xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204 
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209  * is currently generally designed assuming the largest 16M size is used such
210  * that the overflow cases are unlikely in normal operation.
211  */
212 #define OA_BUFFER_SIZE		SZ_16M
213 
214 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215 
216 /**
217  * DOC: OA Tail Pointer Race
218  *
219  * There's a HW race condition between OA unit tail pointer register updates and
220  * writes to memory whereby the tail pointer can sometimes get ahead of what's
221  * been written out to the OA buffer so far (in terms of what's visible to the
222  * CPU).
223  *
224  * Although this can be observed explicitly while copying reports to userspace
225  * by checking for a zeroed report-id field in tail reports, we want to account
226  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227  * redundant read() attempts.
228  *
229  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230  * in the OA buffer, starting from the tail reported by the HW until we find a
231  * report with its first 2 dwords not 0 meaning its previous report is
232  * completely in memory and ready to be read. Those dwords are also set to 0
233  * once read and the whole buffer is cleared upon OA buffer initialization. The
234  * first dword is the reason for this report while the second is the timestamp,
235  * making the chances of having those 2 fields at 0 fairly unlikely. A more
236  * detailed explanation is available in oa_buffer_check_unlocked().
237  *
238  * Most of the implementation details for this workaround are in
239  * oa_buffer_check_unlocked() and _append_oa_reports()
240  *
241  * Note for posterity: previously the driver used to define an effective tail
242  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244  * This was flawed considering that the OA unit may also automatically generate
245  * non-periodic reports (such as on context switch) or the OA unit may be
246  * enabled without any periodic sampling.
247  */
248 #define OA_TAIL_MARGIN_NSEC	100000ULL
249 #define INVALID_TAIL_PTR	0xffffffff
250 
251 /* The default frequency for checking whether the OA unit has written new
252  * reports to the circular OA buffer...
253  */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256 
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259 
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261  * of the 64bit timestamp bits to trigger reports from) but there's currently
262  * no known use case for sampling as infrequently as once per 47 thousand years.
263  *
264  * Since the timestamps included in OA reports are only 32bits it seems
265  * reasonable to limit the OA exponent where it's still possible to account for
266  * overflow in OA report timestamps.
267  */
268 #define OA_EXPONENT_MAX 31
269 
270 #define INVALID_CTX_ID 0xffffffff
271 
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK           0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
275 #define OAREPORT_REASON_SHIFT          19
276 #define OAREPORT_REASON_TIMER          (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
279 
280 
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282  *
283  * The highest sampling frequency we can theoretically program the OA unit
284  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285  *
286  * Initialized just before we register the sysctl parameter.
287  */
288 static int oa_sample_rate_hard_limit;
289 
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291  * allow that by default unless root...
292  *
293  * The default threshold of 100000Hz is based on perf's similar
294  * kernel.perf_event_max_sample_rate sysctl parameter.
295  */
296 static u32 i915_oa_max_sample_rate = 100000;
297 
298 /* XXX: beware if future OA HW adds new report formats that the current
299  * code assumes all reports have a power-of-two size and ~(size - 1) can
300  * be used as a mask to align the OA tail pointer.
301  */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
304 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
305 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
306 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
308 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
309 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
310 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
311 };
312 
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
318 };
319 
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323 
324 #define SAMPLE_OA_REPORT      (1<<0)
325 
326 /**
327  * struct perf_open_properties - for validated properties given to open a stream
328  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329  * @single_context: Whether a single or all gpu contexts should be monitored
330  * @hold_preemption: Whether the preemption is disabled for the filtered
331  *                   context
332  * @ctx_handle: A gem ctx handle for use with @single_context
333  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334  * @oa_format: An OA unit HW report format
335  * @oa_periodic: Whether to enable periodic OA unit sampling
336  * @oa_period_exponent: The OA unit sampling period is derived from this
337  * @engine: The engine (typically rcs0) being monitored by the OA unit
338  * @has_sseu: Whether @sseu was specified by userspace
339  * @sseu: internal SSEU configuration computed either from the userspace
340  *        specified configuration in the opening parameters or a default value
341  *        (see get_default_sseu_config())
342  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343  * data availability
344  *
345  * As read_properties_unlocked() enumerates and validates the properties given
346  * to open a stream of metrics the configuration is built up in the structure
347  * which starts out zero initialized.
348  */
349 struct perf_open_properties {
350 	u32 sample_flags;
351 
352 	u64 single_context:1;
353 	u64 hold_preemption:1;
354 	u64 ctx_handle;
355 
356 	/* OA sampling state */
357 	int metrics_set;
358 	int oa_format;
359 	bool oa_periodic;
360 	int oa_period_exponent;
361 
362 	struct intel_engine_cs *engine;
363 
364 	bool has_sseu;
365 	struct intel_sseu sseu;
366 
367 	u64 poll_oa_period;
368 };
369 
370 struct i915_oa_config_bo {
371 	struct llist_node node;
372 
373 	struct i915_oa_config *oa_config;
374 	struct i915_vma *vma;
375 };
376 
377 static struct ctl_table_header *sysctl_header;
378 
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380 
381 void i915_oa_config_release(struct kref *ref)
382 {
383 	struct i915_oa_config *oa_config =
384 		container_of(ref, typeof(*oa_config), ref);
385 
386 	kfree(oa_config->flex_regs);
387 	kfree(oa_config->b_counter_regs);
388 	kfree(oa_config->mux_regs);
389 
390 	kfree_rcu(oa_config, rcu);
391 }
392 
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 	struct i915_oa_config *oa_config;
397 
398 	rcu_read_lock();
399 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 	if (oa_config)
401 		oa_config = i915_oa_config_get(oa_config);
402 	rcu_read_unlock();
403 
404 	return oa_config;
405 }
406 
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 	i915_oa_config_put(oa_bo->oa_config);
410 	i915_vma_put(oa_bo->vma);
411 	kfree(oa_bo);
412 }
413 
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 	struct intel_uncore *uncore = stream->uncore;
417 
418 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 	       GEN12_OAG_OATAILPTR_MASK;
420 }
421 
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 	struct intel_uncore *uncore = stream->uncore;
425 
426 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428 
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433 
434 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436 
437 /**
438  * oa_buffer_check_unlocked - check for data and update tail ptr state
439  * @stream: i915 stream instance
440  *
441  * This is either called via fops (for blocking reads in user ctx) or the poll
442  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443  * if there is data available for userspace to read.
444  *
445  * This function is central to providing a workaround for the OA unit tail
446  * pointer having a race with respect to what data is visible to the CPU.
447  * It is responsible for reading tail pointers from the hardware and giving
448  * the pointers time to 'age' before they are made available for reading.
449  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450  *
451  * Besides returning true when there is data available to read() this function
452  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453  * object.
454  *
455  * Note: It's safe to read OA config state here unlocked, assuming that this is
456  * only called while the stream is enabled, while the global OA configuration
457  * can't be modified.
458  *
459  * Returns: %true if the OA buffer contains data, else %false
460  */
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 	int report_size = stream->oa_buffer.format_size;
465 	unsigned long flags;
466 	bool pollin;
467 	u32 hw_tail;
468 	u64 now;
469 
470 	/* We have to consider the (unlikely) possibility that read() errors
471 	 * could result in an OA buffer reset which might reset the head and
472 	 * tail state.
473 	 */
474 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475 
476 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477 
478 	/* The tail pointer increases in 64 byte increments,
479 	 * not in report_size steps...
480 	 */
481 	hw_tail &= ~(report_size - 1);
482 
483 	now = ktime_get_mono_fast_ns();
484 
485 	if (hw_tail == stream->oa_buffer.aging_tail &&
486 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 		/* If the HW tail hasn't move since the last check and the HW
488 		 * tail has been aging for long enough, declare it the new
489 		 * tail.
490 		 */
491 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 	} else {
493 		u32 head, tail, aged_tail;
494 
495 		/* NB: The head we observe here might effectively be a little
496 		 * out of date. If a read() is in progress, the head could be
497 		 * anywhere between this head and stream->oa_buffer.tail.
498 		 */
499 		head = stream->oa_buffer.head - gtt_offset;
500 		aged_tail = stream->oa_buffer.tail - gtt_offset;
501 
502 		hw_tail -= gtt_offset;
503 		tail = hw_tail;
504 
505 		/* Walk the stream backward until we find a report with dword 0
506 		 * & 1 not at 0. Since the circular buffer pointers progress by
507 		 * increments of 64 bytes and that reports can be up to 256
508 		 * bytes long, we can't tell whether a report has fully landed
509 		 * in memory before the first 2 dwords of the following report
510 		 * have effectively landed.
511 		 *
512 		 * This is assuming that the writes of the OA unit land in
513 		 * memory in the order they were written to.
514 		 * If not : (╯°□°)╯︵ ┻━┻
515 		 */
516 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518 
519 			if (report32[0] != 0 || report32[1] != 0)
520 				break;
521 
522 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 		}
524 
525 		if (OA_TAKEN(hw_tail, tail) > report_size &&
526 		    __ratelimit(&stream->perf->tail_pointer_race))
527 			DRM_NOTE("unlanded report(s) head=0x%x "
528 				 "tail=0x%x hw_tail=0x%x\n",
529 				 head, tail, hw_tail);
530 
531 		stream->oa_buffer.tail = gtt_offset + tail;
532 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 		stream->oa_buffer.aging_timestamp = now;
534 	}
535 
536 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 			  stream->oa_buffer.head - gtt_offset) >= report_size;
538 
539 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540 
541 	return pollin;
542 }
543 
544 /**
545  * append_oa_status - Appends a status record to a userspace read() buffer.
546  * @stream: An i915-perf stream opened for OA metrics
547  * @buf: destination buffer given by userspace
548  * @count: the number of bytes userspace wants to read
549  * @offset: (inout): the current position for writing into @buf
550  * @type: The kind of status to report to userspace
551  *
552  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553  * into the userspace read() buffer.
554  *
555  * The @buf @offset will only be updated on success.
556  *
557  * Returns: 0 on success, negative error code on failure.
558  */
559 static int append_oa_status(struct i915_perf_stream *stream,
560 			    char __user *buf,
561 			    size_t count,
562 			    size_t *offset,
563 			    enum drm_i915_perf_record_type type)
564 {
565 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566 
567 	if ((count - *offset) < header.size)
568 		return -ENOSPC;
569 
570 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 		return -EFAULT;
572 
573 	(*offset) += header.size;
574 
575 	return 0;
576 }
577 
578 /**
579  * append_oa_sample - Copies single OA report into userspace read() buffer.
580  * @stream: An i915-perf stream opened for OA metrics
581  * @buf: destination buffer given by userspace
582  * @count: the number of bytes userspace wants to read
583  * @offset: (inout): the current position for writing into @buf
584  * @report: A single OA report to (optionally) include as part of the sample
585  *
586  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587  * properties when opening a stream, tracked as `stream->sample_flags`. This
588  * function copies the requested components of a single sample to the given
589  * read() @buf.
590  *
591  * The @buf @offset will only be updated on success.
592  *
593  * Returns: 0 on success, negative error code on failure.
594  */
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 			    char __user *buf,
597 			    size_t count,
598 			    size_t *offset,
599 			    const u8 *report)
600 {
601 	int report_size = stream->oa_buffer.format_size;
602 	struct drm_i915_perf_record_header header;
603 	u32 sample_flags = stream->sample_flags;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (sample_flags & SAMPLE_OA_REPORT) {
618 		if (copy_to_user(buf, report, report_size))
619 			return -EFAULT;
620 	}
621 
622 	(*offset) += header.size;
623 
624 	return 0;
625 }
626 
627 /**
628  * gen8_append_oa_reports - Copies all buffered OA reports into
629  *			    userspace read() buffer.
630  * @stream: An i915-perf stream opened for OA metrics
631  * @buf: destination buffer given by userspace
632  * @count: the number of bytes userspace wants to read
633  * @offset: (inout): the current position for writing into @buf
634  *
635  * Notably any error condition resulting in a short read (-%ENOSPC or
636  * -%EFAULT) will be returned even though one or more records may
637  * have been successfully copied. In this case it's up to the caller
638  * to decide if the error should be squashed before returning to
639  * userspace.
640  *
641  * Note: reports are consumed from the head, and appended to the
642  * tail, so the tail chases the head?... If you think that's mad
643  * and back-to-front you're not alone, but this follows the
644  * Gen PRM naming convention.
645  *
646  * Returns: 0 on success, negative error code on failure.
647  */
648 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
649 				  char __user *buf,
650 				  size_t count,
651 				  size_t *offset)
652 {
653 	struct intel_uncore *uncore = stream->uncore;
654 	int report_size = stream->oa_buffer.format_size;
655 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
656 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
657 	u32 mask = (OA_BUFFER_SIZE - 1);
658 	size_t start_offset = *offset;
659 	unsigned long flags;
660 	u32 head, tail;
661 	u32 taken;
662 	int ret = 0;
663 
664 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
665 		return -EIO;
666 
667 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
668 
669 	head = stream->oa_buffer.head;
670 	tail = stream->oa_buffer.tail;
671 
672 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
673 
674 	/*
675 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
676 	 * while indexing relative to oa_buf_base.
677 	 */
678 	head -= gtt_offset;
679 	tail -= gtt_offset;
680 
681 	/*
682 	 * An out of bounds or misaligned head or tail pointer implies a driver
683 	 * bug since we validate + align the tail pointers we read from the
684 	 * hardware and we are in full control of the head pointer which should
685 	 * only be incremented by multiples of the report size (notably also
686 	 * all a power of two).
687 	 */
688 	if (drm_WARN_ONCE(&uncore->i915->drm,
689 			  head > OA_BUFFER_SIZE || head % report_size ||
690 			  tail > OA_BUFFER_SIZE || tail % report_size,
691 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
692 			  head, tail))
693 		return -EIO;
694 
695 
696 	for (/* none */;
697 	     (taken = OA_TAKEN(tail, head));
698 	     head = (head + report_size) & mask) {
699 		u8 *report = oa_buf_base + head;
700 		u32 *report32 = (void *)report;
701 		u32 ctx_id;
702 		u32 reason;
703 
704 		/*
705 		 * All the report sizes factor neatly into the buffer
706 		 * size so we never expect to see a report split
707 		 * between the beginning and end of the buffer.
708 		 *
709 		 * Given the initial alignment check a misalignment
710 		 * here would imply a driver bug that would result
711 		 * in an overrun.
712 		 */
713 		if (drm_WARN_ON(&uncore->i915->drm,
714 				(OA_BUFFER_SIZE - head) < report_size)) {
715 			drm_err(&uncore->i915->drm,
716 				"Spurious OA head ptr: non-integral report offset\n");
717 			break;
718 		}
719 
720 		/*
721 		 * The reason field includes flags identifying what
722 		 * triggered this specific report (mostly timer
723 		 * triggered or e.g. due to a context switch).
724 		 *
725 		 * This field is never expected to be zero so we can
726 		 * check that the report isn't invalid before copying
727 		 * it to userspace...
728 		 */
729 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
730 			  (IS_GEN(stream->perf->i915, 12) ?
731 			   OAREPORT_REASON_MASK_EXTENDED :
732 			   OAREPORT_REASON_MASK));
733 		if (reason == 0) {
734 			if (__ratelimit(&stream->perf->spurious_report_rs))
735 				DRM_NOTE("Skipping spurious, invalid OA report\n");
736 			continue;
737 		}
738 
739 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
740 
741 		/*
742 		 * Squash whatever is in the CTX_ID field if it's marked as
743 		 * invalid to be sure we avoid false-positive, single-context
744 		 * filtering below...
745 		 *
746 		 * Note: that we don't clear the valid_ctx_bit so userspace can
747 		 * understand that the ID has been squashed by the kernel.
748 		 */
749 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
750 		    INTEL_GEN(stream->perf->i915) <= 11)
751 			ctx_id = report32[2] = INVALID_CTX_ID;
752 
753 		/*
754 		 * NB: For Gen 8 the OA unit no longer supports clock gating
755 		 * off for a specific context and the kernel can't securely
756 		 * stop the counters from updating as system-wide / global
757 		 * values.
758 		 *
759 		 * Automatic reports now include a context ID so reports can be
760 		 * filtered on the cpu but it's not worth trying to
761 		 * automatically subtract/hide counter progress for other
762 		 * contexts while filtering since we can't stop userspace
763 		 * issuing MI_REPORT_PERF_COUNT commands which would still
764 		 * provide a side-band view of the real values.
765 		 *
766 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
767 		 * to normalize counters for a single filtered context then it
768 		 * needs be forwarded bookend context-switch reports so that it
769 		 * can track switches in between MI_REPORT_PERF_COUNT commands
770 		 * and can itself subtract/ignore the progress of counters
771 		 * associated with other contexts. Note that the hardware
772 		 * automatically triggers reports when switching to a new
773 		 * context which are tagged with the ID of the newly active
774 		 * context. To avoid the complexity (and likely fragility) of
775 		 * reading ahead while parsing reports to try and minimize
776 		 * forwarding redundant context switch reports (i.e. between
777 		 * other, unrelated contexts) we simply elect to forward them
778 		 * all.
779 		 *
780 		 * We don't rely solely on the reason field to identify context
781 		 * switches since it's not-uncommon for periodic samples to
782 		 * identify a switch before any 'context switch' report.
783 		 */
784 		if (!stream->perf->exclusive_stream->ctx ||
785 		    stream->specific_ctx_id == ctx_id ||
786 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
787 		    reason & OAREPORT_REASON_CTX_SWITCH) {
788 
789 			/*
790 			 * While filtering for a single context we avoid
791 			 * leaking the IDs of other contexts.
792 			 */
793 			if (stream->perf->exclusive_stream->ctx &&
794 			    stream->specific_ctx_id != ctx_id) {
795 				report32[2] = INVALID_CTX_ID;
796 			}
797 
798 			ret = append_oa_sample(stream, buf, count, offset,
799 					       report);
800 			if (ret)
801 				break;
802 
803 			stream->oa_buffer.last_ctx_id = ctx_id;
804 		}
805 
806 		/*
807 		 * Clear out the first 2 dword as a mean to detect unlanded
808 		 * reports.
809 		 */
810 		report32[0] = 0;
811 		report32[1] = 0;
812 	}
813 
814 	if (start_offset != *offset) {
815 		i915_reg_t oaheadptr;
816 
817 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
818 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
819 
820 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
821 
822 		/*
823 		 * We removed the gtt_offset for the copy loop above, indexing
824 		 * relative to oa_buf_base so put back here...
825 		 */
826 		head += gtt_offset;
827 		intel_uncore_write(uncore, oaheadptr,
828 				   head & GEN12_OAG_OAHEADPTR_MASK);
829 		stream->oa_buffer.head = head;
830 
831 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
832 	}
833 
834 	return ret;
835 }
836 
837 /**
838  * gen8_oa_read - copy status records then buffered OA reports
839  * @stream: An i915-perf stream opened for OA metrics
840  * @buf: destination buffer given by userspace
841  * @count: the number of bytes userspace wants to read
842  * @offset: (inout): the current position for writing into @buf
843  *
844  * Checks OA unit status registers and if necessary appends corresponding
845  * status records for userspace (such as for a buffer full condition) and then
846  * initiate appending any buffered OA reports.
847  *
848  * Updates @offset according to the number of bytes successfully copied into
849  * the userspace buffer.
850  *
851  * NB: some data may be successfully copied to the userspace buffer
852  * even if an error is returned, and this is reflected in the
853  * updated @offset.
854  *
855  * Returns: zero on success or a negative error code
856  */
857 static int gen8_oa_read(struct i915_perf_stream *stream,
858 			char __user *buf,
859 			size_t count,
860 			size_t *offset)
861 {
862 	struct intel_uncore *uncore = stream->uncore;
863 	u32 oastatus;
864 	i915_reg_t oastatus_reg;
865 	int ret;
866 
867 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
868 		return -EIO;
869 
870 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
871 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
872 
873 	oastatus = intel_uncore_read(uncore, oastatus_reg);
874 
875 	/*
876 	 * We treat OABUFFER_OVERFLOW as a significant error:
877 	 *
878 	 * Although theoretically we could handle this more gracefully
879 	 * sometimes, some Gens don't correctly suppress certain
880 	 * automatically triggered reports in this condition and so we
881 	 * have to assume that old reports are now being trampled
882 	 * over.
883 	 *
884 	 * Considering how we don't currently give userspace control
885 	 * over the OA buffer size and always configure a large 16MB
886 	 * buffer, then a buffer overflow does anyway likely indicate
887 	 * that something has gone quite badly wrong.
888 	 */
889 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
890 		ret = append_oa_status(stream, buf, count, offset,
891 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
892 		if (ret)
893 			return ret;
894 
895 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
896 			  stream->period_exponent);
897 
898 		stream->perf->ops.oa_disable(stream);
899 		stream->perf->ops.oa_enable(stream);
900 
901 		/*
902 		 * Note: .oa_enable() is expected to re-init the oabuffer and
903 		 * reset GEN8_OASTATUS for us
904 		 */
905 		oastatus = intel_uncore_read(uncore, oastatus_reg);
906 	}
907 
908 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
909 		ret = append_oa_status(stream, buf, count, offset,
910 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
911 		if (ret)
912 			return ret;
913 
914 		intel_uncore_rmw(uncore, oastatus_reg,
915 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
916 				 GEN8_OASTATUS_REPORT_LOST,
917 				 IS_GEN_RANGE(uncore->i915, 8, 11) ?
918 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
919 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
920 	}
921 
922 	return gen8_append_oa_reports(stream, buf, count, offset);
923 }
924 
925 /**
926  * gen7_append_oa_reports - Copies all buffered OA reports into
927  *			    userspace read() buffer.
928  * @stream: An i915-perf stream opened for OA metrics
929  * @buf: destination buffer given by userspace
930  * @count: the number of bytes userspace wants to read
931  * @offset: (inout): the current position for writing into @buf
932  *
933  * Notably any error condition resulting in a short read (-%ENOSPC or
934  * -%EFAULT) will be returned even though one or more records may
935  * have been successfully copied. In this case it's up to the caller
936  * to decide if the error should be squashed before returning to
937  * userspace.
938  *
939  * Note: reports are consumed from the head, and appended to the
940  * tail, so the tail chases the head?... If you think that's mad
941  * and back-to-front you're not alone, but this follows the
942  * Gen PRM naming convention.
943  *
944  * Returns: 0 on success, negative error code on failure.
945  */
946 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
947 				  char __user *buf,
948 				  size_t count,
949 				  size_t *offset)
950 {
951 	struct intel_uncore *uncore = stream->uncore;
952 	int report_size = stream->oa_buffer.format_size;
953 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
954 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
955 	u32 mask = (OA_BUFFER_SIZE - 1);
956 	size_t start_offset = *offset;
957 	unsigned long flags;
958 	u32 head, tail;
959 	u32 taken;
960 	int ret = 0;
961 
962 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
963 		return -EIO;
964 
965 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
966 
967 	head = stream->oa_buffer.head;
968 	tail = stream->oa_buffer.tail;
969 
970 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
971 
972 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 	 * while indexing relative to oa_buf_base.
974 	 */
975 	head -= gtt_offset;
976 	tail -= gtt_offset;
977 
978 	/* An out of bounds or misaligned head or tail pointer implies a driver
979 	 * bug since we validate + align the tail pointers we read from the
980 	 * hardware and we are in full control of the head pointer which should
981 	 * only be incremented by multiples of the report size (notably also
982 	 * all a power of two).
983 	 */
984 	if (drm_WARN_ONCE(&uncore->i915->drm,
985 			  head > OA_BUFFER_SIZE || head % report_size ||
986 			  tail > OA_BUFFER_SIZE || tail % report_size,
987 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
988 			  head, tail))
989 		return -EIO;
990 
991 
992 	for (/* none */;
993 	     (taken = OA_TAKEN(tail, head));
994 	     head = (head + report_size) & mask) {
995 		u8 *report = oa_buf_base + head;
996 		u32 *report32 = (void *)report;
997 
998 		/* All the report sizes factor neatly into the buffer
999 		 * size so we never expect to see a report split
1000 		 * between the beginning and end of the buffer.
1001 		 *
1002 		 * Given the initial alignment check a misalignment
1003 		 * here would imply a driver bug that would result
1004 		 * in an overrun.
1005 		 */
1006 		if (drm_WARN_ON(&uncore->i915->drm,
1007 				(OA_BUFFER_SIZE - head) < report_size)) {
1008 			drm_err(&uncore->i915->drm,
1009 				"Spurious OA head ptr: non-integral report offset\n");
1010 			break;
1011 		}
1012 
1013 		/* The report-ID field for periodic samples includes
1014 		 * some undocumented flags related to what triggered
1015 		 * the report and is never expected to be zero so we
1016 		 * can check that the report isn't invalid before
1017 		 * copying it to userspace...
1018 		 */
1019 		if (report32[0] == 0) {
1020 			if (__ratelimit(&stream->perf->spurious_report_rs))
1021 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 			continue;
1023 		}
1024 
1025 		ret = append_oa_sample(stream, buf, count, offset, report);
1026 		if (ret)
1027 			break;
1028 
1029 		/* Clear out the first 2 dwords as a mean to detect unlanded
1030 		 * reports.
1031 		 */
1032 		report32[0] = 0;
1033 		report32[1] = 0;
1034 	}
1035 
1036 	if (start_offset != *offset) {
1037 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1038 
1039 		/* We removed the gtt_offset for the copy loop above, indexing
1040 		 * relative to oa_buf_base so put back here...
1041 		 */
1042 		head += gtt_offset;
1043 
1044 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1045 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1046 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1047 		stream->oa_buffer.head = head;
1048 
1049 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 /**
1056  * gen7_oa_read - copy status records then buffered OA reports
1057  * @stream: An i915-perf stream opened for OA metrics
1058  * @buf: destination buffer given by userspace
1059  * @count: the number of bytes userspace wants to read
1060  * @offset: (inout): the current position for writing into @buf
1061  *
1062  * Checks Gen 7 specific OA unit status registers and if necessary appends
1063  * corresponding status records for userspace (such as for a buffer full
1064  * condition) and then initiate appending any buffered OA reports.
1065  *
1066  * Updates @offset according to the number of bytes successfully copied into
1067  * the userspace buffer.
1068  *
1069  * Returns: zero on success or a negative error code
1070  */
1071 static int gen7_oa_read(struct i915_perf_stream *stream,
1072 			char __user *buf,
1073 			size_t count,
1074 			size_t *offset)
1075 {
1076 	struct intel_uncore *uncore = stream->uncore;
1077 	u32 oastatus1;
1078 	int ret;
1079 
1080 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1081 		return -EIO;
1082 
1083 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1084 
1085 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 	 * bits while the OA unit is enabled (while the tail pointer
1087 	 * may be updated asynchronously) so we ignore status bits
1088 	 * that have already been reported to userspace.
1089 	 */
1090 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1091 
1092 	/* We treat OABUFFER_OVERFLOW as a significant error:
1093 	 *
1094 	 * - The status can be interpreted to mean that the buffer is
1095 	 *   currently full (with a higher precedence than OA_TAKEN()
1096 	 *   which will start to report a near-empty buffer after an
1097 	 *   overflow) but it's awkward that we can't clear the status
1098 	 *   on Haswell, so without a reset we won't be able to catch
1099 	 *   the state again.
1100 	 *
1101 	 * - Since it also implies the HW has started overwriting old
1102 	 *   reports it may also affect our sanity checks for invalid
1103 	 *   reports when copying to userspace that assume new reports
1104 	 *   are being written to cleared memory.
1105 	 *
1106 	 * - In the future we may want to introduce a flight recorder
1107 	 *   mode where the driver will automatically maintain a safe
1108 	 *   guard band between head/tail, avoiding this overflow
1109 	 *   condition, but we avoid the added driver complexity for
1110 	 *   now.
1111 	 */
1112 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113 		ret = append_oa_status(stream, buf, count, offset,
1114 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115 		if (ret)
1116 			return ret;
1117 
1118 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 			  stream->period_exponent);
1120 
1121 		stream->perf->ops.oa_disable(stream);
1122 		stream->perf->ops.oa_enable(stream);
1123 
1124 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125 	}
1126 
1127 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 		ret = append_oa_status(stream, buf, count, offset,
1129 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 		if (ret)
1131 			return ret;
1132 		stream->perf->gen7_latched_oastatus1 |=
1133 			GEN7_OASTATUS1_REPORT_LOST;
1134 	}
1135 
1136 	return gen7_append_oa_reports(stream, buf, count, offset);
1137 }
1138 
1139 /**
1140  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141  * @stream: An i915-perf stream opened for OA metrics
1142  *
1143  * Called when userspace tries to read() from a blocking stream FD opened
1144  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145  * OA buffer and wakes us.
1146  *
1147  * Note: it's acceptable to have this return with some false positives
1148  * since any subsequent read handling will return -EAGAIN if there isn't
1149  * really data ready for userspace yet.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 {
1155 	/* We would wait indefinitely if periodic sampling is not enabled */
1156 	if (!stream->periodic)
1157 		return -EIO;
1158 
1159 	return wait_event_interruptible(stream->poll_wq,
1160 					oa_buffer_check_unlocked(stream));
1161 }
1162 
1163 /**
1164  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165  * @stream: An i915-perf stream opened for OA metrics
1166  * @file: An i915 perf stream file
1167  * @wait: poll() state table
1168  *
1169  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171  * when it sees data ready to read in the circular OA buffer.
1172  */
1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 			      struct file *file,
1175 			      poll_table *wait)
1176 {
1177 	poll_wait(file, &stream->poll_wq, wait);
1178 }
1179 
1180 /**
1181  * i915_oa_read - just calls through to &i915_oa_ops->read
1182  * @stream: An i915-perf stream opened for OA metrics
1183  * @buf: destination buffer given by userspace
1184  * @count: the number of bytes userspace wants to read
1185  * @offset: (inout): the current position for writing into @buf
1186  *
1187  * Updates @offset according to the number of bytes successfully copied into
1188  * the userspace buffer.
1189  *
1190  * Returns: zero on success or a negative error code
1191  */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 			char __user *buf,
1194 			size_t count,
1195 			size_t *offset)
1196 {
1197 	return stream->perf->ops.read(stream, buf, count, offset);
1198 }
1199 
1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201 {
1202 	struct i915_gem_engines_iter it;
1203 	struct i915_gem_context *ctx = stream->ctx;
1204 	struct intel_context *ce;
1205 	struct i915_gem_ww_ctx ww;
1206 	int err = -ENODEV;
1207 
1208 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209 		if (ce->engine != stream->engine) /* first match! */
1210 			continue;
1211 
1212 		err = 0;
1213 		break;
1214 	}
1215 	i915_gem_context_unlock_engines(ctx);
1216 
1217 	if (err)
1218 		return ERR_PTR(err);
1219 
1220 	i915_gem_ww_ctx_init(&ww, true);
1221 retry:
1222 	/*
1223 	 * As the ID is the gtt offset of the context's vma we
1224 	 * pin the vma to ensure the ID remains fixed.
1225 	 */
1226 	err = intel_context_pin_ww(ce, &ww);
1227 	if (err == -EDEADLK) {
1228 		err = i915_gem_ww_ctx_backoff(&ww);
1229 		if (!err)
1230 			goto retry;
1231 	}
1232 	i915_gem_ww_ctx_fini(&ww);
1233 
1234 	if (err)
1235 		return ERR_PTR(err);
1236 
1237 	stream->pinned_ctx = ce;
1238 	return stream->pinned_ctx;
1239 }
1240 
1241 /**
1242  * oa_get_render_ctx_id - determine and hold ctx hw id
1243  * @stream: An i915-perf stream opened for OA metrics
1244  *
1245  * Determine the render context hw id, and ensure it remains fixed for the
1246  * lifetime of the stream. This ensures that we don't have to worry about
1247  * updating the context ID in OACONTROL on the fly.
1248  *
1249  * Returns: zero on success or a negative error code
1250  */
1251 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1252 {
1253 	struct intel_context *ce;
1254 
1255 	ce = oa_pin_context(stream);
1256 	if (IS_ERR(ce))
1257 		return PTR_ERR(ce);
1258 
1259 	switch (INTEL_GEN(ce->engine->i915)) {
1260 	case 7: {
1261 		/*
1262 		 * On Haswell we don't do any post processing of the reports
1263 		 * and don't need to use the mask.
1264 		 */
1265 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1266 		stream->specific_ctx_id_mask = 0;
1267 		break;
1268 	}
1269 
1270 	case 8:
1271 	case 9:
1272 	case 10:
1273 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1274 			stream->specific_ctx_id_mask =
1275 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1276 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1277 		} else {
1278 			/*
1279 			 * When using GuC, the context descriptor we write in
1280 			 * i915 is read by GuC and rewritten before it's
1281 			 * actually written into the hardware. The LRCA is
1282 			 * what is put into the context id field of the
1283 			 * context descriptor by GuC. Because it's aligned to
1284 			 * a page, the lower 12bits are always at 0 and
1285 			 * dropped by GuC. They won't be part of the context
1286 			 * ID in the OA reports, so squash those lower bits.
1287 			 */
1288 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1289 
1290 			/*
1291 			 * GuC uses the top bit to signal proxy submission, so
1292 			 * ignore that bit.
1293 			 */
1294 			stream->specific_ctx_id_mask =
1295 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1296 		}
1297 		break;
1298 
1299 	case 11:
1300 	case 12: {
1301 		stream->specific_ctx_id_mask =
1302 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1303 		/*
1304 		 * Pick an unused context id
1305 		 * 0 - BITS_PER_LONG are used by other contexts
1306 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1307 		 */
1308 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1309 		break;
1310 	}
1311 
1312 	default:
1313 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1314 	}
1315 
1316 	ce->tag = stream->specific_ctx_id;
1317 
1318 	drm_dbg(&stream->perf->i915->drm,
1319 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1320 		stream->specific_ctx_id,
1321 		stream->specific_ctx_id_mask);
1322 
1323 	return 0;
1324 }
1325 
1326 /**
1327  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1328  * @stream: An i915-perf stream opened for OA metrics
1329  *
1330  * In case anything needed doing to ensure the context HW ID would remain valid
1331  * for the lifetime of the stream, then that can be undone here.
1332  */
1333 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1334 {
1335 	struct intel_context *ce;
1336 
1337 	ce = fetch_and_zero(&stream->pinned_ctx);
1338 	if (ce) {
1339 		ce->tag = 0; /* recomputed on next submission after parking */
1340 		intel_context_unpin(ce);
1341 	}
1342 
1343 	stream->specific_ctx_id = INVALID_CTX_ID;
1344 	stream->specific_ctx_id_mask = 0;
1345 }
1346 
1347 static void
1348 free_oa_buffer(struct i915_perf_stream *stream)
1349 {
1350 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1351 				   I915_VMA_RELEASE_MAP);
1352 
1353 	stream->oa_buffer.vaddr = NULL;
1354 }
1355 
1356 static void
1357 free_oa_configs(struct i915_perf_stream *stream)
1358 {
1359 	struct i915_oa_config_bo *oa_bo, *tmp;
1360 
1361 	i915_oa_config_put(stream->oa_config);
1362 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1363 		free_oa_config_bo(oa_bo);
1364 }
1365 
1366 static void
1367 free_noa_wait(struct i915_perf_stream *stream)
1368 {
1369 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1370 }
1371 
1372 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1373 {
1374 	struct i915_perf *perf = stream->perf;
1375 
1376 	BUG_ON(stream != perf->exclusive_stream);
1377 
1378 	/*
1379 	 * Unset exclusive_stream first, it will be checked while disabling
1380 	 * the metric set on gen8+.
1381 	 *
1382 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1383 	 */
1384 	WRITE_ONCE(perf->exclusive_stream, NULL);
1385 	perf->ops.disable_metric_set(stream);
1386 
1387 	free_oa_buffer(stream);
1388 
1389 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1390 	intel_engine_pm_put(stream->engine);
1391 
1392 	if (stream->ctx)
1393 		oa_put_render_ctx_id(stream);
1394 
1395 	free_oa_configs(stream);
1396 	free_noa_wait(stream);
1397 
1398 	if (perf->spurious_report_rs.missed) {
1399 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1400 			 perf->spurious_report_rs.missed);
1401 	}
1402 }
1403 
1404 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1405 {
1406 	struct intel_uncore *uncore = stream->uncore;
1407 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1411 
1412 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1413 	 * before OASTATUS1, but after OASTATUS2
1414 	 */
1415 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1416 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1417 	stream->oa_buffer.head = gtt_offset;
1418 
1419 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1420 
1421 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1422 			   gtt_offset | OABUFFER_SIZE_16M);
1423 
1424 	/* Mark that we need updated tail pointers to read from... */
1425 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1426 	stream->oa_buffer.tail = gtt_offset;
1427 
1428 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1429 
1430 	/* On Haswell we have to track which OASTATUS1 flags we've
1431 	 * already seen since they can't be cleared while periodic
1432 	 * sampling is enabled.
1433 	 */
1434 	stream->perf->gen7_latched_oastatus1 = 0;
1435 
1436 	/* NB: although the OA buffer will initially be allocated
1437 	 * zeroed via shmfs (and so this memset is redundant when
1438 	 * first allocating), we may re-init the OA buffer, either
1439 	 * when re-enabling a stream or in error/reset paths.
1440 	 *
1441 	 * The reason we clear the buffer for each re-init is for the
1442 	 * sanity check in gen7_append_oa_reports() that looks at the
1443 	 * report-id field to make sure it's non-zero which relies on
1444 	 * the assumption that new reports are being written to zeroed
1445 	 * memory...
1446 	 */
1447 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1448 }
1449 
1450 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1451 {
1452 	struct intel_uncore *uncore = stream->uncore;
1453 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1454 	unsigned long flags;
1455 
1456 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1457 
1458 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1459 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1460 	stream->oa_buffer.head = gtt_offset;
1461 
1462 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1463 
1464 	/*
1465 	 * PRM says:
1466 	 *
1467 	 *  "This MMIO must be set before the OATAILPTR
1468 	 *  register and after the OAHEADPTR register. This is
1469 	 *  to enable proper functionality of the overflow
1470 	 *  bit."
1471 	 */
1472 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1473 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1474 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1475 
1476 	/* Mark that we need updated tail pointers to read from... */
1477 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1478 	stream->oa_buffer.tail = gtt_offset;
1479 
1480 	/*
1481 	 * Reset state used to recognise context switches, affecting which
1482 	 * reports we will forward to userspace while filtering for a single
1483 	 * context.
1484 	 */
1485 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1486 
1487 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1488 
1489 	/*
1490 	 * NB: although the OA buffer will initially be allocated
1491 	 * zeroed via shmfs (and so this memset is redundant when
1492 	 * first allocating), we may re-init the OA buffer, either
1493 	 * when re-enabling a stream or in error/reset paths.
1494 	 *
1495 	 * The reason we clear the buffer for each re-init is for the
1496 	 * sanity check in gen8_append_oa_reports() that looks at the
1497 	 * reason field to make sure it's non-zero which relies on
1498 	 * the assumption that new reports are being written to zeroed
1499 	 * memory...
1500 	 */
1501 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1502 }
1503 
1504 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1505 {
1506 	struct intel_uncore *uncore = stream->uncore;
1507 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1511 
1512 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1513 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1514 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1515 	stream->oa_buffer.head = gtt_offset;
1516 
1517 	/*
1518 	 * PRM says:
1519 	 *
1520 	 *  "This MMIO must be set before the OATAILPTR
1521 	 *  register and after the OAHEADPTR register. This is
1522 	 *  to enable proper functionality of the overflow
1523 	 *  bit."
1524 	 */
1525 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1526 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1527 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1528 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1529 
1530 	/* Mark that we need updated tail pointers to read from... */
1531 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1532 	stream->oa_buffer.tail = gtt_offset;
1533 
1534 	/*
1535 	 * Reset state used to recognise context switches, affecting which
1536 	 * reports we will forward to userspace while filtering for a single
1537 	 * context.
1538 	 */
1539 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1540 
1541 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1542 
1543 	/*
1544 	 * NB: although the OA buffer will initially be allocated
1545 	 * zeroed via shmfs (and so this memset is redundant when
1546 	 * first allocating), we may re-init the OA buffer, either
1547 	 * when re-enabling a stream or in error/reset paths.
1548 	 *
1549 	 * The reason we clear the buffer for each re-init is for the
1550 	 * sanity check in gen8_append_oa_reports() that looks at the
1551 	 * reason field to make sure it's non-zero which relies on
1552 	 * the assumption that new reports are being written to zeroed
1553 	 * memory...
1554 	 */
1555 	memset(stream->oa_buffer.vaddr, 0,
1556 	       stream->oa_buffer.vma->size);
1557 }
1558 
1559 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1560 {
1561 	struct drm_i915_private *i915 = stream->perf->i915;
1562 	struct drm_i915_gem_object *bo;
1563 	struct i915_vma *vma;
1564 	int ret;
1565 
1566 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1567 		return -ENODEV;
1568 
1569 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1570 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1571 
1572 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1573 	if (IS_ERR(bo)) {
1574 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1575 		return PTR_ERR(bo);
1576 	}
1577 
1578 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1579 
1580 	/* PreHSW required 512K alignment, HSW requires 16M */
1581 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1582 	if (IS_ERR(vma)) {
1583 		ret = PTR_ERR(vma);
1584 		goto err_unref;
1585 	}
1586 	stream->oa_buffer.vma = vma;
1587 
1588 	stream->oa_buffer.vaddr =
1589 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1590 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1591 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1592 		goto err_unpin;
1593 	}
1594 
1595 	return 0;
1596 
1597 err_unpin:
1598 	__i915_vma_unpin(vma);
1599 
1600 err_unref:
1601 	i915_gem_object_put(bo);
1602 
1603 	stream->oa_buffer.vaddr = NULL;
1604 	stream->oa_buffer.vma = NULL;
1605 
1606 	return ret;
1607 }
1608 
1609 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1610 				  bool save, i915_reg_t reg, u32 offset,
1611 				  u32 dword_count)
1612 {
1613 	u32 cmd;
1614 	u32 d;
1615 
1616 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1617 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1618 	if (INTEL_GEN(stream->perf->i915) >= 8)
1619 		cmd++;
1620 
1621 	for (d = 0; d < dword_count; d++) {
1622 		*cs++ = cmd;
1623 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1624 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1625 						offset) + 4 * d;
1626 		*cs++ = 0;
1627 	}
1628 
1629 	return cs;
1630 }
1631 
1632 static int alloc_noa_wait(struct i915_perf_stream *stream)
1633 {
1634 	struct drm_i915_private *i915 = stream->perf->i915;
1635 	struct drm_i915_gem_object *bo;
1636 	struct i915_vma *vma;
1637 	const u64 delay_ticks = 0xffffffffffffffff -
1638 		i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1639 	const u32 base = stream->engine->mmio_base;
1640 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1641 	u32 *batch, *ts0, *cs, *jump;
1642 	int ret, i;
1643 	enum {
1644 		START_TS,
1645 		NOW_TS,
1646 		DELTA_TS,
1647 		JUMP_PREDICATE,
1648 		DELTA_TARGET,
1649 		N_CS_GPR
1650 	};
1651 
1652 	bo = i915_gem_object_create_internal(i915, 4096);
1653 	if (IS_ERR(bo)) {
1654 		drm_err(&i915->drm,
1655 			"Failed to allocate NOA wait batchbuffer\n");
1656 		return PTR_ERR(bo);
1657 	}
1658 
1659 	/*
1660 	 * We pin in GGTT because we jump into this buffer now because
1661 	 * multiple OA config BOs will have a jump to this address and it
1662 	 * needs to be fixed during the lifetime of the i915/perf stream.
1663 	 */
1664 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1665 	if (IS_ERR(vma)) {
1666 		ret = PTR_ERR(vma);
1667 		goto err_unref;
1668 	}
1669 
1670 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1671 	if (IS_ERR(batch)) {
1672 		ret = PTR_ERR(batch);
1673 		goto err_unpin;
1674 	}
1675 
1676 	/* Save registers. */
1677 	for (i = 0; i < N_CS_GPR; i++)
1678 		cs = save_restore_register(
1679 			stream, cs, true /* save */, CS_GPR(i),
1680 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1681 	cs = save_restore_register(
1682 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1683 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1684 
1685 	/* First timestamp snapshot location. */
1686 	ts0 = cs;
1687 
1688 	/*
1689 	 * Initial snapshot of the timestamp register to implement the wait.
1690 	 * We work with 32b values, so clear out the top 32b bits of the
1691 	 * register because the ALU works 64bits.
1692 	 */
1693 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1694 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1695 	*cs++ = 0;
1696 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1697 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1698 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1699 
1700 	/*
1701 	 * This is the location we're going to jump back into until the
1702 	 * required amount of time has passed.
1703 	 */
1704 	jump = cs;
1705 
1706 	/*
1707 	 * Take another snapshot of the timestamp register. Take care to clear
1708 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1709 	 * operations below.
1710 	 */
1711 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1712 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1713 	*cs++ = 0;
1714 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1715 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1716 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1717 
1718 	/*
1719 	 * Do a diff between the 2 timestamps and store the result back into
1720 	 * CS_GPR(1).
1721 	 */
1722 	*cs++ = MI_MATH(5);
1723 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1724 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1725 	*cs++ = MI_MATH_SUB;
1726 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1727 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1728 
1729 	/*
1730 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1731 	 * timestamp have rolled over the 32bits) into the predicate register
1732 	 * to be used for the predicated jump.
1733 	 */
1734 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1735 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1736 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1737 
1738 	/* Restart from the beginning if we had timestamps roll over. */
1739 	*cs++ = (INTEL_GEN(i915) < 8 ?
1740 		 MI_BATCH_BUFFER_START :
1741 		 MI_BATCH_BUFFER_START_GEN8) |
1742 		MI_BATCH_PREDICATE;
1743 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1744 	*cs++ = 0;
1745 
1746 	/*
1747 	 * Now add the diff between to previous timestamps and add it to :
1748 	 *      (((1 * << 64) - 1) - delay_ns)
1749 	 *
1750 	 * When the Carry Flag contains 1 this means the elapsed time is
1751 	 * longer than the expected delay, and we can exit the wait loop.
1752 	 */
1753 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1754 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1755 	*cs++ = lower_32_bits(delay_ticks);
1756 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1757 	*cs++ = upper_32_bits(delay_ticks);
1758 
1759 	*cs++ = MI_MATH(4);
1760 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1761 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1762 	*cs++ = MI_MATH_ADD;
1763 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1764 
1765 	*cs++ = MI_ARB_CHECK;
1766 
1767 	/*
1768 	 * Transfer the result into the predicate register to be used for the
1769 	 * predicated jump.
1770 	 */
1771 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1772 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1773 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1774 
1775 	/* Predicate the jump.  */
1776 	*cs++ = (INTEL_GEN(i915) < 8 ?
1777 		 MI_BATCH_BUFFER_START :
1778 		 MI_BATCH_BUFFER_START_GEN8) |
1779 		MI_BATCH_PREDICATE;
1780 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1781 	*cs++ = 0;
1782 
1783 	/* Restore registers. */
1784 	for (i = 0; i < N_CS_GPR; i++)
1785 		cs = save_restore_register(
1786 			stream, cs, false /* restore */, CS_GPR(i),
1787 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1788 	cs = save_restore_register(
1789 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1790 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1791 
1792 	/* And return to the ring. */
1793 	*cs++ = MI_BATCH_BUFFER_END;
1794 
1795 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1796 
1797 	i915_gem_object_flush_map(bo);
1798 	__i915_gem_object_release_map(bo);
1799 
1800 	stream->noa_wait = vma;
1801 	return 0;
1802 
1803 err_unpin:
1804 	i915_vma_unpin_and_release(&vma, 0);
1805 err_unref:
1806 	i915_gem_object_put(bo);
1807 	return ret;
1808 }
1809 
1810 static u32 *write_cs_mi_lri(u32 *cs,
1811 			    const struct i915_oa_reg *reg_data,
1812 			    u32 n_regs)
1813 {
1814 	u32 i;
1815 
1816 	for (i = 0; i < n_regs; i++) {
1817 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1818 			u32 n_lri = min_t(u32,
1819 					  n_regs - i,
1820 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1821 
1822 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1823 		}
1824 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1825 		*cs++ = reg_data[i].value;
1826 	}
1827 
1828 	return cs;
1829 }
1830 
1831 static int num_lri_dwords(int num_regs)
1832 {
1833 	int count = 0;
1834 
1835 	if (num_regs > 0) {
1836 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1837 		count += num_regs * 2;
1838 	}
1839 
1840 	return count;
1841 }
1842 
1843 static struct i915_oa_config_bo *
1844 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1845 		       struct i915_oa_config *oa_config)
1846 {
1847 	struct drm_i915_gem_object *obj;
1848 	struct i915_oa_config_bo *oa_bo;
1849 	size_t config_length = 0;
1850 	u32 *cs;
1851 	int err;
1852 
1853 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1854 	if (!oa_bo)
1855 		return ERR_PTR(-ENOMEM);
1856 
1857 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1858 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1859 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1860 	config_length += 3; /* MI_BATCH_BUFFER_START */
1861 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1862 
1863 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1864 	if (IS_ERR(obj)) {
1865 		err = PTR_ERR(obj);
1866 		goto err_free;
1867 	}
1868 
1869 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1870 	if (IS_ERR(cs)) {
1871 		err = PTR_ERR(cs);
1872 		goto err_oa_bo;
1873 	}
1874 
1875 	cs = write_cs_mi_lri(cs,
1876 			     oa_config->mux_regs,
1877 			     oa_config->mux_regs_len);
1878 	cs = write_cs_mi_lri(cs,
1879 			     oa_config->b_counter_regs,
1880 			     oa_config->b_counter_regs_len);
1881 	cs = write_cs_mi_lri(cs,
1882 			     oa_config->flex_regs,
1883 			     oa_config->flex_regs_len);
1884 
1885 	/* Jump into the active wait. */
1886 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1887 		 MI_BATCH_BUFFER_START :
1888 		 MI_BATCH_BUFFER_START_GEN8);
1889 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1890 	*cs++ = 0;
1891 
1892 	i915_gem_object_flush_map(obj);
1893 	__i915_gem_object_release_map(obj);
1894 
1895 	oa_bo->vma = i915_vma_instance(obj,
1896 				       &stream->engine->gt->ggtt->vm,
1897 				       NULL);
1898 	if (IS_ERR(oa_bo->vma)) {
1899 		err = PTR_ERR(oa_bo->vma);
1900 		goto err_oa_bo;
1901 	}
1902 
1903 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1904 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1905 
1906 	return oa_bo;
1907 
1908 err_oa_bo:
1909 	i915_gem_object_put(obj);
1910 err_free:
1911 	kfree(oa_bo);
1912 	return ERR_PTR(err);
1913 }
1914 
1915 static struct i915_vma *
1916 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1917 {
1918 	struct i915_oa_config_bo *oa_bo;
1919 
1920 	/*
1921 	 * Look for the buffer in the already allocated BOs attached
1922 	 * to the stream.
1923 	 */
1924 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1925 		if (oa_bo->oa_config == oa_config &&
1926 		    memcmp(oa_bo->oa_config->uuid,
1927 			   oa_config->uuid,
1928 			   sizeof(oa_config->uuid)) == 0)
1929 			goto out;
1930 	}
1931 
1932 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1933 	if (IS_ERR(oa_bo))
1934 		return ERR_CAST(oa_bo);
1935 
1936 out:
1937 	return i915_vma_get(oa_bo->vma);
1938 }
1939 
1940 static int
1941 emit_oa_config(struct i915_perf_stream *stream,
1942 	       struct i915_oa_config *oa_config,
1943 	       struct intel_context *ce,
1944 	       struct i915_active *active)
1945 {
1946 	struct i915_request *rq;
1947 	struct i915_vma *vma;
1948 	struct i915_gem_ww_ctx ww;
1949 	int err;
1950 
1951 	vma = get_oa_vma(stream, oa_config);
1952 	if (IS_ERR(vma))
1953 		return PTR_ERR(vma);
1954 
1955 	i915_gem_ww_ctx_init(&ww, true);
1956 retry:
1957 	err = i915_gem_object_lock(vma->obj, &ww);
1958 	if (err)
1959 		goto err;
1960 
1961 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1962 	if (err)
1963 		goto err;
1964 
1965 	intel_engine_pm_get(ce->engine);
1966 	rq = i915_request_create(ce);
1967 	intel_engine_pm_put(ce->engine);
1968 	if (IS_ERR(rq)) {
1969 		err = PTR_ERR(rq);
1970 		goto err_vma_unpin;
1971 	}
1972 
1973 	if (!IS_ERR_OR_NULL(active)) {
1974 		/* After all individual context modifications */
1975 		err = i915_request_await_active(rq, active,
1976 						I915_ACTIVE_AWAIT_ACTIVE);
1977 		if (err)
1978 			goto err_add_request;
1979 
1980 		err = i915_active_add_request(active, rq);
1981 		if (err)
1982 			goto err_add_request;
1983 	}
1984 
1985 	err = i915_request_await_object(rq, vma->obj, 0);
1986 	if (!err)
1987 		err = i915_vma_move_to_active(vma, rq, 0);
1988 	if (err)
1989 		goto err_add_request;
1990 
1991 	err = rq->engine->emit_bb_start(rq,
1992 					vma->node.start, 0,
1993 					I915_DISPATCH_SECURE);
1994 	if (err)
1995 		goto err_add_request;
1996 
1997 err_add_request:
1998 	i915_request_add(rq);
1999 err_vma_unpin:
2000 	i915_vma_unpin(vma);
2001 err:
2002 	if (err == -EDEADLK) {
2003 		err = i915_gem_ww_ctx_backoff(&ww);
2004 		if (!err)
2005 			goto retry;
2006 	}
2007 
2008 	i915_gem_ww_ctx_fini(&ww);
2009 	i915_vma_put(vma);
2010 	return err;
2011 }
2012 
2013 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2014 {
2015 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2016 }
2017 
2018 static int
2019 hsw_enable_metric_set(struct i915_perf_stream *stream,
2020 		      struct i915_active *active)
2021 {
2022 	struct intel_uncore *uncore = stream->uncore;
2023 
2024 	/*
2025 	 * PRM:
2026 	 *
2027 	 * OA unit is using “crclk” for its functionality. When trunk
2028 	 * level clock gating takes place, OA clock would be gated,
2029 	 * unable to count the events from non-render clock domain.
2030 	 * Render clock gating must be disabled when OA is enabled to
2031 	 * count the events from non-render domain. Unit level clock
2032 	 * gating for RCS should also be disabled.
2033 	 */
2034 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2035 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2036 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2037 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2038 
2039 	return emit_oa_config(stream,
2040 			      stream->oa_config, oa_context(stream),
2041 			      active);
2042 }
2043 
2044 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2045 {
2046 	struct intel_uncore *uncore = stream->uncore;
2047 
2048 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2049 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2050 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2051 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2052 
2053 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2054 }
2055 
2056 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2057 			      i915_reg_t reg)
2058 {
2059 	u32 mmio = i915_mmio_reg_offset(reg);
2060 	int i;
2061 
2062 	/*
2063 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2064 	 * Active' event. In the future it's anticipated that there
2065 	 * will be an explicit 'No Event' we can select, but not yet...
2066 	 */
2067 	if (!oa_config)
2068 		return 0;
2069 
2070 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2071 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2072 			return oa_config->flex_regs[i].value;
2073 	}
2074 
2075 	return 0;
2076 }
2077 /*
2078  * NB: It must always remain pointer safe to run this even if the OA unit
2079  * has been disabled.
2080  *
2081  * It's fine to put out-of-date values into these per-context registers
2082  * in the case that the OA unit has been disabled.
2083  */
2084 static void
2085 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2086 			       const struct i915_perf_stream *stream)
2087 {
2088 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2089 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2090 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2091 	i915_reg_t flex_regs[] = {
2092 		EU_PERF_CNTL0,
2093 		EU_PERF_CNTL1,
2094 		EU_PERF_CNTL2,
2095 		EU_PERF_CNTL3,
2096 		EU_PERF_CNTL4,
2097 		EU_PERF_CNTL5,
2098 		EU_PERF_CNTL6,
2099 	};
2100 	u32 *reg_state = ce->lrc_reg_state;
2101 	int i;
2102 
2103 	reg_state[ctx_oactxctrl + 1] =
2104 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2105 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2106 		GEN8_OA_COUNTER_RESUME;
2107 
2108 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2109 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2110 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2111 }
2112 
2113 struct flex {
2114 	i915_reg_t reg;
2115 	u32 offset;
2116 	u32 value;
2117 };
2118 
2119 static int
2120 gen8_store_flex(struct i915_request *rq,
2121 		struct intel_context *ce,
2122 		const struct flex *flex, unsigned int count)
2123 {
2124 	u32 offset;
2125 	u32 *cs;
2126 
2127 	cs = intel_ring_begin(rq, 4 * count);
2128 	if (IS_ERR(cs))
2129 		return PTR_ERR(cs);
2130 
2131 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2132 	do {
2133 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2134 		*cs++ = offset + flex->offset * sizeof(u32);
2135 		*cs++ = 0;
2136 		*cs++ = flex->value;
2137 	} while (flex++, --count);
2138 
2139 	intel_ring_advance(rq, cs);
2140 
2141 	return 0;
2142 }
2143 
2144 static int
2145 gen8_load_flex(struct i915_request *rq,
2146 	       struct intel_context *ce,
2147 	       const struct flex *flex, unsigned int count)
2148 {
2149 	u32 *cs;
2150 
2151 	GEM_BUG_ON(!count || count > 63);
2152 
2153 	cs = intel_ring_begin(rq, 2 * count + 2);
2154 	if (IS_ERR(cs))
2155 		return PTR_ERR(cs);
2156 
2157 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2158 	do {
2159 		*cs++ = i915_mmio_reg_offset(flex->reg);
2160 		*cs++ = flex->value;
2161 	} while (flex++, --count);
2162 	*cs++ = MI_NOOP;
2163 
2164 	intel_ring_advance(rq, cs);
2165 
2166 	return 0;
2167 }
2168 
2169 static int gen8_modify_context(struct intel_context *ce,
2170 			       const struct flex *flex, unsigned int count)
2171 {
2172 	struct i915_request *rq;
2173 	int err;
2174 
2175 	rq = intel_engine_create_kernel_request(ce->engine);
2176 	if (IS_ERR(rq))
2177 		return PTR_ERR(rq);
2178 
2179 	/* Serialise with the remote context */
2180 	err = intel_context_prepare_remote_request(ce, rq);
2181 	if (err == 0)
2182 		err = gen8_store_flex(rq, ce, flex, count);
2183 
2184 	i915_request_add(rq);
2185 	return err;
2186 }
2187 
2188 static int
2189 gen8_modify_self(struct intel_context *ce,
2190 		 const struct flex *flex, unsigned int count,
2191 		 struct i915_active *active)
2192 {
2193 	struct i915_request *rq;
2194 	int err;
2195 
2196 	intel_engine_pm_get(ce->engine);
2197 	rq = i915_request_create(ce);
2198 	intel_engine_pm_put(ce->engine);
2199 	if (IS_ERR(rq))
2200 		return PTR_ERR(rq);
2201 
2202 	if (!IS_ERR_OR_NULL(active)) {
2203 		err = i915_active_add_request(active, rq);
2204 		if (err)
2205 			goto err_add_request;
2206 	}
2207 
2208 	err = gen8_load_flex(rq, ce, flex, count);
2209 	if (err)
2210 		goto err_add_request;
2211 
2212 err_add_request:
2213 	i915_request_add(rq);
2214 	return err;
2215 }
2216 
2217 static int gen8_configure_context(struct i915_gem_context *ctx,
2218 				  struct flex *flex, unsigned int count)
2219 {
2220 	struct i915_gem_engines_iter it;
2221 	struct intel_context *ce;
2222 	int err = 0;
2223 
2224 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2225 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2226 
2227 		if (ce->engine->class != RENDER_CLASS)
2228 			continue;
2229 
2230 		/* Otherwise OA settings will be set upon first use */
2231 		if (!intel_context_pin_if_active(ce))
2232 			continue;
2233 
2234 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2235 		err = gen8_modify_context(ce, flex, count);
2236 
2237 		intel_context_unpin(ce);
2238 		if (err)
2239 			break;
2240 	}
2241 	i915_gem_context_unlock_engines(ctx);
2242 
2243 	return err;
2244 }
2245 
2246 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2247 				       struct i915_active *active)
2248 {
2249 	int err;
2250 	struct intel_context *ce = stream->pinned_ctx;
2251 	u32 format = stream->oa_buffer.format;
2252 	struct flex regs_context[] = {
2253 		{
2254 			GEN8_OACTXCONTROL,
2255 			stream->perf->ctx_oactxctrl_offset + 1,
2256 			active ? GEN8_OA_COUNTER_RESUME : 0,
2257 		},
2258 	};
2259 	/* Offsets in regs_lri are not used since this configuration is only
2260 	 * applied using LRI. Initialize the correct offsets for posterity.
2261 	 */
2262 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2263 	struct flex regs_lri[] = {
2264 		{
2265 			GEN12_OAR_OACONTROL,
2266 			GEN12_OAR_OACONTROL_OFFSET + 1,
2267 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2268 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2269 		},
2270 		{
2271 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2272 			CTX_CONTEXT_CONTROL,
2273 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2274 				      active ?
2275 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2276 				      0)
2277 		},
2278 	};
2279 
2280 	/* Modify the context image of pinned context with regs_context*/
2281 	err = intel_context_lock_pinned(ce);
2282 	if (err)
2283 		return err;
2284 
2285 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2286 	intel_context_unlock_pinned(ce);
2287 	if (err)
2288 		return err;
2289 
2290 	/* Apply regs_lri using LRI with pinned context */
2291 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2292 }
2293 
2294 /*
2295  * Manages updating the per-context aspects of the OA stream
2296  * configuration across all contexts.
2297  *
2298  * The awkward consideration here is that OACTXCONTROL controls the
2299  * exponent for periodic sampling which is primarily used for system
2300  * wide profiling where we'd like a consistent sampling period even in
2301  * the face of context switches.
2302  *
2303  * Our approach of updating the register state context (as opposed to
2304  * say using a workaround batch buffer) ensures that the hardware
2305  * won't automatically reload an out-of-date timer exponent even
2306  * transiently before a WA BB could be parsed.
2307  *
2308  * This function needs to:
2309  * - Ensure the currently running context's per-context OA state is
2310  *   updated
2311  * - Ensure that all existing contexts will have the correct per-context
2312  *   OA state if they are scheduled for use.
2313  * - Ensure any new contexts will be initialized with the correct
2314  *   per-context OA state.
2315  *
2316  * Note: it's only the RCS/Render context that has any OA state.
2317  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2318  */
2319 static int
2320 oa_configure_all_contexts(struct i915_perf_stream *stream,
2321 			  struct flex *regs,
2322 			  size_t num_regs,
2323 			  struct i915_active *active)
2324 {
2325 	struct drm_i915_private *i915 = stream->perf->i915;
2326 	struct intel_engine_cs *engine;
2327 	struct i915_gem_context *ctx, *cn;
2328 	int err;
2329 
2330 	lockdep_assert_held(&stream->perf->lock);
2331 
2332 	/*
2333 	 * The OA register config is setup through the context image. This image
2334 	 * might be written to by the GPU on context switch (in particular on
2335 	 * lite-restore). This means we can't safely update a context's image,
2336 	 * if this context is scheduled/submitted to run on the GPU.
2337 	 *
2338 	 * We could emit the OA register config through the batch buffer but
2339 	 * this might leave small interval of time where the OA unit is
2340 	 * configured at an invalid sampling period.
2341 	 *
2342 	 * Note that since we emit all requests from a single ring, there
2343 	 * is still an implicit global barrier here that may cause a high
2344 	 * priority context to wait for an otherwise independent low priority
2345 	 * context. Contexts idle at the time of reconfiguration are not
2346 	 * trapped behind the barrier.
2347 	 */
2348 	spin_lock(&i915->gem.contexts.lock);
2349 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2350 		if (!kref_get_unless_zero(&ctx->ref))
2351 			continue;
2352 
2353 		spin_unlock(&i915->gem.contexts.lock);
2354 
2355 		err = gen8_configure_context(ctx, regs, num_regs);
2356 		if (err) {
2357 			i915_gem_context_put(ctx);
2358 			return err;
2359 		}
2360 
2361 		spin_lock(&i915->gem.contexts.lock);
2362 		list_safe_reset_next(ctx, cn, link);
2363 		i915_gem_context_put(ctx);
2364 	}
2365 	spin_unlock(&i915->gem.contexts.lock);
2366 
2367 	/*
2368 	 * After updating all other contexts, we need to modify ourselves.
2369 	 * If we don't modify the kernel_context, we do not get events while
2370 	 * idle.
2371 	 */
2372 	for_each_uabi_engine(engine, i915) {
2373 		struct intel_context *ce = engine->kernel_context;
2374 
2375 		if (engine->class != RENDER_CLASS)
2376 			continue;
2377 
2378 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2379 
2380 		err = gen8_modify_self(ce, regs, num_regs, active);
2381 		if (err)
2382 			return err;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static int
2389 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2390 			     const struct i915_oa_config *oa_config,
2391 			     struct i915_active *active)
2392 {
2393 	struct flex regs[] = {
2394 		{
2395 			GEN8_R_PWR_CLK_STATE,
2396 			CTX_R_PWR_CLK_STATE,
2397 		},
2398 	};
2399 
2400 	return oa_configure_all_contexts(stream,
2401 					 regs, ARRAY_SIZE(regs),
2402 					 active);
2403 }
2404 
2405 static int
2406 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2407 			   const struct i915_oa_config *oa_config,
2408 			   struct i915_active *active)
2409 {
2410 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2411 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2412 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2413 	struct flex regs[] = {
2414 		{
2415 			GEN8_R_PWR_CLK_STATE,
2416 			CTX_R_PWR_CLK_STATE,
2417 		},
2418 		{
2419 			GEN8_OACTXCONTROL,
2420 			stream->perf->ctx_oactxctrl_offset + 1,
2421 		},
2422 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2423 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2424 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2425 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2426 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2427 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2428 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2429 	};
2430 #undef ctx_flexeuN
2431 	int i;
2432 
2433 	regs[1].value =
2434 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2435 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2436 		GEN8_OA_COUNTER_RESUME;
2437 
2438 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2439 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2440 
2441 	return oa_configure_all_contexts(stream,
2442 					 regs, ARRAY_SIZE(regs),
2443 					 active);
2444 }
2445 
2446 static int
2447 gen8_enable_metric_set(struct i915_perf_stream *stream,
2448 		       struct i915_active *active)
2449 {
2450 	struct intel_uncore *uncore = stream->uncore;
2451 	struct i915_oa_config *oa_config = stream->oa_config;
2452 	int ret;
2453 
2454 	/*
2455 	 * We disable slice/unslice clock ratio change reports on SKL since
2456 	 * they are too noisy. The HW generates a lot of redundant reports
2457 	 * where the ratio hasn't really changed causing a lot of redundant
2458 	 * work to processes and increasing the chances we'll hit buffer
2459 	 * overruns.
2460 	 *
2461 	 * Although we don't currently use the 'disable overrun' OABUFFER
2462 	 * feature it's worth noting that clock ratio reports have to be
2463 	 * disabled before considering to use that feature since the HW doesn't
2464 	 * correctly block these reports.
2465 	 *
2466 	 * Currently none of the high-level metrics we have depend on knowing
2467 	 * this ratio to normalize.
2468 	 *
2469 	 * Note: This register is not power context saved and restored, but
2470 	 * that's OK considering that we disable RC6 while the OA unit is
2471 	 * enabled.
2472 	 *
2473 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2474 	 * be read back from automatically triggered reports, as part of the
2475 	 * RPT_ID field.
2476 	 */
2477 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2478 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2479 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2480 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2481 	}
2482 
2483 	/*
2484 	 * Update all contexts prior writing the mux configurations as we need
2485 	 * to make sure all slices/subslices are ON before writing to NOA
2486 	 * registers.
2487 	 */
2488 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2489 	if (ret)
2490 		return ret;
2491 
2492 	return emit_oa_config(stream,
2493 			      stream->oa_config, oa_context(stream),
2494 			      active);
2495 }
2496 
2497 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2498 {
2499 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2500 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2501 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2502 }
2503 
2504 static int
2505 gen12_enable_metric_set(struct i915_perf_stream *stream,
2506 			struct i915_active *active)
2507 {
2508 	struct intel_uncore *uncore = stream->uncore;
2509 	struct i915_oa_config *oa_config = stream->oa_config;
2510 	bool periodic = stream->periodic;
2511 	u32 period_exponent = stream->period_exponent;
2512 	int ret;
2513 
2514 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2515 			   /* Disable clk ratio reports, like previous Gens. */
2516 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2517 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2518 			   /*
2519 			    * If the user didn't require OA reports, instruct
2520 			    * the hardware not to emit ctx switch reports.
2521 			    */
2522 			   oag_report_ctx_switches(stream));
2523 
2524 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2525 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2526 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2527 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2528 			    : 0);
2529 
2530 	/*
2531 	 * Update all contexts prior writing the mux configurations as we need
2532 	 * to make sure all slices/subslices are ON before writing to NOA
2533 	 * registers.
2534 	 */
2535 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2536 	if (ret)
2537 		return ret;
2538 
2539 	/*
2540 	 * For Gen12, performance counters are context
2541 	 * saved/restored. Only enable it for the context that
2542 	 * requested this.
2543 	 */
2544 	if (stream->ctx) {
2545 		ret = gen12_configure_oar_context(stream, active);
2546 		if (ret)
2547 			return ret;
2548 	}
2549 
2550 	return emit_oa_config(stream,
2551 			      stream->oa_config, oa_context(stream),
2552 			      active);
2553 }
2554 
2555 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2556 {
2557 	struct intel_uncore *uncore = stream->uncore;
2558 
2559 	/* Reset all contexts' slices/subslices configurations. */
2560 	lrc_configure_all_contexts(stream, NULL, NULL);
2561 
2562 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2563 }
2564 
2565 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2566 {
2567 	struct intel_uncore *uncore = stream->uncore;
2568 
2569 	/* Reset all contexts' slices/subslices configurations. */
2570 	lrc_configure_all_contexts(stream, NULL, NULL);
2571 
2572 	/* Make sure we disable noa to save power. */
2573 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2574 }
2575 
2576 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2577 {
2578 	struct intel_uncore *uncore = stream->uncore;
2579 
2580 	/* Reset all contexts' slices/subslices configurations. */
2581 	gen12_configure_all_contexts(stream, NULL, NULL);
2582 
2583 	/* disable the context save/restore or OAR counters */
2584 	if (stream->ctx)
2585 		gen12_configure_oar_context(stream, NULL);
2586 
2587 	/* Make sure we disable noa to save power. */
2588 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2589 }
2590 
2591 static void gen7_oa_enable(struct i915_perf_stream *stream)
2592 {
2593 	struct intel_uncore *uncore = stream->uncore;
2594 	struct i915_gem_context *ctx = stream->ctx;
2595 	u32 ctx_id = stream->specific_ctx_id;
2596 	bool periodic = stream->periodic;
2597 	u32 period_exponent = stream->period_exponent;
2598 	u32 report_format = stream->oa_buffer.format;
2599 
2600 	/*
2601 	 * Reset buf pointers so we don't forward reports from before now.
2602 	 *
2603 	 * Think carefully if considering trying to avoid this, since it
2604 	 * also ensures status flags and the buffer itself are cleared
2605 	 * in error paths, and we have checks for invalid reports based
2606 	 * on the assumption that certain fields are written to zeroed
2607 	 * memory which this helps maintains.
2608 	 */
2609 	gen7_init_oa_buffer(stream);
2610 
2611 	intel_uncore_write(uncore, GEN7_OACONTROL,
2612 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2613 			   (period_exponent <<
2614 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2615 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2616 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2617 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2618 			   GEN7_OACONTROL_ENABLE);
2619 }
2620 
2621 static void gen8_oa_enable(struct i915_perf_stream *stream)
2622 {
2623 	struct intel_uncore *uncore = stream->uncore;
2624 	u32 report_format = stream->oa_buffer.format;
2625 
2626 	/*
2627 	 * Reset buf pointers so we don't forward reports from before now.
2628 	 *
2629 	 * Think carefully if considering trying to avoid this, since it
2630 	 * also ensures status flags and the buffer itself are cleared
2631 	 * in error paths, and we have checks for invalid reports based
2632 	 * on the assumption that certain fields are written to zeroed
2633 	 * memory which this helps maintains.
2634 	 */
2635 	gen8_init_oa_buffer(stream);
2636 
2637 	/*
2638 	 * Note: we don't rely on the hardware to perform single context
2639 	 * filtering and instead filter on the cpu based on the context-id
2640 	 * field of reports
2641 	 */
2642 	intel_uncore_write(uncore, GEN8_OACONTROL,
2643 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2644 			   GEN8_OA_COUNTER_ENABLE);
2645 }
2646 
2647 static void gen12_oa_enable(struct i915_perf_stream *stream)
2648 {
2649 	struct intel_uncore *uncore = stream->uncore;
2650 	u32 report_format = stream->oa_buffer.format;
2651 
2652 	/*
2653 	 * If we don't want OA reports from the OA buffer, then we don't even
2654 	 * need to program the OAG unit.
2655 	 */
2656 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2657 		return;
2658 
2659 	gen12_init_oa_buffer(stream);
2660 
2661 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2662 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2663 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2664 }
2665 
2666 /**
2667  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2668  * @stream: An i915 perf stream opened for OA metrics
2669  *
2670  * [Re]enables hardware periodic sampling according to the period configured
2671  * when opening the stream. This also starts a hrtimer that will periodically
2672  * check for data in the circular OA buffer for notifying userspace (e.g.
2673  * during a read() or poll()).
2674  */
2675 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2676 {
2677 	stream->pollin = false;
2678 
2679 	stream->perf->ops.oa_enable(stream);
2680 
2681 	if (stream->periodic)
2682 		hrtimer_start(&stream->poll_check_timer,
2683 			      ns_to_ktime(stream->poll_oa_period),
2684 			      HRTIMER_MODE_REL_PINNED);
2685 }
2686 
2687 static void gen7_oa_disable(struct i915_perf_stream *stream)
2688 {
2689 	struct intel_uncore *uncore = stream->uncore;
2690 
2691 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2692 	if (intel_wait_for_register(uncore,
2693 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2694 				    50))
2695 		drm_err(&stream->perf->i915->drm,
2696 			"wait for OA to be disabled timed out\n");
2697 }
2698 
2699 static void gen8_oa_disable(struct i915_perf_stream *stream)
2700 {
2701 	struct intel_uncore *uncore = stream->uncore;
2702 
2703 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2704 	if (intel_wait_for_register(uncore,
2705 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2706 				    50))
2707 		drm_err(&stream->perf->i915->drm,
2708 			"wait for OA to be disabled timed out\n");
2709 }
2710 
2711 static void gen12_oa_disable(struct i915_perf_stream *stream)
2712 {
2713 	struct intel_uncore *uncore = stream->uncore;
2714 
2715 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2716 	if (intel_wait_for_register(uncore,
2717 				    GEN12_OAG_OACONTROL,
2718 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2719 				    50))
2720 		drm_err(&stream->perf->i915->drm,
2721 			"wait for OA to be disabled timed out\n");
2722 
2723 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2724 	if (intel_wait_for_register(uncore,
2725 				    GEN12_OA_TLB_INV_CR,
2726 				    1, 0,
2727 				    50))
2728 		drm_err(&stream->perf->i915->drm,
2729 			"wait for OA tlb invalidate timed out\n");
2730 }
2731 
2732 /**
2733  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2734  * @stream: An i915 perf stream opened for OA metrics
2735  *
2736  * Stops the OA unit from periodically writing counter reports into the
2737  * circular OA buffer. This also stops the hrtimer that periodically checks for
2738  * data in the circular OA buffer, for notifying userspace.
2739  */
2740 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2741 {
2742 	stream->perf->ops.oa_disable(stream);
2743 
2744 	if (stream->periodic)
2745 		hrtimer_cancel(&stream->poll_check_timer);
2746 }
2747 
2748 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2749 	.destroy = i915_oa_stream_destroy,
2750 	.enable = i915_oa_stream_enable,
2751 	.disable = i915_oa_stream_disable,
2752 	.wait_unlocked = i915_oa_wait_unlocked,
2753 	.poll_wait = i915_oa_poll_wait,
2754 	.read = i915_oa_read,
2755 };
2756 
2757 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2758 {
2759 	struct i915_active *active;
2760 	int err;
2761 
2762 	active = i915_active_create();
2763 	if (!active)
2764 		return -ENOMEM;
2765 
2766 	err = stream->perf->ops.enable_metric_set(stream, active);
2767 	if (err == 0)
2768 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2769 
2770 	i915_active_put(active);
2771 	return err;
2772 }
2773 
2774 static void
2775 get_default_sseu_config(struct intel_sseu *out_sseu,
2776 			struct intel_engine_cs *engine)
2777 {
2778 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2779 
2780 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2781 
2782 	if (IS_GEN(engine->i915, 11)) {
2783 		/*
2784 		 * We only need subslice count so it doesn't matter which ones
2785 		 * we select - just turn off low bits in the amount of half of
2786 		 * all available subslices per slice.
2787 		 */
2788 		out_sseu->subslice_mask =
2789 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2790 		out_sseu->slice_mask = 0x1;
2791 	}
2792 }
2793 
2794 static int
2795 get_sseu_config(struct intel_sseu *out_sseu,
2796 		struct intel_engine_cs *engine,
2797 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2798 {
2799 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2800 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2801 		return -EINVAL;
2802 
2803 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2804 }
2805 
2806 /**
2807  * i915_oa_stream_init - validate combined props for OA stream and init
2808  * @stream: An i915 perf stream
2809  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2810  * @props: The property state that configures stream (individually validated)
2811  *
2812  * While read_properties_unlocked() validates properties in isolation it
2813  * doesn't ensure that the combination necessarily makes sense.
2814  *
2815  * At this point it has been determined that userspace wants a stream of
2816  * OA metrics, but still we need to further validate the combined
2817  * properties are OK.
2818  *
2819  * If the configuration makes sense then we can allocate memory for
2820  * a circular OA buffer and apply the requested metric set configuration.
2821  *
2822  * Returns: zero on success or a negative error code.
2823  */
2824 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2825 			       struct drm_i915_perf_open_param *param,
2826 			       struct perf_open_properties *props)
2827 {
2828 	struct drm_i915_private *i915 = stream->perf->i915;
2829 	struct i915_perf *perf = stream->perf;
2830 	int format_size;
2831 	int ret;
2832 
2833 	if (!props->engine) {
2834 		DRM_DEBUG("OA engine not specified\n");
2835 		return -EINVAL;
2836 	}
2837 
2838 	/*
2839 	 * If the sysfs metrics/ directory wasn't registered for some
2840 	 * reason then don't let userspace try their luck with config
2841 	 * IDs
2842 	 */
2843 	if (!perf->metrics_kobj) {
2844 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2845 		return -EINVAL;
2846 	}
2847 
2848 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2849 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2850 		DRM_DEBUG("Only OA report sampling supported\n");
2851 		return -EINVAL;
2852 	}
2853 
2854 	if (!perf->ops.enable_metric_set) {
2855 		DRM_DEBUG("OA unit not supported\n");
2856 		return -ENODEV;
2857 	}
2858 
2859 	/*
2860 	 * To avoid the complexity of having to accurately filter
2861 	 * counter reports and marshal to the appropriate client
2862 	 * we currently only allow exclusive access
2863 	 */
2864 	if (perf->exclusive_stream) {
2865 		DRM_DEBUG("OA unit already in use\n");
2866 		return -EBUSY;
2867 	}
2868 
2869 	if (!props->oa_format) {
2870 		DRM_DEBUG("OA report format not specified\n");
2871 		return -EINVAL;
2872 	}
2873 
2874 	stream->engine = props->engine;
2875 	stream->uncore = stream->engine->gt->uncore;
2876 
2877 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2878 
2879 	format_size = perf->oa_formats[props->oa_format].size;
2880 
2881 	stream->sample_flags = props->sample_flags;
2882 	stream->sample_size += format_size;
2883 
2884 	stream->oa_buffer.format_size = format_size;
2885 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2886 		return -EINVAL;
2887 
2888 	stream->hold_preemption = props->hold_preemption;
2889 
2890 	stream->oa_buffer.format =
2891 		perf->oa_formats[props->oa_format].format;
2892 
2893 	stream->periodic = props->oa_periodic;
2894 	if (stream->periodic)
2895 		stream->period_exponent = props->oa_period_exponent;
2896 
2897 	if (stream->ctx) {
2898 		ret = oa_get_render_ctx_id(stream);
2899 		if (ret) {
2900 			DRM_DEBUG("Invalid context id to filter with\n");
2901 			return ret;
2902 		}
2903 	}
2904 
2905 	ret = alloc_noa_wait(stream);
2906 	if (ret) {
2907 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2908 		goto err_noa_wait_alloc;
2909 	}
2910 
2911 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2912 	if (!stream->oa_config) {
2913 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2914 		ret = -EINVAL;
2915 		goto err_config;
2916 	}
2917 
2918 	/* PRM - observability performance counters:
2919 	 *
2920 	 *   OACONTROL, performance counter enable, note:
2921 	 *
2922 	 *   "When this bit is set, in order to have coherent counts,
2923 	 *   RC6 power state and trunk clock gating must be disabled.
2924 	 *   This can be achieved by programming MMIO registers as
2925 	 *   0xA094=0 and 0xA090[31]=1"
2926 	 *
2927 	 *   In our case we are expecting that taking pm + FORCEWAKE
2928 	 *   references will effectively disable RC6.
2929 	 */
2930 	intel_engine_pm_get(stream->engine);
2931 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2932 
2933 	ret = alloc_oa_buffer(stream);
2934 	if (ret)
2935 		goto err_oa_buf_alloc;
2936 
2937 	stream->ops = &i915_oa_stream_ops;
2938 
2939 	perf->sseu = props->sseu;
2940 	WRITE_ONCE(perf->exclusive_stream, stream);
2941 
2942 	ret = i915_perf_stream_enable_sync(stream);
2943 	if (ret) {
2944 		DRM_DEBUG("Unable to enable metric set\n");
2945 		goto err_enable;
2946 	}
2947 
2948 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2949 		  stream->oa_config->uuid);
2950 
2951 	hrtimer_init(&stream->poll_check_timer,
2952 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2953 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2954 	init_waitqueue_head(&stream->poll_wq);
2955 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2956 
2957 	return 0;
2958 
2959 err_enable:
2960 	WRITE_ONCE(perf->exclusive_stream, NULL);
2961 	perf->ops.disable_metric_set(stream);
2962 
2963 	free_oa_buffer(stream);
2964 
2965 err_oa_buf_alloc:
2966 	free_oa_configs(stream);
2967 
2968 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2969 	intel_engine_pm_put(stream->engine);
2970 
2971 err_config:
2972 	free_noa_wait(stream);
2973 
2974 err_noa_wait_alloc:
2975 	if (stream->ctx)
2976 		oa_put_render_ctx_id(stream);
2977 
2978 	return ret;
2979 }
2980 
2981 void i915_oa_init_reg_state(const struct intel_context *ce,
2982 			    const struct intel_engine_cs *engine)
2983 {
2984 	struct i915_perf_stream *stream;
2985 
2986 	if (engine->class != RENDER_CLASS)
2987 		return;
2988 
2989 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2990 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2991 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2992 		gen8_update_reg_state_unlocked(ce, stream);
2993 }
2994 
2995 /**
2996  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2997  * @file: An i915 perf stream file
2998  * @buf: destination buffer given by userspace
2999  * @count: the number of bytes userspace wants to read
3000  * @ppos: (inout) file seek position (unused)
3001  *
3002  * The entry point for handling a read() on a stream file descriptor from
3003  * userspace. Most of the work is left to the i915_perf_read_locked() and
3004  * &i915_perf_stream_ops->read but to save having stream implementations (of
3005  * which we might have multiple later) we handle blocking read here.
3006  *
3007  * We can also consistently treat trying to read from a disabled stream
3008  * as an IO error so implementations can assume the stream is enabled
3009  * while reading.
3010  *
3011  * Returns: The number of bytes copied or a negative error code on failure.
3012  */
3013 static ssize_t i915_perf_read(struct file *file,
3014 			      char __user *buf,
3015 			      size_t count,
3016 			      loff_t *ppos)
3017 {
3018 	struct i915_perf_stream *stream = file->private_data;
3019 	struct i915_perf *perf = stream->perf;
3020 	size_t offset = 0;
3021 	int ret;
3022 
3023 	/* To ensure it's handled consistently we simply treat all reads of a
3024 	 * disabled stream as an error. In particular it might otherwise lead
3025 	 * to a deadlock for blocking file descriptors...
3026 	 */
3027 	if (!stream->enabled)
3028 		return -EIO;
3029 
3030 	if (!(file->f_flags & O_NONBLOCK)) {
3031 		/* There's the small chance of false positives from
3032 		 * stream->ops->wait_unlocked.
3033 		 *
3034 		 * E.g. with single context filtering since we only wait until
3035 		 * oabuffer has >= 1 report we don't immediately know whether
3036 		 * any reports really belong to the current context
3037 		 */
3038 		do {
3039 			ret = stream->ops->wait_unlocked(stream);
3040 			if (ret)
3041 				return ret;
3042 
3043 			mutex_lock(&perf->lock);
3044 			ret = stream->ops->read(stream, buf, count, &offset);
3045 			mutex_unlock(&perf->lock);
3046 		} while (!offset && !ret);
3047 	} else {
3048 		mutex_lock(&perf->lock);
3049 		ret = stream->ops->read(stream, buf, count, &offset);
3050 		mutex_unlock(&perf->lock);
3051 	}
3052 
3053 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3054 	 * events where we might actually report EAGAIN on read() if there's
3055 	 * not really any data available. In this situation though we don't
3056 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3057 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3058 	 * effectively ensures we back off until the next hrtimer callback
3059 	 * before reporting another EPOLLIN event.
3060 	 * The exception to this is if ops->read() returned -ENOSPC which means
3061 	 * that more OA data is available than could fit in the user provided
3062 	 * buffer. In this case we want the next poll() call to not block.
3063 	 */
3064 	if (ret != -ENOSPC)
3065 		stream->pollin = false;
3066 
3067 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3068 	return offset ?: (ret ?: -EAGAIN);
3069 }
3070 
3071 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3072 {
3073 	struct i915_perf_stream *stream =
3074 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3075 
3076 	if (oa_buffer_check_unlocked(stream)) {
3077 		stream->pollin = true;
3078 		wake_up(&stream->poll_wq);
3079 	}
3080 
3081 	hrtimer_forward_now(hrtimer,
3082 			    ns_to_ktime(stream->poll_oa_period));
3083 
3084 	return HRTIMER_RESTART;
3085 }
3086 
3087 /**
3088  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3089  * @stream: An i915 perf stream
3090  * @file: An i915 perf stream file
3091  * @wait: poll() state table
3092  *
3093  * For handling userspace polling on an i915 perf stream, this calls through to
3094  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3095  * will be woken for new stream data.
3096  *
3097  * Note: The &perf->lock mutex has been taken to serialize
3098  * with any non-file-operation driver hooks.
3099  *
3100  * Returns: any poll events that are ready without sleeping
3101  */
3102 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3103 				      struct file *file,
3104 				      poll_table *wait)
3105 {
3106 	__poll_t events = 0;
3107 
3108 	stream->ops->poll_wait(stream, file, wait);
3109 
3110 	/* Note: we don't explicitly check whether there's something to read
3111 	 * here since this path may be very hot depending on what else
3112 	 * userspace is polling, or on the timeout in use. We rely solely on
3113 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3114 	 * samples to read.
3115 	 */
3116 	if (stream->pollin)
3117 		events |= EPOLLIN;
3118 
3119 	return events;
3120 }
3121 
3122 /**
3123  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3124  * @file: An i915 perf stream file
3125  * @wait: poll() state table
3126  *
3127  * For handling userspace polling on an i915 perf stream, this ensures
3128  * poll_wait() gets called with a wait queue that will be woken for new stream
3129  * data.
3130  *
3131  * Note: Implementation deferred to i915_perf_poll_locked()
3132  *
3133  * Returns: any poll events that are ready without sleeping
3134  */
3135 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3136 {
3137 	struct i915_perf_stream *stream = file->private_data;
3138 	struct i915_perf *perf = stream->perf;
3139 	__poll_t ret;
3140 
3141 	mutex_lock(&perf->lock);
3142 	ret = i915_perf_poll_locked(stream, file, wait);
3143 	mutex_unlock(&perf->lock);
3144 
3145 	return ret;
3146 }
3147 
3148 /**
3149  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3150  * @stream: A disabled i915 perf stream
3151  *
3152  * [Re]enables the associated capture of data for this stream.
3153  *
3154  * If a stream was previously enabled then there's currently no intention
3155  * to provide userspace any guarantee about the preservation of previously
3156  * buffered data.
3157  */
3158 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3159 {
3160 	if (stream->enabled)
3161 		return;
3162 
3163 	/* Allow stream->ops->enable() to refer to this */
3164 	stream->enabled = true;
3165 
3166 	if (stream->ops->enable)
3167 		stream->ops->enable(stream);
3168 
3169 	if (stream->hold_preemption)
3170 		intel_context_set_nopreempt(stream->pinned_ctx);
3171 }
3172 
3173 /**
3174  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3175  * @stream: An enabled i915 perf stream
3176  *
3177  * Disables the associated capture of data for this stream.
3178  *
3179  * The intention is that disabling an re-enabling a stream will ideally be
3180  * cheaper than destroying and re-opening a stream with the same configuration,
3181  * though there are no formal guarantees about what state or buffered data
3182  * must be retained between disabling and re-enabling a stream.
3183  *
3184  * Note: while a stream is disabled it's considered an error for userspace
3185  * to attempt to read from the stream (-EIO).
3186  */
3187 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3188 {
3189 	if (!stream->enabled)
3190 		return;
3191 
3192 	/* Allow stream->ops->disable() to refer to this */
3193 	stream->enabled = false;
3194 
3195 	if (stream->hold_preemption)
3196 		intel_context_clear_nopreempt(stream->pinned_ctx);
3197 
3198 	if (stream->ops->disable)
3199 		stream->ops->disable(stream);
3200 }
3201 
3202 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3203 				    unsigned long metrics_set)
3204 {
3205 	struct i915_oa_config *config;
3206 	long ret = stream->oa_config->id;
3207 
3208 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3209 	if (!config)
3210 		return -EINVAL;
3211 
3212 	if (config != stream->oa_config) {
3213 		int err;
3214 
3215 		/*
3216 		 * If OA is bound to a specific context, emit the
3217 		 * reconfiguration inline from that context. The update
3218 		 * will then be ordered with respect to submission on that
3219 		 * context.
3220 		 *
3221 		 * When set globally, we use a low priority kernel context,
3222 		 * so it will effectively take effect when idle.
3223 		 */
3224 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3225 		if (!err)
3226 			config = xchg(&stream->oa_config, config);
3227 		else
3228 			ret = err;
3229 	}
3230 
3231 	i915_oa_config_put(config);
3232 
3233 	return ret;
3234 }
3235 
3236 /**
3237  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3238  * @stream: An i915 perf stream
3239  * @cmd: the ioctl request
3240  * @arg: the ioctl data
3241  *
3242  * Note: The &perf->lock mutex has been taken to serialize
3243  * with any non-file-operation driver hooks.
3244  *
3245  * Returns: zero on success or a negative error code. Returns -EINVAL for
3246  * an unknown ioctl request.
3247  */
3248 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3249 				   unsigned int cmd,
3250 				   unsigned long arg)
3251 {
3252 	switch (cmd) {
3253 	case I915_PERF_IOCTL_ENABLE:
3254 		i915_perf_enable_locked(stream);
3255 		return 0;
3256 	case I915_PERF_IOCTL_DISABLE:
3257 		i915_perf_disable_locked(stream);
3258 		return 0;
3259 	case I915_PERF_IOCTL_CONFIG:
3260 		return i915_perf_config_locked(stream, arg);
3261 	}
3262 
3263 	return -EINVAL;
3264 }
3265 
3266 /**
3267  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3268  * @file: An i915 perf stream file
3269  * @cmd: the ioctl request
3270  * @arg: the ioctl data
3271  *
3272  * Implementation deferred to i915_perf_ioctl_locked().
3273  *
3274  * Returns: zero on success or a negative error code. Returns -EINVAL for
3275  * an unknown ioctl request.
3276  */
3277 static long i915_perf_ioctl(struct file *file,
3278 			    unsigned int cmd,
3279 			    unsigned long arg)
3280 {
3281 	struct i915_perf_stream *stream = file->private_data;
3282 	struct i915_perf *perf = stream->perf;
3283 	long ret;
3284 
3285 	mutex_lock(&perf->lock);
3286 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3287 	mutex_unlock(&perf->lock);
3288 
3289 	return ret;
3290 }
3291 
3292 /**
3293  * i915_perf_destroy_locked - destroy an i915 perf stream
3294  * @stream: An i915 perf stream
3295  *
3296  * Frees all resources associated with the given i915 perf @stream, disabling
3297  * any associated data capture in the process.
3298  *
3299  * Note: The &perf->lock mutex has been taken to serialize
3300  * with any non-file-operation driver hooks.
3301  */
3302 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3303 {
3304 	if (stream->enabled)
3305 		i915_perf_disable_locked(stream);
3306 
3307 	if (stream->ops->destroy)
3308 		stream->ops->destroy(stream);
3309 
3310 	if (stream->ctx)
3311 		i915_gem_context_put(stream->ctx);
3312 
3313 	kfree(stream);
3314 }
3315 
3316 /**
3317  * i915_perf_release - handles userspace close() of a stream file
3318  * @inode: anonymous inode associated with file
3319  * @file: An i915 perf stream file
3320  *
3321  * Cleans up any resources associated with an open i915 perf stream file.
3322  *
3323  * NB: close() can't really fail from the userspace point of view.
3324  *
3325  * Returns: zero on success or a negative error code.
3326  */
3327 static int i915_perf_release(struct inode *inode, struct file *file)
3328 {
3329 	struct i915_perf_stream *stream = file->private_data;
3330 	struct i915_perf *perf = stream->perf;
3331 
3332 	mutex_lock(&perf->lock);
3333 	i915_perf_destroy_locked(stream);
3334 	mutex_unlock(&perf->lock);
3335 
3336 	/* Release the reference the perf stream kept on the driver. */
3337 	drm_dev_put(&perf->i915->drm);
3338 
3339 	return 0;
3340 }
3341 
3342 
3343 static const struct file_operations fops = {
3344 	.owner		= THIS_MODULE,
3345 	.llseek		= no_llseek,
3346 	.release	= i915_perf_release,
3347 	.poll		= i915_perf_poll,
3348 	.read		= i915_perf_read,
3349 	.unlocked_ioctl	= i915_perf_ioctl,
3350 	/* Our ioctl have no arguments, so it's safe to use the same function
3351 	 * to handle 32bits compatibility.
3352 	 */
3353 	.compat_ioctl   = i915_perf_ioctl,
3354 };
3355 
3356 
3357 /**
3358  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3359  * @perf: i915 perf instance
3360  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3361  * @props: individually validated u64 property value pairs
3362  * @file: drm file
3363  *
3364  * See i915_perf_ioctl_open() for interface details.
3365  *
3366  * Implements further stream config validation and stream initialization on
3367  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3368  * taken to serialize with any non-file-operation driver hooks.
3369  *
3370  * Note: at this point the @props have only been validated in isolation and
3371  * it's still necessary to validate that the combination of properties makes
3372  * sense.
3373  *
3374  * In the case where userspace is interested in OA unit metrics then further
3375  * config validation and stream initialization details will be handled by
3376  * i915_oa_stream_init(). The code here should only validate config state that
3377  * will be relevant to all stream types / backends.
3378  *
3379  * Returns: zero on success or a negative error code.
3380  */
3381 static int
3382 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3383 			    struct drm_i915_perf_open_param *param,
3384 			    struct perf_open_properties *props,
3385 			    struct drm_file *file)
3386 {
3387 	struct i915_gem_context *specific_ctx = NULL;
3388 	struct i915_perf_stream *stream = NULL;
3389 	unsigned long f_flags = 0;
3390 	bool privileged_op = true;
3391 	int stream_fd;
3392 	int ret;
3393 
3394 	if (props->single_context) {
3395 		u32 ctx_handle = props->ctx_handle;
3396 		struct drm_i915_file_private *file_priv = file->driver_priv;
3397 
3398 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3399 		if (!specific_ctx) {
3400 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3401 				  ctx_handle);
3402 			ret = -ENOENT;
3403 			goto err;
3404 		}
3405 	}
3406 
3407 	/*
3408 	 * On Haswell the OA unit supports clock gating off for a specific
3409 	 * context and in this mode there's no visibility of metrics for the
3410 	 * rest of the system, which we consider acceptable for a
3411 	 * non-privileged client.
3412 	 *
3413 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3414 	 * specific context and the kernel can't securely stop the counters
3415 	 * from updating as system-wide / global values. Even though we can
3416 	 * filter reports based on the included context ID we can't block
3417 	 * clients from seeing the raw / global counter values via
3418 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3419 	 * enable the OA unit by default.
3420 	 *
3421 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3422 	 * per context basis. So we can relax requirements there if the user
3423 	 * doesn't request global stream access (i.e. query based sampling
3424 	 * using MI_RECORD_PERF_COUNT.
3425 	 */
3426 	if (IS_HASWELL(perf->i915) && specific_ctx)
3427 		privileged_op = false;
3428 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3429 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3430 		privileged_op = false;
3431 
3432 	if (props->hold_preemption) {
3433 		if (!props->single_context) {
3434 			DRM_DEBUG("preemption disable with no context\n");
3435 			ret = -EINVAL;
3436 			goto err;
3437 		}
3438 		privileged_op = true;
3439 	}
3440 
3441 	/*
3442 	 * Asking for SSEU configuration is a priviliged operation.
3443 	 */
3444 	if (props->has_sseu)
3445 		privileged_op = true;
3446 	else
3447 		get_default_sseu_config(&props->sseu, props->engine);
3448 
3449 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3450 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3451 	 * to determine if it's ok to access system wide OA counters
3452 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3453 	 */
3454 	if (privileged_op &&
3455 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3456 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3457 		ret = -EACCES;
3458 		goto err_ctx;
3459 	}
3460 
3461 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3462 	if (!stream) {
3463 		ret = -ENOMEM;
3464 		goto err_ctx;
3465 	}
3466 
3467 	stream->perf = perf;
3468 	stream->ctx = specific_ctx;
3469 	stream->poll_oa_period = props->poll_oa_period;
3470 
3471 	ret = i915_oa_stream_init(stream, param, props);
3472 	if (ret)
3473 		goto err_alloc;
3474 
3475 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3476 	 * to have _stream_init check the combination of sample flags more
3477 	 * thoroughly, but still this is the expected result at this point.
3478 	 */
3479 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3480 		ret = -ENODEV;
3481 		goto err_flags;
3482 	}
3483 
3484 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3485 		f_flags |= O_CLOEXEC;
3486 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3487 		f_flags |= O_NONBLOCK;
3488 
3489 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3490 	if (stream_fd < 0) {
3491 		ret = stream_fd;
3492 		goto err_flags;
3493 	}
3494 
3495 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3496 		i915_perf_enable_locked(stream);
3497 
3498 	/* Take a reference on the driver that will be kept with stream_fd
3499 	 * until its release.
3500 	 */
3501 	drm_dev_get(&perf->i915->drm);
3502 
3503 	return stream_fd;
3504 
3505 err_flags:
3506 	if (stream->ops->destroy)
3507 		stream->ops->destroy(stream);
3508 err_alloc:
3509 	kfree(stream);
3510 err_ctx:
3511 	if (specific_ctx)
3512 		i915_gem_context_put(specific_ctx);
3513 err:
3514 	return ret;
3515 }
3516 
3517 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3518 {
3519 	return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3520 }
3521 
3522 /**
3523  * read_properties_unlocked - validate + copy userspace stream open properties
3524  * @perf: i915 perf instance
3525  * @uprops: The array of u64 key value pairs given by userspace
3526  * @n_props: The number of key value pairs expected in @uprops
3527  * @props: The stream configuration built up while validating properties
3528  *
3529  * Note this function only validates properties in isolation it doesn't
3530  * validate that the combination of properties makes sense or that all
3531  * properties necessary for a particular kind of stream have been set.
3532  *
3533  * Note that there currently aren't any ordering requirements for properties so
3534  * we shouldn't validate or assume anything about ordering here. This doesn't
3535  * rule out defining new properties with ordering requirements in the future.
3536  */
3537 static int read_properties_unlocked(struct i915_perf *perf,
3538 				    u64 __user *uprops,
3539 				    u32 n_props,
3540 				    struct perf_open_properties *props)
3541 {
3542 	u64 __user *uprop = uprops;
3543 	u32 i;
3544 	int ret;
3545 
3546 	memset(props, 0, sizeof(struct perf_open_properties));
3547 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3548 
3549 	if (!n_props) {
3550 		DRM_DEBUG("No i915 perf properties given\n");
3551 		return -EINVAL;
3552 	}
3553 
3554 	/* At the moment we only support using i915-perf on the RCS. */
3555 	props->engine = intel_engine_lookup_user(perf->i915,
3556 						 I915_ENGINE_CLASS_RENDER,
3557 						 0);
3558 	if (!props->engine) {
3559 		DRM_DEBUG("No RENDER-capable engines\n");
3560 		return -EINVAL;
3561 	}
3562 
3563 	/* Considering that ID = 0 is reserved and assuming that we don't
3564 	 * (currently) expect any configurations to ever specify duplicate
3565 	 * values for a particular property ID then the last _PROP_MAX value is
3566 	 * one greater than the maximum number of properties we expect to get
3567 	 * from userspace.
3568 	 */
3569 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3570 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3571 		return -EINVAL;
3572 	}
3573 
3574 	for (i = 0; i < n_props; i++) {
3575 		u64 oa_period, oa_freq_hz;
3576 		u64 id, value;
3577 
3578 		ret = get_user(id, uprop);
3579 		if (ret)
3580 			return ret;
3581 
3582 		ret = get_user(value, uprop + 1);
3583 		if (ret)
3584 			return ret;
3585 
3586 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3587 			DRM_DEBUG("Unknown i915 perf property ID\n");
3588 			return -EINVAL;
3589 		}
3590 
3591 		switch ((enum drm_i915_perf_property_id)id) {
3592 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3593 			props->single_context = 1;
3594 			props->ctx_handle = value;
3595 			break;
3596 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3597 			if (value)
3598 				props->sample_flags |= SAMPLE_OA_REPORT;
3599 			break;
3600 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3601 			if (value == 0) {
3602 				DRM_DEBUG("Unknown OA metric set ID\n");
3603 				return -EINVAL;
3604 			}
3605 			props->metrics_set = value;
3606 			break;
3607 		case DRM_I915_PERF_PROP_OA_FORMAT:
3608 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3609 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3610 					  value);
3611 				return -EINVAL;
3612 			}
3613 			if (!perf->oa_formats[value].size) {
3614 				DRM_DEBUG("Unsupported OA report format %llu\n",
3615 					  value);
3616 				return -EINVAL;
3617 			}
3618 			props->oa_format = value;
3619 			break;
3620 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3621 			if (value > OA_EXPONENT_MAX) {
3622 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3623 					 OA_EXPONENT_MAX);
3624 				return -EINVAL;
3625 			}
3626 
3627 			/* Theoretically we can program the OA unit to sample
3628 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3629 			 * for BXT. We don't allow such high sampling
3630 			 * frequencies by default unless root.
3631 			 */
3632 
3633 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3634 			oa_period = oa_exponent_to_ns(perf, value);
3635 
3636 			/* This check is primarily to ensure that oa_period <=
3637 			 * UINT32_MAX (before passing to do_div which only
3638 			 * accepts a u32 denominator), but we can also skip
3639 			 * checking anything < 1Hz which implicitly can't be
3640 			 * limited via an integer oa_max_sample_rate.
3641 			 */
3642 			if (oa_period <= NSEC_PER_SEC) {
3643 				u64 tmp = NSEC_PER_SEC;
3644 				do_div(tmp, oa_period);
3645 				oa_freq_hz = tmp;
3646 			} else
3647 				oa_freq_hz = 0;
3648 
3649 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3650 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3651 					  i915_oa_max_sample_rate);
3652 				return -EACCES;
3653 			}
3654 
3655 			props->oa_periodic = true;
3656 			props->oa_period_exponent = value;
3657 			break;
3658 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3659 			props->hold_preemption = !!value;
3660 			break;
3661 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3662 			struct drm_i915_gem_context_param_sseu user_sseu;
3663 
3664 			if (copy_from_user(&user_sseu,
3665 					   u64_to_user_ptr(value),
3666 					   sizeof(user_sseu))) {
3667 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3668 				return -EFAULT;
3669 			}
3670 
3671 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3672 			if (ret) {
3673 				DRM_DEBUG("Invalid SSEU configuration\n");
3674 				return ret;
3675 			}
3676 			props->has_sseu = true;
3677 			break;
3678 		}
3679 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3680 			if (value < 100000 /* 100us */) {
3681 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3682 					  value);
3683 				return -EINVAL;
3684 			}
3685 			props->poll_oa_period = value;
3686 			break;
3687 		case DRM_I915_PERF_PROP_MAX:
3688 			MISSING_CASE(id);
3689 			return -EINVAL;
3690 		}
3691 
3692 		uprop += 2;
3693 	}
3694 
3695 	return 0;
3696 }
3697 
3698 /**
3699  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3700  * @dev: drm device
3701  * @data: ioctl data copied from userspace (unvalidated)
3702  * @file: drm file
3703  *
3704  * Validates the stream open parameters given by userspace including flags
3705  * and an array of u64 key, value pair properties.
3706  *
3707  * Very little is assumed up front about the nature of the stream being
3708  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3709  * i915-perf stream is expected to be a suitable interface for other forms of
3710  * buffered data written by the GPU besides periodic OA metrics.
3711  *
3712  * Note we copy the properties from userspace outside of the i915 perf
3713  * mutex to avoid an awkward lockdep with mmap_lock.
3714  *
3715  * Most of the implementation details are handled by
3716  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3717  * mutex for serializing with any non-file-operation driver hooks.
3718  *
3719  * Return: A newly opened i915 Perf stream file descriptor or negative
3720  * error code on failure.
3721  */
3722 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3723 			 struct drm_file *file)
3724 {
3725 	struct i915_perf *perf = &to_i915(dev)->perf;
3726 	struct drm_i915_perf_open_param *param = data;
3727 	struct perf_open_properties props;
3728 	u32 known_open_flags;
3729 	int ret;
3730 
3731 	if (!perf->i915) {
3732 		DRM_DEBUG("i915 perf interface not available for this system\n");
3733 		return -ENOTSUPP;
3734 	}
3735 
3736 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3737 			   I915_PERF_FLAG_FD_NONBLOCK |
3738 			   I915_PERF_FLAG_DISABLED;
3739 	if (param->flags & ~known_open_flags) {
3740 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3741 		return -EINVAL;
3742 	}
3743 
3744 	ret = read_properties_unlocked(perf,
3745 				       u64_to_user_ptr(param->properties_ptr),
3746 				       param->num_properties,
3747 				       &props);
3748 	if (ret)
3749 		return ret;
3750 
3751 	mutex_lock(&perf->lock);
3752 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3753 	mutex_unlock(&perf->lock);
3754 
3755 	return ret;
3756 }
3757 
3758 /**
3759  * i915_perf_register - exposes i915-perf to userspace
3760  * @i915: i915 device instance
3761  *
3762  * In particular OA metric sets are advertised under a sysfs metrics/
3763  * directory allowing userspace to enumerate valid IDs that can be
3764  * used to open an i915-perf stream.
3765  */
3766 void i915_perf_register(struct drm_i915_private *i915)
3767 {
3768 	struct i915_perf *perf = &i915->perf;
3769 
3770 	if (!perf->i915)
3771 		return;
3772 
3773 	/* To be sure we're synchronized with an attempted
3774 	 * i915_perf_open_ioctl(); considering that we register after
3775 	 * being exposed to userspace.
3776 	 */
3777 	mutex_lock(&perf->lock);
3778 
3779 	perf->metrics_kobj =
3780 		kobject_create_and_add("metrics",
3781 				       &i915->drm.primary->kdev->kobj);
3782 
3783 	mutex_unlock(&perf->lock);
3784 }
3785 
3786 /**
3787  * i915_perf_unregister - hide i915-perf from userspace
3788  * @i915: i915 device instance
3789  *
3790  * i915-perf state cleanup is split up into an 'unregister' and
3791  * 'deinit' phase where the interface is first hidden from
3792  * userspace by i915_perf_unregister() before cleaning up
3793  * remaining state in i915_perf_fini().
3794  */
3795 void i915_perf_unregister(struct drm_i915_private *i915)
3796 {
3797 	struct i915_perf *perf = &i915->perf;
3798 
3799 	if (!perf->metrics_kobj)
3800 		return;
3801 
3802 	kobject_put(perf->metrics_kobj);
3803 	perf->metrics_kobj = NULL;
3804 }
3805 
3806 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3807 {
3808 	static const i915_reg_t flex_eu_regs[] = {
3809 		EU_PERF_CNTL0,
3810 		EU_PERF_CNTL1,
3811 		EU_PERF_CNTL2,
3812 		EU_PERF_CNTL3,
3813 		EU_PERF_CNTL4,
3814 		EU_PERF_CNTL5,
3815 		EU_PERF_CNTL6,
3816 	};
3817 	int i;
3818 
3819 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3820 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3821 			return true;
3822 	}
3823 	return false;
3824 }
3825 
3826 #define ADDR_IN_RANGE(addr, start, end) \
3827 	((addr) >= (start) && \
3828 	 (addr) <= (end))
3829 
3830 #define REG_IN_RANGE(addr, start, end) \
3831 	((addr) >= i915_mmio_reg_offset(start) && \
3832 	 (addr) <= i915_mmio_reg_offset(end))
3833 
3834 #define REG_EQUAL(addr, mmio) \
3835 	((addr) == i915_mmio_reg_offset(mmio))
3836 
3837 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3838 {
3839 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3840 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3841 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3842 }
3843 
3844 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3845 {
3846 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3847 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3848 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3849 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3850 }
3851 
3852 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3853 {
3854 	return gen7_is_valid_mux_addr(perf, addr) ||
3855 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3856 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3857 }
3858 
3859 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3860 {
3861 	return gen8_is_valid_mux_addr(perf, addr) ||
3862 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3863 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3864 }
3865 
3866 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3867 {
3868 	return gen7_is_valid_mux_addr(perf, addr) ||
3869 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3870 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3871 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3872 }
3873 
3874 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3875 {
3876 	return gen7_is_valid_mux_addr(perf, addr) ||
3877 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3878 }
3879 
3880 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3881 {
3882 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3883 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3884 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3885 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3886 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3887 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3888 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3889 }
3890 
3891 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3892 {
3893 	return REG_EQUAL(addr, NOA_WRITE) ||
3894 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3895 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3896 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3897 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3898 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3899 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3900 }
3901 
3902 static u32 mask_reg_value(u32 reg, u32 val)
3903 {
3904 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3905 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3906 	 * programmed by userspace doesn't change this.
3907 	 */
3908 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3909 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3910 
3911 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3912 	 * indicated by its name and a bunch of selection fields used by OA
3913 	 * configs.
3914 	 */
3915 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3916 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3917 
3918 	return val;
3919 }
3920 
3921 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3922 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3923 					 u32 __user *regs,
3924 					 u32 n_regs)
3925 {
3926 	struct i915_oa_reg *oa_regs;
3927 	int err;
3928 	u32 i;
3929 
3930 	if (!n_regs)
3931 		return NULL;
3932 
3933 	/* No is_valid function means we're not allowing any register to be programmed. */
3934 	GEM_BUG_ON(!is_valid);
3935 	if (!is_valid)
3936 		return ERR_PTR(-EINVAL);
3937 
3938 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3939 	if (!oa_regs)
3940 		return ERR_PTR(-ENOMEM);
3941 
3942 	for (i = 0; i < n_regs; i++) {
3943 		u32 addr, value;
3944 
3945 		err = get_user(addr, regs);
3946 		if (err)
3947 			goto addr_err;
3948 
3949 		if (!is_valid(perf, addr)) {
3950 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3951 			err = -EINVAL;
3952 			goto addr_err;
3953 		}
3954 
3955 		err = get_user(value, regs + 1);
3956 		if (err)
3957 			goto addr_err;
3958 
3959 		oa_regs[i].addr = _MMIO(addr);
3960 		oa_regs[i].value = mask_reg_value(addr, value);
3961 
3962 		regs += 2;
3963 	}
3964 
3965 	return oa_regs;
3966 
3967 addr_err:
3968 	kfree(oa_regs);
3969 	return ERR_PTR(err);
3970 }
3971 
3972 static ssize_t show_dynamic_id(struct device *dev,
3973 			       struct device_attribute *attr,
3974 			       char *buf)
3975 {
3976 	struct i915_oa_config *oa_config =
3977 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3978 
3979 	return sprintf(buf, "%d\n", oa_config->id);
3980 }
3981 
3982 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3983 					 struct i915_oa_config *oa_config)
3984 {
3985 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3986 	oa_config->sysfs_metric_id.attr.name = "id";
3987 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3988 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3989 	oa_config->sysfs_metric_id.store = NULL;
3990 
3991 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3992 	oa_config->attrs[1] = NULL;
3993 
3994 	oa_config->sysfs_metric.name = oa_config->uuid;
3995 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3996 
3997 	return sysfs_create_group(perf->metrics_kobj,
3998 				  &oa_config->sysfs_metric);
3999 }
4000 
4001 /**
4002  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4003  * @dev: drm device
4004  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4005  *        userspace (unvalidated)
4006  * @file: drm file
4007  *
4008  * Validates the submitted OA register to be saved into a new OA config that
4009  * can then be used for programming the OA unit and its NOA network.
4010  *
4011  * Returns: A new allocated config number to be used with the perf open ioctl
4012  * or a negative error code on failure.
4013  */
4014 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4015 			       struct drm_file *file)
4016 {
4017 	struct i915_perf *perf = &to_i915(dev)->perf;
4018 	struct drm_i915_perf_oa_config *args = data;
4019 	struct i915_oa_config *oa_config, *tmp;
4020 	struct i915_oa_reg *regs;
4021 	int err, id;
4022 
4023 	if (!perf->i915) {
4024 		DRM_DEBUG("i915 perf interface not available for this system\n");
4025 		return -ENOTSUPP;
4026 	}
4027 
4028 	if (!perf->metrics_kobj) {
4029 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4030 		return -EINVAL;
4031 	}
4032 
4033 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4034 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4035 		return -EACCES;
4036 	}
4037 
4038 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4039 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4040 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4041 		DRM_DEBUG("No OA registers given\n");
4042 		return -EINVAL;
4043 	}
4044 
4045 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4046 	if (!oa_config) {
4047 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4048 		return -ENOMEM;
4049 	}
4050 
4051 	oa_config->perf = perf;
4052 	kref_init(&oa_config->ref);
4053 
4054 	if (!uuid_is_valid(args->uuid)) {
4055 		DRM_DEBUG("Invalid uuid format for OA config\n");
4056 		err = -EINVAL;
4057 		goto reg_err;
4058 	}
4059 
4060 	/* Last character in oa_config->uuid will be 0 because oa_config is
4061 	 * kzalloc.
4062 	 */
4063 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4064 
4065 	oa_config->mux_regs_len = args->n_mux_regs;
4066 	regs = alloc_oa_regs(perf,
4067 			     perf->ops.is_valid_mux_reg,
4068 			     u64_to_user_ptr(args->mux_regs_ptr),
4069 			     args->n_mux_regs);
4070 
4071 	if (IS_ERR(regs)) {
4072 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4073 		err = PTR_ERR(regs);
4074 		goto reg_err;
4075 	}
4076 	oa_config->mux_regs = regs;
4077 
4078 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4079 	regs = alloc_oa_regs(perf,
4080 			     perf->ops.is_valid_b_counter_reg,
4081 			     u64_to_user_ptr(args->boolean_regs_ptr),
4082 			     args->n_boolean_regs);
4083 
4084 	if (IS_ERR(regs)) {
4085 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4086 		err = PTR_ERR(regs);
4087 		goto reg_err;
4088 	}
4089 	oa_config->b_counter_regs = regs;
4090 
4091 	if (INTEL_GEN(perf->i915) < 8) {
4092 		if (args->n_flex_regs != 0) {
4093 			err = -EINVAL;
4094 			goto reg_err;
4095 		}
4096 	} else {
4097 		oa_config->flex_regs_len = args->n_flex_regs;
4098 		regs = alloc_oa_regs(perf,
4099 				     perf->ops.is_valid_flex_reg,
4100 				     u64_to_user_ptr(args->flex_regs_ptr),
4101 				     args->n_flex_regs);
4102 
4103 		if (IS_ERR(regs)) {
4104 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4105 			err = PTR_ERR(regs);
4106 			goto reg_err;
4107 		}
4108 		oa_config->flex_regs = regs;
4109 	}
4110 
4111 	err = mutex_lock_interruptible(&perf->metrics_lock);
4112 	if (err)
4113 		goto reg_err;
4114 
4115 	/* We shouldn't have too many configs, so this iteration shouldn't be
4116 	 * too costly.
4117 	 */
4118 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4119 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4120 			DRM_DEBUG("OA config already exists with this uuid\n");
4121 			err = -EADDRINUSE;
4122 			goto sysfs_err;
4123 		}
4124 	}
4125 
4126 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4127 	if (err) {
4128 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4129 		goto sysfs_err;
4130 	}
4131 
4132 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4133 	oa_config->id = idr_alloc(&perf->metrics_idr,
4134 				  oa_config, 2,
4135 				  0, GFP_KERNEL);
4136 	if (oa_config->id < 0) {
4137 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4138 		err = oa_config->id;
4139 		goto sysfs_err;
4140 	}
4141 
4142 	mutex_unlock(&perf->metrics_lock);
4143 
4144 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4145 
4146 	return oa_config->id;
4147 
4148 sysfs_err:
4149 	mutex_unlock(&perf->metrics_lock);
4150 reg_err:
4151 	i915_oa_config_put(oa_config);
4152 	DRM_DEBUG("Failed to add new OA config\n");
4153 	return err;
4154 }
4155 
4156 /**
4157  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4158  * @dev: drm device
4159  * @data: ioctl data (pointer to u64 integer) copied from userspace
4160  * @file: drm file
4161  *
4162  * Configs can be removed while being used, the will stop appearing in sysfs
4163  * and their content will be freed when the stream using the config is closed.
4164  *
4165  * Returns: 0 on success or a negative error code on failure.
4166  */
4167 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4168 				  struct drm_file *file)
4169 {
4170 	struct i915_perf *perf = &to_i915(dev)->perf;
4171 	u64 *arg = data;
4172 	struct i915_oa_config *oa_config;
4173 	int ret;
4174 
4175 	if (!perf->i915) {
4176 		DRM_DEBUG("i915 perf interface not available for this system\n");
4177 		return -ENOTSUPP;
4178 	}
4179 
4180 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4181 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4182 		return -EACCES;
4183 	}
4184 
4185 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4186 	if (ret)
4187 		return ret;
4188 
4189 	oa_config = idr_find(&perf->metrics_idr, *arg);
4190 	if (!oa_config) {
4191 		DRM_DEBUG("Failed to remove unknown OA config\n");
4192 		ret = -ENOENT;
4193 		goto err_unlock;
4194 	}
4195 
4196 	GEM_BUG_ON(*arg != oa_config->id);
4197 
4198 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4199 
4200 	idr_remove(&perf->metrics_idr, *arg);
4201 
4202 	mutex_unlock(&perf->metrics_lock);
4203 
4204 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4205 
4206 	i915_oa_config_put(oa_config);
4207 
4208 	return 0;
4209 
4210 err_unlock:
4211 	mutex_unlock(&perf->metrics_lock);
4212 	return ret;
4213 }
4214 
4215 static struct ctl_table oa_table[] = {
4216 	{
4217 	 .procname = "perf_stream_paranoid",
4218 	 .data = &i915_perf_stream_paranoid,
4219 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4220 	 .mode = 0644,
4221 	 .proc_handler = proc_dointvec_minmax,
4222 	 .extra1 = SYSCTL_ZERO,
4223 	 .extra2 = SYSCTL_ONE,
4224 	 },
4225 	{
4226 	 .procname = "oa_max_sample_rate",
4227 	 .data = &i915_oa_max_sample_rate,
4228 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4229 	 .mode = 0644,
4230 	 .proc_handler = proc_dointvec_minmax,
4231 	 .extra1 = SYSCTL_ZERO,
4232 	 .extra2 = &oa_sample_rate_hard_limit,
4233 	 },
4234 	{}
4235 };
4236 
4237 static struct ctl_table i915_root[] = {
4238 	{
4239 	 .procname = "i915",
4240 	 .maxlen = 0,
4241 	 .mode = 0555,
4242 	 .child = oa_table,
4243 	 },
4244 	{}
4245 };
4246 
4247 static struct ctl_table dev_root[] = {
4248 	{
4249 	 .procname = "dev",
4250 	 .maxlen = 0,
4251 	 .mode = 0555,
4252 	 .child = i915_root,
4253 	 },
4254 	{}
4255 };
4256 
4257 /**
4258  * i915_perf_init - initialize i915-perf state on module bind
4259  * @i915: i915 device instance
4260  *
4261  * Initializes i915-perf state without exposing anything to userspace.
4262  *
4263  * Note: i915-perf initialization is split into an 'init' and 'register'
4264  * phase with the i915_perf_register() exposing state to userspace.
4265  */
4266 void i915_perf_init(struct drm_i915_private *i915)
4267 {
4268 	struct i915_perf *perf = &i915->perf;
4269 
4270 	/* XXX const struct i915_perf_ops! */
4271 
4272 	if (IS_HASWELL(i915)) {
4273 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4274 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4275 		perf->ops.is_valid_flex_reg = NULL;
4276 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4277 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4278 		perf->ops.oa_enable = gen7_oa_enable;
4279 		perf->ops.oa_disable = gen7_oa_disable;
4280 		perf->ops.read = gen7_oa_read;
4281 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4282 
4283 		perf->oa_formats = hsw_oa_formats;
4284 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4285 		/* Note: that although we could theoretically also support the
4286 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4287 		 * this driver, before upstreaming did this) it didn't seem
4288 		 * worth the complexity to maintain now that BDW+ enable
4289 		 * execlist mode by default.
4290 		 */
4291 		perf->ops.read = gen8_oa_read;
4292 
4293 		if (IS_GEN_RANGE(i915, 8, 9)) {
4294 			perf->oa_formats = gen8_plus_oa_formats;
4295 
4296 			perf->ops.is_valid_b_counter_reg =
4297 				gen7_is_valid_b_counter_addr;
4298 			perf->ops.is_valid_mux_reg =
4299 				gen8_is_valid_mux_addr;
4300 			perf->ops.is_valid_flex_reg =
4301 				gen8_is_valid_flex_addr;
4302 
4303 			if (IS_CHERRYVIEW(i915)) {
4304 				perf->ops.is_valid_mux_reg =
4305 					chv_is_valid_mux_addr;
4306 			}
4307 
4308 			perf->ops.oa_enable = gen8_oa_enable;
4309 			perf->ops.oa_disable = gen8_oa_disable;
4310 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4311 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4312 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4313 
4314 			if (IS_GEN(i915, 8)) {
4315 				perf->ctx_oactxctrl_offset = 0x120;
4316 				perf->ctx_flexeu0_offset = 0x2ce;
4317 
4318 				perf->gen8_valid_ctx_bit = BIT(25);
4319 			} else {
4320 				perf->ctx_oactxctrl_offset = 0x128;
4321 				perf->ctx_flexeu0_offset = 0x3de;
4322 
4323 				perf->gen8_valid_ctx_bit = BIT(16);
4324 			}
4325 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4326 			perf->oa_formats = gen8_plus_oa_formats;
4327 
4328 			perf->ops.is_valid_b_counter_reg =
4329 				gen7_is_valid_b_counter_addr;
4330 			perf->ops.is_valid_mux_reg =
4331 				gen10_is_valid_mux_addr;
4332 			perf->ops.is_valid_flex_reg =
4333 				gen8_is_valid_flex_addr;
4334 
4335 			perf->ops.oa_enable = gen8_oa_enable;
4336 			perf->ops.oa_disable = gen8_oa_disable;
4337 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4338 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4339 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4340 
4341 			if (IS_GEN(i915, 10)) {
4342 				perf->ctx_oactxctrl_offset = 0x128;
4343 				perf->ctx_flexeu0_offset = 0x3de;
4344 			} else {
4345 				perf->ctx_oactxctrl_offset = 0x124;
4346 				perf->ctx_flexeu0_offset = 0x78e;
4347 			}
4348 			perf->gen8_valid_ctx_bit = BIT(16);
4349 		} else if (IS_GEN(i915, 12)) {
4350 			perf->oa_formats = gen12_oa_formats;
4351 
4352 			perf->ops.is_valid_b_counter_reg =
4353 				gen12_is_valid_b_counter_addr;
4354 			perf->ops.is_valid_mux_reg =
4355 				gen12_is_valid_mux_addr;
4356 			perf->ops.is_valid_flex_reg =
4357 				gen8_is_valid_flex_addr;
4358 
4359 			perf->ops.oa_enable = gen12_oa_enable;
4360 			perf->ops.oa_disable = gen12_oa_disable;
4361 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4362 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4363 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4364 
4365 			perf->ctx_flexeu0_offset = 0;
4366 			perf->ctx_oactxctrl_offset = 0x144;
4367 		}
4368 	}
4369 
4370 	if (perf->ops.enable_metric_set) {
4371 		mutex_init(&perf->lock);
4372 
4373 		oa_sample_rate_hard_limit =
4374 			RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4375 
4376 		mutex_init(&perf->metrics_lock);
4377 		idr_init(&perf->metrics_idr);
4378 
4379 		/* We set up some ratelimit state to potentially throttle any
4380 		 * _NOTES about spurious, invalid OA reports which we don't
4381 		 * forward to userspace.
4382 		 *
4383 		 * We print a _NOTE about any throttling when closing the
4384 		 * stream instead of waiting until driver _fini which no one
4385 		 * would ever see.
4386 		 *
4387 		 * Using the same limiting factors as printk_ratelimit()
4388 		 */
4389 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4390 		/* Since we use a DRM_NOTE for spurious reports it would be
4391 		 * inconsistent to let __ratelimit() automatically print a
4392 		 * warning for throttling.
4393 		 */
4394 		ratelimit_set_flags(&perf->spurious_report_rs,
4395 				    RATELIMIT_MSG_ON_RELEASE);
4396 
4397 		ratelimit_state_init(&perf->tail_pointer_race,
4398 				     5 * HZ, 10);
4399 		ratelimit_set_flags(&perf->tail_pointer_race,
4400 				    RATELIMIT_MSG_ON_RELEASE);
4401 
4402 		atomic64_set(&perf->noa_programming_delay,
4403 			     500 * 1000 /* 500us */);
4404 
4405 		perf->i915 = i915;
4406 	}
4407 }
4408 
4409 static int destroy_config(int id, void *p, void *data)
4410 {
4411 	i915_oa_config_put(p);
4412 	return 0;
4413 }
4414 
4415 void i915_perf_sysctl_register(void)
4416 {
4417 	sysctl_header = register_sysctl_table(dev_root);
4418 }
4419 
4420 void i915_perf_sysctl_unregister(void)
4421 {
4422 	unregister_sysctl_table(sysctl_header);
4423 }
4424 
4425 /**
4426  * i915_perf_fini - Counter part to i915_perf_init()
4427  * @i915: i915 device instance
4428  */
4429 void i915_perf_fini(struct drm_i915_private *i915)
4430 {
4431 	struct i915_perf *perf = &i915->perf;
4432 
4433 	if (!perf->i915)
4434 		return;
4435 
4436 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4437 	idr_destroy(&perf->metrics_idr);
4438 
4439 	memset(&perf->ops, 0, sizeof(perf->ops));
4440 	perf->i915 = NULL;
4441 }
4442 
4443 /**
4444  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4445  *
4446  * This version number is used by userspace to detect available features.
4447  */
4448 int i915_perf_ioctl_version(void)
4449 {
4450 	/*
4451 	 * 1: Initial version
4452 	 *   I915_PERF_IOCTL_ENABLE
4453 	 *   I915_PERF_IOCTL_DISABLE
4454 	 *
4455 	 * 2: Added runtime modification of OA config.
4456 	 *   I915_PERF_IOCTL_CONFIG
4457 	 *
4458 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4459 	 *    preemption on a particular context so that performance data is
4460 	 *    accessible from a delta of MI_RPC reports without looking at the
4461 	 *    OA buffer.
4462 	 *
4463 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4464 	 *    be run for the duration of the performance recording based on
4465 	 *    their SSEU configuration.
4466 	 *
4467 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4468 	 *    interval for the hrtimer used to check for OA data.
4469 	 */
4470 	return 5;
4471 }
4472 
4473 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4474 #include "selftests/i915_perf.c"
4475 #endif
4476