1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_print.h" 210 #include "gt/intel_gt_regs.h" 211 #include "gt/intel_lrc.h" 212 #include "gt/intel_lrc_reg.h" 213 #include "gt/intel_rc6.h" 214 #include "gt/intel_ring.h" 215 #include "gt/uc/intel_guc_slpc.h" 216 217 #include "i915_drv.h" 218 #include "i915_file_private.h" 219 #include "i915_perf.h" 220 #include "i915_perf_oa_regs.h" 221 #include "i915_reg.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 242 * redundant read() attempts. 243 * 244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 245 * in the OA buffer, starting from the tail reported by the HW until we find a 246 * report with its first 2 dwords not 0 meaning its previous report is 247 * completely in memory and ready to be read. Those dwords are also set to 0 248 * once read and the whole buffer is cleared upon OA buffer initialization. The 249 * first dword is the reason for this report while the second is the timestamp, 250 * making the chances of having those 2 fields at 0 fairly unlikely. A more 251 * detailed explanation is available in oa_buffer_check_unlocked(). 252 * 253 * Most of the implementation details for this workaround are in 254 * oa_buffer_check_unlocked() and _append_oa_reports() 255 * 256 * Note for posterity: previously the driver used to define an effective tail 257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 259 * This was flawed considering that the OA unit may also automatically generate 260 * non-periodic reports (such as on context switch) or the OA unit may be 261 * enabled without any periodic sampling. 262 */ 263 #define OA_TAIL_MARGIN_NSEC 100000ULL 264 #define INVALID_TAIL_PTR 0xffffffff 265 266 /* The default frequency for checking whether the OA unit has written new 267 * reports to the circular OA buffer... 268 */ 269 #define DEFAULT_POLL_FREQUENCY_HZ 200 270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 271 272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 273 static u32 i915_perf_stream_paranoid = true; 274 275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 276 * of the 64bit timestamp bits to trigger reports from) but there's currently 277 * no known use case for sampling as infrequently as once per 47 thousand years. 278 * 279 * Since the timestamps included in OA reports are only 32bits it seems 280 * reasonable to limit the OA exponent where it's still possible to account for 281 * overflow in OA report timestamps. 282 */ 283 #define OA_EXPONENT_MAX 31 284 285 #define INVALID_CTX_ID 0xffffffff 286 287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 288 #define OAREPORT_REASON_MASK 0x3f 289 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 290 #define OAREPORT_REASON_SHIFT 19 291 #define OAREPORT_REASON_TIMER (1<<0) 292 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 293 #define OAREPORT_REASON_CLK_RATIO (1<<5) 294 295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 296 297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 298 * 299 * The highest sampling frequency we can theoretically program the OA unit 300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 301 * 302 * Initialized just before we register the sysctl parameter. 303 */ 304 static int oa_sample_rate_hard_limit; 305 306 /* Theoretically we can program the OA unit to sample every 160ns but don't 307 * allow that by default unless root... 308 * 309 * The default threshold of 100000Hz is based on perf's similar 310 * kernel.perf_event_max_sample_rate sysctl parameter. 311 */ 312 static u32 i915_oa_max_sample_rate = 100000; 313 314 /* XXX: beware if future OA HW adds new report formats that the current 315 * code assumes all reports have a power-of-two size and ~(size - 1) can 316 * be used as a mask to align the OA tail pointer. 317 */ 318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 319 [I915_OA_FORMAT_A13] = { 0, 64 }, 320 [I915_OA_FORMAT_A29] = { 1, 128 }, 321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 323 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 326 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 327 [I915_OA_FORMAT_A12] = { 0, 64 }, 328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 334 }; 335 336 static const u32 mtl_oa_base[] = { 337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 338 }; 339 340 #define SAMPLE_OA_REPORT (1<<0) 341 342 /** 343 * struct perf_open_properties - for validated properties given to open a stream 344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 345 * @single_context: Whether a single or all gpu contexts should be monitored 346 * @hold_preemption: Whether the preemption is disabled for the filtered 347 * context 348 * @ctx_handle: A gem ctx handle for use with @single_context 349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 350 * @oa_format: An OA unit HW report format 351 * @oa_periodic: Whether to enable periodic OA unit sampling 352 * @oa_period_exponent: The OA unit sampling period is derived from this 353 * @engine: The engine (typically rcs0) being monitored by the OA unit 354 * @has_sseu: Whether @sseu was specified by userspace 355 * @sseu: internal SSEU configuration computed either from the userspace 356 * specified configuration in the opening parameters or a default value 357 * (see get_default_sseu_config()) 358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 359 * data availability 360 * 361 * As read_properties_unlocked() enumerates and validates the properties given 362 * to open a stream of metrics the configuration is built up in the structure 363 * which starts out zero initialized. 364 */ 365 struct perf_open_properties { 366 u32 sample_flags; 367 368 u64 single_context:1; 369 u64 hold_preemption:1; 370 u64 ctx_handle; 371 372 /* OA sampling state */ 373 int metrics_set; 374 int oa_format; 375 bool oa_periodic; 376 int oa_period_exponent; 377 378 struct intel_engine_cs *engine; 379 380 bool has_sseu; 381 struct intel_sseu sseu; 382 383 u64 poll_oa_period; 384 }; 385 386 struct i915_oa_config_bo { 387 struct llist_node node; 388 389 struct i915_oa_config *oa_config; 390 struct i915_vma *vma; 391 }; 392 393 static struct ctl_table_header *sysctl_header; 394 395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 396 397 void i915_oa_config_release(struct kref *ref) 398 { 399 struct i915_oa_config *oa_config = 400 container_of(ref, typeof(*oa_config), ref); 401 402 kfree(oa_config->flex_regs); 403 kfree(oa_config->b_counter_regs); 404 kfree(oa_config->mux_regs); 405 406 kfree_rcu(oa_config, rcu); 407 } 408 409 struct i915_oa_config * 410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 411 { 412 struct i915_oa_config *oa_config; 413 414 rcu_read_lock(); 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static inline const 431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 432 { 433 return &stream->engine->oa_group->regs; 434 } 435 436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 440 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 441 GEN12_OAG_OATAILPTR_MASK; 442 } 443 444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 445 { 446 struct intel_uncore *uncore = stream->uncore; 447 448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 449 } 450 451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 452 { 453 struct intel_uncore *uncore = stream->uncore; 454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 455 456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 457 } 458 459 #define oa_report_header_64bit(__s) \ 460 ((__s)->oa_buffer.format->header == HDR_64_BIT) 461 462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 463 { 464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 465 } 466 467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 468 { 469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 470 (GRAPHICS_VER(stream->perf->i915) == 12 ? 471 OAREPORT_REASON_MASK_EXTENDED : 472 OAREPORT_REASON_MASK); 473 } 474 475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 476 { 477 if (oa_report_header_64bit(stream)) 478 *(u64 *)report = 0; 479 else 480 *report = 0; 481 } 482 483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 484 { 485 return !(oa_report_id(stream, report) & 486 stream->perf->gen8_valid_ctx_bit); 487 } 488 489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 490 { 491 return oa_report_header_64bit(stream) ? 492 *((u64 *)report + 1) : 493 *((u32 *)report + 1); 494 } 495 496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 497 { 498 if (oa_report_header_64bit(stream)) 499 *(u64 *)&report[2] = 0; 500 else 501 report[1] = 0; 502 } 503 504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 505 { 506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 507 508 return ctx_id & stream->specific_ctx_id_mask; 509 } 510 511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 512 { 513 if (oa_report_header_64bit(stream)) 514 report[4] = INVALID_CTX_ID; 515 else 516 report[2] = INVALID_CTX_ID; 517 } 518 519 /** 520 * oa_buffer_check_unlocked - check for data and update tail ptr state 521 * @stream: i915 stream instance 522 * 523 * This is either called via fops (for blocking reads in user ctx) or the poll 524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 525 * if there is data available for userspace to read. 526 * 527 * This function is central to providing a workaround for the OA unit tail 528 * pointer having a race with respect to what data is visible to the CPU. 529 * It is responsible for reading tail pointers from the hardware and giving 530 * the pointers time to 'age' before they are made available for reading. 531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 532 * 533 * Besides returning true when there is data available to read() this function 534 * also updates the tail in the oa_buffer object. 535 * 536 * Note: It's safe to read OA config state here unlocked, assuming that this is 537 * only called while the stream is enabled, while the global OA configuration 538 * can't be modified. 539 * 540 * Returns: %true if the OA buffer contains data, else %false 541 */ 542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 543 { 544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 545 int report_size = stream->oa_buffer.format->size; 546 u32 tail, hw_tail; 547 unsigned long flags; 548 bool pollin; 549 u32 partial_report_size; 550 551 /* We have to consider the (unlikely) possibility that read() errors 552 * could result in an OA buffer reset which might reset the head and 553 * tail state. 554 */ 555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 556 557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 558 hw_tail -= gtt_offset; 559 560 /* The tail pointer increases in 64 byte increments, not in report_size 561 * steps. Also the report size may not be a power of 2. Compute 562 * potentially partially landed report in the OA buffer 563 */ 564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 565 partial_report_size %= report_size; 566 567 /* Subtract partial amount off the tail */ 568 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 569 570 tail = hw_tail; 571 572 /* Walk the stream backward until we find a report with report 573 * id and timestmap not at 0. Since the circular buffer pointers 574 * progress by increments of 64 bytes and that reports can be up 575 * to 256 bytes long, we can't tell whether a report has fully 576 * landed in memory before the report id and timestamp of the 577 * following report have effectively landed. 578 * 579 * This is assuming that the writes of the OA unit land in 580 * memory in the order they were written to. 581 * If not : (╯°□°)╯︵ ┻━┻ 582 */ 583 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) { 584 void *report = stream->oa_buffer.vaddr + tail; 585 586 if (oa_report_id(stream, report) || 587 oa_timestamp(stream, report)) 588 break; 589 590 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 591 } 592 593 if (OA_TAKEN(hw_tail, tail) > report_size && 594 __ratelimit(&stream->perf->tail_pointer_race)) 595 drm_notice(&stream->uncore->i915->drm, 596 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 597 stream->oa_buffer.head, tail, hw_tail); 598 599 stream->oa_buffer.tail = tail; 600 601 pollin = OA_TAKEN(stream->oa_buffer.tail, 602 stream->oa_buffer.head) >= report_size; 603 604 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 605 606 return pollin; 607 } 608 609 /** 610 * append_oa_status - Appends a status record to a userspace read() buffer. 611 * @stream: An i915-perf stream opened for OA metrics 612 * @buf: destination buffer given by userspace 613 * @count: the number of bytes userspace wants to read 614 * @offset: (inout): the current position for writing into @buf 615 * @type: The kind of status to report to userspace 616 * 617 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 618 * into the userspace read() buffer. 619 * 620 * The @buf @offset will only be updated on success. 621 * 622 * Returns: 0 on success, negative error code on failure. 623 */ 624 static int append_oa_status(struct i915_perf_stream *stream, 625 char __user *buf, 626 size_t count, 627 size_t *offset, 628 enum drm_i915_perf_record_type type) 629 { 630 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 631 632 if ((count - *offset) < header.size) 633 return -ENOSPC; 634 635 if (copy_to_user(buf + *offset, &header, sizeof(header))) 636 return -EFAULT; 637 638 (*offset) += header.size; 639 640 return 0; 641 } 642 643 /** 644 * append_oa_sample - Copies single OA report into userspace read() buffer. 645 * @stream: An i915-perf stream opened for OA metrics 646 * @buf: destination buffer given by userspace 647 * @count: the number of bytes userspace wants to read 648 * @offset: (inout): the current position for writing into @buf 649 * @report: A single OA report to (optionally) include as part of the sample 650 * 651 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 652 * properties when opening a stream, tracked as `stream->sample_flags`. This 653 * function copies the requested components of a single sample to the given 654 * read() @buf. 655 * 656 * The @buf @offset will only be updated on success. 657 * 658 * Returns: 0 on success, negative error code on failure. 659 */ 660 static int append_oa_sample(struct i915_perf_stream *stream, 661 char __user *buf, 662 size_t count, 663 size_t *offset, 664 const u8 *report) 665 { 666 int report_size = stream->oa_buffer.format->size; 667 struct drm_i915_perf_record_header header; 668 int report_size_partial; 669 u8 *oa_buf_end; 670 671 header.type = DRM_I915_PERF_RECORD_SAMPLE; 672 header.pad = 0; 673 header.size = stream->sample_size; 674 675 if ((count - *offset) < header.size) 676 return -ENOSPC; 677 678 buf += *offset; 679 if (copy_to_user(buf, &header, sizeof(header))) 680 return -EFAULT; 681 buf += sizeof(header); 682 683 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 684 report_size_partial = oa_buf_end - report; 685 686 if (report_size_partial < report_size) { 687 if (copy_to_user(buf, report, report_size_partial)) 688 return -EFAULT; 689 buf += report_size_partial; 690 691 if (copy_to_user(buf, stream->oa_buffer.vaddr, 692 report_size - report_size_partial)) 693 return -EFAULT; 694 } else if (copy_to_user(buf, report, report_size)) { 695 return -EFAULT; 696 } 697 698 (*offset) += header.size; 699 700 return 0; 701 } 702 703 /** 704 * gen8_append_oa_reports - Copies all buffered OA reports into 705 * userspace read() buffer. 706 * @stream: An i915-perf stream opened for OA metrics 707 * @buf: destination buffer given by userspace 708 * @count: the number of bytes userspace wants to read 709 * @offset: (inout): the current position for writing into @buf 710 * 711 * Notably any error condition resulting in a short read (-%ENOSPC or 712 * -%EFAULT) will be returned even though one or more records may 713 * have been successfully copied. In this case it's up to the caller 714 * to decide if the error should be squashed before returning to 715 * userspace. 716 * 717 * Note: reports are consumed from the head, and appended to the 718 * tail, so the tail chases the head?... If you think that's mad 719 * and back-to-front you're not alone, but this follows the 720 * Gen PRM naming convention. 721 * 722 * Returns: 0 on success, negative error code on failure. 723 */ 724 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 725 char __user *buf, 726 size_t count, 727 size_t *offset) 728 { 729 struct intel_uncore *uncore = stream->uncore; 730 int report_size = stream->oa_buffer.format->size; 731 u8 *oa_buf_base = stream->oa_buffer.vaddr; 732 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 733 u32 mask = (OA_BUFFER_SIZE - 1); 734 size_t start_offset = *offset; 735 unsigned long flags; 736 u32 head, tail; 737 int ret = 0; 738 739 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 740 return -EIO; 741 742 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 743 744 head = stream->oa_buffer.head; 745 tail = stream->oa_buffer.tail; 746 747 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 748 749 /* 750 * An out of bounds or misaligned head or tail pointer implies a driver 751 * bug since we validate + align the tail pointers we read from the 752 * hardware and we are in full control of the head pointer which should 753 * only be incremented by multiples of the report size. 754 */ 755 if (drm_WARN_ONCE(&uncore->i915->drm, 756 head > OA_BUFFER_SIZE || 757 tail > OA_BUFFER_SIZE, 758 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 759 head, tail)) 760 return -EIO; 761 762 763 for (/* none */; 764 OA_TAKEN(tail, head); 765 head = (head + report_size) & mask) { 766 u8 *report = oa_buf_base + head; 767 u32 *report32 = (void *)report; 768 u32 ctx_id; 769 u64 reason; 770 771 /* 772 * The reason field includes flags identifying what 773 * triggered this specific report (mostly timer 774 * triggered or e.g. due to a context switch). 775 * 776 * In MMIO triggered reports, some platforms do not set the 777 * reason bit in this field and it is valid to have a reason 778 * field of zero. 779 */ 780 reason = oa_report_reason(stream, report); 781 ctx_id = oa_context_id(stream, report32); 782 783 /* 784 * Squash whatever is in the CTX_ID field if it's marked as 785 * invalid to be sure we avoid false-positive, single-context 786 * filtering below... 787 * 788 * Note: that we don't clear the valid_ctx_bit so userspace can 789 * understand that the ID has been squashed by the kernel. 790 */ 791 if (oa_report_ctx_invalid(stream, report)) { 792 ctx_id = INVALID_CTX_ID; 793 oa_context_id_squash(stream, report32); 794 } 795 796 /* 797 * NB: For Gen 8 the OA unit no longer supports clock gating 798 * off for a specific context and the kernel can't securely 799 * stop the counters from updating as system-wide / global 800 * values. 801 * 802 * Automatic reports now include a context ID so reports can be 803 * filtered on the cpu but it's not worth trying to 804 * automatically subtract/hide counter progress for other 805 * contexts while filtering since we can't stop userspace 806 * issuing MI_REPORT_PERF_COUNT commands which would still 807 * provide a side-band view of the real values. 808 * 809 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 810 * to normalize counters for a single filtered context then it 811 * needs be forwarded bookend context-switch reports so that it 812 * can track switches in between MI_REPORT_PERF_COUNT commands 813 * and can itself subtract/ignore the progress of counters 814 * associated with other contexts. Note that the hardware 815 * automatically triggers reports when switching to a new 816 * context which are tagged with the ID of the newly active 817 * context. To avoid the complexity (and likely fragility) of 818 * reading ahead while parsing reports to try and minimize 819 * forwarding redundant context switch reports (i.e. between 820 * other, unrelated contexts) we simply elect to forward them 821 * all. 822 * 823 * We don't rely solely on the reason field to identify context 824 * switches since it's not-uncommon for periodic samples to 825 * identify a switch before any 'context switch' report. 826 */ 827 if (!stream->ctx || 828 stream->specific_ctx_id == ctx_id || 829 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 830 reason & OAREPORT_REASON_CTX_SWITCH) { 831 832 /* 833 * While filtering for a single context we avoid 834 * leaking the IDs of other contexts. 835 */ 836 if (stream->ctx && 837 stream->specific_ctx_id != ctx_id) { 838 oa_context_id_squash(stream, report32); 839 } 840 841 ret = append_oa_sample(stream, buf, count, offset, 842 report); 843 if (ret) 844 break; 845 846 stream->oa_buffer.last_ctx_id = ctx_id; 847 } 848 849 if (is_power_of_2(report_size)) { 850 /* 851 * Clear out the report id and timestamp as a means 852 * to detect unlanded reports. 853 */ 854 oa_report_id_clear(stream, report32); 855 oa_timestamp_clear(stream, report32); 856 } else { 857 u8 *oa_buf_end = stream->oa_buffer.vaddr + 858 OA_BUFFER_SIZE; 859 u32 part = oa_buf_end - (u8 *)report32; 860 861 /* Zero out the entire report */ 862 if (report_size <= part) { 863 memset(report32, 0, report_size); 864 } else { 865 memset(report32, 0, part); 866 memset(oa_buf_base, 0, report_size - part); 867 } 868 } 869 } 870 871 if (start_offset != *offset) { 872 i915_reg_t oaheadptr; 873 874 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 875 __oa_regs(stream)->oa_head_ptr : 876 GEN8_OAHEADPTR; 877 878 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 879 880 /* 881 * We removed the gtt_offset for the copy loop above, indexing 882 * relative to oa_buf_base so put back here... 883 */ 884 intel_uncore_write(uncore, oaheadptr, 885 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK); 886 stream->oa_buffer.head = head; 887 888 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 889 } 890 891 return ret; 892 } 893 894 /** 895 * gen8_oa_read - copy status records then buffered OA reports 896 * @stream: An i915-perf stream opened for OA metrics 897 * @buf: destination buffer given by userspace 898 * @count: the number of bytes userspace wants to read 899 * @offset: (inout): the current position for writing into @buf 900 * 901 * Checks OA unit status registers and if necessary appends corresponding 902 * status records for userspace (such as for a buffer full condition) and then 903 * initiate appending any buffered OA reports. 904 * 905 * Updates @offset according to the number of bytes successfully copied into 906 * the userspace buffer. 907 * 908 * NB: some data may be successfully copied to the userspace buffer 909 * even if an error is returned, and this is reflected in the 910 * updated @offset. 911 * 912 * Returns: zero on success or a negative error code 913 */ 914 static int gen8_oa_read(struct i915_perf_stream *stream, 915 char __user *buf, 916 size_t count, 917 size_t *offset) 918 { 919 struct intel_uncore *uncore = stream->uncore; 920 u32 oastatus; 921 i915_reg_t oastatus_reg; 922 int ret; 923 924 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 925 return -EIO; 926 927 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 928 __oa_regs(stream)->oa_status : 929 GEN8_OASTATUS; 930 931 oastatus = intel_uncore_read(uncore, oastatus_reg); 932 933 /* 934 * We treat OABUFFER_OVERFLOW as a significant error: 935 * 936 * Although theoretically we could handle this more gracefully 937 * sometimes, some Gens don't correctly suppress certain 938 * automatically triggered reports in this condition and so we 939 * have to assume that old reports are now being trampled 940 * over. 941 * 942 * Considering how we don't currently give userspace control 943 * over the OA buffer size and always configure a large 16MB 944 * buffer, then a buffer overflow does anyway likely indicate 945 * that something has gone quite badly wrong. 946 */ 947 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 948 ret = append_oa_status(stream, buf, count, offset, 949 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 950 if (ret) 951 return ret; 952 953 drm_dbg(&stream->perf->i915->drm, 954 "OA buffer overflow (exponent = %d): force restart\n", 955 stream->period_exponent); 956 957 stream->perf->ops.oa_disable(stream); 958 stream->perf->ops.oa_enable(stream); 959 960 /* 961 * Note: .oa_enable() is expected to re-init the oabuffer and 962 * reset GEN8_OASTATUS for us 963 */ 964 oastatus = intel_uncore_read(uncore, oastatus_reg); 965 } 966 967 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 968 ret = append_oa_status(stream, buf, count, offset, 969 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 970 if (ret) 971 return ret; 972 973 intel_uncore_rmw(uncore, oastatus_reg, 974 GEN8_OASTATUS_COUNTER_OVERFLOW | 975 GEN8_OASTATUS_REPORT_LOST, 976 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 977 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 978 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 979 } 980 981 return gen8_append_oa_reports(stream, buf, count, offset); 982 } 983 984 /** 985 * gen7_append_oa_reports - Copies all buffered OA reports into 986 * userspace read() buffer. 987 * @stream: An i915-perf stream opened for OA metrics 988 * @buf: destination buffer given by userspace 989 * @count: the number of bytes userspace wants to read 990 * @offset: (inout): the current position for writing into @buf 991 * 992 * Notably any error condition resulting in a short read (-%ENOSPC or 993 * -%EFAULT) will be returned even though one or more records may 994 * have been successfully copied. In this case it's up to the caller 995 * to decide if the error should be squashed before returning to 996 * userspace. 997 * 998 * Note: reports are consumed from the head, and appended to the 999 * tail, so the tail chases the head?... If you think that's mad 1000 * and back-to-front you're not alone, but this follows the 1001 * Gen PRM naming convention. 1002 * 1003 * Returns: 0 on success, negative error code on failure. 1004 */ 1005 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1006 char __user *buf, 1007 size_t count, 1008 size_t *offset) 1009 { 1010 struct intel_uncore *uncore = stream->uncore; 1011 int report_size = stream->oa_buffer.format->size; 1012 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1013 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1014 u32 mask = (OA_BUFFER_SIZE - 1); 1015 size_t start_offset = *offset; 1016 unsigned long flags; 1017 u32 head, tail; 1018 int ret = 0; 1019 1020 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1021 return -EIO; 1022 1023 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1024 1025 head = stream->oa_buffer.head; 1026 tail = stream->oa_buffer.tail; 1027 1028 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1029 1030 /* An out of bounds or misaligned head or tail pointer implies a driver 1031 * bug since we validate + align the tail pointers we read from the 1032 * hardware and we are in full control of the head pointer which should 1033 * only be incremented by multiples of the report size (notably also 1034 * all a power of two). 1035 */ 1036 if (drm_WARN_ONCE(&uncore->i915->drm, 1037 head > OA_BUFFER_SIZE || head % report_size || 1038 tail > OA_BUFFER_SIZE || tail % report_size, 1039 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1040 head, tail)) 1041 return -EIO; 1042 1043 1044 for (/* none */; 1045 OA_TAKEN(tail, head); 1046 head = (head + report_size) & mask) { 1047 u8 *report = oa_buf_base + head; 1048 u32 *report32 = (void *)report; 1049 1050 /* All the report sizes factor neatly into the buffer 1051 * size so we never expect to see a report split 1052 * between the beginning and end of the buffer. 1053 * 1054 * Given the initial alignment check a misalignment 1055 * here would imply a driver bug that would result 1056 * in an overrun. 1057 */ 1058 if (drm_WARN_ON(&uncore->i915->drm, 1059 (OA_BUFFER_SIZE - head) < report_size)) { 1060 drm_err(&uncore->i915->drm, 1061 "Spurious OA head ptr: non-integral report offset\n"); 1062 break; 1063 } 1064 1065 /* The report-ID field for periodic samples includes 1066 * some undocumented flags related to what triggered 1067 * the report and is never expected to be zero so we 1068 * can check that the report isn't invalid before 1069 * copying it to userspace... 1070 */ 1071 if (report32[0] == 0) { 1072 if (__ratelimit(&stream->perf->spurious_report_rs)) 1073 drm_notice(&uncore->i915->drm, 1074 "Skipping spurious, invalid OA report\n"); 1075 continue; 1076 } 1077 1078 ret = append_oa_sample(stream, buf, count, offset, report); 1079 if (ret) 1080 break; 1081 1082 /* Clear out the first 2 dwords as a mean to detect unlanded 1083 * reports. 1084 */ 1085 report32[0] = 0; 1086 report32[1] = 0; 1087 } 1088 1089 if (start_offset != *offset) { 1090 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1091 1092 intel_uncore_write(uncore, GEN7_OASTATUS2, 1093 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) | 1094 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1095 stream->oa_buffer.head = head; 1096 1097 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1098 } 1099 1100 return ret; 1101 } 1102 1103 /** 1104 * gen7_oa_read - copy status records then buffered OA reports 1105 * @stream: An i915-perf stream opened for OA metrics 1106 * @buf: destination buffer given by userspace 1107 * @count: the number of bytes userspace wants to read 1108 * @offset: (inout): the current position for writing into @buf 1109 * 1110 * Checks Gen 7 specific OA unit status registers and if necessary appends 1111 * corresponding status records for userspace (such as for a buffer full 1112 * condition) and then initiate appending any buffered OA reports. 1113 * 1114 * Updates @offset according to the number of bytes successfully copied into 1115 * the userspace buffer. 1116 * 1117 * Returns: zero on success or a negative error code 1118 */ 1119 static int gen7_oa_read(struct i915_perf_stream *stream, 1120 char __user *buf, 1121 size_t count, 1122 size_t *offset) 1123 { 1124 struct intel_uncore *uncore = stream->uncore; 1125 u32 oastatus1; 1126 int ret; 1127 1128 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1129 return -EIO; 1130 1131 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1132 1133 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1134 * bits while the OA unit is enabled (while the tail pointer 1135 * may be updated asynchronously) so we ignore status bits 1136 * that have already been reported to userspace. 1137 */ 1138 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1139 1140 /* We treat OABUFFER_OVERFLOW as a significant error: 1141 * 1142 * - The status can be interpreted to mean that the buffer is 1143 * currently full (with a higher precedence than OA_TAKEN() 1144 * which will start to report a near-empty buffer after an 1145 * overflow) but it's awkward that we can't clear the status 1146 * on Haswell, so without a reset we won't be able to catch 1147 * the state again. 1148 * 1149 * - Since it also implies the HW has started overwriting old 1150 * reports it may also affect our sanity checks for invalid 1151 * reports when copying to userspace that assume new reports 1152 * are being written to cleared memory. 1153 * 1154 * - In the future we may want to introduce a flight recorder 1155 * mode where the driver will automatically maintain a safe 1156 * guard band between head/tail, avoiding this overflow 1157 * condition, but we avoid the added driver complexity for 1158 * now. 1159 */ 1160 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1161 ret = append_oa_status(stream, buf, count, offset, 1162 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1163 if (ret) 1164 return ret; 1165 1166 drm_dbg(&stream->perf->i915->drm, 1167 "OA buffer overflow (exponent = %d): force restart\n", 1168 stream->period_exponent); 1169 1170 stream->perf->ops.oa_disable(stream); 1171 stream->perf->ops.oa_enable(stream); 1172 1173 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1174 } 1175 1176 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1177 ret = append_oa_status(stream, buf, count, offset, 1178 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1179 if (ret) 1180 return ret; 1181 stream->perf->gen7_latched_oastatus1 |= 1182 GEN7_OASTATUS1_REPORT_LOST; 1183 } 1184 1185 return gen7_append_oa_reports(stream, buf, count, offset); 1186 } 1187 1188 /** 1189 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1190 * @stream: An i915-perf stream opened for OA metrics 1191 * 1192 * Called when userspace tries to read() from a blocking stream FD opened 1193 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1194 * OA buffer and wakes us. 1195 * 1196 * Note: it's acceptable to have this return with some false positives 1197 * since any subsequent read handling will return -EAGAIN if there isn't 1198 * really data ready for userspace yet. 1199 * 1200 * Returns: zero on success or a negative error code 1201 */ 1202 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1203 { 1204 /* We would wait indefinitely if periodic sampling is not enabled */ 1205 if (!stream->periodic) 1206 return -EIO; 1207 1208 return wait_event_interruptible(stream->poll_wq, 1209 oa_buffer_check_unlocked(stream)); 1210 } 1211 1212 /** 1213 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1214 * @stream: An i915-perf stream opened for OA metrics 1215 * @file: An i915 perf stream file 1216 * @wait: poll() state table 1217 * 1218 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1219 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1220 * when it sees data ready to read in the circular OA buffer. 1221 */ 1222 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1223 struct file *file, 1224 poll_table *wait) 1225 { 1226 poll_wait(file, &stream->poll_wq, wait); 1227 } 1228 1229 /** 1230 * i915_oa_read - just calls through to &i915_oa_ops->read 1231 * @stream: An i915-perf stream opened for OA metrics 1232 * @buf: destination buffer given by userspace 1233 * @count: the number of bytes userspace wants to read 1234 * @offset: (inout): the current position for writing into @buf 1235 * 1236 * Updates @offset according to the number of bytes successfully copied into 1237 * the userspace buffer. 1238 * 1239 * Returns: zero on success or a negative error code 1240 */ 1241 static int i915_oa_read(struct i915_perf_stream *stream, 1242 char __user *buf, 1243 size_t count, 1244 size_t *offset) 1245 { 1246 return stream->perf->ops.read(stream, buf, count, offset); 1247 } 1248 1249 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1250 { 1251 struct i915_gem_engines_iter it; 1252 struct i915_gem_context *ctx = stream->ctx; 1253 struct intel_context *ce; 1254 struct i915_gem_ww_ctx ww; 1255 int err = -ENODEV; 1256 1257 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1258 if (ce->engine != stream->engine) /* first match! */ 1259 continue; 1260 1261 err = 0; 1262 break; 1263 } 1264 i915_gem_context_unlock_engines(ctx); 1265 1266 if (err) 1267 return ERR_PTR(err); 1268 1269 i915_gem_ww_ctx_init(&ww, true); 1270 retry: 1271 /* 1272 * As the ID is the gtt offset of the context's vma we 1273 * pin the vma to ensure the ID remains fixed. 1274 */ 1275 err = intel_context_pin_ww(ce, &ww); 1276 if (err == -EDEADLK) { 1277 err = i915_gem_ww_ctx_backoff(&ww); 1278 if (!err) 1279 goto retry; 1280 } 1281 i915_gem_ww_ctx_fini(&ww); 1282 1283 if (err) 1284 return ERR_PTR(err); 1285 1286 stream->pinned_ctx = ce; 1287 return stream->pinned_ctx; 1288 } 1289 1290 static int 1291 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1292 { 1293 u32 *cs, cmd; 1294 1295 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1296 if (GRAPHICS_VER(rq->i915) >= 8) 1297 cmd++; 1298 1299 cs = intel_ring_begin(rq, 4); 1300 if (IS_ERR(cs)) 1301 return PTR_ERR(cs); 1302 1303 *cs++ = cmd; 1304 *cs++ = i915_mmio_reg_offset(reg); 1305 *cs++ = ggtt_offset; 1306 *cs++ = 0; 1307 1308 intel_ring_advance(rq, cs); 1309 1310 return 0; 1311 } 1312 1313 static int 1314 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1315 { 1316 struct i915_request *rq; 1317 int err; 1318 1319 rq = i915_request_create(ce); 1320 if (IS_ERR(rq)) 1321 return PTR_ERR(rq); 1322 1323 i915_request_get(rq); 1324 1325 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1326 1327 i915_request_add(rq); 1328 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1329 err = -ETIME; 1330 1331 i915_request_put(rq); 1332 1333 return err; 1334 } 1335 1336 static int 1337 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1338 { 1339 struct i915_vma *scratch; 1340 u32 *val; 1341 int err; 1342 1343 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1344 if (IS_ERR(scratch)) 1345 return PTR_ERR(scratch); 1346 1347 err = i915_vma_sync(scratch); 1348 if (err) 1349 goto err_scratch; 1350 1351 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1352 i915_ggtt_offset(scratch)); 1353 if (err) 1354 goto err_scratch; 1355 1356 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1357 if (IS_ERR(val)) { 1358 err = PTR_ERR(val); 1359 goto err_scratch; 1360 } 1361 1362 *ctx_id = *val; 1363 i915_gem_object_unpin_map(scratch->obj); 1364 1365 err_scratch: 1366 i915_vma_unpin_and_release(&scratch, 0); 1367 return err; 1368 } 1369 1370 /* 1371 * For execlist mode of submission, pick an unused context id 1372 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1373 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1374 * 1375 * For GuC mode of submission read context id from the upper dword of the 1376 * EXECLIST_STATUS register. Note that we read this value only once and expect 1377 * that the value stays fixed for the entire OA use case. There are cases where 1378 * GuC KMD implementation may deregister a context to reuse it's context id, but 1379 * we prevent that from happening to the OA context by pinning it. 1380 */ 1381 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1382 { 1383 u32 ctx_id, mask; 1384 int ret; 1385 1386 if (intel_engine_uses_guc(stream->engine)) { 1387 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1388 if (ret) 1389 return ret; 1390 1391 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1392 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1393 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1394 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1395 (XEHP_SW_CTX_ID_SHIFT - 32); 1396 1397 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1398 (XEHP_SW_CTX_ID_SHIFT - 32); 1399 } else { 1400 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1401 (GEN11_SW_CTX_ID_SHIFT - 32); 1402 1403 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1404 (GEN11_SW_CTX_ID_SHIFT - 32); 1405 } 1406 stream->specific_ctx_id = ctx_id & mask; 1407 stream->specific_ctx_id_mask = mask; 1408 1409 return 0; 1410 } 1411 1412 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1413 { 1414 u32 idx = *offset; 1415 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1416 bool found = false; 1417 1418 idx++; 1419 for (; idx < len; idx += 2) { 1420 if (state[idx] == reg) { 1421 found = true; 1422 break; 1423 } 1424 } 1425 1426 *offset = idx; 1427 return found; 1428 } 1429 1430 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1431 { 1432 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1433 u32 *state = ce->lrc_reg_state; 1434 1435 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1436 return U32_MAX; 1437 1438 for (offset = 0; offset < len; ) { 1439 if (IS_MI_LRI_CMD(state[offset])) { 1440 /* 1441 * We expect reg-value pairs in MI_LRI command, so 1442 * MI_LRI_LEN() should be even, if not, issue a warning. 1443 */ 1444 drm_WARN_ON(&ce->engine->i915->drm, 1445 MI_LRI_LEN(state[offset]) & 0x1); 1446 1447 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1448 break; 1449 } else { 1450 offset++; 1451 } 1452 } 1453 1454 return offset < len ? offset : U32_MAX; 1455 } 1456 1457 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1458 { 1459 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1460 struct i915_perf *perf = &ce->engine->i915->perf; 1461 u32 offset = perf->ctx_oactxctrl_offset; 1462 1463 /* Do this only once. Failure is stored as offset of U32_MAX */ 1464 if (offset) 1465 goto exit; 1466 1467 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1468 perf->ctx_oactxctrl_offset = offset; 1469 1470 drm_dbg(&ce->engine->i915->drm, 1471 "%s oa ctx control at 0x%08x dword offset\n", 1472 ce->engine->name, offset); 1473 1474 exit: 1475 return offset && offset != U32_MAX ? 0 : -ENODEV; 1476 } 1477 1478 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1479 { 1480 return engine->class == RENDER_CLASS; 1481 } 1482 1483 /** 1484 * oa_get_render_ctx_id - determine and hold ctx hw id 1485 * @stream: An i915-perf stream opened for OA metrics 1486 * 1487 * Determine the render context hw id, and ensure it remains fixed for the 1488 * lifetime of the stream. This ensures that we don't have to worry about 1489 * updating the context ID in OACONTROL on the fly. 1490 * 1491 * Returns: zero on success or a negative error code 1492 */ 1493 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1494 { 1495 struct intel_context *ce; 1496 int ret = 0; 1497 1498 ce = oa_pin_context(stream); 1499 if (IS_ERR(ce)) 1500 return PTR_ERR(ce); 1501 1502 if (engine_supports_mi_query(stream->engine) && 1503 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1504 /* 1505 * We are enabling perf query here. If we don't find the context 1506 * offset here, just return an error. 1507 */ 1508 ret = set_oa_ctx_ctrl_offset(ce); 1509 if (ret) { 1510 intel_context_unpin(ce); 1511 drm_err(&stream->perf->i915->drm, 1512 "Enabling perf query failed for %s\n", 1513 stream->engine->name); 1514 return ret; 1515 } 1516 } 1517 1518 switch (GRAPHICS_VER(ce->engine->i915)) { 1519 case 7: { 1520 /* 1521 * On Haswell we don't do any post processing of the reports 1522 * and don't need to use the mask. 1523 */ 1524 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1525 stream->specific_ctx_id_mask = 0; 1526 break; 1527 } 1528 1529 case 8: 1530 case 9: 1531 if (intel_engine_uses_guc(ce->engine)) { 1532 /* 1533 * When using GuC, the context descriptor we write in 1534 * i915 is read by GuC and rewritten before it's 1535 * actually written into the hardware. The LRCA is 1536 * what is put into the context id field of the 1537 * context descriptor by GuC. Because it's aligned to 1538 * a page, the lower 12bits are always at 0 and 1539 * dropped by GuC. They won't be part of the context 1540 * ID in the OA reports, so squash those lower bits. 1541 */ 1542 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1543 1544 /* 1545 * GuC uses the top bit to signal proxy submission, so 1546 * ignore that bit. 1547 */ 1548 stream->specific_ctx_id_mask = 1549 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1550 } else { 1551 stream->specific_ctx_id_mask = 1552 (1U << GEN8_CTX_ID_WIDTH) - 1; 1553 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1554 } 1555 break; 1556 1557 case 11: 1558 case 12: 1559 ret = gen12_get_render_context_id(stream); 1560 break; 1561 1562 default: 1563 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1564 } 1565 1566 ce->tag = stream->specific_ctx_id; 1567 1568 drm_dbg(&stream->perf->i915->drm, 1569 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1570 stream->specific_ctx_id, 1571 stream->specific_ctx_id_mask); 1572 1573 return ret; 1574 } 1575 1576 /** 1577 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1578 * @stream: An i915-perf stream opened for OA metrics 1579 * 1580 * In case anything needed doing to ensure the context HW ID would remain valid 1581 * for the lifetime of the stream, then that can be undone here. 1582 */ 1583 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1584 { 1585 struct intel_context *ce; 1586 1587 ce = fetch_and_zero(&stream->pinned_ctx); 1588 if (ce) { 1589 ce->tag = 0; /* recomputed on next submission after parking */ 1590 intel_context_unpin(ce); 1591 } 1592 1593 stream->specific_ctx_id = INVALID_CTX_ID; 1594 stream->specific_ctx_id_mask = 0; 1595 } 1596 1597 static void 1598 free_oa_buffer(struct i915_perf_stream *stream) 1599 { 1600 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1601 I915_VMA_RELEASE_MAP); 1602 1603 stream->oa_buffer.vaddr = NULL; 1604 } 1605 1606 static void 1607 free_oa_configs(struct i915_perf_stream *stream) 1608 { 1609 struct i915_oa_config_bo *oa_bo, *tmp; 1610 1611 i915_oa_config_put(stream->oa_config); 1612 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1613 free_oa_config_bo(oa_bo); 1614 } 1615 1616 static void 1617 free_noa_wait(struct i915_perf_stream *stream) 1618 { 1619 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1620 } 1621 1622 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1623 { 1624 return engine->oa_group; 1625 } 1626 1627 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1628 { 1629 return engine->oa_group && engine->oa_group->type == type; 1630 } 1631 1632 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1633 { 1634 struct i915_perf *perf = stream->perf; 1635 struct intel_gt *gt = stream->engine->gt; 1636 struct i915_perf_group *g = stream->engine->oa_group; 1637 1638 if (WARN_ON(stream != g->exclusive_stream)) 1639 return; 1640 1641 /* 1642 * Unset exclusive_stream first, it will be checked while disabling 1643 * the metric set on gen8+. 1644 * 1645 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1646 */ 1647 WRITE_ONCE(g->exclusive_stream, NULL); 1648 perf->ops.disable_metric_set(stream); 1649 1650 free_oa_buffer(stream); 1651 1652 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1653 intel_engine_pm_put(stream->engine); 1654 1655 if (stream->ctx) 1656 oa_put_render_ctx_id(stream); 1657 1658 free_oa_configs(stream); 1659 free_noa_wait(stream); 1660 1661 if (perf->spurious_report_rs.missed) { 1662 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", 1663 perf->spurious_report_rs.missed); 1664 } 1665 } 1666 1667 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1668 { 1669 struct intel_uncore *uncore = stream->uncore; 1670 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1671 unsigned long flags; 1672 1673 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1674 1675 /* Pre-DevBDW: OABUFFER must be set with counters off, 1676 * before OASTATUS1, but after OASTATUS2 1677 */ 1678 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1679 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1680 stream->oa_buffer.head = 0; 1681 1682 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1683 1684 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1685 gtt_offset | OABUFFER_SIZE_16M); 1686 1687 /* Mark that we need updated tail pointers to read from... */ 1688 stream->oa_buffer.tail = 0; 1689 1690 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1691 1692 /* On Haswell we have to track which OASTATUS1 flags we've 1693 * already seen since they can't be cleared while periodic 1694 * sampling is enabled. 1695 */ 1696 stream->perf->gen7_latched_oastatus1 = 0; 1697 1698 /* NB: although the OA buffer will initially be allocated 1699 * zeroed via shmfs (and so this memset is redundant when 1700 * first allocating), we may re-init the OA buffer, either 1701 * when re-enabling a stream or in error/reset paths. 1702 * 1703 * The reason we clear the buffer for each re-init is for the 1704 * sanity check in gen7_append_oa_reports() that looks at the 1705 * report-id field to make sure it's non-zero which relies on 1706 * the assumption that new reports are being written to zeroed 1707 * memory... 1708 */ 1709 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1710 } 1711 1712 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1713 { 1714 struct intel_uncore *uncore = stream->uncore; 1715 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1716 unsigned long flags; 1717 1718 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1719 1720 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1721 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1722 stream->oa_buffer.head = 0; 1723 1724 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1725 1726 /* 1727 * PRM says: 1728 * 1729 * "This MMIO must be set before the OATAILPTR 1730 * register and after the OAHEADPTR register. This is 1731 * to enable proper functionality of the overflow 1732 * bit." 1733 */ 1734 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1735 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1736 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1737 1738 /* Mark that we need updated tail pointers to read from... */ 1739 stream->oa_buffer.tail = 0; 1740 1741 /* 1742 * Reset state used to recognise context switches, affecting which 1743 * reports we will forward to userspace while filtering for a single 1744 * context. 1745 */ 1746 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1747 1748 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1749 1750 /* 1751 * NB: although the OA buffer will initially be allocated 1752 * zeroed via shmfs (and so this memset is redundant when 1753 * first allocating), we may re-init the OA buffer, either 1754 * when re-enabling a stream or in error/reset paths. 1755 * 1756 * The reason we clear the buffer for each re-init is for the 1757 * sanity check in gen8_append_oa_reports() that looks at the 1758 * reason field to make sure it's non-zero which relies on 1759 * the assumption that new reports are being written to zeroed 1760 * memory... 1761 */ 1762 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1763 } 1764 1765 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1766 { 1767 struct intel_uncore *uncore = stream->uncore; 1768 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1769 unsigned long flags; 1770 1771 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1772 1773 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1774 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1775 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1776 stream->oa_buffer.head = 0; 1777 1778 /* 1779 * PRM says: 1780 * 1781 * "This MMIO must be set before the OATAILPTR 1782 * register and after the OAHEADPTR register. This is 1783 * to enable proper functionality of the overflow 1784 * bit." 1785 */ 1786 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1787 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1788 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1789 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1790 1791 /* Mark that we need updated tail pointers to read from... */ 1792 stream->oa_buffer.tail = 0; 1793 1794 /* 1795 * Reset state used to recognise context switches, affecting which 1796 * reports we will forward to userspace while filtering for a single 1797 * context. 1798 */ 1799 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1800 1801 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1802 1803 /* 1804 * NB: although the OA buffer will initially be allocated 1805 * zeroed via shmfs (and so this memset is redundant when 1806 * first allocating), we may re-init the OA buffer, either 1807 * when re-enabling a stream or in error/reset paths. 1808 * 1809 * The reason we clear the buffer for each re-init is for the 1810 * sanity check in gen8_append_oa_reports() that looks at the 1811 * reason field to make sure it's non-zero which relies on 1812 * the assumption that new reports are being written to zeroed 1813 * memory... 1814 */ 1815 memset(stream->oa_buffer.vaddr, 0, 1816 stream->oa_buffer.vma->size); 1817 } 1818 1819 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1820 { 1821 struct drm_i915_private *i915 = stream->perf->i915; 1822 struct intel_gt *gt = stream->engine->gt; 1823 struct drm_i915_gem_object *bo; 1824 struct i915_vma *vma; 1825 int ret; 1826 1827 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1828 return -ENODEV; 1829 1830 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1831 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1832 1833 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1834 if (IS_ERR(bo)) { 1835 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1836 return PTR_ERR(bo); 1837 } 1838 1839 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1840 1841 /* PreHSW required 512K alignment, HSW requires 16M */ 1842 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1843 if (IS_ERR(vma)) { 1844 ret = PTR_ERR(vma); 1845 goto err_unref; 1846 } 1847 1848 /* 1849 * PreHSW required 512K alignment. 1850 * HSW and onwards, align to requested size of OA buffer. 1851 */ 1852 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1853 if (ret) { 1854 gt_err(gt, "Failed to pin OA buffer %d\n", ret); 1855 goto err_unref; 1856 } 1857 1858 stream->oa_buffer.vma = vma; 1859 1860 stream->oa_buffer.vaddr = 1861 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1862 if (IS_ERR(stream->oa_buffer.vaddr)) { 1863 ret = PTR_ERR(stream->oa_buffer.vaddr); 1864 goto err_unpin; 1865 } 1866 1867 return 0; 1868 1869 err_unpin: 1870 __i915_vma_unpin(vma); 1871 1872 err_unref: 1873 i915_gem_object_put(bo); 1874 1875 stream->oa_buffer.vaddr = NULL; 1876 stream->oa_buffer.vma = NULL; 1877 1878 return ret; 1879 } 1880 1881 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1882 bool save, i915_reg_t reg, u32 offset, 1883 u32 dword_count) 1884 { 1885 u32 cmd; 1886 u32 d; 1887 1888 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1889 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1890 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1891 cmd++; 1892 1893 for (d = 0; d < dword_count; d++) { 1894 *cs++ = cmd; 1895 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1896 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1897 *cs++ = 0; 1898 } 1899 1900 return cs; 1901 } 1902 1903 static int alloc_noa_wait(struct i915_perf_stream *stream) 1904 { 1905 struct drm_i915_private *i915 = stream->perf->i915; 1906 struct intel_gt *gt = stream->engine->gt; 1907 struct drm_i915_gem_object *bo; 1908 struct i915_vma *vma; 1909 const u64 delay_ticks = 0xffffffffffffffff - 1910 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1911 atomic64_read(&stream->perf->noa_programming_delay)); 1912 const u32 base = stream->engine->mmio_base; 1913 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1914 u32 *batch, *ts0, *cs, *jump; 1915 struct i915_gem_ww_ctx ww; 1916 int ret, i; 1917 enum { 1918 START_TS, 1919 NOW_TS, 1920 DELTA_TS, 1921 JUMP_PREDICATE, 1922 DELTA_TARGET, 1923 N_CS_GPR 1924 }; 1925 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1926 MI_PREDICATE_RESULT_2_ENGINE(base) : 1927 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1928 1929 /* 1930 * gt->scratch was being used to save/restore the GPR registers, but on 1931 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1932 * causes an engine hang. Instead allocate an additional page here to 1933 * save/restore GPR registers 1934 */ 1935 bo = i915_gem_object_create_internal(i915, 8192); 1936 if (IS_ERR(bo)) { 1937 drm_err(&i915->drm, 1938 "Failed to allocate NOA wait batchbuffer\n"); 1939 return PTR_ERR(bo); 1940 } 1941 1942 i915_gem_ww_ctx_init(&ww, true); 1943 retry: 1944 ret = i915_gem_object_lock(bo, &ww); 1945 if (ret) 1946 goto out_ww; 1947 1948 /* 1949 * We pin in GGTT because we jump into this buffer now because 1950 * multiple OA config BOs will have a jump to this address and it 1951 * needs to be fixed during the lifetime of the i915/perf stream. 1952 */ 1953 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1954 if (IS_ERR(vma)) { 1955 ret = PTR_ERR(vma); 1956 goto out_ww; 1957 } 1958 1959 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1960 if (ret) 1961 goto out_ww; 1962 1963 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1964 if (IS_ERR(batch)) { 1965 ret = PTR_ERR(batch); 1966 goto err_unpin; 1967 } 1968 1969 stream->noa_wait = vma; 1970 1971 #define GPR_SAVE_OFFSET 4096 1972 #define PREDICATE_SAVE_OFFSET 4160 1973 1974 /* Save registers. */ 1975 for (i = 0; i < N_CS_GPR; i++) 1976 cs = save_restore_register( 1977 stream, cs, true /* save */, CS_GPR(i), 1978 GPR_SAVE_OFFSET + 8 * i, 2); 1979 cs = save_restore_register( 1980 stream, cs, true /* save */, mi_predicate_result, 1981 PREDICATE_SAVE_OFFSET, 1); 1982 1983 /* First timestamp snapshot location. */ 1984 ts0 = cs; 1985 1986 /* 1987 * Initial snapshot of the timestamp register to implement the wait. 1988 * We work with 32b values, so clear out the top 32b bits of the 1989 * register because the ALU works 64bits. 1990 */ 1991 *cs++ = MI_LOAD_REGISTER_IMM(1); 1992 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1993 *cs++ = 0; 1994 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1995 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1996 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1997 1998 /* 1999 * This is the location we're going to jump back into until the 2000 * required amount of time has passed. 2001 */ 2002 jump = cs; 2003 2004 /* 2005 * Take another snapshot of the timestamp register. Take care to clear 2006 * up the top 32bits of CS_GPR(1) as we're using it for other 2007 * operations below. 2008 */ 2009 *cs++ = MI_LOAD_REGISTER_IMM(1); 2010 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2011 *cs++ = 0; 2012 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2013 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2014 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2015 2016 /* 2017 * Do a diff between the 2 timestamps and store the result back into 2018 * CS_GPR(1). 2019 */ 2020 *cs++ = MI_MATH(5); 2021 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2022 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2023 *cs++ = MI_MATH_SUB; 2024 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2025 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2026 2027 /* 2028 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2029 * timestamp have rolled over the 32bits) into the predicate register 2030 * to be used for the predicated jump. 2031 */ 2032 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2033 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2034 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2035 2036 if (HAS_MI_SET_PREDICATE(i915)) 2037 *cs++ = MI_SET_PREDICATE | 1; 2038 2039 /* Restart from the beginning if we had timestamps roll over. */ 2040 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2041 MI_BATCH_BUFFER_START : 2042 MI_BATCH_BUFFER_START_GEN8) | 2043 MI_BATCH_PREDICATE; 2044 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2045 *cs++ = 0; 2046 2047 if (HAS_MI_SET_PREDICATE(i915)) 2048 *cs++ = MI_SET_PREDICATE; 2049 2050 /* 2051 * Now add the diff between to previous timestamps and add it to : 2052 * (((1 * << 64) - 1) - delay_ns) 2053 * 2054 * When the Carry Flag contains 1 this means the elapsed time is 2055 * longer than the expected delay, and we can exit the wait loop. 2056 */ 2057 *cs++ = MI_LOAD_REGISTER_IMM(2); 2058 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2059 *cs++ = lower_32_bits(delay_ticks); 2060 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2061 *cs++ = upper_32_bits(delay_ticks); 2062 2063 *cs++ = MI_MATH(4); 2064 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2065 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2066 *cs++ = MI_MATH_ADD; 2067 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2068 2069 *cs++ = MI_ARB_CHECK; 2070 2071 /* 2072 * Transfer the result into the predicate register to be used for the 2073 * predicated jump. 2074 */ 2075 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2076 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2077 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2078 2079 if (HAS_MI_SET_PREDICATE(i915)) 2080 *cs++ = MI_SET_PREDICATE | 1; 2081 2082 /* Predicate the jump. */ 2083 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2084 MI_BATCH_BUFFER_START : 2085 MI_BATCH_BUFFER_START_GEN8) | 2086 MI_BATCH_PREDICATE; 2087 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2088 *cs++ = 0; 2089 2090 if (HAS_MI_SET_PREDICATE(i915)) 2091 *cs++ = MI_SET_PREDICATE; 2092 2093 /* Restore registers. */ 2094 for (i = 0; i < N_CS_GPR; i++) 2095 cs = save_restore_register( 2096 stream, cs, false /* restore */, CS_GPR(i), 2097 GPR_SAVE_OFFSET + 8 * i, 2); 2098 cs = save_restore_register( 2099 stream, cs, false /* restore */, mi_predicate_result, 2100 PREDICATE_SAVE_OFFSET, 1); 2101 2102 /* And return to the ring. */ 2103 *cs++ = MI_BATCH_BUFFER_END; 2104 2105 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2106 2107 i915_gem_object_flush_map(bo); 2108 __i915_gem_object_release_map(bo); 2109 2110 goto out_ww; 2111 2112 err_unpin: 2113 i915_vma_unpin_and_release(&vma, 0); 2114 out_ww: 2115 if (ret == -EDEADLK) { 2116 ret = i915_gem_ww_ctx_backoff(&ww); 2117 if (!ret) 2118 goto retry; 2119 } 2120 i915_gem_ww_ctx_fini(&ww); 2121 if (ret) 2122 i915_gem_object_put(bo); 2123 return ret; 2124 } 2125 2126 static u32 *write_cs_mi_lri(u32 *cs, 2127 const struct i915_oa_reg *reg_data, 2128 u32 n_regs) 2129 { 2130 u32 i; 2131 2132 for (i = 0; i < n_regs; i++) { 2133 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2134 u32 n_lri = min_t(u32, 2135 n_regs - i, 2136 MI_LOAD_REGISTER_IMM_MAX_REGS); 2137 2138 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2139 } 2140 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2141 *cs++ = reg_data[i].value; 2142 } 2143 2144 return cs; 2145 } 2146 2147 static int num_lri_dwords(int num_regs) 2148 { 2149 int count = 0; 2150 2151 if (num_regs > 0) { 2152 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2153 count += num_regs * 2; 2154 } 2155 2156 return count; 2157 } 2158 2159 static struct i915_oa_config_bo * 2160 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2161 struct i915_oa_config *oa_config) 2162 { 2163 struct drm_i915_gem_object *obj; 2164 struct i915_oa_config_bo *oa_bo; 2165 struct i915_gem_ww_ctx ww; 2166 size_t config_length = 0; 2167 u32 *cs; 2168 int err; 2169 2170 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2171 if (!oa_bo) 2172 return ERR_PTR(-ENOMEM); 2173 2174 config_length += num_lri_dwords(oa_config->mux_regs_len); 2175 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2176 config_length += num_lri_dwords(oa_config->flex_regs_len); 2177 config_length += 3; /* MI_BATCH_BUFFER_START */ 2178 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2179 2180 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2181 if (IS_ERR(obj)) { 2182 err = PTR_ERR(obj); 2183 goto err_free; 2184 } 2185 2186 i915_gem_ww_ctx_init(&ww, true); 2187 retry: 2188 err = i915_gem_object_lock(obj, &ww); 2189 if (err) 2190 goto out_ww; 2191 2192 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2193 if (IS_ERR(cs)) { 2194 err = PTR_ERR(cs); 2195 goto out_ww; 2196 } 2197 2198 cs = write_cs_mi_lri(cs, 2199 oa_config->mux_regs, 2200 oa_config->mux_regs_len); 2201 cs = write_cs_mi_lri(cs, 2202 oa_config->b_counter_regs, 2203 oa_config->b_counter_regs_len); 2204 cs = write_cs_mi_lri(cs, 2205 oa_config->flex_regs, 2206 oa_config->flex_regs_len); 2207 2208 /* Jump into the active wait. */ 2209 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2210 MI_BATCH_BUFFER_START : 2211 MI_BATCH_BUFFER_START_GEN8); 2212 *cs++ = i915_ggtt_offset(stream->noa_wait); 2213 *cs++ = 0; 2214 2215 i915_gem_object_flush_map(obj); 2216 __i915_gem_object_release_map(obj); 2217 2218 oa_bo->vma = i915_vma_instance(obj, 2219 &stream->engine->gt->ggtt->vm, 2220 NULL); 2221 if (IS_ERR(oa_bo->vma)) { 2222 err = PTR_ERR(oa_bo->vma); 2223 goto out_ww; 2224 } 2225 2226 oa_bo->oa_config = i915_oa_config_get(oa_config); 2227 llist_add(&oa_bo->node, &stream->oa_config_bos); 2228 2229 out_ww: 2230 if (err == -EDEADLK) { 2231 err = i915_gem_ww_ctx_backoff(&ww); 2232 if (!err) 2233 goto retry; 2234 } 2235 i915_gem_ww_ctx_fini(&ww); 2236 2237 if (err) 2238 i915_gem_object_put(obj); 2239 err_free: 2240 if (err) { 2241 kfree(oa_bo); 2242 return ERR_PTR(err); 2243 } 2244 return oa_bo; 2245 } 2246 2247 static struct i915_vma * 2248 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2249 { 2250 struct i915_oa_config_bo *oa_bo; 2251 2252 /* 2253 * Look for the buffer in the already allocated BOs attached 2254 * to the stream. 2255 */ 2256 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2257 if (oa_bo->oa_config == oa_config && 2258 memcmp(oa_bo->oa_config->uuid, 2259 oa_config->uuid, 2260 sizeof(oa_config->uuid)) == 0) 2261 goto out; 2262 } 2263 2264 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2265 if (IS_ERR(oa_bo)) 2266 return ERR_CAST(oa_bo); 2267 2268 out: 2269 return i915_vma_get(oa_bo->vma); 2270 } 2271 2272 static int 2273 emit_oa_config(struct i915_perf_stream *stream, 2274 struct i915_oa_config *oa_config, 2275 struct intel_context *ce, 2276 struct i915_active *active) 2277 { 2278 struct i915_request *rq; 2279 struct i915_vma *vma; 2280 struct i915_gem_ww_ctx ww; 2281 int err; 2282 2283 vma = get_oa_vma(stream, oa_config); 2284 if (IS_ERR(vma)) 2285 return PTR_ERR(vma); 2286 2287 i915_gem_ww_ctx_init(&ww, true); 2288 retry: 2289 err = i915_gem_object_lock(vma->obj, &ww); 2290 if (err) 2291 goto err; 2292 2293 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2294 if (err) 2295 goto err; 2296 2297 intel_engine_pm_get(ce->engine); 2298 rq = i915_request_create(ce); 2299 intel_engine_pm_put(ce->engine); 2300 if (IS_ERR(rq)) { 2301 err = PTR_ERR(rq); 2302 goto err_vma_unpin; 2303 } 2304 2305 if (!IS_ERR_OR_NULL(active)) { 2306 /* After all individual context modifications */ 2307 err = i915_request_await_active(rq, active, 2308 I915_ACTIVE_AWAIT_ACTIVE); 2309 if (err) 2310 goto err_add_request; 2311 2312 err = i915_active_add_request(active, rq); 2313 if (err) 2314 goto err_add_request; 2315 } 2316 2317 err = i915_vma_move_to_active(vma, rq, 0); 2318 if (err) 2319 goto err_add_request; 2320 2321 err = rq->engine->emit_bb_start(rq, 2322 i915_vma_offset(vma), 0, 2323 I915_DISPATCH_SECURE); 2324 if (err) 2325 goto err_add_request; 2326 2327 err_add_request: 2328 i915_request_add(rq); 2329 err_vma_unpin: 2330 i915_vma_unpin(vma); 2331 err: 2332 if (err == -EDEADLK) { 2333 err = i915_gem_ww_ctx_backoff(&ww); 2334 if (!err) 2335 goto retry; 2336 } 2337 2338 i915_gem_ww_ctx_fini(&ww); 2339 i915_vma_put(vma); 2340 return err; 2341 } 2342 2343 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2344 { 2345 return stream->pinned_ctx ?: stream->engine->kernel_context; 2346 } 2347 2348 static int 2349 hsw_enable_metric_set(struct i915_perf_stream *stream, 2350 struct i915_active *active) 2351 { 2352 struct intel_uncore *uncore = stream->uncore; 2353 2354 /* 2355 * PRM: 2356 * 2357 * OA unit is using “crclk” for its functionality. When trunk 2358 * level clock gating takes place, OA clock would be gated, 2359 * unable to count the events from non-render clock domain. 2360 * Render clock gating must be disabled when OA is enabled to 2361 * count the events from non-render domain. Unit level clock 2362 * gating for RCS should also be disabled. 2363 */ 2364 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2365 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2366 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2367 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2368 2369 return emit_oa_config(stream, 2370 stream->oa_config, oa_context(stream), 2371 active); 2372 } 2373 2374 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2375 { 2376 struct intel_uncore *uncore = stream->uncore; 2377 2378 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2379 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2380 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2381 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2382 2383 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2384 } 2385 2386 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2387 i915_reg_t reg) 2388 { 2389 u32 mmio = i915_mmio_reg_offset(reg); 2390 int i; 2391 2392 /* 2393 * This arbitrary default will select the 'EU FPU0 Pipeline 2394 * Active' event. In the future it's anticipated that there 2395 * will be an explicit 'No Event' we can select, but not yet... 2396 */ 2397 if (!oa_config) 2398 return 0; 2399 2400 for (i = 0; i < oa_config->flex_regs_len; i++) { 2401 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2402 return oa_config->flex_regs[i].value; 2403 } 2404 2405 return 0; 2406 } 2407 /* 2408 * NB: It must always remain pointer safe to run this even if the OA unit 2409 * has been disabled. 2410 * 2411 * It's fine to put out-of-date values into these per-context registers 2412 * in the case that the OA unit has been disabled. 2413 */ 2414 static void 2415 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2416 const struct i915_perf_stream *stream) 2417 { 2418 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2419 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2420 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2421 static const i915_reg_t flex_regs[] = { 2422 EU_PERF_CNTL0, 2423 EU_PERF_CNTL1, 2424 EU_PERF_CNTL2, 2425 EU_PERF_CNTL3, 2426 EU_PERF_CNTL4, 2427 EU_PERF_CNTL5, 2428 EU_PERF_CNTL6, 2429 }; 2430 u32 *reg_state = ce->lrc_reg_state; 2431 int i; 2432 2433 reg_state[ctx_oactxctrl + 1] = 2434 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2435 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2436 GEN8_OA_COUNTER_RESUME; 2437 2438 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2439 reg_state[ctx_flexeu0 + i * 2 + 1] = 2440 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2441 } 2442 2443 struct flex { 2444 i915_reg_t reg; 2445 u32 offset; 2446 u32 value; 2447 }; 2448 2449 static int 2450 gen8_store_flex(struct i915_request *rq, 2451 struct intel_context *ce, 2452 const struct flex *flex, unsigned int count) 2453 { 2454 u32 offset; 2455 u32 *cs; 2456 2457 cs = intel_ring_begin(rq, 4 * count); 2458 if (IS_ERR(cs)) 2459 return PTR_ERR(cs); 2460 2461 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2462 do { 2463 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2464 *cs++ = offset + flex->offset * sizeof(u32); 2465 *cs++ = 0; 2466 *cs++ = flex->value; 2467 } while (flex++, --count); 2468 2469 intel_ring_advance(rq, cs); 2470 2471 return 0; 2472 } 2473 2474 static int 2475 gen8_load_flex(struct i915_request *rq, 2476 struct intel_context *ce, 2477 const struct flex *flex, unsigned int count) 2478 { 2479 u32 *cs; 2480 2481 GEM_BUG_ON(!count || count > 63); 2482 2483 cs = intel_ring_begin(rq, 2 * count + 2); 2484 if (IS_ERR(cs)) 2485 return PTR_ERR(cs); 2486 2487 *cs++ = MI_LOAD_REGISTER_IMM(count); 2488 do { 2489 *cs++ = i915_mmio_reg_offset(flex->reg); 2490 *cs++ = flex->value; 2491 } while (flex++, --count); 2492 *cs++ = MI_NOOP; 2493 2494 intel_ring_advance(rq, cs); 2495 2496 return 0; 2497 } 2498 2499 static int gen8_modify_context(struct intel_context *ce, 2500 const struct flex *flex, unsigned int count) 2501 { 2502 struct i915_request *rq; 2503 int err; 2504 2505 rq = intel_engine_create_kernel_request(ce->engine); 2506 if (IS_ERR(rq)) 2507 return PTR_ERR(rq); 2508 2509 /* Serialise with the remote context */ 2510 err = intel_context_prepare_remote_request(ce, rq); 2511 if (err == 0) 2512 err = gen8_store_flex(rq, ce, flex, count); 2513 2514 i915_request_add(rq); 2515 return err; 2516 } 2517 2518 static int 2519 gen8_modify_self(struct intel_context *ce, 2520 const struct flex *flex, unsigned int count, 2521 struct i915_active *active) 2522 { 2523 struct i915_request *rq; 2524 int err; 2525 2526 intel_engine_pm_get(ce->engine); 2527 rq = i915_request_create(ce); 2528 intel_engine_pm_put(ce->engine); 2529 if (IS_ERR(rq)) 2530 return PTR_ERR(rq); 2531 2532 if (!IS_ERR_OR_NULL(active)) { 2533 err = i915_active_add_request(active, rq); 2534 if (err) 2535 goto err_add_request; 2536 } 2537 2538 err = gen8_load_flex(rq, ce, flex, count); 2539 if (err) 2540 goto err_add_request; 2541 2542 err_add_request: 2543 i915_request_add(rq); 2544 return err; 2545 } 2546 2547 static int gen8_configure_context(struct i915_perf_stream *stream, 2548 struct i915_gem_context *ctx, 2549 struct flex *flex, unsigned int count) 2550 { 2551 struct i915_gem_engines_iter it; 2552 struct intel_context *ce; 2553 int err = 0; 2554 2555 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2556 GEM_BUG_ON(ce == ce->engine->kernel_context); 2557 2558 if (ce->engine->class != RENDER_CLASS) 2559 continue; 2560 2561 /* Otherwise OA settings will be set upon first use */ 2562 if (!intel_context_pin_if_active(ce)) 2563 continue; 2564 2565 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2566 err = gen8_modify_context(ce, flex, count); 2567 2568 intel_context_unpin(ce); 2569 if (err) 2570 break; 2571 } 2572 i915_gem_context_unlock_engines(ctx); 2573 2574 return err; 2575 } 2576 2577 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2578 struct i915_active *active) 2579 { 2580 int err; 2581 struct intel_context *ce = stream->pinned_ctx; 2582 u32 format = stream->oa_buffer.format->format; 2583 u32 offset = stream->perf->ctx_oactxctrl_offset; 2584 struct flex regs_context[] = { 2585 { 2586 GEN8_OACTXCONTROL, 2587 offset + 1, 2588 active ? GEN8_OA_COUNTER_RESUME : 0, 2589 }, 2590 }; 2591 /* Offsets in regs_lri are not used since this configuration is only 2592 * applied using LRI. Initialize the correct offsets for posterity. 2593 */ 2594 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2595 struct flex regs_lri[] = { 2596 { 2597 GEN12_OAR_OACONTROL, 2598 GEN12_OAR_OACONTROL_OFFSET + 1, 2599 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2600 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2601 }, 2602 { 2603 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2604 CTX_CONTEXT_CONTROL, 2605 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2606 active ? 2607 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2608 0) 2609 }, 2610 }; 2611 2612 /* Modify the context image of pinned context with regs_context */ 2613 err = intel_context_lock_pinned(ce); 2614 if (err) 2615 return err; 2616 2617 err = gen8_modify_context(ce, regs_context, 2618 ARRAY_SIZE(regs_context)); 2619 intel_context_unlock_pinned(ce); 2620 if (err) 2621 return err; 2622 2623 /* Apply regs_lri using LRI with pinned context */ 2624 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2625 } 2626 2627 /* 2628 * Manages updating the per-context aspects of the OA stream 2629 * configuration across all contexts. 2630 * 2631 * The awkward consideration here is that OACTXCONTROL controls the 2632 * exponent for periodic sampling which is primarily used for system 2633 * wide profiling where we'd like a consistent sampling period even in 2634 * the face of context switches. 2635 * 2636 * Our approach of updating the register state context (as opposed to 2637 * say using a workaround batch buffer) ensures that the hardware 2638 * won't automatically reload an out-of-date timer exponent even 2639 * transiently before a WA BB could be parsed. 2640 * 2641 * This function needs to: 2642 * - Ensure the currently running context's per-context OA state is 2643 * updated 2644 * - Ensure that all existing contexts will have the correct per-context 2645 * OA state if they are scheduled for use. 2646 * - Ensure any new contexts will be initialized with the correct 2647 * per-context OA state. 2648 * 2649 * Note: it's only the RCS/Render context that has any OA state. 2650 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2651 */ 2652 static int 2653 oa_configure_all_contexts(struct i915_perf_stream *stream, 2654 struct flex *regs, 2655 size_t num_regs, 2656 struct i915_active *active) 2657 { 2658 struct drm_i915_private *i915 = stream->perf->i915; 2659 struct intel_engine_cs *engine; 2660 struct intel_gt *gt = stream->engine->gt; 2661 struct i915_gem_context *ctx, *cn; 2662 int err; 2663 2664 lockdep_assert_held(>->perf.lock); 2665 2666 /* 2667 * The OA register config is setup through the context image. This image 2668 * might be written to by the GPU on context switch (in particular on 2669 * lite-restore). This means we can't safely update a context's image, 2670 * if this context is scheduled/submitted to run on the GPU. 2671 * 2672 * We could emit the OA register config through the batch buffer but 2673 * this might leave small interval of time where the OA unit is 2674 * configured at an invalid sampling period. 2675 * 2676 * Note that since we emit all requests from a single ring, there 2677 * is still an implicit global barrier here that may cause a high 2678 * priority context to wait for an otherwise independent low priority 2679 * context. Contexts idle at the time of reconfiguration are not 2680 * trapped behind the barrier. 2681 */ 2682 spin_lock(&i915->gem.contexts.lock); 2683 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2684 if (!kref_get_unless_zero(&ctx->ref)) 2685 continue; 2686 2687 spin_unlock(&i915->gem.contexts.lock); 2688 2689 err = gen8_configure_context(stream, ctx, regs, num_regs); 2690 if (err) { 2691 i915_gem_context_put(ctx); 2692 return err; 2693 } 2694 2695 spin_lock(&i915->gem.contexts.lock); 2696 list_safe_reset_next(ctx, cn, link); 2697 i915_gem_context_put(ctx); 2698 } 2699 spin_unlock(&i915->gem.contexts.lock); 2700 2701 /* 2702 * After updating all other contexts, we need to modify ourselves. 2703 * If we don't modify the kernel_context, we do not get events while 2704 * idle. 2705 */ 2706 for_each_uabi_engine(engine, i915) { 2707 struct intel_context *ce = engine->kernel_context; 2708 2709 if (engine->class != RENDER_CLASS) 2710 continue; 2711 2712 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2713 2714 err = gen8_modify_self(ce, regs, num_regs, active); 2715 if (err) 2716 return err; 2717 } 2718 2719 return 0; 2720 } 2721 2722 static int 2723 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2724 const struct i915_oa_config *oa_config, 2725 struct i915_active *active) 2726 { 2727 struct flex regs[] = { 2728 { 2729 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2730 CTX_R_PWR_CLK_STATE, 2731 }, 2732 }; 2733 2734 if (stream->engine->class != RENDER_CLASS) 2735 return 0; 2736 2737 return oa_configure_all_contexts(stream, 2738 regs, ARRAY_SIZE(regs), 2739 active); 2740 } 2741 2742 static int 2743 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2744 const struct i915_oa_config *oa_config, 2745 struct i915_active *active) 2746 { 2747 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2748 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2749 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2750 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2751 struct flex regs[] = { 2752 { 2753 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2754 CTX_R_PWR_CLK_STATE, 2755 }, 2756 { 2757 GEN8_OACTXCONTROL, 2758 ctx_oactxctrl + 1, 2759 }, 2760 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2761 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2762 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2763 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2764 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2765 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2766 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2767 }; 2768 #undef ctx_flexeuN 2769 int i; 2770 2771 regs[1].value = 2772 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2773 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2774 GEN8_OA_COUNTER_RESUME; 2775 2776 for (i = 2; i < ARRAY_SIZE(regs); i++) 2777 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2778 2779 return oa_configure_all_contexts(stream, 2780 regs, ARRAY_SIZE(regs), 2781 active); 2782 } 2783 2784 static int 2785 gen8_enable_metric_set(struct i915_perf_stream *stream, 2786 struct i915_active *active) 2787 { 2788 struct intel_uncore *uncore = stream->uncore; 2789 struct i915_oa_config *oa_config = stream->oa_config; 2790 int ret; 2791 2792 /* 2793 * We disable slice/unslice clock ratio change reports on SKL since 2794 * they are too noisy. The HW generates a lot of redundant reports 2795 * where the ratio hasn't really changed causing a lot of redundant 2796 * work to processes and increasing the chances we'll hit buffer 2797 * overruns. 2798 * 2799 * Although we don't currently use the 'disable overrun' OABUFFER 2800 * feature it's worth noting that clock ratio reports have to be 2801 * disabled before considering to use that feature since the HW doesn't 2802 * correctly block these reports. 2803 * 2804 * Currently none of the high-level metrics we have depend on knowing 2805 * this ratio to normalize. 2806 * 2807 * Note: This register is not power context saved and restored, but 2808 * that's OK considering that we disable RC6 while the OA unit is 2809 * enabled. 2810 * 2811 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2812 * be read back from automatically triggered reports, as part of the 2813 * RPT_ID field. 2814 */ 2815 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2816 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2817 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2818 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2819 } 2820 2821 /* 2822 * Update all contexts prior writing the mux configurations as we need 2823 * to make sure all slices/subslices are ON before writing to NOA 2824 * registers. 2825 */ 2826 ret = lrc_configure_all_contexts(stream, oa_config, active); 2827 if (ret) 2828 return ret; 2829 2830 return emit_oa_config(stream, 2831 stream->oa_config, oa_context(stream), 2832 active); 2833 } 2834 2835 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2836 { 2837 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2838 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2839 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2840 } 2841 2842 static int 2843 gen12_enable_metric_set(struct i915_perf_stream *stream, 2844 struct i915_active *active) 2845 { 2846 struct drm_i915_private *i915 = stream->perf->i915; 2847 struct intel_uncore *uncore = stream->uncore; 2848 struct i915_oa_config *oa_config = stream->oa_config; 2849 bool periodic = stream->periodic; 2850 u32 period_exponent = stream->period_exponent; 2851 u32 sqcnt1; 2852 int ret; 2853 2854 /* 2855 * Wa_1508761755:xehpsdv, dg2 2856 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2857 * Disable thread stall DOP gating and EU DOP gating. 2858 */ 2859 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2860 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2861 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2862 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2863 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2864 } 2865 2866 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2867 /* Disable clk ratio reports, like previous Gens. */ 2868 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2869 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2870 /* 2871 * If the user didn't require OA reports, instruct 2872 * the hardware not to emit ctx switch reports. 2873 */ 2874 oag_report_ctx_switches(stream)); 2875 2876 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2877 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2878 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2879 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2880 : 0); 2881 2882 /* 2883 * Initialize Super Queue Internal Cnt Register 2884 * Set PMON Enable in order to collect valid metrics. 2885 * Enable byets per clock reporting in OA for XEHPSDV onward. 2886 */ 2887 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2888 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2889 2890 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2891 2892 /* 2893 * Update all contexts prior writing the mux configurations as we need 2894 * to make sure all slices/subslices are ON before writing to NOA 2895 * registers. 2896 */ 2897 ret = gen12_configure_all_contexts(stream, oa_config, active); 2898 if (ret) 2899 return ret; 2900 2901 /* 2902 * For Gen12, performance counters are context 2903 * saved/restored. Only enable it for the context that 2904 * requested this. 2905 */ 2906 if (stream->ctx) { 2907 ret = gen12_configure_oar_context(stream, active); 2908 if (ret) 2909 return ret; 2910 } 2911 2912 return emit_oa_config(stream, 2913 stream->oa_config, oa_context(stream), 2914 active); 2915 } 2916 2917 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2918 { 2919 struct intel_uncore *uncore = stream->uncore; 2920 2921 /* Reset all contexts' slices/subslices configurations. */ 2922 lrc_configure_all_contexts(stream, NULL, NULL); 2923 2924 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2925 } 2926 2927 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2928 { 2929 struct intel_uncore *uncore = stream->uncore; 2930 2931 /* Reset all contexts' slices/subslices configurations. */ 2932 lrc_configure_all_contexts(stream, NULL, NULL); 2933 2934 /* Make sure we disable noa to save power. */ 2935 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2936 } 2937 2938 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2939 { 2940 struct intel_uncore *uncore = stream->uncore; 2941 struct drm_i915_private *i915 = stream->perf->i915; 2942 u32 sqcnt1; 2943 2944 /* 2945 * Wa_1508761755:xehpsdv, dg2 2946 * Enable thread stall DOP gating and EU DOP gating. 2947 */ 2948 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2949 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2950 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2951 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2952 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2953 } 2954 2955 /* Reset all contexts' slices/subslices configurations. */ 2956 gen12_configure_all_contexts(stream, NULL, NULL); 2957 2958 /* disable the context save/restore or OAR counters */ 2959 if (stream->ctx) 2960 gen12_configure_oar_context(stream, NULL); 2961 2962 /* Make sure we disable noa to save power. */ 2963 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2964 2965 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2966 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2967 2968 /* Reset PMON Enable to save power. */ 2969 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2970 } 2971 2972 static void gen7_oa_enable(struct i915_perf_stream *stream) 2973 { 2974 struct intel_uncore *uncore = stream->uncore; 2975 struct i915_gem_context *ctx = stream->ctx; 2976 u32 ctx_id = stream->specific_ctx_id; 2977 bool periodic = stream->periodic; 2978 u32 period_exponent = stream->period_exponent; 2979 u32 report_format = stream->oa_buffer.format->format; 2980 2981 /* 2982 * Reset buf pointers so we don't forward reports from before now. 2983 * 2984 * Think carefully if considering trying to avoid this, since it 2985 * also ensures status flags and the buffer itself are cleared 2986 * in error paths, and we have checks for invalid reports based 2987 * on the assumption that certain fields are written to zeroed 2988 * memory which this helps maintains. 2989 */ 2990 gen7_init_oa_buffer(stream); 2991 2992 intel_uncore_write(uncore, GEN7_OACONTROL, 2993 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2994 (period_exponent << 2995 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2996 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2997 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2998 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2999 GEN7_OACONTROL_ENABLE); 3000 } 3001 3002 static void gen8_oa_enable(struct i915_perf_stream *stream) 3003 { 3004 struct intel_uncore *uncore = stream->uncore; 3005 u32 report_format = stream->oa_buffer.format->format; 3006 3007 /* 3008 * Reset buf pointers so we don't forward reports from before now. 3009 * 3010 * Think carefully if considering trying to avoid this, since it 3011 * also ensures status flags and the buffer itself are cleared 3012 * in error paths, and we have checks for invalid reports based 3013 * on the assumption that certain fields are written to zeroed 3014 * memory which this helps maintains. 3015 */ 3016 gen8_init_oa_buffer(stream); 3017 3018 /* 3019 * Note: we don't rely on the hardware to perform single context 3020 * filtering and instead filter on the cpu based on the context-id 3021 * field of reports 3022 */ 3023 intel_uncore_write(uncore, GEN8_OACONTROL, 3024 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3025 GEN8_OA_COUNTER_ENABLE); 3026 } 3027 3028 static void gen12_oa_enable(struct i915_perf_stream *stream) 3029 { 3030 const struct i915_perf_regs *regs; 3031 u32 val; 3032 3033 /* 3034 * If we don't want OA reports from the OA buffer, then we don't even 3035 * need to program the OAG unit. 3036 */ 3037 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3038 return; 3039 3040 gen12_init_oa_buffer(stream); 3041 3042 regs = __oa_regs(stream); 3043 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3044 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3045 3046 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3047 } 3048 3049 /** 3050 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3051 * @stream: An i915 perf stream opened for OA metrics 3052 * 3053 * [Re]enables hardware periodic sampling according to the period configured 3054 * when opening the stream. This also starts a hrtimer that will periodically 3055 * check for data in the circular OA buffer for notifying userspace (e.g. 3056 * during a read() or poll()). 3057 */ 3058 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3059 { 3060 stream->pollin = false; 3061 3062 stream->perf->ops.oa_enable(stream); 3063 3064 if (stream->sample_flags & SAMPLE_OA_REPORT) 3065 hrtimer_start(&stream->poll_check_timer, 3066 ns_to_ktime(stream->poll_oa_period), 3067 HRTIMER_MODE_REL_PINNED); 3068 } 3069 3070 static void gen7_oa_disable(struct i915_perf_stream *stream) 3071 { 3072 struct intel_uncore *uncore = stream->uncore; 3073 3074 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3075 if (intel_wait_for_register(uncore, 3076 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3077 50)) 3078 drm_err(&stream->perf->i915->drm, 3079 "wait for OA to be disabled timed out\n"); 3080 } 3081 3082 static void gen8_oa_disable(struct i915_perf_stream *stream) 3083 { 3084 struct intel_uncore *uncore = stream->uncore; 3085 3086 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3087 if (intel_wait_for_register(uncore, 3088 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3089 50)) 3090 drm_err(&stream->perf->i915->drm, 3091 "wait for OA to be disabled timed out\n"); 3092 } 3093 3094 static void gen12_oa_disable(struct i915_perf_stream *stream) 3095 { 3096 struct intel_uncore *uncore = stream->uncore; 3097 3098 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3099 if (intel_wait_for_register(uncore, 3100 __oa_regs(stream)->oa_ctrl, 3101 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3102 50)) 3103 drm_err(&stream->perf->i915->drm, 3104 "wait for OA to be disabled timed out\n"); 3105 3106 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3107 if (intel_wait_for_register(uncore, 3108 GEN12_OA_TLB_INV_CR, 3109 1, 0, 3110 50)) 3111 drm_err(&stream->perf->i915->drm, 3112 "wait for OA tlb invalidate timed out\n"); 3113 } 3114 3115 /** 3116 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3117 * @stream: An i915 perf stream opened for OA metrics 3118 * 3119 * Stops the OA unit from periodically writing counter reports into the 3120 * circular OA buffer. This also stops the hrtimer that periodically checks for 3121 * data in the circular OA buffer, for notifying userspace. 3122 */ 3123 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3124 { 3125 stream->perf->ops.oa_disable(stream); 3126 3127 if (stream->sample_flags & SAMPLE_OA_REPORT) 3128 hrtimer_cancel(&stream->poll_check_timer); 3129 } 3130 3131 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3132 .destroy = i915_oa_stream_destroy, 3133 .enable = i915_oa_stream_enable, 3134 .disable = i915_oa_stream_disable, 3135 .wait_unlocked = i915_oa_wait_unlocked, 3136 .poll_wait = i915_oa_poll_wait, 3137 .read = i915_oa_read, 3138 }; 3139 3140 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3141 { 3142 struct i915_active *active; 3143 int err; 3144 3145 active = i915_active_create(); 3146 if (!active) 3147 return -ENOMEM; 3148 3149 err = stream->perf->ops.enable_metric_set(stream, active); 3150 if (err == 0) 3151 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3152 3153 i915_active_put(active); 3154 return err; 3155 } 3156 3157 static void 3158 get_default_sseu_config(struct intel_sseu *out_sseu, 3159 struct intel_engine_cs *engine) 3160 { 3161 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3162 3163 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3164 3165 if (GRAPHICS_VER(engine->i915) == 11) { 3166 /* 3167 * We only need subslice count so it doesn't matter which ones 3168 * we select - just turn off low bits in the amount of half of 3169 * all available subslices per slice. 3170 */ 3171 out_sseu->subslice_mask = 3172 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3173 out_sseu->slice_mask = 0x1; 3174 } 3175 } 3176 3177 static int 3178 get_sseu_config(struct intel_sseu *out_sseu, 3179 struct intel_engine_cs *engine, 3180 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3181 { 3182 if (drm_sseu->engine.engine_class != engine->uabi_class || 3183 drm_sseu->engine.engine_instance != engine->uabi_instance) 3184 return -EINVAL; 3185 3186 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3187 } 3188 3189 /* 3190 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3191 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3192 * cases, return the adjusted CS timestamp frequency to the user. 3193 */ 3194 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3195 { 3196 struct intel_gt *gt = to_gt(i915); 3197 3198 /* Wa_18013179988 */ 3199 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) { 3200 intel_wakeref_t wakeref; 3201 u32 reg, shift; 3202 3203 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3204 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3205 3206 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3207 reg); 3208 3209 return to_gt(i915)->clock_frequency << (3 - shift); 3210 } 3211 3212 return to_gt(i915)->clock_frequency; 3213 } 3214 3215 /** 3216 * i915_oa_stream_init - validate combined props for OA stream and init 3217 * @stream: An i915 perf stream 3218 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3219 * @props: The property state that configures stream (individually validated) 3220 * 3221 * While read_properties_unlocked() validates properties in isolation it 3222 * doesn't ensure that the combination necessarily makes sense. 3223 * 3224 * At this point it has been determined that userspace wants a stream of 3225 * OA metrics, but still we need to further validate the combined 3226 * properties are OK. 3227 * 3228 * If the configuration makes sense then we can allocate memory for 3229 * a circular OA buffer and apply the requested metric set configuration. 3230 * 3231 * Returns: zero on success or a negative error code. 3232 */ 3233 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3234 struct drm_i915_perf_open_param *param, 3235 struct perf_open_properties *props) 3236 { 3237 struct drm_i915_private *i915 = stream->perf->i915; 3238 struct i915_perf *perf = stream->perf; 3239 struct i915_perf_group *g; 3240 int ret; 3241 3242 if (!props->engine) { 3243 drm_dbg(&stream->perf->i915->drm, 3244 "OA engine not specified\n"); 3245 return -EINVAL; 3246 } 3247 g = props->engine->oa_group; 3248 3249 /* 3250 * If the sysfs metrics/ directory wasn't registered for some 3251 * reason then don't let userspace try their luck with config 3252 * IDs 3253 */ 3254 if (!perf->metrics_kobj) { 3255 drm_dbg(&stream->perf->i915->drm, 3256 "OA metrics weren't advertised via sysfs\n"); 3257 return -EINVAL; 3258 } 3259 3260 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3261 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3262 drm_dbg(&stream->perf->i915->drm, 3263 "Only OA report sampling supported\n"); 3264 return -EINVAL; 3265 } 3266 3267 if (!perf->ops.enable_metric_set) { 3268 drm_dbg(&stream->perf->i915->drm, 3269 "OA unit not supported\n"); 3270 return -ENODEV; 3271 } 3272 3273 /* 3274 * To avoid the complexity of having to accurately filter 3275 * counter reports and marshal to the appropriate client 3276 * we currently only allow exclusive access 3277 */ 3278 if (g->exclusive_stream) { 3279 drm_dbg(&stream->perf->i915->drm, 3280 "OA unit already in use\n"); 3281 return -EBUSY; 3282 } 3283 3284 if (!props->oa_format) { 3285 drm_dbg(&stream->perf->i915->drm, 3286 "OA report format not specified\n"); 3287 return -EINVAL; 3288 } 3289 3290 stream->engine = props->engine; 3291 stream->uncore = stream->engine->gt->uncore; 3292 3293 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3294 3295 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3296 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3297 return -EINVAL; 3298 3299 stream->sample_flags = props->sample_flags; 3300 stream->sample_size += stream->oa_buffer.format->size; 3301 3302 stream->hold_preemption = props->hold_preemption; 3303 3304 stream->periodic = props->oa_periodic; 3305 if (stream->periodic) 3306 stream->period_exponent = props->oa_period_exponent; 3307 3308 if (stream->ctx) { 3309 ret = oa_get_render_ctx_id(stream); 3310 if (ret) { 3311 drm_dbg(&stream->perf->i915->drm, 3312 "Invalid context id to filter with\n"); 3313 return ret; 3314 } 3315 } 3316 3317 ret = alloc_noa_wait(stream); 3318 if (ret) { 3319 drm_dbg(&stream->perf->i915->drm, 3320 "Unable to allocate NOA wait batch buffer\n"); 3321 goto err_noa_wait_alloc; 3322 } 3323 3324 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3325 if (!stream->oa_config) { 3326 drm_dbg(&stream->perf->i915->drm, 3327 "Invalid OA config id=%i\n", props->metrics_set); 3328 ret = -EINVAL; 3329 goto err_config; 3330 } 3331 3332 /* PRM - observability performance counters: 3333 * 3334 * OACONTROL, performance counter enable, note: 3335 * 3336 * "When this bit is set, in order to have coherent counts, 3337 * RC6 power state and trunk clock gating must be disabled. 3338 * This can be achieved by programming MMIO registers as 3339 * 0xA094=0 and 0xA090[31]=1" 3340 * 3341 * In our case we are expecting that taking pm + FORCEWAKE 3342 * references will effectively disable RC6. 3343 */ 3344 intel_engine_pm_get(stream->engine); 3345 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3346 3347 ret = alloc_oa_buffer(stream); 3348 if (ret) 3349 goto err_oa_buf_alloc; 3350 3351 stream->ops = &i915_oa_stream_ops; 3352 3353 stream->engine->gt->perf.sseu = props->sseu; 3354 WRITE_ONCE(g->exclusive_stream, stream); 3355 3356 ret = i915_perf_stream_enable_sync(stream); 3357 if (ret) { 3358 drm_dbg(&stream->perf->i915->drm, 3359 "Unable to enable metric set\n"); 3360 goto err_enable; 3361 } 3362 3363 drm_dbg(&stream->perf->i915->drm, 3364 "opening stream oa config uuid=%s\n", 3365 stream->oa_config->uuid); 3366 3367 hrtimer_init(&stream->poll_check_timer, 3368 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3369 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3370 init_waitqueue_head(&stream->poll_wq); 3371 spin_lock_init(&stream->oa_buffer.ptr_lock); 3372 mutex_init(&stream->lock); 3373 3374 return 0; 3375 3376 err_enable: 3377 WRITE_ONCE(g->exclusive_stream, NULL); 3378 perf->ops.disable_metric_set(stream); 3379 3380 free_oa_buffer(stream); 3381 3382 err_oa_buf_alloc: 3383 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3384 intel_engine_pm_put(stream->engine); 3385 3386 free_oa_configs(stream); 3387 3388 err_config: 3389 free_noa_wait(stream); 3390 3391 err_noa_wait_alloc: 3392 if (stream->ctx) 3393 oa_put_render_ctx_id(stream); 3394 3395 return ret; 3396 } 3397 3398 void i915_oa_init_reg_state(const struct intel_context *ce, 3399 const struct intel_engine_cs *engine) 3400 { 3401 struct i915_perf_stream *stream; 3402 3403 if (engine->class != RENDER_CLASS) 3404 return; 3405 3406 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3407 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3408 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3409 gen8_update_reg_state_unlocked(ce, stream); 3410 } 3411 3412 /** 3413 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3414 * @file: An i915 perf stream file 3415 * @buf: destination buffer given by userspace 3416 * @count: the number of bytes userspace wants to read 3417 * @ppos: (inout) file seek position (unused) 3418 * 3419 * The entry point for handling a read() on a stream file descriptor from 3420 * userspace. Most of the work is left to the i915_perf_read_locked() and 3421 * &i915_perf_stream_ops->read but to save having stream implementations (of 3422 * which we might have multiple later) we handle blocking read here. 3423 * 3424 * We can also consistently treat trying to read from a disabled stream 3425 * as an IO error so implementations can assume the stream is enabled 3426 * while reading. 3427 * 3428 * Returns: The number of bytes copied or a negative error code on failure. 3429 */ 3430 static ssize_t i915_perf_read(struct file *file, 3431 char __user *buf, 3432 size_t count, 3433 loff_t *ppos) 3434 { 3435 struct i915_perf_stream *stream = file->private_data; 3436 size_t offset = 0; 3437 int ret; 3438 3439 /* To ensure it's handled consistently we simply treat all reads of a 3440 * disabled stream as an error. In particular it might otherwise lead 3441 * to a deadlock for blocking file descriptors... 3442 */ 3443 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3444 return -EIO; 3445 3446 if (!(file->f_flags & O_NONBLOCK)) { 3447 /* There's the small chance of false positives from 3448 * stream->ops->wait_unlocked. 3449 * 3450 * E.g. with single context filtering since we only wait until 3451 * oabuffer has >= 1 report we don't immediately know whether 3452 * any reports really belong to the current context 3453 */ 3454 do { 3455 ret = stream->ops->wait_unlocked(stream); 3456 if (ret) 3457 return ret; 3458 3459 mutex_lock(&stream->lock); 3460 ret = stream->ops->read(stream, buf, count, &offset); 3461 mutex_unlock(&stream->lock); 3462 } while (!offset && !ret); 3463 } else { 3464 mutex_lock(&stream->lock); 3465 ret = stream->ops->read(stream, buf, count, &offset); 3466 mutex_unlock(&stream->lock); 3467 } 3468 3469 /* We allow the poll checking to sometimes report false positive EPOLLIN 3470 * events where we might actually report EAGAIN on read() if there's 3471 * not really any data available. In this situation though we don't 3472 * want to enter a busy loop between poll() reporting a EPOLLIN event 3473 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3474 * effectively ensures we back off until the next hrtimer callback 3475 * before reporting another EPOLLIN event. 3476 * The exception to this is if ops->read() returned -ENOSPC which means 3477 * that more OA data is available than could fit in the user provided 3478 * buffer. In this case we want the next poll() call to not block. 3479 */ 3480 if (ret != -ENOSPC) 3481 stream->pollin = false; 3482 3483 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3484 return offset ?: (ret ?: -EAGAIN); 3485 } 3486 3487 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3488 { 3489 struct i915_perf_stream *stream = 3490 container_of(hrtimer, typeof(*stream), poll_check_timer); 3491 3492 if (oa_buffer_check_unlocked(stream)) { 3493 stream->pollin = true; 3494 wake_up(&stream->poll_wq); 3495 } 3496 3497 hrtimer_forward_now(hrtimer, 3498 ns_to_ktime(stream->poll_oa_period)); 3499 3500 return HRTIMER_RESTART; 3501 } 3502 3503 /** 3504 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3505 * @stream: An i915 perf stream 3506 * @file: An i915 perf stream file 3507 * @wait: poll() state table 3508 * 3509 * For handling userspace polling on an i915 perf stream, this calls through to 3510 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3511 * will be woken for new stream data. 3512 * 3513 * Returns: any poll events that are ready without sleeping 3514 */ 3515 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3516 struct file *file, 3517 poll_table *wait) 3518 { 3519 __poll_t events = 0; 3520 3521 stream->ops->poll_wait(stream, file, wait); 3522 3523 /* Note: we don't explicitly check whether there's something to read 3524 * here since this path may be very hot depending on what else 3525 * userspace is polling, or on the timeout in use. We rely solely on 3526 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3527 * samples to read. 3528 */ 3529 if (stream->pollin) 3530 events |= EPOLLIN; 3531 3532 return events; 3533 } 3534 3535 /** 3536 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3537 * @file: An i915 perf stream file 3538 * @wait: poll() state table 3539 * 3540 * For handling userspace polling on an i915 perf stream, this ensures 3541 * poll_wait() gets called with a wait queue that will be woken for new stream 3542 * data. 3543 * 3544 * Note: Implementation deferred to i915_perf_poll_locked() 3545 * 3546 * Returns: any poll events that are ready without sleeping 3547 */ 3548 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3549 { 3550 struct i915_perf_stream *stream = file->private_data; 3551 __poll_t ret; 3552 3553 mutex_lock(&stream->lock); 3554 ret = i915_perf_poll_locked(stream, file, wait); 3555 mutex_unlock(&stream->lock); 3556 3557 return ret; 3558 } 3559 3560 /** 3561 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3562 * @stream: A disabled i915 perf stream 3563 * 3564 * [Re]enables the associated capture of data for this stream. 3565 * 3566 * If a stream was previously enabled then there's currently no intention 3567 * to provide userspace any guarantee about the preservation of previously 3568 * buffered data. 3569 */ 3570 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3571 { 3572 if (stream->enabled) 3573 return; 3574 3575 /* Allow stream->ops->enable() to refer to this */ 3576 stream->enabled = true; 3577 3578 if (stream->ops->enable) 3579 stream->ops->enable(stream); 3580 3581 if (stream->hold_preemption) 3582 intel_context_set_nopreempt(stream->pinned_ctx); 3583 } 3584 3585 /** 3586 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3587 * @stream: An enabled i915 perf stream 3588 * 3589 * Disables the associated capture of data for this stream. 3590 * 3591 * The intention is that disabling an re-enabling a stream will ideally be 3592 * cheaper than destroying and re-opening a stream with the same configuration, 3593 * though there are no formal guarantees about what state or buffered data 3594 * must be retained between disabling and re-enabling a stream. 3595 * 3596 * Note: while a stream is disabled it's considered an error for userspace 3597 * to attempt to read from the stream (-EIO). 3598 */ 3599 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3600 { 3601 if (!stream->enabled) 3602 return; 3603 3604 /* Allow stream->ops->disable() to refer to this */ 3605 stream->enabled = false; 3606 3607 if (stream->hold_preemption) 3608 intel_context_clear_nopreempt(stream->pinned_ctx); 3609 3610 if (stream->ops->disable) 3611 stream->ops->disable(stream); 3612 } 3613 3614 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3615 unsigned long metrics_set) 3616 { 3617 struct i915_oa_config *config; 3618 long ret = stream->oa_config->id; 3619 3620 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3621 if (!config) 3622 return -EINVAL; 3623 3624 if (config != stream->oa_config) { 3625 int err; 3626 3627 /* 3628 * If OA is bound to a specific context, emit the 3629 * reconfiguration inline from that context. The update 3630 * will then be ordered with respect to submission on that 3631 * context. 3632 * 3633 * When set globally, we use a low priority kernel context, 3634 * so it will effectively take effect when idle. 3635 */ 3636 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3637 if (!err) 3638 config = xchg(&stream->oa_config, config); 3639 else 3640 ret = err; 3641 } 3642 3643 i915_oa_config_put(config); 3644 3645 return ret; 3646 } 3647 3648 /** 3649 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3650 * @stream: An i915 perf stream 3651 * @cmd: the ioctl request 3652 * @arg: the ioctl data 3653 * 3654 * Returns: zero on success or a negative error code. Returns -EINVAL for 3655 * an unknown ioctl request. 3656 */ 3657 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3658 unsigned int cmd, 3659 unsigned long arg) 3660 { 3661 switch (cmd) { 3662 case I915_PERF_IOCTL_ENABLE: 3663 i915_perf_enable_locked(stream); 3664 return 0; 3665 case I915_PERF_IOCTL_DISABLE: 3666 i915_perf_disable_locked(stream); 3667 return 0; 3668 case I915_PERF_IOCTL_CONFIG: 3669 return i915_perf_config_locked(stream, arg); 3670 } 3671 3672 return -EINVAL; 3673 } 3674 3675 /** 3676 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3677 * @file: An i915 perf stream file 3678 * @cmd: the ioctl request 3679 * @arg: the ioctl data 3680 * 3681 * Implementation deferred to i915_perf_ioctl_locked(). 3682 * 3683 * Returns: zero on success or a negative error code. Returns -EINVAL for 3684 * an unknown ioctl request. 3685 */ 3686 static long i915_perf_ioctl(struct file *file, 3687 unsigned int cmd, 3688 unsigned long arg) 3689 { 3690 struct i915_perf_stream *stream = file->private_data; 3691 long ret; 3692 3693 mutex_lock(&stream->lock); 3694 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3695 mutex_unlock(&stream->lock); 3696 3697 return ret; 3698 } 3699 3700 /** 3701 * i915_perf_destroy_locked - destroy an i915 perf stream 3702 * @stream: An i915 perf stream 3703 * 3704 * Frees all resources associated with the given i915 perf @stream, disabling 3705 * any associated data capture in the process. 3706 * 3707 * Note: The >->perf.lock mutex has been taken to serialize 3708 * with any non-file-operation driver hooks. 3709 */ 3710 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3711 { 3712 if (stream->enabled) 3713 i915_perf_disable_locked(stream); 3714 3715 if (stream->ops->destroy) 3716 stream->ops->destroy(stream); 3717 3718 if (stream->ctx) 3719 i915_gem_context_put(stream->ctx); 3720 3721 kfree(stream); 3722 } 3723 3724 /** 3725 * i915_perf_release - handles userspace close() of a stream file 3726 * @inode: anonymous inode associated with file 3727 * @file: An i915 perf stream file 3728 * 3729 * Cleans up any resources associated with an open i915 perf stream file. 3730 * 3731 * NB: close() can't really fail from the userspace point of view. 3732 * 3733 * Returns: zero on success or a negative error code. 3734 */ 3735 static int i915_perf_release(struct inode *inode, struct file *file) 3736 { 3737 struct i915_perf_stream *stream = file->private_data; 3738 struct i915_perf *perf = stream->perf; 3739 struct intel_gt *gt = stream->engine->gt; 3740 3741 /* 3742 * Within this call, we know that the fd is being closed and we have no 3743 * other user of stream->lock. Use the perf lock to destroy the stream 3744 * here. 3745 */ 3746 mutex_lock(>->perf.lock); 3747 i915_perf_destroy_locked(stream); 3748 mutex_unlock(>->perf.lock); 3749 3750 /* Release the reference the perf stream kept on the driver. */ 3751 drm_dev_put(&perf->i915->drm); 3752 3753 return 0; 3754 } 3755 3756 3757 static const struct file_operations fops = { 3758 .owner = THIS_MODULE, 3759 .llseek = no_llseek, 3760 .release = i915_perf_release, 3761 .poll = i915_perf_poll, 3762 .read = i915_perf_read, 3763 .unlocked_ioctl = i915_perf_ioctl, 3764 /* Our ioctl have no arguments, so it's safe to use the same function 3765 * to handle 32bits compatibility. 3766 */ 3767 .compat_ioctl = i915_perf_ioctl, 3768 }; 3769 3770 3771 /** 3772 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3773 * @perf: i915 perf instance 3774 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3775 * @props: individually validated u64 property value pairs 3776 * @file: drm file 3777 * 3778 * See i915_perf_ioctl_open() for interface details. 3779 * 3780 * Implements further stream config validation and stream initialization on 3781 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3782 * taken to serialize with any non-file-operation driver hooks. 3783 * 3784 * Note: at this point the @props have only been validated in isolation and 3785 * it's still necessary to validate that the combination of properties makes 3786 * sense. 3787 * 3788 * In the case where userspace is interested in OA unit metrics then further 3789 * config validation and stream initialization details will be handled by 3790 * i915_oa_stream_init(). The code here should only validate config state that 3791 * will be relevant to all stream types / backends. 3792 * 3793 * Returns: zero on success or a negative error code. 3794 */ 3795 static int 3796 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3797 struct drm_i915_perf_open_param *param, 3798 struct perf_open_properties *props, 3799 struct drm_file *file) 3800 { 3801 struct i915_gem_context *specific_ctx = NULL; 3802 struct i915_perf_stream *stream = NULL; 3803 unsigned long f_flags = 0; 3804 bool privileged_op = true; 3805 int stream_fd; 3806 int ret; 3807 3808 if (props->single_context) { 3809 u32 ctx_handle = props->ctx_handle; 3810 struct drm_i915_file_private *file_priv = file->driver_priv; 3811 3812 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3813 if (IS_ERR(specific_ctx)) { 3814 drm_dbg(&perf->i915->drm, 3815 "Failed to look up context with ID %u for opening perf stream\n", 3816 ctx_handle); 3817 ret = PTR_ERR(specific_ctx); 3818 goto err; 3819 } 3820 } 3821 3822 /* 3823 * On Haswell the OA unit supports clock gating off for a specific 3824 * context and in this mode there's no visibility of metrics for the 3825 * rest of the system, which we consider acceptable for a 3826 * non-privileged client. 3827 * 3828 * For Gen8->11 the OA unit no longer supports clock gating off for a 3829 * specific context and the kernel can't securely stop the counters 3830 * from updating as system-wide / global values. Even though we can 3831 * filter reports based on the included context ID we can't block 3832 * clients from seeing the raw / global counter values via 3833 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3834 * enable the OA unit by default. 3835 * 3836 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3837 * per context basis. So we can relax requirements there if the user 3838 * doesn't request global stream access (i.e. query based sampling 3839 * using MI_RECORD_PERF_COUNT. 3840 */ 3841 if (IS_HASWELL(perf->i915) && specific_ctx) 3842 privileged_op = false; 3843 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3844 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3845 privileged_op = false; 3846 3847 if (props->hold_preemption) { 3848 if (!props->single_context) { 3849 drm_dbg(&perf->i915->drm, 3850 "preemption disable with no context\n"); 3851 ret = -EINVAL; 3852 goto err; 3853 } 3854 privileged_op = true; 3855 } 3856 3857 /* 3858 * Asking for SSEU configuration is a priviliged operation. 3859 */ 3860 if (props->has_sseu) 3861 privileged_op = true; 3862 else 3863 get_default_sseu_config(&props->sseu, props->engine); 3864 3865 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3866 * we check a dev.i915.perf_stream_paranoid sysctl option 3867 * to determine if it's ok to access system wide OA counters 3868 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3869 */ 3870 if (privileged_op && 3871 i915_perf_stream_paranoid && !perfmon_capable()) { 3872 drm_dbg(&perf->i915->drm, 3873 "Insufficient privileges to open i915 perf stream\n"); 3874 ret = -EACCES; 3875 goto err_ctx; 3876 } 3877 3878 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3879 if (!stream) { 3880 ret = -ENOMEM; 3881 goto err_ctx; 3882 } 3883 3884 stream->perf = perf; 3885 stream->ctx = specific_ctx; 3886 stream->poll_oa_period = props->poll_oa_period; 3887 3888 ret = i915_oa_stream_init(stream, param, props); 3889 if (ret) 3890 goto err_alloc; 3891 3892 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3893 * to have _stream_init check the combination of sample flags more 3894 * thoroughly, but still this is the expected result at this point. 3895 */ 3896 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3897 ret = -ENODEV; 3898 goto err_flags; 3899 } 3900 3901 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3902 f_flags |= O_CLOEXEC; 3903 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3904 f_flags |= O_NONBLOCK; 3905 3906 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3907 if (stream_fd < 0) { 3908 ret = stream_fd; 3909 goto err_flags; 3910 } 3911 3912 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3913 i915_perf_enable_locked(stream); 3914 3915 /* Take a reference on the driver that will be kept with stream_fd 3916 * until its release. 3917 */ 3918 drm_dev_get(&perf->i915->drm); 3919 3920 return stream_fd; 3921 3922 err_flags: 3923 if (stream->ops->destroy) 3924 stream->ops->destroy(stream); 3925 err_alloc: 3926 kfree(stream); 3927 err_ctx: 3928 if (specific_ctx) 3929 i915_gem_context_put(specific_ctx); 3930 err: 3931 return ret; 3932 } 3933 3934 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3935 { 3936 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3937 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3938 3939 return div_u64(nom + den - 1, den); 3940 } 3941 3942 static __always_inline bool 3943 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3944 { 3945 return test_bit(format, perf->format_mask); 3946 } 3947 3948 static __always_inline void 3949 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3950 { 3951 __set_bit(format, perf->format_mask); 3952 } 3953 3954 /** 3955 * read_properties_unlocked - validate + copy userspace stream open properties 3956 * @perf: i915 perf instance 3957 * @uprops: The array of u64 key value pairs given by userspace 3958 * @n_props: The number of key value pairs expected in @uprops 3959 * @props: The stream configuration built up while validating properties 3960 * 3961 * Note this function only validates properties in isolation it doesn't 3962 * validate that the combination of properties makes sense or that all 3963 * properties necessary for a particular kind of stream have been set. 3964 * 3965 * Note that there currently aren't any ordering requirements for properties so 3966 * we shouldn't validate or assume anything about ordering here. This doesn't 3967 * rule out defining new properties with ordering requirements in the future. 3968 */ 3969 static int read_properties_unlocked(struct i915_perf *perf, 3970 u64 __user *uprops, 3971 u32 n_props, 3972 struct perf_open_properties *props) 3973 { 3974 struct drm_i915_gem_context_param_sseu user_sseu; 3975 const struct i915_oa_format *f; 3976 u64 __user *uprop = uprops; 3977 bool config_instance = false; 3978 bool config_class = false; 3979 bool config_sseu = false; 3980 u8 class, instance; 3981 u32 i; 3982 int ret; 3983 3984 memset(props, 0, sizeof(struct perf_open_properties)); 3985 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3986 3987 /* Considering that ID = 0 is reserved and assuming that we don't 3988 * (currently) expect any configurations to ever specify duplicate 3989 * values for a particular property ID then the last _PROP_MAX value is 3990 * one greater than the maximum number of properties we expect to get 3991 * from userspace. 3992 */ 3993 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 3994 drm_dbg(&perf->i915->drm, 3995 "Invalid number of i915 perf properties given\n"); 3996 return -EINVAL; 3997 } 3998 3999 /* Defaults when class:instance is not passed */ 4000 class = I915_ENGINE_CLASS_RENDER; 4001 instance = 0; 4002 4003 for (i = 0; i < n_props; i++) { 4004 u64 oa_period, oa_freq_hz; 4005 u64 id, value; 4006 4007 ret = get_user(id, uprop); 4008 if (ret) 4009 return ret; 4010 4011 ret = get_user(value, uprop + 1); 4012 if (ret) 4013 return ret; 4014 4015 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4016 drm_dbg(&perf->i915->drm, 4017 "Unknown i915 perf property ID\n"); 4018 return -EINVAL; 4019 } 4020 4021 switch ((enum drm_i915_perf_property_id)id) { 4022 case DRM_I915_PERF_PROP_CTX_HANDLE: 4023 props->single_context = 1; 4024 props->ctx_handle = value; 4025 break; 4026 case DRM_I915_PERF_PROP_SAMPLE_OA: 4027 if (value) 4028 props->sample_flags |= SAMPLE_OA_REPORT; 4029 break; 4030 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4031 if (value == 0) { 4032 drm_dbg(&perf->i915->drm, 4033 "Unknown OA metric set ID\n"); 4034 return -EINVAL; 4035 } 4036 props->metrics_set = value; 4037 break; 4038 case DRM_I915_PERF_PROP_OA_FORMAT: 4039 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4040 drm_dbg(&perf->i915->drm, 4041 "Out-of-range OA report format %llu\n", 4042 value); 4043 return -EINVAL; 4044 } 4045 if (!oa_format_valid(perf, value)) { 4046 drm_dbg(&perf->i915->drm, 4047 "Unsupported OA report format %llu\n", 4048 value); 4049 return -EINVAL; 4050 } 4051 props->oa_format = value; 4052 break; 4053 case DRM_I915_PERF_PROP_OA_EXPONENT: 4054 if (value > OA_EXPONENT_MAX) { 4055 drm_dbg(&perf->i915->drm, 4056 "OA timer exponent too high (> %u)\n", 4057 OA_EXPONENT_MAX); 4058 return -EINVAL; 4059 } 4060 4061 /* Theoretically we can program the OA unit to sample 4062 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4063 * for BXT. We don't allow such high sampling 4064 * frequencies by default unless root. 4065 */ 4066 4067 BUILD_BUG_ON(sizeof(oa_period) != 8); 4068 oa_period = oa_exponent_to_ns(perf, value); 4069 4070 /* This check is primarily to ensure that oa_period <= 4071 * UINT32_MAX (before passing to do_div which only 4072 * accepts a u32 denominator), but we can also skip 4073 * checking anything < 1Hz which implicitly can't be 4074 * limited via an integer oa_max_sample_rate. 4075 */ 4076 if (oa_period <= NSEC_PER_SEC) { 4077 u64 tmp = NSEC_PER_SEC; 4078 do_div(tmp, oa_period); 4079 oa_freq_hz = tmp; 4080 } else 4081 oa_freq_hz = 0; 4082 4083 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4084 drm_dbg(&perf->i915->drm, 4085 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4086 i915_oa_max_sample_rate); 4087 return -EACCES; 4088 } 4089 4090 props->oa_periodic = true; 4091 props->oa_period_exponent = value; 4092 break; 4093 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4094 props->hold_preemption = !!value; 4095 break; 4096 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4097 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4098 drm_dbg(&perf->i915->drm, 4099 "SSEU config not supported on gfx %x\n", 4100 GRAPHICS_VER_FULL(perf->i915)); 4101 return -ENODEV; 4102 } 4103 4104 if (copy_from_user(&user_sseu, 4105 u64_to_user_ptr(value), 4106 sizeof(user_sseu))) { 4107 drm_dbg(&perf->i915->drm, 4108 "Unable to copy global sseu parameter\n"); 4109 return -EFAULT; 4110 } 4111 config_sseu = true; 4112 break; 4113 } 4114 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4115 if (value < 100000 /* 100us */) { 4116 drm_dbg(&perf->i915->drm, 4117 "OA availability timer too small (%lluns < 100us)\n", 4118 value); 4119 return -EINVAL; 4120 } 4121 props->poll_oa_period = value; 4122 break; 4123 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4124 class = (u8)value; 4125 config_class = true; 4126 break; 4127 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4128 instance = (u8)value; 4129 config_instance = true; 4130 break; 4131 default: 4132 MISSING_CASE(id); 4133 return -EINVAL; 4134 } 4135 4136 uprop += 2; 4137 } 4138 4139 if ((config_class && !config_instance) || 4140 (config_instance && !config_class)) { 4141 drm_dbg(&perf->i915->drm, 4142 "OA engine-class and engine-instance parameters must be passed together\n"); 4143 return -EINVAL; 4144 } 4145 4146 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4147 if (!props->engine) { 4148 drm_dbg(&perf->i915->drm, 4149 "OA engine class and instance invalid %d:%d\n", 4150 class, instance); 4151 return -EINVAL; 4152 } 4153 4154 if (!engine_supports_oa(props->engine)) { 4155 drm_dbg(&perf->i915->drm, 4156 "Engine not supported by OA %d:%d\n", 4157 class, instance); 4158 return -EINVAL; 4159 } 4160 4161 /* 4162 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4163 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4164 * does not work as expected. 4165 */ 4166 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 4167 props->engine->oa_group->type == TYPE_OAM && 4168 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4169 drm_dbg(&perf->i915->drm, 4170 "OAM requires media C6 to be disabled in BIOS\n"); 4171 return -EINVAL; 4172 } 4173 4174 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4175 f = &perf->oa_formats[i]; 4176 if (!engine_supports_oa_format(props->engine, f->type)) { 4177 drm_dbg(&perf->i915->drm, 4178 "Invalid OA format %d for class %d\n", 4179 f->type, props->engine->class); 4180 return -EINVAL; 4181 } 4182 4183 if (config_sseu) { 4184 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4185 if (ret) { 4186 drm_dbg(&perf->i915->drm, 4187 "Invalid SSEU configuration\n"); 4188 return ret; 4189 } 4190 props->has_sseu = true; 4191 } 4192 4193 return 0; 4194 } 4195 4196 /** 4197 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4198 * @dev: drm device 4199 * @data: ioctl data copied from userspace (unvalidated) 4200 * @file: drm file 4201 * 4202 * Validates the stream open parameters given by userspace including flags 4203 * and an array of u64 key, value pair properties. 4204 * 4205 * Very little is assumed up front about the nature of the stream being 4206 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4207 * i915-perf stream is expected to be a suitable interface for other forms of 4208 * buffered data written by the GPU besides periodic OA metrics. 4209 * 4210 * Note we copy the properties from userspace outside of the i915 perf 4211 * mutex to avoid an awkward lockdep with mmap_lock. 4212 * 4213 * Most of the implementation details are handled by 4214 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4215 * mutex for serializing with any non-file-operation driver hooks. 4216 * 4217 * Return: A newly opened i915 Perf stream file descriptor or negative 4218 * error code on failure. 4219 */ 4220 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4221 struct drm_file *file) 4222 { 4223 struct i915_perf *perf = &to_i915(dev)->perf; 4224 struct drm_i915_perf_open_param *param = data; 4225 struct intel_gt *gt; 4226 struct perf_open_properties props; 4227 u32 known_open_flags; 4228 int ret; 4229 4230 if (!perf->i915) 4231 return -ENOTSUPP; 4232 4233 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4234 I915_PERF_FLAG_FD_NONBLOCK | 4235 I915_PERF_FLAG_DISABLED; 4236 if (param->flags & ~known_open_flags) { 4237 drm_dbg(&perf->i915->drm, 4238 "Unknown drm_i915_perf_open_param flag\n"); 4239 return -EINVAL; 4240 } 4241 4242 ret = read_properties_unlocked(perf, 4243 u64_to_user_ptr(param->properties_ptr), 4244 param->num_properties, 4245 &props); 4246 if (ret) 4247 return ret; 4248 4249 gt = props.engine->gt; 4250 4251 mutex_lock(>->perf.lock); 4252 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4253 mutex_unlock(>->perf.lock); 4254 4255 return ret; 4256 } 4257 4258 /** 4259 * i915_perf_register - exposes i915-perf to userspace 4260 * @i915: i915 device instance 4261 * 4262 * In particular OA metric sets are advertised under a sysfs metrics/ 4263 * directory allowing userspace to enumerate valid IDs that can be 4264 * used to open an i915-perf stream. 4265 */ 4266 void i915_perf_register(struct drm_i915_private *i915) 4267 { 4268 struct i915_perf *perf = &i915->perf; 4269 struct intel_gt *gt = to_gt(i915); 4270 4271 if (!perf->i915) 4272 return; 4273 4274 /* To be sure we're synchronized with an attempted 4275 * i915_perf_open_ioctl(); considering that we register after 4276 * being exposed to userspace. 4277 */ 4278 mutex_lock(>->perf.lock); 4279 4280 perf->metrics_kobj = 4281 kobject_create_and_add("metrics", 4282 &i915->drm.primary->kdev->kobj); 4283 4284 mutex_unlock(>->perf.lock); 4285 } 4286 4287 /** 4288 * i915_perf_unregister - hide i915-perf from userspace 4289 * @i915: i915 device instance 4290 * 4291 * i915-perf state cleanup is split up into an 'unregister' and 4292 * 'deinit' phase where the interface is first hidden from 4293 * userspace by i915_perf_unregister() before cleaning up 4294 * remaining state in i915_perf_fini(). 4295 */ 4296 void i915_perf_unregister(struct drm_i915_private *i915) 4297 { 4298 struct i915_perf *perf = &i915->perf; 4299 4300 if (!perf->metrics_kobj) 4301 return; 4302 4303 kobject_put(perf->metrics_kobj); 4304 perf->metrics_kobj = NULL; 4305 } 4306 4307 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4308 { 4309 static const i915_reg_t flex_eu_regs[] = { 4310 EU_PERF_CNTL0, 4311 EU_PERF_CNTL1, 4312 EU_PERF_CNTL2, 4313 EU_PERF_CNTL3, 4314 EU_PERF_CNTL4, 4315 EU_PERF_CNTL5, 4316 EU_PERF_CNTL6, 4317 }; 4318 int i; 4319 4320 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4321 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4322 return true; 4323 } 4324 return false; 4325 } 4326 4327 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4328 { 4329 while (table->start || table->end) { 4330 if (addr >= table->start && addr <= table->end) 4331 return true; 4332 4333 table++; 4334 } 4335 4336 return false; 4337 } 4338 4339 #define REG_EQUAL(addr, mmio) \ 4340 ((addr) == i915_mmio_reg_offset(mmio)) 4341 4342 static const struct i915_range gen7_oa_b_counters[] = { 4343 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4344 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4345 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4346 {} 4347 }; 4348 4349 static const struct i915_range gen12_oa_b_counters[] = { 4350 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4351 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4352 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4353 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4354 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4355 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4356 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4357 {} 4358 }; 4359 4360 static const struct i915_range mtl_oam_b_counters[] = { 4361 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4362 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4363 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4364 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4365 {} 4366 }; 4367 4368 static const struct i915_range xehp_oa_b_counters[] = { 4369 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4370 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4371 {} 4372 }; 4373 4374 static const struct i915_range gen7_oa_mux_regs[] = { 4375 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4376 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4377 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4378 {} 4379 }; 4380 4381 static const struct i915_range hsw_oa_mux_regs[] = { 4382 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4383 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4384 { .start = 0x25100, .end = 0x2ff90 }, 4385 {} 4386 }; 4387 4388 static const struct i915_range chv_oa_mux_regs[] = { 4389 { .start = 0x182300, .end = 0x1823a4 }, 4390 {} 4391 }; 4392 4393 static const struct i915_range gen8_oa_mux_regs[] = { 4394 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4395 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4396 {} 4397 }; 4398 4399 static const struct i915_range gen11_oa_mux_regs[] = { 4400 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4401 {} 4402 }; 4403 4404 static const struct i915_range gen12_oa_mux_regs[] = { 4405 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4406 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4407 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4408 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4409 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4410 {} 4411 }; 4412 4413 /* 4414 * Ref: 14010536224: 4415 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4416 */ 4417 static const struct i915_range mtl_oa_mux_regs[] = { 4418 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4419 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4420 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4421 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4422 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4423 {} 4424 }; 4425 4426 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4427 { 4428 return reg_in_range_table(addr, gen7_oa_b_counters); 4429 } 4430 4431 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4432 { 4433 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4434 reg_in_range_table(addr, gen8_oa_mux_regs); 4435 } 4436 4437 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4438 { 4439 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4440 reg_in_range_table(addr, gen8_oa_mux_regs) || 4441 reg_in_range_table(addr, gen11_oa_mux_regs); 4442 } 4443 4444 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4445 { 4446 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4447 reg_in_range_table(addr, hsw_oa_mux_regs); 4448 } 4449 4450 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4451 { 4452 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4453 reg_in_range_table(addr, chv_oa_mux_regs); 4454 } 4455 4456 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4457 { 4458 return reg_in_range_table(addr, gen12_oa_b_counters); 4459 } 4460 4461 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4462 { 4463 if (HAS_OAM(perf->i915) && 4464 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4465 return reg_in_range_table(addr, mtl_oam_b_counters); 4466 4467 return false; 4468 } 4469 4470 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4471 { 4472 return reg_in_range_table(addr, xehp_oa_b_counters) || 4473 reg_in_range_table(addr, gen12_oa_b_counters) || 4474 mtl_is_valid_oam_b_counter_addr(perf, addr); 4475 } 4476 4477 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4478 { 4479 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4480 return reg_in_range_table(addr, mtl_oa_mux_regs); 4481 else 4482 return reg_in_range_table(addr, gen12_oa_mux_regs); 4483 } 4484 4485 static u32 mask_reg_value(u32 reg, u32 val) 4486 { 4487 /* HALF_SLICE_CHICKEN2 is programmed with a the 4488 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4489 * programmed by userspace doesn't change this. 4490 */ 4491 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4492 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4493 4494 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4495 * indicated by its name and a bunch of selection fields used by OA 4496 * configs. 4497 */ 4498 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4499 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4500 4501 return val; 4502 } 4503 4504 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4505 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4506 u32 __user *regs, 4507 u32 n_regs) 4508 { 4509 struct i915_oa_reg *oa_regs; 4510 int err; 4511 u32 i; 4512 4513 if (!n_regs) 4514 return NULL; 4515 4516 /* No is_valid function means we're not allowing any register to be programmed. */ 4517 GEM_BUG_ON(!is_valid); 4518 if (!is_valid) 4519 return ERR_PTR(-EINVAL); 4520 4521 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4522 if (!oa_regs) 4523 return ERR_PTR(-ENOMEM); 4524 4525 for (i = 0; i < n_regs; i++) { 4526 u32 addr, value; 4527 4528 err = get_user(addr, regs); 4529 if (err) 4530 goto addr_err; 4531 4532 if (!is_valid(perf, addr)) { 4533 drm_dbg(&perf->i915->drm, 4534 "Invalid oa_reg address: %X\n", addr); 4535 err = -EINVAL; 4536 goto addr_err; 4537 } 4538 4539 err = get_user(value, regs + 1); 4540 if (err) 4541 goto addr_err; 4542 4543 oa_regs[i].addr = _MMIO(addr); 4544 oa_regs[i].value = mask_reg_value(addr, value); 4545 4546 regs += 2; 4547 } 4548 4549 return oa_regs; 4550 4551 addr_err: 4552 kfree(oa_regs); 4553 return ERR_PTR(err); 4554 } 4555 4556 static ssize_t show_dynamic_id(struct kobject *kobj, 4557 struct kobj_attribute *attr, 4558 char *buf) 4559 { 4560 struct i915_oa_config *oa_config = 4561 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4562 4563 return sprintf(buf, "%d\n", oa_config->id); 4564 } 4565 4566 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4567 struct i915_oa_config *oa_config) 4568 { 4569 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4570 oa_config->sysfs_metric_id.attr.name = "id"; 4571 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4572 oa_config->sysfs_metric_id.show = show_dynamic_id; 4573 oa_config->sysfs_metric_id.store = NULL; 4574 4575 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4576 oa_config->attrs[1] = NULL; 4577 4578 oa_config->sysfs_metric.name = oa_config->uuid; 4579 oa_config->sysfs_metric.attrs = oa_config->attrs; 4580 4581 return sysfs_create_group(perf->metrics_kobj, 4582 &oa_config->sysfs_metric); 4583 } 4584 4585 /** 4586 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4587 * @dev: drm device 4588 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4589 * userspace (unvalidated) 4590 * @file: drm file 4591 * 4592 * Validates the submitted OA register to be saved into a new OA config that 4593 * can then be used for programming the OA unit and its NOA network. 4594 * 4595 * Returns: A new allocated config number to be used with the perf open ioctl 4596 * or a negative error code on failure. 4597 */ 4598 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4599 struct drm_file *file) 4600 { 4601 struct i915_perf *perf = &to_i915(dev)->perf; 4602 struct drm_i915_perf_oa_config *args = data; 4603 struct i915_oa_config *oa_config, *tmp; 4604 struct i915_oa_reg *regs; 4605 int err, id; 4606 4607 if (!perf->i915) 4608 return -ENOTSUPP; 4609 4610 if (!perf->metrics_kobj) { 4611 drm_dbg(&perf->i915->drm, 4612 "OA metrics weren't advertised via sysfs\n"); 4613 return -EINVAL; 4614 } 4615 4616 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4617 drm_dbg(&perf->i915->drm, 4618 "Insufficient privileges to add i915 OA config\n"); 4619 return -EACCES; 4620 } 4621 4622 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4623 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4624 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4625 drm_dbg(&perf->i915->drm, 4626 "No OA registers given\n"); 4627 return -EINVAL; 4628 } 4629 4630 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4631 if (!oa_config) { 4632 drm_dbg(&perf->i915->drm, 4633 "Failed to allocate memory for the OA config\n"); 4634 return -ENOMEM; 4635 } 4636 4637 oa_config->perf = perf; 4638 kref_init(&oa_config->ref); 4639 4640 if (!uuid_is_valid(args->uuid)) { 4641 drm_dbg(&perf->i915->drm, 4642 "Invalid uuid format for OA config\n"); 4643 err = -EINVAL; 4644 goto reg_err; 4645 } 4646 4647 /* Last character in oa_config->uuid will be 0 because oa_config is 4648 * kzalloc. 4649 */ 4650 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4651 4652 oa_config->mux_regs_len = args->n_mux_regs; 4653 regs = alloc_oa_regs(perf, 4654 perf->ops.is_valid_mux_reg, 4655 u64_to_user_ptr(args->mux_regs_ptr), 4656 args->n_mux_regs); 4657 4658 if (IS_ERR(regs)) { 4659 drm_dbg(&perf->i915->drm, 4660 "Failed to create OA config for mux_regs\n"); 4661 err = PTR_ERR(regs); 4662 goto reg_err; 4663 } 4664 oa_config->mux_regs = regs; 4665 4666 oa_config->b_counter_regs_len = args->n_boolean_regs; 4667 regs = alloc_oa_regs(perf, 4668 perf->ops.is_valid_b_counter_reg, 4669 u64_to_user_ptr(args->boolean_regs_ptr), 4670 args->n_boolean_regs); 4671 4672 if (IS_ERR(regs)) { 4673 drm_dbg(&perf->i915->drm, 4674 "Failed to create OA config for b_counter_regs\n"); 4675 err = PTR_ERR(regs); 4676 goto reg_err; 4677 } 4678 oa_config->b_counter_regs = regs; 4679 4680 if (GRAPHICS_VER(perf->i915) < 8) { 4681 if (args->n_flex_regs != 0) { 4682 err = -EINVAL; 4683 goto reg_err; 4684 } 4685 } else { 4686 oa_config->flex_regs_len = args->n_flex_regs; 4687 regs = alloc_oa_regs(perf, 4688 perf->ops.is_valid_flex_reg, 4689 u64_to_user_ptr(args->flex_regs_ptr), 4690 args->n_flex_regs); 4691 4692 if (IS_ERR(regs)) { 4693 drm_dbg(&perf->i915->drm, 4694 "Failed to create OA config for flex_regs\n"); 4695 err = PTR_ERR(regs); 4696 goto reg_err; 4697 } 4698 oa_config->flex_regs = regs; 4699 } 4700 4701 err = mutex_lock_interruptible(&perf->metrics_lock); 4702 if (err) 4703 goto reg_err; 4704 4705 /* We shouldn't have too many configs, so this iteration shouldn't be 4706 * too costly. 4707 */ 4708 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4709 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4710 drm_dbg(&perf->i915->drm, 4711 "OA config already exists with this uuid\n"); 4712 err = -EADDRINUSE; 4713 goto sysfs_err; 4714 } 4715 } 4716 4717 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4718 if (err) { 4719 drm_dbg(&perf->i915->drm, 4720 "Failed to create sysfs entry for OA config\n"); 4721 goto sysfs_err; 4722 } 4723 4724 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4725 oa_config->id = idr_alloc(&perf->metrics_idr, 4726 oa_config, 2, 4727 0, GFP_KERNEL); 4728 if (oa_config->id < 0) { 4729 drm_dbg(&perf->i915->drm, 4730 "Failed to create sysfs entry for OA config\n"); 4731 err = oa_config->id; 4732 goto sysfs_err; 4733 } 4734 id = oa_config->id; 4735 4736 drm_dbg(&perf->i915->drm, 4737 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4738 mutex_unlock(&perf->metrics_lock); 4739 4740 return id; 4741 4742 sysfs_err: 4743 mutex_unlock(&perf->metrics_lock); 4744 reg_err: 4745 i915_oa_config_put(oa_config); 4746 drm_dbg(&perf->i915->drm, 4747 "Failed to add new OA config\n"); 4748 return err; 4749 } 4750 4751 /** 4752 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4753 * @dev: drm device 4754 * @data: ioctl data (pointer to u64 integer) copied from userspace 4755 * @file: drm file 4756 * 4757 * Configs can be removed while being used, the will stop appearing in sysfs 4758 * and their content will be freed when the stream using the config is closed. 4759 * 4760 * Returns: 0 on success or a negative error code on failure. 4761 */ 4762 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4763 struct drm_file *file) 4764 { 4765 struct i915_perf *perf = &to_i915(dev)->perf; 4766 u64 *arg = data; 4767 struct i915_oa_config *oa_config; 4768 int ret; 4769 4770 if (!perf->i915) 4771 return -ENOTSUPP; 4772 4773 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4774 drm_dbg(&perf->i915->drm, 4775 "Insufficient privileges to remove i915 OA config\n"); 4776 return -EACCES; 4777 } 4778 4779 ret = mutex_lock_interruptible(&perf->metrics_lock); 4780 if (ret) 4781 return ret; 4782 4783 oa_config = idr_find(&perf->metrics_idr, *arg); 4784 if (!oa_config) { 4785 drm_dbg(&perf->i915->drm, 4786 "Failed to remove unknown OA config\n"); 4787 ret = -ENOENT; 4788 goto err_unlock; 4789 } 4790 4791 GEM_BUG_ON(*arg != oa_config->id); 4792 4793 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4794 4795 idr_remove(&perf->metrics_idr, *arg); 4796 4797 mutex_unlock(&perf->metrics_lock); 4798 4799 drm_dbg(&perf->i915->drm, 4800 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4801 4802 i915_oa_config_put(oa_config); 4803 4804 return 0; 4805 4806 err_unlock: 4807 mutex_unlock(&perf->metrics_lock); 4808 return ret; 4809 } 4810 4811 static struct ctl_table oa_table[] = { 4812 { 4813 .procname = "perf_stream_paranoid", 4814 .data = &i915_perf_stream_paranoid, 4815 .maxlen = sizeof(i915_perf_stream_paranoid), 4816 .mode = 0644, 4817 .proc_handler = proc_dointvec_minmax, 4818 .extra1 = SYSCTL_ZERO, 4819 .extra2 = SYSCTL_ONE, 4820 }, 4821 { 4822 .procname = "oa_max_sample_rate", 4823 .data = &i915_oa_max_sample_rate, 4824 .maxlen = sizeof(i915_oa_max_sample_rate), 4825 .mode = 0644, 4826 .proc_handler = proc_dointvec_minmax, 4827 .extra1 = SYSCTL_ZERO, 4828 .extra2 = &oa_sample_rate_hard_limit, 4829 }, 4830 }; 4831 4832 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4833 { 4834 return 1; 4835 } 4836 4837 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4838 { 4839 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4840 /* 4841 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4842 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4843 */ 4844 drm_WARN_ON(&engine->i915->drm, 4845 engine->gt->type != GT_MEDIA); 4846 4847 return PERF_GROUP_OAM_SAMEDIA_0; 4848 } 4849 4850 return PERF_GROUP_INVALID; 4851 } 4852 4853 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4854 { 4855 switch (engine->class) { 4856 case RENDER_CLASS: 4857 return PERF_GROUP_OAG; 4858 4859 case VIDEO_DECODE_CLASS: 4860 case VIDEO_ENHANCEMENT_CLASS: 4861 return __oam_engine_group(engine); 4862 4863 default: 4864 return PERF_GROUP_INVALID; 4865 } 4866 } 4867 4868 static struct i915_perf_regs __oam_regs(u32 base) 4869 { 4870 return (struct i915_perf_regs) { 4871 base, 4872 GEN12_OAM_HEAD_POINTER(base), 4873 GEN12_OAM_TAIL_POINTER(base), 4874 GEN12_OAM_BUFFER(base), 4875 GEN12_OAM_CONTEXT_CONTROL(base), 4876 GEN12_OAM_CONTROL(base), 4877 GEN12_OAM_DEBUG(base), 4878 GEN12_OAM_STATUS(base), 4879 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4880 }; 4881 } 4882 4883 static struct i915_perf_regs __oag_regs(void) 4884 { 4885 return (struct i915_perf_regs) { 4886 0, 4887 GEN12_OAG_OAHEADPTR, 4888 GEN12_OAG_OATAILPTR, 4889 GEN12_OAG_OABUFFER, 4890 GEN12_OAG_OAGLBCTXCTRL, 4891 GEN12_OAG_OACONTROL, 4892 GEN12_OAG_OA_DEBUG, 4893 GEN12_OAG_OASTATUS, 4894 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4895 }; 4896 } 4897 4898 static void oa_init_groups(struct intel_gt *gt) 4899 { 4900 int i, num_groups = gt->perf.num_perf_groups; 4901 4902 for (i = 0; i < num_groups; i++) { 4903 struct i915_perf_group *g = >->perf.group[i]; 4904 4905 /* Fused off engines can result in a group with num_engines == 0 */ 4906 if (g->num_engines == 0) 4907 continue; 4908 4909 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4910 g->regs = __oag_regs(); 4911 g->type = TYPE_OAG; 4912 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4913 g->regs = __oam_regs(mtl_oa_base[i]); 4914 g->type = TYPE_OAM; 4915 } 4916 } 4917 } 4918 4919 static int oa_init_gt(struct intel_gt *gt) 4920 { 4921 u32 num_groups = num_perf_groups_per_gt(gt); 4922 struct intel_engine_cs *engine; 4923 struct i915_perf_group *g; 4924 intel_engine_mask_t tmp; 4925 4926 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4927 if (!g) 4928 return -ENOMEM; 4929 4930 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 4931 u32 index = __oa_engine_group(engine); 4932 4933 engine->oa_group = NULL; 4934 if (index < num_groups) { 4935 g[index].num_engines++; 4936 engine->oa_group = &g[index]; 4937 } 4938 } 4939 4940 gt->perf.num_perf_groups = num_groups; 4941 gt->perf.group = g; 4942 4943 oa_init_groups(gt); 4944 4945 return 0; 4946 } 4947 4948 static int oa_init_engine_groups(struct i915_perf *perf) 4949 { 4950 struct intel_gt *gt; 4951 int i, ret; 4952 4953 for_each_gt(gt, perf->i915, i) { 4954 ret = oa_init_gt(gt); 4955 if (ret) 4956 return ret; 4957 } 4958 4959 return 0; 4960 } 4961 4962 static void oa_init_supported_formats(struct i915_perf *perf) 4963 { 4964 struct drm_i915_private *i915 = perf->i915; 4965 enum intel_platform platform = INTEL_INFO(i915)->platform; 4966 4967 switch (platform) { 4968 case INTEL_HASWELL: 4969 oa_format_add(perf, I915_OA_FORMAT_A13); 4970 oa_format_add(perf, I915_OA_FORMAT_A13); 4971 oa_format_add(perf, I915_OA_FORMAT_A29); 4972 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4973 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4974 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4975 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4976 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4977 break; 4978 4979 case INTEL_BROADWELL: 4980 case INTEL_CHERRYVIEW: 4981 case INTEL_SKYLAKE: 4982 case INTEL_BROXTON: 4983 case INTEL_KABYLAKE: 4984 case INTEL_GEMINILAKE: 4985 case INTEL_COFFEELAKE: 4986 case INTEL_COMETLAKE: 4987 case INTEL_ICELAKE: 4988 case INTEL_ELKHARTLAKE: 4989 case INTEL_JASPERLAKE: 4990 case INTEL_TIGERLAKE: 4991 case INTEL_ROCKETLAKE: 4992 case INTEL_DG1: 4993 case INTEL_ALDERLAKE_S: 4994 case INTEL_ALDERLAKE_P: 4995 oa_format_add(perf, I915_OA_FORMAT_A12); 4996 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4997 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4998 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4999 break; 5000 5001 case INTEL_DG2: 5002 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5003 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5004 break; 5005 5006 case INTEL_METEORLAKE: 5007 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5008 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5009 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5010 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5011 break; 5012 5013 default: 5014 MISSING_CASE(platform); 5015 } 5016 } 5017 5018 static void i915_perf_init_info(struct drm_i915_private *i915) 5019 { 5020 struct i915_perf *perf = &i915->perf; 5021 5022 switch (GRAPHICS_VER(i915)) { 5023 case 8: 5024 perf->ctx_oactxctrl_offset = 0x120; 5025 perf->ctx_flexeu0_offset = 0x2ce; 5026 perf->gen8_valid_ctx_bit = BIT(25); 5027 break; 5028 case 9: 5029 perf->ctx_oactxctrl_offset = 0x128; 5030 perf->ctx_flexeu0_offset = 0x3de; 5031 perf->gen8_valid_ctx_bit = BIT(16); 5032 break; 5033 case 11: 5034 perf->ctx_oactxctrl_offset = 0x124; 5035 perf->ctx_flexeu0_offset = 0x78e; 5036 perf->gen8_valid_ctx_bit = BIT(16); 5037 break; 5038 case 12: 5039 perf->gen8_valid_ctx_bit = BIT(16); 5040 /* 5041 * Calculate offset at runtime in oa_pin_context for gen12 and 5042 * cache the value in perf->ctx_oactxctrl_offset. 5043 */ 5044 break; 5045 default: 5046 MISSING_CASE(GRAPHICS_VER(i915)); 5047 } 5048 } 5049 5050 /** 5051 * i915_perf_init - initialize i915-perf state on module bind 5052 * @i915: i915 device instance 5053 * 5054 * Initializes i915-perf state without exposing anything to userspace. 5055 * 5056 * Note: i915-perf initialization is split into an 'init' and 'register' 5057 * phase with the i915_perf_register() exposing state to userspace. 5058 */ 5059 int i915_perf_init(struct drm_i915_private *i915) 5060 { 5061 struct i915_perf *perf = &i915->perf; 5062 5063 perf->oa_formats = oa_formats; 5064 if (IS_HASWELL(i915)) { 5065 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5066 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5067 perf->ops.is_valid_flex_reg = NULL; 5068 perf->ops.enable_metric_set = hsw_enable_metric_set; 5069 perf->ops.disable_metric_set = hsw_disable_metric_set; 5070 perf->ops.oa_enable = gen7_oa_enable; 5071 perf->ops.oa_disable = gen7_oa_disable; 5072 perf->ops.read = gen7_oa_read; 5073 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5074 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5075 /* Note: that although we could theoretically also support the 5076 * legacy ringbuffer mode on BDW (and earlier iterations of 5077 * this driver, before upstreaming did this) it didn't seem 5078 * worth the complexity to maintain now that BDW+ enable 5079 * execlist mode by default. 5080 */ 5081 perf->ops.read = gen8_oa_read; 5082 i915_perf_init_info(i915); 5083 5084 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5085 perf->ops.is_valid_b_counter_reg = 5086 gen7_is_valid_b_counter_addr; 5087 perf->ops.is_valid_mux_reg = 5088 gen8_is_valid_mux_addr; 5089 perf->ops.is_valid_flex_reg = 5090 gen8_is_valid_flex_addr; 5091 5092 if (IS_CHERRYVIEW(i915)) { 5093 perf->ops.is_valid_mux_reg = 5094 chv_is_valid_mux_addr; 5095 } 5096 5097 perf->ops.oa_enable = gen8_oa_enable; 5098 perf->ops.oa_disable = gen8_oa_disable; 5099 perf->ops.enable_metric_set = gen8_enable_metric_set; 5100 perf->ops.disable_metric_set = gen8_disable_metric_set; 5101 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5102 } else if (GRAPHICS_VER(i915) == 11) { 5103 perf->ops.is_valid_b_counter_reg = 5104 gen7_is_valid_b_counter_addr; 5105 perf->ops.is_valid_mux_reg = 5106 gen11_is_valid_mux_addr; 5107 perf->ops.is_valid_flex_reg = 5108 gen8_is_valid_flex_addr; 5109 5110 perf->ops.oa_enable = gen8_oa_enable; 5111 perf->ops.oa_disable = gen8_oa_disable; 5112 perf->ops.enable_metric_set = gen8_enable_metric_set; 5113 perf->ops.disable_metric_set = gen11_disable_metric_set; 5114 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5115 } else if (GRAPHICS_VER(i915) == 12) { 5116 perf->ops.is_valid_b_counter_reg = 5117 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5118 xehp_is_valid_b_counter_addr : 5119 gen12_is_valid_b_counter_addr; 5120 perf->ops.is_valid_mux_reg = 5121 gen12_is_valid_mux_addr; 5122 perf->ops.is_valid_flex_reg = 5123 gen8_is_valid_flex_addr; 5124 5125 perf->ops.oa_enable = gen12_oa_enable; 5126 perf->ops.oa_disable = gen12_oa_disable; 5127 perf->ops.enable_metric_set = gen12_enable_metric_set; 5128 perf->ops.disable_metric_set = gen12_disable_metric_set; 5129 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5130 } 5131 } 5132 5133 if (perf->ops.enable_metric_set) { 5134 struct intel_gt *gt; 5135 int i, ret; 5136 5137 for_each_gt(gt, i915, i) 5138 mutex_init(>->perf.lock); 5139 5140 /* Choose a representative limit */ 5141 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5142 5143 mutex_init(&perf->metrics_lock); 5144 idr_init_base(&perf->metrics_idr, 1); 5145 5146 /* We set up some ratelimit state to potentially throttle any 5147 * _NOTES about spurious, invalid OA reports which we don't 5148 * forward to userspace. 5149 * 5150 * We print a _NOTE about any throttling when closing the 5151 * stream instead of waiting until driver _fini which no one 5152 * would ever see. 5153 * 5154 * Using the same limiting factors as printk_ratelimit() 5155 */ 5156 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5157 /* Since we use a DRM_NOTE for spurious reports it would be 5158 * inconsistent to let __ratelimit() automatically print a 5159 * warning for throttling. 5160 */ 5161 ratelimit_set_flags(&perf->spurious_report_rs, 5162 RATELIMIT_MSG_ON_RELEASE); 5163 5164 ratelimit_state_init(&perf->tail_pointer_race, 5165 5 * HZ, 10); 5166 ratelimit_set_flags(&perf->tail_pointer_race, 5167 RATELIMIT_MSG_ON_RELEASE); 5168 5169 atomic64_set(&perf->noa_programming_delay, 5170 500 * 1000 /* 500us */); 5171 5172 perf->i915 = i915; 5173 5174 ret = oa_init_engine_groups(perf); 5175 if (ret) { 5176 drm_err(&i915->drm, 5177 "OA initialization failed %d\n", ret); 5178 return ret; 5179 } 5180 5181 oa_init_supported_formats(perf); 5182 } 5183 5184 return 0; 5185 } 5186 5187 static int destroy_config(int id, void *p, void *data) 5188 { 5189 i915_oa_config_put(p); 5190 return 0; 5191 } 5192 5193 int i915_perf_sysctl_register(void) 5194 { 5195 sysctl_header = register_sysctl("dev/i915", oa_table); 5196 return 0; 5197 } 5198 5199 void i915_perf_sysctl_unregister(void) 5200 { 5201 unregister_sysctl_table(sysctl_header); 5202 } 5203 5204 /** 5205 * i915_perf_fini - Counter part to i915_perf_init() 5206 * @i915: i915 device instance 5207 */ 5208 void i915_perf_fini(struct drm_i915_private *i915) 5209 { 5210 struct i915_perf *perf = &i915->perf; 5211 struct intel_gt *gt; 5212 int i; 5213 5214 if (!perf->i915) 5215 return; 5216 5217 for_each_gt(gt, perf->i915, i) 5218 kfree(gt->perf.group); 5219 5220 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5221 idr_destroy(&perf->metrics_idr); 5222 5223 memset(&perf->ops, 0, sizeof(perf->ops)); 5224 perf->i915 = NULL; 5225 } 5226 5227 /** 5228 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5229 * @i915: The i915 device 5230 * 5231 * This version number is used by userspace to detect available features. 5232 */ 5233 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5234 { 5235 /* 5236 * 1: Initial version 5237 * I915_PERF_IOCTL_ENABLE 5238 * I915_PERF_IOCTL_DISABLE 5239 * 5240 * 2: Added runtime modification of OA config. 5241 * I915_PERF_IOCTL_CONFIG 5242 * 5243 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5244 * preemption on a particular context so that performance data is 5245 * accessible from a delta of MI_RPC reports without looking at the 5246 * OA buffer. 5247 * 5248 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5249 * be run for the duration of the performance recording based on 5250 * their SSEU configuration. 5251 * 5252 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5253 * interval for the hrtimer used to check for OA data. 5254 * 5255 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5256 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5257 * 5258 * 7: Add support for video decode and enhancement classes. 5259 */ 5260 5261 /* 5262 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5263 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5264 * to indicate that OA media is not supported. 5265 */ 5266 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) && 5267 intel_check_bios_c6_setup(&i915->media_gt->rc6)) 5268 return 6; 5269 5270 return 7; 5271 } 5272 5273 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5274 #include "selftests/i915_perf.c" 5275 #endif 5276