to be
2814 	 * disabled before considering to use that feature since the HW doesn't
2815 	 * correctly block these reports.
2816 	 *
2817 	 * Currently none of the high-level metrics we have depend on knowing
2818 	 * this ratio to normalize.
2819 	 *
2820 	 * Note: This register is not power context saved and restored, but
2821 	 * that's OK considering that we disable RC6 while the OA unit is
2822 	 * enabled.
2823 	 *
2824 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2825 	 * be read back from automatically triggered reports, as part of the
2826 	 * RPT_ID field.
2827 	 */
2828 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2829 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2830 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2831 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2832 	}
2833 
2834 	/*
2835 	 * Update all contexts prior writing the mux configurations as we need
2836 	 * to make sure all slices/subslices are ON before writing to NOA
2837 	 * registers.
2838 	 */
2839 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2840 	if (ret)
2841 		return ret;
2842 
2843 	return emit_oa_config(stream,
2844 			      stream->oa_config, oa_context(stream),
2845 			      active);
2846 }
2847 
2848 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2849 {
2850 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2851 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2852 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2853 }
2854 
2855 static int
2856 gen12_enable_metric_set(struct i915_perf_stream *stream,
2857 			struct i915_active *active)
2858 {
2859 	struct drm_i915_private *i915 = stream->perf->i915;
2860 	struct intel_uncore *uncore = stream->uncore;
2861 	bool periodic = stream->periodic;
2862 	u32 period_exponent = stream->period_exponent;
2863 	u32 sqcnt1;
2864 	int ret;
2865 
2866 	/*
2867 	 * Wa_1508761755
2868 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2869 	 * Disable thread stall DOP gating and EU DOP gating.
2870 	 */
2871 	if (IS_DG2(i915)) {
2872 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2873 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2874 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2875 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2876 	}
2877 
2878 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2879 			   /* Disable clk ratio reports, like previous Gens. */
2880 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2881 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2882 			   /*
2883 			    * If the user didn't require OA reports, instruct
2884 			    * the hardware not to emit ctx switch reports.
2885 			    */
2886 			   oag_report_ctx_switches(stream));
2887 
2888 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2889 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2890 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2891 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2892 			    : 0);
2893 
2894 	/*
2895 	 * Initialize Super Queue Internal Cnt Register
2896 	 * Set PMON Enable in order to collect valid metrics.
2897 	 * Enable bytes per clock reporting in OA.
2898 	 */
2899 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2900 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2901 
2902 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2903 
2904 	/*
2905 	 * For Gen12, performance counters are context
2906 	 * saved/restored. Only enable it for the context that
2907 	 * requested this.
2908 	 */
2909 	if (stream->ctx) {
2910 		ret = gen12_configure_oar_context(stream, active);
2911 		if (ret)
2912 			return ret;
2913 	}
2914 
2915 	return emit_oa_config(stream,
2916 			      stream->oa_config, oa_context(stream),
2917 			      active);
2918 }
2919 
2920 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2921 {
2922 	struct intel_uncore *uncore = stream->uncore;
2923 
2924 	/* Reset all contexts' slices/subslices configurations. */
2925 	lrc_configure_all_contexts(stream, NULL, NULL);
2926 
2927 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2928 }
2929 
2930 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2931 {
2932 	struct intel_uncore *uncore = stream->uncore;
2933 
2934 	/* Reset all contexts' slices/subslices configurations. */
2935 	lrc_configure_all_contexts(stream, NULL, NULL);
2936 
2937 	/* Make sure we disable noa to save power. */
2938 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2939 }
2940 
2941 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2942 {
2943 	struct intel_uncore *uncore = stream->uncore;
2944 	struct drm_i915_private *i915 = stream->perf->i915;
2945 	u32 sqcnt1;
2946 
2947 	/*
2948 	 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating.
2949 	 */
2950 	if (IS_DG2(i915)) {
2951 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2952 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2953 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2954 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2955 	}
2956 
2957 	/* disable the context save/restore or OAR counters */
2958 	if (stream->ctx)
2959 		gen12_configure_oar_context(stream, NULL);
2960 
2961 	/* Make sure we disable noa to save power. */
2962 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2963 
2964 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2965 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2966 
2967 	/* Reset PMON Enable to save power. */
2968 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2969 }
2970 
2971 static void gen7_oa_enable(struct i915_perf_stream *stream)
2972 {
2973 	struct intel_uncore *uncore = stream->uncore;
2974 	struct i915_gem_context *ctx = stream->ctx;
2975 	u32 ctx_id = stream->specific_ctx_id;
2976 	bool periodic = stream->periodic;
2977 	u32 period_exponent = stream->period_exponent;
2978 	u32 report_format = stream->oa_buffer.format->format;
2979 
2980 	/*
2981 	 * Reset buf pointers so we don't forward reports from before now.
2982 	 *
2983 	 * Think carefully if considering trying to avoid this, since it
2984 	 * also ensures status flags and the buffer itself are cleared
2985 	 * in error paths, and we have checks for invalid reports based
2986 	 * on the assumption that certain fields are written to zeroed
2987 	 * memory which this helps maintains.
2988 	 */
2989 	gen7_init_oa_buffer(stream);
2990 
2991 	intel_uncore_write(uncore, GEN7_OACONTROL,
2992 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2993 			   (period_exponent <<
2994 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2995 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2996 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2997 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2998 			   GEN7_OACONTROL_ENABLE);
2999 }
3000 
3001 static void gen8_oa_enable(struct i915_perf_stream *stream)
3002 {
3003 	struct intel_uncore *uncore = stream->uncore;
3004 	u32 report_format = stream->oa_buffer.format->format;
3005 
3006 	/*
3007 	 * Reset buf pointers so we don't forward reports from before now.
3008 	 *
3009 	 * Think carefully if considering trying to avoid this, since it
3010 	 * also ensures status flags and the buffer itself are cleared
3011 	 * in error paths, and we have checks for invalid reports based
3012 	 * on the assumption that certain fields are written to zeroed
3013 	 * memory which this helps maintains.
3014 	 */
3015 	gen8_init_oa_buffer(stream);
3016 
3017 	/*
3018 	 * Note: we don't rely on the hardware to perform single context
3019 	 * filtering and instead filter on the cpu based on the context-id
3020 	 * field of reports
3021 	 */
3022 	intel_uncore_write(uncore, GEN8_OACONTROL,
3023 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3024 			   GEN8_OA_COUNTER_ENABLE);
3025 }
3026 
3027 static void gen12_oa_enable(struct i915_perf_stream *stream)
3028 {
3029 	const struct i915_perf_regs *regs;
3030 	u32 val;
3031 
3032 	/*
3033 	 * If we don't want OA reports from the OA buffer, then we don't even
3034 	 * need to program the OAG unit.
3035 	 */
3036 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3037 		return;
3038 
3039 	gen12_init_oa_buffer(stream);
3040 
3041 	regs = __oa_regs(stream);
3042 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3043 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3044 
3045 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3046 }
3047 
3048 /**
3049  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3050  * @stream: An i915 perf stream opened for OA metrics
3051  *
3052  * [Re]enables hardware periodic sampling according to the period configured
3053  * when opening the stream. This also starts a hrtimer that will periodically
3054  * check for data in the circular OA buffer for notifying userspace (e.g.
3055  * during a read() or poll()).
3056  */
3057 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3058 {
3059 	stream->pollin = false;
3060 
3061 	stream->perf->ops.oa_enable(stream);
3062 
3063 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3064 		hrtimer_start(&stream->poll_check_timer,
3065 			      ns_to_ktime(stream->poll_oa_period),
3066 			      HRTIMER_MODE_REL_PINNED);
3067 }
3068 
3069 static void gen7_oa_disable(struct i915_perf_stream *stream)
3070 {
3071 	struct intel_uncore *uncore = stream->uncore;
3072 
3073 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3074 	if (intel_wait_for_register(uncore,
3075 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3076 				    50))
3077 		drm_err(&stream->perf->i915->drm,
3078 			"wait for OA to be disabled timed out\n");
3079 }
3080 
3081 static void gen8_oa_disable(struct i915_perf_stream *stream)
3082 {
3083 	struct intel_uncore *uncore = stream->uncore;
3084 
3085 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3086 	if (intel_wait_for_register(uncore,
3087 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3088 				    50))
3089 		drm_err(&stream->perf->i915->drm,
3090 			"wait for OA to be disabled timed out\n");
3091 }
3092 
3093 static void gen12_oa_disable(struct i915_perf_stream *stream)
3094 {
3095 	struct intel_uncore *uncore = stream->uncore;
3096 
3097 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3098 	if (intel_wait_for_register(uncore,
3099 				    __oa_regs(stream)->oa_ctrl,
3100 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3101 				    50))
3102 		drm_err(&stream->perf->i915->drm,
3103 			"wait for OA to be disabled timed out\n");
3104 
3105 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3106 	if (intel_wait_for_register(uncore,
3107 				    GEN12_OA_TLB_INV_CR,
3108 				    1, 0,
3109 				    50))
3110 		drm_err(&stream->perf->i915->drm,
3111 			"wait for OA tlb invalidate timed out\n");
3112 }
3113 
3114 /**
3115  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3116  * @stream: An i915 perf stream opened for OA metrics
3117  *
3118  * Stops the OA unit from periodically writing counter reports into the
3119  * circular OA buffer. This also stops the hrtimer that periodically checks for
3120  * data in the circular OA buffer, for notifying userspace.
3121  */
3122 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3123 {
3124 	stream->perf->ops.oa_disable(stream);
3125 
3126 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3127 		hrtimer_cancel(&stream->poll_check_timer);
3128 }
3129 
3130 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3131 	.destroy = i915_oa_stream_destroy,
3132 	.enable = i915_oa_stream_enable,
3133 	.disable = i915_oa_stream_disable,
3134 	.wait_unlocked = i915_oa_wait_unlocked,
3135 	.poll_wait = i915_oa_poll_wait,
3136 	.read = i915_oa_read,
3137 };
3138 
3139 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3140 {
3141 	struct i915_active *active;
3142 	int err;
3143 
3144 	active = i915_active_create();
3145 	if (!active)
3146 		return -ENOMEM;
3147 
3148 	err = stream->perf->ops.enable_metric_set(stream, active);
3149 	if (err == 0)
3150 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3151 
3152 	i915_active_put(active);
3153 	return err;
3154 }
3155 
3156 static void
3157 get_default_sseu_config(struct intel_sseu *out_sseu,
3158 			struct intel_engine_cs *engine)
3159 {
3160 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3161 
3162 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3163 
3164 	if (GRAPHICS_VER(engine->i915) == 11) {
3165 		/*
3166 		 * We only need subslice count so it doesn't matter which ones
3167 		 * we select - just turn off low bits in the amount of half of
3168 		 * all available subslices per slice.
3169 		 */
3170 		out_sseu->subslice_mask =
3171 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3172 		out_sseu->slice_mask = 0x1;
3173 	}
3174 }
3175 
3176 static int
3177 get_sseu_config(struct intel_sseu *out_sseu,
3178 		struct intel_engine_cs *engine,
3179 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3180 {
3181 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3182 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3183 		return -EINVAL;
3184 
3185 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3186 }
3187 
3188 /*
3189  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3190  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3191  * cases, return the adjusted CS timestamp frequency to the user.
3192  */
3193 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3194 {
3195 	struct intel_gt *gt = to_gt(i915);
3196 
3197 	/* Wa_18013179988 */
3198 	if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
3199 		intel_wakeref_t wakeref;
3200 		u32 reg, shift;
3201 
3202 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3203 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3204 
3205 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3206 				      reg);
3207 
3208 		return to_gt(i915)->clock_frequency << (3 - shift);
3209 	}
3210 
3211 	return to_gt(i915)->clock_frequency;
3212 }
3213 
3214 /**
3215  * i915_oa_stream_init - validate combined props for OA stream and init
3216  * @stream: An i915 perf stream
3217  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3218  * @props: The property state that configures stream (individually validated)
3219  *
3220  * While read_properties_unlocked() validates properties in isolation it
3221  * doesn't ensure that the combination necessarily makes sense.
3222  *
3223  * At this point it has been determined that userspace wants a stream of
3224  * OA metrics, but still we need to further validate the combined
3225  * properties are OK.
3226  *
3227  * If the configuration makes sense then we can allocate memory for
3228  * a circular OA buffer and apply the requested metric set configuration.
3229  *
3230  * Returns: zero on success or a negative error code.
3231  */
3232 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3233 			       struct drm_i915_perf_open_param *param,
3234 			       struct perf_open_properties *props)
3235 {
3236 	struct drm_i915_private *i915 = stream->perf->i915;
3237 	struct i915_perf *perf = stream->perf;
3238 	struct i915_perf_group *g;
3239 	int ret;
3240 
3241 	if (!props->engine) {
3242 		drm_dbg(&stream->perf->i915->drm,
3243 			"OA engine not specified\n");
3244 		return -EINVAL;
3245 	}
3246 	g = props->engine->oa_group;
3247 
3248 	/*
3249 	 * If the sysfs metrics/ directory wasn't registered for some
3250 	 * reason then don't let userspace try their luck with config
3251 	 * IDs
3252 	 */
3253 	if (!perf->metrics_kobj) {
3254 		drm_dbg(&stream->perf->i915->drm,
3255 			"OA metrics weren't advertised via sysfs\n");
3256 		return -EINVAL;
3257 	}
3258 
3259 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3260 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3261 		drm_dbg(&stream->perf->i915->drm,
3262 			"Only OA report sampling supported\n");
3263 		return -EINVAL;
3264 	}
3265 
3266 	if (!perf->ops.enable_metric_set) {
3267 		drm_dbg(&stream->perf->i915->drm,
3268 			"OA unit not supported\n");
3269 		return -ENODEV;
3270 	}
3271 
3272 	/*
3273 	 * To avoid the complexity of having to accurately filter
3274 	 * counter reports and marshal to the appropriate client
3275 	 * we currently only allow exclusive access
3276 	 */
3277 	if (g->exclusive_stream) {
3278 		drm_dbg(&stream->perf->i915->drm,
3279 			"OA unit already in use\n");
3280 		return -EBUSY;
3281 	}
3282 
3283 	if (!props->oa_format) {
3284 		drm_dbg(&stream->perf->i915->drm,
3285 			"OA report format not specified\n");
3286 		return -EINVAL;
3287 	}
3288 
3289 	stream->engine = props->engine;
3290 	stream->uncore = stream->engine->gt->uncore;
3291 
3292 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3293 
3294 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3295 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3296 		return -EINVAL;
3297 
3298 	stream->sample_flags = props->sample_flags;
3299 	stream->sample_size += stream->oa_buffer.format->size;
3300 
3301 	stream->hold_preemption = props->hold_preemption;
3302 
3303 	stream->periodic = props->oa_periodic;
3304 	if (stream->periodic)
3305 		stream->period_exponent = props->oa_period_exponent;
3306 
3307 	if (stream->ctx) {
3308 		ret = oa_get_render_ctx_id(stream);
3309 		if (ret) {
3310 			drm_dbg(&stream->perf->i915->drm,
3311 				"Invalid context id to filter with\n");
3312 			return ret;
3313 		}
3314 	}
3315 
3316 	ret = alloc_noa_wait(stream);
3317 	if (ret) {
3318 		drm_dbg(&stream->perf->i915->drm,
3319 			"Unable to allocate NOA wait batch buffer\n");
3320 		goto err_noa_wait_alloc;
3321 	}
3322 
3323 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3324 	if (!stream->oa_config) {
3325 		drm_dbg(&stream->perf->i915->drm,
3326 			"Invalid OA config id=%i\n", props->metrics_set);
3327 		ret = -EINVAL;
3328 		goto err_config;
3329 	}
3330 
3331 	/* PRM - observability performance counters:
3332 	 *
3333 	 *   OACONTROL, performance counter enable, note:
3334 	 *
3335 	 *   "When this bit is set, in order to have coherent counts,
3336 	 *   RC6 power state and trunk clock gating must be disabled.
3337 	 *   This can be achieved by programming MMIO registers as
3338 	 *   0xA094=0 and 0xA090[31]=1"
3339 	 *
3340 	 *   In our case we are expecting that taking pm + FORCEWAKE
3341 	 *   references will effectively disable RC6.
3342 	 */
3343 	intel_engine_pm_get(stream->engine);
3344 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3345 
3346 	ret = alloc_oa_buffer(stream);
3347 	if (ret)
3348 		goto err_oa_buf_alloc;
3349 
3350 	stream->ops = &i915_oa_stream_ops;
3351 
3352 	stream->engine->gt->perf.sseu = props->sseu;
3353 	WRITE_ONCE(g->exclusive_stream, stream);
3354 
3355 	ret = i915_perf_stream_enable_sync(stream);
3356 	if (ret) {
3357 		drm_dbg(&stream->perf->i915->drm,
3358 			"Unable to enable metric set\n");
3359 		goto err_enable;
3360 	}
3361 
3362 	drm_dbg(&stream->perf->i915->drm,
3363 		"opening stream oa config uuid=%s\n",
3364 		  stream->oa_config->uuid);
3365 
3366 	hrtimer_setup(&stream->poll_check_timer, oa_poll_check_timer_cb, CLOCK_MONOTONIC,
3367 		      HRTIMER_MODE_REL);
3368 	init_waitqueue_head(&stream->poll_wq);
3369 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3370 	mutex_init(&stream->lock);
3371 
3372 	return 0;
3373 
3374 err_enable:
3375 	WRITE_ONCE(g->exclusive_stream, NULL);
3376 	perf->ops.disable_metric_set(stream);
3377 
3378 	free_oa_buffer(stream);
3379 
3380 err_oa_buf_alloc:
3381 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3382 	intel_engine_pm_put(stream->engine);
3383 
3384 	free_oa_configs(stream);
3385 
3386 err_config:
3387 	free_noa_wait(stream);
3388 
3389 err_noa_wait_alloc:
3390 	if (stream->ctx)
3391 		oa_put_render_ctx_id(stream);
3392 
3393 	return ret;
3394 }
3395 
3396 void i915_oa_init_reg_state(const struct intel_context *ce,
3397 			    const struct intel_engine_cs *engine)
3398 {
3399 	struct i915_perf_stream *stream;
3400 
3401 	if (engine->class != RENDER_CLASS)
3402 		return;
3403 
3404 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3405 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3406 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3407 		gen8_update_reg_state_unlocked(ce, stream);
3408 }
3409 
3410 /**
3411  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3412  * @file: An i915 perf stream file
3413  * @buf: destination buffer given by userspace
3414  * @count: the number of bytes userspace wants to read
3415  * @ppos: (inout) file seek position (unused)
3416  *
3417  * The entry point for handling a read() on a stream file descriptor from
3418  * userspace. Most of the work is left to the i915_perf_read_locked() and
3419  * &i915_perf_stream_ops->read but to save having stream implementations (of
3420  * which we might have multiple later) we handle blocking read here.
3421  *
3422  * We can also consistently treat trying to read from a disabled stream
3423  * as an IO error so implementations can assume the stream is enabled
3424  * while reading.
3425  *
3426  * Returns: The number of bytes copied or a negative error code on failure.
3427  */
3428 static ssize_t i915_perf_read(struct file *file,
3429 			      char __user *buf,
3430 			      size_t count,
3431 			      loff_t *ppos)
3432 {
3433 	struct i915_perf_stream *stream = file->private_data;
3434 	size_t offset = 0;
3435 	int ret;
3436 
3437 	/* To ensure it's handled consistently we simply treat all reads of a
3438 	 * disabled stream as an error. In particular it might otherwise lead
3439 	 * to a deadlock for blocking file descriptors...
3440 	 */
3441 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3442 		return -EIO;
3443 
3444 	if (!(file->f_flags & O_NONBLOCK)) {
3445 		/* There's the small chance of false positives from
3446 		 * stream->ops->wait_unlocked.
3447 		 *
3448 		 * E.g. with single context filtering since we only wait until
3449 		 * oabuffer has >= 1 report we don't immediately know whether
3450 		 * any reports really belong to the current context
3451 		 */
3452 		do {
3453 			ret = stream->ops->wait_unlocked(stream);
3454 			if (ret)
3455 				return ret;
3456 
3457 			mutex_lock(&stream->lock);
3458 			ret = stream->ops->read(stream, buf, count, &offset);
3459 			mutex_unlock(&stream->lock);
3460 		} while (!offset && !ret);
3461 	} else {
3462 		mutex_lock(&stream->lock);
3463 		ret = stream->ops->read(stream, buf, count, &offset);
3464 		mutex_unlock(&stream->lock);
3465 	}
3466 
3467 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3468 	 * events where we might actually report EAGAIN on read() if there's
3469 	 * not really any data available. In this situation though we don't
3470 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3471 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3472 	 * effectively ensures we back off until the next hrtimer callback
3473 	 * before reporting another EPOLLIN event.
3474 	 * The exception to this is if ops->read() returned -ENOSPC which means
3475 	 * that more OA data is available than could fit in the user provided
3476 	 * buffer. In this case we want the next poll() call to not block.
3477 	 */
3478 	if (ret != -ENOSPC)
3479 		stream->pollin = false;
3480 
3481 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3482 	return offset ?: (ret ?: -EAGAIN);
3483 }
3484 
3485 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3486 {
3487 	struct i915_perf_stream *stream =
3488 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3489 
3490 	if (oa_buffer_check_unlocked(stream)) {
3491 		stream->pollin = true;
3492 		wake_up(&stream->poll_wq);
3493 	}
3494 
3495 	hrtimer_forward_now(hrtimer,
3496 			    ns_to_ktime(stream->poll_oa_period));
3497 
3498 	return HRTIMER_RESTART;
3499 }
3500 
3501 /**
3502  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3503  * @stream: An i915 perf stream
3504  * @file: An i915 perf stream file
3505  * @wait: poll() state table
3506  *
3507  * For handling userspace polling on an i915 perf stream, this calls through to
3508  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3509  * will be woken for new stream data.
3510  *
3511  * Returns: any poll events that are ready without sleeping
3512  */
3513 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3514 				      struct file *file,
3515 				      poll_table *wait)
3516 {
3517 	__poll_t events = 0;
3518 
3519 	stream->ops->poll_wait(stream, file, wait);
3520 
3521 	/* Note: we don't explicitly check whether there's something to read
3522 	 * here since this path may be very hot depending on what else
3523 	 * userspace is polling, or on the timeout in use. We rely solely on
3524 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3525 	 * samples to read.
3526 	 */
3527 	if (stream->pollin)
3528 		events |= EPOLLIN;
3529 
3530 	return events;
3531 }
3532 
3533 /**
3534  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3535  * @file: An i915 perf stream file
3536  * @wait: poll() state table
3537  *
3538  * For handling userspace polling on an i915 perf stream, this ensures
3539  * poll_wait() gets called with a wait queue that will be woken for new stream
3540  * data.
3541  *
3542  * Note: Implementation deferred to i915_perf_poll_locked()
3543  *
3544  * Returns: any poll events that are ready without sleeping
3545  */
3546 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3547 {
3548 	struct i915_perf_stream *stream = file->private_data;
3549 	__poll_t ret;
3550 
3551 	mutex_lock(&stream->lock);
3552 	ret = i915_perf_poll_locked(stream, file, wait);
3553 	mutex_unlock(&stream->lock);
3554 
3555 	return ret;
3556 }
3557 
3558 /**
3559  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3560  * @stream: A disabled i915 perf stream
3561  *
3562  * [Re]enables the associated capture of data for this stream.
3563  *
3564  * If a stream was previously enabled then there's currently no intention
3565  * to provide userspace any guarantee about the preservation of previously
3566  * buffered data.
3567  */
3568 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3569 {
3570 	if (stream->enabled)
3571 		return;
3572 
3573 	/* Allow stream->ops->enable() to refer to this */
3574 	stream->enabled = true;
3575 
3576 	if (stream->ops->enable)
3577 		stream->ops->enable(stream);
3578 
3579 	if (stream->hold_preemption)
3580 		intel_context_set_nopreempt(stream->pinned_ctx);
3581 }
3582 
3583 /**
3584  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3585  * @stream: An enabled i915 perf stream
3586  *
3587  * Disables the associated capture of data for this stream.
3588  *
3589  * The intention is that disabling an re-enabling a stream will ideally be
3590  * cheaper than destroying and re-opening a stream with the same configuration,
3591  * though there are no formal guarantees about what state or buffered data
3592  * must be retained between disabling and re-enabling a stream.
3593  *
3594  * Note: while a stream is disabled it's considered an error for userspace
3595  * to attempt to read from the stream (-EIO).
3596  */
3597 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3598 {
3599 	if (!stream->enabled)
3600 		return;
3601 
3602 	/* Allow stream->ops->disable() to refer to this */
3603 	stream->enabled = false;
3604 
3605 	if (stream->hold_preemption)
3606 		intel_context_clear_nopreempt(stream->pinned_ctx);
3607 
3608 	if (stream->ops->disable)
3609 		stream->ops->disable(stream);
3610 }
3611 
3612 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3613 				    unsigned long metrics_set)
3614 {
3615 	struct i915_oa_config *config;
3616 	long ret = stream->oa_config->id;
3617 
3618 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3619 	if (!config)
3620 		return -EINVAL;
3621 
3622 	if (config != stream->oa_config) {
3623 		int err;
3624 
3625 		/*
3626 		 * If OA is bound to a specific context, emit the
3627 		 * reconfiguration inline from that context. The update
3628 		 * will then be ordered with respect to submission on that
3629 		 * context.
3630 		 *
3631 		 * When set globally, we use a low priority kernel context,
3632 		 * so it will effectively take effect when idle.
3633 		 */
3634 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3635 		if (!err)
3636 			config = xchg(&stream->oa_config, config);
3637 		else
3638 			ret = err;
3639 	}
3640 
3641 	i915_oa_config_put(config);
3642 
3643 	return ret;
3644 }
3645 
3646 /**
3647  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3648  * @stream: An i915 perf stream
3649  * @cmd: the ioctl request
3650  * @arg: the ioctl data
3651  *
3652  * Returns: zero on success or a negative error code. Returns -EINVAL for
3653  * an unknown ioctl request.
3654  */
3655 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3656 				   unsigned int cmd,
3657 				   unsigned long arg)
3658 {
3659 	switch (cmd) {
3660 	case I915_PERF_IOCTL_ENABLE:
3661 		i915_perf_enable_locked(stream);
3662 		return 0;
3663 	case I915_PERF_IOCTL_DISABLE:
3664 		i915_perf_disable_locked(stream);
3665 		return 0;
3666 	case I915_PERF_IOCTL_CONFIG:
3667 		return i915_perf_config_locked(stream, arg);
3668 	}
3669 
3670 	return -EINVAL;
3671 }
3672 
3673 /**
3674  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3675  * @file: An i915 perf stream file
3676  * @cmd: the ioctl request
3677  * @arg: the ioctl data
3678  *
3679  * Implementation deferred to i915_perf_ioctl_locked().
3680  *
3681  * Returns: zero on success or a negative error code. Returns -EINVAL for
3682  * an unknown ioctl request.
3683  */
3684 static long i915_perf_ioctl(struct file *file,
3685 			    unsigned int cmd,
3686 			    unsigned long arg)
3687 {
3688 	struct i915_perf_stream *stream = file->private_data;
3689 	long ret;
3690 
3691 	mutex_lock(&stream->lock);
3692 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3693 	mutex_unlock(&stream->lock);
3694 
3695 	return ret;
3696 }
3697 
3698 /**
3699  * i915_perf_destroy_locked - destroy an i915 perf stream
3700  * @stream: An i915 perf stream
3701  *
3702  * Frees all resources associated with the given i915 perf @stream, disabling
3703  * any associated data capture in the process.
3704  *
3705  * Note: The &gt->perf.lock mutex has been taken to serialize
3706  * with any non-file-operation driver hooks.
3707  */
3708 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3709 {
3710 	if (stream->enabled)
3711 		i915_perf_disable_locked(stream);
3712 
3713 	if (stream->ops->destroy)
3714 		stream->ops->destroy(stream);
3715 
3716 	if (stream->ctx)
3717 		i915_gem_context_put(stream->ctx);
3718 
3719 	kfree(stream);
3720 }
3721 
3722 /**
3723  * i915_perf_release - handles userspace close() of a stream file
3724  * @inode: anonymous inode associated with file
3725  * @file: An i915 perf stream file
3726  *
3727  * Cleans up any resources associated with an open i915 perf stream file.
3728  *
3729  * NB: close() can't really fail from the userspace point of view.
3730  *
3731  * Returns: zero on success or a negative error code.
3732  */
3733 static int i915_perf_release(struct inode *inode, struct file *file)
3734 {
3735 	struct i915_perf_stream *stream = file->private_data;
3736 	struct i915_perf *perf = stream->perf;
3737 	struct intel_gt *gt = stream->engine->gt;
3738 
3739 	/*
3740 	 * Within this call, we know that the fd is being closed and we have no
3741 	 * other user of stream->lock. Use the perf lock to destroy the stream
3742 	 * here.
3743 	 */
3744 	mutex_lock(&gt->perf.lock);
3745 	i915_perf_destroy_locked(stream);
3746 	mutex_unlock(&gt->perf.lock);
3747 
3748 	/* Release the reference the perf stream kept on the driver. */
3749 	drm_dev_put(&perf->i915->drm);
3750 
3751 	return 0;
3752 }
3753 
3754 
3755 static const struct file_operations fops = {
3756 	.owner		= THIS_MODULE,
3757 	.release	= i915_perf_release,
3758 	.poll		= i915_perf_poll,
3759 	.read		= i915_perf_read,
3760 	.unlocked_ioctl	= i915_perf_ioctl,
3761 	/* Our ioctl have no arguments, so it's safe to use the same function
3762 	 * to handle 32bits compatibility.
3763 	 */
3764 	.compat_ioctl   = i915_perf_ioctl,
3765 };
3766 
3767 
3768 /**
3769  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3770  * @perf: i915 perf instance
3771  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3772  * @props: individually validated u64 property value pairs
3773  * @file: drm file
3774  *
3775  * See i915_perf_ioctl_open() for interface details.
3776  *
3777  * Implements further stream config validation and stream initialization on
3778  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3779  * taken to serialize with any non-file-operation driver hooks.
3780  *
3781  * Note: at this point the @props have only been validated in isolation and
3782  * it's still necessary to validate that the combination of properties makes
3783  * sense.
3784  *
3785  * In the case where userspace is interested in OA unit metrics then further
3786  * config validation and stream initialization details will be handled by
3787  * i915_oa_stream_init(). The code here should only validate config state that
3788  * will be relevant to all stream types / backends.
3789  *
3790  * Returns: zero on success or a negative error code.
3791  */
3792 static int
3793 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3794 			    struct drm_i915_perf_open_param *param,
3795 			    struct perf_open_properties *props,
3796 			    struct drm_file *file)
3797 {
3798 	struct i915_gem_context *specific_ctx = NULL;
3799 	struct i915_perf_stream *stream = NULL;
3800 	unsigned long f_flags = 0;
3801 	bool privileged_op = true;
3802 	int stream_fd;
3803 	int ret;
3804 
3805 	if (props->single_context) {
3806 		u32 ctx_handle = props->ctx_handle;
3807 		struct drm_i915_file_private *file_priv = file->driver_priv;
3808 
3809 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3810 		if (IS_ERR(specific_ctx)) {
3811 			drm_dbg(&perf->i915->drm,
3812 				"Failed to look up context with ID %u for opening perf stream\n",
3813 				  ctx_handle);
3814 			ret = PTR_ERR(specific_ctx);
3815 			goto err;
3816 		}
3817 	}
3818 
3819 	/*
3820 	 * On Haswell the OA unit supports clock gating off for a specific
3821 	 * context and in this mode there's no visibility of metrics for the
3822 	 * rest of the system, which we consider acceptable for a
3823 	 * non-privileged client.
3824 	 *
3825 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3826 	 * specific context and the kernel can't securely stop the counters
3827 	 * from updating as system-wide / global values. Even though we can
3828 	 * filter reports based on the included context ID we can't block
3829 	 * clients from seeing the raw / global counter values via
3830 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3831 	 * enable the OA unit by default.
3832 	 *
3833 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3834 	 * per context basis. So we can relax requirements there if the user
3835 	 * doesn't request global stream access (i.e. query based sampling
3836 	 * using MI_RECORD_PERF_COUNT.
3837 	 */
3838 	if (IS_HASWELL(perf->i915) && specific_ctx)
3839 		privileged_op = false;
3840 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3841 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3842 		privileged_op = false;
3843 
3844 	if (props->hold_preemption) {
3845 		if (!props->single_context) {
3846 			drm_dbg(&perf->i915->drm,
3847 				"preemption disable with no context\n");
3848 			ret = -EINVAL;
3849 			goto err;
3850 		}
3851 		privileged_op = true;
3852 	}
3853 
3854 	/*
3855 	 * Asking for SSEU configuration is a privileged operation.
3856 	 */
3857 	if (props->has_sseu)
3858 		privileged_op = true;
3859 	else
3860 		get_default_sseu_config(&props->sseu, props->engine);
3861 
3862 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3863 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3864 	 * to determine if it's ok to access system wide OA counters
3865 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3866 	 */
3867 	if (privileged_op &&
3868 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3869 		drm_dbg(&perf->i915->drm,
3870 			"Insufficient privileges to open i915 perf stream\n");
3871 		ret = -EACCES;
3872 		goto err_ctx;
3873 	}
3874 
3875 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3876 	if (!stream) {
3877 		ret = -ENOMEM;
3878 		goto err_ctx;
3879 	}
3880 
3881 	stream->perf = perf;
3882 	stream->ctx = specific_ctx;
3883 	stream->poll_oa_period = props->poll_oa_period;
3884 
3885 	ret = i915_oa_stream_init(stream, param, props);
3886 	if (ret)
3887 		goto err_alloc;
3888 
3889 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3890 	 * to have _stream_init check the combination of sample flags more
3891 	 * thoroughly, but still this is the expected result at this point.
3892 	 */
3893 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3894 		ret = -ENODEV;
3895 		goto err_flags;
3896 	}
3897 
3898 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3899 		f_flags |= O_CLOEXEC;
3900 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3901 		f_flags |= O_NONBLOCK;
3902 
3903 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3904 	if (stream_fd < 0) {
3905 		ret = stream_fd;
3906 		goto err_flags;
3907 	}
3908 
3909 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3910 		i915_perf_enable_locked(stream);
3911 
3912 	/* Take a reference on the driver that will be kept with stream_fd
3913 	 * until its release.
3914 	 */
3915 	drm_dev_get(&perf->i915->drm);
3916 
3917 	return stream_fd;
3918 
3919 err_flags:
3920 	if (stream->ops->destroy)
3921 		stream->ops->destroy(stream);
3922 err_alloc:
3923 	kfree(stream);
3924 err_ctx:
3925 	if (specific_ctx)
3926 		i915_gem_context_put(specific_ctx);
3927 err:
3928 	return ret;
3929 }
3930 
3931 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3932 {
3933 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3934 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3935 
3936 	return div_u64(nom + den - 1, den);
3937 }
3938 
3939 static __always_inline bool
3940 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3941 {
3942 	return test_bit(format, perf->format_mask);
3943 }
3944 
3945 static __always_inline void
3946 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3947 {
3948 	__set_bit(format, perf->format_mask);
3949 }
3950 
3951 /**
3952  * read_properties_unlocked - validate + copy userspace stream open properties
3953  * @perf: i915 perf instance
3954  * @uprops: The array of u64 key value pairs given by userspace
3955  * @n_props: The number of key value pairs expected in @uprops
3956  * @props: The stream configuration built up while validating properties
3957  *
3958  * Note this function only validates properties in isolation it doesn't
3959  * validate that the combination of properties makes sense or that all
3960  * properties necessary for a particular kind of stream have been set.
3961  *
3962  * Note that there currently aren't any ordering requirements for properties so
3963  * we shouldn't validate or assume anything about ordering here. This doesn't
3964  * rule out defining new properties with ordering requirements in the future.
3965  */
3966 static int read_properties_unlocked(struct i915_perf *perf,
3967 				    u64 __user *uprops,
3968 				    u32 n_props,
3969 				    struct perf_open_properties *props)
3970 {
3971 	struct drm_i915_gem_context_param_sseu user_sseu;
3972 	const struct i915_oa_format *f;
3973 	u64 __user *uprop = uprops;
3974 	bool config_instance = false;
3975 	bool config_class = false;
3976 	bool config_sseu = false;
3977 	u8 class, instance;
3978 	u32 i;
3979 	int ret;
3980 
3981 	memset(props, 0, sizeof(struct perf_open_properties));
3982 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3983 
3984 	/* Considering that ID = 0 is reserved and assuming that we don't
3985 	 * (currently) expect any configurations to ever specify duplicate
3986 	 * values for a particular property ID then the last _PROP_MAX value is
3987 	 * one greater than the maximum number of properties we expect to get
3988 	 * from userspace.
3989 	 */
3990 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
3991 		drm_dbg(&perf->i915->drm,
3992 			"Invalid number of i915 perf properties given\n");
3993 		return -EINVAL;
3994 	}
3995 
3996 	/* Defaults when class:instance is not passed */
3997 	class = I915_ENGINE_CLASS_RENDER;
3998 	instance = 0;
3999 
4000 	for (i = 0; i < n_props; i++) {
4001 		u64 oa_period, oa_freq_hz;
4002 		u64 id, value;
4003 
4004 		ret = get_user(id, uprop);
4005 		if (ret)
4006 			return ret;
4007 
4008 		ret = get_user(value, uprop + 1);
4009 		if (ret)
4010 			return ret;
4011 
4012 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4013 			drm_dbg(&perf->i915->drm,
4014 				"Unknown i915 perf property ID\n");
4015 			return -EINVAL;
4016 		}
4017 
4018 		switch ((enum drm_i915_perf_property_id)id) {
4019 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4020 			props->single_context = 1;
4021 			props->ctx_handle = value;
4022 			break;
4023 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4024 			if (value)
4025 				props->sample_flags |= SAMPLE_OA_REPORT;
4026 			break;
4027 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4028 			if (value == 0) {
4029 				drm_dbg(&perf->i915->drm,
4030 					"Unknown OA metric set ID\n");
4031 				return -EINVAL;
4032 			}
4033 			props->metrics_set = value;
4034 			break;
4035 		case DRM_I915_PERF_PROP_OA_FORMAT:
4036 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4037 				drm_dbg(&perf->i915->drm,
4038 					"Out-of-range OA report format %llu\n",
4039 					  value);
4040 				return -EINVAL;
4041 			}
4042 			if (!oa_format_valid(perf, value)) {
4043 				drm_dbg(&perf->i915->drm,
4044 					"Unsupported OA report format %llu\n",
4045 					  value);
4046 				return -EINVAL;
4047 			}
4048 			props->oa_format = value;
4049 			break;
4050 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4051 			if (value > OA_EXPONENT_MAX) {
4052 				drm_dbg(&perf->i915->drm,
4053 					"OA timer exponent too high (> %u)\n",
4054 					 OA_EXPONENT_MAX);
4055 				return -EINVAL;
4056 			}
4057 
4058 			/* Theoretically we can program the OA unit to sample
4059 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4060 			 * for BXT. We don't allow such high sampling
4061 			 * frequencies by default unless root.
4062 			 */
4063 
4064 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4065 			oa_period = oa_exponent_to_ns(perf, value);
4066 
4067 			/* This check is primarily to ensure that oa_period <=
4068 			 * UINT32_MAX (before passing to do_div which only
4069 			 * accepts a u32 denominator), but we can also skip
4070 			 * checking anything < 1Hz which implicitly can't be
4071 			 * limited via an integer oa_max_sample_rate.
4072 			 */
4073 			if (oa_period <= NSEC_PER_SEC) {
4074 				u64 tmp = NSEC_PER_SEC;
4075 				do_div(tmp, oa_period);
4076 				oa_freq_hz = tmp;
4077 			} else
4078 				oa_freq_hz = 0;
4079 
4080 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4081 				drm_dbg(&perf->i915->drm,
4082 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4083 					  i915_oa_max_sample_rate);
4084 				return -EACCES;
4085 			}
4086 
4087 			props->oa_periodic = true;
4088 			props->oa_period_exponent = value;
4089 			break;
4090 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4091 			props->hold_preemption = !!value;
4092 			break;
4093 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4094 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) {
4095 				drm_dbg(&perf->i915->drm,
4096 					"SSEU config not supported on gfx %x\n",
4097 					GRAPHICS_VER_FULL(perf->i915));
4098 				return -ENODEV;
4099 			}
4100 
4101 			if (copy_from_user(&user_sseu,
4102 					   u64_to_user_ptr(value),
4103 					   sizeof(user_sseu))) {
4104 				drm_dbg(&perf->i915->drm,
4105 					"Unable to copy global sseu parameter\n");
4106 				return -EFAULT;
4107 			}
4108 			config_sseu = true;
4109 			break;
4110 		}
4111 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4112 			if (value < 100000 /* 100us */) {
4113 				drm_dbg(&perf->i915->drm,
4114 					"OA availability timer too small (%lluns < 100us)\n",
4115 					  value);
4116 				return -EINVAL;
4117 			}
4118 			props->poll_oa_period = value;
4119 			break;
4120 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4121 			class = (u8)value;
4122 			config_class = true;
4123 			break;
4124 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4125 			instance = (u8)value;
4126 			config_instance = true;
4127 			break;
4128 		default:
4129 			MISSING_CASE(id);
4130 			return -EINVAL;
4131 		}
4132 
4133 		uprop += 2;
4134 	}
4135 
4136 	if ((config_class && !config_instance) ||
4137 	    (config_instance && !config_class)) {
4138 		drm_dbg(&perf->i915->drm,
4139 			"OA engine-class and engine-instance parameters must be passed together\n");
4140 		return -EINVAL;
4141 	}
4142 
4143 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4144 	if (!props->engine) {
4145 		drm_dbg(&perf->i915->drm,
4146 			"OA engine class and instance invalid %d:%d\n",
4147 			class, instance);
4148 		return -EINVAL;
4149 	}
4150 
4151 	if (!engine_supports_oa(props->engine)) {
4152 		drm_dbg(&perf->i915->drm,
4153 			"Engine not supported by OA %d:%d\n",
4154 			class, instance);
4155 		return -EINVAL;
4156 	}
4157 
4158 	/*
4159 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4160 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4161 	 * does not work as expected.
4162 	 */
4163 	if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4164 	    props->engine->oa_group->type == TYPE_OAM &&
4165 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4166 		drm_dbg(&perf->i915->drm,
4167 			"OAM requires media C6 to be disabled in BIOS\n");
4168 		return -EINVAL;
4169 	}
4170 
4171 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4172 	f = &perf->oa_formats[i];
4173 	if (!engine_supports_oa_format(props->engine, f->type)) {
4174 		drm_dbg(&perf->i915->drm,
4175 			"Invalid OA format %d for class %d\n",
4176 			f->type, props->engine->class);
4177 		return -EINVAL;
4178 	}
4179 
4180 	if (config_sseu) {
4181 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4182 		if (ret) {
4183 			drm_dbg(&perf->i915->drm,
4184 				"Invalid SSEU configuration\n");
4185 			return ret;
4186 		}
4187 		props->has_sseu = true;
4188 	}
4189 
4190 	return 0;
4191 }
4192 
4193 /**
4194  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4195  * @dev: drm device
4196  * @data: ioctl data copied from userspace (unvalidated)
4197  * @file: drm file
4198  *
4199  * Validates the stream open parameters given by userspace including flags
4200  * and an array of u64 key, value pair properties.
4201  *
4202  * Very little is assumed up front about the nature of the stream being
4203  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4204  * i915-perf stream is expected to be a suitable interface for other forms of
4205  * buffered data written by the GPU besides periodic OA metrics.
4206  *
4207  * Note we copy the properties from userspace outside of the i915 perf
4208  * mutex to avoid an awkward lockdep with mmap_lock.
4209  *
4210  * Most of the implementation details are handled by
4211  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4212  * mutex for serializing with any non-file-operation driver hooks.
4213  *
4214  * Return: A newly opened i915 Perf stream file descriptor or negative
4215  * error code on failure.
4216  */
4217 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4218 			 struct drm_file *file)
4219 {
4220 	struct i915_perf *perf = &to_i915(dev)->perf;
4221 	struct drm_i915_perf_open_param *param = data;
4222 	struct intel_gt *gt;
4223 	struct perf_open_properties props;
4224 	u32 known_open_flags;
4225 	int ret;
4226 
4227 	if (!perf->i915)
4228 		return -ENOTSUPP;
4229 
4230 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4231 			   I915_PERF_FLAG_FD_NONBLOCK |
4232 			   I915_PERF_FLAG_DISABLED;
4233 	if (param->flags & ~known_open_flags) {
4234 		drm_dbg(&perf->i915->drm,
4235 			"Unknown drm_i915_perf_open_param flag\n");
4236 		return -EINVAL;
4237 	}
4238 
4239 	ret = read_properties_unlocked(perf,
4240 				       u64_to_user_ptr(param->properties_ptr),
4241 				       param->num_properties,
4242 				       &props);
4243 	if (ret)
4244 		return ret;
4245 
4246 	gt = props.engine->gt;
4247 
4248 	mutex_lock(&gt->perf.lock);
4249 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4250 	mutex_unlock(&gt->perf.lock);
4251 
4252 	return ret;
4253 }
4254 
4255 /**
4256  * i915_perf_register - exposes i915-perf to userspace
4257  * @i915: i915 device instance
4258  *
4259  * In particular OA metric sets are advertised under a sysfs metrics/
4260  * directory allowing userspace to enumerate valid IDs that can be
4261  * used to open an i915-perf stream.
4262  */
4263 void i915_perf_register(struct drm_i915_private *i915)
4264 {
4265 	struct i915_perf *perf = &i915->perf;
4266 	struct intel_gt *gt = to_gt(i915);
4267 
4268 	if (!perf->i915)
4269 		return;
4270 
4271 	/* To be sure we're synchronized with an attempted
4272 	 * i915_perf_open_ioctl(); considering that we register after
4273 	 * being exposed to userspace.
4274 	 */
4275 	mutex_lock(&gt->perf.lock);
4276 
4277 	perf->metrics_kobj =
4278 		kobject_create_and_add("metrics",
4279 				       &i915->drm.primary->kdev->kobj);
4280 
4281 	mutex_unlock(&gt->perf.lock);
4282 }
4283 
4284 /**
4285  * i915_perf_unregister - hide i915-perf from userspace
4286  * @i915: i915 device instance
4287  *
4288  * i915-perf state cleanup is split up into an 'unregister' and
4289  * 'deinit' phase where the interface is first hidden from
4290  * userspace by i915_perf_unregister() before cleaning up
4291  * remaining state in i915_perf_fini().
4292  */
4293 void i915_perf_unregister(struct drm_i915_private *i915)
4294 {
4295 	struct i915_perf *perf = &i915->perf;
4296 
4297 	if (!perf->metrics_kobj)
4298 		return;
4299 
4300 	kobject_put(perf->metrics_kobj);
4301 	perf->metrics_kobj = NULL;
4302 }
4303 
4304 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4305 {
4306 	static const i915_reg_t flex_eu_regs[] = {
4307 		EU_PERF_CNTL0,
4308 		EU_PERF_CNTL1,
4309 		EU_PERF_CNTL2,
4310 		EU_PERF_CNTL3,
4311 		EU_PERF_CNTL4,
4312 		EU_PERF_CNTL5,
4313 		EU_PERF_CNTL6,
4314 	};
4315 	int i;
4316 
4317 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4318 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4319 			return true;
4320 	}
4321 	return false;
4322 }
4323 
4324 #define REG_EQUAL(addr, mmio) \
4325 	((addr) == i915_mmio_reg_offset(mmio))
4326 
4327 static const struct i915_mmio_range gen7_oa_b_counters[] = {
4328 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4329 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4330 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4331 	{}
4332 };
4333 
4334 static const struct i915_mmio_range gen12_oa_b_counters[] = {
4335 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4336 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4337 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4338 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4339 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4340 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4341 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4342 	{}
4343 };
4344 
4345 static const struct i915_mmio_range mtl_oam_b_counters[] = {
4346 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4347 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4348 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4349 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4350 	{}
4351 };
4352 
4353 static const struct i915_mmio_range xehp_oa_b_counters[] = {
4354 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4355 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4356 	{}
4357 };
4358 
4359 static const struct i915_mmio_range gen7_oa_mux_regs[] = {
4360 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4361 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4362 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4363 	{}
4364 };
4365 
4366 static const struct i915_mmio_range hsw_oa_mux_regs[] = {
4367 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4368 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4369 	{ .start = 0x25100, .end = 0x2ff90 },
4370 	{}
4371 };
4372 
4373 static const struct i915_mmio_range chv_oa_mux_regs[] = {
4374 	{ .start = 0x182300, .end = 0x1823a4 },
4375 	{}
4376 };
4377 
4378 static const struct i915_mmio_range gen8_oa_mux_regs[] = {
4379 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4380 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4381 	{}
4382 };
4383 
4384 static const struct i915_mmio_range gen11_oa_mux_regs[] = {
4385 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4386 	{}
4387 };
4388 
4389 static const struct i915_mmio_range gen12_oa_mux_regs[] = {
4390 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4391 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4392 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4393 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4394 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4395 	{}
4396 };
4397 
4398 /*
4399  * Ref: 14010536224:
4400  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4401  */
4402 static const struct i915_mmio_range mtl_oa_mux_regs[] = {
4403 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4404 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4405 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4406 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4407 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4408 	{}
4409 };
4410 
4411 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4412 {
4413 	return i915_mmio_range_table_contains(addr, gen7_oa_b_counters);
4414 }
4415 
4416 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4417 {
4418 	return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) ||
4419 		i915_mmio_range_table_contains(addr, gen8_oa_mux_regs);
4420 }
4421 
4422 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4423 {
4424 	return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) ||
4425 		i915_mmio_range_table_contains(addr, gen8_oa_mux_regs) ||
4426 		i915_mmio_range_table_contains(addr, gen11_oa_mux_regs);
4427 }
4428 
4429 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4430 {
4431 	return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) ||
4432 		i915_mmio_range_table_contains(addr, hsw_oa_mux_regs);
4433 }
4434 
4435 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4436 {
4437 	return i915_mmio_range_table_contains(addr, gen7_oa_mux_regs) ||
4438 		i915_mmio_range_table_contains(addr, chv_oa_mux_regs);
4439 }
4440 
4441 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4442 {
4443 	return i915_mmio_range_table_contains(addr, gen12_oa_b_counters);
4444 }
4445 
4446 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4447 {
4448 	if (HAS_OAM(perf->i915) &&
4449 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4450 		return i915_mmio_range_table_contains(addr, mtl_oam_b_counters);
4451 
4452 	return false;
4453 }
4454 
4455 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4456 {
4457 	return i915_mmio_range_table_contains(addr, xehp_oa_b_counters) ||
4458 		i915_mmio_range_table_contains(addr, gen12_oa_b_counters) ||
4459 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4460 }
4461 
4462 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4463 {
4464 	if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4465 		return i915_mmio_range_table_contains(addr, mtl_oa_mux_regs);
4466 	else
4467 		return i915_mmio_range_table_contains(addr, gen12_oa_mux_regs);
4468 }
4469 
4470 static u32 mask_reg_value(u32 reg, u32 val)
4471 {
4472 	/*
4473 	 * HALF_SLICE_CHICKEN2 is programmed with a the
4474 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4475 	 * programmed by userspace doesn't change this.
4476 	 */
4477 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4478 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4479 
4480 	/*
4481 	 * WAIT_FOR_RC6_EXIT has only one bit fulfilling the function
4482 	 * indicated by its name and a bunch of selection fields used by OA
4483 	 * configs.
4484 	 */
4485 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4486 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4487 
4488 	return val;
4489 }
4490 
4491 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4492 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4493 					 u32 __user *regs,
4494 					 u32 n_regs)
4495 {
4496 	struct i915_oa_reg *oa_regs;
4497 	int err;
4498 	u32 i;
4499 
4500 	if (!n_regs)
4501 		return NULL;
4502 
4503 	/* No is_valid function means we're not allowing any register to be programmed. */
4504 	GEM_BUG_ON(!is_valid);
4505 	if (!is_valid)
4506 		return ERR_PTR(-EINVAL);
4507 
4508 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4509 	if (!oa_regs)
4510 		return ERR_PTR(-ENOMEM);
4511 
4512 	for (i = 0; i < n_regs; i++) {
4513 		u32 addr, value;
4514 
4515 		err = get_user(addr, regs);
4516 		if (err)
4517 			goto addr_err;
4518 
4519 		if (!is_valid(perf, addr)) {
4520 			drm_dbg(&perf->i915->drm,
4521 				"Invalid oa_reg address: %X\n", addr);
4522 			err = -EINVAL;
4523 			goto addr_err;
4524 		}
4525 
4526 		err = get_user(value, regs + 1);
4527 		if (err)
4528 			goto addr_err;
4529 
4530 		oa_regs[i].addr = _MMIO(addr);
4531 		oa_regs[i].value = mask_reg_value(addr, value);
4532 
4533 		regs += 2;
4534 	}
4535 
4536 	return oa_regs;
4537 
4538 addr_err:
4539 	kfree(oa_regs);
4540 	return ERR_PTR(err);
4541 }
4542 
4543 static ssize_t show_dynamic_id(struct kobject *kobj,
4544 			       struct kobj_attribute *attr,
4545 			       char *buf)
4546 {
4547 	struct i915_oa_config *oa_config =
4548 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4549 
4550 	return sprintf(buf, "%d\n", oa_config->id);
4551 }
4552 
4553 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4554 					 struct i915_oa_config *oa_config)
4555 {
4556 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4557 	oa_config->sysfs_metric_id.attr.name = "id";
4558 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4559 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4560 	oa_config->sysfs_metric_id.store = NULL;
4561 
4562 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4563 	oa_config->attrs[1] = NULL;
4564 
4565 	oa_config->sysfs_metric.name = oa_config->uuid;
4566 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4567 
4568 	return sysfs_create_group(perf->metrics_kobj,
4569 				  &oa_config->sysfs_metric);
4570 }
4571 
4572 /**
4573  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4574  * @dev: drm device
4575  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4576  *        userspace (unvalidated)
4577  * @file: drm file
4578  *
4579  * Validates the submitted OA register to be saved into a new OA config that
4580  * can then be used for programming the OA unit and its NOA network.
4581  *
4582  * Returns: A new allocated config number to be used with the perf open ioctl
4583  * or a negative error code on failure.
4584  */
4585 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4586 			       struct drm_file *file)
4587 {
4588 	struct i915_perf *perf = &to_i915(dev)->perf;
4589 	struct drm_i915_perf_oa_config *args = data;
4590 	struct i915_oa_config *oa_config, *tmp;
4591 	struct i915_oa_reg *regs;
4592 	int err, id;
4593 
4594 	if (!perf->i915)
4595 		return -ENOTSUPP;
4596 
4597 	if (!perf->metrics_kobj) {
4598 		drm_dbg(&perf->i915->drm,
4599 			"OA metrics weren't advertised via sysfs\n");
4600 		return -EINVAL;
4601 	}
4602 
4603 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4604 		drm_dbg(&perf->i915->drm,
4605 			"Insufficient privileges to add i915 OA config\n");
4606 		return -EACCES;
4607 	}
4608 
4609 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4610 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4611 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4612 		drm_dbg(&perf->i915->drm,
4613 			"No OA registers given\n");
4614 		return -EINVAL;
4615 	}
4616 
4617 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4618 	if (!oa_config) {
4619 		drm_dbg(&perf->i915->drm,
4620 			"Failed to allocate memory for the OA config\n");
4621 		return -ENOMEM;
4622 	}
4623 
4624 	oa_config->perf = perf;
4625 	kref_init(&oa_config->ref);
4626 
4627 	if (!uuid_is_valid(args->uuid)) {
4628 		drm_dbg(&perf->i915->drm,
4629 			"Invalid uuid format for OA config\n");
4630 		err = -EINVAL;
4631 		goto reg_err;
4632 	}
4633 
4634 	/* Last character in oa_config->uuid will be 0 because oa_config is
4635 	 * kzalloc.
4636 	 */
4637 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4638 
4639 	oa_config->mux_regs_len = args->n_mux_regs;
4640 	regs = alloc_oa_regs(perf,
4641 			     perf->ops.is_valid_mux_reg,
4642 			     u64_to_user_ptr(args->mux_regs_ptr),
4643 			     args->n_mux_regs);
4644 
4645 	if (IS_ERR(regs)) {
4646 		drm_dbg(&perf->i915->drm,
4647 			"Failed to create OA config for mux_regs\n");
4648 		err = PTR_ERR(regs);
4649 		goto reg_err;
4650 	}
4651 	oa_config->mux_regs = regs;
4652 
4653 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4654 	regs = alloc_oa_regs(perf,
4655 			     perf->ops.is_valid_b_counter_reg,
4656 			     u64_to_user_ptr(args->boolean_regs_ptr),
4657 			     args->n_boolean_regs);
4658 
4659 	if (IS_ERR(regs)) {
4660 		drm_dbg(&perf->i915->drm,
4661 			"Failed to create OA config for b_counter_regs\n");
4662 		err = PTR_ERR(regs);
4663 		goto reg_err;
4664 	}
4665 	oa_config->b_counter_regs = regs;
4666 
4667 	if (GRAPHICS_VER(perf->i915) < 8) {
4668 		if (args->n_flex_regs != 0) {
4669 			err = -EINVAL;
4670 			goto reg_err;
4671 		}
4672 	} else {
4673 		oa_config->flex_regs_len = args->n_flex_regs;
4674 		regs = alloc_oa_regs(perf,
4675 				     perf->ops.is_valid_flex_reg,
4676 				     u64_to_user_ptr(args->flex_regs_ptr),
4677 				     args->n_flex_regs);
4678 
4679 		if (IS_ERR(regs)) {
4680 			drm_dbg(&perf->i915->drm,
4681 				"Failed to create OA config for flex_regs\n");
4682 			err = PTR_ERR(regs);
4683 			goto reg_err;
4684 		}
4685 		oa_config->flex_regs = regs;
4686 	}
4687 
4688 	err = mutex_lock_interruptible(&perf->metrics_lock);
4689 	if (err)
4690 		goto reg_err;
4691 
4692 	/* We shouldn't have too many configs, so this iteration shouldn't be
4693 	 * too costly.
4694 	 */
4695 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4696 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4697 			drm_dbg(&perf->i915->drm,
4698 				"OA config already exists with this uuid\n");
4699 			err = -EADDRINUSE;
4700 			goto sysfs_err;
4701 		}
4702 	}
4703 
4704 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4705 	if (err) {
4706 		drm_dbg(&perf->i915->drm,
4707 			"Failed to create sysfs entry for OA config\n");
4708 		goto sysfs_err;
4709 	}
4710 
4711 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4712 	oa_config->id = idr_alloc(&perf->metrics_idr,
4713 				  oa_config, 2,
4714 				  0, GFP_KERNEL);
4715 	if (oa_config->id < 0) {
4716 		drm_dbg(&perf->i915->drm,
4717 			"Failed to create sysfs entry for OA config\n");
4718 		err = oa_config->id;
4719 		goto sysfs_err;
4720 	}
4721 	id = oa_config->id;
4722 
4723 	drm_dbg(&perf->i915->drm,
4724 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4725 	mutex_unlock(&perf->metrics_lock);
4726 
4727 	return id;
4728 
4729 sysfs_err:
4730 	mutex_unlock(&perf->metrics_lock);
4731 reg_err:
4732 	i915_oa_config_put(oa_config);
4733 	drm_dbg(&perf->i915->drm,
4734 		"Failed to add new OA config\n");
4735 	return err;
4736 }
4737 
4738 /**
4739  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4740  * @dev: drm device
4741  * @data: ioctl data (pointer to u64 integer) copied from userspace
4742  * @file: drm file
4743  *
4744  * Configs can be removed while being used, the will stop appearing in sysfs
4745  * and their content will be freed when the stream using the config is closed.
4746  *
4747  * Returns: 0 on success or a negative error code on failure.
4748  */
4749 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4750 				  struct drm_file *file)
4751 {
4752 	struct i915_perf *perf = &to_i915(dev)->perf;
4753 	u64 *arg = data;
4754 	struct i915_oa_config *oa_config;
4755 	int ret;
4756 
4757 	if (!perf->i915)
4758 		return -ENOTSUPP;
4759 
4760 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4761 		drm_dbg(&perf->i915->drm,
4762 			"Insufficient privileges to remove i915 OA config\n");
4763 		return -EACCES;
4764 	}
4765 
4766 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4767 	if (ret)
4768 		return ret;
4769 
4770 	oa_config = idr_find(&perf->metrics_idr, *arg);
4771 	if (!oa_config) {
4772 		drm_dbg(&perf->i915->drm,
4773 			"Failed to remove unknown OA config\n");
4774 		ret = -ENOENT;
4775 		goto err_unlock;
4776 	}
4777 
4778 	GEM_BUG_ON(*arg != oa_config->id);
4779 
4780 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4781 
4782 	idr_remove(&perf->metrics_idr, *arg);
4783 
4784 	mutex_unlock(&perf->metrics_lock);
4785 
4786 	drm_dbg(&perf->i915->drm,
4787 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4788 
4789 	i915_oa_config_put(oa_config);
4790 
4791 	return 0;
4792 
4793 err_unlock:
4794 	mutex_unlock(&perf->metrics_lock);
4795 	return ret;
4796 }
4797 
4798 static const struct ctl_table oa_table[] = {
4799 	{
4800 	 .procname = "perf_stream_paranoid",
4801 	 .data = &i915_perf_stream_paranoid,
4802 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4803 	 .mode = 0644,
4804 	 .proc_handler = proc_dointvec_minmax,
4805 	 .extra1 = SYSCTL_ZERO,
4806 	 .extra2 = SYSCTL_ONE,
4807 	 },
4808 	{
4809 	 .procname = "oa_max_sample_rate",
4810 	 .data = &i915_oa_max_sample_rate,
4811 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4812 	 .mode = 0644,
4813 	 .proc_handler = proc_dointvec_minmax,
4814 	 .extra1 = SYSCTL_ZERO,
4815 	 .extra2 = &oa_sample_rate_hard_limit,
4816 	 },
4817 };
4818 
4819 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4820 {
4821 	return 1;
4822 }
4823 
4824 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4825 {
4826 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4827 		/*
4828 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4829 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4830 		 */
4831 		drm_WARN_ON(&engine->i915->drm,
4832 			    engine->gt->type != GT_MEDIA);
4833 
4834 		return PERF_GROUP_OAM_SAMEDIA_0;
4835 	}
4836 
4837 	return PERF_GROUP_INVALID;
4838 }
4839 
4840 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4841 {
4842 	switch (engine->class) {
4843 	case RENDER_CLASS:
4844 		return PERF_GROUP_OAG;
4845 
4846 	case VIDEO_DECODE_CLASS:
4847 	case VIDEO_ENHANCEMENT_CLASS:
4848 		return __oam_engine_group(engine);
4849 
4850 	default:
4851 		return PERF_GROUP_INVALID;
4852 	}
4853 }
4854 
4855 static struct i915_perf_regs __oam_regs(u32 base)
4856 {
4857 	return (struct i915_perf_regs) {
4858 		base,
4859 		GEN12_OAM_HEAD_POINTER(base),
4860 		GEN12_OAM_TAIL_POINTER(base),
4861 		GEN12_OAM_BUFFER(base),
4862 		GEN12_OAM_CONTEXT_CONTROL(base),
4863 		GEN12_OAM_CONTROL(base),
4864 		GEN12_OAM_DEBUG(base),
4865 		GEN12_OAM_STATUS(base),
4866 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4867 	};
4868 }
4869 
4870 static struct i915_perf_regs __oag_regs(void)
4871 {
4872 	return (struct i915_perf_regs) {
4873 		0,
4874 		GEN12_OAG_OAHEADPTR,
4875 		GEN12_OAG_OATAILPTR,
4876 		GEN12_OAG_OABUFFER,
4877 		GEN12_OAG_OAGLBCTXCTRL,
4878 		GEN12_OAG_OACONTROL,
4879 		GEN12_OAG_OA_DEBUG,
4880 		GEN12_OAG_OASTATUS,
4881 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4882 	};
4883 }
4884 
4885 static void oa_init_groups(struct intel_gt *gt)
4886 {
4887 	int i, num_groups = gt->perf.num_perf_groups;
4888 
4889 	for (i = 0; i < num_groups; i++) {
4890 		struct i915_perf_group *g = &gt->perf.group[i];
4891 
4892 		/* Fused off engines can result in a group with num_engines == 0 */
4893 		if (g->num_engines == 0)
4894 			continue;
4895 
4896 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4897 			g->regs = __oag_regs();
4898 			g->type = TYPE_OAG;
4899 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4900 			g->regs = __oam_regs(mtl_oa_base[i]);
4901 			g->type = TYPE_OAM;
4902 		}
4903 	}
4904 }
4905 
4906 static int oa_init_gt(struct intel_gt *gt)
4907 {
4908 	u32 num_groups = num_perf_groups_per_gt(gt);
4909 	struct intel_engine_cs *engine;
4910 	struct i915_perf_group *g;
4911 	intel_engine_mask_t tmp;
4912 
4913 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4914 	if (!g)
4915 		return -ENOMEM;
4916 
4917 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4918 		u32 index = __oa_engine_group(engine);
4919 
4920 		engine->oa_group = NULL;
4921 		if (index < num_groups) {
4922 			g[index].num_engines++;
4923 			engine->oa_group = &g[index];
4924 		}
4925 	}
4926 
4927 	gt->perf.num_perf_groups = num_groups;
4928 	gt->perf.group = g;
4929 
4930 	oa_init_groups(gt);
4931 
4932 	return 0;
4933 }
4934 
4935 static int oa_init_engine_groups(struct i915_perf *perf)
4936 {
4937 	struct intel_gt *gt;
4938 	int i, ret;
4939 
4940 	for_each_gt(gt, perf->i915, i) {
4941 		ret = oa_init_gt(gt);
4942 		if (ret)
4943 			return ret;
4944 	}
4945 
4946 	return 0;
4947 }
4948 
4949 static void oa_init_supported_formats(struct i915_perf *perf)
4950 {
4951 	struct drm_i915_private *i915 = perf->i915;
4952 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4953 
4954 	switch (platform) {
4955 	case INTEL_HASWELL:
4956 		oa_format_add(perf, I915_OA_FORMAT_A13);
4957 		oa_format_add(perf, I915_OA_FORMAT_A13);
4958 		oa_format_add(perf, I915_OA_FORMAT_A29);
4959 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4960 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4961 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4962 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4963 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4964 		break;
4965 
4966 	case INTEL_BROADWELL:
4967 	case INTEL_CHERRYVIEW:
4968 	case INTEL_SKYLAKE:
4969 	case INTEL_BROXTON:
4970 	case INTEL_KABYLAKE:
4971 	case INTEL_GEMINILAKE:
4972 	case INTEL_COFFEELAKE:
4973 	case INTEL_COMETLAKE:
4974 	case INTEL_ICELAKE:
4975 	case INTEL_ELKHARTLAKE:
4976 	case INTEL_JASPERLAKE:
4977 	case INTEL_TIGERLAKE:
4978 	case INTEL_ROCKETLAKE:
4979 	case INTEL_DG1:
4980 	case INTEL_ALDERLAKE_S:
4981 	case INTEL_ALDERLAKE_P:
4982 		oa_format_add(perf, I915_OA_FORMAT_A12);
4983 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4984 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4985 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4986 		break;
4987 
4988 	case INTEL_DG2:
4989 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
4990 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
4991 		break;
4992 
4993 	case INTEL_METEORLAKE:
4994 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
4995 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
4996 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
4997 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
4998 		break;
4999 
5000 	default:
5001 		MISSING_CASE(platform);
5002 	}
5003 }
5004 
5005 static void i915_perf_init_info(struct drm_i915_private *i915)
5006 {
5007 	struct i915_perf *perf = &i915->perf;
5008 
5009 	switch (GRAPHICS_VER(i915)) {
5010 	case 8:
5011 		perf->ctx_oactxctrl_offset = 0x120;
5012 		perf->ctx_flexeu0_offset = 0x2ce;
5013 		perf->gen8_valid_ctx_bit = BIT(25);
5014 		break;
5015 	case 9:
5016 		perf->ctx_oactxctrl_offset = 0x128;
5017 		perf->ctx_flexeu0_offset = 0x3de;
5018 		perf->gen8_valid_ctx_bit = BIT(16);
5019 		break;
5020 	case 11:
5021 		perf->ctx_oactxctrl_offset = 0x124;
5022 		perf->ctx_flexeu0_offset = 0x78e;
5023 		perf->gen8_valid_ctx_bit = BIT(16);
5024 		break;
5025 	case 12:
5026 		perf->gen8_valid_ctx_bit = BIT(16);
5027 		/*
5028 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5029 		 * cache the value in perf->ctx_oactxctrl_offset.
5030 		 */
5031 		break;
5032 	default:
5033 		MISSING_CASE(GRAPHICS_VER(i915));
5034 	}
5035 }
5036 
5037 /**
5038  * i915_perf_init - initialize i915-perf state on module bind
5039  * @i915: i915 device instance
5040  *
5041  * Initializes i915-perf state without exposing anything to userspace.
5042  *
5043  * Note: i915-perf initialization is split into an 'init' and 'register'
5044  * phase with the i915_perf_register() exposing state to userspace.
5045  */
5046 int i915_perf_init(struct drm_i915_private *i915)
5047 {
5048 	struct i915_perf *perf = &i915->perf;
5049 
5050 	perf->oa_formats = oa_formats;
5051 	if (IS_HASWELL(i915)) {
5052 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5053 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5054 		perf->ops.is_valid_flex_reg = NULL;
5055 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5056 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5057 		perf->ops.oa_enable = gen7_oa_enable;
5058 		perf->ops.oa_disable = gen7_oa_disable;
5059 		perf->ops.read = gen7_oa_read;
5060 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5061 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5062 		/* Note: that although we could theoretically also support the
5063 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5064 		 * this driver, before upstreaming did this) it didn't seem
5065 		 * worth the complexity to maintain now that BDW+ enable
5066 		 * execlist mode by default.
5067 		 */
5068 		perf->ops.read = gen8_oa_read;
5069 		i915_perf_init_info(i915);
5070 
5071 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5072 			perf->ops.is_valid_b_counter_reg =
5073 				gen7_is_valid_b_counter_addr;
5074 			perf->ops.is_valid_mux_reg =
5075 				gen8_is_valid_mux_addr;
5076 			perf->ops.is_valid_flex_reg =
5077 				gen8_is_valid_flex_addr;
5078 
5079 			if (IS_CHERRYVIEW(i915)) {
5080 				perf->ops.is_valid_mux_reg =
5081 					chv_is_valid_mux_addr;
5082 			}
5083 
5084 			perf->ops.oa_enable = gen8_oa_enable;
5085 			perf->ops.oa_disable = gen8_oa_disable;
5086 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5087 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5088 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5089 		} else if (GRAPHICS_VER(i915) == 11) {
5090 			perf->ops.is_valid_b_counter_reg =
5091 				gen7_is_valid_b_counter_addr;
5092 			perf->ops.is_valid_mux_reg =
5093 				gen11_is_valid_mux_addr;
5094 			perf->ops.is_valid_flex_reg =
5095 				gen8_is_valid_flex_addr;
5096 
5097 			perf->ops.oa_enable = gen8_oa_enable;
5098 			perf->ops.oa_disable = gen8_oa_disable;
5099 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5100 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5101 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5102 		} else if (GRAPHICS_VER(i915) == 12) {
5103 			perf->ops.is_valid_b_counter_reg =
5104 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5105 				xehp_is_valid_b_counter_addr :
5106 				gen12_is_valid_b_counter_addr;
5107 			perf->ops.is_valid_mux_reg =
5108 				gen12_is_valid_mux_addr;
5109 			perf->ops.is_valid_flex_reg =
5110 				gen8_is_valid_flex_addr;
5111 
5112 			perf->ops.oa_enable = gen12_oa_enable;
5113 			perf->ops.oa_disable = gen12_oa_disable;
5114 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5115 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5116 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5117 		}
5118 	}
5119 
5120 	if (perf->ops.enable_metric_set) {
5121 		struct intel_gt *gt;
5122 		int i, ret;
5123 
5124 		for_each_gt(gt, i915, i)
5125 			mutex_init(&gt->perf.lock);
5126 
5127 		/* Choose a representative limit */
5128 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5129 
5130 		mutex_init(&perf->metrics_lock);
5131 		idr_init_base(&perf->metrics_idr, 1);
5132 
5133 		/* We set up some ratelimit state to potentially throttle any
5134 		 * _NOTES about spurious, invalid OA reports which we don't
5135 		 * forward to userspace.
5136 		 *
5137 		 * We print a _NOTE about any throttling when closing the
5138 		 * stream instead of waiting until driver _fini which no one
5139 		 * would ever see.
5140 		 *
5141 		 * Using the same limiting factors as printk_ratelimit()
5142 		 */
5143 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5144 		/* Since we use a DRM_NOTE for spurious reports it would be
5145 		 * inconsistent to let __ratelimit() automatically print a
5146 		 * warning for throttling.
5147 		 */
5148 		ratelimit_set_flags(&perf->spurious_report_rs,
5149 				    RATELIMIT_MSG_ON_RELEASE);
5150 
5151 		ratelimit_state_init(&perf->tail_pointer_race,
5152 				     5 * HZ, 10);
5153 		ratelimit_set_flags(&perf->tail_pointer_race,
5154 				    RATELIMIT_MSG_ON_RELEASE);
5155 
5156 		atomic64_set(&perf->noa_programming_delay,
5157 			     500 * 1000 /* 500us */);
5158 
5159 		perf->i915 = i915;
5160 
5161 		ret = oa_init_engine_groups(perf);
5162 		if (ret) {
5163 			drm_err(&i915->drm,
5164 				"OA initialization failed %d\n", ret);
5165 			return ret;
5166 		}
5167 
5168 		oa_init_supported_formats(perf);
5169 	}
5170 
5171 	return 0;
5172 }
5173 
5174 static int destroy_config(int id, void *p, void *data)
5175 {
5176 	i915_oa_config_put(p);
5177 	return 0;
5178 }
5179 
5180 int i915_perf_sysctl_register(void)
5181 {
5182 	sysctl_header = register_sysctl("dev/i915", oa_table);
5183 	return 0;
5184 }
5185 
5186 void i915_perf_sysctl_unregister(void)
5187 {
5188 	unregister_sysctl_table(sysctl_header);
5189 }
5190 
5191 /**
5192  * i915_perf_fini - Counter part to i915_perf_init()
5193  * @i915: i915 device instance
5194  */
5195 void i915_perf_fini(struct drm_i915_private *i915)
5196 {
5197 	struct i915_perf *perf = &i915->perf;
5198 	struct intel_gt *gt;
5199 	int i;
5200 
5201 	if (!perf->i915)
5202 		return;
5203 
5204 	for_each_gt(gt, perf->i915, i)
5205 		kfree(gt->perf.group);
5206 
5207 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5208 	idr_destroy(&perf->metrics_idr);
5209 
5210 	memset(&perf->ops, 0, sizeof(perf->ops));
5211 	perf->i915 = NULL;
5212 }
5213 
5214 /**
5215  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5216  * @i915: The i915 device
5217  *
5218  * This version number is used by userspace to detect available features.
5219  */
5220 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5221 {
5222 	/*
5223 	 * 1: Initial version
5224 	 *   I915_PERF_IOCTL_ENABLE
5225 	 *   I915_PERF_IOCTL_DISABLE
5226 	 *
5227 	 * 2: Added runtime modification of OA config.
5228 	 *   I915_PERF_IOCTL_CONFIG
5229 	 *
5230 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5231 	 *    preemption on a particular context so that performance data is
5232 	 *    accessible from a delta of MI_RPC reports without looking at the
5233 	 *    OA buffer.
5234 	 *
5235 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5236 	 *    be run for the duration of the performance recording based on
5237 	 *    their SSEU configuration.
5238 	 *
5239 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5240 	 *    interval for the hrtimer used to check for OA data.
5241 	 *
5242 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5243 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5244 	 *
5245 	 * 7: Add support for video decode and enhancement classes.
5246 	 */
5247 
5248 	/*
5249 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5250 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5251 	 * to indicate that OA media is not supported.
5252 	 */
5253 	if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5254 	    intel_check_bios_c6_setup(&i915->media_gt->rc6))
5255 		return 6;
5256 
5257 	return 7;
5258 }
5259 
5260 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5261 #include "selftests/i915_perf.c"
5262 #endif
5263