xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 511bd85485c676744a4c3a22f26965926891b131)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204 
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209  * is currently generally designed assuming the largest 16M size is used such
210  * that the overflow cases are unlikely in normal operation.
211  */
212 #define OA_BUFFER_SIZE		SZ_16M
213 
214 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215 
216 /**
217  * DOC: OA Tail Pointer Race
218  *
219  * There's a HW race condition between OA unit tail pointer register updates and
220  * writes to memory whereby the tail pointer can sometimes get ahead of what's
221  * been written out to the OA buffer so far (in terms of what's visible to the
222  * CPU).
223  *
224  * Although this can be observed explicitly while copying reports to userspace
225  * by checking for a zeroed report-id field in tail reports, we want to account
226  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227  * redundant read() attempts.
228  *
229  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230  * in the OA buffer, starting from the tail reported by the HW until we find a
231  * report with its first 2 dwords not 0 meaning its previous report is
232  * completely in memory and ready to be read. Those dwords are also set to 0
233  * once read and the whole buffer is cleared upon OA buffer initialization. The
234  * first dword is the reason for this report while the second is the timestamp,
235  * making the chances of having those 2 fields at 0 fairly unlikely. A more
236  * detailed explanation is available in oa_buffer_check_unlocked().
237  *
238  * Most of the implementation details for this workaround are in
239  * oa_buffer_check_unlocked() and _append_oa_reports()
240  *
241  * Note for posterity: previously the driver used to define an effective tail
242  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244  * This was flawed considering that the OA unit may also automatically generate
245  * non-periodic reports (such as on context switch) or the OA unit may be
246  * enabled without any periodic sampling.
247  */
248 #define OA_TAIL_MARGIN_NSEC	100000ULL
249 #define INVALID_TAIL_PTR	0xffffffff
250 
251 /* The default frequency for checking whether the OA unit has written new
252  * reports to the circular OA buffer...
253  */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256 
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259 
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261  * of the 64bit timestamp bits to trigger reports from) but there's currently
262  * no known use case for sampling as infrequently as once per 47 thousand years.
263  *
264  * Since the timestamps included in OA reports are only 32bits it seems
265  * reasonable to limit the OA exponent where it's still possible to account for
266  * overflow in OA report timestamps.
267  */
268 #define OA_EXPONENT_MAX 31
269 
270 #define INVALID_CTX_ID 0xffffffff
271 
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK           0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
275 #define OAREPORT_REASON_SHIFT          19
276 #define OAREPORT_REASON_TIMER          (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
279 
280 
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282  *
283  * The highest sampling frequency we can theoretically program the OA unit
284  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285  *
286  * Initialized just before we register the sysctl parameter.
287  */
288 static int oa_sample_rate_hard_limit;
289 
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291  * allow that by default unless root...
292  *
293  * The default threshold of 100000Hz is based on perf's similar
294  * kernel.perf_event_max_sample_rate sysctl parameter.
295  */
296 static u32 i915_oa_max_sample_rate = 100000;
297 
298 /* XXX: beware if future OA HW adds new report formats that the current
299  * code assumes all reports have a power-of-two size and ~(size - 1) can
300  * be used as a mask to align the OA tail pointer.
301  */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
304 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
305 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
306 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
308 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
309 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
310 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
311 };
312 
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
318 };
319 
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323 
324 #define SAMPLE_OA_REPORT      (1<<0)
325 
326 /**
327  * struct perf_open_properties - for validated properties given to open a stream
328  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329  * @single_context: Whether a single or all gpu contexts should be monitored
330  * @hold_preemption: Whether the preemption is disabled for the filtered
331  *                   context
332  * @ctx_handle: A gem ctx handle for use with @single_context
333  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334  * @oa_format: An OA unit HW report format
335  * @oa_periodic: Whether to enable periodic OA unit sampling
336  * @oa_period_exponent: The OA unit sampling period is derived from this
337  * @engine: The engine (typically rcs0) being monitored by the OA unit
338  * @has_sseu: Whether @sseu was specified by userspace
339  * @sseu: internal SSEU configuration computed either from the userspace
340  *        specified configuration in the opening parameters or a default value
341  *        (see get_default_sseu_config())
342  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343  * data availability
344  *
345  * As read_properties_unlocked() enumerates and validates the properties given
346  * to open a stream of metrics the configuration is built up in the structure
347  * which starts out zero initialized.
348  */
349 struct perf_open_properties {
350 	u32 sample_flags;
351 
352 	u64 single_context:1;
353 	u64 hold_preemption:1;
354 	u64 ctx_handle;
355 
356 	/* OA sampling state */
357 	int metrics_set;
358 	int oa_format;
359 	bool oa_periodic;
360 	int oa_period_exponent;
361 
362 	struct intel_engine_cs *engine;
363 
364 	bool has_sseu;
365 	struct intel_sseu sseu;
366 
367 	u64 poll_oa_period;
368 };
369 
370 struct i915_oa_config_bo {
371 	struct llist_node node;
372 
373 	struct i915_oa_config *oa_config;
374 	struct i915_vma *vma;
375 };
376 
377 static struct ctl_table_header *sysctl_header;
378 
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380 
381 void i915_oa_config_release(struct kref *ref)
382 {
383 	struct i915_oa_config *oa_config =
384 		container_of(ref, typeof(*oa_config), ref);
385 
386 	kfree(oa_config->flex_regs);
387 	kfree(oa_config->b_counter_regs);
388 	kfree(oa_config->mux_regs);
389 
390 	kfree_rcu(oa_config, rcu);
391 }
392 
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 	struct i915_oa_config *oa_config;
397 
398 	rcu_read_lock();
399 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 	if (oa_config)
401 		oa_config = i915_oa_config_get(oa_config);
402 	rcu_read_unlock();
403 
404 	return oa_config;
405 }
406 
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 	i915_oa_config_put(oa_bo->oa_config);
410 	i915_vma_put(oa_bo->vma);
411 	kfree(oa_bo);
412 }
413 
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 	struct intel_uncore *uncore = stream->uncore;
417 
418 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 	       GEN12_OAG_OATAILPTR_MASK;
420 }
421 
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 	struct intel_uncore *uncore = stream->uncore;
425 
426 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428 
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433 
434 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436 
437 /**
438  * oa_buffer_check_unlocked - check for data and update tail ptr state
439  * @stream: i915 stream instance
440  *
441  * This is either called via fops (for blocking reads in user ctx) or the poll
442  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443  * if there is data available for userspace to read.
444  *
445  * This function is central to providing a workaround for the OA unit tail
446  * pointer having a race with respect to what data is visible to the CPU.
447  * It is responsible for reading tail pointers from the hardware and giving
448  * the pointers time to 'age' before they are made available for reading.
449  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450  *
451  * Besides returning true when there is data available to read() this function
452  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453  * object.
454  *
455  * Note: It's safe to read OA config state here unlocked, assuming that this is
456  * only called while the stream is enabled, while the global OA configuration
457  * can't be modified.
458  *
459  * Returns: %true if the OA buffer contains data, else %false
460  */
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 	int report_size = stream->oa_buffer.format_size;
465 	unsigned long flags;
466 	bool pollin;
467 	u32 hw_tail;
468 	u64 now;
469 
470 	/* We have to consider the (unlikely) possibility that read() errors
471 	 * could result in an OA buffer reset which might reset the head and
472 	 * tail state.
473 	 */
474 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475 
476 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477 
478 	/* The tail pointer increases in 64 byte increments,
479 	 * not in report_size steps...
480 	 */
481 	hw_tail &= ~(report_size - 1);
482 
483 	now = ktime_get_mono_fast_ns();
484 
485 	if (hw_tail == stream->oa_buffer.aging_tail &&
486 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 		/* If the HW tail hasn't move since the last check and the HW
488 		 * tail has been aging for long enough, declare it the new
489 		 * tail.
490 		 */
491 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 	} else {
493 		u32 head, tail, aged_tail;
494 
495 		/* NB: The head we observe here might effectively be a little
496 		 * out of date. If a read() is in progress, the head could be
497 		 * anywhere between this head and stream->oa_buffer.tail.
498 		 */
499 		head = stream->oa_buffer.head - gtt_offset;
500 		aged_tail = stream->oa_buffer.tail - gtt_offset;
501 
502 		hw_tail -= gtt_offset;
503 		tail = hw_tail;
504 
505 		/* Walk the stream backward until we find a report with dword 0
506 		 * & 1 not at 0. Since the circular buffer pointers progress by
507 		 * increments of 64 bytes and that reports can be up to 256
508 		 * bytes long, we can't tell whether a report has fully landed
509 		 * in memory before the first 2 dwords of the following report
510 		 * have effectively landed.
511 		 *
512 		 * This is assuming that the writes of the OA unit land in
513 		 * memory in the order they were written to.
514 		 * If not : (╯°□°)╯︵ ┻━┻
515 		 */
516 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518 
519 			if (report32[0] != 0 || report32[1] != 0)
520 				break;
521 
522 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 		}
524 
525 		if (OA_TAKEN(hw_tail, tail) > report_size &&
526 		    __ratelimit(&stream->perf->tail_pointer_race))
527 			DRM_NOTE("unlanded report(s) head=0x%x "
528 				 "tail=0x%x hw_tail=0x%x\n",
529 				 head, tail, hw_tail);
530 
531 		stream->oa_buffer.tail = gtt_offset + tail;
532 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 		stream->oa_buffer.aging_timestamp = now;
534 	}
535 
536 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 			  stream->oa_buffer.head - gtt_offset) >= report_size;
538 
539 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540 
541 	return pollin;
542 }
543 
544 /**
545  * append_oa_status - Appends a status record to a userspace read() buffer.
546  * @stream: An i915-perf stream opened for OA metrics
547  * @buf: destination buffer given by userspace
548  * @count: the number of bytes userspace wants to read
549  * @offset: (inout): the current position for writing into @buf
550  * @type: The kind of status to report to userspace
551  *
552  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553  * into the userspace read() buffer.
554  *
555  * The @buf @offset will only be updated on success.
556  *
557  * Returns: 0 on success, negative error code on failure.
558  */
559 static int append_oa_status(struct i915_perf_stream *stream,
560 			    char __user *buf,
561 			    size_t count,
562 			    size_t *offset,
563 			    enum drm_i915_perf_record_type type)
564 {
565 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566 
567 	if ((count - *offset) < header.size)
568 		return -ENOSPC;
569 
570 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 		return -EFAULT;
572 
573 	(*offset) += header.size;
574 
575 	return 0;
576 }
577 
578 /**
579  * append_oa_sample - Copies single OA report into userspace read() buffer.
580  * @stream: An i915-perf stream opened for OA metrics
581  * @buf: destination buffer given by userspace
582  * @count: the number of bytes userspace wants to read
583  * @offset: (inout): the current position for writing into @buf
584  * @report: A single OA report to (optionally) include as part of the sample
585  *
586  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587  * properties when opening a stream, tracked as `stream->sample_flags`. This
588  * function copies the requested components of a single sample to the given
589  * read() @buf.
590  *
591  * The @buf @offset will only be updated on success.
592  *
593  * Returns: 0 on success, negative error code on failure.
594  */
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 			    char __user *buf,
597 			    size_t count,
598 			    size_t *offset,
599 			    const u8 *report)
600 {
601 	int report_size = stream->oa_buffer.format_size;
602 	struct drm_i915_perf_record_header header;
603 	u32 sample_flags = stream->sample_flags;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (sample_flags & SAMPLE_OA_REPORT) {
618 		if (copy_to_user(buf, report, report_size))
619 			return -EFAULT;
620 	}
621 
622 	(*offset) += header.size;
623 
624 	return 0;
625 }
626 
627 /**
628  * Copies all buffered OA reports into userspace read() buffer.
629  * @stream: An i915-perf stream opened for OA metrics
630  * @buf: destination buffer given by userspace
631  * @count: the number of bytes userspace wants to read
632  * @offset: (inout): the current position for writing into @buf
633  *
634  * Notably any error condition resulting in a short read (-%ENOSPC or
635  * -%EFAULT) will be returned even though one or more records may
636  * have been successfully copied. In this case it's up to the caller
637  * to decide if the error should be squashed before returning to
638  * userspace.
639  *
640  * Note: reports are consumed from the head, and appended to the
641  * tail, so the tail chases the head?... If you think that's mad
642  * and back-to-front you're not alone, but this follows the
643  * Gen PRM naming convention.
644  *
645  * Returns: 0 on success, negative error code on failure.
646  */
647 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
648 				  char __user *buf,
649 				  size_t count,
650 				  size_t *offset)
651 {
652 	struct intel_uncore *uncore = stream->uncore;
653 	int report_size = stream->oa_buffer.format_size;
654 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
655 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656 	u32 mask = (OA_BUFFER_SIZE - 1);
657 	size_t start_offset = *offset;
658 	unsigned long flags;
659 	u32 head, tail;
660 	u32 taken;
661 	int ret = 0;
662 
663 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 		return -EIO;
665 
666 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667 
668 	head = stream->oa_buffer.head;
669 	tail = stream->oa_buffer.tail;
670 
671 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672 
673 	/*
674 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
675 	 * while indexing relative to oa_buf_base.
676 	 */
677 	head -= gtt_offset;
678 	tail -= gtt_offset;
679 
680 	/*
681 	 * An out of bounds or misaligned head or tail pointer implies a driver
682 	 * bug since we validate + align the tail pointers we read from the
683 	 * hardware and we are in full control of the head pointer which should
684 	 * only be incremented by multiples of the report size (notably also
685 	 * all a power of two).
686 	 */
687 	if (drm_WARN_ONCE(&uncore->i915->drm,
688 			  head > OA_BUFFER_SIZE || head % report_size ||
689 			  tail > OA_BUFFER_SIZE || tail % report_size,
690 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
691 			  head, tail))
692 		return -EIO;
693 
694 
695 	for (/* none */;
696 	     (taken = OA_TAKEN(tail, head));
697 	     head = (head + report_size) & mask) {
698 		u8 *report = oa_buf_base + head;
699 		u32 *report32 = (void *)report;
700 		u32 ctx_id;
701 		u32 reason;
702 
703 		/*
704 		 * All the report sizes factor neatly into the buffer
705 		 * size so we never expect to see a report split
706 		 * between the beginning and end of the buffer.
707 		 *
708 		 * Given the initial alignment check a misalignment
709 		 * here would imply a driver bug that would result
710 		 * in an overrun.
711 		 */
712 		if (drm_WARN_ON(&uncore->i915->drm,
713 				(OA_BUFFER_SIZE - head) < report_size)) {
714 			drm_err(&uncore->i915->drm,
715 				"Spurious OA head ptr: non-integral report offset\n");
716 			break;
717 		}
718 
719 		/*
720 		 * The reason field includes flags identifying what
721 		 * triggered this specific report (mostly timer
722 		 * triggered or e.g. due to a context switch).
723 		 *
724 		 * This field is never expected to be zero so we can
725 		 * check that the report isn't invalid before copying
726 		 * it to userspace...
727 		 */
728 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 			  (IS_GEN(stream->perf->i915, 12) ?
730 			   OAREPORT_REASON_MASK_EXTENDED :
731 			   OAREPORT_REASON_MASK));
732 		if (reason == 0) {
733 			if (__ratelimit(&stream->perf->spurious_report_rs))
734 				DRM_NOTE("Skipping spurious, invalid OA report\n");
735 			continue;
736 		}
737 
738 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
739 
740 		/*
741 		 * Squash whatever is in the CTX_ID field if it's marked as
742 		 * invalid to be sure we avoid false-positive, single-context
743 		 * filtering below...
744 		 *
745 		 * Note: that we don't clear the valid_ctx_bit so userspace can
746 		 * understand that the ID has been squashed by the kernel.
747 		 */
748 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
749 		    INTEL_GEN(stream->perf->i915) <= 11)
750 			ctx_id = report32[2] = INVALID_CTX_ID;
751 
752 		/*
753 		 * NB: For Gen 8 the OA unit no longer supports clock gating
754 		 * off for a specific context and the kernel can't securely
755 		 * stop the counters from updating as system-wide / global
756 		 * values.
757 		 *
758 		 * Automatic reports now include a context ID so reports can be
759 		 * filtered on the cpu but it's not worth trying to
760 		 * automatically subtract/hide counter progress for other
761 		 * contexts while filtering since we can't stop userspace
762 		 * issuing MI_REPORT_PERF_COUNT commands which would still
763 		 * provide a side-band view of the real values.
764 		 *
765 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
766 		 * to normalize counters for a single filtered context then it
767 		 * needs be forwarded bookend context-switch reports so that it
768 		 * can track switches in between MI_REPORT_PERF_COUNT commands
769 		 * and can itself subtract/ignore the progress of counters
770 		 * associated with other contexts. Note that the hardware
771 		 * automatically triggers reports when switching to a new
772 		 * context which are tagged with the ID of the newly active
773 		 * context. To avoid the complexity (and likely fragility) of
774 		 * reading ahead while parsing reports to try and minimize
775 		 * forwarding redundant context switch reports (i.e. between
776 		 * other, unrelated contexts) we simply elect to forward them
777 		 * all.
778 		 *
779 		 * We don't rely solely on the reason field to identify context
780 		 * switches since it's not-uncommon for periodic samples to
781 		 * identify a switch before any 'context switch' report.
782 		 */
783 		if (!stream->perf->exclusive_stream->ctx ||
784 		    stream->specific_ctx_id == ctx_id ||
785 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 		    reason & OAREPORT_REASON_CTX_SWITCH) {
787 
788 			/*
789 			 * While filtering for a single context we avoid
790 			 * leaking the IDs of other contexts.
791 			 */
792 			if (stream->perf->exclusive_stream->ctx &&
793 			    stream->specific_ctx_id != ctx_id) {
794 				report32[2] = INVALID_CTX_ID;
795 			}
796 
797 			ret = append_oa_sample(stream, buf, count, offset,
798 					       report);
799 			if (ret)
800 				break;
801 
802 			stream->oa_buffer.last_ctx_id = ctx_id;
803 		}
804 
805 		/*
806 		 * Clear out the first 2 dword as a mean to detect unlanded
807 		 * reports.
808 		 */
809 		report32[0] = 0;
810 		report32[1] = 0;
811 	}
812 
813 	if (start_offset != *offset) {
814 		i915_reg_t oaheadptr;
815 
816 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
817 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
818 
819 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820 
821 		/*
822 		 * We removed the gtt_offset for the copy loop above, indexing
823 		 * relative to oa_buf_base so put back here...
824 		 */
825 		head += gtt_offset;
826 		intel_uncore_write(uncore, oaheadptr,
827 				   head & GEN12_OAG_OAHEADPTR_MASK);
828 		stream->oa_buffer.head = head;
829 
830 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 	}
832 
833 	return ret;
834 }
835 
836 /**
837  * gen8_oa_read - copy status records then buffered OA reports
838  * @stream: An i915-perf stream opened for OA metrics
839  * @buf: destination buffer given by userspace
840  * @count: the number of bytes userspace wants to read
841  * @offset: (inout): the current position for writing into @buf
842  *
843  * Checks OA unit status registers and if necessary appends corresponding
844  * status records for userspace (such as for a buffer full condition) and then
845  * initiate appending any buffered OA reports.
846  *
847  * Updates @offset according to the number of bytes successfully copied into
848  * the userspace buffer.
849  *
850  * NB: some data may be successfully copied to the userspace buffer
851  * even if an error is returned, and this is reflected in the
852  * updated @offset.
853  *
854  * Returns: zero on success or a negative error code
855  */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 			char __user *buf,
858 			size_t count,
859 			size_t *offset)
860 {
861 	struct intel_uncore *uncore = stream->uncore;
862 	u32 oastatus;
863 	i915_reg_t oastatus_reg;
864 	int ret;
865 
866 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 		return -EIO;
868 
869 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
870 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
871 
872 	oastatus = intel_uncore_read(uncore, oastatus_reg);
873 
874 	/*
875 	 * We treat OABUFFER_OVERFLOW as a significant error:
876 	 *
877 	 * Although theoretically we could handle this more gracefully
878 	 * sometimes, some Gens don't correctly suppress certain
879 	 * automatically triggered reports in this condition and so we
880 	 * have to assume that old reports are now being trampled
881 	 * over.
882 	 *
883 	 * Considering how we don't currently give userspace control
884 	 * over the OA buffer size and always configure a large 16MB
885 	 * buffer, then a buffer overflow does anyway likely indicate
886 	 * that something has gone quite badly wrong.
887 	 */
888 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 		ret = append_oa_status(stream, buf, count, offset,
890 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 		if (ret)
892 			return ret;
893 
894 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 			  stream->period_exponent);
896 
897 		stream->perf->ops.oa_disable(stream);
898 		stream->perf->ops.oa_enable(stream);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 		intel_uncore_write(uncore, oastatus_reg,
913 				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 	}
915 
916 	return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918 
919 /**
920  * Copies all buffered OA reports into userspace read() buffer.
921  * @stream: An i915-perf stream opened for OA metrics
922  * @buf: destination buffer given by userspace
923  * @count: the number of bytes userspace wants to read
924  * @offset: (inout): the current position for writing into @buf
925  *
926  * Notably any error condition resulting in a short read (-%ENOSPC or
927  * -%EFAULT) will be returned even though one or more records may
928  * have been successfully copied. In this case it's up to the caller
929  * to decide if the error should be squashed before returning to
930  * userspace.
931  *
932  * Note: reports are consumed from the head, and appended to the
933  * tail, so the tail chases the head?... If you think that's mad
934  * and back-to-front you're not alone, but this follows the
935  * Gen PRM naming convention.
936  *
937  * Returns: 0 on success, negative error code on failure.
938  */
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 				  char __user *buf,
941 				  size_t count,
942 				  size_t *offset)
943 {
944 	struct intel_uncore *uncore = stream->uncore;
945 	int report_size = stream->oa_buffer.format_size;
946 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
947 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948 	u32 mask = (OA_BUFFER_SIZE - 1);
949 	size_t start_offset = *offset;
950 	unsigned long flags;
951 	u32 head, tail;
952 	u32 taken;
953 	int ret = 0;
954 
955 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 		return -EIO;
957 
958 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959 
960 	head = stream->oa_buffer.head;
961 	tail = stream->oa_buffer.tail;
962 
963 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964 
965 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
966 	 * while indexing relative to oa_buf_base.
967 	 */
968 	head -= gtt_offset;
969 	tail -= gtt_offset;
970 
971 	/* An out of bounds or misaligned head or tail pointer implies a driver
972 	 * bug since we validate + align the tail pointers we read from the
973 	 * hardware and we are in full control of the head pointer which should
974 	 * only be incremented by multiples of the report size (notably also
975 	 * all a power of two).
976 	 */
977 	if (drm_WARN_ONCE(&uncore->i915->drm,
978 			  head > OA_BUFFER_SIZE || head % report_size ||
979 			  tail > OA_BUFFER_SIZE || tail % report_size,
980 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
981 			  head, tail))
982 		return -EIO;
983 
984 
985 	for (/* none */;
986 	     (taken = OA_TAKEN(tail, head));
987 	     head = (head + report_size) & mask) {
988 		u8 *report = oa_buf_base + head;
989 		u32 *report32 = (void *)report;
990 
991 		/* All the report sizes factor neatly into the buffer
992 		 * size so we never expect to see a report split
993 		 * between the beginning and end of the buffer.
994 		 *
995 		 * Given the initial alignment check a misalignment
996 		 * here would imply a driver bug that would result
997 		 * in an overrun.
998 		 */
999 		if (drm_WARN_ON(&uncore->i915->drm,
1000 				(OA_BUFFER_SIZE - head) < report_size)) {
1001 			drm_err(&uncore->i915->drm,
1002 				"Spurious OA head ptr: non-integral report offset\n");
1003 			break;
1004 		}
1005 
1006 		/* The report-ID field for periodic samples includes
1007 		 * some undocumented flags related to what triggered
1008 		 * the report and is never expected to be zero so we
1009 		 * can check that the report isn't invalid before
1010 		 * copying it to userspace...
1011 		 */
1012 		if (report32[0] == 0) {
1013 			if (__ratelimit(&stream->perf->spurious_report_rs))
1014 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 			continue;
1016 		}
1017 
1018 		ret = append_oa_sample(stream, buf, count, offset, report);
1019 		if (ret)
1020 			break;
1021 
1022 		/* Clear out the first 2 dwords as a mean to detect unlanded
1023 		 * reports.
1024 		 */
1025 		report32[0] = 0;
1026 		report32[1] = 0;
1027 	}
1028 
1029 	if (start_offset != *offset) {
1030 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031 
1032 		/* We removed the gtt_offset for the copy loop above, indexing
1033 		 * relative to oa_buf_base so put back here...
1034 		 */
1035 		head += gtt_offset;
1036 
1037 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1038 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1039 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040 		stream->oa_buffer.head = head;
1041 
1042 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /**
1049  * gen7_oa_read - copy status records then buffered OA reports
1050  * @stream: An i915-perf stream opened for OA metrics
1051  * @buf: destination buffer given by userspace
1052  * @count: the number of bytes userspace wants to read
1053  * @offset: (inout): the current position for writing into @buf
1054  *
1055  * Checks Gen 7 specific OA unit status registers and if necessary appends
1056  * corresponding status records for userspace (such as for a buffer full
1057  * condition) and then initiate appending any buffered OA reports.
1058  *
1059  * Updates @offset according to the number of bytes successfully copied into
1060  * the userspace buffer.
1061  *
1062  * Returns: zero on success or a negative error code
1063  */
1064 static int gen7_oa_read(struct i915_perf_stream *stream,
1065 			char __user *buf,
1066 			size_t count,
1067 			size_t *offset)
1068 {
1069 	struct intel_uncore *uncore = stream->uncore;
1070 	u32 oastatus1;
1071 	int ret;
1072 
1073 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 		return -EIO;
1075 
1076 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077 
1078 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1079 	 * bits while the OA unit is enabled (while the tail pointer
1080 	 * may be updated asynchronously) so we ignore status bits
1081 	 * that have already been reported to userspace.
1082 	 */
1083 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084 
1085 	/* We treat OABUFFER_OVERFLOW as a significant error:
1086 	 *
1087 	 * - The status can be interpreted to mean that the buffer is
1088 	 *   currently full (with a higher precedence than OA_TAKEN()
1089 	 *   which will start to report a near-empty buffer after an
1090 	 *   overflow) but it's awkward that we can't clear the status
1091 	 *   on Haswell, so without a reset we won't be able to catch
1092 	 *   the state again.
1093 	 *
1094 	 * - Since it also implies the HW has started overwriting old
1095 	 *   reports it may also affect our sanity checks for invalid
1096 	 *   reports when copying to userspace that assume new reports
1097 	 *   are being written to cleared memory.
1098 	 *
1099 	 * - In the future we may want to introduce a flight recorder
1100 	 *   mode where the driver will automatically maintain a safe
1101 	 *   guard band between head/tail, avoiding this overflow
1102 	 *   condition, but we avoid the added driver complexity for
1103 	 *   now.
1104 	 */
1105 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106 		ret = append_oa_status(stream, buf, count, offset,
1107 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108 		if (ret)
1109 			return ret;
1110 
1111 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112 			  stream->period_exponent);
1113 
1114 		stream->perf->ops.oa_disable(stream);
1115 		stream->perf->ops.oa_enable(stream);
1116 
1117 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 	}
1119 
1120 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121 		ret = append_oa_status(stream, buf, count, offset,
1122 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123 		if (ret)
1124 			return ret;
1125 		stream->perf->gen7_latched_oastatus1 |=
1126 			GEN7_OASTATUS1_REPORT_LOST;
1127 	}
1128 
1129 	return gen7_append_oa_reports(stream, buf, count, offset);
1130 }
1131 
1132 /**
1133  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134  * @stream: An i915-perf stream opened for OA metrics
1135  *
1136  * Called when userspace tries to read() from a blocking stream FD opened
1137  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138  * OA buffer and wakes us.
1139  *
1140  * Note: it's acceptable to have this return with some false positives
1141  * since any subsequent read handling will return -EAGAIN if there isn't
1142  * really data ready for userspace yet.
1143  *
1144  * Returns: zero on success or a negative error code
1145  */
1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147 {
1148 	/* We would wait indefinitely if periodic sampling is not enabled */
1149 	if (!stream->periodic)
1150 		return -EIO;
1151 
1152 	return wait_event_interruptible(stream->poll_wq,
1153 					oa_buffer_check_unlocked(stream));
1154 }
1155 
1156 /**
1157  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158  * @stream: An i915-perf stream opened for OA metrics
1159  * @file: An i915 perf stream file
1160  * @wait: poll() state table
1161  *
1162  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164  * when it sees data ready to read in the circular OA buffer.
1165  */
1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167 			      struct file *file,
1168 			      poll_table *wait)
1169 {
1170 	poll_wait(file, &stream->poll_wq, wait);
1171 }
1172 
1173 /**
1174  * i915_oa_read - just calls through to &i915_oa_ops->read
1175  * @stream: An i915-perf stream opened for OA metrics
1176  * @buf: destination buffer given by userspace
1177  * @count: the number of bytes userspace wants to read
1178  * @offset: (inout): the current position for writing into @buf
1179  *
1180  * Updates @offset according to the number of bytes successfully copied into
1181  * the userspace buffer.
1182  *
1183  * Returns: zero on success or a negative error code
1184  */
1185 static int i915_oa_read(struct i915_perf_stream *stream,
1186 			char __user *buf,
1187 			size_t count,
1188 			size_t *offset)
1189 {
1190 	return stream->perf->ops.read(stream, buf, count, offset);
1191 }
1192 
1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194 {
1195 	struct i915_gem_engines_iter it;
1196 	struct i915_gem_context *ctx = stream->ctx;
1197 	struct intel_context *ce;
1198 	int err;
1199 
1200 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1201 		if (ce->engine != stream->engine) /* first match! */
1202 			continue;
1203 
1204 		/*
1205 		 * As the ID is the gtt offset of the context's vma we
1206 		 * pin the vma to ensure the ID remains fixed.
1207 		 */
1208 		err = intel_context_pin(ce);
1209 		if (err == 0) {
1210 			stream->pinned_ctx = ce;
1211 			break;
1212 		}
1213 	}
1214 	i915_gem_context_unlock_engines(ctx);
1215 
1216 	return stream->pinned_ctx;
1217 }
1218 
1219 /**
1220  * oa_get_render_ctx_id - determine and hold ctx hw id
1221  * @stream: An i915-perf stream opened for OA metrics
1222  *
1223  * Determine the render context hw id, and ensure it remains fixed for the
1224  * lifetime of the stream. This ensures that we don't have to worry about
1225  * updating the context ID in OACONTROL on the fly.
1226  *
1227  * Returns: zero on success or a negative error code
1228  */
1229 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1230 {
1231 	struct intel_context *ce;
1232 
1233 	ce = oa_pin_context(stream);
1234 	if (IS_ERR(ce))
1235 		return PTR_ERR(ce);
1236 
1237 	switch (INTEL_GEN(ce->engine->i915)) {
1238 	case 7: {
1239 		/*
1240 		 * On Haswell we don't do any post processing of the reports
1241 		 * and don't need to use the mask.
1242 		 */
1243 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1244 		stream->specific_ctx_id_mask = 0;
1245 		break;
1246 	}
1247 
1248 	case 8:
1249 	case 9:
1250 	case 10:
1251 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1252 			stream->specific_ctx_id_mask =
1253 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1254 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1255 		} else {
1256 			/*
1257 			 * When using GuC, the context descriptor we write in
1258 			 * i915 is read by GuC and rewritten before it's
1259 			 * actually written into the hardware. The LRCA is
1260 			 * what is put into the context id field of the
1261 			 * context descriptor by GuC. Because it's aligned to
1262 			 * a page, the lower 12bits are always at 0 and
1263 			 * dropped by GuC. They won't be part of the context
1264 			 * ID in the OA reports, so squash those lower bits.
1265 			 */
1266 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1267 
1268 			/*
1269 			 * GuC uses the top bit to signal proxy submission, so
1270 			 * ignore that bit.
1271 			 */
1272 			stream->specific_ctx_id_mask =
1273 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1274 		}
1275 		break;
1276 
1277 	case 11:
1278 	case 12: {
1279 		stream->specific_ctx_id_mask =
1280 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1281 		/*
1282 		 * Pick an unused context id
1283 		 * 0 - BITS_PER_LONG are used by other contexts
1284 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1285 		 */
1286 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1287 		break;
1288 	}
1289 
1290 	default:
1291 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1292 	}
1293 
1294 	ce->tag = stream->specific_ctx_id;
1295 
1296 	drm_dbg(&stream->perf->i915->drm,
1297 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1298 		stream->specific_ctx_id,
1299 		stream->specific_ctx_id_mask);
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1306  * @stream: An i915-perf stream opened for OA metrics
1307  *
1308  * In case anything needed doing to ensure the context HW ID would remain valid
1309  * for the lifetime of the stream, then that can be undone here.
1310  */
1311 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1312 {
1313 	struct intel_context *ce;
1314 
1315 	ce = fetch_and_zero(&stream->pinned_ctx);
1316 	if (ce) {
1317 		ce->tag = 0; /* recomputed on next submission after parking */
1318 		intel_context_unpin(ce);
1319 	}
1320 
1321 	stream->specific_ctx_id = INVALID_CTX_ID;
1322 	stream->specific_ctx_id_mask = 0;
1323 }
1324 
1325 static void
1326 free_oa_buffer(struct i915_perf_stream *stream)
1327 {
1328 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1329 				   I915_VMA_RELEASE_MAP);
1330 
1331 	stream->oa_buffer.vaddr = NULL;
1332 }
1333 
1334 static void
1335 free_oa_configs(struct i915_perf_stream *stream)
1336 {
1337 	struct i915_oa_config_bo *oa_bo, *tmp;
1338 
1339 	i915_oa_config_put(stream->oa_config);
1340 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1341 		free_oa_config_bo(oa_bo);
1342 }
1343 
1344 static void
1345 free_noa_wait(struct i915_perf_stream *stream)
1346 {
1347 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1348 }
1349 
1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351 {
1352 	struct i915_perf *perf = stream->perf;
1353 
1354 	BUG_ON(stream != perf->exclusive_stream);
1355 
1356 	/*
1357 	 * Unset exclusive_stream first, it will be checked while disabling
1358 	 * the metric set on gen8+.
1359 	 *
1360 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1361 	 */
1362 	WRITE_ONCE(perf->exclusive_stream, NULL);
1363 	perf->ops.disable_metric_set(stream);
1364 
1365 	free_oa_buffer(stream);
1366 
1367 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1368 	intel_engine_pm_put(stream->engine);
1369 
1370 	if (stream->ctx)
1371 		oa_put_render_ctx_id(stream);
1372 
1373 	free_oa_configs(stream);
1374 	free_noa_wait(stream);
1375 
1376 	if (perf->spurious_report_rs.missed) {
1377 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1378 			 perf->spurious_report_rs.missed);
1379 	}
1380 }
1381 
1382 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1383 {
1384 	struct intel_uncore *uncore = stream->uncore;
1385 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1386 	unsigned long flags;
1387 
1388 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1389 
1390 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1391 	 * before OASTATUS1, but after OASTATUS2
1392 	 */
1393 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1394 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1395 	stream->oa_buffer.head = gtt_offset;
1396 
1397 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1398 
1399 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1400 			   gtt_offset | OABUFFER_SIZE_16M);
1401 
1402 	/* Mark that we need updated tail pointers to read from... */
1403 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1404 	stream->oa_buffer.tail = gtt_offset;
1405 
1406 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1407 
1408 	/* On Haswell we have to track which OASTATUS1 flags we've
1409 	 * already seen since they can't be cleared while periodic
1410 	 * sampling is enabled.
1411 	 */
1412 	stream->perf->gen7_latched_oastatus1 = 0;
1413 
1414 	/* NB: although the OA buffer will initially be allocated
1415 	 * zeroed via shmfs (and so this memset is redundant when
1416 	 * first allocating), we may re-init the OA buffer, either
1417 	 * when re-enabling a stream or in error/reset paths.
1418 	 *
1419 	 * The reason we clear the buffer for each re-init is for the
1420 	 * sanity check in gen7_append_oa_reports() that looks at the
1421 	 * report-id field to make sure it's non-zero which relies on
1422 	 * the assumption that new reports are being written to zeroed
1423 	 * memory...
1424 	 */
1425 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1426 }
1427 
1428 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1429 {
1430 	struct intel_uncore *uncore = stream->uncore;
1431 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1432 	unsigned long flags;
1433 
1434 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1435 
1436 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1437 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1438 	stream->oa_buffer.head = gtt_offset;
1439 
1440 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1441 
1442 	/*
1443 	 * PRM says:
1444 	 *
1445 	 *  "This MMIO must be set before the OATAILPTR
1446 	 *  register and after the OAHEADPTR register. This is
1447 	 *  to enable proper functionality of the overflow
1448 	 *  bit."
1449 	 */
1450 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1451 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1452 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1453 
1454 	/* Mark that we need updated tail pointers to read from... */
1455 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1456 	stream->oa_buffer.tail = gtt_offset;
1457 
1458 	/*
1459 	 * Reset state used to recognise context switches, affecting which
1460 	 * reports we will forward to userspace while filtering for a single
1461 	 * context.
1462 	 */
1463 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1464 
1465 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1466 
1467 	/*
1468 	 * NB: although the OA buffer will initially be allocated
1469 	 * zeroed via shmfs (and so this memset is redundant when
1470 	 * first allocating), we may re-init the OA buffer, either
1471 	 * when re-enabling a stream or in error/reset paths.
1472 	 *
1473 	 * The reason we clear the buffer for each re-init is for the
1474 	 * sanity check in gen8_append_oa_reports() that looks at the
1475 	 * reason field to make sure it's non-zero which relies on
1476 	 * the assumption that new reports are being written to zeroed
1477 	 * memory...
1478 	 */
1479 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1480 }
1481 
1482 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1483 {
1484 	struct intel_uncore *uncore = stream->uncore;
1485 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1489 
1490 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1491 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1492 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1493 	stream->oa_buffer.head = gtt_offset;
1494 
1495 	/*
1496 	 * PRM says:
1497 	 *
1498 	 *  "This MMIO must be set before the OATAILPTR
1499 	 *  register and after the OAHEADPTR register. This is
1500 	 *  to enable proper functionality of the overflow
1501 	 *  bit."
1502 	 */
1503 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1504 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1505 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1506 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1507 
1508 	/* Mark that we need updated tail pointers to read from... */
1509 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1510 	stream->oa_buffer.tail = gtt_offset;
1511 
1512 	/*
1513 	 * Reset state used to recognise context switches, affecting which
1514 	 * reports we will forward to userspace while filtering for a single
1515 	 * context.
1516 	 */
1517 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1518 
1519 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1520 
1521 	/*
1522 	 * NB: although the OA buffer will initially be allocated
1523 	 * zeroed via shmfs (and so this memset is redundant when
1524 	 * first allocating), we may re-init the OA buffer, either
1525 	 * when re-enabling a stream or in error/reset paths.
1526 	 *
1527 	 * The reason we clear the buffer for each re-init is for the
1528 	 * sanity check in gen8_append_oa_reports() that looks at the
1529 	 * reason field to make sure it's non-zero which relies on
1530 	 * the assumption that new reports are being written to zeroed
1531 	 * memory...
1532 	 */
1533 	memset(stream->oa_buffer.vaddr, 0,
1534 	       stream->oa_buffer.vma->size);
1535 }
1536 
1537 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1538 {
1539 	struct drm_i915_private *i915 = stream->perf->i915;
1540 	struct drm_i915_gem_object *bo;
1541 	struct i915_vma *vma;
1542 	int ret;
1543 
1544 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1545 		return -ENODEV;
1546 
1547 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1548 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1549 
1550 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1551 	if (IS_ERR(bo)) {
1552 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1553 		return PTR_ERR(bo);
1554 	}
1555 
1556 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1557 
1558 	/* PreHSW required 512K alignment, HSW requires 16M */
1559 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1560 	if (IS_ERR(vma)) {
1561 		ret = PTR_ERR(vma);
1562 		goto err_unref;
1563 	}
1564 	stream->oa_buffer.vma = vma;
1565 
1566 	stream->oa_buffer.vaddr =
1567 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1568 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1569 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1570 		goto err_unpin;
1571 	}
1572 
1573 	return 0;
1574 
1575 err_unpin:
1576 	__i915_vma_unpin(vma);
1577 
1578 err_unref:
1579 	i915_gem_object_put(bo);
1580 
1581 	stream->oa_buffer.vaddr = NULL;
1582 	stream->oa_buffer.vma = NULL;
1583 
1584 	return ret;
1585 }
1586 
1587 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1588 				  bool save, i915_reg_t reg, u32 offset,
1589 				  u32 dword_count)
1590 {
1591 	u32 cmd;
1592 	u32 d;
1593 
1594 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1595 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1596 	if (INTEL_GEN(stream->perf->i915) >= 8)
1597 		cmd++;
1598 
1599 	for (d = 0; d < dword_count; d++) {
1600 		*cs++ = cmd;
1601 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1602 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1603 						offset) + 4 * d;
1604 		*cs++ = 0;
1605 	}
1606 
1607 	return cs;
1608 }
1609 
1610 static int alloc_noa_wait(struct i915_perf_stream *stream)
1611 {
1612 	struct drm_i915_private *i915 = stream->perf->i915;
1613 	struct drm_i915_gem_object *bo;
1614 	struct i915_vma *vma;
1615 	const u64 delay_ticks = 0xffffffffffffffff -
1616 		i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1617 	const u32 base = stream->engine->mmio_base;
1618 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1619 	u32 *batch, *ts0, *cs, *jump;
1620 	int ret, i;
1621 	enum {
1622 		START_TS,
1623 		NOW_TS,
1624 		DELTA_TS,
1625 		JUMP_PREDICATE,
1626 		DELTA_TARGET,
1627 		N_CS_GPR
1628 	};
1629 
1630 	bo = i915_gem_object_create_internal(i915, 4096);
1631 	if (IS_ERR(bo)) {
1632 		drm_err(&i915->drm,
1633 			"Failed to allocate NOA wait batchbuffer\n");
1634 		return PTR_ERR(bo);
1635 	}
1636 
1637 	/*
1638 	 * We pin in GGTT because we jump into this buffer now because
1639 	 * multiple OA config BOs will have a jump to this address and it
1640 	 * needs to be fixed during the lifetime of the i915/perf stream.
1641 	 */
1642 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1643 	if (IS_ERR(vma)) {
1644 		ret = PTR_ERR(vma);
1645 		goto err_unref;
1646 	}
1647 
1648 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1649 	if (IS_ERR(batch)) {
1650 		ret = PTR_ERR(batch);
1651 		goto err_unpin;
1652 	}
1653 
1654 	/* Save registers. */
1655 	for (i = 0; i < N_CS_GPR; i++)
1656 		cs = save_restore_register(
1657 			stream, cs, true /* save */, CS_GPR(i),
1658 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1659 	cs = save_restore_register(
1660 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1661 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1662 
1663 	/* First timestamp snapshot location. */
1664 	ts0 = cs;
1665 
1666 	/*
1667 	 * Initial snapshot of the timestamp register to implement the wait.
1668 	 * We work with 32b values, so clear out the top 32b bits of the
1669 	 * register because the ALU works 64bits.
1670 	 */
1671 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1672 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1673 	*cs++ = 0;
1674 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1675 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1676 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1677 
1678 	/*
1679 	 * This is the location we're going to jump back into until the
1680 	 * required amount of time has passed.
1681 	 */
1682 	jump = cs;
1683 
1684 	/*
1685 	 * Take another snapshot of the timestamp register. Take care to clear
1686 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1687 	 * operations below.
1688 	 */
1689 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1690 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1691 	*cs++ = 0;
1692 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1693 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1694 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1695 
1696 	/*
1697 	 * Do a diff between the 2 timestamps and store the result back into
1698 	 * CS_GPR(1).
1699 	 */
1700 	*cs++ = MI_MATH(5);
1701 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1702 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1703 	*cs++ = MI_MATH_SUB;
1704 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1705 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1706 
1707 	/*
1708 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1709 	 * timestamp have rolled over the 32bits) into the predicate register
1710 	 * to be used for the predicated jump.
1711 	 */
1712 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1713 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1714 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1715 
1716 	/* Restart from the beginning if we had timestamps roll over. */
1717 	*cs++ = (INTEL_GEN(i915) < 8 ?
1718 		 MI_BATCH_BUFFER_START :
1719 		 MI_BATCH_BUFFER_START_GEN8) |
1720 		MI_BATCH_PREDICATE;
1721 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1722 	*cs++ = 0;
1723 
1724 	/*
1725 	 * Now add the diff between to previous timestamps and add it to :
1726 	 *      (((1 * << 64) - 1) - delay_ns)
1727 	 *
1728 	 * When the Carry Flag contains 1 this means the elapsed time is
1729 	 * longer than the expected delay, and we can exit the wait loop.
1730 	 */
1731 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1732 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1733 	*cs++ = lower_32_bits(delay_ticks);
1734 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1735 	*cs++ = upper_32_bits(delay_ticks);
1736 
1737 	*cs++ = MI_MATH(4);
1738 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1739 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1740 	*cs++ = MI_MATH_ADD;
1741 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1742 
1743 	*cs++ = MI_ARB_CHECK;
1744 
1745 	/*
1746 	 * Transfer the result into the predicate register to be used for the
1747 	 * predicated jump.
1748 	 */
1749 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1751 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1752 
1753 	/* Predicate the jump.  */
1754 	*cs++ = (INTEL_GEN(i915) < 8 ?
1755 		 MI_BATCH_BUFFER_START :
1756 		 MI_BATCH_BUFFER_START_GEN8) |
1757 		MI_BATCH_PREDICATE;
1758 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1759 	*cs++ = 0;
1760 
1761 	/* Restore registers. */
1762 	for (i = 0; i < N_CS_GPR; i++)
1763 		cs = save_restore_register(
1764 			stream, cs, false /* restore */, CS_GPR(i),
1765 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1766 	cs = save_restore_register(
1767 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1768 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1769 
1770 	/* And return to the ring. */
1771 	*cs++ = MI_BATCH_BUFFER_END;
1772 
1773 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1774 
1775 	i915_gem_object_flush_map(bo);
1776 	__i915_gem_object_release_map(bo);
1777 
1778 	stream->noa_wait = vma;
1779 	return 0;
1780 
1781 err_unpin:
1782 	i915_vma_unpin_and_release(&vma, 0);
1783 err_unref:
1784 	i915_gem_object_put(bo);
1785 	return ret;
1786 }
1787 
1788 static u32 *write_cs_mi_lri(u32 *cs,
1789 			    const struct i915_oa_reg *reg_data,
1790 			    u32 n_regs)
1791 {
1792 	u32 i;
1793 
1794 	for (i = 0; i < n_regs; i++) {
1795 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1796 			u32 n_lri = min_t(u32,
1797 					  n_regs - i,
1798 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1799 
1800 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1801 		}
1802 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1803 		*cs++ = reg_data[i].value;
1804 	}
1805 
1806 	return cs;
1807 }
1808 
1809 static int num_lri_dwords(int num_regs)
1810 {
1811 	int count = 0;
1812 
1813 	if (num_regs > 0) {
1814 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1815 		count += num_regs * 2;
1816 	}
1817 
1818 	return count;
1819 }
1820 
1821 static struct i915_oa_config_bo *
1822 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1823 		       struct i915_oa_config *oa_config)
1824 {
1825 	struct drm_i915_gem_object *obj;
1826 	struct i915_oa_config_bo *oa_bo;
1827 	size_t config_length = 0;
1828 	u32 *cs;
1829 	int err;
1830 
1831 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1832 	if (!oa_bo)
1833 		return ERR_PTR(-ENOMEM);
1834 
1835 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1836 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1837 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1838 	config_length += 3; /* MI_BATCH_BUFFER_START */
1839 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1840 
1841 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1842 	if (IS_ERR(obj)) {
1843 		err = PTR_ERR(obj);
1844 		goto err_free;
1845 	}
1846 
1847 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1848 	if (IS_ERR(cs)) {
1849 		err = PTR_ERR(cs);
1850 		goto err_oa_bo;
1851 	}
1852 
1853 	cs = write_cs_mi_lri(cs,
1854 			     oa_config->mux_regs,
1855 			     oa_config->mux_regs_len);
1856 	cs = write_cs_mi_lri(cs,
1857 			     oa_config->b_counter_regs,
1858 			     oa_config->b_counter_regs_len);
1859 	cs = write_cs_mi_lri(cs,
1860 			     oa_config->flex_regs,
1861 			     oa_config->flex_regs_len);
1862 
1863 	/* Jump into the active wait. */
1864 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1865 		 MI_BATCH_BUFFER_START :
1866 		 MI_BATCH_BUFFER_START_GEN8);
1867 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1868 	*cs++ = 0;
1869 
1870 	i915_gem_object_flush_map(obj);
1871 	__i915_gem_object_release_map(obj);
1872 
1873 	oa_bo->vma = i915_vma_instance(obj,
1874 				       &stream->engine->gt->ggtt->vm,
1875 				       NULL);
1876 	if (IS_ERR(oa_bo->vma)) {
1877 		err = PTR_ERR(oa_bo->vma);
1878 		goto err_oa_bo;
1879 	}
1880 
1881 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1882 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1883 
1884 	return oa_bo;
1885 
1886 err_oa_bo:
1887 	i915_gem_object_put(obj);
1888 err_free:
1889 	kfree(oa_bo);
1890 	return ERR_PTR(err);
1891 }
1892 
1893 static struct i915_vma *
1894 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1895 {
1896 	struct i915_oa_config_bo *oa_bo;
1897 
1898 	/*
1899 	 * Look for the buffer in the already allocated BOs attached
1900 	 * to the stream.
1901 	 */
1902 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1903 		if (oa_bo->oa_config == oa_config &&
1904 		    memcmp(oa_bo->oa_config->uuid,
1905 			   oa_config->uuid,
1906 			   sizeof(oa_config->uuid)) == 0)
1907 			goto out;
1908 	}
1909 
1910 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1911 	if (IS_ERR(oa_bo))
1912 		return ERR_CAST(oa_bo);
1913 
1914 out:
1915 	return i915_vma_get(oa_bo->vma);
1916 }
1917 
1918 static int
1919 emit_oa_config(struct i915_perf_stream *stream,
1920 	       struct i915_oa_config *oa_config,
1921 	       struct intel_context *ce,
1922 	       struct i915_active *active)
1923 {
1924 	struct i915_request *rq;
1925 	struct i915_vma *vma;
1926 	int err;
1927 
1928 	vma = get_oa_vma(stream, oa_config);
1929 	if (IS_ERR(vma))
1930 		return PTR_ERR(vma);
1931 
1932 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1933 	if (err)
1934 		goto err_vma_put;
1935 
1936 	intel_engine_pm_get(ce->engine);
1937 	rq = i915_request_create(ce);
1938 	intel_engine_pm_put(ce->engine);
1939 	if (IS_ERR(rq)) {
1940 		err = PTR_ERR(rq);
1941 		goto err_vma_unpin;
1942 	}
1943 
1944 	if (!IS_ERR_OR_NULL(active)) {
1945 		/* After all individual context modifications */
1946 		err = i915_request_await_active(rq, active,
1947 						I915_ACTIVE_AWAIT_ACTIVE);
1948 		if (err)
1949 			goto err_add_request;
1950 
1951 		err = i915_active_add_request(active, rq);
1952 		if (err)
1953 			goto err_add_request;
1954 	}
1955 
1956 	i915_vma_lock(vma);
1957 	err = i915_request_await_object(rq, vma->obj, 0);
1958 	if (!err)
1959 		err = i915_vma_move_to_active(vma, rq, 0);
1960 	i915_vma_unlock(vma);
1961 	if (err)
1962 		goto err_add_request;
1963 
1964 	err = rq->engine->emit_bb_start(rq,
1965 					vma->node.start, 0,
1966 					I915_DISPATCH_SECURE);
1967 	if (err)
1968 		goto err_add_request;
1969 
1970 err_add_request:
1971 	i915_request_add(rq);
1972 err_vma_unpin:
1973 	i915_vma_unpin(vma);
1974 err_vma_put:
1975 	i915_vma_put(vma);
1976 	return err;
1977 }
1978 
1979 static struct intel_context *oa_context(struct i915_perf_stream *stream)
1980 {
1981 	return stream->pinned_ctx ?: stream->engine->kernel_context;
1982 }
1983 
1984 static int
1985 hsw_enable_metric_set(struct i915_perf_stream *stream,
1986 		      struct i915_active *active)
1987 {
1988 	struct intel_uncore *uncore = stream->uncore;
1989 
1990 	/*
1991 	 * PRM:
1992 	 *
1993 	 * OA unit is using “crclk” for its functionality. When trunk
1994 	 * level clock gating takes place, OA clock would be gated,
1995 	 * unable to count the events from non-render clock domain.
1996 	 * Render clock gating must be disabled when OA is enabled to
1997 	 * count the events from non-render domain. Unit level clock
1998 	 * gating for RCS should also be disabled.
1999 	 */
2000 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2001 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2002 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2003 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2004 
2005 	return emit_oa_config(stream,
2006 			      stream->oa_config, oa_context(stream),
2007 			      active);
2008 }
2009 
2010 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2011 {
2012 	struct intel_uncore *uncore = stream->uncore;
2013 
2014 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2015 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2016 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2017 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2018 
2019 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2020 }
2021 
2022 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2023 			      i915_reg_t reg)
2024 {
2025 	u32 mmio = i915_mmio_reg_offset(reg);
2026 	int i;
2027 
2028 	/*
2029 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2030 	 * Active' event. In the future it's anticipated that there
2031 	 * will be an explicit 'No Event' we can select, but not yet...
2032 	 */
2033 	if (!oa_config)
2034 		return 0;
2035 
2036 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2037 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2038 			return oa_config->flex_regs[i].value;
2039 	}
2040 
2041 	return 0;
2042 }
2043 /*
2044  * NB: It must always remain pointer safe to run this even if the OA unit
2045  * has been disabled.
2046  *
2047  * It's fine to put out-of-date values into these per-context registers
2048  * in the case that the OA unit has been disabled.
2049  */
2050 static void
2051 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2052 			       const struct i915_perf_stream *stream)
2053 {
2054 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2055 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2056 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2057 	i915_reg_t flex_regs[] = {
2058 		EU_PERF_CNTL0,
2059 		EU_PERF_CNTL1,
2060 		EU_PERF_CNTL2,
2061 		EU_PERF_CNTL3,
2062 		EU_PERF_CNTL4,
2063 		EU_PERF_CNTL5,
2064 		EU_PERF_CNTL6,
2065 	};
2066 	u32 *reg_state = ce->lrc_reg_state;
2067 	int i;
2068 
2069 	reg_state[ctx_oactxctrl + 1] =
2070 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2071 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2072 		GEN8_OA_COUNTER_RESUME;
2073 
2074 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2075 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2076 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2077 }
2078 
2079 struct flex {
2080 	i915_reg_t reg;
2081 	u32 offset;
2082 	u32 value;
2083 };
2084 
2085 static int
2086 gen8_store_flex(struct i915_request *rq,
2087 		struct intel_context *ce,
2088 		const struct flex *flex, unsigned int count)
2089 {
2090 	u32 offset;
2091 	u32 *cs;
2092 
2093 	cs = intel_ring_begin(rq, 4 * count);
2094 	if (IS_ERR(cs))
2095 		return PTR_ERR(cs);
2096 
2097 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2098 	do {
2099 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2100 		*cs++ = offset + flex->offset * sizeof(u32);
2101 		*cs++ = 0;
2102 		*cs++ = flex->value;
2103 	} while (flex++, --count);
2104 
2105 	intel_ring_advance(rq, cs);
2106 
2107 	return 0;
2108 }
2109 
2110 static int
2111 gen8_load_flex(struct i915_request *rq,
2112 	       struct intel_context *ce,
2113 	       const struct flex *flex, unsigned int count)
2114 {
2115 	u32 *cs;
2116 
2117 	GEM_BUG_ON(!count || count > 63);
2118 
2119 	cs = intel_ring_begin(rq, 2 * count + 2);
2120 	if (IS_ERR(cs))
2121 		return PTR_ERR(cs);
2122 
2123 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2124 	do {
2125 		*cs++ = i915_mmio_reg_offset(flex->reg);
2126 		*cs++ = flex->value;
2127 	} while (flex++, --count);
2128 	*cs++ = MI_NOOP;
2129 
2130 	intel_ring_advance(rq, cs);
2131 
2132 	return 0;
2133 }
2134 
2135 static int gen8_modify_context(struct intel_context *ce,
2136 			       const struct flex *flex, unsigned int count)
2137 {
2138 	struct i915_request *rq;
2139 	int err;
2140 
2141 	rq = intel_engine_create_kernel_request(ce->engine);
2142 	if (IS_ERR(rq))
2143 		return PTR_ERR(rq);
2144 
2145 	/* Serialise with the remote context */
2146 	err = intel_context_prepare_remote_request(ce, rq);
2147 	if (err == 0)
2148 		err = gen8_store_flex(rq, ce, flex, count);
2149 
2150 	i915_request_add(rq);
2151 	return err;
2152 }
2153 
2154 static int
2155 gen8_modify_self(struct intel_context *ce,
2156 		 const struct flex *flex, unsigned int count,
2157 		 struct i915_active *active)
2158 {
2159 	struct i915_request *rq;
2160 	int err;
2161 
2162 	intel_engine_pm_get(ce->engine);
2163 	rq = i915_request_create(ce);
2164 	intel_engine_pm_put(ce->engine);
2165 	if (IS_ERR(rq))
2166 		return PTR_ERR(rq);
2167 
2168 	if (!IS_ERR_OR_NULL(active)) {
2169 		err = i915_active_add_request(active, rq);
2170 		if (err)
2171 			goto err_add_request;
2172 	}
2173 
2174 	err = gen8_load_flex(rq, ce, flex, count);
2175 	if (err)
2176 		goto err_add_request;
2177 
2178 err_add_request:
2179 	i915_request_add(rq);
2180 	return err;
2181 }
2182 
2183 static int gen8_configure_context(struct i915_gem_context *ctx,
2184 				  struct flex *flex, unsigned int count)
2185 {
2186 	struct i915_gem_engines_iter it;
2187 	struct intel_context *ce;
2188 	int err = 0;
2189 
2190 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2191 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2192 
2193 		if (ce->engine->class != RENDER_CLASS)
2194 			continue;
2195 
2196 		/* Otherwise OA settings will be set upon first use */
2197 		if (!intel_context_pin_if_active(ce))
2198 			continue;
2199 
2200 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2201 		err = gen8_modify_context(ce, flex, count);
2202 
2203 		intel_context_unpin(ce);
2204 		if (err)
2205 			break;
2206 	}
2207 	i915_gem_context_unlock_engines(ctx);
2208 
2209 	return err;
2210 }
2211 
2212 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2213 				       struct i915_active *active)
2214 {
2215 	int err;
2216 	struct intel_context *ce = stream->pinned_ctx;
2217 	u32 format = stream->oa_buffer.format;
2218 	struct flex regs_context[] = {
2219 		{
2220 			GEN8_OACTXCONTROL,
2221 			stream->perf->ctx_oactxctrl_offset + 1,
2222 			active ? GEN8_OA_COUNTER_RESUME : 0,
2223 		},
2224 	};
2225 	/* Offsets in regs_lri are not used since this configuration is only
2226 	 * applied using LRI. Initialize the correct offsets for posterity.
2227 	 */
2228 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2229 	struct flex regs_lri[] = {
2230 		{
2231 			GEN12_OAR_OACONTROL,
2232 			GEN12_OAR_OACONTROL_OFFSET + 1,
2233 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2234 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2235 		},
2236 		{
2237 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2238 			CTX_CONTEXT_CONTROL,
2239 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2240 				      active ?
2241 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2242 				      0)
2243 		},
2244 	};
2245 
2246 	/* Modify the context image of pinned context with regs_context*/
2247 	err = intel_context_lock_pinned(ce);
2248 	if (err)
2249 		return err;
2250 
2251 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2252 	intel_context_unlock_pinned(ce);
2253 	if (err)
2254 		return err;
2255 
2256 	/* Apply regs_lri using LRI with pinned context */
2257 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2258 }
2259 
2260 /*
2261  * Manages updating the per-context aspects of the OA stream
2262  * configuration across all contexts.
2263  *
2264  * The awkward consideration here is that OACTXCONTROL controls the
2265  * exponent for periodic sampling which is primarily used for system
2266  * wide profiling where we'd like a consistent sampling period even in
2267  * the face of context switches.
2268  *
2269  * Our approach of updating the register state context (as opposed to
2270  * say using a workaround batch buffer) ensures that the hardware
2271  * won't automatically reload an out-of-date timer exponent even
2272  * transiently before a WA BB could be parsed.
2273  *
2274  * This function needs to:
2275  * - Ensure the currently running context's per-context OA state is
2276  *   updated
2277  * - Ensure that all existing contexts will have the correct per-context
2278  *   OA state if they are scheduled for use.
2279  * - Ensure any new contexts will be initialized with the correct
2280  *   per-context OA state.
2281  *
2282  * Note: it's only the RCS/Render context that has any OA state.
2283  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2284  */
2285 static int
2286 oa_configure_all_contexts(struct i915_perf_stream *stream,
2287 			  struct flex *regs,
2288 			  size_t num_regs,
2289 			  struct i915_active *active)
2290 {
2291 	struct drm_i915_private *i915 = stream->perf->i915;
2292 	struct intel_engine_cs *engine;
2293 	struct i915_gem_context *ctx, *cn;
2294 	int err;
2295 
2296 	lockdep_assert_held(&stream->perf->lock);
2297 
2298 	/*
2299 	 * The OA register config is setup through the context image. This image
2300 	 * might be written to by the GPU on context switch (in particular on
2301 	 * lite-restore). This means we can't safely update a context's image,
2302 	 * if this context is scheduled/submitted to run on the GPU.
2303 	 *
2304 	 * We could emit the OA register config through the batch buffer but
2305 	 * this might leave small interval of time where the OA unit is
2306 	 * configured at an invalid sampling period.
2307 	 *
2308 	 * Note that since we emit all requests from a single ring, there
2309 	 * is still an implicit global barrier here that may cause a high
2310 	 * priority context to wait for an otherwise independent low priority
2311 	 * context. Contexts idle at the time of reconfiguration are not
2312 	 * trapped behind the barrier.
2313 	 */
2314 	spin_lock(&i915->gem.contexts.lock);
2315 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2316 		if (!kref_get_unless_zero(&ctx->ref))
2317 			continue;
2318 
2319 		spin_unlock(&i915->gem.contexts.lock);
2320 
2321 		err = gen8_configure_context(ctx, regs, num_regs);
2322 		if (err) {
2323 			i915_gem_context_put(ctx);
2324 			return err;
2325 		}
2326 
2327 		spin_lock(&i915->gem.contexts.lock);
2328 		list_safe_reset_next(ctx, cn, link);
2329 		i915_gem_context_put(ctx);
2330 	}
2331 	spin_unlock(&i915->gem.contexts.lock);
2332 
2333 	/*
2334 	 * After updating all other contexts, we need to modify ourselves.
2335 	 * If we don't modify the kernel_context, we do not get events while
2336 	 * idle.
2337 	 */
2338 	for_each_uabi_engine(engine, i915) {
2339 		struct intel_context *ce = engine->kernel_context;
2340 
2341 		if (engine->class != RENDER_CLASS)
2342 			continue;
2343 
2344 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2345 
2346 		err = gen8_modify_self(ce, regs, num_regs, active);
2347 		if (err)
2348 			return err;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static int
2355 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2356 			     const struct i915_oa_config *oa_config,
2357 			     struct i915_active *active)
2358 {
2359 	struct flex regs[] = {
2360 		{
2361 			GEN8_R_PWR_CLK_STATE,
2362 			CTX_R_PWR_CLK_STATE,
2363 		},
2364 	};
2365 
2366 	return oa_configure_all_contexts(stream,
2367 					 regs, ARRAY_SIZE(regs),
2368 					 active);
2369 }
2370 
2371 static int
2372 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2373 			   const struct i915_oa_config *oa_config,
2374 			   struct i915_active *active)
2375 {
2376 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2377 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2378 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2379 	struct flex regs[] = {
2380 		{
2381 			GEN8_R_PWR_CLK_STATE,
2382 			CTX_R_PWR_CLK_STATE,
2383 		},
2384 		{
2385 			GEN8_OACTXCONTROL,
2386 			stream->perf->ctx_oactxctrl_offset + 1,
2387 		},
2388 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2389 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2390 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2391 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2392 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2393 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2394 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2395 	};
2396 #undef ctx_flexeuN
2397 	int i;
2398 
2399 	regs[1].value =
2400 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2401 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2402 		GEN8_OA_COUNTER_RESUME;
2403 
2404 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2405 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2406 
2407 	return oa_configure_all_contexts(stream,
2408 					 regs, ARRAY_SIZE(regs),
2409 					 active);
2410 }
2411 
2412 static int
2413 gen8_enable_metric_set(struct i915_perf_stream *stream,
2414 		       struct i915_active *active)
2415 {
2416 	struct intel_uncore *uncore = stream->uncore;
2417 	struct i915_oa_config *oa_config = stream->oa_config;
2418 	int ret;
2419 
2420 	/*
2421 	 * We disable slice/unslice clock ratio change reports on SKL since
2422 	 * they are too noisy. The HW generates a lot of redundant reports
2423 	 * where the ratio hasn't really changed causing a lot of redundant
2424 	 * work to processes and increasing the chances we'll hit buffer
2425 	 * overruns.
2426 	 *
2427 	 * Although we don't currently use the 'disable overrun' OABUFFER
2428 	 * feature it's worth noting that clock ratio reports have to be
2429 	 * disabled before considering to use that feature since the HW doesn't
2430 	 * correctly block these reports.
2431 	 *
2432 	 * Currently none of the high-level metrics we have depend on knowing
2433 	 * this ratio to normalize.
2434 	 *
2435 	 * Note: This register is not power context saved and restored, but
2436 	 * that's OK considering that we disable RC6 while the OA unit is
2437 	 * enabled.
2438 	 *
2439 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2440 	 * be read back from automatically triggered reports, as part of the
2441 	 * RPT_ID field.
2442 	 */
2443 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2444 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2445 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2446 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2447 	}
2448 
2449 	/*
2450 	 * Update all contexts prior writing the mux configurations as we need
2451 	 * to make sure all slices/subslices are ON before writing to NOA
2452 	 * registers.
2453 	 */
2454 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2455 	if (ret)
2456 		return ret;
2457 
2458 	return emit_oa_config(stream,
2459 			      stream->oa_config, oa_context(stream),
2460 			      active);
2461 }
2462 
2463 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2464 {
2465 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2466 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2467 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2468 }
2469 
2470 static int
2471 gen12_enable_metric_set(struct i915_perf_stream *stream,
2472 			struct i915_active *active)
2473 {
2474 	struct intel_uncore *uncore = stream->uncore;
2475 	struct i915_oa_config *oa_config = stream->oa_config;
2476 	bool periodic = stream->periodic;
2477 	u32 period_exponent = stream->period_exponent;
2478 	int ret;
2479 
2480 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2481 			   /* Disable clk ratio reports, like previous Gens. */
2482 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2483 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2484 			   /*
2485 			    * If the user didn't require OA reports, instruct
2486 			    * the hardware not to emit ctx switch reports.
2487 			    */
2488 			   oag_report_ctx_switches(stream));
2489 
2490 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2491 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2492 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2493 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2494 			    : 0);
2495 
2496 	/*
2497 	 * Update all contexts prior writing the mux configurations as we need
2498 	 * to make sure all slices/subslices are ON before writing to NOA
2499 	 * registers.
2500 	 */
2501 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/*
2506 	 * For Gen12, performance counters are context
2507 	 * saved/restored. Only enable it for the context that
2508 	 * requested this.
2509 	 */
2510 	if (stream->ctx) {
2511 		ret = gen12_configure_oar_context(stream, active);
2512 		if (ret)
2513 			return ret;
2514 	}
2515 
2516 	return emit_oa_config(stream,
2517 			      stream->oa_config, oa_context(stream),
2518 			      active);
2519 }
2520 
2521 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2522 {
2523 	struct intel_uncore *uncore = stream->uncore;
2524 
2525 	/* Reset all contexts' slices/subslices configurations. */
2526 	lrc_configure_all_contexts(stream, NULL, NULL);
2527 
2528 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2529 }
2530 
2531 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2532 {
2533 	struct intel_uncore *uncore = stream->uncore;
2534 
2535 	/* Reset all contexts' slices/subslices configurations. */
2536 	lrc_configure_all_contexts(stream, NULL, NULL);
2537 
2538 	/* Make sure we disable noa to save power. */
2539 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2540 }
2541 
2542 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2543 {
2544 	struct intel_uncore *uncore = stream->uncore;
2545 
2546 	/* Reset all contexts' slices/subslices configurations. */
2547 	gen12_configure_all_contexts(stream, NULL, NULL);
2548 
2549 	/* disable the context save/restore or OAR counters */
2550 	if (stream->ctx)
2551 		gen12_configure_oar_context(stream, NULL);
2552 
2553 	/* Make sure we disable noa to save power. */
2554 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2555 }
2556 
2557 static void gen7_oa_enable(struct i915_perf_stream *stream)
2558 {
2559 	struct intel_uncore *uncore = stream->uncore;
2560 	struct i915_gem_context *ctx = stream->ctx;
2561 	u32 ctx_id = stream->specific_ctx_id;
2562 	bool periodic = stream->periodic;
2563 	u32 period_exponent = stream->period_exponent;
2564 	u32 report_format = stream->oa_buffer.format;
2565 
2566 	/*
2567 	 * Reset buf pointers so we don't forward reports from before now.
2568 	 *
2569 	 * Think carefully if considering trying to avoid this, since it
2570 	 * also ensures status flags and the buffer itself are cleared
2571 	 * in error paths, and we have checks for invalid reports based
2572 	 * on the assumption that certain fields are written to zeroed
2573 	 * memory which this helps maintains.
2574 	 */
2575 	gen7_init_oa_buffer(stream);
2576 
2577 	intel_uncore_write(uncore, GEN7_OACONTROL,
2578 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2579 			   (period_exponent <<
2580 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2581 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2582 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2583 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2584 			   GEN7_OACONTROL_ENABLE);
2585 }
2586 
2587 static void gen8_oa_enable(struct i915_perf_stream *stream)
2588 {
2589 	struct intel_uncore *uncore = stream->uncore;
2590 	u32 report_format = stream->oa_buffer.format;
2591 
2592 	/*
2593 	 * Reset buf pointers so we don't forward reports from before now.
2594 	 *
2595 	 * Think carefully if considering trying to avoid this, since it
2596 	 * also ensures status flags and the buffer itself are cleared
2597 	 * in error paths, and we have checks for invalid reports based
2598 	 * on the assumption that certain fields are written to zeroed
2599 	 * memory which this helps maintains.
2600 	 */
2601 	gen8_init_oa_buffer(stream);
2602 
2603 	/*
2604 	 * Note: we don't rely on the hardware to perform single context
2605 	 * filtering and instead filter on the cpu based on the context-id
2606 	 * field of reports
2607 	 */
2608 	intel_uncore_write(uncore, GEN8_OACONTROL,
2609 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2610 			   GEN8_OA_COUNTER_ENABLE);
2611 }
2612 
2613 static void gen12_oa_enable(struct i915_perf_stream *stream)
2614 {
2615 	struct intel_uncore *uncore = stream->uncore;
2616 	u32 report_format = stream->oa_buffer.format;
2617 
2618 	/*
2619 	 * If we don't want OA reports from the OA buffer, then we don't even
2620 	 * need to program the OAG unit.
2621 	 */
2622 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2623 		return;
2624 
2625 	gen12_init_oa_buffer(stream);
2626 
2627 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2628 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2629 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2630 }
2631 
2632 /**
2633  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2634  * @stream: An i915 perf stream opened for OA metrics
2635  *
2636  * [Re]enables hardware periodic sampling according to the period configured
2637  * when opening the stream. This also starts a hrtimer that will periodically
2638  * check for data in the circular OA buffer for notifying userspace (e.g.
2639  * during a read() or poll()).
2640  */
2641 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2642 {
2643 	stream->pollin = false;
2644 
2645 	stream->perf->ops.oa_enable(stream);
2646 
2647 	if (stream->periodic)
2648 		hrtimer_start(&stream->poll_check_timer,
2649 			      ns_to_ktime(stream->poll_oa_period),
2650 			      HRTIMER_MODE_REL_PINNED);
2651 }
2652 
2653 static void gen7_oa_disable(struct i915_perf_stream *stream)
2654 {
2655 	struct intel_uncore *uncore = stream->uncore;
2656 
2657 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2658 	if (intel_wait_for_register(uncore,
2659 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2660 				    50))
2661 		drm_err(&stream->perf->i915->drm,
2662 			"wait for OA to be disabled timed out\n");
2663 }
2664 
2665 static void gen8_oa_disable(struct i915_perf_stream *stream)
2666 {
2667 	struct intel_uncore *uncore = stream->uncore;
2668 
2669 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2670 	if (intel_wait_for_register(uncore,
2671 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2672 				    50))
2673 		drm_err(&stream->perf->i915->drm,
2674 			"wait for OA to be disabled timed out\n");
2675 }
2676 
2677 static void gen12_oa_disable(struct i915_perf_stream *stream)
2678 {
2679 	struct intel_uncore *uncore = stream->uncore;
2680 
2681 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2682 	if (intel_wait_for_register(uncore,
2683 				    GEN12_OAG_OACONTROL,
2684 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2685 				    50))
2686 		drm_err(&stream->perf->i915->drm,
2687 			"wait for OA to be disabled timed out\n");
2688 
2689 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2690 	if (intel_wait_for_register(uncore,
2691 				    GEN12_OA_TLB_INV_CR,
2692 				    1, 0,
2693 				    50))
2694 		drm_err(&stream->perf->i915->drm,
2695 			"wait for OA tlb invalidate timed out\n");
2696 }
2697 
2698 /**
2699  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2700  * @stream: An i915 perf stream opened for OA metrics
2701  *
2702  * Stops the OA unit from periodically writing counter reports into the
2703  * circular OA buffer. This also stops the hrtimer that periodically checks for
2704  * data in the circular OA buffer, for notifying userspace.
2705  */
2706 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2707 {
2708 	stream->perf->ops.oa_disable(stream);
2709 
2710 	if (stream->periodic)
2711 		hrtimer_cancel(&stream->poll_check_timer);
2712 }
2713 
2714 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2715 	.destroy = i915_oa_stream_destroy,
2716 	.enable = i915_oa_stream_enable,
2717 	.disable = i915_oa_stream_disable,
2718 	.wait_unlocked = i915_oa_wait_unlocked,
2719 	.poll_wait = i915_oa_poll_wait,
2720 	.read = i915_oa_read,
2721 };
2722 
2723 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2724 {
2725 	struct i915_active *active;
2726 	int err;
2727 
2728 	active = i915_active_create();
2729 	if (!active)
2730 		return -ENOMEM;
2731 
2732 	err = stream->perf->ops.enable_metric_set(stream, active);
2733 	if (err == 0)
2734 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2735 
2736 	i915_active_put(active);
2737 	return err;
2738 }
2739 
2740 static void
2741 get_default_sseu_config(struct intel_sseu *out_sseu,
2742 			struct intel_engine_cs *engine)
2743 {
2744 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2745 
2746 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2747 
2748 	if (IS_GEN(engine->i915, 11)) {
2749 		/*
2750 		 * We only need subslice count so it doesn't matter which ones
2751 		 * we select - just turn off low bits in the amount of half of
2752 		 * all available subslices per slice.
2753 		 */
2754 		out_sseu->subslice_mask =
2755 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2756 		out_sseu->slice_mask = 0x1;
2757 	}
2758 }
2759 
2760 static int
2761 get_sseu_config(struct intel_sseu *out_sseu,
2762 		struct intel_engine_cs *engine,
2763 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2764 {
2765 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2766 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2767 		return -EINVAL;
2768 
2769 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2770 }
2771 
2772 /**
2773  * i915_oa_stream_init - validate combined props for OA stream and init
2774  * @stream: An i915 perf stream
2775  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2776  * @props: The property state that configures stream (individually validated)
2777  *
2778  * While read_properties_unlocked() validates properties in isolation it
2779  * doesn't ensure that the combination necessarily makes sense.
2780  *
2781  * At this point it has been determined that userspace wants a stream of
2782  * OA metrics, but still we need to further validate the combined
2783  * properties are OK.
2784  *
2785  * If the configuration makes sense then we can allocate memory for
2786  * a circular OA buffer and apply the requested metric set configuration.
2787  *
2788  * Returns: zero on success or a negative error code.
2789  */
2790 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2791 			       struct drm_i915_perf_open_param *param,
2792 			       struct perf_open_properties *props)
2793 {
2794 	struct drm_i915_private *i915 = stream->perf->i915;
2795 	struct i915_perf *perf = stream->perf;
2796 	int format_size;
2797 	int ret;
2798 
2799 	if (!props->engine) {
2800 		DRM_DEBUG("OA engine not specified\n");
2801 		return -EINVAL;
2802 	}
2803 
2804 	/*
2805 	 * If the sysfs metrics/ directory wasn't registered for some
2806 	 * reason then don't let userspace try their luck with config
2807 	 * IDs
2808 	 */
2809 	if (!perf->metrics_kobj) {
2810 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2811 		return -EINVAL;
2812 	}
2813 
2814 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2815 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2816 		DRM_DEBUG("Only OA report sampling supported\n");
2817 		return -EINVAL;
2818 	}
2819 
2820 	if (!perf->ops.enable_metric_set) {
2821 		DRM_DEBUG("OA unit not supported\n");
2822 		return -ENODEV;
2823 	}
2824 
2825 	/*
2826 	 * To avoid the complexity of having to accurately filter
2827 	 * counter reports and marshal to the appropriate client
2828 	 * we currently only allow exclusive access
2829 	 */
2830 	if (perf->exclusive_stream) {
2831 		DRM_DEBUG("OA unit already in use\n");
2832 		return -EBUSY;
2833 	}
2834 
2835 	if (!props->oa_format) {
2836 		DRM_DEBUG("OA report format not specified\n");
2837 		return -EINVAL;
2838 	}
2839 
2840 	stream->engine = props->engine;
2841 	stream->uncore = stream->engine->gt->uncore;
2842 
2843 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2844 
2845 	format_size = perf->oa_formats[props->oa_format].size;
2846 
2847 	stream->sample_flags = props->sample_flags;
2848 	stream->sample_size += format_size;
2849 
2850 	stream->oa_buffer.format_size = format_size;
2851 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2852 		return -EINVAL;
2853 
2854 	stream->hold_preemption = props->hold_preemption;
2855 
2856 	stream->oa_buffer.format =
2857 		perf->oa_formats[props->oa_format].format;
2858 
2859 	stream->periodic = props->oa_periodic;
2860 	if (stream->periodic)
2861 		stream->period_exponent = props->oa_period_exponent;
2862 
2863 	if (stream->ctx) {
2864 		ret = oa_get_render_ctx_id(stream);
2865 		if (ret) {
2866 			DRM_DEBUG("Invalid context id to filter with\n");
2867 			return ret;
2868 		}
2869 	}
2870 
2871 	ret = alloc_noa_wait(stream);
2872 	if (ret) {
2873 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2874 		goto err_noa_wait_alloc;
2875 	}
2876 
2877 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2878 	if (!stream->oa_config) {
2879 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2880 		ret = -EINVAL;
2881 		goto err_config;
2882 	}
2883 
2884 	/* PRM - observability performance counters:
2885 	 *
2886 	 *   OACONTROL, performance counter enable, note:
2887 	 *
2888 	 *   "When this bit is set, in order to have coherent counts,
2889 	 *   RC6 power state and trunk clock gating must be disabled.
2890 	 *   This can be achieved by programming MMIO registers as
2891 	 *   0xA094=0 and 0xA090[31]=1"
2892 	 *
2893 	 *   In our case we are expecting that taking pm + FORCEWAKE
2894 	 *   references will effectively disable RC6.
2895 	 */
2896 	intel_engine_pm_get(stream->engine);
2897 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2898 
2899 	ret = alloc_oa_buffer(stream);
2900 	if (ret)
2901 		goto err_oa_buf_alloc;
2902 
2903 	stream->ops = &i915_oa_stream_ops;
2904 
2905 	perf->sseu = props->sseu;
2906 	WRITE_ONCE(perf->exclusive_stream, stream);
2907 
2908 	ret = i915_perf_stream_enable_sync(stream);
2909 	if (ret) {
2910 		DRM_DEBUG("Unable to enable metric set\n");
2911 		goto err_enable;
2912 	}
2913 
2914 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2915 		  stream->oa_config->uuid);
2916 
2917 	hrtimer_init(&stream->poll_check_timer,
2918 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2919 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2920 	init_waitqueue_head(&stream->poll_wq);
2921 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2922 
2923 	return 0;
2924 
2925 err_enable:
2926 	WRITE_ONCE(perf->exclusive_stream, NULL);
2927 	perf->ops.disable_metric_set(stream);
2928 
2929 	free_oa_buffer(stream);
2930 
2931 err_oa_buf_alloc:
2932 	free_oa_configs(stream);
2933 
2934 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2935 	intel_engine_pm_put(stream->engine);
2936 
2937 err_config:
2938 	free_noa_wait(stream);
2939 
2940 err_noa_wait_alloc:
2941 	if (stream->ctx)
2942 		oa_put_render_ctx_id(stream);
2943 
2944 	return ret;
2945 }
2946 
2947 void i915_oa_init_reg_state(const struct intel_context *ce,
2948 			    const struct intel_engine_cs *engine)
2949 {
2950 	struct i915_perf_stream *stream;
2951 
2952 	if (engine->class != RENDER_CLASS)
2953 		return;
2954 
2955 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2956 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2957 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2958 		gen8_update_reg_state_unlocked(ce, stream);
2959 }
2960 
2961 /**
2962  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2963  * @file: An i915 perf stream file
2964  * @buf: destination buffer given by userspace
2965  * @count: the number of bytes userspace wants to read
2966  * @ppos: (inout) file seek position (unused)
2967  *
2968  * The entry point for handling a read() on a stream file descriptor from
2969  * userspace. Most of the work is left to the i915_perf_read_locked() and
2970  * &i915_perf_stream_ops->read but to save having stream implementations (of
2971  * which we might have multiple later) we handle blocking read here.
2972  *
2973  * We can also consistently treat trying to read from a disabled stream
2974  * as an IO error so implementations can assume the stream is enabled
2975  * while reading.
2976  *
2977  * Returns: The number of bytes copied or a negative error code on failure.
2978  */
2979 static ssize_t i915_perf_read(struct file *file,
2980 			      char __user *buf,
2981 			      size_t count,
2982 			      loff_t *ppos)
2983 {
2984 	struct i915_perf_stream *stream = file->private_data;
2985 	struct i915_perf *perf = stream->perf;
2986 	size_t offset = 0;
2987 	int ret;
2988 
2989 	/* To ensure it's handled consistently we simply treat all reads of a
2990 	 * disabled stream as an error. In particular it might otherwise lead
2991 	 * to a deadlock for blocking file descriptors...
2992 	 */
2993 	if (!stream->enabled)
2994 		return -EIO;
2995 
2996 	if (!(file->f_flags & O_NONBLOCK)) {
2997 		/* There's the small chance of false positives from
2998 		 * stream->ops->wait_unlocked.
2999 		 *
3000 		 * E.g. with single context filtering since we only wait until
3001 		 * oabuffer has >= 1 report we don't immediately know whether
3002 		 * any reports really belong to the current context
3003 		 */
3004 		do {
3005 			ret = stream->ops->wait_unlocked(stream);
3006 			if (ret)
3007 				return ret;
3008 
3009 			mutex_lock(&perf->lock);
3010 			ret = stream->ops->read(stream, buf, count, &offset);
3011 			mutex_unlock(&perf->lock);
3012 		} while (!offset && !ret);
3013 	} else {
3014 		mutex_lock(&perf->lock);
3015 		ret = stream->ops->read(stream, buf, count, &offset);
3016 		mutex_unlock(&perf->lock);
3017 	}
3018 
3019 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3020 	 * events where we might actually report EAGAIN on read() if there's
3021 	 * not really any data available. In this situation though we don't
3022 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3023 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3024 	 * effectively ensures we back off until the next hrtimer callback
3025 	 * before reporting another EPOLLIN event.
3026 	 * The exception to this is if ops->read() returned -ENOSPC which means
3027 	 * that more OA data is available than could fit in the user provided
3028 	 * buffer. In this case we want the next poll() call to not block.
3029 	 */
3030 	if (ret != -ENOSPC)
3031 		stream->pollin = false;
3032 
3033 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3034 	return offset ?: (ret ?: -EAGAIN);
3035 }
3036 
3037 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3038 {
3039 	struct i915_perf_stream *stream =
3040 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3041 
3042 	if (oa_buffer_check_unlocked(stream)) {
3043 		stream->pollin = true;
3044 		wake_up(&stream->poll_wq);
3045 	}
3046 
3047 	hrtimer_forward_now(hrtimer,
3048 			    ns_to_ktime(stream->poll_oa_period));
3049 
3050 	return HRTIMER_RESTART;
3051 }
3052 
3053 /**
3054  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3055  * @stream: An i915 perf stream
3056  * @file: An i915 perf stream file
3057  * @wait: poll() state table
3058  *
3059  * For handling userspace polling on an i915 perf stream, this calls through to
3060  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3061  * will be woken for new stream data.
3062  *
3063  * Note: The &perf->lock mutex has been taken to serialize
3064  * with any non-file-operation driver hooks.
3065  *
3066  * Returns: any poll events that are ready without sleeping
3067  */
3068 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3069 				      struct file *file,
3070 				      poll_table *wait)
3071 {
3072 	__poll_t events = 0;
3073 
3074 	stream->ops->poll_wait(stream, file, wait);
3075 
3076 	/* Note: we don't explicitly check whether there's something to read
3077 	 * here since this path may be very hot depending on what else
3078 	 * userspace is polling, or on the timeout in use. We rely solely on
3079 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3080 	 * samples to read.
3081 	 */
3082 	if (stream->pollin)
3083 		events |= EPOLLIN;
3084 
3085 	return events;
3086 }
3087 
3088 /**
3089  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3090  * @file: An i915 perf stream file
3091  * @wait: poll() state table
3092  *
3093  * For handling userspace polling on an i915 perf stream, this ensures
3094  * poll_wait() gets called with a wait queue that will be woken for new stream
3095  * data.
3096  *
3097  * Note: Implementation deferred to i915_perf_poll_locked()
3098  *
3099  * Returns: any poll events that are ready without sleeping
3100  */
3101 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3102 {
3103 	struct i915_perf_stream *stream = file->private_data;
3104 	struct i915_perf *perf = stream->perf;
3105 	__poll_t ret;
3106 
3107 	mutex_lock(&perf->lock);
3108 	ret = i915_perf_poll_locked(stream, file, wait);
3109 	mutex_unlock(&perf->lock);
3110 
3111 	return ret;
3112 }
3113 
3114 /**
3115  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3116  * @stream: A disabled i915 perf stream
3117  *
3118  * [Re]enables the associated capture of data for this stream.
3119  *
3120  * If a stream was previously enabled then there's currently no intention
3121  * to provide userspace any guarantee about the preservation of previously
3122  * buffered data.
3123  */
3124 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3125 {
3126 	if (stream->enabled)
3127 		return;
3128 
3129 	/* Allow stream->ops->enable() to refer to this */
3130 	stream->enabled = true;
3131 
3132 	if (stream->ops->enable)
3133 		stream->ops->enable(stream);
3134 
3135 	if (stream->hold_preemption)
3136 		intel_context_set_nopreempt(stream->pinned_ctx);
3137 }
3138 
3139 /**
3140  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3141  * @stream: An enabled i915 perf stream
3142  *
3143  * Disables the associated capture of data for this stream.
3144  *
3145  * The intention is that disabling an re-enabling a stream will ideally be
3146  * cheaper than destroying and re-opening a stream with the same configuration,
3147  * though there are no formal guarantees about what state or buffered data
3148  * must be retained between disabling and re-enabling a stream.
3149  *
3150  * Note: while a stream is disabled it's considered an error for userspace
3151  * to attempt to read from the stream (-EIO).
3152  */
3153 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3154 {
3155 	if (!stream->enabled)
3156 		return;
3157 
3158 	/* Allow stream->ops->disable() to refer to this */
3159 	stream->enabled = false;
3160 
3161 	if (stream->hold_preemption)
3162 		intel_context_clear_nopreempt(stream->pinned_ctx);
3163 
3164 	if (stream->ops->disable)
3165 		stream->ops->disable(stream);
3166 }
3167 
3168 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3169 				    unsigned long metrics_set)
3170 {
3171 	struct i915_oa_config *config;
3172 	long ret = stream->oa_config->id;
3173 
3174 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3175 	if (!config)
3176 		return -EINVAL;
3177 
3178 	if (config != stream->oa_config) {
3179 		int err;
3180 
3181 		/*
3182 		 * If OA is bound to a specific context, emit the
3183 		 * reconfiguration inline from that context. The update
3184 		 * will then be ordered with respect to submission on that
3185 		 * context.
3186 		 *
3187 		 * When set globally, we use a low priority kernel context,
3188 		 * so it will effectively take effect when idle.
3189 		 */
3190 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3191 		if (!err)
3192 			config = xchg(&stream->oa_config, config);
3193 		else
3194 			ret = err;
3195 	}
3196 
3197 	i915_oa_config_put(config);
3198 
3199 	return ret;
3200 }
3201 
3202 /**
3203  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3204  * @stream: An i915 perf stream
3205  * @cmd: the ioctl request
3206  * @arg: the ioctl data
3207  *
3208  * Note: The &perf->lock mutex has been taken to serialize
3209  * with any non-file-operation driver hooks.
3210  *
3211  * Returns: zero on success or a negative error code. Returns -EINVAL for
3212  * an unknown ioctl request.
3213  */
3214 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3215 				   unsigned int cmd,
3216 				   unsigned long arg)
3217 {
3218 	switch (cmd) {
3219 	case I915_PERF_IOCTL_ENABLE:
3220 		i915_perf_enable_locked(stream);
3221 		return 0;
3222 	case I915_PERF_IOCTL_DISABLE:
3223 		i915_perf_disable_locked(stream);
3224 		return 0;
3225 	case I915_PERF_IOCTL_CONFIG:
3226 		return i915_perf_config_locked(stream, arg);
3227 	}
3228 
3229 	return -EINVAL;
3230 }
3231 
3232 /**
3233  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3234  * @file: An i915 perf stream file
3235  * @cmd: the ioctl request
3236  * @arg: the ioctl data
3237  *
3238  * Implementation deferred to i915_perf_ioctl_locked().
3239  *
3240  * Returns: zero on success or a negative error code. Returns -EINVAL for
3241  * an unknown ioctl request.
3242  */
3243 static long i915_perf_ioctl(struct file *file,
3244 			    unsigned int cmd,
3245 			    unsigned long arg)
3246 {
3247 	struct i915_perf_stream *stream = file->private_data;
3248 	struct i915_perf *perf = stream->perf;
3249 	long ret;
3250 
3251 	mutex_lock(&perf->lock);
3252 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3253 	mutex_unlock(&perf->lock);
3254 
3255 	return ret;
3256 }
3257 
3258 /**
3259  * i915_perf_destroy_locked - destroy an i915 perf stream
3260  * @stream: An i915 perf stream
3261  *
3262  * Frees all resources associated with the given i915 perf @stream, disabling
3263  * any associated data capture in the process.
3264  *
3265  * Note: The &perf->lock mutex has been taken to serialize
3266  * with any non-file-operation driver hooks.
3267  */
3268 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3269 {
3270 	if (stream->enabled)
3271 		i915_perf_disable_locked(stream);
3272 
3273 	if (stream->ops->destroy)
3274 		stream->ops->destroy(stream);
3275 
3276 	if (stream->ctx)
3277 		i915_gem_context_put(stream->ctx);
3278 
3279 	kfree(stream);
3280 }
3281 
3282 /**
3283  * i915_perf_release - handles userspace close() of a stream file
3284  * @inode: anonymous inode associated with file
3285  * @file: An i915 perf stream file
3286  *
3287  * Cleans up any resources associated with an open i915 perf stream file.
3288  *
3289  * NB: close() can't really fail from the userspace point of view.
3290  *
3291  * Returns: zero on success or a negative error code.
3292  */
3293 static int i915_perf_release(struct inode *inode, struct file *file)
3294 {
3295 	struct i915_perf_stream *stream = file->private_data;
3296 	struct i915_perf *perf = stream->perf;
3297 
3298 	mutex_lock(&perf->lock);
3299 	i915_perf_destroy_locked(stream);
3300 	mutex_unlock(&perf->lock);
3301 
3302 	/* Release the reference the perf stream kept on the driver. */
3303 	drm_dev_put(&perf->i915->drm);
3304 
3305 	return 0;
3306 }
3307 
3308 
3309 static const struct file_operations fops = {
3310 	.owner		= THIS_MODULE,
3311 	.llseek		= no_llseek,
3312 	.release	= i915_perf_release,
3313 	.poll		= i915_perf_poll,
3314 	.read		= i915_perf_read,
3315 	.unlocked_ioctl	= i915_perf_ioctl,
3316 	/* Our ioctl have no arguments, so it's safe to use the same function
3317 	 * to handle 32bits compatibility.
3318 	 */
3319 	.compat_ioctl   = i915_perf_ioctl,
3320 };
3321 
3322 
3323 /**
3324  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3325  * @perf: i915 perf instance
3326  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3327  * @props: individually validated u64 property value pairs
3328  * @file: drm file
3329  *
3330  * See i915_perf_ioctl_open() for interface details.
3331  *
3332  * Implements further stream config validation and stream initialization on
3333  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3334  * taken to serialize with any non-file-operation driver hooks.
3335  *
3336  * Note: at this point the @props have only been validated in isolation and
3337  * it's still necessary to validate that the combination of properties makes
3338  * sense.
3339  *
3340  * In the case where userspace is interested in OA unit metrics then further
3341  * config validation and stream initialization details will be handled by
3342  * i915_oa_stream_init(). The code here should only validate config state that
3343  * will be relevant to all stream types / backends.
3344  *
3345  * Returns: zero on success or a negative error code.
3346  */
3347 static int
3348 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3349 			    struct drm_i915_perf_open_param *param,
3350 			    struct perf_open_properties *props,
3351 			    struct drm_file *file)
3352 {
3353 	struct i915_gem_context *specific_ctx = NULL;
3354 	struct i915_perf_stream *stream = NULL;
3355 	unsigned long f_flags = 0;
3356 	bool privileged_op = true;
3357 	int stream_fd;
3358 	int ret;
3359 
3360 	if (props->single_context) {
3361 		u32 ctx_handle = props->ctx_handle;
3362 		struct drm_i915_file_private *file_priv = file->driver_priv;
3363 
3364 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3365 		if (!specific_ctx) {
3366 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3367 				  ctx_handle);
3368 			ret = -ENOENT;
3369 			goto err;
3370 		}
3371 	}
3372 
3373 	/*
3374 	 * On Haswell the OA unit supports clock gating off for a specific
3375 	 * context and in this mode there's no visibility of metrics for the
3376 	 * rest of the system, which we consider acceptable for a
3377 	 * non-privileged client.
3378 	 *
3379 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3380 	 * specific context and the kernel can't securely stop the counters
3381 	 * from updating as system-wide / global values. Even though we can
3382 	 * filter reports based on the included context ID we can't block
3383 	 * clients from seeing the raw / global counter values via
3384 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3385 	 * enable the OA unit by default.
3386 	 *
3387 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3388 	 * per context basis. So we can relax requirements there if the user
3389 	 * doesn't request global stream access (i.e. query based sampling
3390 	 * using MI_RECORD_PERF_COUNT.
3391 	 */
3392 	if (IS_HASWELL(perf->i915) && specific_ctx)
3393 		privileged_op = false;
3394 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3395 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3396 		privileged_op = false;
3397 
3398 	if (props->hold_preemption) {
3399 		if (!props->single_context) {
3400 			DRM_DEBUG("preemption disable with no context\n");
3401 			ret = -EINVAL;
3402 			goto err;
3403 		}
3404 		privileged_op = true;
3405 	}
3406 
3407 	/*
3408 	 * Asking for SSEU configuration is a priviliged operation.
3409 	 */
3410 	if (props->has_sseu)
3411 		privileged_op = true;
3412 	else
3413 		get_default_sseu_config(&props->sseu, props->engine);
3414 
3415 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3416 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3417 	 * to determine if it's ok to access system wide OA counters
3418 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3419 	 */
3420 	if (privileged_op &&
3421 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3422 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3423 		ret = -EACCES;
3424 		goto err_ctx;
3425 	}
3426 
3427 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3428 	if (!stream) {
3429 		ret = -ENOMEM;
3430 		goto err_ctx;
3431 	}
3432 
3433 	stream->perf = perf;
3434 	stream->ctx = specific_ctx;
3435 	stream->poll_oa_period = props->poll_oa_period;
3436 
3437 	ret = i915_oa_stream_init(stream, param, props);
3438 	if (ret)
3439 		goto err_alloc;
3440 
3441 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3442 	 * to have _stream_init check the combination of sample flags more
3443 	 * thoroughly, but still this is the expected result at this point.
3444 	 */
3445 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3446 		ret = -ENODEV;
3447 		goto err_flags;
3448 	}
3449 
3450 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3451 		f_flags |= O_CLOEXEC;
3452 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3453 		f_flags |= O_NONBLOCK;
3454 
3455 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3456 	if (stream_fd < 0) {
3457 		ret = stream_fd;
3458 		goto err_flags;
3459 	}
3460 
3461 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3462 		i915_perf_enable_locked(stream);
3463 
3464 	/* Take a reference on the driver that will be kept with stream_fd
3465 	 * until its release.
3466 	 */
3467 	drm_dev_get(&perf->i915->drm);
3468 
3469 	return stream_fd;
3470 
3471 err_flags:
3472 	if (stream->ops->destroy)
3473 		stream->ops->destroy(stream);
3474 err_alloc:
3475 	kfree(stream);
3476 err_ctx:
3477 	if (specific_ctx)
3478 		i915_gem_context_put(specific_ctx);
3479 err:
3480 	return ret;
3481 }
3482 
3483 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3484 {
3485 	return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3486 }
3487 
3488 /**
3489  * read_properties_unlocked - validate + copy userspace stream open properties
3490  * @perf: i915 perf instance
3491  * @uprops: The array of u64 key value pairs given by userspace
3492  * @n_props: The number of key value pairs expected in @uprops
3493  * @props: The stream configuration built up while validating properties
3494  *
3495  * Note this function only validates properties in isolation it doesn't
3496  * validate that the combination of properties makes sense or that all
3497  * properties necessary for a particular kind of stream have been set.
3498  *
3499  * Note that there currently aren't any ordering requirements for properties so
3500  * we shouldn't validate or assume anything about ordering here. This doesn't
3501  * rule out defining new properties with ordering requirements in the future.
3502  */
3503 static int read_properties_unlocked(struct i915_perf *perf,
3504 				    u64 __user *uprops,
3505 				    u32 n_props,
3506 				    struct perf_open_properties *props)
3507 {
3508 	u64 __user *uprop = uprops;
3509 	u32 i;
3510 	int ret;
3511 
3512 	memset(props, 0, sizeof(struct perf_open_properties));
3513 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3514 
3515 	if (!n_props) {
3516 		DRM_DEBUG("No i915 perf properties given\n");
3517 		return -EINVAL;
3518 	}
3519 
3520 	/* At the moment we only support using i915-perf on the RCS. */
3521 	props->engine = intel_engine_lookup_user(perf->i915,
3522 						 I915_ENGINE_CLASS_RENDER,
3523 						 0);
3524 	if (!props->engine) {
3525 		DRM_DEBUG("No RENDER-capable engines\n");
3526 		return -EINVAL;
3527 	}
3528 
3529 	/* Considering that ID = 0 is reserved and assuming that we don't
3530 	 * (currently) expect any configurations to ever specify duplicate
3531 	 * values for a particular property ID then the last _PROP_MAX value is
3532 	 * one greater than the maximum number of properties we expect to get
3533 	 * from userspace.
3534 	 */
3535 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3536 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3537 		return -EINVAL;
3538 	}
3539 
3540 	for (i = 0; i < n_props; i++) {
3541 		u64 oa_period, oa_freq_hz;
3542 		u64 id, value;
3543 
3544 		ret = get_user(id, uprop);
3545 		if (ret)
3546 			return ret;
3547 
3548 		ret = get_user(value, uprop + 1);
3549 		if (ret)
3550 			return ret;
3551 
3552 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3553 			DRM_DEBUG("Unknown i915 perf property ID\n");
3554 			return -EINVAL;
3555 		}
3556 
3557 		switch ((enum drm_i915_perf_property_id)id) {
3558 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3559 			props->single_context = 1;
3560 			props->ctx_handle = value;
3561 			break;
3562 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3563 			if (value)
3564 				props->sample_flags |= SAMPLE_OA_REPORT;
3565 			break;
3566 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3567 			if (value == 0) {
3568 				DRM_DEBUG("Unknown OA metric set ID\n");
3569 				return -EINVAL;
3570 			}
3571 			props->metrics_set = value;
3572 			break;
3573 		case DRM_I915_PERF_PROP_OA_FORMAT:
3574 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3575 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3576 					  value);
3577 				return -EINVAL;
3578 			}
3579 			if (!perf->oa_formats[value].size) {
3580 				DRM_DEBUG("Unsupported OA report format %llu\n",
3581 					  value);
3582 				return -EINVAL;
3583 			}
3584 			props->oa_format = value;
3585 			break;
3586 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3587 			if (value > OA_EXPONENT_MAX) {
3588 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3589 					 OA_EXPONENT_MAX);
3590 				return -EINVAL;
3591 			}
3592 
3593 			/* Theoretically we can program the OA unit to sample
3594 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3595 			 * for BXT. We don't allow such high sampling
3596 			 * frequencies by default unless root.
3597 			 */
3598 
3599 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3600 			oa_period = oa_exponent_to_ns(perf, value);
3601 
3602 			/* This check is primarily to ensure that oa_period <=
3603 			 * UINT32_MAX (before passing to do_div which only
3604 			 * accepts a u32 denominator), but we can also skip
3605 			 * checking anything < 1Hz which implicitly can't be
3606 			 * limited via an integer oa_max_sample_rate.
3607 			 */
3608 			if (oa_period <= NSEC_PER_SEC) {
3609 				u64 tmp = NSEC_PER_SEC;
3610 				do_div(tmp, oa_period);
3611 				oa_freq_hz = tmp;
3612 			} else
3613 				oa_freq_hz = 0;
3614 
3615 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3616 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3617 					  i915_oa_max_sample_rate);
3618 				return -EACCES;
3619 			}
3620 
3621 			props->oa_periodic = true;
3622 			props->oa_period_exponent = value;
3623 			break;
3624 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3625 			props->hold_preemption = !!value;
3626 			break;
3627 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3628 			struct drm_i915_gem_context_param_sseu user_sseu;
3629 
3630 			if (copy_from_user(&user_sseu,
3631 					   u64_to_user_ptr(value),
3632 					   sizeof(user_sseu))) {
3633 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3634 				return -EFAULT;
3635 			}
3636 
3637 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3638 			if (ret) {
3639 				DRM_DEBUG("Invalid SSEU configuration\n");
3640 				return ret;
3641 			}
3642 			props->has_sseu = true;
3643 			break;
3644 		}
3645 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3646 			if (value < 100000 /* 100us */) {
3647 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3648 					  value);
3649 				return -EINVAL;
3650 			}
3651 			props->poll_oa_period = value;
3652 			break;
3653 		case DRM_I915_PERF_PROP_MAX:
3654 			MISSING_CASE(id);
3655 			return -EINVAL;
3656 		}
3657 
3658 		uprop += 2;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 /**
3665  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3666  * @dev: drm device
3667  * @data: ioctl data copied from userspace (unvalidated)
3668  * @file: drm file
3669  *
3670  * Validates the stream open parameters given by userspace including flags
3671  * and an array of u64 key, value pair properties.
3672  *
3673  * Very little is assumed up front about the nature of the stream being
3674  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3675  * i915-perf stream is expected to be a suitable interface for other forms of
3676  * buffered data written by the GPU besides periodic OA metrics.
3677  *
3678  * Note we copy the properties from userspace outside of the i915 perf
3679  * mutex to avoid an awkward lockdep with mmap_lock.
3680  *
3681  * Most of the implementation details are handled by
3682  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3683  * mutex for serializing with any non-file-operation driver hooks.
3684  *
3685  * Return: A newly opened i915 Perf stream file descriptor or negative
3686  * error code on failure.
3687  */
3688 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3689 			 struct drm_file *file)
3690 {
3691 	struct i915_perf *perf = &to_i915(dev)->perf;
3692 	struct drm_i915_perf_open_param *param = data;
3693 	struct perf_open_properties props;
3694 	u32 known_open_flags;
3695 	int ret;
3696 
3697 	if (!perf->i915) {
3698 		DRM_DEBUG("i915 perf interface not available for this system\n");
3699 		return -ENOTSUPP;
3700 	}
3701 
3702 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3703 			   I915_PERF_FLAG_FD_NONBLOCK |
3704 			   I915_PERF_FLAG_DISABLED;
3705 	if (param->flags & ~known_open_flags) {
3706 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3707 		return -EINVAL;
3708 	}
3709 
3710 	ret = read_properties_unlocked(perf,
3711 				       u64_to_user_ptr(param->properties_ptr),
3712 				       param->num_properties,
3713 				       &props);
3714 	if (ret)
3715 		return ret;
3716 
3717 	mutex_lock(&perf->lock);
3718 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3719 	mutex_unlock(&perf->lock);
3720 
3721 	return ret;
3722 }
3723 
3724 /**
3725  * i915_perf_register - exposes i915-perf to userspace
3726  * @i915: i915 device instance
3727  *
3728  * In particular OA metric sets are advertised under a sysfs metrics/
3729  * directory allowing userspace to enumerate valid IDs that can be
3730  * used to open an i915-perf stream.
3731  */
3732 void i915_perf_register(struct drm_i915_private *i915)
3733 {
3734 	struct i915_perf *perf = &i915->perf;
3735 
3736 	if (!perf->i915)
3737 		return;
3738 
3739 	/* To be sure we're synchronized with an attempted
3740 	 * i915_perf_open_ioctl(); considering that we register after
3741 	 * being exposed to userspace.
3742 	 */
3743 	mutex_lock(&perf->lock);
3744 
3745 	perf->metrics_kobj =
3746 		kobject_create_and_add("metrics",
3747 				       &i915->drm.primary->kdev->kobj);
3748 
3749 	mutex_unlock(&perf->lock);
3750 }
3751 
3752 /**
3753  * i915_perf_unregister - hide i915-perf from userspace
3754  * @i915: i915 device instance
3755  *
3756  * i915-perf state cleanup is split up into an 'unregister' and
3757  * 'deinit' phase where the interface is first hidden from
3758  * userspace by i915_perf_unregister() before cleaning up
3759  * remaining state in i915_perf_fini().
3760  */
3761 void i915_perf_unregister(struct drm_i915_private *i915)
3762 {
3763 	struct i915_perf *perf = &i915->perf;
3764 
3765 	if (!perf->metrics_kobj)
3766 		return;
3767 
3768 	kobject_put(perf->metrics_kobj);
3769 	perf->metrics_kobj = NULL;
3770 }
3771 
3772 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3773 {
3774 	static const i915_reg_t flex_eu_regs[] = {
3775 		EU_PERF_CNTL0,
3776 		EU_PERF_CNTL1,
3777 		EU_PERF_CNTL2,
3778 		EU_PERF_CNTL3,
3779 		EU_PERF_CNTL4,
3780 		EU_PERF_CNTL5,
3781 		EU_PERF_CNTL6,
3782 	};
3783 	int i;
3784 
3785 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3786 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3787 			return true;
3788 	}
3789 	return false;
3790 }
3791 
3792 #define ADDR_IN_RANGE(addr, start, end) \
3793 	((addr) >= (start) && \
3794 	 (addr) <= (end))
3795 
3796 #define REG_IN_RANGE(addr, start, end) \
3797 	((addr) >= i915_mmio_reg_offset(start) && \
3798 	 (addr) <= i915_mmio_reg_offset(end))
3799 
3800 #define REG_EQUAL(addr, mmio) \
3801 	((addr) == i915_mmio_reg_offset(mmio))
3802 
3803 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3804 {
3805 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3806 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3807 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3808 }
3809 
3810 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3811 {
3812 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3813 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3814 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3815 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3816 }
3817 
3818 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3819 {
3820 	return gen7_is_valid_mux_addr(perf, addr) ||
3821 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3822 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3823 }
3824 
3825 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3826 {
3827 	return gen8_is_valid_mux_addr(perf, addr) ||
3828 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3829 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3830 }
3831 
3832 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833 {
3834 	return gen7_is_valid_mux_addr(perf, addr) ||
3835 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3836 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3837 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3838 }
3839 
3840 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3841 {
3842 	return gen7_is_valid_mux_addr(perf, addr) ||
3843 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3844 }
3845 
3846 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3847 {
3848 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3849 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3850 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3851 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3852 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3853 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3854 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3855 }
3856 
3857 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3858 {
3859 	return REG_EQUAL(addr, NOA_WRITE) ||
3860 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3861 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3862 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3863 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3864 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3865 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3866 }
3867 
3868 static u32 mask_reg_value(u32 reg, u32 val)
3869 {
3870 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3871 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3872 	 * programmed by userspace doesn't change this.
3873 	 */
3874 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3875 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3876 
3877 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3878 	 * indicated by its name and a bunch of selection fields used by OA
3879 	 * configs.
3880 	 */
3881 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3882 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3883 
3884 	return val;
3885 }
3886 
3887 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3888 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3889 					 u32 __user *regs,
3890 					 u32 n_regs)
3891 {
3892 	struct i915_oa_reg *oa_regs;
3893 	int err;
3894 	u32 i;
3895 
3896 	if (!n_regs)
3897 		return NULL;
3898 
3899 	/* No is_valid function means we're not allowing any register to be programmed. */
3900 	GEM_BUG_ON(!is_valid);
3901 	if (!is_valid)
3902 		return ERR_PTR(-EINVAL);
3903 
3904 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3905 	if (!oa_regs)
3906 		return ERR_PTR(-ENOMEM);
3907 
3908 	for (i = 0; i < n_regs; i++) {
3909 		u32 addr, value;
3910 
3911 		err = get_user(addr, regs);
3912 		if (err)
3913 			goto addr_err;
3914 
3915 		if (!is_valid(perf, addr)) {
3916 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3917 			err = -EINVAL;
3918 			goto addr_err;
3919 		}
3920 
3921 		err = get_user(value, regs + 1);
3922 		if (err)
3923 			goto addr_err;
3924 
3925 		oa_regs[i].addr = _MMIO(addr);
3926 		oa_regs[i].value = mask_reg_value(addr, value);
3927 
3928 		regs += 2;
3929 	}
3930 
3931 	return oa_regs;
3932 
3933 addr_err:
3934 	kfree(oa_regs);
3935 	return ERR_PTR(err);
3936 }
3937 
3938 static ssize_t show_dynamic_id(struct device *dev,
3939 			       struct device_attribute *attr,
3940 			       char *buf)
3941 {
3942 	struct i915_oa_config *oa_config =
3943 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3944 
3945 	return sprintf(buf, "%d\n", oa_config->id);
3946 }
3947 
3948 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3949 					 struct i915_oa_config *oa_config)
3950 {
3951 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3952 	oa_config->sysfs_metric_id.attr.name = "id";
3953 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3954 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3955 	oa_config->sysfs_metric_id.store = NULL;
3956 
3957 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3958 	oa_config->attrs[1] = NULL;
3959 
3960 	oa_config->sysfs_metric.name = oa_config->uuid;
3961 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3962 
3963 	return sysfs_create_group(perf->metrics_kobj,
3964 				  &oa_config->sysfs_metric);
3965 }
3966 
3967 /**
3968  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3969  * @dev: drm device
3970  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3971  *        userspace (unvalidated)
3972  * @file: drm file
3973  *
3974  * Validates the submitted OA register to be saved into a new OA config that
3975  * can then be used for programming the OA unit and its NOA network.
3976  *
3977  * Returns: A new allocated config number to be used with the perf open ioctl
3978  * or a negative error code on failure.
3979  */
3980 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3981 			       struct drm_file *file)
3982 {
3983 	struct i915_perf *perf = &to_i915(dev)->perf;
3984 	struct drm_i915_perf_oa_config *args = data;
3985 	struct i915_oa_config *oa_config, *tmp;
3986 	struct i915_oa_reg *regs;
3987 	int err, id;
3988 
3989 	if (!perf->i915) {
3990 		DRM_DEBUG("i915 perf interface not available for this system\n");
3991 		return -ENOTSUPP;
3992 	}
3993 
3994 	if (!perf->metrics_kobj) {
3995 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3996 		return -EINVAL;
3997 	}
3998 
3999 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4000 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4001 		return -EACCES;
4002 	}
4003 
4004 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4005 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4006 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4007 		DRM_DEBUG("No OA registers given\n");
4008 		return -EINVAL;
4009 	}
4010 
4011 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4012 	if (!oa_config) {
4013 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4014 		return -ENOMEM;
4015 	}
4016 
4017 	oa_config->perf = perf;
4018 	kref_init(&oa_config->ref);
4019 
4020 	if (!uuid_is_valid(args->uuid)) {
4021 		DRM_DEBUG("Invalid uuid format for OA config\n");
4022 		err = -EINVAL;
4023 		goto reg_err;
4024 	}
4025 
4026 	/* Last character in oa_config->uuid will be 0 because oa_config is
4027 	 * kzalloc.
4028 	 */
4029 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4030 
4031 	oa_config->mux_regs_len = args->n_mux_regs;
4032 	regs = alloc_oa_regs(perf,
4033 			     perf->ops.is_valid_mux_reg,
4034 			     u64_to_user_ptr(args->mux_regs_ptr),
4035 			     args->n_mux_regs);
4036 
4037 	if (IS_ERR(regs)) {
4038 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4039 		err = PTR_ERR(regs);
4040 		goto reg_err;
4041 	}
4042 	oa_config->mux_regs = regs;
4043 
4044 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4045 	regs = alloc_oa_regs(perf,
4046 			     perf->ops.is_valid_b_counter_reg,
4047 			     u64_to_user_ptr(args->boolean_regs_ptr),
4048 			     args->n_boolean_regs);
4049 
4050 	if (IS_ERR(regs)) {
4051 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4052 		err = PTR_ERR(regs);
4053 		goto reg_err;
4054 	}
4055 	oa_config->b_counter_regs = regs;
4056 
4057 	if (INTEL_GEN(perf->i915) < 8) {
4058 		if (args->n_flex_regs != 0) {
4059 			err = -EINVAL;
4060 			goto reg_err;
4061 		}
4062 	} else {
4063 		oa_config->flex_regs_len = args->n_flex_regs;
4064 		regs = alloc_oa_regs(perf,
4065 				     perf->ops.is_valid_flex_reg,
4066 				     u64_to_user_ptr(args->flex_regs_ptr),
4067 				     args->n_flex_regs);
4068 
4069 		if (IS_ERR(regs)) {
4070 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4071 			err = PTR_ERR(regs);
4072 			goto reg_err;
4073 		}
4074 		oa_config->flex_regs = regs;
4075 	}
4076 
4077 	err = mutex_lock_interruptible(&perf->metrics_lock);
4078 	if (err)
4079 		goto reg_err;
4080 
4081 	/* We shouldn't have too many configs, so this iteration shouldn't be
4082 	 * too costly.
4083 	 */
4084 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4085 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4086 			DRM_DEBUG("OA config already exists with this uuid\n");
4087 			err = -EADDRINUSE;
4088 			goto sysfs_err;
4089 		}
4090 	}
4091 
4092 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4093 	if (err) {
4094 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4095 		goto sysfs_err;
4096 	}
4097 
4098 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4099 	oa_config->id = idr_alloc(&perf->metrics_idr,
4100 				  oa_config, 2,
4101 				  0, GFP_KERNEL);
4102 	if (oa_config->id < 0) {
4103 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4104 		err = oa_config->id;
4105 		goto sysfs_err;
4106 	}
4107 
4108 	mutex_unlock(&perf->metrics_lock);
4109 
4110 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4111 
4112 	return oa_config->id;
4113 
4114 sysfs_err:
4115 	mutex_unlock(&perf->metrics_lock);
4116 reg_err:
4117 	i915_oa_config_put(oa_config);
4118 	DRM_DEBUG("Failed to add new OA config\n");
4119 	return err;
4120 }
4121 
4122 /**
4123  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4124  * @dev: drm device
4125  * @data: ioctl data (pointer to u64 integer) copied from userspace
4126  * @file: drm file
4127  *
4128  * Configs can be removed while being used, the will stop appearing in sysfs
4129  * and their content will be freed when the stream using the config is closed.
4130  *
4131  * Returns: 0 on success or a negative error code on failure.
4132  */
4133 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4134 				  struct drm_file *file)
4135 {
4136 	struct i915_perf *perf = &to_i915(dev)->perf;
4137 	u64 *arg = data;
4138 	struct i915_oa_config *oa_config;
4139 	int ret;
4140 
4141 	if (!perf->i915) {
4142 		DRM_DEBUG("i915 perf interface not available for this system\n");
4143 		return -ENOTSUPP;
4144 	}
4145 
4146 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4147 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4148 		return -EACCES;
4149 	}
4150 
4151 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4152 	if (ret)
4153 		return ret;
4154 
4155 	oa_config = idr_find(&perf->metrics_idr, *arg);
4156 	if (!oa_config) {
4157 		DRM_DEBUG("Failed to remove unknown OA config\n");
4158 		ret = -ENOENT;
4159 		goto err_unlock;
4160 	}
4161 
4162 	GEM_BUG_ON(*arg != oa_config->id);
4163 
4164 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4165 
4166 	idr_remove(&perf->metrics_idr, *arg);
4167 
4168 	mutex_unlock(&perf->metrics_lock);
4169 
4170 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4171 
4172 	i915_oa_config_put(oa_config);
4173 
4174 	return 0;
4175 
4176 err_unlock:
4177 	mutex_unlock(&perf->metrics_lock);
4178 	return ret;
4179 }
4180 
4181 static struct ctl_table oa_table[] = {
4182 	{
4183 	 .procname = "perf_stream_paranoid",
4184 	 .data = &i915_perf_stream_paranoid,
4185 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4186 	 .mode = 0644,
4187 	 .proc_handler = proc_dointvec_minmax,
4188 	 .extra1 = SYSCTL_ZERO,
4189 	 .extra2 = SYSCTL_ONE,
4190 	 },
4191 	{
4192 	 .procname = "oa_max_sample_rate",
4193 	 .data = &i915_oa_max_sample_rate,
4194 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4195 	 .mode = 0644,
4196 	 .proc_handler = proc_dointvec_minmax,
4197 	 .extra1 = SYSCTL_ZERO,
4198 	 .extra2 = &oa_sample_rate_hard_limit,
4199 	 },
4200 	{}
4201 };
4202 
4203 static struct ctl_table i915_root[] = {
4204 	{
4205 	 .procname = "i915",
4206 	 .maxlen = 0,
4207 	 .mode = 0555,
4208 	 .child = oa_table,
4209 	 },
4210 	{}
4211 };
4212 
4213 static struct ctl_table dev_root[] = {
4214 	{
4215 	 .procname = "dev",
4216 	 .maxlen = 0,
4217 	 .mode = 0555,
4218 	 .child = i915_root,
4219 	 },
4220 	{}
4221 };
4222 
4223 /**
4224  * i915_perf_init - initialize i915-perf state on module bind
4225  * @i915: i915 device instance
4226  *
4227  * Initializes i915-perf state without exposing anything to userspace.
4228  *
4229  * Note: i915-perf initialization is split into an 'init' and 'register'
4230  * phase with the i915_perf_register() exposing state to userspace.
4231  */
4232 void i915_perf_init(struct drm_i915_private *i915)
4233 {
4234 	struct i915_perf *perf = &i915->perf;
4235 
4236 	/* XXX const struct i915_perf_ops! */
4237 
4238 	if (IS_HASWELL(i915)) {
4239 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4240 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4241 		perf->ops.is_valid_flex_reg = NULL;
4242 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4243 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4244 		perf->ops.oa_enable = gen7_oa_enable;
4245 		perf->ops.oa_disable = gen7_oa_disable;
4246 		perf->ops.read = gen7_oa_read;
4247 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4248 
4249 		perf->oa_formats = hsw_oa_formats;
4250 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4251 		/* Note: that although we could theoretically also support the
4252 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4253 		 * this driver, before upstreaming did this) it didn't seem
4254 		 * worth the complexity to maintain now that BDW+ enable
4255 		 * execlist mode by default.
4256 		 */
4257 		perf->ops.read = gen8_oa_read;
4258 
4259 		if (IS_GEN_RANGE(i915, 8, 9)) {
4260 			perf->oa_formats = gen8_plus_oa_formats;
4261 
4262 			perf->ops.is_valid_b_counter_reg =
4263 				gen7_is_valid_b_counter_addr;
4264 			perf->ops.is_valid_mux_reg =
4265 				gen8_is_valid_mux_addr;
4266 			perf->ops.is_valid_flex_reg =
4267 				gen8_is_valid_flex_addr;
4268 
4269 			if (IS_CHERRYVIEW(i915)) {
4270 				perf->ops.is_valid_mux_reg =
4271 					chv_is_valid_mux_addr;
4272 			}
4273 
4274 			perf->ops.oa_enable = gen8_oa_enable;
4275 			perf->ops.oa_disable = gen8_oa_disable;
4276 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4277 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4278 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4279 
4280 			if (IS_GEN(i915, 8)) {
4281 				perf->ctx_oactxctrl_offset = 0x120;
4282 				perf->ctx_flexeu0_offset = 0x2ce;
4283 
4284 				perf->gen8_valid_ctx_bit = BIT(25);
4285 			} else {
4286 				perf->ctx_oactxctrl_offset = 0x128;
4287 				perf->ctx_flexeu0_offset = 0x3de;
4288 
4289 				perf->gen8_valid_ctx_bit = BIT(16);
4290 			}
4291 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4292 			perf->oa_formats = gen8_plus_oa_formats;
4293 
4294 			perf->ops.is_valid_b_counter_reg =
4295 				gen7_is_valid_b_counter_addr;
4296 			perf->ops.is_valid_mux_reg =
4297 				gen10_is_valid_mux_addr;
4298 			perf->ops.is_valid_flex_reg =
4299 				gen8_is_valid_flex_addr;
4300 
4301 			perf->ops.oa_enable = gen8_oa_enable;
4302 			perf->ops.oa_disable = gen8_oa_disable;
4303 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4304 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4305 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4306 
4307 			if (IS_GEN(i915, 10)) {
4308 				perf->ctx_oactxctrl_offset = 0x128;
4309 				perf->ctx_flexeu0_offset = 0x3de;
4310 			} else {
4311 				perf->ctx_oactxctrl_offset = 0x124;
4312 				perf->ctx_flexeu0_offset = 0x78e;
4313 			}
4314 			perf->gen8_valid_ctx_bit = BIT(16);
4315 		} else if (IS_GEN(i915, 12)) {
4316 			perf->oa_formats = gen12_oa_formats;
4317 
4318 			perf->ops.is_valid_b_counter_reg =
4319 				gen12_is_valid_b_counter_addr;
4320 			perf->ops.is_valid_mux_reg =
4321 				gen12_is_valid_mux_addr;
4322 			perf->ops.is_valid_flex_reg =
4323 				gen8_is_valid_flex_addr;
4324 
4325 			perf->ops.oa_enable = gen12_oa_enable;
4326 			perf->ops.oa_disable = gen12_oa_disable;
4327 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4328 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4329 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4330 
4331 			perf->ctx_flexeu0_offset = 0;
4332 			perf->ctx_oactxctrl_offset = 0x144;
4333 		}
4334 	}
4335 
4336 	if (perf->ops.enable_metric_set) {
4337 		mutex_init(&perf->lock);
4338 
4339 		oa_sample_rate_hard_limit =
4340 			RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4341 
4342 		mutex_init(&perf->metrics_lock);
4343 		idr_init(&perf->metrics_idr);
4344 
4345 		/* We set up some ratelimit state to potentially throttle any
4346 		 * _NOTES about spurious, invalid OA reports which we don't
4347 		 * forward to userspace.
4348 		 *
4349 		 * We print a _NOTE about any throttling when closing the
4350 		 * stream instead of waiting until driver _fini which no one
4351 		 * would ever see.
4352 		 *
4353 		 * Using the same limiting factors as printk_ratelimit()
4354 		 */
4355 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4356 		/* Since we use a DRM_NOTE for spurious reports it would be
4357 		 * inconsistent to let __ratelimit() automatically print a
4358 		 * warning for throttling.
4359 		 */
4360 		ratelimit_set_flags(&perf->spurious_report_rs,
4361 				    RATELIMIT_MSG_ON_RELEASE);
4362 
4363 		ratelimit_state_init(&perf->tail_pointer_race,
4364 				     5 * HZ, 10);
4365 		ratelimit_set_flags(&perf->tail_pointer_race,
4366 				    RATELIMIT_MSG_ON_RELEASE);
4367 
4368 		atomic64_set(&perf->noa_programming_delay,
4369 			     500 * 1000 /* 500us */);
4370 
4371 		perf->i915 = i915;
4372 	}
4373 }
4374 
4375 static int destroy_config(int id, void *p, void *data)
4376 {
4377 	i915_oa_config_put(p);
4378 	return 0;
4379 }
4380 
4381 void i915_perf_sysctl_register(void)
4382 {
4383 	sysctl_header = register_sysctl_table(dev_root);
4384 }
4385 
4386 void i915_perf_sysctl_unregister(void)
4387 {
4388 	unregister_sysctl_table(sysctl_header);
4389 }
4390 
4391 /**
4392  * i915_perf_fini - Counter part to i915_perf_init()
4393  * @i915: i915 device instance
4394  */
4395 void i915_perf_fini(struct drm_i915_private *i915)
4396 {
4397 	struct i915_perf *perf = &i915->perf;
4398 
4399 	if (!perf->i915)
4400 		return;
4401 
4402 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4403 	idr_destroy(&perf->metrics_idr);
4404 
4405 	memset(&perf->ops, 0, sizeof(perf->ops));
4406 	perf->i915 = NULL;
4407 }
4408 
4409 /**
4410  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4411  *
4412  * This version number is used by userspace to detect available features.
4413  */
4414 int i915_perf_ioctl_version(void)
4415 {
4416 	/*
4417 	 * 1: Initial version
4418 	 *   I915_PERF_IOCTL_ENABLE
4419 	 *   I915_PERF_IOCTL_DISABLE
4420 	 *
4421 	 * 2: Added runtime modification of OA config.
4422 	 *   I915_PERF_IOCTL_CONFIG
4423 	 *
4424 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4425 	 *    preemption on a particular context so that performance data is
4426 	 *    accessible from a delta of MI_RPC reports without looking at the
4427 	 *    OA buffer.
4428 	 *
4429 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4430 	 *    be run for the duration of the performance recording based on
4431 	 *    their SSEU configuration.
4432 	 *
4433 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4434 	 *    interval for the hrtimer used to check for OA data.
4435 	 */
4436 	return 5;
4437 }
4438 
4439 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4440 #include "selftests/i915_perf.c"
4441 #endif
4442