1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_print.h" 210 #include "gt/intel_gt_regs.h" 211 #include "gt/intel_lrc.h" 212 #include "gt/intel_lrc_reg.h" 213 #include "gt/intel_rc6.h" 214 #include "gt/intel_ring.h" 215 #include "gt/uc/intel_guc_slpc.h" 216 217 #include "i915_drv.h" 218 #include "i915_file_private.h" 219 #include "i915_perf.h" 220 #include "i915_perf_oa_regs.h" 221 #include "i915_reg.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 242 * redundant read() attempts. 243 * 244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 245 * in the OA buffer, starting from the tail reported by the HW until we find a 246 * report with its first 2 dwords not 0 meaning its previous report is 247 * completely in memory and ready to be read. Those dwords are also set to 0 248 * once read and the whole buffer is cleared upon OA buffer initialization. The 249 * first dword is the reason for this report while the second is the timestamp, 250 * making the chances of having those 2 fields at 0 fairly unlikely. A more 251 * detailed explanation is available in oa_buffer_check_unlocked(). 252 * 253 * Most of the implementation details for this workaround are in 254 * oa_buffer_check_unlocked() and _append_oa_reports() 255 * 256 * Note for posterity: previously the driver used to define an effective tail 257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 259 * This was flawed considering that the OA unit may also automatically generate 260 * non-periodic reports (such as on context switch) or the OA unit may be 261 * enabled without any periodic sampling. 262 */ 263 #define OA_TAIL_MARGIN_NSEC 100000ULL 264 #define INVALID_TAIL_PTR 0xffffffff 265 266 /* The default frequency for checking whether the OA unit has written new 267 * reports to the circular OA buffer... 268 */ 269 #define DEFAULT_POLL_FREQUENCY_HZ 200 270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 271 272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 273 static u32 i915_perf_stream_paranoid = true; 274 275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 276 * of the 64bit timestamp bits to trigger reports from) but there's currently 277 * no known use case for sampling as infrequently as once per 47 thousand years. 278 * 279 * Since the timestamps included in OA reports are only 32bits it seems 280 * reasonable to limit the OA exponent where it's still possible to account for 281 * overflow in OA report timestamps. 282 */ 283 #define OA_EXPONENT_MAX 31 284 285 #define INVALID_CTX_ID 0xffffffff 286 287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 288 #define OAREPORT_REASON_MASK 0x3f 289 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 290 #define OAREPORT_REASON_SHIFT 19 291 #define OAREPORT_REASON_TIMER (1<<0) 292 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 293 #define OAREPORT_REASON_CLK_RATIO (1<<5) 294 295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 296 297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 298 * 299 * The highest sampling frequency we can theoretically program the OA unit 300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 301 * 302 * Initialized just before we register the sysctl parameter. 303 */ 304 static int oa_sample_rate_hard_limit; 305 306 /* Theoretically we can program the OA unit to sample every 160ns but don't 307 * allow that by default unless root... 308 * 309 * The default threshold of 100000Hz is based on perf's similar 310 * kernel.perf_event_max_sample_rate sysctl parameter. 311 */ 312 static u32 i915_oa_max_sample_rate = 100000; 313 314 /* XXX: beware if future OA HW adds new report formats that the current 315 * code assumes all reports have a power-of-two size and ~(size - 1) can 316 * be used as a mask to align the OA tail pointer. 317 */ 318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 319 [I915_OA_FORMAT_A13] = { 0, 64 }, 320 [I915_OA_FORMAT_A29] = { 1, 128 }, 321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 323 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 326 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 327 [I915_OA_FORMAT_A12] = { 0, 64 }, 328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 334 }; 335 336 static const u32 mtl_oa_base[] = { 337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 338 }; 339 340 #define SAMPLE_OA_REPORT (1<<0) 341 342 /** 343 * struct perf_open_properties - for validated properties given to open a stream 344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 345 * @single_context: Whether a single or all gpu contexts should be monitored 346 * @hold_preemption: Whether the preemption is disabled for the filtered 347 * context 348 * @ctx_handle: A gem ctx handle for use with @single_context 349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 350 * @oa_format: An OA unit HW report format 351 * @oa_periodic: Whether to enable periodic OA unit sampling 352 * @oa_period_exponent: The OA unit sampling period is derived from this 353 * @engine: The engine (typically rcs0) being monitored by the OA unit 354 * @has_sseu: Whether @sseu was specified by userspace 355 * @sseu: internal SSEU configuration computed either from the userspace 356 * specified configuration in the opening parameters or a default value 357 * (see get_default_sseu_config()) 358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 359 * data availability 360 * 361 * As read_properties_unlocked() enumerates and validates the properties given 362 * to open a stream of metrics the configuration is built up in the structure 363 * which starts out zero initialized. 364 */ 365 struct perf_open_properties { 366 u32 sample_flags; 367 368 u64 single_context:1; 369 u64 hold_preemption:1; 370 u64 ctx_handle; 371 372 /* OA sampling state */ 373 int metrics_set; 374 int oa_format; 375 bool oa_periodic; 376 int oa_period_exponent; 377 378 struct intel_engine_cs *engine; 379 380 bool has_sseu; 381 struct intel_sseu sseu; 382 383 u64 poll_oa_period; 384 }; 385 386 struct i915_oa_config_bo { 387 struct llist_node node; 388 389 struct i915_oa_config *oa_config; 390 struct i915_vma *vma; 391 }; 392 393 static struct ctl_table_header *sysctl_header; 394 395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 396 397 void i915_oa_config_release(struct kref *ref) 398 { 399 struct i915_oa_config *oa_config = 400 container_of(ref, typeof(*oa_config), ref); 401 402 kfree(oa_config->flex_regs); 403 kfree(oa_config->b_counter_regs); 404 kfree(oa_config->mux_regs); 405 406 kfree_rcu(oa_config, rcu); 407 } 408 409 struct i915_oa_config * 410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 411 { 412 struct i915_oa_config *oa_config; 413 414 rcu_read_lock(); 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static inline const 431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 432 { 433 return &stream->engine->oa_group->regs; 434 } 435 436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 440 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 441 GEN12_OAG_OATAILPTR_MASK; 442 } 443 444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 445 { 446 struct intel_uncore *uncore = stream->uncore; 447 448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 449 } 450 451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 452 { 453 struct intel_uncore *uncore = stream->uncore; 454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 455 456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 457 } 458 459 #define oa_report_header_64bit(__s) \ 460 ((__s)->oa_buffer.format->header == HDR_64_BIT) 461 462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 463 { 464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 465 } 466 467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 468 { 469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 470 (GRAPHICS_VER(stream->perf->i915) == 12 ? 471 OAREPORT_REASON_MASK_EXTENDED : 472 OAREPORT_REASON_MASK); 473 } 474 475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 476 { 477 if (oa_report_header_64bit(stream)) 478 *(u64 *)report = 0; 479 else 480 *report = 0; 481 } 482 483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 484 { 485 return !(oa_report_id(stream, report) & 486 stream->perf->gen8_valid_ctx_bit); 487 } 488 489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 490 { 491 return oa_report_header_64bit(stream) ? 492 *((u64 *)report + 1) : 493 *((u32 *)report + 1); 494 } 495 496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 497 { 498 if (oa_report_header_64bit(stream)) 499 *(u64 *)&report[2] = 0; 500 else 501 report[1] = 0; 502 } 503 504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 505 { 506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 507 508 return ctx_id & stream->specific_ctx_id_mask; 509 } 510 511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 512 { 513 if (oa_report_header_64bit(stream)) 514 report[4] = INVALID_CTX_ID; 515 else 516 report[2] = INVALID_CTX_ID; 517 } 518 519 /** 520 * oa_buffer_check_unlocked - check for data and update tail ptr state 521 * @stream: i915 stream instance 522 * 523 * This is either called via fops (for blocking reads in user ctx) or the poll 524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 525 * if there is data available for userspace to read. 526 * 527 * This function is central to providing a workaround for the OA unit tail 528 * pointer having a race with respect to what data is visible to the CPU. 529 * It is responsible for reading tail pointers from the hardware and giving 530 * the pointers time to 'age' before they are made available for reading. 531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 532 * 533 * Besides returning true when there is data available to read() this function 534 * also updates the tail in the oa_buffer object. 535 * 536 * Note: It's safe to read OA config state here unlocked, assuming that this is 537 * only called while the stream is enabled, while the global OA configuration 538 * can't be modified. 539 * 540 * Returns: %true if the OA buffer contains data, else %false 541 */ 542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 543 { 544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 545 int report_size = stream->oa_buffer.format->size; 546 u32 tail, hw_tail; 547 unsigned long flags; 548 bool pollin; 549 u32 partial_report_size; 550 551 /* We have to consider the (unlikely) possibility that read() errors 552 * could result in an OA buffer reset which might reset the head and 553 * tail state. 554 */ 555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 556 557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 558 hw_tail -= gtt_offset; 559 560 /* The tail pointer increases in 64 byte increments, not in report_size 561 * steps. Also the report size may not be a power of 2. Compute 562 * potentially partially landed report in the OA buffer 563 */ 564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 565 partial_report_size %= report_size; 566 567 /* Subtract partial amount off the tail */ 568 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 569 570 tail = hw_tail; 571 572 /* Walk the stream backward until we find a report with report 573 * id and timestmap not at 0. Since the circular buffer pointers 574 * progress by increments of 64 bytes and that reports can be up 575 * to 256 bytes long, we can't tell whether a report has fully 576 * landed in memory before the report id and timestamp of the 577 * following report have effectively landed. 578 * 579 * This is assuming that the writes of the OA unit land in 580 * memory in the order they were written to. 581 * If not : (╯°□°)╯︵ ┻━┻ 582 */ 583 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) { 584 void *report = stream->oa_buffer.vaddr + tail; 585 586 if (oa_report_id(stream, report) || 587 oa_timestamp(stream, report)) 588 break; 589 590 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 591 } 592 593 if (OA_TAKEN(hw_tail, tail) > report_size && 594 __ratelimit(&stream->perf->tail_pointer_race)) 595 drm_notice(&stream->uncore->i915->drm, 596 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 597 stream->oa_buffer.head, tail, hw_tail); 598 599 stream->oa_buffer.tail = tail; 600 601 pollin = OA_TAKEN(stream->oa_buffer.tail, 602 stream->oa_buffer.head) >= report_size; 603 604 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 605 606 return pollin; 607 } 608 609 /** 610 * append_oa_status - Appends a status record to a userspace read() buffer. 611 * @stream: An i915-perf stream opened for OA metrics 612 * @buf: destination buffer given by userspace 613 * @count: the number of bytes userspace wants to read 614 * @offset: (inout): the current position for writing into @buf 615 * @type: The kind of status to report to userspace 616 * 617 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 618 * into the userspace read() buffer. 619 * 620 * The @buf @offset will only be updated on success. 621 * 622 * Returns: 0 on success, negative error code on failure. 623 */ 624 static int append_oa_status(struct i915_perf_stream *stream, 625 char __user *buf, 626 size_t count, 627 size_t *offset, 628 enum drm_i915_perf_record_type type) 629 { 630 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 631 632 if ((count - *offset) < header.size) 633 return -ENOSPC; 634 635 if (copy_to_user(buf + *offset, &header, sizeof(header))) 636 return -EFAULT; 637 638 (*offset) += header.size; 639 640 return 0; 641 } 642 643 /** 644 * append_oa_sample - Copies single OA report into userspace read() buffer. 645 * @stream: An i915-perf stream opened for OA metrics 646 * @buf: destination buffer given by userspace 647 * @count: the number of bytes userspace wants to read 648 * @offset: (inout): the current position for writing into @buf 649 * @report: A single OA report to (optionally) include as part of the sample 650 * 651 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 652 * properties when opening a stream, tracked as `stream->sample_flags`. This 653 * function copies the requested components of a single sample to the given 654 * read() @buf. 655 * 656 * The @buf @offset will only be updated on success. 657 * 658 * Returns: 0 on success, negative error code on failure. 659 */ 660 static int append_oa_sample(struct i915_perf_stream *stream, 661 char __user *buf, 662 size_t count, 663 size_t *offset, 664 const u8 *report) 665 { 666 int report_size = stream->oa_buffer.format->size; 667 struct drm_i915_perf_record_header header; 668 int report_size_partial; 669 u8 *oa_buf_end; 670 671 header.type = DRM_I915_PERF_RECORD_SAMPLE; 672 header.pad = 0; 673 header.size = stream->sample_size; 674 675 if ((count - *offset) < header.size) 676 return -ENOSPC; 677 678 buf += *offset; 679 if (copy_to_user(buf, &header, sizeof(header))) 680 return -EFAULT; 681 buf += sizeof(header); 682 683 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 684 report_size_partial = oa_buf_end - report; 685 686 if (report_size_partial < report_size) { 687 if (copy_to_user(buf, report, report_size_partial)) 688 return -EFAULT; 689 buf += report_size_partial; 690 691 if (copy_to_user(buf, stream->oa_buffer.vaddr, 692 report_size - report_size_partial)) 693 return -EFAULT; 694 } else if (copy_to_user(buf, report, report_size)) { 695 return -EFAULT; 696 } 697 698 (*offset) += header.size; 699 700 return 0; 701 } 702 703 /** 704 * gen8_append_oa_reports - Copies all buffered OA reports into 705 * userspace read() buffer. 706 * @stream: An i915-perf stream opened for OA metrics 707 * @buf: destination buffer given by userspace 708 * @count: the number of bytes userspace wants to read 709 * @offset: (inout): the current position for writing into @buf 710 * 711 * Notably any error condition resulting in a short read (-%ENOSPC or 712 * -%EFAULT) will be returned even though one or more records may 713 * have been successfully copied. In this case it's up to the caller 714 * to decide if the error should be squashed before returning to 715 * userspace. 716 * 717 * Note: reports are consumed from the head, and appended to the 718 * tail, so the tail chases the head?... If you think that's mad 719 * and back-to-front you're not alone, but this follows the 720 * Gen PRM naming convention. 721 * 722 * Returns: 0 on success, negative error code on failure. 723 */ 724 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 725 char __user *buf, 726 size_t count, 727 size_t *offset) 728 { 729 struct intel_uncore *uncore = stream->uncore; 730 int report_size = stream->oa_buffer.format->size; 731 u8 *oa_buf_base = stream->oa_buffer.vaddr; 732 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 733 u32 mask = (OA_BUFFER_SIZE - 1); 734 size_t start_offset = *offset; 735 unsigned long flags; 736 u32 head, tail; 737 int ret = 0; 738 739 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 740 return -EIO; 741 742 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 743 744 head = stream->oa_buffer.head; 745 tail = stream->oa_buffer.tail; 746 747 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 748 749 /* 750 * An out of bounds or misaligned head or tail pointer implies a driver 751 * bug since we validate + align the tail pointers we read from the 752 * hardware and we are in full control of the head pointer which should 753 * only be incremented by multiples of the report size. 754 */ 755 if (drm_WARN_ONCE(&uncore->i915->drm, 756 head > OA_BUFFER_SIZE || 757 tail > OA_BUFFER_SIZE, 758 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 759 head, tail)) 760 return -EIO; 761 762 763 for (/* none */; 764 OA_TAKEN(tail, head); 765 head = (head + report_size) & mask) { 766 u8 *report = oa_buf_base + head; 767 u32 *report32 = (void *)report; 768 u32 ctx_id; 769 u64 reason; 770 771 /* 772 * The reason field includes flags identifying what 773 * triggered this specific report (mostly timer 774 * triggered or e.g. due to a context switch). 775 */ 776 reason = oa_report_reason(stream, report); 777 ctx_id = oa_context_id(stream, report32); 778 779 /* 780 * Squash whatever is in the CTX_ID field if it's marked as 781 * invalid to be sure we avoid false-positive, single-context 782 * filtering below... 783 * 784 * Note: that we don't clear the valid_ctx_bit so userspace can 785 * understand that the ID has been squashed by the kernel. 786 * 787 * Update: 788 * 789 * On XEHP platforms the behavior of context id valid bit has 790 * changed compared to prior platforms. To describe this, we 791 * define a few terms: 792 * 793 * context-switch-report: This is a report with the reason type 794 * being context-switch. It is generated when a context switches 795 * out. 796 * 797 * context-valid-bit: A bit that is set in the report ID field 798 * to indicate that a valid context has been loaded. 799 * 800 * gpu-idle: A condition characterized by a 801 * context-switch-report with context-valid-bit set to 0. 802 * 803 * On prior platforms, context-id-valid bit is set to 0 only 804 * when GPU goes idle. In all other reports, it is set to 1. 805 * 806 * On XEHP platforms, context-valid-bit is set to 1 in a context 807 * switch report if a new context switched in. For all other 808 * reports it is set to 0. 809 * 810 * This change in behavior causes an issue with MMIO triggered 811 * reports. MMIO triggered reports have the markers in the 812 * context ID field and the context-valid-bit is 0. The logic 813 * below to squash the context ID would render the report 814 * useless since the user will not be able to find it in the OA 815 * buffer. Since MMIO triggered reports exist only on XEHP, 816 * we should avoid squashing these for XEHP platforms. 817 */ 818 819 if (oa_report_ctx_invalid(stream, report) && 820 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) { 821 ctx_id = INVALID_CTX_ID; 822 oa_context_id_squash(stream, report32); 823 } 824 825 /* 826 * NB: For Gen 8 the OA unit no longer supports clock gating 827 * off for a specific context and the kernel can't securely 828 * stop the counters from updating as system-wide / global 829 * values. 830 * 831 * Automatic reports now include a context ID so reports can be 832 * filtered on the cpu but it's not worth trying to 833 * automatically subtract/hide counter progress for other 834 * contexts while filtering since we can't stop userspace 835 * issuing MI_REPORT_PERF_COUNT commands which would still 836 * provide a side-band view of the real values. 837 * 838 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 839 * to normalize counters for a single filtered context then it 840 * needs be forwarded bookend context-switch reports so that it 841 * can track switches in between MI_REPORT_PERF_COUNT commands 842 * and can itself subtract/ignore the progress of counters 843 * associated with other contexts. Note that the hardware 844 * automatically triggers reports when switching to a new 845 * context which are tagged with the ID of the newly active 846 * context. To avoid the complexity (and likely fragility) of 847 * reading ahead while parsing reports to try and minimize 848 * forwarding redundant context switch reports (i.e. between 849 * other, unrelated contexts) we simply elect to forward them 850 * all. 851 * 852 * We don't rely solely on the reason field to identify context 853 * switches since it's not-uncommon for periodic samples to 854 * identify a switch before any 'context switch' report. 855 */ 856 if (!stream->ctx || 857 stream->specific_ctx_id == ctx_id || 858 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 859 reason & OAREPORT_REASON_CTX_SWITCH) { 860 861 /* 862 * While filtering for a single context we avoid 863 * leaking the IDs of other contexts. 864 */ 865 if (stream->ctx && 866 stream->specific_ctx_id != ctx_id) { 867 oa_context_id_squash(stream, report32); 868 } 869 870 ret = append_oa_sample(stream, buf, count, offset, 871 report); 872 if (ret) 873 break; 874 875 stream->oa_buffer.last_ctx_id = ctx_id; 876 } 877 878 if (is_power_of_2(report_size)) { 879 /* 880 * Clear out the report id and timestamp as a means 881 * to detect unlanded reports. 882 */ 883 oa_report_id_clear(stream, report32); 884 oa_timestamp_clear(stream, report32); 885 } else { 886 u8 *oa_buf_end = stream->oa_buffer.vaddr + 887 OA_BUFFER_SIZE; 888 u32 part = oa_buf_end - (u8 *)report32; 889 890 /* Zero out the entire report */ 891 if (report_size <= part) { 892 memset(report32, 0, report_size); 893 } else { 894 memset(report32, 0, part); 895 memset(oa_buf_base, 0, report_size - part); 896 } 897 } 898 } 899 900 if (start_offset != *offset) { 901 i915_reg_t oaheadptr; 902 903 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 904 __oa_regs(stream)->oa_head_ptr : 905 GEN8_OAHEADPTR; 906 907 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 908 909 /* 910 * We removed the gtt_offset for the copy loop above, indexing 911 * relative to oa_buf_base so put back here... 912 */ 913 intel_uncore_write(uncore, oaheadptr, 914 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK); 915 stream->oa_buffer.head = head; 916 917 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 918 } 919 920 return ret; 921 } 922 923 /** 924 * gen8_oa_read - copy status records then buffered OA reports 925 * @stream: An i915-perf stream opened for OA metrics 926 * @buf: destination buffer given by userspace 927 * @count: the number of bytes userspace wants to read 928 * @offset: (inout): the current position for writing into @buf 929 * 930 * Checks OA unit status registers and if necessary appends corresponding 931 * status records for userspace (such as for a buffer full condition) and then 932 * initiate appending any buffered OA reports. 933 * 934 * Updates @offset according to the number of bytes successfully copied into 935 * the userspace buffer. 936 * 937 * NB: some data may be successfully copied to the userspace buffer 938 * even if an error is returned, and this is reflected in the 939 * updated @offset. 940 * 941 * Returns: zero on success or a negative error code 942 */ 943 static int gen8_oa_read(struct i915_perf_stream *stream, 944 char __user *buf, 945 size_t count, 946 size_t *offset) 947 { 948 struct intel_uncore *uncore = stream->uncore; 949 u32 oastatus; 950 i915_reg_t oastatus_reg; 951 int ret; 952 953 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 954 return -EIO; 955 956 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 957 __oa_regs(stream)->oa_status : 958 GEN8_OASTATUS; 959 960 oastatus = intel_uncore_read(uncore, oastatus_reg); 961 962 /* 963 * We treat OABUFFER_OVERFLOW as a significant error: 964 * 965 * Although theoretically we could handle this more gracefully 966 * sometimes, some Gens don't correctly suppress certain 967 * automatically triggered reports in this condition and so we 968 * have to assume that old reports are now being trampled 969 * over. 970 * 971 * Considering how we don't currently give userspace control 972 * over the OA buffer size and always configure a large 16MB 973 * buffer, then a buffer overflow does anyway likely indicate 974 * that something has gone quite badly wrong. 975 */ 976 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 977 ret = append_oa_status(stream, buf, count, offset, 978 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 979 if (ret) 980 return ret; 981 982 drm_dbg(&stream->perf->i915->drm, 983 "OA buffer overflow (exponent = %d): force restart\n", 984 stream->period_exponent); 985 986 stream->perf->ops.oa_disable(stream); 987 stream->perf->ops.oa_enable(stream); 988 989 /* 990 * Note: .oa_enable() is expected to re-init the oabuffer and 991 * reset GEN8_OASTATUS for us 992 */ 993 oastatus = intel_uncore_read(uncore, oastatus_reg); 994 } 995 996 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 997 ret = append_oa_status(stream, buf, count, offset, 998 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 999 if (ret) 1000 return ret; 1001 1002 intel_uncore_rmw(uncore, oastatus_reg, 1003 GEN8_OASTATUS_COUNTER_OVERFLOW | 1004 GEN8_OASTATUS_REPORT_LOST, 1005 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 1006 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 1007 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 1008 } 1009 1010 return gen8_append_oa_reports(stream, buf, count, offset); 1011 } 1012 1013 /** 1014 * gen7_append_oa_reports - Copies all buffered OA reports into 1015 * userspace read() buffer. 1016 * @stream: An i915-perf stream opened for OA metrics 1017 * @buf: destination buffer given by userspace 1018 * @count: the number of bytes userspace wants to read 1019 * @offset: (inout): the current position for writing into @buf 1020 * 1021 * Notably any error condition resulting in a short read (-%ENOSPC or 1022 * -%EFAULT) will be returned even though one or more records may 1023 * have been successfully copied. In this case it's up to the caller 1024 * to decide if the error should be squashed before returning to 1025 * userspace. 1026 * 1027 * Note: reports are consumed from the head, and appended to the 1028 * tail, so the tail chases the head?... If you think that's mad 1029 * and back-to-front you're not alone, but this follows the 1030 * Gen PRM naming convention. 1031 * 1032 * Returns: 0 on success, negative error code on failure. 1033 */ 1034 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1035 char __user *buf, 1036 size_t count, 1037 size_t *offset) 1038 { 1039 struct intel_uncore *uncore = stream->uncore; 1040 int report_size = stream->oa_buffer.format->size; 1041 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1042 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1043 u32 mask = (OA_BUFFER_SIZE - 1); 1044 size_t start_offset = *offset; 1045 unsigned long flags; 1046 u32 head, tail; 1047 int ret = 0; 1048 1049 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1050 return -EIO; 1051 1052 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1053 1054 head = stream->oa_buffer.head; 1055 tail = stream->oa_buffer.tail; 1056 1057 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1058 1059 /* An out of bounds or misaligned head or tail pointer implies a driver 1060 * bug since we validate + align the tail pointers we read from the 1061 * hardware and we are in full control of the head pointer which should 1062 * only be incremented by multiples of the report size (notably also 1063 * all a power of two). 1064 */ 1065 if (drm_WARN_ONCE(&uncore->i915->drm, 1066 head > OA_BUFFER_SIZE || head % report_size || 1067 tail > OA_BUFFER_SIZE || tail % report_size, 1068 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1069 head, tail)) 1070 return -EIO; 1071 1072 1073 for (/* none */; 1074 OA_TAKEN(tail, head); 1075 head = (head + report_size) & mask) { 1076 u8 *report = oa_buf_base + head; 1077 u32 *report32 = (void *)report; 1078 1079 /* All the report sizes factor neatly into the buffer 1080 * size so we never expect to see a report split 1081 * between the beginning and end of the buffer. 1082 * 1083 * Given the initial alignment check a misalignment 1084 * here would imply a driver bug that would result 1085 * in an overrun. 1086 */ 1087 if (drm_WARN_ON(&uncore->i915->drm, 1088 (OA_BUFFER_SIZE - head) < report_size)) { 1089 drm_err(&uncore->i915->drm, 1090 "Spurious OA head ptr: non-integral report offset\n"); 1091 break; 1092 } 1093 1094 /* The report-ID field for periodic samples includes 1095 * some undocumented flags related to what triggered 1096 * the report and is never expected to be zero so we 1097 * can check that the report isn't invalid before 1098 * copying it to userspace... 1099 */ 1100 if (report32[0] == 0) { 1101 if (__ratelimit(&stream->perf->spurious_report_rs)) 1102 drm_notice(&uncore->i915->drm, 1103 "Skipping spurious, invalid OA report\n"); 1104 continue; 1105 } 1106 1107 ret = append_oa_sample(stream, buf, count, offset, report); 1108 if (ret) 1109 break; 1110 1111 /* Clear out the first 2 dwords as a mean to detect unlanded 1112 * reports. 1113 */ 1114 report32[0] = 0; 1115 report32[1] = 0; 1116 } 1117 1118 if (start_offset != *offset) { 1119 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1120 1121 intel_uncore_write(uncore, GEN7_OASTATUS2, 1122 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) | 1123 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1124 stream->oa_buffer.head = head; 1125 1126 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1127 } 1128 1129 return ret; 1130 } 1131 1132 /** 1133 * gen7_oa_read - copy status records then buffered OA reports 1134 * @stream: An i915-perf stream opened for OA metrics 1135 * @buf: destination buffer given by userspace 1136 * @count: the number of bytes userspace wants to read 1137 * @offset: (inout): the current position for writing into @buf 1138 * 1139 * Checks Gen 7 specific OA unit status registers and if necessary appends 1140 * corresponding status records for userspace (such as for a buffer full 1141 * condition) and then initiate appending any buffered OA reports. 1142 * 1143 * Updates @offset according to the number of bytes successfully copied into 1144 * the userspace buffer. 1145 * 1146 * Returns: zero on success or a negative error code 1147 */ 1148 static int gen7_oa_read(struct i915_perf_stream *stream, 1149 char __user *buf, 1150 size_t count, 1151 size_t *offset) 1152 { 1153 struct intel_uncore *uncore = stream->uncore; 1154 u32 oastatus1; 1155 int ret; 1156 1157 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1158 return -EIO; 1159 1160 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1161 1162 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1163 * bits while the OA unit is enabled (while the tail pointer 1164 * may be updated asynchronously) so we ignore status bits 1165 * that have already been reported to userspace. 1166 */ 1167 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1168 1169 /* We treat OABUFFER_OVERFLOW as a significant error: 1170 * 1171 * - The status can be interpreted to mean that the buffer is 1172 * currently full (with a higher precedence than OA_TAKEN() 1173 * which will start to report a near-empty buffer after an 1174 * overflow) but it's awkward that we can't clear the status 1175 * on Haswell, so without a reset we won't be able to catch 1176 * the state again. 1177 * 1178 * - Since it also implies the HW has started overwriting old 1179 * reports it may also affect our sanity checks for invalid 1180 * reports when copying to userspace that assume new reports 1181 * are being written to cleared memory. 1182 * 1183 * - In the future we may want to introduce a flight recorder 1184 * mode where the driver will automatically maintain a safe 1185 * guard band between head/tail, avoiding this overflow 1186 * condition, but we avoid the added driver complexity for 1187 * now. 1188 */ 1189 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1190 ret = append_oa_status(stream, buf, count, offset, 1191 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1192 if (ret) 1193 return ret; 1194 1195 drm_dbg(&stream->perf->i915->drm, 1196 "OA buffer overflow (exponent = %d): force restart\n", 1197 stream->period_exponent); 1198 1199 stream->perf->ops.oa_disable(stream); 1200 stream->perf->ops.oa_enable(stream); 1201 1202 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1203 } 1204 1205 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1206 ret = append_oa_status(stream, buf, count, offset, 1207 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1208 if (ret) 1209 return ret; 1210 stream->perf->gen7_latched_oastatus1 |= 1211 GEN7_OASTATUS1_REPORT_LOST; 1212 } 1213 1214 return gen7_append_oa_reports(stream, buf, count, offset); 1215 } 1216 1217 /** 1218 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1219 * @stream: An i915-perf stream opened for OA metrics 1220 * 1221 * Called when userspace tries to read() from a blocking stream FD opened 1222 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1223 * OA buffer and wakes us. 1224 * 1225 * Note: it's acceptable to have this return with some false positives 1226 * since any subsequent read handling will return -EAGAIN if there isn't 1227 * really data ready for userspace yet. 1228 * 1229 * Returns: zero on success or a negative error code 1230 */ 1231 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1232 { 1233 /* We would wait indefinitely if periodic sampling is not enabled */ 1234 if (!stream->periodic) 1235 return -EIO; 1236 1237 return wait_event_interruptible(stream->poll_wq, 1238 oa_buffer_check_unlocked(stream)); 1239 } 1240 1241 /** 1242 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1243 * @stream: An i915-perf stream opened for OA metrics 1244 * @file: An i915 perf stream file 1245 * @wait: poll() state table 1246 * 1247 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1248 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1249 * when it sees data ready to read in the circular OA buffer. 1250 */ 1251 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1252 struct file *file, 1253 poll_table *wait) 1254 { 1255 poll_wait(file, &stream->poll_wq, wait); 1256 } 1257 1258 /** 1259 * i915_oa_read - just calls through to &i915_oa_ops->read 1260 * @stream: An i915-perf stream opened for OA metrics 1261 * @buf: destination buffer given by userspace 1262 * @count: the number of bytes userspace wants to read 1263 * @offset: (inout): the current position for writing into @buf 1264 * 1265 * Updates @offset according to the number of bytes successfully copied into 1266 * the userspace buffer. 1267 * 1268 * Returns: zero on success or a negative error code 1269 */ 1270 static int i915_oa_read(struct i915_perf_stream *stream, 1271 char __user *buf, 1272 size_t count, 1273 size_t *offset) 1274 { 1275 return stream->perf->ops.read(stream, buf, count, offset); 1276 } 1277 1278 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1279 { 1280 struct i915_gem_engines_iter it; 1281 struct i915_gem_context *ctx = stream->ctx; 1282 struct intel_context *ce; 1283 struct i915_gem_ww_ctx ww; 1284 int err = -ENODEV; 1285 1286 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1287 if (ce->engine != stream->engine) /* first match! */ 1288 continue; 1289 1290 err = 0; 1291 break; 1292 } 1293 i915_gem_context_unlock_engines(ctx); 1294 1295 if (err) 1296 return ERR_PTR(err); 1297 1298 i915_gem_ww_ctx_init(&ww, true); 1299 retry: 1300 /* 1301 * As the ID is the gtt offset of the context's vma we 1302 * pin the vma to ensure the ID remains fixed. 1303 */ 1304 err = intel_context_pin_ww(ce, &ww); 1305 if (err == -EDEADLK) { 1306 err = i915_gem_ww_ctx_backoff(&ww); 1307 if (!err) 1308 goto retry; 1309 } 1310 i915_gem_ww_ctx_fini(&ww); 1311 1312 if (err) 1313 return ERR_PTR(err); 1314 1315 stream->pinned_ctx = ce; 1316 return stream->pinned_ctx; 1317 } 1318 1319 static int 1320 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1321 { 1322 u32 *cs, cmd; 1323 1324 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1325 if (GRAPHICS_VER(rq->i915) >= 8) 1326 cmd++; 1327 1328 cs = intel_ring_begin(rq, 4); 1329 if (IS_ERR(cs)) 1330 return PTR_ERR(cs); 1331 1332 *cs++ = cmd; 1333 *cs++ = i915_mmio_reg_offset(reg); 1334 *cs++ = ggtt_offset; 1335 *cs++ = 0; 1336 1337 intel_ring_advance(rq, cs); 1338 1339 return 0; 1340 } 1341 1342 static int 1343 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1344 { 1345 struct i915_request *rq; 1346 int err; 1347 1348 rq = i915_request_create(ce); 1349 if (IS_ERR(rq)) 1350 return PTR_ERR(rq); 1351 1352 i915_request_get(rq); 1353 1354 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1355 1356 i915_request_add(rq); 1357 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1358 err = -ETIME; 1359 1360 i915_request_put(rq); 1361 1362 return err; 1363 } 1364 1365 static int 1366 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1367 { 1368 struct i915_vma *scratch; 1369 u32 *val; 1370 int err; 1371 1372 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1373 if (IS_ERR(scratch)) 1374 return PTR_ERR(scratch); 1375 1376 err = i915_vma_sync(scratch); 1377 if (err) 1378 goto err_scratch; 1379 1380 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1381 i915_ggtt_offset(scratch)); 1382 if (err) 1383 goto err_scratch; 1384 1385 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1386 if (IS_ERR(val)) { 1387 err = PTR_ERR(val); 1388 goto err_scratch; 1389 } 1390 1391 *ctx_id = *val; 1392 i915_gem_object_unpin_map(scratch->obj); 1393 1394 err_scratch: 1395 i915_vma_unpin_and_release(&scratch, 0); 1396 return err; 1397 } 1398 1399 /* 1400 * For execlist mode of submission, pick an unused context id 1401 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1402 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1403 * 1404 * For GuC mode of submission read context id from the upper dword of the 1405 * EXECLIST_STATUS register. Note that we read this value only once and expect 1406 * that the value stays fixed for the entire OA use case. There are cases where 1407 * GuC KMD implementation may deregister a context to reuse it's context id, but 1408 * we prevent that from happening to the OA context by pinning it. 1409 */ 1410 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1411 { 1412 u32 ctx_id, mask; 1413 int ret; 1414 1415 if (intel_engine_uses_guc(stream->engine)) { 1416 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1417 if (ret) 1418 return ret; 1419 1420 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1421 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1422 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) { 1423 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1424 (XEHP_SW_CTX_ID_SHIFT - 32); 1425 1426 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1427 (XEHP_SW_CTX_ID_SHIFT - 32); 1428 } else { 1429 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1430 (GEN11_SW_CTX_ID_SHIFT - 32); 1431 1432 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1433 (GEN11_SW_CTX_ID_SHIFT - 32); 1434 } 1435 stream->specific_ctx_id = ctx_id & mask; 1436 stream->specific_ctx_id_mask = mask; 1437 1438 return 0; 1439 } 1440 1441 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1442 { 1443 u32 idx = *offset; 1444 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1445 bool found = false; 1446 1447 idx++; 1448 for (; idx < len; idx += 2) { 1449 if (state[idx] == reg) { 1450 found = true; 1451 break; 1452 } 1453 } 1454 1455 *offset = idx; 1456 return found; 1457 } 1458 1459 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1460 { 1461 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1462 u32 *state = ce->lrc_reg_state; 1463 1464 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1465 return U32_MAX; 1466 1467 for (offset = 0; offset < len; ) { 1468 if (IS_MI_LRI_CMD(state[offset])) { 1469 /* 1470 * We expect reg-value pairs in MI_LRI command, so 1471 * MI_LRI_LEN() should be even, if not, issue a warning. 1472 */ 1473 drm_WARN_ON(&ce->engine->i915->drm, 1474 MI_LRI_LEN(state[offset]) & 0x1); 1475 1476 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1477 break; 1478 } else { 1479 offset++; 1480 } 1481 } 1482 1483 return offset < len ? offset : U32_MAX; 1484 } 1485 1486 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1487 { 1488 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1489 struct i915_perf *perf = &ce->engine->i915->perf; 1490 u32 offset = perf->ctx_oactxctrl_offset; 1491 1492 /* Do this only once. Failure is stored as offset of U32_MAX */ 1493 if (offset) 1494 goto exit; 1495 1496 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1497 perf->ctx_oactxctrl_offset = offset; 1498 1499 drm_dbg(&ce->engine->i915->drm, 1500 "%s oa ctx control at 0x%08x dword offset\n", 1501 ce->engine->name, offset); 1502 1503 exit: 1504 return offset && offset != U32_MAX ? 0 : -ENODEV; 1505 } 1506 1507 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1508 { 1509 return engine->class == RENDER_CLASS; 1510 } 1511 1512 /** 1513 * oa_get_render_ctx_id - determine and hold ctx hw id 1514 * @stream: An i915-perf stream opened for OA metrics 1515 * 1516 * Determine the render context hw id, and ensure it remains fixed for the 1517 * lifetime of the stream. This ensures that we don't have to worry about 1518 * updating the context ID in OACONTROL on the fly. 1519 * 1520 * Returns: zero on success or a negative error code 1521 */ 1522 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1523 { 1524 struct intel_context *ce; 1525 int ret = 0; 1526 1527 ce = oa_pin_context(stream); 1528 if (IS_ERR(ce)) 1529 return PTR_ERR(ce); 1530 1531 if (engine_supports_mi_query(stream->engine) && 1532 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1533 /* 1534 * We are enabling perf query here. If we don't find the context 1535 * offset here, just return an error. 1536 */ 1537 ret = set_oa_ctx_ctrl_offset(ce); 1538 if (ret) { 1539 intel_context_unpin(ce); 1540 drm_err(&stream->perf->i915->drm, 1541 "Enabling perf query failed for %s\n", 1542 stream->engine->name); 1543 return ret; 1544 } 1545 } 1546 1547 switch (GRAPHICS_VER(ce->engine->i915)) { 1548 case 7: { 1549 /* 1550 * On Haswell we don't do any post processing of the reports 1551 * and don't need to use the mask. 1552 */ 1553 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1554 stream->specific_ctx_id_mask = 0; 1555 break; 1556 } 1557 1558 case 8: 1559 case 9: 1560 if (intel_engine_uses_guc(ce->engine)) { 1561 /* 1562 * When using GuC, the context descriptor we write in 1563 * i915 is read by GuC and rewritten before it's 1564 * actually written into the hardware. The LRCA is 1565 * what is put into the context id field of the 1566 * context descriptor by GuC. Because it's aligned to 1567 * a page, the lower 12bits are always at 0 and 1568 * dropped by GuC. They won't be part of the context 1569 * ID in the OA reports, so squash those lower bits. 1570 */ 1571 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1572 1573 /* 1574 * GuC uses the top bit to signal proxy submission, so 1575 * ignore that bit. 1576 */ 1577 stream->specific_ctx_id_mask = 1578 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1579 } else { 1580 stream->specific_ctx_id_mask = 1581 (1U << GEN8_CTX_ID_WIDTH) - 1; 1582 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1583 } 1584 break; 1585 1586 case 11: 1587 case 12: 1588 ret = gen12_get_render_context_id(stream); 1589 break; 1590 1591 default: 1592 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1593 } 1594 1595 ce->tag = stream->specific_ctx_id; 1596 1597 drm_dbg(&stream->perf->i915->drm, 1598 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1599 stream->specific_ctx_id, 1600 stream->specific_ctx_id_mask); 1601 1602 return ret; 1603 } 1604 1605 /** 1606 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1607 * @stream: An i915-perf stream opened for OA metrics 1608 * 1609 * In case anything needed doing to ensure the context HW ID would remain valid 1610 * for the lifetime of the stream, then that can be undone here. 1611 */ 1612 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1613 { 1614 struct intel_context *ce; 1615 1616 ce = fetch_and_zero(&stream->pinned_ctx); 1617 if (ce) { 1618 ce->tag = 0; /* recomputed on next submission after parking */ 1619 intel_context_unpin(ce); 1620 } 1621 1622 stream->specific_ctx_id = INVALID_CTX_ID; 1623 stream->specific_ctx_id_mask = 0; 1624 } 1625 1626 static void 1627 free_oa_buffer(struct i915_perf_stream *stream) 1628 { 1629 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1630 I915_VMA_RELEASE_MAP); 1631 1632 stream->oa_buffer.vaddr = NULL; 1633 } 1634 1635 static void 1636 free_oa_configs(struct i915_perf_stream *stream) 1637 { 1638 struct i915_oa_config_bo *oa_bo, *tmp; 1639 1640 i915_oa_config_put(stream->oa_config); 1641 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1642 free_oa_config_bo(oa_bo); 1643 } 1644 1645 static void 1646 free_noa_wait(struct i915_perf_stream *stream) 1647 { 1648 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1649 } 1650 1651 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1652 { 1653 return engine->oa_group; 1654 } 1655 1656 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1657 { 1658 return engine->oa_group && engine->oa_group->type == type; 1659 } 1660 1661 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1662 { 1663 struct i915_perf *perf = stream->perf; 1664 struct intel_gt *gt = stream->engine->gt; 1665 struct i915_perf_group *g = stream->engine->oa_group; 1666 1667 if (WARN_ON(stream != g->exclusive_stream)) 1668 return; 1669 1670 /* 1671 * Unset exclusive_stream first, it will be checked while disabling 1672 * the metric set on gen8+. 1673 * 1674 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1675 */ 1676 WRITE_ONCE(g->exclusive_stream, NULL); 1677 perf->ops.disable_metric_set(stream); 1678 1679 free_oa_buffer(stream); 1680 1681 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1682 intel_engine_pm_put(stream->engine); 1683 1684 if (stream->ctx) 1685 oa_put_render_ctx_id(stream); 1686 1687 free_oa_configs(stream); 1688 free_noa_wait(stream); 1689 1690 if (perf->spurious_report_rs.missed) { 1691 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", 1692 perf->spurious_report_rs.missed); 1693 } 1694 } 1695 1696 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1697 { 1698 struct intel_uncore *uncore = stream->uncore; 1699 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1700 unsigned long flags; 1701 1702 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1703 1704 /* Pre-DevBDW: OABUFFER must be set with counters off, 1705 * before OASTATUS1, but after OASTATUS2 1706 */ 1707 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1708 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1709 stream->oa_buffer.head = 0; 1710 1711 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1712 1713 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1714 gtt_offset | OABUFFER_SIZE_16M); 1715 1716 /* Mark that we need updated tail pointers to read from... */ 1717 stream->oa_buffer.tail = 0; 1718 1719 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1720 1721 /* On Haswell we have to track which OASTATUS1 flags we've 1722 * already seen since they can't be cleared while periodic 1723 * sampling is enabled. 1724 */ 1725 stream->perf->gen7_latched_oastatus1 = 0; 1726 1727 /* NB: although the OA buffer will initially be allocated 1728 * zeroed via shmfs (and so this memset is redundant when 1729 * first allocating), we may re-init the OA buffer, either 1730 * when re-enabling a stream or in error/reset paths. 1731 * 1732 * The reason we clear the buffer for each re-init is for the 1733 * sanity check in gen7_append_oa_reports() that looks at the 1734 * report-id field to make sure it's non-zero which relies on 1735 * the assumption that new reports are being written to zeroed 1736 * memory... 1737 */ 1738 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1739 } 1740 1741 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1742 { 1743 struct intel_uncore *uncore = stream->uncore; 1744 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1745 unsigned long flags; 1746 1747 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1748 1749 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1750 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1751 stream->oa_buffer.head = 0; 1752 1753 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1754 1755 /* 1756 * PRM says: 1757 * 1758 * "This MMIO must be set before the OATAILPTR 1759 * register and after the OAHEADPTR register. This is 1760 * to enable proper functionality of the overflow 1761 * bit." 1762 */ 1763 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1764 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1765 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1766 1767 /* Mark that we need updated tail pointers to read from... */ 1768 stream->oa_buffer.tail = 0; 1769 1770 /* 1771 * Reset state used to recognise context switches, affecting which 1772 * reports we will forward to userspace while filtering for a single 1773 * context. 1774 */ 1775 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1776 1777 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1778 1779 /* 1780 * NB: although the OA buffer will initially be allocated 1781 * zeroed via shmfs (and so this memset is redundant when 1782 * first allocating), we may re-init the OA buffer, either 1783 * when re-enabling a stream or in error/reset paths. 1784 * 1785 * The reason we clear the buffer for each re-init is for the 1786 * sanity check in gen8_append_oa_reports() that looks at the 1787 * reason field to make sure it's non-zero which relies on 1788 * the assumption that new reports are being written to zeroed 1789 * memory... 1790 */ 1791 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1792 } 1793 1794 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1795 { 1796 struct intel_uncore *uncore = stream->uncore; 1797 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1798 unsigned long flags; 1799 1800 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1801 1802 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1803 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1804 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1805 stream->oa_buffer.head = 0; 1806 1807 /* 1808 * PRM says: 1809 * 1810 * "This MMIO must be set before the OATAILPTR 1811 * register and after the OAHEADPTR register. This is 1812 * to enable proper functionality of the overflow 1813 * bit." 1814 */ 1815 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1816 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1817 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1818 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1819 1820 /* Mark that we need updated tail pointers to read from... */ 1821 stream->oa_buffer.tail = 0; 1822 1823 /* 1824 * Reset state used to recognise context switches, affecting which 1825 * reports we will forward to userspace while filtering for a single 1826 * context. 1827 */ 1828 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1829 1830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1831 1832 /* 1833 * NB: although the OA buffer will initially be allocated 1834 * zeroed via shmfs (and so this memset is redundant when 1835 * first allocating), we may re-init the OA buffer, either 1836 * when re-enabling a stream or in error/reset paths. 1837 * 1838 * The reason we clear the buffer for each re-init is for the 1839 * sanity check in gen8_append_oa_reports() that looks at the 1840 * reason field to make sure it's non-zero which relies on 1841 * the assumption that new reports are being written to zeroed 1842 * memory... 1843 */ 1844 memset(stream->oa_buffer.vaddr, 0, 1845 stream->oa_buffer.vma->size); 1846 } 1847 1848 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1849 { 1850 struct drm_i915_private *i915 = stream->perf->i915; 1851 struct intel_gt *gt = stream->engine->gt; 1852 struct drm_i915_gem_object *bo; 1853 struct i915_vma *vma; 1854 int ret; 1855 1856 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1857 return -ENODEV; 1858 1859 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1860 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1861 1862 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1863 if (IS_ERR(bo)) { 1864 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1865 return PTR_ERR(bo); 1866 } 1867 1868 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1869 1870 /* PreHSW required 512K alignment, HSW requires 16M */ 1871 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1872 if (IS_ERR(vma)) { 1873 ret = PTR_ERR(vma); 1874 goto err_unref; 1875 } 1876 1877 /* 1878 * PreHSW required 512K alignment. 1879 * HSW and onwards, align to requested size of OA buffer. 1880 */ 1881 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1882 if (ret) { 1883 gt_err(gt, "Failed to pin OA buffer %d\n", ret); 1884 goto err_unref; 1885 } 1886 1887 stream->oa_buffer.vma = vma; 1888 1889 stream->oa_buffer.vaddr = 1890 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1891 if (IS_ERR(stream->oa_buffer.vaddr)) { 1892 ret = PTR_ERR(stream->oa_buffer.vaddr); 1893 goto err_unpin; 1894 } 1895 1896 return 0; 1897 1898 err_unpin: 1899 __i915_vma_unpin(vma); 1900 1901 err_unref: 1902 i915_gem_object_put(bo); 1903 1904 stream->oa_buffer.vaddr = NULL; 1905 stream->oa_buffer.vma = NULL; 1906 1907 return ret; 1908 } 1909 1910 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1911 bool save, i915_reg_t reg, u32 offset, 1912 u32 dword_count) 1913 { 1914 u32 cmd; 1915 u32 d; 1916 1917 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1918 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1919 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1920 cmd++; 1921 1922 for (d = 0; d < dword_count; d++) { 1923 *cs++ = cmd; 1924 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1925 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1926 *cs++ = 0; 1927 } 1928 1929 return cs; 1930 } 1931 1932 static int alloc_noa_wait(struct i915_perf_stream *stream) 1933 { 1934 struct drm_i915_private *i915 = stream->perf->i915; 1935 struct intel_gt *gt = stream->engine->gt; 1936 struct drm_i915_gem_object *bo; 1937 struct i915_vma *vma; 1938 const u64 delay_ticks = 0xffffffffffffffff - 1939 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1940 atomic64_read(&stream->perf->noa_programming_delay)); 1941 const u32 base = stream->engine->mmio_base; 1942 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1943 u32 *batch, *ts0, *cs, *jump; 1944 struct i915_gem_ww_ctx ww; 1945 int ret, i; 1946 enum { 1947 START_TS, 1948 NOW_TS, 1949 DELTA_TS, 1950 JUMP_PREDICATE, 1951 DELTA_TARGET, 1952 N_CS_GPR 1953 }; 1954 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1955 MI_PREDICATE_RESULT_2_ENGINE(base) : 1956 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1957 1958 /* 1959 * gt->scratch was being used to save/restore the GPR registers, but on 1960 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1961 * causes an engine hang. Instead allocate an additional page here to 1962 * save/restore GPR registers 1963 */ 1964 bo = i915_gem_object_create_internal(i915, 8192); 1965 if (IS_ERR(bo)) { 1966 drm_err(&i915->drm, 1967 "Failed to allocate NOA wait batchbuffer\n"); 1968 return PTR_ERR(bo); 1969 } 1970 1971 i915_gem_ww_ctx_init(&ww, true); 1972 retry: 1973 ret = i915_gem_object_lock(bo, &ww); 1974 if (ret) 1975 goto out_ww; 1976 1977 /* 1978 * We pin in GGTT because we jump into this buffer now because 1979 * multiple OA config BOs will have a jump to this address and it 1980 * needs to be fixed during the lifetime of the i915/perf stream. 1981 */ 1982 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1983 if (IS_ERR(vma)) { 1984 ret = PTR_ERR(vma); 1985 goto out_ww; 1986 } 1987 1988 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1989 if (ret) 1990 goto out_ww; 1991 1992 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1993 if (IS_ERR(batch)) { 1994 ret = PTR_ERR(batch); 1995 goto err_unpin; 1996 } 1997 1998 stream->noa_wait = vma; 1999 2000 #define GPR_SAVE_OFFSET 4096 2001 #define PREDICATE_SAVE_OFFSET 4160 2002 2003 /* Save registers. */ 2004 for (i = 0; i < N_CS_GPR; i++) 2005 cs = save_restore_register( 2006 stream, cs, true /* save */, CS_GPR(i), 2007 GPR_SAVE_OFFSET + 8 * i, 2); 2008 cs = save_restore_register( 2009 stream, cs, true /* save */, mi_predicate_result, 2010 PREDICATE_SAVE_OFFSET, 1); 2011 2012 /* First timestamp snapshot location. */ 2013 ts0 = cs; 2014 2015 /* 2016 * Initial snapshot of the timestamp register to implement the wait. 2017 * We work with 32b values, so clear out the top 32b bits of the 2018 * register because the ALU works 64bits. 2019 */ 2020 *cs++ = MI_LOAD_REGISTER_IMM(1); 2021 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2022 *cs++ = 0; 2023 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2024 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2025 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2026 2027 /* 2028 * This is the location we're going to jump back into until the 2029 * required amount of time has passed. 2030 */ 2031 jump = cs; 2032 2033 /* 2034 * Take another snapshot of the timestamp register. Take care to clear 2035 * up the top 32bits of CS_GPR(1) as we're using it for other 2036 * operations below. 2037 */ 2038 *cs++ = MI_LOAD_REGISTER_IMM(1); 2039 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2040 *cs++ = 0; 2041 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2042 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2043 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2044 2045 /* 2046 * Do a diff between the 2 timestamps and store the result back into 2047 * CS_GPR(1). 2048 */ 2049 *cs++ = MI_MATH(5); 2050 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2051 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2052 *cs++ = MI_MATH_SUB; 2053 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2054 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2055 2056 /* 2057 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2058 * timestamp have rolled over the 32bits) into the predicate register 2059 * to be used for the predicated jump. 2060 */ 2061 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2062 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2063 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2064 2065 if (HAS_MI_SET_PREDICATE(i915)) 2066 *cs++ = MI_SET_PREDICATE | 1; 2067 2068 /* Restart from the beginning if we had timestamps roll over. */ 2069 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2070 MI_BATCH_BUFFER_START : 2071 MI_BATCH_BUFFER_START_GEN8) | 2072 MI_BATCH_PREDICATE; 2073 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2074 *cs++ = 0; 2075 2076 if (HAS_MI_SET_PREDICATE(i915)) 2077 *cs++ = MI_SET_PREDICATE; 2078 2079 /* 2080 * Now add the diff between to previous timestamps and add it to : 2081 * (((1 * << 64) - 1) - delay_ns) 2082 * 2083 * When the Carry Flag contains 1 this means the elapsed time is 2084 * longer than the expected delay, and we can exit the wait loop. 2085 */ 2086 *cs++ = MI_LOAD_REGISTER_IMM(2); 2087 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2088 *cs++ = lower_32_bits(delay_ticks); 2089 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2090 *cs++ = upper_32_bits(delay_ticks); 2091 2092 *cs++ = MI_MATH(4); 2093 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2094 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2095 *cs++ = MI_MATH_ADD; 2096 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2097 2098 *cs++ = MI_ARB_CHECK; 2099 2100 /* 2101 * Transfer the result into the predicate register to be used for the 2102 * predicated jump. 2103 */ 2104 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2105 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2106 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2107 2108 if (HAS_MI_SET_PREDICATE(i915)) 2109 *cs++ = MI_SET_PREDICATE | 1; 2110 2111 /* Predicate the jump. */ 2112 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2113 MI_BATCH_BUFFER_START : 2114 MI_BATCH_BUFFER_START_GEN8) | 2115 MI_BATCH_PREDICATE; 2116 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2117 *cs++ = 0; 2118 2119 if (HAS_MI_SET_PREDICATE(i915)) 2120 *cs++ = MI_SET_PREDICATE; 2121 2122 /* Restore registers. */ 2123 for (i = 0; i < N_CS_GPR; i++) 2124 cs = save_restore_register( 2125 stream, cs, false /* restore */, CS_GPR(i), 2126 GPR_SAVE_OFFSET + 8 * i, 2); 2127 cs = save_restore_register( 2128 stream, cs, false /* restore */, mi_predicate_result, 2129 PREDICATE_SAVE_OFFSET, 1); 2130 2131 /* And return to the ring. */ 2132 *cs++ = MI_BATCH_BUFFER_END; 2133 2134 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2135 2136 i915_gem_object_flush_map(bo); 2137 __i915_gem_object_release_map(bo); 2138 2139 goto out_ww; 2140 2141 err_unpin: 2142 i915_vma_unpin_and_release(&vma, 0); 2143 out_ww: 2144 if (ret == -EDEADLK) { 2145 ret = i915_gem_ww_ctx_backoff(&ww); 2146 if (!ret) 2147 goto retry; 2148 } 2149 i915_gem_ww_ctx_fini(&ww); 2150 if (ret) 2151 i915_gem_object_put(bo); 2152 return ret; 2153 } 2154 2155 static u32 *write_cs_mi_lri(u32 *cs, 2156 const struct i915_oa_reg *reg_data, 2157 u32 n_regs) 2158 { 2159 u32 i; 2160 2161 for (i = 0; i < n_regs; i++) { 2162 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2163 u32 n_lri = min_t(u32, 2164 n_regs - i, 2165 MI_LOAD_REGISTER_IMM_MAX_REGS); 2166 2167 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2168 } 2169 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2170 *cs++ = reg_data[i].value; 2171 } 2172 2173 return cs; 2174 } 2175 2176 static int num_lri_dwords(int num_regs) 2177 { 2178 int count = 0; 2179 2180 if (num_regs > 0) { 2181 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2182 count += num_regs * 2; 2183 } 2184 2185 return count; 2186 } 2187 2188 static struct i915_oa_config_bo * 2189 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2190 struct i915_oa_config *oa_config) 2191 { 2192 struct drm_i915_gem_object *obj; 2193 struct i915_oa_config_bo *oa_bo; 2194 struct i915_gem_ww_ctx ww; 2195 size_t config_length = 0; 2196 u32 *cs; 2197 int err; 2198 2199 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2200 if (!oa_bo) 2201 return ERR_PTR(-ENOMEM); 2202 2203 config_length += num_lri_dwords(oa_config->mux_regs_len); 2204 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2205 config_length += num_lri_dwords(oa_config->flex_regs_len); 2206 config_length += 3; /* MI_BATCH_BUFFER_START */ 2207 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2208 2209 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2210 if (IS_ERR(obj)) { 2211 err = PTR_ERR(obj); 2212 goto err_free; 2213 } 2214 2215 i915_gem_ww_ctx_init(&ww, true); 2216 retry: 2217 err = i915_gem_object_lock(obj, &ww); 2218 if (err) 2219 goto out_ww; 2220 2221 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2222 if (IS_ERR(cs)) { 2223 err = PTR_ERR(cs); 2224 goto out_ww; 2225 } 2226 2227 cs = write_cs_mi_lri(cs, 2228 oa_config->mux_regs, 2229 oa_config->mux_regs_len); 2230 cs = write_cs_mi_lri(cs, 2231 oa_config->b_counter_regs, 2232 oa_config->b_counter_regs_len); 2233 cs = write_cs_mi_lri(cs, 2234 oa_config->flex_regs, 2235 oa_config->flex_regs_len); 2236 2237 /* Jump into the active wait. */ 2238 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2239 MI_BATCH_BUFFER_START : 2240 MI_BATCH_BUFFER_START_GEN8); 2241 *cs++ = i915_ggtt_offset(stream->noa_wait); 2242 *cs++ = 0; 2243 2244 i915_gem_object_flush_map(obj); 2245 __i915_gem_object_release_map(obj); 2246 2247 oa_bo->vma = i915_vma_instance(obj, 2248 &stream->engine->gt->ggtt->vm, 2249 NULL); 2250 if (IS_ERR(oa_bo->vma)) { 2251 err = PTR_ERR(oa_bo->vma); 2252 goto out_ww; 2253 } 2254 2255 oa_bo->oa_config = i915_oa_config_get(oa_config); 2256 llist_add(&oa_bo->node, &stream->oa_config_bos); 2257 2258 out_ww: 2259 if (err == -EDEADLK) { 2260 err = i915_gem_ww_ctx_backoff(&ww); 2261 if (!err) 2262 goto retry; 2263 } 2264 i915_gem_ww_ctx_fini(&ww); 2265 2266 if (err) 2267 i915_gem_object_put(obj); 2268 err_free: 2269 if (err) { 2270 kfree(oa_bo); 2271 return ERR_PTR(err); 2272 } 2273 return oa_bo; 2274 } 2275 2276 static struct i915_vma * 2277 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2278 { 2279 struct i915_oa_config_bo *oa_bo; 2280 2281 /* 2282 * Look for the buffer in the already allocated BOs attached 2283 * to the stream. 2284 */ 2285 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2286 if (oa_bo->oa_config == oa_config && 2287 memcmp(oa_bo->oa_config->uuid, 2288 oa_config->uuid, 2289 sizeof(oa_config->uuid)) == 0) 2290 goto out; 2291 } 2292 2293 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2294 if (IS_ERR(oa_bo)) 2295 return ERR_CAST(oa_bo); 2296 2297 out: 2298 return i915_vma_get(oa_bo->vma); 2299 } 2300 2301 static int 2302 emit_oa_config(struct i915_perf_stream *stream, 2303 struct i915_oa_config *oa_config, 2304 struct intel_context *ce, 2305 struct i915_active *active) 2306 { 2307 struct i915_request *rq; 2308 struct i915_vma *vma; 2309 struct i915_gem_ww_ctx ww; 2310 int err; 2311 2312 vma = get_oa_vma(stream, oa_config); 2313 if (IS_ERR(vma)) 2314 return PTR_ERR(vma); 2315 2316 i915_gem_ww_ctx_init(&ww, true); 2317 retry: 2318 err = i915_gem_object_lock(vma->obj, &ww); 2319 if (err) 2320 goto err; 2321 2322 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2323 if (err) 2324 goto err; 2325 2326 intel_engine_pm_get(ce->engine); 2327 rq = i915_request_create(ce); 2328 intel_engine_pm_put(ce->engine); 2329 if (IS_ERR(rq)) { 2330 err = PTR_ERR(rq); 2331 goto err_vma_unpin; 2332 } 2333 2334 if (!IS_ERR_OR_NULL(active)) { 2335 /* After all individual context modifications */ 2336 err = i915_request_await_active(rq, active, 2337 I915_ACTIVE_AWAIT_ACTIVE); 2338 if (err) 2339 goto err_add_request; 2340 2341 err = i915_active_add_request(active, rq); 2342 if (err) 2343 goto err_add_request; 2344 } 2345 2346 err = i915_vma_move_to_active(vma, rq, 0); 2347 if (err) 2348 goto err_add_request; 2349 2350 err = rq->engine->emit_bb_start(rq, 2351 i915_vma_offset(vma), 0, 2352 I915_DISPATCH_SECURE); 2353 if (err) 2354 goto err_add_request; 2355 2356 err_add_request: 2357 i915_request_add(rq); 2358 err_vma_unpin: 2359 i915_vma_unpin(vma); 2360 err: 2361 if (err == -EDEADLK) { 2362 err = i915_gem_ww_ctx_backoff(&ww); 2363 if (!err) 2364 goto retry; 2365 } 2366 2367 i915_gem_ww_ctx_fini(&ww); 2368 i915_vma_put(vma); 2369 return err; 2370 } 2371 2372 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2373 { 2374 return stream->pinned_ctx ?: stream->engine->kernel_context; 2375 } 2376 2377 static int 2378 hsw_enable_metric_set(struct i915_perf_stream *stream, 2379 struct i915_active *active) 2380 { 2381 struct intel_uncore *uncore = stream->uncore; 2382 2383 /* 2384 * PRM: 2385 * 2386 * OA unit is using “crclk” for its functionality. When trunk 2387 * level clock gating takes place, OA clock would be gated, 2388 * unable to count the events from non-render clock domain. 2389 * Render clock gating must be disabled when OA is enabled to 2390 * count the events from non-render domain. Unit level clock 2391 * gating for RCS should also be disabled. 2392 */ 2393 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2394 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2395 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2396 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2397 2398 return emit_oa_config(stream, 2399 stream->oa_config, oa_context(stream), 2400 active); 2401 } 2402 2403 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2404 { 2405 struct intel_uncore *uncore = stream->uncore; 2406 2407 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2408 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2409 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2410 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2411 2412 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2413 } 2414 2415 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2416 i915_reg_t reg) 2417 { 2418 u32 mmio = i915_mmio_reg_offset(reg); 2419 int i; 2420 2421 /* 2422 * This arbitrary default will select the 'EU FPU0 Pipeline 2423 * Active' event. In the future it's anticipated that there 2424 * will be an explicit 'No Event' we can select, but not yet... 2425 */ 2426 if (!oa_config) 2427 return 0; 2428 2429 for (i = 0; i < oa_config->flex_regs_len; i++) { 2430 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2431 return oa_config->flex_regs[i].value; 2432 } 2433 2434 return 0; 2435 } 2436 /* 2437 * NB: It must always remain pointer safe to run this even if the OA unit 2438 * has been disabled. 2439 * 2440 * It's fine to put out-of-date values into these per-context registers 2441 * in the case that the OA unit has been disabled. 2442 */ 2443 static void 2444 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2445 const struct i915_perf_stream *stream) 2446 { 2447 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2448 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2449 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2450 static const i915_reg_t flex_regs[] = { 2451 EU_PERF_CNTL0, 2452 EU_PERF_CNTL1, 2453 EU_PERF_CNTL2, 2454 EU_PERF_CNTL3, 2455 EU_PERF_CNTL4, 2456 EU_PERF_CNTL5, 2457 EU_PERF_CNTL6, 2458 }; 2459 u32 *reg_state = ce->lrc_reg_state; 2460 int i; 2461 2462 reg_state[ctx_oactxctrl + 1] = 2463 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2464 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2465 GEN8_OA_COUNTER_RESUME; 2466 2467 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2468 reg_state[ctx_flexeu0 + i * 2 + 1] = 2469 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2470 } 2471 2472 struct flex { 2473 i915_reg_t reg; 2474 u32 offset; 2475 u32 value; 2476 }; 2477 2478 static int 2479 gen8_store_flex(struct i915_request *rq, 2480 struct intel_context *ce, 2481 const struct flex *flex, unsigned int count) 2482 { 2483 u32 offset; 2484 u32 *cs; 2485 2486 cs = intel_ring_begin(rq, 4 * count); 2487 if (IS_ERR(cs)) 2488 return PTR_ERR(cs); 2489 2490 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2491 do { 2492 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2493 *cs++ = offset + flex->offset * sizeof(u32); 2494 *cs++ = 0; 2495 *cs++ = flex->value; 2496 } while (flex++, --count); 2497 2498 intel_ring_advance(rq, cs); 2499 2500 return 0; 2501 } 2502 2503 static int 2504 gen8_load_flex(struct i915_request *rq, 2505 struct intel_context *ce, 2506 const struct flex *flex, unsigned int count) 2507 { 2508 u32 *cs; 2509 2510 GEM_BUG_ON(!count || count > 63); 2511 2512 cs = intel_ring_begin(rq, 2 * count + 2); 2513 if (IS_ERR(cs)) 2514 return PTR_ERR(cs); 2515 2516 *cs++ = MI_LOAD_REGISTER_IMM(count); 2517 do { 2518 *cs++ = i915_mmio_reg_offset(flex->reg); 2519 *cs++ = flex->value; 2520 } while (flex++, --count); 2521 *cs++ = MI_NOOP; 2522 2523 intel_ring_advance(rq, cs); 2524 2525 return 0; 2526 } 2527 2528 static int gen8_modify_context(struct intel_context *ce, 2529 const struct flex *flex, unsigned int count) 2530 { 2531 struct i915_request *rq; 2532 int err; 2533 2534 rq = intel_engine_create_kernel_request(ce->engine); 2535 if (IS_ERR(rq)) 2536 return PTR_ERR(rq); 2537 2538 /* Serialise with the remote context */ 2539 err = intel_context_prepare_remote_request(ce, rq); 2540 if (err == 0) 2541 err = gen8_store_flex(rq, ce, flex, count); 2542 2543 i915_request_add(rq); 2544 return err; 2545 } 2546 2547 static int 2548 gen8_modify_self(struct intel_context *ce, 2549 const struct flex *flex, unsigned int count, 2550 struct i915_active *active) 2551 { 2552 struct i915_request *rq; 2553 int err; 2554 2555 intel_engine_pm_get(ce->engine); 2556 rq = i915_request_create(ce); 2557 intel_engine_pm_put(ce->engine); 2558 if (IS_ERR(rq)) 2559 return PTR_ERR(rq); 2560 2561 if (!IS_ERR_OR_NULL(active)) { 2562 err = i915_active_add_request(active, rq); 2563 if (err) 2564 goto err_add_request; 2565 } 2566 2567 err = gen8_load_flex(rq, ce, flex, count); 2568 if (err) 2569 goto err_add_request; 2570 2571 err_add_request: 2572 i915_request_add(rq); 2573 return err; 2574 } 2575 2576 static int gen8_configure_context(struct i915_perf_stream *stream, 2577 struct i915_gem_context *ctx, 2578 struct flex *flex, unsigned int count) 2579 { 2580 struct i915_gem_engines_iter it; 2581 struct intel_context *ce; 2582 int err = 0; 2583 2584 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2585 GEM_BUG_ON(ce == ce->engine->kernel_context); 2586 2587 if (ce->engine->class != RENDER_CLASS) 2588 continue; 2589 2590 /* Otherwise OA settings will be set upon first use */ 2591 if (!intel_context_pin_if_active(ce)) 2592 continue; 2593 2594 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2595 err = gen8_modify_context(ce, flex, count); 2596 2597 intel_context_unpin(ce); 2598 if (err) 2599 break; 2600 } 2601 i915_gem_context_unlock_engines(ctx); 2602 2603 return err; 2604 } 2605 2606 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2607 struct i915_active *active) 2608 { 2609 int err; 2610 struct intel_context *ce = stream->pinned_ctx; 2611 u32 format = stream->oa_buffer.format->format; 2612 u32 offset = stream->perf->ctx_oactxctrl_offset; 2613 struct flex regs_context[] = { 2614 { 2615 GEN8_OACTXCONTROL, 2616 offset + 1, 2617 active ? GEN8_OA_COUNTER_RESUME : 0, 2618 }, 2619 }; 2620 /* Offsets in regs_lri are not used since this configuration is only 2621 * applied using LRI. Initialize the correct offsets for posterity. 2622 */ 2623 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2624 struct flex regs_lri[] = { 2625 { 2626 GEN12_OAR_OACONTROL, 2627 GEN12_OAR_OACONTROL_OFFSET + 1, 2628 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2629 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2630 }, 2631 { 2632 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2633 CTX_CONTEXT_CONTROL, 2634 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2635 active ? 2636 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2637 0) 2638 }, 2639 }; 2640 2641 /* Modify the context image of pinned context with regs_context */ 2642 err = intel_context_lock_pinned(ce); 2643 if (err) 2644 return err; 2645 2646 err = gen8_modify_context(ce, regs_context, 2647 ARRAY_SIZE(regs_context)); 2648 intel_context_unlock_pinned(ce); 2649 if (err) 2650 return err; 2651 2652 /* Apply regs_lri using LRI with pinned context */ 2653 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2654 } 2655 2656 /* 2657 * Manages updating the per-context aspects of the OA stream 2658 * configuration across all contexts. 2659 * 2660 * The awkward consideration here is that OACTXCONTROL controls the 2661 * exponent for periodic sampling which is primarily used for system 2662 * wide profiling where we'd like a consistent sampling period even in 2663 * the face of context switches. 2664 * 2665 * Our approach of updating the register state context (as opposed to 2666 * say using a workaround batch buffer) ensures that the hardware 2667 * won't automatically reload an out-of-date timer exponent even 2668 * transiently before a WA BB could be parsed. 2669 * 2670 * This function needs to: 2671 * - Ensure the currently running context's per-context OA state is 2672 * updated 2673 * - Ensure that all existing contexts will have the correct per-context 2674 * OA state if they are scheduled for use. 2675 * - Ensure any new contexts will be initialized with the correct 2676 * per-context OA state. 2677 * 2678 * Note: it's only the RCS/Render context that has any OA state. 2679 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2680 */ 2681 static int 2682 oa_configure_all_contexts(struct i915_perf_stream *stream, 2683 struct flex *regs, 2684 size_t num_regs, 2685 struct i915_active *active) 2686 { 2687 struct drm_i915_private *i915 = stream->perf->i915; 2688 struct intel_engine_cs *engine; 2689 struct intel_gt *gt = stream->engine->gt; 2690 struct i915_gem_context *ctx, *cn; 2691 int err; 2692 2693 lockdep_assert_held(>->perf.lock); 2694 2695 /* 2696 * The OA register config is setup through the context image. This image 2697 * might be written to by the GPU on context switch (in particular on 2698 * lite-restore). This means we can't safely update a context's image, 2699 * if this context is scheduled/submitted to run on the GPU. 2700 * 2701 * We could emit the OA register config through the batch buffer but 2702 * this might leave small interval of time where the OA unit is 2703 * configured at an invalid sampling period. 2704 * 2705 * Note that since we emit all requests from a single ring, there 2706 * is still an implicit global barrier here that may cause a high 2707 * priority context to wait for an otherwise independent low priority 2708 * context. Contexts idle at the time of reconfiguration are not 2709 * trapped behind the barrier. 2710 */ 2711 spin_lock(&i915->gem.contexts.lock); 2712 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2713 if (!kref_get_unless_zero(&ctx->ref)) 2714 continue; 2715 2716 spin_unlock(&i915->gem.contexts.lock); 2717 2718 err = gen8_configure_context(stream, ctx, regs, num_regs); 2719 if (err) { 2720 i915_gem_context_put(ctx); 2721 return err; 2722 } 2723 2724 spin_lock(&i915->gem.contexts.lock); 2725 list_safe_reset_next(ctx, cn, link); 2726 i915_gem_context_put(ctx); 2727 } 2728 spin_unlock(&i915->gem.contexts.lock); 2729 2730 /* 2731 * After updating all other contexts, we need to modify ourselves. 2732 * If we don't modify the kernel_context, we do not get events while 2733 * idle. 2734 */ 2735 for_each_uabi_engine(engine, i915) { 2736 struct intel_context *ce = engine->kernel_context; 2737 2738 if (engine->class != RENDER_CLASS) 2739 continue; 2740 2741 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2742 2743 err = gen8_modify_self(ce, regs, num_regs, active); 2744 if (err) 2745 return err; 2746 } 2747 2748 return 0; 2749 } 2750 2751 static int 2752 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2753 const struct i915_oa_config *oa_config, 2754 struct i915_active *active) 2755 { 2756 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2757 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2758 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2759 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2760 struct flex regs[] = { 2761 { 2762 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2763 CTX_R_PWR_CLK_STATE, 2764 }, 2765 { 2766 GEN8_OACTXCONTROL, 2767 ctx_oactxctrl + 1, 2768 }, 2769 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2770 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2771 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2772 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2773 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2774 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2775 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2776 }; 2777 #undef ctx_flexeuN 2778 int i; 2779 2780 regs[1].value = 2781 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2782 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2783 GEN8_OA_COUNTER_RESUME; 2784 2785 for (i = 2; i < ARRAY_SIZE(regs); i++) 2786 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2787 2788 return oa_configure_all_contexts(stream, 2789 regs, ARRAY_SIZE(regs), 2790 active); 2791 } 2792 2793 static int 2794 gen8_enable_metric_set(struct i915_perf_stream *stream, 2795 struct i915_active *active) 2796 { 2797 struct intel_uncore *uncore = stream->uncore; 2798 struct i915_oa_config *oa_config = stream->oa_config; 2799 int ret; 2800 2801 /* 2802 * We disable slice/unslice clock ratio change reports on SKL since 2803 * they are too noisy. The HW generates a lot of redundant reports 2804 * where the ratio hasn't really changed causing a lot of redundant 2805 * work to processes and increasing the chances we'll hit buffer 2806 * overruns. 2807 * 2808 * Although we don't currently use the 'disable overrun' OABUFFER 2809 * feature it's worth noting that clock ratio reports have to be 2810 * disabled before considering to use that feature since the HW doesn't 2811 * correctly block these reports. 2812 * 2813 * Currently none of the high-level metrics we have depend on knowing 2814 * this ratio to normalize. 2815 * 2816 * Note: This register is not power context saved and restored, but 2817 * that's OK considering that we disable RC6 while the OA unit is 2818 * enabled. 2819 * 2820 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2821 * be read back from automatically triggered reports, as part of the 2822 * RPT_ID field. 2823 */ 2824 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2825 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2826 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2827 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2828 } 2829 2830 /* 2831 * Update all contexts prior writing the mux configurations as we need 2832 * to make sure all slices/subslices are ON before writing to NOA 2833 * registers. 2834 */ 2835 ret = lrc_configure_all_contexts(stream, oa_config, active); 2836 if (ret) 2837 return ret; 2838 2839 return emit_oa_config(stream, 2840 stream->oa_config, oa_context(stream), 2841 active); 2842 } 2843 2844 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2845 { 2846 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2847 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2848 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2849 } 2850 2851 static int 2852 gen12_enable_metric_set(struct i915_perf_stream *stream, 2853 struct i915_active *active) 2854 { 2855 struct drm_i915_private *i915 = stream->perf->i915; 2856 struct intel_uncore *uncore = stream->uncore; 2857 bool periodic = stream->periodic; 2858 u32 period_exponent = stream->period_exponent; 2859 u32 sqcnt1; 2860 int ret; 2861 2862 /* 2863 * Wa_1508761755 2864 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2865 * Disable thread stall DOP gating and EU DOP gating. 2866 */ 2867 if (IS_DG2(i915)) { 2868 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2869 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2870 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2871 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2872 } 2873 2874 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2875 /* Disable clk ratio reports, like previous Gens. */ 2876 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2877 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2878 /* 2879 * If the user didn't require OA reports, instruct 2880 * the hardware not to emit ctx switch reports. 2881 */ 2882 oag_report_ctx_switches(stream)); 2883 2884 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2885 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2886 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2887 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2888 : 0); 2889 2890 /* 2891 * Initialize Super Queue Internal Cnt Register 2892 * Set PMON Enable in order to collect valid metrics. 2893 * Enable bytes per clock reporting in OA. 2894 */ 2895 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2896 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2897 2898 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2899 2900 /* 2901 * For Gen12, performance counters are context 2902 * saved/restored. Only enable it for the context that 2903 * requested this. 2904 */ 2905 if (stream->ctx) { 2906 ret = gen12_configure_oar_context(stream, active); 2907 if (ret) 2908 return ret; 2909 } 2910 2911 return emit_oa_config(stream, 2912 stream->oa_config, oa_context(stream), 2913 active); 2914 } 2915 2916 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2917 { 2918 struct intel_uncore *uncore = stream->uncore; 2919 2920 /* Reset all contexts' slices/subslices configurations. */ 2921 lrc_configure_all_contexts(stream, NULL, NULL); 2922 2923 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2924 } 2925 2926 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2927 { 2928 struct intel_uncore *uncore = stream->uncore; 2929 2930 /* Reset all contexts' slices/subslices configurations. */ 2931 lrc_configure_all_contexts(stream, NULL, NULL); 2932 2933 /* Make sure we disable noa to save power. */ 2934 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2935 } 2936 2937 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2938 { 2939 struct intel_uncore *uncore = stream->uncore; 2940 struct drm_i915_private *i915 = stream->perf->i915; 2941 u32 sqcnt1; 2942 2943 /* 2944 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating. 2945 */ 2946 if (IS_DG2(i915)) { 2947 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2948 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2949 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2950 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2951 } 2952 2953 /* disable the context save/restore or OAR counters */ 2954 if (stream->ctx) 2955 gen12_configure_oar_context(stream, NULL); 2956 2957 /* Make sure we disable noa to save power. */ 2958 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2959 2960 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2961 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2962 2963 /* Reset PMON Enable to save power. */ 2964 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2965 } 2966 2967 static void gen7_oa_enable(struct i915_perf_stream *stream) 2968 { 2969 struct intel_uncore *uncore = stream->uncore; 2970 struct i915_gem_context *ctx = stream->ctx; 2971 u32 ctx_id = stream->specific_ctx_id; 2972 bool periodic = stream->periodic; 2973 u32 period_exponent = stream->period_exponent; 2974 u32 report_format = stream->oa_buffer.format->format; 2975 2976 /* 2977 * Reset buf pointers so we don't forward reports from before now. 2978 * 2979 * Think carefully if considering trying to avoid this, since it 2980 * also ensures status flags and the buffer itself are cleared 2981 * in error paths, and we have checks for invalid reports based 2982 * on the assumption that certain fields are written to zeroed 2983 * memory which this helps maintains. 2984 */ 2985 gen7_init_oa_buffer(stream); 2986 2987 intel_uncore_write(uncore, GEN7_OACONTROL, 2988 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2989 (period_exponent << 2990 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2991 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2992 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2993 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2994 GEN7_OACONTROL_ENABLE); 2995 } 2996 2997 static void gen8_oa_enable(struct i915_perf_stream *stream) 2998 { 2999 struct intel_uncore *uncore = stream->uncore; 3000 u32 report_format = stream->oa_buffer.format->format; 3001 3002 /* 3003 * Reset buf pointers so we don't forward reports from before now. 3004 * 3005 * Think carefully if considering trying to avoid this, since it 3006 * also ensures status flags and the buffer itself are cleared 3007 * in error paths, and we have checks for invalid reports based 3008 * on the assumption that certain fields are written to zeroed 3009 * memory which this helps maintains. 3010 */ 3011 gen8_init_oa_buffer(stream); 3012 3013 /* 3014 * Note: we don't rely on the hardware to perform single context 3015 * filtering and instead filter on the cpu based on the context-id 3016 * field of reports 3017 */ 3018 intel_uncore_write(uncore, GEN8_OACONTROL, 3019 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3020 GEN8_OA_COUNTER_ENABLE); 3021 } 3022 3023 static void gen12_oa_enable(struct i915_perf_stream *stream) 3024 { 3025 const struct i915_perf_regs *regs; 3026 u32 val; 3027 3028 /* 3029 * If we don't want OA reports from the OA buffer, then we don't even 3030 * need to program the OAG unit. 3031 */ 3032 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3033 return; 3034 3035 gen12_init_oa_buffer(stream); 3036 3037 regs = __oa_regs(stream); 3038 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3039 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3040 3041 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3042 } 3043 3044 /** 3045 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3046 * @stream: An i915 perf stream opened for OA metrics 3047 * 3048 * [Re]enables hardware periodic sampling according to the period configured 3049 * when opening the stream. This also starts a hrtimer that will periodically 3050 * check for data in the circular OA buffer for notifying userspace (e.g. 3051 * during a read() or poll()). 3052 */ 3053 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3054 { 3055 stream->pollin = false; 3056 3057 stream->perf->ops.oa_enable(stream); 3058 3059 if (stream->sample_flags & SAMPLE_OA_REPORT) 3060 hrtimer_start(&stream->poll_check_timer, 3061 ns_to_ktime(stream->poll_oa_period), 3062 HRTIMER_MODE_REL_PINNED); 3063 } 3064 3065 static void gen7_oa_disable(struct i915_perf_stream *stream) 3066 { 3067 struct intel_uncore *uncore = stream->uncore; 3068 3069 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3070 if (intel_wait_for_register(uncore, 3071 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3072 50)) 3073 drm_err(&stream->perf->i915->drm, 3074 "wait for OA to be disabled timed out\n"); 3075 } 3076 3077 static void gen8_oa_disable(struct i915_perf_stream *stream) 3078 { 3079 struct intel_uncore *uncore = stream->uncore; 3080 3081 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3082 if (intel_wait_for_register(uncore, 3083 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3084 50)) 3085 drm_err(&stream->perf->i915->drm, 3086 "wait for OA to be disabled timed out\n"); 3087 } 3088 3089 static void gen12_oa_disable(struct i915_perf_stream *stream) 3090 { 3091 struct intel_uncore *uncore = stream->uncore; 3092 3093 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3094 if (intel_wait_for_register(uncore, 3095 __oa_regs(stream)->oa_ctrl, 3096 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3097 50)) 3098 drm_err(&stream->perf->i915->drm, 3099 "wait for OA to be disabled timed out\n"); 3100 3101 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3102 if (intel_wait_for_register(uncore, 3103 GEN12_OA_TLB_INV_CR, 3104 1, 0, 3105 50)) 3106 drm_err(&stream->perf->i915->drm, 3107 "wait for OA tlb invalidate timed out\n"); 3108 } 3109 3110 /** 3111 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3112 * @stream: An i915 perf stream opened for OA metrics 3113 * 3114 * Stops the OA unit from periodically writing counter reports into the 3115 * circular OA buffer. This also stops the hrtimer that periodically checks for 3116 * data in the circular OA buffer, for notifying userspace. 3117 */ 3118 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3119 { 3120 stream->perf->ops.oa_disable(stream); 3121 3122 if (stream->sample_flags & SAMPLE_OA_REPORT) 3123 hrtimer_cancel(&stream->poll_check_timer); 3124 } 3125 3126 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3127 .destroy = i915_oa_stream_destroy, 3128 .enable = i915_oa_stream_enable, 3129 .disable = i915_oa_stream_disable, 3130 .wait_unlocked = i915_oa_wait_unlocked, 3131 .poll_wait = i915_oa_poll_wait, 3132 .read = i915_oa_read, 3133 }; 3134 3135 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3136 { 3137 struct i915_active *active; 3138 int err; 3139 3140 active = i915_active_create(); 3141 if (!active) 3142 return -ENOMEM; 3143 3144 err = stream->perf->ops.enable_metric_set(stream, active); 3145 if (err == 0) 3146 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3147 3148 i915_active_put(active); 3149 return err; 3150 } 3151 3152 static void 3153 get_default_sseu_config(struct intel_sseu *out_sseu, 3154 struct intel_engine_cs *engine) 3155 { 3156 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3157 3158 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3159 3160 if (GRAPHICS_VER(engine->i915) == 11) { 3161 /* 3162 * We only need subslice count so it doesn't matter which ones 3163 * we select - just turn off low bits in the amount of half of 3164 * all available subslices per slice. 3165 */ 3166 out_sseu->subslice_mask = 3167 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3168 out_sseu->slice_mask = 0x1; 3169 } 3170 } 3171 3172 static int 3173 get_sseu_config(struct intel_sseu *out_sseu, 3174 struct intel_engine_cs *engine, 3175 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3176 { 3177 if (drm_sseu->engine.engine_class != engine->uabi_class || 3178 drm_sseu->engine.engine_instance != engine->uabi_instance) 3179 return -EINVAL; 3180 3181 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3182 } 3183 3184 /* 3185 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3186 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3187 * cases, return the adjusted CS timestamp frequency to the user. 3188 */ 3189 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3190 { 3191 struct intel_gt *gt = to_gt(i915); 3192 3193 /* Wa_18013179988 */ 3194 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 3195 intel_wakeref_t wakeref; 3196 u32 reg, shift; 3197 3198 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3199 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3200 3201 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3202 reg); 3203 3204 return to_gt(i915)->clock_frequency << (3 - shift); 3205 } 3206 3207 return to_gt(i915)->clock_frequency; 3208 } 3209 3210 /** 3211 * i915_oa_stream_init - validate combined props for OA stream and init 3212 * @stream: An i915 perf stream 3213 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3214 * @props: The property state that configures stream (individually validated) 3215 * 3216 * While read_properties_unlocked() validates properties in isolation it 3217 * doesn't ensure that the combination necessarily makes sense. 3218 * 3219 * At this point it has been determined that userspace wants a stream of 3220 * OA metrics, but still we need to further validate the combined 3221 * properties are OK. 3222 * 3223 * If the configuration makes sense then we can allocate memory for 3224 * a circular OA buffer and apply the requested metric set configuration. 3225 * 3226 * Returns: zero on success or a negative error code. 3227 */ 3228 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3229 struct drm_i915_perf_open_param *param, 3230 struct perf_open_properties *props) 3231 { 3232 struct drm_i915_private *i915 = stream->perf->i915; 3233 struct i915_perf *perf = stream->perf; 3234 struct i915_perf_group *g; 3235 int ret; 3236 3237 if (!props->engine) { 3238 drm_dbg(&stream->perf->i915->drm, 3239 "OA engine not specified\n"); 3240 return -EINVAL; 3241 } 3242 g = props->engine->oa_group; 3243 3244 /* 3245 * If the sysfs metrics/ directory wasn't registered for some 3246 * reason then don't let userspace try their luck with config 3247 * IDs 3248 */ 3249 if (!perf->metrics_kobj) { 3250 drm_dbg(&stream->perf->i915->drm, 3251 "OA metrics weren't advertised via sysfs\n"); 3252 return -EINVAL; 3253 } 3254 3255 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3256 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3257 drm_dbg(&stream->perf->i915->drm, 3258 "Only OA report sampling supported\n"); 3259 return -EINVAL; 3260 } 3261 3262 if (!perf->ops.enable_metric_set) { 3263 drm_dbg(&stream->perf->i915->drm, 3264 "OA unit not supported\n"); 3265 return -ENODEV; 3266 } 3267 3268 /* 3269 * To avoid the complexity of having to accurately filter 3270 * counter reports and marshal to the appropriate client 3271 * we currently only allow exclusive access 3272 */ 3273 if (g->exclusive_stream) { 3274 drm_dbg(&stream->perf->i915->drm, 3275 "OA unit already in use\n"); 3276 return -EBUSY; 3277 } 3278 3279 if (!props->oa_format) { 3280 drm_dbg(&stream->perf->i915->drm, 3281 "OA report format not specified\n"); 3282 return -EINVAL; 3283 } 3284 3285 stream->engine = props->engine; 3286 stream->uncore = stream->engine->gt->uncore; 3287 3288 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3289 3290 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3291 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3292 return -EINVAL; 3293 3294 stream->sample_flags = props->sample_flags; 3295 stream->sample_size += stream->oa_buffer.format->size; 3296 3297 stream->hold_preemption = props->hold_preemption; 3298 3299 stream->periodic = props->oa_periodic; 3300 if (stream->periodic) 3301 stream->period_exponent = props->oa_period_exponent; 3302 3303 if (stream->ctx) { 3304 ret = oa_get_render_ctx_id(stream); 3305 if (ret) { 3306 drm_dbg(&stream->perf->i915->drm, 3307 "Invalid context id to filter with\n"); 3308 return ret; 3309 } 3310 } 3311 3312 ret = alloc_noa_wait(stream); 3313 if (ret) { 3314 drm_dbg(&stream->perf->i915->drm, 3315 "Unable to allocate NOA wait batch buffer\n"); 3316 goto err_noa_wait_alloc; 3317 } 3318 3319 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3320 if (!stream->oa_config) { 3321 drm_dbg(&stream->perf->i915->drm, 3322 "Invalid OA config id=%i\n", props->metrics_set); 3323 ret = -EINVAL; 3324 goto err_config; 3325 } 3326 3327 /* PRM - observability performance counters: 3328 * 3329 * OACONTROL, performance counter enable, note: 3330 * 3331 * "When this bit is set, in order to have coherent counts, 3332 * RC6 power state and trunk clock gating must be disabled. 3333 * This can be achieved by programming MMIO registers as 3334 * 0xA094=0 and 0xA090[31]=1" 3335 * 3336 * In our case we are expecting that taking pm + FORCEWAKE 3337 * references will effectively disable RC6. 3338 */ 3339 intel_engine_pm_get(stream->engine); 3340 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3341 3342 ret = alloc_oa_buffer(stream); 3343 if (ret) 3344 goto err_oa_buf_alloc; 3345 3346 stream->ops = &i915_oa_stream_ops; 3347 3348 stream->engine->gt->perf.sseu = props->sseu; 3349 WRITE_ONCE(g->exclusive_stream, stream); 3350 3351 ret = i915_perf_stream_enable_sync(stream); 3352 if (ret) { 3353 drm_dbg(&stream->perf->i915->drm, 3354 "Unable to enable metric set\n"); 3355 goto err_enable; 3356 } 3357 3358 drm_dbg(&stream->perf->i915->drm, 3359 "opening stream oa config uuid=%s\n", 3360 stream->oa_config->uuid); 3361 3362 hrtimer_init(&stream->poll_check_timer, 3363 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3364 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3365 init_waitqueue_head(&stream->poll_wq); 3366 spin_lock_init(&stream->oa_buffer.ptr_lock); 3367 mutex_init(&stream->lock); 3368 3369 return 0; 3370 3371 err_enable: 3372 WRITE_ONCE(g->exclusive_stream, NULL); 3373 perf->ops.disable_metric_set(stream); 3374 3375 free_oa_buffer(stream); 3376 3377 err_oa_buf_alloc: 3378 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3379 intel_engine_pm_put(stream->engine); 3380 3381 free_oa_configs(stream); 3382 3383 err_config: 3384 free_noa_wait(stream); 3385 3386 err_noa_wait_alloc: 3387 if (stream->ctx) 3388 oa_put_render_ctx_id(stream); 3389 3390 return ret; 3391 } 3392 3393 void i915_oa_init_reg_state(const struct intel_context *ce, 3394 const struct intel_engine_cs *engine) 3395 { 3396 struct i915_perf_stream *stream; 3397 3398 if (engine->class != RENDER_CLASS) 3399 return; 3400 3401 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3402 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3403 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3404 gen8_update_reg_state_unlocked(ce, stream); 3405 } 3406 3407 /** 3408 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3409 * @file: An i915 perf stream file 3410 * @buf: destination buffer given by userspace 3411 * @count: the number of bytes userspace wants to read 3412 * @ppos: (inout) file seek position (unused) 3413 * 3414 * The entry point for handling a read() on a stream file descriptor from 3415 * userspace. Most of the work is left to the i915_perf_read_locked() and 3416 * &i915_perf_stream_ops->read but to save having stream implementations (of 3417 * which we might have multiple later) we handle blocking read here. 3418 * 3419 * We can also consistently treat trying to read from a disabled stream 3420 * as an IO error so implementations can assume the stream is enabled 3421 * while reading. 3422 * 3423 * Returns: The number of bytes copied or a negative error code on failure. 3424 */ 3425 static ssize_t i915_perf_read(struct file *file, 3426 char __user *buf, 3427 size_t count, 3428 loff_t *ppos) 3429 { 3430 struct i915_perf_stream *stream = file->private_data; 3431 size_t offset = 0; 3432 int ret; 3433 3434 /* To ensure it's handled consistently we simply treat all reads of a 3435 * disabled stream as an error. In particular it might otherwise lead 3436 * to a deadlock for blocking file descriptors... 3437 */ 3438 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3439 return -EIO; 3440 3441 if (!(file->f_flags & O_NONBLOCK)) { 3442 /* There's the small chance of false positives from 3443 * stream->ops->wait_unlocked. 3444 * 3445 * E.g. with single context filtering since we only wait until 3446 * oabuffer has >= 1 report we don't immediately know whether 3447 * any reports really belong to the current context 3448 */ 3449 do { 3450 ret = stream->ops->wait_unlocked(stream); 3451 if (ret) 3452 return ret; 3453 3454 mutex_lock(&stream->lock); 3455 ret = stream->ops->read(stream, buf, count, &offset); 3456 mutex_unlock(&stream->lock); 3457 } while (!offset && !ret); 3458 } else { 3459 mutex_lock(&stream->lock); 3460 ret = stream->ops->read(stream, buf, count, &offset); 3461 mutex_unlock(&stream->lock); 3462 } 3463 3464 /* We allow the poll checking to sometimes report false positive EPOLLIN 3465 * events where we might actually report EAGAIN on read() if there's 3466 * not really any data available. In this situation though we don't 3467 * want to enter a busy loop between poll() reporting a EPOLLIN event 3468 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3469 * effectively ensures we back off until the next hrtimer callback 3470 * before reporting another EPOLLIN event. 3471 * The exception to this is if ops->read() returned -ENOSPC which means 3472 * that more OA data is available than could fit in the user provided 3473 * buffer. In this case we want the next poll() call to not block. 3474 */ 3475 if (ret != -ENOSPC) 3476 stream->pollin = false; 3477 3478 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3479 return offset ?: (ret ?: -EAGAIN); 3480 } 3481 3482 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3483 { 3484 struct i915_perf_stream *stream = 3485 container_of(hrtimer, typeof(*stream), poll_check_timer); 3486 3487 if (oa_buffer_check_unlocked(stream)) { 3488 stream->pollin = true; 3489 wake_up(&stream->poll_wq); 3490 } 3491 3492 hrtimer_forward_now(hrtimer, 3493 ns_to_ktime(stream->poll_oa_period)); 3494 3495 return HRTIMER_RESTART; 3496 } 3497 3498 /** 3499 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3500 * @stream: An i915 perf stream 3501 * @file: An i915 perf stream file 3502 * @wait: poll() state table 3503 * 3504 * For handling userspace polling on an i915 perf stream, this calls through to 3505 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3506 * will be woken for new stream data. 3507 * 3508 * Returns: any poll events that are ready without sleeping 3509 */ 3510 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3511 struct file *file, 3512 poll_table *wait) 3513 { 3514 __poll_t events = 0; 3515 3516 stream->ops->poll_wait(stream, file, wait); 3517 3518 /* Note: we don't explicitly check whether there's something to read 3519 * here since this path may be very hot depending on what else 3520 * userspace is polling, or on the timeout in use. We rely solely on 3521 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3522 * samples to read. 3523 */ 3524 if (stream->pollin) 3525 events |= EPOLLIN; 3526 3527 return events; 3528 } 3529 3530 /** 3531 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3532 * @file: An i915 perf stream file 3533 * @wait: poll() state table 3534 * 3535 * For handling userspace polling on an i915 perf stream, this ensures 3536 * poll_wait() gets called with a wait queue that will be woken for new stream 3537 * data. 3538 * 3539 * Note: Implementation deferred to i915_perf_poll_locked() 3540 * 3541 * Returns: any poll events that are ready without sleeping 3542 */ 3543 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3544 { 3545 struct i915_perf_stream *stream = file->private_data; 3546 __poll_t ret; 3547 3548 mutex_lock(&stream->lock); 3549 ret = i915_perf_poll_locked(stream, file, wait); 3550 mutex_unlock(&stream->lock); 3551 3552 return ret; 3553 } 3554 3555 /** 3556 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3557 * @stream: A disabled i915 perf stream 3558 * 3559 * [Re]enables the associated capture of data for this stream. 3560 * 3561 * If a stream was previously enabled then there's currently no intention 3562 * to provide userspace any guarantee about the preservation of previously 3563 * buffered data. 3564 */ 3565 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3566 { 3567 if (stream->enabled) 3568 return; 3569 3570 /* Allow stream->ops->enable() to refer to this */ 3571 stream->enabled = true; 3572 3573 if (stream->ops->enable) 3574 stream->ops->enable(stream); 3575 3576 if (stream->hold_preemption) 3577 intel_context_set_nopreempt(stream->pinned_ctx); 3578 } 3579 3580 /** 3581 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3582 * @stream: An enabled i915 perf stream 3583 * 3584 * Disables the associated capture of data for this stream. 3585 * 3586 * The intention is that disabling an re-enabling a stream will ideally be 3587 * cheaper than destroying and re-opening a stream with the same configuration, 3588 * though there are no formal guarantees about what state or buffered data 3589 * must be retained between disabling and re-enabling a stream. 3590 * 3591 * Note: while a stream is disabled it's considered an error for userspace 3592 * to attempt to read from the stream (-EIO). 3593 */ 3594 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3595 { 3596 if (!stream->enabled) 3597 return; 3598 3599 /* Allow stream->ops->disable() to refer to this */ 3600 stream->enabled = false; 3601 3602 if (stream->hold_preemption) 3603 intel_context_clear_nopreempt(stream->pinned_ctx); 3604 3605 if (stream->ops->disable) 3606 stream->ops->disable(stream); 3607 } 3608 3609 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3610 unsigned long metrics_set) 3611 { 3612 struct i915_oa_config *config; 3613 long ret = stream->oa_config->id; 3614 3615 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3616 if (!config) 3617 return -EINVAL; 3618 3619 if (config != stream->oa_config) { 3620 int err; 3621 3622 /* 3623 * If OA is bound to a specific context, emit the 3624 * reconfiguration inline from that context. The update 3625 * will then be ordered with respect to submission on that 3626 * context. 3627 * 3628 * When set globally, we use a low priority kernel context, 3629 * so it will effectively take effect when idle. 3630 */ 3631 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3632 if (!err) 3633 config = xchg(&stream->oa_config, config); 3634 else 3635 ret = err; 3636 } 3637 3638 i915_oa_config_put(config); 3639 3640 return ret; 3641 } 3642 3643 /** 3644 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3645 * @stream: An i915 perf stream 3646 * @cmd: the ioctl request 3647 * @arg: the ioctl data 3648 * 3649 * Returns: zero on success or a negative error code. Returns -EINVAL for 3650 * an unknown ioctl request. 3651 */ 3652 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3653 unsigned int cmd, 3654 unsigned long arg) 3655 { 3656 switch (cmd) { 3657 case I915_PERF_IOCTL_ENABLE: 3658 i915_perf_enable_locked(stream); 3659 return 0; 3660 case I915_PERF_IOCTL_DISABLE: 3661 i915_perf_disable_locked(stream); 3662 return 0; 3663 case I915_PERF_IOCTL_CONFIG: 3664 return i915_perf_config_locked(stream, arg); 3665 } 3666 3667 return -EINVAL; 3668 } 3669 3670 /** 3671 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3672 * @file: An i915 perf stream file 3673 * @cmd: the ioctl request 3674 * @arg: the ioctl data 3675 * 3676 * Implementation deferred to i915_perf_ioctl_locked(). 3677 * 3678 * Returns: zero on success or a negative error code. Returns -EINVAL for 3679 * an unknown ioctl request. 3680 */ 3681 static long i915_perf_ioctl(struct file *file, 3682 unsigned int cmd, 3683 unsigned long arg) 3684 { 3685 struct i915_perf_stream *stream = file->private_data; 3686 long ret; 3687 3688 mutex_lock(&stream->lock); 3689 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3690 mutex_unlock(&stream->lock); 3691 3692 return ret; 3693 } 3694 3695 /** 3696 * i915_perf_destroy_locked - destroy an i915 perf stream 3697 * @stream: An i915 perf stream 3698 * 3699 * Frees all resources associated with the given i915 perf @stream, disabling 3700 * any associated data capture in the process. 3701 * 3702 * Note: The >->perf.lock mutex has been taken to serialize 3703 * with any non-file-operation driver hooks. 3704 */ 3705 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3706 { 3707 if (stream->enabled) 3708 i915_perf_disable_locked(stream); 3709 3710 if (stream->ops->destroy) 3711 stream->ops->destroy(stream); 3712 3713 if (stream->ctx) 3714 i915_gem_context_put(stream->ctx); 3715 3716 kfree(stream); 3717 } 3718 3719 /** 3720 * i915_perf_release - handles userspace close() of a stream file 3721 * @inode: anonymous inode associated with file 3722 * @file: An i915 perf stream file 3723 * 3724 * Cleans up any resources associated with an open i915 perf stream file. 3725 * 3726 * NB: close() can't really fail from the userspace point of view. 3727 * 3728 * Returns: zero on success or a negative error code. 3729 */ 3730 static int i915_perf_release(struct inode *inode, struct file *file) 3731 { 3732 struct i915_perf_stream *stream = file->private_data; 3733 struct i915_perf *perf = stream->perf; 3734 struct intel_gt *gt = stream->engine->gt; 3735 3736 /* 3737 * Within this call, we know that the fd is being closed and we have no 3738 * other user of stream->lock. Use the perf lock to destroy the stream 3739 * here. 3740 */ 3741 mutex_lock(>->perf.lock); 3742 i915_perf_destroy_locked(stream); 3743 mutex_unlock(>->perf.lock); 3744 3745 /* Release the reference the perf stream kept on the driver. */ 3746 drm_dev_put(&perf->i915->drm); 3747 3748 return 0; 3749 } 3750 3751 3752 static const struct file_operations fops = { 3753 .owner = THIS_MODULE, 3754 .release = i915_perf_release, 3755 .poll = i915_perf_poll, 3756 .read = i915_perf_read, 3757 .unlocked_ioctl = i915_perf_ioctl, 3758 /* Our ioctl have no arguments, so it's safe to use the same function 3759 * to handle 32bits compatibility. 3760 */ 3761 .compat_ioctl = i915_perf_ioctl, 3762 }; 3763 3764 3765 /** 3766 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3767 * @perf: i915 perf instance 3768 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3769 * @props: individually validated u64 property value pairs 3770 * @file: drm file 3771 * 3772 * See i915_perf_ioctl_open() for interface details. 3773 * 3774 * Implements further stream config validation and stream initialization on 3775 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3776 * taken to serialize with any non-file-operation driver hooks. 3777 * 3778 * Note: at this point the @props have only been validated in isolation and 3779 * it's still necessary to validate that the combination of properties makes 3780 * sense. 3781 * 3782 * In the case where userspace is interested in OA unit metrics then further 3783 * config validation and stream initialization details will be handled by 3784 * i915_oa_stream_init(). The code here should only validate config state that 3785 * will be relevant to all stream types / backends. 3786 * 3787 * Returns: zero on success or a negative error code. 3788 */ 3789 static int 3790 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3791 struct drm_i915_perf_open_param *param, 3792 struct perf_open_properties *props, 3793 struct drm_file *file) 3794 { 3795 struct i915_gem_context *specific_ctx = NULL; 3796 struct i915_perf_stream *stream = NULL; 3797 unsigned long f_flags = 0; 3798 bool privileged_op = true; 3799 int stream_fd; 3800 int ret; 3801 3802 if (props->single_context) { 3803 u32 ctx_handle = props->ctx_handle; 3804 struct drm_i915_file_private *file_priv = file->driver_priv; 3805 3806 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3807 if (IS_ERR(specific_ctx)) { 3808 drm_dbg(&perf->i915->drm, 3809 "Failed to look up context with ID %u for opening perf stream\n", 3810 ctx_handle); 3811 ret = PTR_ERR(specific_ctx); 3812 goto err; 3813 } 3814 } 3815 3816 /* 3817 * On Haswell the OA unit supports clock gating off for a specific 3818 * context and in this mode there's no visibility of metrics for the 3819 * rest of the system, which we consider acceptable for a 3820 * non-privileged client. 3821 * 3822 * For Gen8->11 the OA unit no longer supports clock gating off for a 3823 * specific context and the kernel can't securely stop the counters 3824 * from updating as system-wide / global values. Even though we can 3825 * filter reports based on the included context ID we can't block 3826 * clients from seeing the raw / global counter values via 3827 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3828 * enable the OA unit by default. 3829 * 3830 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3831 * per context basis. So we can relax requirements there if the user 3832 * doesn't request global stream access (i.e. query based sampling 3833 * using MI_RECORD_PERF_COUNT. 3834 */ 3835 if (IS_HASWELL(perf->i915) && specific_ctx) 3836 privileged_op = false; 3837 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3838 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3839 privileged_op = false; 3840 3841 if (props->hold_preemption) { 3842 if (!props->single_context) { 3843 drm_dbg(&perf->i915->drm, 3844 "preemption disable with no context\n"); 3845 ret = -EINVAL; 3846 goto err; 3847 } 3848 privileged_op = true; 3849 } 3850 3851 /* 3852 * Asking for SSEU configuration is a priviliged operation. 3853 */ 3854 if (props->has_sseu) 3855 privileged_op = true; 3856 else 3857 get_default_sseu_config(&props->sseu, props->engine); 3858 3859 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3860 * we check a dev.i915.perf_stream_paranoid sysctl option 3861 * to determine if it's ok to access system wide OA counters 3862 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3863 */ 3864 if (privileged_op && 3865 i915_perf_stream_paranoid && !perfmon_capable()) { 3866 drm_dbg(&perf->i915->drm, 3867 "Insufficient privileges to open i915 perf stream\n"); 3868 ret = -EACCES; 3869 goto err_ctx; 3870 } 3871 3872 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3873 if (!stream) { 3874 ret = -ENOMEM; 3875 goto err_ctx; 3876 } 3877 3878 stream->perf = perf; 3879 stream->ctx = specific_ctx; 3880 stream->poll_oa_period = props->poll_oa_period; 3881 3882 ret = i915_oa_stream_init(stream, param, props); 3883 if (ret) 3884 goto err_alloc; 3885 3886 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3887 * to have _stream_init check the combination of sample flags more 3888 * thoroughly, but still this is the expected result at this point. 3889 */ 3890 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3891 ret = -ENODEV; 3892 goto err_flags; 3893 } 3894 3895 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3896 f_flags |= O_CLOEXEC; 3897 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3898 f_flags |= O_NONBLOCK; 3899 3900 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3901 if (stream_fd < 0) { 3902 ret = stream_fd; 3903 goto err_flags; 3904 } 3905 3906 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3907 i915_perf_enable_locked(stream); 3908 3909 /* Take a reference on the driver that will be kept with stream_fd 3910 * until its release. 3911 */ 3912 drm_dev_get(&perf->i915->drm); 3913 3914 return stream_fd; 3915 3916 err_flags: 3917 if (stream->ops->destroy) 3918 stream->ops->destroy(stream); 3919 err_alloc: 3920 kfree(stream); 3921 err_ctx: 3922 if (specific_ctx) 3923 i915_gem_context_put(specific_ctx); 3924 err: 3925 return ret; 3926 } 3927 3928 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3929 { 3930 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3931 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3932 3933 return div_u64(nom + den - 1, den); 3934 } 3935 3936 static __always_inline bool 3937 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3938 { 3939 return test_bit(format, perf->format_mask); 3940 } 3941 3942 static __always_inline void 3943 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3944 { 3945 __set_bit(format, perf->format_mask); 3946 } 3947 3948 /** 3949 * read_properties_unlocked - validate + copy userspace stream open properties 3950 * @perf: i915 perf instance 3951 * @uprops: The array of u64 key value pairs given by userspace 3952 * @n_props: The number of key value pairs expected in @uprops 3953 * @props: The stream configuration built up while validating properties 3954 * 3955 * Note this function only validates properties in isolation it doesn't 3956 * validate that the combination of properties makes sense or that all 3957 * properties necessary for a particular kind of stream have been set. 3958 * 3959 * Note that there currently aren't any ordering requirements for properties so 3960 * we shouldn't validate or assume anything about ordering here. This doesn't 3961 * rule out defining new properties with ordering requirements in the future. 3962 */ 3963 static int read_properties_unlocked(struct i915_perf *perf, 3964 u64 __user *uprops, 3965 u32 n_props, 3966 struct perf_open_properties *props) 3967 { 3968 struct drm_i915_gem_context_param_sseu user_sseu; 3969 const struct i915_oa_format *f; 3970 u64 __user *uprop = uprops; 3971 bool config_instance = false; 3972 bool config_class = false; 3973 bool config_sseu = false; 3974 u8 class, instance; 3975 u32 i; 3976 int ret; 3977 3978 memset(props, 0, sizeof(struct perf_open_properties)); 3979 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3980 3981 /* Considering that ID = 0 is reserved and assuming that we don't 3982 * (currently) expect any configurations to ever specify duplicate 3983 * values for a particular property ID then the last _PROP_MAX value is 3984 * one greater than the maximum number of properties we expect to get 3985 * from userspace. 3986 */ 3987 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 3988 drm_dbg(&perf->i915->drm, 3989 "Invalid number of i915 perf properties given\n"); 3990 return -EINVAL; 3991 } 3992 3993 /* Defaults when class:instance is not passed */ 3994 class = I915_ENGINE_CLASS_RENDER; 3995 instance = 0; 3996 3997 for (i = 0; i < n_props; i++) { 3998 u64 oa_period, oa_freq_hz; 3999 u64 id, value; 4000 4001 ret = get_user(id, uprop); 4002 if (ret) 4003 return ret; 4004 4005 ret = get_user(value, uprop + 1); 4006 if (ret) 4007 return ret; 4008 4009 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4010 drm_dbg(&perf->i915->drm, 4011 "Unknown i915 perf property ID\n"); 4012 return -EINVAL; 4013 } 4014 4015 switch ((enum drm_i915_perf_property_id)id) { 4016 case DRM_I915_PERF_PROP_CTX_HANDLE: 4017 props->single_context = 1; 4018 props->ctx_handle = value; 4019 break; 4020 case DRM_I915_PERF_PROP_SAMPLE_OA: 4021 if (value) 4022 props->sample_flags |= SAMPLE_OA_REPORT; 4023 break; 4024 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4025 if (value == 0) { 4026 drm_dbg(&perf->i915->drm, 4027 "Unknown OA metric set ID\n"); 4028 return -EINVAL; 4029 } 4030 props->metrics_set = value; 4031 break; 4032 case DRM_I915_PERF_PROP_OA_FORMAT: 4033 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4034 drm_dbg(&perf->i915->drm, 4035 "Out-of-range OA report format %llu\n", 4036 value); 4037 return -EINVAL; 4038 } 4039 if (!oa_format_valid(perf, value)) { 4040 drm_dbg(&perf->i915->drm, 4041 "Unsupported OA report format %llu\n", 4042 value); 4043 return -EINVAL; 4044 } 4045 props->oa_format = value; 4046 break; 4047 case DRM_I915_PERF_PROP_OA_EXPONENT: 4048 if (value > OA_EXPONENT_MAX) { 4049 drm_dbg(&perf->i915->drm, 4050 "OA timer exponent too high (> %u)\n", 4051 OA_EXPONENT_MAX); 4052 return -EINVAL; 4053 } 4054 4055 /* Theoretically we can program the OA unit to sample 4056 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4057 * for BXT. We don't allow such high sampling 4058 * frequencies by default unless root. 4059 */ 4060 4061 BUILD_BUG_ON(sizeof(oa_period) != 8); 4062 oa_period = oa_exponent_to_ns(perf, value); 4063 4064 /* This check is primarily to ensure that oa_period <= 4065 * UINT32_MAX (before passing to do_div which only 4066 * accepts a u32 denominator), but we can also skip 4067 * checking anything < 1Hz which implicitly can't be 4068 * limited via an integer oa_max_sample_rate. 4069 */ 4070 if (oa_period <= NSEC_PER_SEC) { 4071 u64 tmp = NSEC_PER_SEC; 4072 do_div(tmp, oa_period); 4073 oa_freq_hz = tmp; 4074 } else 4075 oa_freq_hz = 0; 4076 4077 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4078 drm_dbg(&perf->i915->drm, 4079 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4080 i915_oa_max_sample_rate); 4081 return -EACCES; 4082 } 4083 4084 props->oa_periodic = true; 4085 props->oa_period_exponent = value; 4086 break; 4087 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4088 props->hold_preemption = !!value; 4089 break; 4090 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4091 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) { 4092 drm_dbg(&perf->i915->drm, 4093 "SSEU config not supported on gfx %x\n", 4094 GRAPHICS_VER_FULL(perf->i915)); 4095 return -ENODEV; 4096 } 4097 4098 if (copy_from_user(&user_sseu, 4099 u64_to_user_ptr(value), 4100 sizeof(user_sseu))) { 4101 drm_dbg(&perf->i915->drm, 4102 "Unable to copy global sseu parameter\n"); 4103 return -EFAULT; 4104 } 4105 config_sseu = true; 4106 break; 4107 } 4108 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4109 if (value < 100000 /* 100us */) { 4110 drm_dbg(&perf->i915->drm, 4111 "OA availability timer too small (%lluns < 100us)\n", 4112 value); 4113 return -EINVAL; 4114 } 4115 props->poll_oa_period = value; 4116 break; 4117 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4118 class = (u8)value; 4119 config_class = true; 4120 break; 4121 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4122 instance = (u8)value; 4123 config_instance = true; 4124 break; 4125 default: 4126 MISSING_CASE(id); 4127 return -EINVAL; 4128 } 4129 4130 uprop += 2; 4131 } 4132 4133 if ((config_class && !config_instance) || 4134 (config_instance && !config_class)) { 4135 drm_dbg(&perf->i915->drm, 4136 "OA engine-class and engine-instance parameters must be passed together\n"); 4137 return -EINVAL; 4138 } 4139 4140 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4141 if (!props->engine) { 4142 drm_dbg(&perf->i915->drm, 4143 "OA engine class and instance invalid %d:%d\n", 4144 class, instance); 4145 return -EINVAL; 4146 } 4147 4148 if (!engine_supports_oa(props->engine)) { 4149 drm_dbg(&perf->i915->drm, 4150 "Engine not supported by OA %d:%d\n", 4151 class, instance); 4152 return -EINVAL; 4153 } 4154 4155 /* 4156 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4157 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4158 * does not work as expected. 4159 */ 4160 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 4161 props->engine->oa_group->type == TYPE_OAM && 4162 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4163 drm_dbg(&perf->i915->drm, 4164 "OAM requires media C6 to be disabled in BIOS\n"); 4165 return -EINVAL; 4166 } 4167 4168 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4169 f = &perf->oa_formats[i]; 4170 if (!engine_supports_oa_format(props->engine, f->type)) { 4171 drm_dbg(&perf->i915->drm, 4172 "Invalid OA format %d for class %d\n", 4173 f->type, props->engine->class); 4174 return -EINVAL; 4175 } 4176 4177 if (config_sseu) { 4178 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4179 if (ret) { 4180 drm_dbg(&perf->i915->drm, 4181 "Invalid SSEU configuration\n"); 4182 return ret; 4183 } 4184 props->has_sseu = true; 4185 } 4186 4187 return 0; 4188 } 4189 4190 /** 4191 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4192 * @dev: drm device 4193 * @data: ioctl data copied from userspace (unvalidated) 4194 * @file: drm file 4195 * 4196 * Validates the stream open parameters given by userspace including flags 4197 * and an array of u64 key, value pair properties. 4198 * 4199 * Very little is assumed up front about the nature of the stream being 4200 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4201 * i915-perf stream is expected to be a suitable interface for other forms of 4202 * buffered data written by the GPU besides periodic OA metrics. 4203 * 4204 * Note we copy the properties from userspace outside of the i915 perf 4205 * mutex to avoid an awkward lockdep with mmap_lock. 4206 * 4207 * Most of the implementation details are handled by 4208 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4209 * mutex for serializing with any non-file-operation driver hooks. 4210 * 4211 * Return: A newly opened i915 Perf stream file descriptor or negative 4212 * error code on failure. 4213 */ 4214 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4215 struct drm_file *file) 4216 { 4217 struct i915_perf *perf = &to_i915(dev)->perf; 4218 struct drm_i915_perf_open_param *param = data; 4219 struct intel_gt *gt; 4220 struct perf_open_properties props; 4221 u32 known_open_flags; 4222 int ret; 4223 4224 if (!perf->i915) 4225 return -ENOTSUPP; 4226 4227 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4228 I915_PERF_FLAG_FD_NONBLOCK | 4229 I915_PERF_FLAG_DISABLED; 4230 if (param->flags & ~known_open_flags) { 4231 drm_dbg(&perf->i915->drm, 4232 "Unknown drm_i915_perf_open_param flag\n"); 4233 return -EINVAL; 4234 } 4235 4236 ret = read_properties_unlocked(perf, 4237 u64_to_user_ptr(param->properties_ptr), 4238 param->num_properties, 4239 &props); 4240 if (ret) 4241 return ret; 4242 4243 gt = props.engine->gt; 4244 4245 mutex_lock(>->perf.lock); 4246 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4247 mutex_unlock(>->perf.lock); 4248 4249 return ret; 4250 } 4251 4252 /** 4253 * i915_perf_register - exposes i915-perf to userspace 4254 * @i915: i915 device instance 4255 * 4256 * In particular OA metric sets are advertised under a sysfs metrics/ 4257 * directory allowing userspace to enumerate valid IDs that can be 4258 * used to open an i915-perf stream. 4259 */ 4260 void i915_perf_register(struct drm_i915_private *i915) 4261 { 4262 struct i915_perf *perf = &i915->perf; 4263 struct intel_gt *gt = to_gt(i915); 4264 4265 if (!perf->i915) 4266 return; 4267 4268 /* To be sure we're synchronized with an attempted 4269 * i915_perf_open_ioctl(); considering that we register after 4270 * being exposed to userspace. 4271 */ 4272 mutex_lock(>->perf.lock); 4273 4274 perf->metrics_kobj = 4275 kobject_create_and_add("metrics", 4276 &i915->drm.primary->kdev->kobj); 4277 4278 mutex_unlock(>->perf.lock); 4279 } 4280 4281 /** 4282 * i915_perf_unregister - hide i915-perf from userspace 4283 * @i915: i915 device instance 4284 * 4285 * i915-perf state cleanup is split up into an 'unregister' and 4286 * 'deinit' phase where the interface is first hidden from 4287 * userspace by i915_perf_unregister() before cleaning up 4288 * remaining state in i915_perf_fini(). 4289 */ 4290 void i915_perf_unregister(struct drm_i915_private *i915) 4291 { 4292 struct i915_perf *perf = &i915->perf; 4293 4294 if (!perf->metrics_kobj) 4295 return; 4296 4297 kobject_put(perf->metrics_kobj); 4298 perf->metrics_kobj = NULL; 4299 } 4300 4301 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4302 { 4303 static const i915_reg_t flex_eu_regs[] = { 4304 EU_PERF_CNTL0, 4305 EU_PERF_CNTL1, 4306 EU_PERF_CNTL2, 4307 EU_PERF_CNTL3, 4308 EU_PERF_CNTL4, 4309 EU_PERF_CNTL5, 4310 EU_PERF_CNTL6, 4311 }; 4312 int i; 4313 4314 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4315 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4316 return true; 4317 } 4318 return false; 4319 } 4320 4321 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4322 { 4323 while (table->start || table->end) { 4324 if (addr >= table->start && addr <= table->end) 4325 return true; 4326 4327 table++; 4328 } 4329 4330 return false; 4331 } 4332 4333 #define REG_EQUAL(addr, mmio) \ 4334 ((addr) == i915_mmio_reg_offset(mmio)) 4335 4336 static const struct i915_range gen7_oa_b_counters[] = { 4337 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4338 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4339 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4340 {} 4341 }; 4342 4343 static const struct i915_range gen12_oa_b_counters[] = { 4344 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4345 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4346 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4347 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4348 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4349 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4350 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4351 {} 4352 }; 4353 4354 static const struct i915_range mtl_oam_b_counters[] = { 4355 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4356 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4357 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4358 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4359 {} 4360 }; 4361 4362 static const struct i915_range xehp_oa_b_counters[] = { 4363 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4364 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4365 {} 4366 }; 4367 4368 static const struct i915_range gen7_oa_mux_regs[] = { 4369 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4370 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4371 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4372 {} 4373 }; 4374 4375 static const struct i915_range hsw_oa_mux_regs[] = { 4376 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4377 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4378 { .start = 0x25100, .end = 0x2ff90 }, 4379 {} 4380 }; 4381 4382 static const struct i915_range chv_oa_mux_regs[] = { 4383 { .start = 0x182300, .end = 0x1823a4 }, 4384 {} 4385 }; 4386 4387 static const struct i915_range gen8_oa_mux_regs[] = { 4388 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4389 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4390 {} 4391 }; 4392 4393 static const struct i915_range gen11_oa_mux_regs[] = { 4394 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4395 {} 4396 }; 4397 4398 static const struct i915_range gen12_oa_mux_regs[] = { 4399 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4400 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4401 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4402 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4403 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4404 {} 4405 }; 4406 4407 /* 4408 * Ref: 14010536224: 4409 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4410 */ 4411 static const struct i915_range mtl_oa_mux_regs[] = { 4412 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4413 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4414 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4415 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4416 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4417 {} 4418 }; 4419 4420 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4421 { 4422 return reg_in_range_table(addr, gen7_oa_b_counters); 4423 } 4424 4425 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4426 { 4427 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4428 reg_in_range_table(addr, gen8_oa_mux_regs); 4429 } 4430 4431 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4432 { 4433 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4434 reg_in_range_table(addr, gen8_oa_mux_regs) || 4435 reg_in_range_table(addr, gen11_oa_mux_regs); 4436 } 4437 4438 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4439 { 4440 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4441 reg_in_range_table(addr, hsw_oa_mux_regs); 4442 } 4443 4444 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4445 { 4446 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4447 reg_in_range_table(addr, chv_oa_mux_regs); 4448 } 4449 4450 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4451 { 4452 return reg_in_range_table(addr, gen12_oa_b_counters); 4453 } 4454 4455 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4456 { 4457 if (HAS_OAM(perf->i915) && 4458 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4459 return reg_in_range_table(addr, mtl_oam_b_counters); 4460 4461 return false; 4462 } 4463 4464 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4465 { 4466 return reg_in_range_table(addr, xehp_oa_b_counters) || 4467 reg_in_range_table(addr, gen12_oa_b_counters) || 4468 mtl_is_valid_oam_b_counter_addr(perf, addr); 4469 } 4470 4471 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4472 { 4473 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4474 return reg_in_range_table(addr, mtl_oa_mux_regs); 4475 else 4476 return reg_in_range_table(addr, gen12_oa_mux_regs); 4477 } 4478 4479 static u32 mask_reg_value(u32 reg, u32 val) 4480 { 4481 /* HALF_SLICE_CHICKEN2 is programmed with a the 4482 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4483 * programmed by userspace doesn't change this. 4484 */ 4485 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4486 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4487 4488 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4489 * indicated by its name and a bunch of selection fields used by OA 4490 * configs. 4491 */ 4492 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4493 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4494 4495 return val; 4496 } 4497 4498 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4499 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4500 u32 __user *regs, 4501 u32 n_regs) 4502 { 4503 struct i915_oa_reg *oa_regs; 4504 int err; 4505 u32 i; 4506 4507 if (!n_regs) 4508 return NULL; 4509 4510 /* No is_valid function means we're not allowing any register to be programmed. */ 4511 GEM_BUG_ON(!is_valid); 4512 if (!is_valid) 4513 return ERR_PTR(-EINVAL); 4514 4515 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4516 if (!oa_regs) 4517 return ERR_PTR(-ENOMEM); 4518 4519 for (i = 0; i < n_regs; i++) { 4520 u32 addr, value; 4521 4522 err = get_user(addr, regs); 4523 if (err) 4524 goto addr_err; 4525 4526 if (!is_valid(perf, addr)) { 4527 drm_dbg(&perf->i915->drm, 4528 "Invalid oa_reg address: %X\n", addr); 4529 err = -EINVAL; 4530 goto addr_err; 4531 } 4532 4533 err = get_user(value, regs + 1); 4534 if (err) 4535 goto addr_err; 4536 4537 oa_regs[i].addr = _MMIO(addr); 4538 oa_regs[i].value = mask_reg_value(addr, value); 4539 4540 regs += 2; 4541 } 4542 4543 return oa_regs; 4544 4545 addr_err: 4546 kfree(oa_regs); 4547 return ERR_PTR(err); 4548 } 4549 4550 static ssize_t show_dynamic_id(struct kobject *kobj, 4551 struct kobj_attribute *attr, 4552 char *buf) 4553 { 4554 struct i915_oa_config *oa_config = 4555 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4556 4557 return sprintf(buf, "%d\n", oa_config->id); 4558 } 4559 4560 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4561 struct i915_oa_config *oa_config) 4562 { 4563 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4564 oa_config->sysfs_metric_id.attr.name = "id"; 4565 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4566 oa_config->sysfs_metric_id.show = show_dynamic_id; 4567 oa_config->sysfs_metric_id.store = NULL; 4568 4569 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4570 oa_config->attrs[1] = NULL; 4571 4572 oa_config->sysfs_metric.name = oa_config->uuid; 4573 oa_config->sysfs_metric.attrs = oa_config->attrs; 4574 4575 return sysfs_create_group(perf->metrics_kobj, 4576 &oa_config->sysfs_metric); 4577 } 4578 4579 /** 4580 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4581 * @dev: drm device 4582 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4583 * userspace (unvalidated) 4584 * @file: drm file 4585 * 4586 * Validates the submitted OA register to be saved into a new OA config that 4587 * can then be used for programming the OA unit and its NOA network. 4588 * 4589 * Returns: A new allocated config number to be used with the perf open ioctl 4590 * or a negative error code on failure. 4591 */ 4592 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4593 struct drm_file *file) 4594 { 4595 struct i915_perf *perf = &to_i915(dev)->perf; 4596 struct drm_i915_perf_oa_config *args = data; 4597 struct i915_oa_config *oa_config, *tmp; 4598 struct i915_oa_reg *regs; 4599 int err, id; 4600 4601 if (!perf->i915) 4602 return -ENOTSUPP; 4603 4604 if (!perf->metrics_kobj) { 4605 drm_dbg(&perf->i915->drm, 4606 "OA metrics weren't advertised via sysfs\n"); 4607 return -EINVAL; 4608 } 4609 4610 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4611 drm_dbg(&perf->i915->drm, 4612 "Insufficient privileges to add i915 OA config\n"); 4613 return -EACCES; 4614 } 4615 4616 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4617 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4618 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4619 drm_dbg(&perf->i915->drm, 4620 "No OA registers given\n"); 4621 return -EINVAL; 4622 } 4623 4624 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4625 if (!oa_config) { 4626 drm_dbg(&perf->i915->drm, 4627 "Failed to allocate memory for the OA config\n"); 4628 return -ENOMEM; 4629 } 4630 4631 oa_config->perf = perf; 4632 kref_init(&oa_config->ref); 4633 4634 if (!uuid_is_valid(args->uuid)) { 4635 drm_dbg(&perf->i915->drm, 4636 "Invalid uuid format for OA config\n"); 4637 err = -EINVAL; 4638 goto reg_err; 4639 } 4640 4641 /* Last character in oa_config->uuid will be 0 because oa_config is 4642 * kzalloc. 4643 */ 4644 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4645 4646 oa_config->mux_regs_len = args->n_mux_regs; 4647 regs = alloc_oa_regs(perf, 4648 perf->ops.is_valid_mux_reg, 4649 u64_to_user_ptr(args->mux_regs_ptr), 4650 args->n_mux_regs); 4651 4652 if (IS_ERR(regs)) { 4653 drm_dbg(&perf->i915->drm, 4654 "Failed to create OA config for mux_regs\n"); 4655 err = PTR_ERR(regs); 4656 goto reg_err; 4657 } 4658 oa_config->mux_regs = regs; 4659 4660 oa_config->b_counter_regs_len = args->n_boolean_regs; 4661 regs = alloc_oa_regs(perf, 4662 perf->ops.is_valid_b_counter_reg, 4663 u64_to_user_ptr(args->boolean_regs_ptr), 4664 args->n_boolean_regs); 4665 4666 if (IS_ERR(regs)) { 4667 drm_dbg(&perf->i915->drm, 4668 "Failed to create OA config for b_counter_regs\n"); 4669 err = PTR_ERR(regs); 4670 goto reg_err; 4671 } 4672 oa_config->b_counter_regs = regs; 4673 4674 if (GRAPHICS_VER(perf->i915) < 8) { 4675 if (args->n_flex_regs != 0) { 4676 err = -EINVAL; 4677 goto reg_err; 4678 } 4679 } else { 4680 oa_config->flex_regs_len = args->n_flex_regs; 4681 regs = alloc_oa_regs(perf, 4682 perf->ops.is_valid_flex_reg, 4683 u64_to_user_ptr(args->flex_regs_ptr), 4684 args->n_flex_regs); 4685 4686 if (IS_ERR(regs)) { 4687 drm_dbg(&perf->i915->drm, 4688 "Failed to create OA config for flex_regs\n"); 4689 err = PTR_ERR(regs); 4690 goto reg_err; 4691 } 4692 oa_config->flex_regs = regs; 4693 } 4694 4695 err = mutex_lock_interruptible(&perf->metrics_lock); 4696 if (err) 4697 goto reg_err; 4698 4699 /* We shouldn't have too many configs, so this iteration shouldn't be 4700 * too costly. 4701 */ 4702 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4703 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4704 drm_dbg(&perf->i915->drm, 4705 "OA config already exists with this uuid\n"); 4706 err = -EADDRINUSE; 4707 goto sysfs_err; 4708 } 4709 } 4710 4711 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4712 if (err) { 4713 drm_dbg(&perf->i915->drm, 4714 "Failed to create sysfs entry for OA config\n"); 4715 goto sysfs_err; 4716 } 4717 4718 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4719 oa_config->id = idr_alloc(&perf->metrics_idr, 4720 oa_config, 2, 4721 0, GFP_KERNEL); 4722 if (oa_config->id < 0) { 4723 drm_dbg(&perf->i915->drm, 4724 "Failed to create sysfs entry for OA config\n"); 4725 err = oa_config->id; 4726 goto sysfs_err; 4727 } 4728 id = oa_config->id; 4729 4730 drm_dbg(&perf->i915->drm, 4731 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4732 mutex_unlock(&perf->metrics_lock); 4733 4734 return id; 4735 4736 sysfs_err: 4737 mutex_unlock(&perf->metrics_lock); 4738 reg_err: 4739 i915_oa_config_put(oa_config); 4740 drm_dbg(&perf->i915->drm, 4741 "Failed to add new OA config\n"); 4742 return err; 4743 } 4744 4745 /** 4746 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4747 * @dev: drm device 4748 * @data: ioctl data (pointer to u64 integer) copied from userspace 4749 * @file: drm file 4750 * 4751 * Configs can be removed while being used, the will stop appearing in sysfs 4752 * and their content will be freed when the stream using the config is closed. 4753 * 4754 * Returns: 0 on success or a negative error code on failure. 4755 */ 4756 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4757 struct drm_file *file) 4758 { 4759 struct i915_perf *perf = &to_i915(dev)->perf; 4760 u64 *arg = data; 4761 struct i915_oa_config *oa_config; 4762 int ret; 4763 4764 if (!perf->i915) 4765 return -ENOTSUPP; 4766 4767 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4768 drm_dbg(&perf->i915->drm, 4769 "Insufficient privileges to remove i915 OA config\n"); 4770 return -EACCES; 4771 } 4772 4773 ret = mutex_lock_interruptible(&perf->metrics_lock); 4774 if (ret) 4775 return ret; 4776 4777 oa_config = idr_find(&perf->metrics_idr, *arg); 4778 if (!oa_config) { 4779 drm_dbg(&perf->i915->drm, 4780 "Failed to remove unknown OA config\n"); 4781 ret = -ENOENT; 4782 goto err_unlock; 4783 } 4784 4785 GEM_BUG_ON(*arg != oa_config->id); 4786 4787 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4788 4789 idr_remove(&perf->metrics_idr, *arg); 4790 4791 mutex_unlock(&perf->metrics_lock); 4792 4793 drm_dbg(&perf->i915->drm, 4794 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4795 4796 i915_oa_config_put(oa_config); 4797 4798 return 0; 4799 4800 err_unlock: 4801 mutex_unlock(&perf->metrics_lock); 4802 return ret; 4803 } 4804 4805 static struct ctl_table oa_table[] = { 4806 { 4807 .procname = "perf_stream_paranoid", 4808 .data = &i915_perf_stream_paranoid, 4809 .maxlen = sizeof(i915_perf_stream_paranoid), 4810 .mode = 0644, 4811 .proc_handler = proc_dointvec_minmax, 4812 .extra1 = SYSCTL_ZERO, 4813 .extra2 = SYSCTL_ONE, 4814 }, 4815 { 4816 .procname = "oa_max_sample_rate", 4817 .data = &i915_oa_max_sample_rate, 4818 .maxlen = sizeof(i915_oa_max_sample_rate), 4819 .mode = 0644, 4820 .proc_handler = proc_dointvec_minmax, 4821 .extra1 = SYSCTL_ZERO, 4822 .extra2 = &oa_sample_rate_hard_limit, 4823 }, 4824 }; 4825 4826 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4827 { 4828 return 1; 4829 } 4830 4831 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4832 { 4833 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4834 /* 4835 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4836 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4837 */ 4838 drm_WARN_ON(&engine->i915->drm, 4839 engine->gt->type != GT_MEDIA); 4840 4841 return PERF_GROUP_OAM_SAMEDIA_0; 4842 } 4843 4844 return PERF_GROUP_INVALID; 4845 } 4846 4847 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4848 { 4849 switch (engine->class) { 4850 case RENDER_CLASS: 4851 return PERF_GROUP_OAG; 4852 4853 case VIDEO_DECODE_CLASS: 4854 case VIDEO_ENHANCEMENT_CLASS: 4855 return __oam_engine_group(engine); 4856 4857 default: 4858 return PERF_GROUP_INVALID; 4859 } 4860 } 4861 4862 static struct i915_perf_regs __oam_regs(u32 base) 4863 { 4864 return (struct i915_perf_regs) { 4865 base, 4866 GEN12_OAM_HEAD_POINTER(base), 4867 GEN12_OAM_TAIL_POINTER(base), 4868 GEN12_OAM_BUFFER(base), 4869 GEN12_OAM_CONTEXT_CONTROL(base), 4870 GEN12_OAM_CONTROL(base), 4871 GEN12_OAM_DEBUG(base), 4872 GEN12_OAM_STATUS(base), 4873 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4874 }; 4875 } 4876 4877 static struct i915_perf_regs __oag_regs(void) 4878 { 4879 return (struct i915_perf_regs) { 4880 0, 4881 GEN12_OAG_OAHEADPTR, 4882 GEN12_OAG_OATAILPTR, 4883 GEN12_OAG_OABUFFER, 4884 GEN12_OAG_OAGLBCTXCTRL, 4885 GEN12_OAG_OACONTROL, 4886 GEN12_OAG_OA_DEBUG, 4887 GEN12_OAG_OASTATUS, 4888 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4889 }; 4890 } 4891 4892 static void oa_init_groups(struct intel_gt *gt) 4893 { 4894 int i, num_groups = gt->perf.num_perf_groups; 4895 4896 for (i = 0; i < num_groups; i++) { 4897 struct i915_perf_group *g = >->perf.group[i]; 4898 4899 /* Fused off engines can result in a group with num_engines == 0 */ 4900 if (g->num_engines == 0) 4901 continue; 4902 4903 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4904 g->regs = __oag_regs(); 4905 g->type = TYPE_OAG; 4906 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4907 g->regs = __oam_regs(mtl_oa_base[i]); 4908 g->type = TYPE_OAM; 4909 } 4910 } 4911 } 4912 4913 static int oa_init_gt(struct intel_gt *gt) 4914 { 4915 u32 num_groups = num_perf_groups_per_gt(gt); 4916 struct intel_engine_cs *engine; 4917 struct i915_perf_group *g; 4918 intel_engine_mask_t tmp; 4919 4920 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4921 if (!g) 4922 return -ENOMEM; 4923 4924 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 4925 u32 index = __oa_engine_group(engine); 4926 4927 engine->oa_group = NULL; 4928 if (index < num_groups) { 4929 g[index].num_engines++; 4930 engine->oa_group = &g[index]; 4931 } 4932 } 4933 4934 gt->perf.num_perf_groups = num_groups; 4935 gt->perf.group = g; 4936 4937 oa_init_groups(gt); 4938 4939 return 0; 4940 } 4941 4942 static int oa_init_engine_groups(struct i915_perf *perf) 4943 { 4944 struct intel_gt *gt; 4945 int i, ret; 4946 4947 for_each_gt(gt, perf->i915, i) { 4948 ret = oa_init_gt(gt); 4949 if (ret) 4950 return ret; 4951 } 4952 4953 return 0; 4954 } 4955 4956 static void oa_init_supported_formats(struct i915_perf *perf) 4957 { 4958 struct drm_i915_private *i915 = perf->i915; 4959 enum intel_platform platform = INTEL_INFO(i915)->platform; 4960 4961 switch (platform) { 4962 case INTEL_HASWELL: 4963 oa_format_add(perf, I915_OA_FORMAT_A13); 4964 oa_format_add(perf, I915_OA_FORMAT_A13); 4965 oa_format_add(perf, I915_OA_FORMAT_A29); 4966 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4967 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4968 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4969 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4970 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4971 break; 4972 4973 case INTEL_BROADWELL: 4974 case INTEL_CHERRYVIEW: 4975 case INTEL_SKYLAKE: 4976 case INTEL_BROXTON: 4977 case INTEL_KABYLAKE: 4978 case INTEL_GEMINILAKE: 4979 case INTEL_COFFEELAKE: 4980 case INTEL_COMETLAKE: 4981 case INTEL_ICELAKE: 4982 case INTEL_ELKHARTLAKE: 4983 case INTEL_JASPERLAKE: 4984 case INTEL_TIGERLAKE: 4985 case INTEL_ROCKETLAKE: 4986 case INTEL_DG1: 4987 case INTEL_ALDERLAKE_S: 4988 case INTEL_ALDERLAKE_P: 4989 oa_format_add(perf, I915_OA_FORMAT_A12); 4990 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4991 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4992 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4993 break; 4994 4995 case INTEL_DG2: 4996 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 4997 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 4998 break; 4999 5000 case INTEL_METEORLAKE: 5001 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5002 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5003 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5004 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5005 break; 5006 5007 default: 5008 MISSING_CASE(platform); 5009 } 5010 } 5011 5012 static void i915_perf_init_info(struct drm_i915_private *i915) 5013 { 5014 struct i915_perf *perf = &i915->perf; 5015 5016 switch (GRAPHICS_VER(i915)) { 5017 case 8: 5018 perf->ctx_oactxctrl_offset = 0x120; 5019 perf->ctx_flexeu0_offset = 0x2ce; 5020 perf->gen8_valid_ctx_bit = BIT(25); 5021 break; 5022 case 9: 5023 perf->ctx_oactxctrl_offset = 0x128; 5024 perf->ctx_flexeu0_offset = 0x3de; 5025 perf->gen8_valid_ctx_bit = BIT(16); 5026 break; 5027 case 11: 5028 perf->ctx_oactxctrl_offset = 0x124; 5029 perf->ctx_flexeu0_offset = 0x78e; 5030 perf->gen8_valid_ctx_bit = BIT(16); 5031 break; 5032 case 12: 5033 perf->gen8_valid_ctx_bit = BIT(16); 5034 /* 5035 * Calculate offset at runtime in oa_pin_context for gen12 and 5036 * cache the value in perf->ctx_oactxctrl_offset. 5037 */ 5038 break; 5039 default: 5040 MISSING_CASE(GRAPHICS_VER(i915)); 5041 } 5042 } 5043 5044 /** 5045 * i915_perf_init - initialize i915-perf state on module bind 5046 * @i915: i915 device instance 5047 * 5048 * Initializes i915-perf state without exposing anything to userspace. 5049 * 5050 * Note: i915-perf initialization is split into an 'init' and 'register' 5051 * phase with the i915_perf_register() exposing state to userspace. 5052 */ 5053 int i915_perf_init(struct drm_i915_private *i915) 5054 { 5055 struct i915_perf *perf = &i915->perf; 5056 5057 perf->oa_formats = oa_formats; 5058 if (IS_HASWELL(i915)) { 5059 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5060 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5061 perf->ops.is_valid_flex_reg = NULL; 5062 perf->ops.enable_metric_set = hsw_enable_metric_set; 5063 perf->ops.disable_metric_set = hsw_disable_metric_set; 5064 perf->ops.oa_enable = gen7_oa_enable; 5065 perf->ops.oa_disable = gen7_oa_disable; 5066 perf->ops.read = gen7_oa_read; 5067 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5068 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5069 /* Note: that although we could theoretically also support the 5070 * legacy ringbuffer mode on BDW (and earlier iterations of 5071 * this driver, before upstreaming did this) it didn't seem 5072 * worth the complexity to maintain now that BDW+ enable 5073 * execlist mode by default. 5074 */ 5075 perf->ops.read = gen8_oa_read; 5076 i915_perf_init_info(i915); 5077 5078 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5079 perf->ops.is_valid_b_counter_reg = 5080 gen7_is_valid_b_counter_addr; 5081 perf->ops.is_valid_mux_reg = 5082 gen8_is_valid_mux_addr; 5083 perf->ops.is_valid_flex_reg = 5084 gen8_is_valid_flex_addr; 5085 5086 if (IS_CHERRYVIEW(i915)) { 5087 perf->ops.is_valid_mux_reg = 5088 chv_is_valid_mux_addr; 5089 } 5090 5091 perf->ops.oa_enable = gen8_oa_enable; 5092 perf->ops.oa_disable = gen8_oa_disable; 5093 perf->ops.enable_metric_set = gen8_enable_metric_set; 5094 perf->ops.disable_metric_set = gen8_disable_metric_set; 5095 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5096 } else if (GRAPHICS_VER(i915) == 11) { 5097 perf->ops.is_valid_b_counter_reg = 5098 gen7_is_valid_b_counter_addr; 5099 perf->ops.is_valid_mux_reg = 5100 gen11_is_valid_mux_addr; 5101 perf->ops.is_valid_flex_reg = 5102 gen8_is_valid_flex_addr; 5103 5104 perf->ops.oa_enable = gen8_oa_enable; 5105 perf->ops.oa_disable = gen8_oa_disable; 5106 perf->ops.enable_metric_set = gen8_enable_metric_set; 5107 perf->ops.disable_metric_set = gen11_disable_metric_set; 5108 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5109 } else if (GRAPHICS_VER(i915) == 12) { 5110 perf->ops.is_valid_b_counter_reg = 5111 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5112 xehp_is_valid_b_counter_addr : 5113 gen12_is_valid_b_counter_addr; 5114 perf->ops.is_valid_mux_reg = 5115 gen12_is_valid_mux_addr; 5116 perf->ops.is_valid_flex_reg = 5117 gen8_is_valid_flex_addr; 5118 5119 perf->ops.oa_enable = gen12_oa_enable; 5120 perf->ops.oa_disable = gen12_oa_disable; 5121 perf->ops.enable_metric_set = gen12_enable_metric_set; 5122 perf->ops.disable_metric_set = gen12_disable_metric_set; 5123 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5124 } 5125 } 5126 5127 if (perf->ops.enable_metric_set) { 5128 struct intel_gt *gt; 5129 int i, ret; 5130 5131 for_each_gt(gt, i915, i) 5132 mutex_init(>->perf.lock); 5133 5134 /* Choose a representative limit */ 5135 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5136 5137 mutex_init(&perf->metrics_lock); 5138 idr_init_base(&perf->metrics_idr, 1); 5139 5140 /* We set up some ratelimit state to potentially throttle any 5141 * _NOTES about spurious, invalid OA reports which we don't 5142 * forward to userspace. 5143 * 5144 * We print a _NOTE about any throttling when closing the 5145 * stream instead of waiting until driver _fini which no one 5146 * would ever see. 5147 * 5148 * Using the same limiting factors as printk_ratelimit() 5149 */ 5150 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5151 /* Since we use a DRM_NOTE for spurious reports it would be 5152 * inconsistent to let __ratelimit() automatically print a 5153 * warning for throttling. 5154 */ 5155 ratelimit_set_flags(&perf->spurious_report_rs, 5156 RATELIMIT_MSG_ON_RELEASE); 5157 5158 ratelimit_state_init(&perf->tail_pointer_race, 5159 5 * HZ, 10); 5160 ratelimit_set_flags(&perf->tail_pointer_race, 5161 RATELIMIT_MSG_ON_RELEASE); 5162 5163 atomic64_set(&perf->noa_programming_delay, 5164 500 * 1000 /* 500us */); 5165 5166 perf->i915 = i915; 5167 5168 ret = oa_init_engine_groups(perf); 5169 if (ret) { 5170 drm_err(&i915->drm, 5171 "OA initialization failed %d\n", ret); 5172 return ret; 5173 } 5174 5175 oa_init_supported_formats(perf); 5176 } 5177 5178 return 0; 5179 } 5180 5181 static int destroy_config(int id, void *p, void *data) 5182 { 5183 i915_oa_config_put(p); 5184 return 0; 5185 } 5186 5187 int i915_perf_sysctl_register(void) 5188 { 5189 sysctl_header = register_sysctl("dev/i915", oa_table); 5190 return 0; 5191 } 5192 5193 void i915_perf_sysctl_unregister(void) 5194 { 5195 unregister_sysctl_table(sysctl_header); 5196 } 5197 5198 /** 5199 * i915_perf_fini - Counter part to i915_perf_init() 5200 * @i915: i915 device instance 5201 */ 5202 void i915_perf_fini(struct drm_i915_private *i915) 5203 { 5204 struct i915_perf *perf = &i915->perf; 5205 struct intel_gt *gt; 5206 int i; 5207 5208 if (!perf->i915) 5209 return; 5210 5211 for_each_gt(gt, perf->i915, i) 5212 kfree(gt->perf.group); 5213 5214 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5215 idr_destroy(&perf->metrics_idr); 5216 5217 memset(&perf->ops, 0, sizeof(perf->ops)); 5218 perf->i915 = NULL; 5219 } 5220 5221 /** 5222 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5223 * @i915: The i915 device 5224 * 5225 * This version number is used by userspace to detect available features. 5226 */ 5227 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5228 { 5229 /* 5230 * 1: Initial version 5231 * I915_PERF_IOCTL_ENABLE 5232 * I915_PERF_IOCTL_DISABLE 5233 * 5234 * 2: Added runtime modification of OA config. 5235 * I915_PERF_IOCTL_CONFIG 5236 * 5237 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5238 * preemption on a particular context so that performance data is 5239 * accessible from a delta of MI_RPC reports without looking at the 5240 * OA buffer. 5241 * 5242 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5243 * be run for the duration of the performance recording based on 5244 * their SSEU configuration. 5245 * 5246 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5247 * interval for the hrtimer used to check for OA data. 5248 * 5249 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5250 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5251 * 5252 * 7: Add support for video decode and enhancement classes. 5253 */ 5254 5255 /* 5256 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5257 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5258 * to indicate that OA media is not supported. 5259 */ 5260 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 5261 intel_check_bios_c6_setup(&i915->media_gt->rc6)) 5262 return 6; 5263 5264 return 7; 5265 } 5266 5267 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5268 #include "selftests/i915_perf.c" 5269 #endif 5270