xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 3df692169e8486fc3dd91fcd5ea81c27a0bac033)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_print.h"
210 #include "gt/intel_gt_regs.h"
211 #include "gt/intel_lrc.h"
212 #include "gt/intel_lrc_reg.h"
213 #include "gt/intel_rc6.h"
214 #include "gt/intel_ring.h"
215 #include "gt/uc/intel_guc_slpc.h"
216 
217 #include "i915_drv.h"
218 #include "i915_file_private.h"
219 #include "i915_perf.h"
220 #include "i915_perf_oa_regs.h"
221 #include "i915_reg.h"
222 
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224  * is currently generally designed assuming the largest 16M size is used such
225  * that the overflow cases are unlikely in normal operation.
226  */
227 #define OA_BUFFER_SIZE		SZ_16M
228 
229 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
230 
231 /**
232  * DOC: OA Tail Pointer Race
233  *
234  * There's a HW race condition between OA unit tail pointer register updates and
235  * writes to memory whereby the tail pointer can sometimes get ahead of what's
236  * been written out to the OA buffer so far (in terms of what's visible to the
237  * CPU).
238  *
239  * Although this can be observed explicitly while copying reports to userspace
240  * by checking for a zeroed report-id field in tail reports, we want to account
241  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
242  * redundant read() attempts.
243  *
244  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
245  * in the OA buffer, starting from the tail reported by the HW until we find a
246  * report with its first 2 dwords not 0 meaning its previous report is
247  * completely in memory and ready to be read. Those dwords are also set to 0
248  * once read and the whole buffer is cleared upon OA buffer initialization. The
249  * first dword is the reason for this report while the second is the timestamp,
250  * making the chances of having those 2 fields at 0 fairly unlikely. A more
251  * detailed explanation is available in oa_buffer_check_unlocked().
252  *
253  * Most of the implementation details for this workaround are in
254  * oa_buffer_check_unlocked() and _append_oa_reports()
255  *
256  * Note for posterity: previously the driver used to define an effective tail
257  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259  * This was flawed considering that the OA unit may also automatically generate
260  * non-periodic reports (such as on context switch) or the OA unit may be
261  * enabled without any periodic sampling.
262  */
263 #define OA_TAIL_MARGIN_NSEC	100000ULL
264 #define INVALID_TAIL_PTR	0xffffffff
265 
266 /* The default frequency for checking whether the OA unit has written new
267  * reports to the circular OA buffer...
268  */
269 #define DEFAULT_POLL_FREQUENCY_HZ 200
270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
271 
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273 static u32 i915_perf_stream_paranoid = true;
274 
275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
276  * of the 64bit timestamp bits to trigger reports from) but there's currently
277  * no known use case for sampling as infrequently as once per 47 thousand years.
278  *
279  * Since the timestamps included in OA reports are only 32bits it seems
280  * reasonable to limit the OA exponent where it's still possible to account for
281  * overflow in OA report timestamps.
282  */
283 #define OA_EXPONENT_MAX 31
284 
285 #define INVALID_CTX_ID 0xffffffff
286 
287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288 #define OAREPORT_REASON_MASK           0x3f
289 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
290 #define OAREPORT_REASON_SHIFT          19
291 #define OAREPORT_REASON_TIMER          (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
294 
295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
296 
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298  *
299  * The highest sampling frequency we can theoretically program the OA unit
300  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301  *
302  * Initialized just before we register the sysctl parameter.
303  */
304 static int oa_sample_rate_hard_limit;
305 
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307  * allow that by default unless root...
308  *
309  * The default threshold of 100000Hz is based on perf's similar
310  * kernel.perf_event_max_sample_rate sysctl parameter.
311  */
312 static u32 i915_oa_max_sample_rate = 100000;
313 
314 /* XXX: beware if future OA HW adds new report formats that the current
315  * code assumes all reports have a power-of-two size and ~(size - 1) can
316  * be used as a mask to align the OA tail pointer.
317  */
318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
319 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
320 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
321 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
322 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
324 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
325 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
326 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
327 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
328 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
329 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
330 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
331 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
332 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
333 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
334 };
335 
336 static const u32 mtl_oa_base[] = {
337 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
338 };
339 
340 #define SAMPLE_OA_REPORT      (1<<0)
341 
342 /**
343  * struct perf_open_properties - for validated properties given to open a stream
344  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345  * @single_context: Whether a single or all gpu contexts should be monitored
346  * @hold_preemption: Whether the preemption is disabled for the filtered
347  *                   context
348  * @ctx_handle: A gem ctx handle for use with @single_context
349  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
350  * @oa_format: An OA unit HW report format
351  * @oa_periodic: Whether to enable periodic OA unit sampling
352  * @oa_period_exponent: The OA unit sampling period is derived from this
353  * @engine: The engine (typically rcs0) being monitored by the OA unit
354  * @has_sseu: Whether @sseu was specified by userspace
355  * @sseu: internal SSEU configuration computed either from the userspace
356  *        specified configuration in the opening parameters or a default value
357  *        (see get_default_sseu_config())
358  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
359  * data availability
360  *
361  * As read_properties_unlocked() enumerates and validates the properties given
362  * to open a stream of metrics the configuration is built up in the structure
363  * which starts out zero initialized.
364  */
365 struct perf_open_properties {
366 	u32 sample_flags;
367 
368 	u64 single_context:1;
369 	u64 hold_preemption:1;
370 	u64 ctx_handle;
371 
372 	/* OA sampling state */
373 	int metrics_set;
374 	int oa_format;
375 	bool oa_periodic;
376 	int oa_period_exponent;
377 
378 	struct intel_engine_cs *engine;
379 
380 	bool has_sseu;
381 	struct intel_sseu sseu;
382 
383 	u64 poll_oa_period;
384 };
385 
386 struct i915_oa_config_bo {
387 	struct llist_node node;
388 
389 	struct i915_oa_config *oa_config;
390 	struct i915_vma *vma;
391 };
392 
393 static struct ctl_table_header *sysctl_header;
394 
395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
396 
397 void i915_oa_config_release(struct kref *ref)
398 {
399 	struct i915_oa_config *oa_config =
400 		container_of(ref, typeof(*oa_config), ref);
401 
402 	kfree(oa_config->flex_regs);
403 	kfree(oa_config->b_counter_regs);
404 	kfree(oa_config->mux_regs);
405 
406 	kfree_rcu(oa_config, rcu);
407 }
408 
409 struct i915_oa_config *
410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
411 {
412 	struct i915_oa_config *oa_config;
413 
414 	rcu_read_lock();
415 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 	if (oa_config)
417 		oa_config = i915_oa_config_get(oa_config);
418 	rcu_read_unlock();
419 
420 	return oa_config;
421 }
422 
423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424 {
425 	i915_oa_config_put(oa_bo->oa_config);
426 	i915_vma_put(oa_bo->vma);
427 	kfree(oa_bo);
428 }
429 
430 static inline const
431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
432 {
433 	return &stream->engine->oa_group->regs;
434 }
435 
436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
437 {
438 	struct intel_uncore *uncore = stream->uncore;
439 
440 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
441 	       GEN12_OAG_OATAILPTR_MASK;
442 }
443 
444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
445 {
446 	struct intel_uncore *uncore = stream->uncore;
447 
448 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
449 }
450 
451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
452 {
453 	struct intel_uncore *uncore = stream->uncore;
454 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
455 
456 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
457 }
458 
459 #define oa_report_header_64bit(__s) \
460 	((__s)->oa_buffer.format->header == HDR_64_BIT)
461 
462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
463 {
464 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
465 }
466 
467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
468 {
469 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
470 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
471 		OAREPORT_REASON_MASK_EXTENDED :
472 		OAREPORT_REASON_MASK);
473 }
474 
475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
476 {
477 	if (oa_report_header_64bit(stream))
478 		*(u64 *)report = 0;
479 	else
480 		*report = 0;
481 }
482 
483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
484 {
485 	return !(oa_report_id(stream, report) &
486 	       stream->perf->gen8_valid_ctx_bit);
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail in the oa_buffer object.
535  *
536  * Note: It's safe to read OA config state here unlocked, assuming that this is
537  * only called while the stream is enabled, while the global OA configuration
538  * can't be modified.
539  *
540  * Returns: %true if the OA buffer contains data, else %false
541  */
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 	int report_size = stream->oa_buffer.format->size;
546 	u32 tail, hw_tail;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 partial_report_size;
550 
551 	/* We have to consider the (unlikely) possibility that read() errors
552 	 * could result in an OA buffer reset which might reset the head and
553 	 * tail state.
554 	 */
555 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
556 
557 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558 	hw_tail -= gtt_offset;
559 
560 	/* The tail pointer increases in 64 byte increments, not in report_size
561 	 * steps. Also the report size may not be a power of 2. Compute
562 	 * potentially partially landed report in the OA buffer
563 	 */
564 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 	partial_report_size %= report_size;
566 
567 	/* Subtract partial amount off the tail */
568 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569 
570 	tail = hw_tail;
571 
572 	/* Walk the stream backward until we find a report with report
573 	 * id and timestmap not at 0. Since the circular buffer pointers
574 	 * progress by increments of 64 bytes and that reports can be up
575 	 * to 256 bytes long, we can't tell whether a report has fully
576 	 * landed in memory before the report id and timestamp of the
577 	 * following report have effectively landed.
578 	 *
579 	 * This is assuming that the writes of the OA unit land in
580 	 * memory in the order they were written to.
581 	 * If not : (╯°□°)╯︵ ┻━┻
582 	 */
583 	while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
584 		void *report = stream->oa_buffer.vaddr + tail;
585 
586 		if (oa_report_id(stream, report) ||
587 		    oa_timestamp(stream, report))
588 			break;
589 
590 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
591 	}
592 
593 	if (OA_TAKEN(hw_tail, tail) > report_size &&
594 	    __ratelimit(&stream->perf->tail_pointer_race))
595 		drm_notice(&stream->uncore->i915->drm,
596 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
597 		 stream->oa_buffer.head, tail, hw_tail);
598 
599 	stream->oa_buffer.tail = tail;
600 
601 	pollin = OA_TAKEN(stream->oa_buffer.tail,
602 			  stream->oa_buffer.head) >= report_size;
603 
604 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
605 
606 	return pollin;
607 }
608 
609 /**
610  * append_oa_status - Appends a status record to a userspace read() buffer.
611  * @stream: An i915-perf stream opened for OA metrics
612  * @buf: destination buffer given by userspace
613  * @count: the number of bytes userspace wants to read
614  * @offset: (inout): the current position for writing into @buf
615  * @type: The kind of status to report to userspace
616  *
617  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
618  * into the userspace read() buffer.
619  *
620  * The @buf @offset will only be updated on success.
621  *
622  * Returns: 0 on success, negative error code on failure.
623  */
624 static int append_oa_status(struct i915_perf_stream *stream,
625 			    char __user *buf,
626 			    size_t count,
627 			    size_t *offset,
628 			    enum drm_i915_perf_record_type type)
629 {
630 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
631 
632 	if ((count - *offset) < header.size)
633 		return -ENOSPC;
634 
635 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
636 		return -EFAULT;
637 
638 	(*offset) += header.size;
639 
640 	return 0;
641 }
642 
643 /**
644  * append_oa_sample - Copies single OA report into userspace read() buffer.
645  * @stream: An i915-perf stream opened for OA metrics
646  * @buf: destination buffer given by userspace
647  * @count: the number of bytes userspace wants to read
648  * @offset: (inout): the current position for writing into @buf
649  * @report: A single OA report to (optionally) include as part of the sample
650  *
651  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
652  * properties when opening a stream, tracked as `stream->sample_flags`. This
653  * function copies the requested components of a single sample to the given
654  * read() @buf.
655  *
656  * The @buf @offset will only be updated on success.
657  *
658  * Returns: 0 on success, negative error code on failure.
659  */
660 static int append_oa_sample(struct i915_perf_stream *stream,
661 			    char __user *buf,
662 			    size_t count,
663 			    size_t *offset,
664 			    const u8 *report)
665 {
666 	int report_size = stream->oa_buffer.format->size;
667 	struct drm_i915_perf_record_header header;
668 	int report_size_partial;
669 	u8 *oa_buf_end;
670 
671 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
672 	header.pad = 0;
673 	header.size = stream->sample_size;
674 
675 	if ((count - *offset) < header.size)
676 		return -ENOSPC;
677 
678 	buf += *offset;
679 	if (copy_to_user(buf, &header, sizeof(header)))
680 		return -EFAULT;
681 	buf += sizeof(header);
682 
683 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
684 	report_size_partial = oa_buf_end - report;
685 
686 	if (report_size_partial < report_size) {
687 		if (copy_to_user(buf, report, report_size_partial))
688 			return -EFAULT;
689 		buf += report_size_partial;
690 
691 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
692 				 report_size - report_size_partial))
693 			return -EFAULT;
694 	} else if (copy_to_user(buf, report, report_size)) {
695 		return -EFAULT;
696 	}
697 
698 	(*offset) += header.size;
699 
700 	return 0;
701 }
702 
703 /**
704  * gen8_append_oa_reports - Copies all buffered OA reports into
705  *			    userspace read() buffer.
706  * @stream: An i915-perf stream opened for OA metrics
707  * @buf: destination buffer given by userspace
708  * @count: the number of bytes userspace wants to read
709  * @offset: (inout): the current position for writing into @buf
710  *
711  * Notably any error condition resulting in a short read (-%ENOSPC or
712  * -%EFAULT) will be returned even though one or more records may
713  * have been successfully copied. In this case it's up to the caller
714  * to decide if the error should be squashed before returning to
715  * userspace.
716  *
717  * Note: reports are consumed from the head, and appended to the
718  * tail, so the tail chases the head?... If you think that's mad
719  * and back-to-front you're not alone, but this follows the
720  * Gen PRM naming convention.
721  *
722  * Returns: 0 on success, negative error code on failure.
723  */
724 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
725 				  char __user *buf,
726 				  size_t count,
727 				  size_t *offset)
728 {
729 	struct intel_uncore *uncore = stream->uncore;
730 	int report_size = stream->oa_buffer.format->size;
731 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
732 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
733 	u32 mask = (OA_BUFFER_SIZE - 1);
734 	size_t start_offset = *offset;
735 	unsigned long flags;
736 	u32 head, tail;
737 	int ret = 0;
738 
739 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
740 		return -EIO;
741 
742 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
743 
744 	head = stream->oa_buffer.head;
745 	tail = stream->oa_buffer.tail;
746 
747 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
748 
749 	/*
750 	 * An out of bounds or misaligned head or tail pointer implies a driver
751 	 * bug since we validate + align the tail pointers we read from the
752 	 * hardware and we are in full control of the head pointer which should
753 	 * only be incremented by multiples of the report size.
754 	 */
755 	if (drm_WARN_ONCE(&uncore->i915->drm,
756 			  head > OA_BUFFER_SIZE ||
757 			  tail > OA_BUFFER_SIZE,
758 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
759 			  head, tail))
760 		return -EIO;
761 
762 
763 	for (/* none */;
764 	     OA_TAKEN(tail, head);
765 	     head = (head + report_size) & mask) {
766 		u8 *report = oa_buf_base + head;
767 		u32 *report32 = (void *)report;
768 		u32 ctx_id;
769 		u64 reason;
770 
771 		/*
772 		 * The reason field includes flags identifying what
773 		 * triggered this specific report (mostly timer
774 		 * triggered or e.g. due to a context switch).
775 		 *
776 		 * In MMIO triggered reports, some platforms do not set the
777 		 * reason bit in this field and it is valid to have a reason
778 		 * field of zero.
779 		 */
780 		reason = oa_report_reason(stream, report);
781 		ctx_id = oa_context_id(stream, report32);
782 
783 		/*
784 		 * Squash whatever is in the CTX_ID field if it's marked as
785 		 * invalid to be sure we avoid false-positive, single-context
786 		 * filtering below...
787 		 *
788 		 * Note: that we don't clear the valid_ctx_bit so userspace can
789 		 * understand that the ID has been squashed by the kernel.
790 		 */
791 		if (oa_report_ctx_invalid(stream, report)) {
792 			ctx_id = INVALID_CTX_ID;
793 			oa_context_id_squash(stream, report32);
794 		}
795 
796 		/*
797 		 * NB: For Gen 8 the OA unit no longer supports clock gating
798 		 * off for a specific context and the kernel can't securely
799 		 * stop the counters from updating as system-wide / global
800 		 * values.
801 		 *
802 		 * Automatic reports now include a context ID so reports can be
803 		 * filtered on the cpu but it's not worth trying to
804 		 * automatically subtract/hide counter progress for other
805 		 * contexts while filtering since we can't stop userspace
806 		 * issuing MI_REPORT_PERF_COUNT commands which would still
807 		 * provide a side-band view of the real values.
808 		 *
809 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
810 		 * to normalize counters for a single filtered context then it
811 		 * needs be forwarded bookend context-switch reports so that it
812 		 * can track switches in between MI_REPORT_PERF_COUNT commands
813 		 * and can itself subtract/ignore the progress of counters
814 		 * associated with other contexts. Note that the hardware
815 		 * automatically triggers reports when switching to a new
816 		 * context which are tagged with the ID of the newly active
817 		 * context. To avoid the complexity (and likely fragility) of
818 		 * reading ahead while parsing reports to try and minimize
819 		 * forwarding redundant context switch reports (i.e. between
820 		 * other, unrelated contexts) we simply elect to forward them
821 		 * all.
822 		 *
823 		 * We don't rely solely on the reason field to identify context
824 		 * switches since it's not-uncommon for periodic samples to
825 		 * identify a switch before any 'context switch' report.
826 		 */
827 		if (!stream->ctx ||
828 		    stream->specific_ctx_id == ctx_id ||
829 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
830 		    reason & OAREPORT_REASON_CTX_SWITCH) {
831 
832 			/*
833 			 * While filtering for a single context we avoid
834 			 * leaking the IDs of other contexts.
835 			 */
836 			if (stream->ctx &&
837 			    stream->specific_ctx_id != ctx_id) {
838 				oa_context_id_squash(stream, report32);
839 			}
840 
841 			ret = append_oa_sample(stream, buf, count, offset,
842 					       report);
843 			if (ret)
844 				break;
845 
846 			stream->oa_buffer.last_ctx_id = ctx_id;
847 		}
848 
849 		if (is_power_of_2(report_size)) {
850 			/*
851 			 * Clear out the report id and timestamp as a means
852 			 * to detect unlanded reports.
853 			 */
854 			oa_report_id_clear(stream, report32);
855 			oa_timestamp_clear(stream, report32);
856 		} else {
857 			u8 *oa_buf_end = stream->oa_buffer.vaddr +
858 					 OA_BUFFER_SIZE;
859 			u32 part = oa_buf_end - (u8 *)report32;
860 
861 			/* Zero out the entire report */
862 			if (report_size <= part) {
863 				memset(report32, 0, report_size);
864 			} else {
865 				memset(report32, 0, part);
866 				memset(oa_buf_base, 0, report_size - part);
867 			}
868 		}
869 	}
870 
871 	if (start_offset != *offset) {
872 		i915_reg_t oaheadptr;
873 
874 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
875 			    __oa_regs(stream)->oa_head_ptr :
876 			    GEN8_OAHEADPTR;
877 
878 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
879 
880 		/*
881 		 * We removed the gtt_offset for the copy loop above, indexing
882 		 * relative to oa_buf_base so put back here...
883 		 */
884 		intel_uncore_write(uncore, oaheadptr,
885 				   (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
886 		stream->oa_buffer.head = head;
887 
888 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
889 	}
890 
891 	return ret;
892 }
893 
894 /**
895  * gen8_oa_read - copy status records then buffered OA reports
896  * @stream: An i915-perf stream opened for OA metrics
897  * @buf: destination buffer given by userspace
898  * @count: the number of bytes userspace wants to read
899  * @offset: (inout): the current position for writing into @buf
900  *
901  * Checks OA unit status registers and if necessary appends corresponding
902  * status records for userspace (such as for a buffer full condition) and then
903  * initiate appending any buffered OA reports.
904  *
905  * Updates @offset according to the number of bytes successfully copied into
906  * the userspace buffer.
907  *
908  * NB: some data may be successfully copied to the userspace buffer
909  * even if an error is returned, and this is reflected in the
910  * updated @offset.
911  *
912  * Returns: zero on success or a negative error code
913  */
914 static int gen8_oa_read(struct i915_perf_stream *stream,
915 			char __user *buf,
916 			size_t count,
917 			size_t *offset)
918 {
919 	struct intel_uncore *uncore = stream->uncore;
920 	u32 oastatus;
921 	i915_reg_t oastatus_reg;
922 	int ret;
923 
924 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
925 		return -EIO;
926 
927 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
928 		       __oa_regs(stream)->oa_status :
929 		       GEN8_OASTATUS;
930 
931 	oastatus = intel_uncore_read(uncore, oastatus_reg);
932 
933 	/*
934 	 * We treat OABUFFER_OVERFLOW as a significant error:
935 	 *
936 	 * Although theoretically we could handle this more gracefully
937 	 * sometimes, some Gens don't correctly suppress certain
938 	 * automatically triggered reports in this condition and so we
939 	 * have to assume that old reports are now being trampled
940 	 * over.
941 	 *
942 	 * Considering how we don't currently give userspace control
943 	 * over the OA buffer size and always configure a large 16MB
944 	 * buffer, then a buffer overflow does anyway likely indicate
945 	 * that something has gone quite badly wrong.
946 	 */
947 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
948 		ret = append_oa_status(stream, buf, count, offset,
949 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
950 		if (ret)
951 			return ret;
952 
953 		drm_dbg(&stream->perf->i915->drm,
954 			"OA buffer overflow (exponent = %d): force restart\n",
955 			stream->period_exponent);
956 
957 		stream->perf->ops.oa_disable(stream);
958 		stream->perf->ops.oa_enable(stream);
959 
960 		/*
961 		 * Note: .oa_enable() is expected to re-init the oabuffer and
962 		 * reset GEN8_OASTATUS for us
963 		 */
964 		oastatus = intel_uncore_read(uncore, oastatus_reg);
965 	}
966 
967 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
968 		ret = append_oa_status(stream, buf, count, offset,
969 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
970 		if (ret)
971 			return ret;
972 
973 		intel_uncore_rmw(uncore, oastatus_reg,
974 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
975 				 GEN8_OASTATUS_REPORT_LOST,
976 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
977 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
978 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
979 	}
980 
981 	return gen8_append_oa_reports(stream, buf, count, offset);
982 }
983 
984 /**
985  * gen7_append_oa_reports - Copies all buffered OA reports into
986  *			    userspace read() buffer.
987  * @stream: An i915-perf stream opened for OA metrics
988  * @buf: destination buffer given by userspace
989  * @count: the number of bytes userspace wants to read
990  * @offset: (inout): the current position for writing into @buf
991  *
992  * Notably any error condition resulting in a short read (-%ENOSPC or
993  * -%EFAULT) will be returned even though one or more records may
994  * have been successfully copied. In this case it's up to the caller
995  * to decide if the error should be squashed before returning to
996  * userspace.
997  *
998  * Note: reports are consumed from the head, and appended to the
999  * tail, so the tail chases the head?... If you think that's mad
1000  * and back-to-front you're not alone, but this follows the
1001  * Gen PRM naming convention.
1002  *
1003  * Returns: 0 on success, negative error code on failure.
1004  */
1005 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1006 				  char __user *buf,
1007 				  size_t count,
1008 				  size_t *offset)
1009 {
1010 	struct intel_uncore *uncore = stream->uncore;
1011 	int report_size = stream->oa_buffer.format->size;
1012 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1013 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1014 	u32 mask = (OA_BUFFER_SIZE - 1);
1015 	size_t start_offset = *offset;
1016 	unsigned long flags;
1017 	u32 head, tail;
1018 	int ret = 0;
1019 
1020 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1021 		return -EIO;
1022 
1023 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1024 
1025 	head = stream->oa_buffer.head;
1026 	tail = stream->oa_buffer.tail;
1027 
1028 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1029 
1030 	/* An out of bounds or misaligned head or tail pointer implies a driver
1031 	 * bug since we validate + align the tail pointers we read from the
1032 	 * hardware and we are in full control of the head pointer which should
1033 	 * only be incremented by multiples of the report size (notably also
1034 	 * all a power of two).
1035 	 */
1036 	if (drm_WARN_ONCE(&uncore->i915->drm,
1037 			  head > OA_BUFFER_SIZE || head % report_size ||
1038 			  tail > OA_BUFFER_SIZE || tail % report_size,
1039 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1040 			  head, tail))
1041 		return -EIO;
1042 
1043 
1044 	for (/* none */;
1045 	     OA_TAKEN(tail, head);
1046 	     head = (head + report_size) & mask) {
1047 		u8 *report = oa_buf_base + head;
1048 		u32 *report32 = (void *)report;
1049 
1050 		/* All the report sizes factor neatly into the buffer
1051 		 * size so we never expect to see a report split
1052 		 * between the beginning and end of the buffer.
1053 		 *
1054 		 * Given the initial alignment check a misalignment
1055 		 * here would imply a driver bug that would result
1056 		 * in an overrun.
1057 		 */
1058 		if (drm_WARN_ON(&uncore->i915->drm,
1059 				(OA_BUFFER_SIZE - head) < report_size)) {
1060 			drm_err(&uncore->i915->drm,
1061 				"Spurious OA head ptr: non-integral report offset\n");
1062 			break;
1063 		}
1064 
1065 		/* The report-ID field for periodic samples includes
1066 		 * some undocumented flags related to what triggered
1067 		 * the report and is never expected to be zero so we
1068 		 * can check that the report isn't invalid before
1069 		 * copying it to userspace...
1070 		 */
1071 		if (report32[0] == 0) {
1072 			if (__ratelimit(&stream->perf->spurious_report_rs))
1073 				drm_notice(&uncore->i915->drm,
1074 					   "Skipping spurious, invalid OA report\n");
1075 			continue;
1076 		}
1077 
1078 		ret = append_oa_sample(stream, buf, count, offset, report);
1079 		if (ret)
1080 			break;
1081 
1082 		/* Clear out the first 2 dwords as a mean to detect unlanded
1083 		 * reports.
1084 		 */
1085 		report32[0] = 0;
1086 		report32[1] = 0;
1087 	}
1088 
1089 	if (start_offset != *offset) {
1090 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1091 
1092 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1093 				   ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1094 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1095 		stream->oa_buffer.head = head;
1096 
1097 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1098 	}
1099 
1100 	return ret;
1101 }
1102 
1103 /**
1104  * gen7_oa_read - copy status records then buffered OA reports
1105  * @stream: An i915-perf stream opened for OA metrics
1106  * @buf: destination buffer given by userspace
1107  * @count: the number of bytes userspace wants to read
1108  * @offset: (inout): the current position for writing into @buf
1109  *
1110  * Checks Gen 7 specific OA unit status registers and if necessary appends
1111  * corresponding status records for userspace (such as for a buffer full
1112  * condition) and then initiate appending any buffered OA reports.
1113  *
1114  * Updates @offset according to the number of bytes successfully copied into
1115  * the userspace buffer.
1116  *
1117  * Returns: zero on success or a negative error code
1118  */
1119 static int gen7_oa_read(struct i915_perf_stream *stream,
1120 			char __user *buf,
1121 			size_t count,
1122 			size_t *offset)
1123 {
1124 	struct intel_uncore *uncore = stream->uncore;
1125 	u32 oastatus1;
1126 	int ret;
1127 
1128 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1129 		return -EIO;
1130 
1131 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1132 
1133 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1134 	 * bits while the OA unit is enabled (while the tail pointer
1135 	 * may be updated asynchronously) so we ignore status bits
1136 	 * that have already been reported to userspace.
1137 	 */
1138 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1139 
1140 	/* We treat OABUFFER_OVERFLOW as a significant error:
1141 	 *
1142 	 * - The status can be interpreted to mean that the buffer is
1143 	 *   currently full (with a higher precedence than OA_TAKEN()
1144 	 *   which will start to report a near-empty buffer after an
1145 	 *   overflow) but it's awkward that we can't clear the status
1146 	 *   on Haswell, so without a reset we won't be able to catch
1147 	 *   the state again.
1148 	 *
1149 	 * - Since it also implies the HW has started overwriting old
1150 	 *   reports it may also affect our sanity checks for invalid
1151 	 *   reports when copying to userspace that assume new reports
1152 	 *   are being written to cleared memory.
1153 	 *
1154 	 * - In the future we may want to introduce a flight recorder
1155 	 *   mode where the driver will automatically maintain a safe
1156 	 *   guard band between head/tail, avoiding this overflow
1157 	 *   condition, but we avoid the added driver complexity for
1158 	 *   now.
1159 	 */
1160 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1161 		ret = append_oa_status(stream, buf, count, offset,
1162 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1163 		if (ret)
1164 			return ret;
1165 
1166 		drm_dbg(&stream->perf->i915->drm,
1167 			"OA buffer overflow (exponent = %d): force restart\n",
1168 			stream->period_exponent);
1169 
1170 		stream->perf->ops.oa_disable(stream);
1171 		stream->perf->ops.oa_enable(stream);
1172 
1173 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1174 	}
1175 
1176 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1177 		ret = append_oa_status(stream, buf, count, offset,
1178 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1179 		if (ret)
1180 			return ret;
1181 		stream->perf->gen7_latched_oastatus1 |=
1182 			GEN7_OASTATUS1_REPORT_LOST;
1183 	}
1184 
1185 	return gen7_append_oa_reports(stream, buf, count, offset);
1186 }
1187 
1188 /**
1189  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1190  * @stream: An i915-perf stream opened for OA metrics
1191  *
1192  * Called when userspace tries to read() from a blocking stream FD opened
1193  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1194  * OA buffer and wakes us.
1195  *
1196  * Note: it's acceptable to have this return with some false positives
1197  * since any subsequent read handling will return -EAGAIN if there isn't
1198  * really data ready for userspace yet.
1199  *
1200  * Returns: zero on success or a negative error code
1201  */
1202 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1203 {
1204 	/* We would wait indefinitely if periodic sampling is not enabled */
1205 	if (!stream->periodic)
1206 		return -EIO;
1207 
1208 	return wait_event_interruptible(stream->poll_wq,
1209 					oa_buffer_check_unlocked(stream));
1210 }
1211 
1212 /**
1213  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1214  * @stream: An i915-perf stream opened for OA metrics
1215  * @file: An i915 perf stream file
1216  * @wait: poll() state table
1217  *
1218  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1219  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1220  * when it sees data ready to read in the circular OA buffer.
1221  */
1222 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1223 			      struct file *file,
1224 			      poll_table *wait)
1225 {
1226 	poll_wait(file, &stream->poll_wq, wait);
1227 }
1228 
1229 /**
1230  * i915_oa_read - just calls through to &i915_oa_ops->read
1231  * @stream: An i915-perf stream opened for OA metrics
1232  * @buf: destination buffer given by userspace
1233  * @count: the number of bytes userspace wants to read
1234  * @offset: (inout): the current position for writing into @buf
1235  *
1236  * Updates @offset according to the number of bytes successfully copied into
1237  * the userspace buffer.
1238  *
1239  * Returns: zero on success or a negative error code
1240  */
1241 static int i915_oa_read(struct i915_perf_stream *stream,
1242 			char __user *buf,
1243 			size_t count,
1244 			size_t *offset)
1245 {
1246 	return stream->perf->ops.read(stream, buf, count, offset);
1247 }
1248 
1249 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1250 {
1251 	struct i915_gem_engines_iter it;
1252 	struct i915_gem_context *ctx = stream->ctx;
1253 	struct intel_context *ce;
1254 	struct i915_gem_ww_ctx ww;
1255 	int err = -ENODEV;
1256 
1257 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1258 		if (ce->engine != stream->engine) /* first match! */
1259 			continue;
1260 
1261 		err = 0;
1262 		break;
1263 	}
1264 	i915_gem_context_unlock_engines(ctx);
1265 
1266 	if (err)
1267 		return ERR_PTR(err);
1268 
1269 	i915_gem_ww_ctx_init(&ww, true);
1270 retry:
1271 	/*
1272 	 * As the ID is the gtt offset of the context's vma we
1273 	 * pin the vma to ensure the ID remains fixed.
1274 	 */
1275 	err = intel_context_pin_ww(ce, &ww);
1276 	if (err == -EDEADLK) {
1277 		err = i915_gem_ww_ctx_backoff(&ww);
1278 		if (!err)
1279 			goto retry;
1280 	}
1281 	i915_gem_ww_ctx_fini(&ww);
1282 
1283 	if (err)
1284 		return ERR_PTR(err);
1285 
1286 	stream->pinned_ctx = ce;
1287 	return stream->pinned_ctx;
1288 }
1289 
1290 static int
1291 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1292 {
1293 	u32 *cs, cmd;
1294 
1295 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1296 	if (GRAPHICS_VER(rq->i915) >= 8)
1297 		cmd++;
1298 
1299 	cs = intel_ring_begin(rq, 4);
1300 	if (IS_ERR(cs))
1301 		return PTR_ERR(cs);
1302 
1303 	*cs++ = cmd;
1304 	*cs++ = i915_mmio_reg_offset(reg);
1305 	*cs++ = ggtt_offset;
1306 	*cs++ = 0;
1307 
1308 	intel_ring_advance(rq, cs);
1309 
1310 	return 0;
1311 }
1312 
1313 static int
1314 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1315 {
1316 	struct i915_request *rq;
1317 	int err;
1318 
1319 	rq = i915_request_create(ce);
1320 	if (IS_ERR(rq))
1321 		return PTR_ERR(rq);
1322 
1323 	i915_request_get(rq);
1324 
1325 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1326 
1327 	i915_request_add(rq);
1328 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1329 		err = -ETIME;
1330 
1331 	i915_request_put(rq);
1332 
1333 	return err;
1334 }
1335 
1336 static int
1337 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1338 {
1339 	struct i915_vma *scratch;
1340 	u32 *val;
1341 	int err;
1342 
1343 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1344 	if (IS_ERR(scratch))
1345 		return PTR_ERR(scratch);
1346 
1347 	err = i915_vma_sync(scratch);
1348 	if (err)
1349 		goto err_scratch;
1350 
1351 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1352 			 i915_ggtt_offset(scratch));
1353 	if (err)
1354 		goto err_scratch;
1355 
1356 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1357 	if (IS_ERR(val)) {
1358 		err = PTR_ERR(val);
1359 		goto err_scratch;
1360 	}
1361 
1362 	*ctx_id = *val;
1363 	i915_gem_object_unpin_map(scratch->obj);
1364 
1365 err_scratch:
1366 	i915_vma_unpin_and_release(&scratch, 0);
1367 	return err;
1368 }
1369 
1370 /*
1371  * For execlist mode of submission, pick an unused context id
1372  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1373  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1374  *
1375  * For GuC mode of submission read context id from the upper dword of the
1376  * EXECLIST_STATUS register. Note that we read this value only once and expect
1377  * that the value stays fixed for the entire OA use case. There are cases where
1378  * GuC KMD implementation may deregister a context to reuse it's context id, but
1379  * we prevent that from happening to the OA context by pinning it.
1380  */
1381 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1382 {
1383 	u32 ctx_id, mask;
1384 	int ret;
1385 
1386 	if (intel_engine_uses_guc(stream->engine)) {
1387 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1388 		if (ret)
1389 			return ret;
1390 
1391 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1392 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1393 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1394 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1395 			(XEHP_SW_CTX_ID_SHIFT - 32);
1396 
1397 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1398 			(XEHP_SW_CTX_ID_SHIFT - 32);
1399 	} else {
1400 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1401 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1402 
1403 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1404 			(GEN11_SW_CTX_ID_SHIFT - 32);
1405 	}
1406 	stream->specific_ctx_id = ctx_id & mask;
1407 	stream->specific_ctx_id_mask = mask;
1408 
1409 	return 0;
1410 }
1411 
1412 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1413 {
1414 	u32 idx = *offset;
1415 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1416 	bool found = false;
1417 
1418 	idx++;
1419 	for (; idx < len; idx += 2) {
1420 		if (state[idx] == reg) {
1421 			found = true;
1422 			break;
1423 		}
1424 	}
1425 
1426 	*offset = idx;
1427 	return found;
1428 }
1429 
1430 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1431 {
1432 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1433 	u32 *state = ce->lrc_reg_state;
1434 
1435 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1436 		return U32_MAX;
1437 
1438 	for (offset = 0; offset < len; ) {
1439 		if (IS_MI_LRI_CMD(state[offset])) {
1440 			/*
1441 			 * We expect reg-value pairs in MI_LRI command, so
1442 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1443 			 */
1444 			drm_WARN_ON(&ce->engine->i915->drm,
1445 				    MI_LRI_LEN(state[offset]) & 0x1);
1446 
1447 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1448 				break;
1449 		} else {
1450 			offset++;
1451 		}
1452 	}
1453 
1454 	return offset < len ? offset : U32_MAX;
1455 }
1456 
1457 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1458 {
1459 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1460 	struct i915_perf *perf = &ce->engine->i915->perf;
1461 	u32 offset = perf->ctx_oactxctrl_offset;
1462 
1463 	/* Do this only once. Failure is stored as offset of U32_MAX */
1464 	if (offset)
1465 		goto exit;
1466 
1467 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1468 	perf->ctx_oactxctrl_offset = offset;
1469 
1470 	drm_dbg(&ce->engine->i915->drm,
1471 		"%s oa ctx control at 0x%08x dword offset\n",
1472 		ce->engine->name, offset);
1473 
1474 exit:
1475 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1476 }
1477 
1478 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1479 {
1480 	return engine->class == RENDER_CLASS;
1481 }
1482 
1483 /**
1484  * oa_get_render_ctx_id - determine and hold ctx hw id
1485  * @stream: An i915-perf stream opened for OA metrics
1486  *
1487  * Determine the render context hw id, and ensure it remains fixed for the
1488  * lifetime of the stream. This ensures that we don't have to worry about
1489  * updating the context ID in OACONTROL on the fly.
1490  *
1491  * Returns: zero on success or a negative error code
1492  */
1493 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1494 {
1495 	struct intel_context *ce;
1496 	int ret = 0;
1497 
1498 	ce = oa_pin_context(stream);
1499 	if (IS_ERR(ce))
1500 		return PTR_ERR(ce);
1501 
1502 	if (engine_supports_mi_query(stream->engine) &&
1503 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1504 		/*
1505 		 * We are enabling perf query here. If we don't find the context
1506 		 * offset here, just return an error.
1507 		 */
1508 		ret = set_oa_ctx_ctrl_offset(ce);
1509 		if (ret) {
1510 			intel_context_unpin(ce);
1511 			drm_err(&stream->perf->i915->drm,
1512 				"Enabling perf query failed for %s\n",
1513 				stream->engine->name);
1514 			return ret;
1515 		}
1516 	}
1517 
1518 	switch (GRAPHICS_VER(ce->engine->i915)) {
1519 	case 7: {
1520 		/*
1521 		 * On Haswell we don't do any post processing of the reports
1522 		 * and don't need to use the mask.
1523 		 */
1524 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1525 		stream->specific_ctx_id_mask = 0;
1526 		break;
1527 	}
1528 
1529 	case 8:
1530 	case 9:
1531 		if (intel_engine_uses_guc(ce->engine)) {
1532 			/*
1533 			 * When using GuC, the context descriptor we write in
1534 			 * i915 is read by GuC and rewritten before it's
1535 			 * actually written into the hardware. The LRCA is
1536 			 * what is put into the context id field of the
1537 			 * context descriptor by GuC. Because it's aligned to
1538 			 * a page, the lower 12bits are always at 0 and
1539 			 * dropped by GuC. They won't be part of the context
1540 			 * ID in the OA reports, so squash those lower bits.
1541 			 */
1542 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1543 
1544 			/*
1545 			 * GuC uses the top bit to signal proxy submission, so
1546 			 * ignore that bit.
1547 			 */
1548 			stream->specific_ctx_id_mask =
1549 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1550 		} else {
1551 			stream->specific_ctx_id_mask =
1552 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1553 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1554 		}
1555 		break;
1556 
1557 	case 11:
1558 	case 12:
1559 		ret = gen12_get_render_context_id(stream);
1560 		break;
1561 
1562 	default:
1563 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1564 	}
1565 
1566 	ce->tag = stream->specific_ctx_id;
1567 
1568 	drm_dbg(&stream->perf->i915->drm,
1569 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1570 		stream->specific_ctx_id,
1571 		stream->specific_ctx_id_mask);
1572 
1573 	return ret;
1574 }
1575 
1576 /**
1577  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1578  * @stream: An i915-perf stream opened for OA metrics
1579  *
1580  * In case anything needed doing to ensure the context HW ID would remain valid
1581  * for the lifetime of the stream, then that can be undone here.
1582  */
1583 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1584 {
1585 	struct intel_context *ce;
1586 
1587 	ce = fetch_and_zero(&stream->pinned_ctx);
1588 	if (ce) {
1589 		ce->tag = 0; /* recomputed on next submission after parking */
1590 		intel_context_unpin(ce);
1591 	}
1592 
1593 	stream->specific_ctx_id = INVALID_CTX_ID;
1594 	stream->specific_ctx_id_mask = 0;
1595 }
1596 
1597 static void
1598 free_oa_buffer(struct i915_perf_stream *stream)
1599 {
1600 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1601 				   I915_VMA_RELEASE_MAP);
1602 
1603 	stream->oa_buffer.vaddr = NULL;
1604 }
1605 
1606 static void
1607 free_oa_configs(struct i915_perf_stream *stream)
1608 {
1609 	struct i915_oa_config_bo *oa_bo, *tmp;
1610 
1611 	i915_oa_config_put(stream->oa_config);
1612 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1613 		free_oa_config_bo(oa_bo);
1614 }
1615 
1616 static void
1617 free_noa_wait(struct i915_perf_stream *stream)
1618 {
1619 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1620 }
1621 
1622 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1623 {
1624 	return engine->oa_group;
1625 }
1626 
1627 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1628 {
1629 	return engine->oa_group && engine->oa_group->type == type;
1630 }
1631 
1632 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1633 {
1634 	struct i915_perf *perf = stream->perf;
1635 	struct intel_gt *gt = stream->engine->gt;
1636 	struct i915_perf_group *g = stream->engine->oa_group;
1637 
1638 	if (WARN_ON(stream != g->exclusive_stream))
1639 		return;
1640 
1641 	/*
1642 	 * Unset exclusive_stream first, it will be checked while disabling
1643 	 * the metric set on gen8+.
1644 	 *
1645 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1646 	 */
1647 	WRITE_ONCE(g->exclusive_stream, NULL);
1648 	perf->ops.disable_metric_set(stream);
1649 
1650 	free_oa_buffer(stream);
1651 
1652 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1653 	intel_engine_pm_put(stream->engine);
1654 
1655 	if (stream->ctx)
1656 		oa_put_render_ctx_id(stream);
1657 
1658 	free_oa_configs(stream);
1659 	free_noa_wait(stream);
1660 
1661 	if (perf->spurious_report_rs.missed) {
1662 		gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n",
1663 			  perf->spurious_report_rs.missed);
1664 	}
1665 }
1666 
1667 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1668 {
1669 	struct intel_uncore *uncore = stream->uncore;
1670 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1671 	unsigned long flags;
1672 
1673 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1674 
1675 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1676 	 * before OASTATUS1, but after OASTATUS2
1677 	 */
1678 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1679 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1680 	stream->oa_buffer.head = 0;
1681 
1682 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1683 
1684 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1685 			   gtt_offset | OABUFFER_SIZE_16M);
1686 
1687 	/* Mark that we need updated tail pointers to read from... */
1688 	stream->oa_buffer.tail = 0;
1689 
1690 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1691 
1692 	/* On Haswell we have to track which OASTATUS1 flags we've
1693 	 * already seen since they can't be cleared while periodic
1694 	 * sampling is enabled.
1695 	 */
1696 	stream->perf->gen7_latched_oastatus1 = 0;
1697 
1698 	/* NB: although the OA buffer will initially be allocated
1699 	 * zeroed via shmfs (and so this memset is redundant when
1700 	 * first allocating), we may re-init the OA buffer, either
1701 	 * when re-enabling a stream or in error/reset paths.
1702 	 *
1703 	 * The reason we clear the buffer for each re-init is for the
1704 	 * sanity check in gen7_append_oa_reports() that looks at the
1705 	 * report-id field to make sure it's non-zero which relies on
1706 	 * the assumption that new reports are being written to zeroed
1707 	 * memory...
1708 	 */
1709 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1710 }
1711 
1712 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1713 {
1714 	struct intel_uncore *uncore = stream->uncore;
1715 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1716 	unsigned long flags;
1717 
1718 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1719 
1720 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1721 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1722 	stream->oa_buffer.head = 0;
1723 
1724 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1725 
1726 	/*
1727 	 * PRM says:
1728 	 *
1729 	 *  "This MMIO must be set before the OATAILPTR
1730 	 *  register and after the OAHEADPTR register. This is
1731 	 *  to enable proper functionality of the overflow
1732 	 *  bit."
1733 	 */
1734 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1735 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1736 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1737 
1738 	/* Mark that we need updated tail pointers to read from... */
1739 	stream->oa_buffer.tail = 0;
1740 
1741 	/*
1742 	 * Reset state used to recognise context switches, affecting which
1743 	 * reports we will forward to userspace while filtering for a single
1744 	 * context.
1745 	 */
1746 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1747 
1748 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1749 
1750 	/*
1751 	 * NB: although the OA buffer will initially be allocated
1752 	 * zeroed via shmfs (and so this memset is redundant when
1753 	 * first allocating), we may re-init the OA buffer, either
1754 	 * when re-enabling a stream or in error/reset paths.
1755 	 *
1756 	 * The reason we clear the buffer for each re-init is for the
1757 	 * sanity check in gen8_append_oa_reports() that looks at the
1758 	 * reason field to make sure it's non-zero which relies on
1759 	 * the assumption that new reports are being written to zeroed
1760 	 * memory...
1761 	 */
1762 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1763 }
1764 
1765 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1766 {
1767 	struct intel_uncore *uncore = stream->uncore;
1768 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1769 	unsigned long flags;
1770 
1771 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1772 
1773 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1774 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1775 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1776 	stream->oa_buffer.head = 0;
1777 
1778 	/*
1779 	 * PRM says:
1780 	 *
1781 	 *  "This MMIO must be set before the OATAILPTR
1782 	 *  register and after the OAHEADPTR register. This is
1783 	 *  to enable proper functionality of the overflow
1784 	 *  bit."
1785 	 */
1786 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1787 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1788 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1789 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1790 
1791 	/* Mark that we need updated tail pointers to read from... */
1792 	stream->oa_buffer.tail = 0;
1793 
1794 	/*
1795 	 * Reset state used to recognise context switches, affecting which
1796 	 * reports we will forward to userspace while filtering for a single
1797 	 * context.
1798 	 */
1799 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1800 
1801 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1802 
1803 	/*
1804 	 * NB: although the OA buffer will initially be allocated
1805 	 * zeroed via shmfs (and so this memset is redundant when
1806 	 * first allocating), we may re-init the OA buffer, either
1807 	 * when re-enabling a stream or in error/reset paths.
1808 	 *
1809 	 * The reason we clear the buffer for each re-init is for the
1810 	 * sanity check in gen8_append_oa_reports() that looks at the
1811 	 * reason field to make sure it's non-zero which relies on
1812 	 * the assumption that new reports are being written to zeroed
1813 	 * memory...
1814 	 */
1815 	memset(stream->oa_buffer.vaddr, 0,
1816 	       stream->oa_buffer.vma->size);
1817 }
1818 
1819 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1820 {
1821 	struct drm_i915_private *i915 = stream->perf->i915;
1822 	struct intel_gt *gt = stream->engine->gt;
1823 	struct drm_i915_gem_object *bo;
1824 	struct i915_vma *vma;
1825 	int ret;
1826 
1827 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1828 		return -ENODEV;
1829 
1830 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1831 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1832 
1833 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1834 	if (IS_ERR(bo)) {
1835 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1836 		return PTR_ERR(bo);
1837 	}
1838 
1839 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1840 
1841 	/* PreHSW required 512K alignment, HSW requires 16M */
1842 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1843 	if (IS_ERR(vma)) {
1844 		ret = PTR_ERR(vma);
1845 		goto err_unref;
1846 	}
1847 
1848 	/*
1849 	 * PreHSW required 512K alignment.
1850 	 * HSW and onwards, align to requested size of OA buffer.
1851 	 */
1852 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1853 	if (ret) {
1854 		gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1855 		goto err_unref;
1856 	}
1857 
1858 	stream->oa_buffer.vma = vma;
1859 
1860 	stream->oa_buffer.vaddr =
1861 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1862 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1863 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1864 		goto err_unpin;
1865 	}
1866 
1867 	return 0;
1868 
1869 err_unpin:
1870 	__i915_vma_unpin(vma);
1871 
1872 err_unref:
1873 	i915_gem_object_put(bo);
1874 
1875 	stream->oa_buffer.vaddr = NULL;
1876 	stream->oa_buffer.vma = NULL;
1877 
1878 	return ret;
1879 }
1880 
1881 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1882 				  bool save, i915_reg_t reg, u32 offset,
1883 				  u32 dword_count)
1884 {
1885 	u32 cmd;
1886 	u32 d;
1887 
1888 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1889 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1890 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1891 		cmd++;
1892 
1893 	for (d = 0; d < dword_count; d++) {
1894 		*cs++ = cmd;
1895 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1896 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1897 		*cs++ = 0;
1898 	}
1899 
1900 	return cs;
1901 }
1902 
1903 static int alloc_noa_wait(struct i915_perf_stream *stream)
1904 {
1905 	struct drm_i915_private *i915 = stream->perf->i915;
1906 	struct intel_gt *gt = stream->engine->gt;
1907 	struct drm_i915_gem_object *bo;
1908 	struct i915_vma *vma;
1909 	const u64 delay_ticks = 0xffffffffffffffff -
1910 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1911 		atomic64_read(&stream->perf->noa_programming_delay));
1912 	const u32 base = stream->engine->mmio_base;
1913 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1914 	u32 *batch, *ts0, *cs, *jump;
1915 	struct i915_gem_ww_ctx ww;
1916 	int ret, i;
1917 	enum {
1918 		START_TS,
1919 		NOW_TS,
1920 		DELTA_TS,
1921 		JUMP_PREDICATE,
1922 		DELTA_TARGET,
1923 		N_CS_GPR
1924 	};
1925 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1926 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1927 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1928 
1929 	/*
1930 	 * gt->scratch was being used to save/restore the GPR registers, but on
1931 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1932 	 * causes an engine hang. Instead allocate an additional page here to
1933 	 * save/restore GPR registers
1934 	 */
1935 	bo = i915_gem_object_create_internal(i915, 8192);
1936 	if (IS_ERR(bo)) {
1937 		drm_err(&i915->drm,
1938 			"Failed to allocate NOA wait batchbuffer\n");
1939 		return PTR_ERR(bo);
1940 	}
1941 
1942 	i915_gem_ww_ctx_init(&ww, true);
1943 retry:
1944 	ret = i915_gem_object_lock(bo, &ww);
1945 	if (ret)
1946 		goto out_ww;
1947 
1948 	/*
1949 	 * We pin in GGTT because we jump into this buffer now because
1950 	 * multiple OA config BOs will have a jump to this address and it
1951 	 * needs to be fixed during the lifetime of the i915/perf stream.
1952 	 */
1953 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1954 	if (IS_ERR(vma)) {
1955 		ret = PTR_ERR(vma);
1956 		goto out_ww;
1957 	}
1958 
1959 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1960 	if (ret)
1961 		goto out_ww;
1962 
1963 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1964 	if (IS_ERR(batch)) {
1965 		ret = PTR_ERR(batch);
1966 		goto err_unpin;
1967 	}
1968 
1969 	stream->noa_wait = vma;
1970 
1971 #define GPR_SAVE_OFFSET 4096
1972 #define PREDICATE_SAVE_OFFSET 4160
1973 
1974 	/* Save registers. */
1975 	for (i = 0; i < N_CS_GPR; i++)
1976 		cs = save_restore_register(
1977 			stream, cs, true /* save */, CS_GPR(i),
1978 			GPR_SAVE_OFFSET + 8 * i, 2);
1979 	cs = save_restore_register(
1980 		stream, cs, true /* save */, mi_predicate_result,
1981 		PREDICATE_SAVE_OFFSET, 1);
1982 
1983 	/* First timestamp snapshot location. */
1984 	ts0 = cs;
1985 
1986 	/*
1987 	 * Initial snapshot of the timestamp register to implement the wait.
1988 	 * We work with 32b values, so clear out the top 32b bits of the
1989 	 * register because the ALU works 64bits.
1990 	 */
1991 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1992 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1993 	*cs++ = 0;
1994 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1995 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1996 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1997 
1998 	/*
1999 	 * This is the location we're going to jump back into until the
2000 	 * required amount of time has passed.
2001 	 */
2002 	jump = cs;
2003 
2004 	/*
2005 	 * Take another snapshot of the timestamp register. Take care to clear
2006 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2007 	 * operations below.
2008 	 */
2009 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2010 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2011 	*cs++ = 0;
2012 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2013 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2014 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2015 
2016 	/*
2017 	 * Do a diff between the 2 timestamps and store the result back into
2018 	 * CS_GPR(1).
2019 	 */
2020 	*cs++ = MI_MATH(5);
2021 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2022 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2023 	*cs++ = MI_MATH_SUB;
2024 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2025 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2026 
2027 	/*
2028 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2029 	 * timestamp have rolled over the 32bits) into the predicate register
2030 	 * to be used for the predicated jump.
2031 	 */
2032 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2033 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2034 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2035 
2036 	if (HAS_MI_SET_PREDICATE(i915))
2037 		*cs++ = MI_SET_PREDICATE | 1;
2038 
2039 	/* Restart from the beginning if we had timestamps roll over. */
2040 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2041 		 MI_BATCH_BUFFER_START :
2042 		 MI_BATCH_BUFFER_START_GEN8) |
2043 		MI_BATCH_PREDICATE;
2044 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2045 	*cs++ = 0;
2046 
2047 	if (HAS_MI_SET_PREDICATE(i915))
2048 		*cs++ = MI_SET_PREDICATE;
2049 
2050 	/*
2051 	 * Now add the diff between to previous timestamps and add it to :
2052 	 *      (((1 * << 64) - 1) - delay_ns)
2053 	 *
2054 	 * When the Carry Flag contains 1 this means the elapsed time is
2055 	 * longer than the expected delay, and we can exit the wait loop.
2056 	 */
2057 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2058 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2059 	*cs++ = lower_32_bits(delay_ticks);
2060 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2061 	*cs++ = upper_32_bits(delay_ticks);
2062 
2063 	*cs++ = MI_MATH(4);
2064 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2065 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2066 	*cs++ = MI_MATH_ADD;
2067 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2068 
2069 	*cs++ = MI_ARB_CHECK;
2070 
2071 	/*
2072 	 * Transfer the result into the predicate register to be used for the
2073 	 * predicated jump.
2074 	 */
2075 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2076 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2077 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2078 
2079 	if (HAS_MI_SET_PREDICATE(i915))
2080 		*cs++ = MI_SET_PREDICATE | 1;
2081 
2082 	/* Predicate the jump.  */
2083 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2084 		 MI_BATCH_BUFFER_START :
2085 		 MI_BATCH_BUFFER_START_GEN8) |
2086 		MI_BATCH_PREDICATE;
2087 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2088 	*cs++ = 0;
2089 
2090 	if (HAS_MI_SET_PREDICATE(i915))
2091 		*cs++ = MI_SET_PREDICATE;
2092 
2093 	/* Restore registers. */
2094 	for (i = 0; i < N_CS_GPR; i++)
2095 		cs = save_restore_register(
2096 			stream, cs, false /* restore */, CS_GPR(i),
2097 			GPR_SAVE_OFFSET + 8 * i, 2);
2098 	cs = save_restore_register(
2099 		stream, cs, false /* restore */, mi_predicate_result,
2100 		PREDICATE_SAVE_OFFSET, 1);
2101 
2102 	/* And return to the ring. */
2103 	*cs++ = MI_BATCH_BUFFER_END;
2104 
2105 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2106 
2107 	i915_gem_object_flush_map(bo);
2108 	__i915_gem_object_release_map(bo);
2109 
2110 	goto out_ww;
2111 
2112 err_unpin:
2113 	i915_vma_unpin_and_release(&vma, 0);
2114 out_ww:
2115 	if (ret == -EDEADLK) {
2116 		ret = i915_gem_ww_ctx_backoff(&ww);
2117 		if (!ret)
2118 			goto retry;
2119 	}
2120 	i915_gem_ww_ctx_fini(&ww);
2121 	if (ret)
2122 		i915_gem_object_put(bo);
2123 	return ret;
2124 }
2125 
2126 static u32 *write_cs_mi_lri(u32 *cs,
2127 			    const struct i915_oa_reg *reg_data,
2128 			    u32 n_regs)
2129 {
2130 	u32 i;
2131 
2132 	for (i = 0; i < n_regs; i++) {
2133 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2134 			u32 n_lri = min_t(u32,
2135 					  n_regs - i,
2136 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2137 
2138 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2139 		}
2140 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2141 		*cs++ = reg_data[i].value;
2142 	}
2143 
2144 	return cs;
2145 }
2146 
2147 static int num_lri_dwords(int num_regs)
2148 {
2149 	int count = 0;
2150 
2151 	if (num_regs > 0) {
2152 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2153 		count += num_regs * 2;
2154 	}
2155 
2156 	return count;
2157 }
2158 
2159 static struct i915_oa_config_bo *
2160 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2161 		       struct i915_oa_config *oa_config)
2162 {
2163 	struct drm_i915_gem_object *obj;
2164 	struct i915_oa_config_bo *oa_bo;
2165 	struct i915_gem_ww_ctx ww;
2166 	size_t config_length = 0;
2167 	u32 *cs;
2168 	int err;
2169 
2170 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2171 	if (!oa_bo)
2172 		return ERR_PTR(-ENOMEM);
2173 
2174 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2175 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2176 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2177 	config_length += 3; /* MI_BATCH_BUFFER_START */
2178 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2179 
2180 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2181 	if (IS_ERR(obj)) {
2182 		err = PTR_ERR(obj);
2183 		goto err_free;
2184 	}
2185 
2186 	i915_gem_ww_ctx_init(&ww, true);
2187 retry:
2188 	err = i915_gem_object_lock(obj, &ww);
2189 	if (err)
2190 		goto out_ww;
2191 
2192 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2193 	if (IS_ERR(cs)) {
2194 		err = PTR_ERR(cs);
2195 		goto out_ww;
2196 	}
2197 
2198 	cs = write_cs_mi_lri(cs,
2199 			     oa_config->mux_regs,
2200 			     oa_config->mux_regs_len);
2201 	cs = write_cs_mi_lri(cs,
2202 			     oa_config->b_counter_regs,
2203 			     oa_config->b_counter_regs_len);
2204 	cs = write_cs_mi_lri(cs,
2205 			     oa_config->flex_regs,
2206 			     oa_config->flex_regs_len);
2207 
2208 	/* Jump into the active wait. */
2209 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2210 		 MI_BATCH_BUFFER_START :
2211 		 MI_BATCH_BUFFER_START_GEN8);
2212 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2213 	*cs++ = 0;
2214 
2215 	i915_gem_object_flush_map(obj);
2216 	__i915_gem_object_release_map(obj);
2217 
2218 	oa_bo->vma = i915_vma_instance(obj,
2219 				       &stream->engine->gt->ggtt->vm,
2220 				       NULL);
2221 	if (IS_ERR(oa_bo->vma)) {
2222 		err = PTR_ERR(oa_bo->vma);
2223 		goto out_ww;
2224 	}
2225 
2226 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2227 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2228 
2229 out_ww:
2230 	if (err == -EDEADLK) {
2231 		err = i915_gem_ww_ctx_backoff(&ww);
2232 		if (!err)
2233 			goto retry;
2234 	}
2235 	i915_gem_ww_ctx_fini(&ww);
2236 
2237 	if (err)
2238 		i915_gem_object_put(obj);
2239 err_free:
2240 	if (err) {
2241 		kfree(oa_bo);
2242 		return ERR_PTR(err);
2243 	}
2244 	return oa_bo;
2245 }
2246 
2247 static struct i915_vma *
2248 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2249 {
2250 	struct i915_oa_config_bo *oa_bo;
2251 
2252 	/*
2253 	 * Look for the buffer in the already allocated BOs attached
2254 	 * to the stream.
2255 	 */
2256 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2257 		if (oa_bo->oa_config == oa_config &&
2258 		    memcmp(oa_bo->oa_config->uuid,
2259 			   oa_config->uuid,
2260 			   sizeof(oa_config->uuid)) == 0)
2261 			goto out;
2262 	}
2263 
2264 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2265 	if (IS_ERR(oa_bo))
2266 		return ERR_CAST(oa_bo);
2267 
2268 out:
2269 	return i915_vma_get(oa_bo->vma);
2270 }
2271 
2272 static int
2273 emit_oa_config(struct i915_perf_stream *stream,
2274 	       struct i915_oa_config *oa_config,
2275 	       struct intel_context *ce,
2276 	       struct i915_active *active)
2277 {
2278 	struct i915_request *rq;
2279 	struct i915_vma *vma;
2280 	struct i915_gem_ww_ctx ww;
2281 	int err;
2282 
2283 	vma = get_oa_vma(stream, oa_config);
2284 	if (IS_ERR(vma))
2285 		return PTR_ERR(vma);
2286 
2287 	i915_gem_ww_ctx_init(&ww, true);
2288 retry:
2289 	err = i915_gem_object_lock(vma->obj, &ww);
2290 	if (err)
2291 		goto err;
2292 
2293 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2294 	if (err)
2295 		goto err;
2296 
2297 	intel_engine_pm_get(ce->engine);
2298 	rq = i915_request_create(ce);
2299 	intel_engine_pm_put(ce->engine);
2300 	if (IS_ERR(rq)) {
2301 		err = PTR_ERR(rq);
2302 		goto err_vma_unpin;
2303 	}
2304 
2305 	if (!IS_ERR_OR_NULL(active)) {
2306 		/* After all individual context modifications */
2307 		err = i915_request_await_active(rq, active,
2308 						I915_ACTIVE_AWAIT_ACTIVE);
2309 		if (err)
2310 			goto err_add_request;
2311 
2312 		err = i915_active_add_request(active, rq);
2313 		if (err)
2314 			goto err_add_request;
2315 	}
2316 
2317 	err = i915_vma_move_to_active(vma, rq, 0);
2318 	if (err)
2319 		goto err_add_request;
2320 
2321 	err = rq->engine->emit_bb_start(rq,
2322 					i915_vma_offset(vma), 0,
2323 					I915_DISPATCH_SECURE);
2324 	if (err)
2325 		goto err_add_request;
2326 
2327 err_add_request:
2328 	i915_request_add(rq);
2329 err_vma_unpin:
2330 	i915_vma_unpin(vma);
2331 err:
2332 	if (err == -EDEADLK) {
2333 		err = i915_gem_ww_ctx_backoff(&ww);
2334 		if (!err)
2335 			goto retry;
2336 	}
2337 
2338 	i915_gem_ww_ctx_fini(&ww);
2339 	i915_vma_put(vma);
2340 	return err;
2341 }
2342 
2343 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2344 {
2345 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2346 }
2347 
2348 static int
2349 hsw_enable_metric_set(struct i915_perf_stream *stream,
2350 		      struct i915_active *active)
2351 {
2352 	struct intel_uncore *uncore = stream->uncore;
2353 
2354 	/*
2355 	 * PRM:
2356 	 *
2357 	 * OA unit is using “crclk” for its functionality. When trunk
2358 	 * level clock gating takes place, OA clock would be gated,
2359 	 * unable to count the events from non-render clock domain.
2360 	 * Render clock gating must be disabled when OA is enabled to
2361 	 * count the events from non-render domain. Unit level clock
2362 	 * gating for RCS should also be disabled.
2363 	 */
2364 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2365 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2366 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2367 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2368 
2369 	return emit_oa_config(stream,
2370 			      stream->oa_config, oa_context(stream),
2371 			      active);
2372 }
2373 
2374 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2375 {
2376 	struct intel_uncore *uncore = stream->uncore;
2377 
2378 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2379 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2380 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2381 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2382 
2383 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2384 }
2385 
2386 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2387 			      i915_reg_t reg)
2388 {
2389 	u32 mmio = i915_mmio_reg_offset(reg);
2390 	int i;
2391 
2392 	/*
2393 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2394 	 * Active' event. In the future it's anticipated that there
2395 	 * will be an explicit 'No Event' we can select, but not yet...
2396 	 */
2397 	if (!oa_config)
2398 		return 0;
2399 
2400 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2401 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2402 			return oa_config->flex_regs[i].value;
2403 	}
2404 
2405 	return 0;
2406 }
2407 /*
2408  * NB: It must always remain pointer safe to run this even if the OA unit
2409  * has been disabled.
2410  *
2411  * It's fine to put out-of-date values into these per-context registers
2412  * in the case that the OA unit has been disabled.
2413  */
2414 static void
2415 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2416 			       const struct i915_perf_stream *stream)
2417 {
2418 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2419 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2420 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2421 	static const i915_reg_t flex_regs[] = {
2422 		EU_PERF_CNTL0,
2423 		EU_PERF_CNTL1,
2424 		EU_PERF_CNTL2,
2425 		EU_PERF_CNTL3,
2426 		EU_PERF_CNTL4,
2427 		EU_PERF_CNTL5,
2428 		EU_PERF_CNTL6,
2429 	};
2430 	u32 *reg_state = ce->lrc_reg_state;
2431 	int i;
2432 
2433 	reg_state[ctx_oactxctrl + 1] =
2434 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2435 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2436 		GEN8_OA_COUNTER_RESUME;
2437 
2438 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2439 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2440 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2441 }
2442 
2443 struct flex {
2444 	i915_reg_t reg;
2445 	u32 offset;
2446 	u32 value;
2447 };
2448 
2449 static int
2450 gen8_store_flex(struct i915_request *rq,
2451 		struct intel_context *ce,
2452 		const struct flex *flex, unsigned int count)
2453 {
2454 	u32 offset;
2455 	u32 *cs;
2456 
2457 	cs = intel_ring_begin(rq, 4 * count);
2458 	if (IS_ERR(cs))
2459 		return PTR_ERR(cs);
2460 
2461 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2462 	do {
2463 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2464 		*cs++ = offset + flex->offset * sizeof(u32);
2465 		*cs++ = 0;
2466 		*cs++ = flex->value;
2467 	} while (flex++, --count);
2468 
2469 	intel_ring_advance(rq, cs);
2470 
2471 	return 0;
2472 }
2473 
2474 static int
2475 gen8_load_flex(struct i915_request *rq,
2476 	       struct intel_context *ce,
2477 	       const struct flex *flex, unsigned int count)
2478 {
2479 	u32 *cs;
2480 
2481 	GEM_BUG_ON(!count || count > 63);
2482 
2483 	cs = intel_ring_begin(rq, 2 * count + 2);
2484 	if (IS_ERR(cs))
2485 		return PTR_ERR(cs);
2486 
2487 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2488 	do {
2489 		*cs++ = i915_mmio_reg_offset(flex->reg);
2490 		*cs++ = flex->value;
2491 	} while (flex++, --count);
2492 	*cs++ = MI_NOOP;
2493 
2494 	intel_ring_advance(rq, cs);
2495 
2496 	return 0;
2497 }
2498 
2499 static int gen8_modify_context(struct intel_context *ce,
2500 			       const struct flex *flex, unsigned int count)
2501 {
2502 	struct i915_request *rq;
2503 	int err;
2504 
2505 	rq = intel_engine_create_kernel_request(ce->engine);
2506 	if (IS_ERR(rq))
2507 		return PTR_ERR(rq);
2508 
2509 	/* Serialise with the remote context */
2510 	err = intel_context_prepare_remote_request(ce, rq);
2511 	if (err == 0)
2512 		err = gen8_store_flex(rq, ce, flex, count);
2513 
2514 	i915_request_add(rq);
2515 	return err;
2516 }
2517 
2518 static int
2519 gen8_modify_self(struct intel_context *ce,
2520 		 const struct flex *flex, unsigned int count,
2521 		 struct i915_active *active)
2522 {
2523 	struct i915_request *rq;
2524 	int err;
2525 
2526 	intel_engine_pm_get(ce->engine);
2527 	rq = i915_request_create(ce);
2528 	intel_engine_pm_put(ce->engine);
2529 	if (IS_ERR(rq))
2530 		return PTR_ERR(rq);
2531 
2532 	if (!IS_ERR_OR_NULL(active)) {
2533 		err = i915_active_add_request(active, rq);
2534 		if (err)
2535 			goto err_add_request;
2536 	}
2537 
2538 	err = gen8_load_flex(rq, ce, flex, count);
2539 	if (err)
2540 		goto err_add_request;
2541 
2542 err_add_request:
2543 	i915_request_add(rq);
2544 	return err;
2545 }
2546 
2547 static int gen8_configure_context(struct i915_perf_stream *stream,
2548 				  struct i915_gem_context *ctx,
2549 				  struct flex *flex, unsigned int count)
2550 {
2551 	struct i915_gem_engines_iter it;
2552 	struct intel_context *ce;
2553 	int err = 0;
2554 
2555 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2556 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2557 
2558 		if (ce->engine->class != RENDER_CLASS)
2559 			continue;
2560 
2561 		/* Otherwise OA settings will be set upon first use */
2562 		if (!intel_context_pin_if_active(ce))
2563 			continue;
2564 
2565 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2566 		err = gen8_modify_context(ce, flex, count);
2567 
2568 		intel_context_unpin(ce);
2569 		if (err)
2570 			break;
2571 	}
2572 	i915_gem_context_unlock_engines(ctx);
2573 
2574 	return err;
2575 }
2576 
2577 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2578 				       struct i915_active *active)
2579 {
2580 	int err;
2581 	struct intel_context *ce = stream->pinned_ctx;
2582 	u32 format = stream->oa_buffer.format->format;
2583 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2584 	struct flex regs_context[] = {
2585 		{
2586 			GEN8_OACTXCONTROL,
2587 			offset + 1,
2588 			active ? GEN8_OA_COUNTER_RESUME : 0,
2589 		},
2590 	};
2591 	/* Offsets in regs_lri are not used since this configuration is only
2592 	 * applied using LRI. Initialize the correct offsets for posterity.
2593 	 */
2594 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2595 	struct flex regs_lri[] = {
2596 		{
2597 			GEN12_OAR_OACONTROL,
2598 			GEN12_OAR_OACONTROL_OFFSET + 1,
2599 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2600 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2601 		},
2602 		{
2603 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2604 			CTX_CONTEXT_CONTROL,
2605 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2606 				      active ?
2607 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2608 				      0)
2609 		},
2610 	};
2611 
2612 	/* Modify the context image of pinned context with regs_context */
2613 	err = intel_context_lock_pinned(ce);
2614 	if (err)
2615 		return err;
2616 
2617 	err = gen8_modify_context(ce, regs_context,
2618 				  ARRAY_SIZE(regs_context));
2619 	intel_context_unlock_pinned(ce);
2620 	if (err)
2621 		return err;
2622 
2623 	/* Apply regs_lri using LRI with pinned context */
2624 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2625 }
2626 
2627 /*
2628  * Manages updating the per-context aspects of the OA stream
2629  * configuration across all contexts.
2630  *
2631  * The awkward consideration here is that OACTXCONTROL controls the
2632  * exponent for periodic sampling which is primarily used for system
2633  * wide profiling where we'd like a consistent sampling period even in
2634  * the face of context switches.
2635  *
2636  * Our approach of updating the register state context (as opposed to
2637  * say using a workaround batch buffer) ensures that the hardware
2638  * won't automatically reload an out-of-date timer exponent even
2639  * transiently before a WA BB could be parsed.
2640  *
2641  * This function needs to:
2642  * - Ensure the currently running context's per-context OA state is
2643  *   updated
2644  * - Ensure that all existing contexts will have the correct per-context
2645  *   OA state if they are scheduled for use.
2646  * - Ensure any new contexts will be initialized with the correct
2647  *   per-context OA state.
2648  *
2649  * Note: it's only the RCS/Render context that has any OA state.
2650  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2651  */
2652 static int
2653 oa_configure_all_contexts(struct i915_perf_stream *stream,
2654 			  struct flex *regs,
2655 			  size_t num_regs,
2656 			  struct i915_active *active)
2657 {
2658 	struct drm_i915_private *i915 = stream->perf->i915;
2659 	struct intel_engine_cs *engine;
2660 	struct intel_gt *gt = stream->engine->gt;
2661 	struct i915_gem_context *ctx, *cn;
2662 	int err;
2663 
2664 	lockdep_assert_held(&gt->perf.lock);
2665 
2666 	/*
2667 	 * The OA register config is setup through the context image. This image
2668 	 * might be written to by the GPU on context switch (in particular on
2669 	 * lite-restore). This means we can't safely update a context's image,
2670 	 * if this context is scheduled/submitted to run on the GPU.
2671 	 *
2672 	 * We could emit the OA register config through the batch buffer but
2673 	 * this might leave small interval of time where the OA unit is
2674 	 * configured at an invalid sampling period.
2675 	 *
2676 	 * Note that since we emit all requests from a single ring, there
2677 	 * is still an implicit global barrier here that may cause a high
2678 	 * priority context to wait for an otherwise independent low priority
2679 	 * context. Contexts idle at the time of reconfiguration are not
2680 	 * trapped behind the barrier.
2681 	 */
2682 	spin_lock(&i915->gem.contexts.lock);
2683 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2684 		if (!kref_get_unless_zero(&ctx->ref))
2685 			continue;
2686 
2687 		spin_unlock(&i915->gem.contexts.lock);
2688 
2689 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2690 		if (err) {
2691 			i915_gem_context_put(ctx);
2692 			return err;
2693 		}
2694 
2695 		spin_lock(&i915->gem.contexts.lock);
2696 		list_safe_reset_next(ctx, cn, link);
2697 		i915_gem_context_put(ctx);
2698 	}
2699 	spin_unlock(&i915->gem.contexts.lock);
2700 
2701 	/*
2702 	 * After updating all other contexts, we need to modify ourselves.
2703 	 * If we don't modify the kernel_context, we do not get events while
2704 	 * idle.
2705 	 */
2706 	for_each_uabi_engine(engine, i915) {
2707 		struct intel_context *ce = engine->kernel_context;
2708 
2709 		if (engine->class != RENDER_CLASS)
2710 			continue;
2711 
2712 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2713 
2714 		err = gen8_modify_self(ce, regs, num_regs, active);
2715 		if (err)
2716 			return err;
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 static int
2723 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2724 			     const struct i915_oa_config *oa_config,
2725 			     struct i915_active *active)
2726 {
2727 	struct flex regs[] = {
2728 		{
2729 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2730 			CTX_R_PWR_CLK_STATE,
2731 		},
2732 	};
2733 
2734 	if (stream->engine->class != RENDER_CLASS)
2735 		return 0;
2736 
2737 	return oa_configure_all_contexts(stream,
2738 					 regs, ARRAY_SIZE(regs),
2739 					 active);
2740 }
2741 
2742 static int
2743 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2744 			   const struct i915_oa_config *oa_config,
2745 			   struct i915_active *active)
2746 {
2747 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2748 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2749 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2750 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2751 	struct flex regs[] = {
2752 		{
2753 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2754 			CTX_R_PWR_CLK_STATE,
2755 		},
2756 		{
2757 			GEN8_OACTXCONTROL,
2758 			ctx_oactxctrl + 1,
2759 		},
2760 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2761 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2762 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2763 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2764 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2765 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2766 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2767 	};
2768 #undef ctx_flexeuN
2769 	int i;
2770 
2771 	regs[1].value =
2772 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2773 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2774 		GEN8_OA_COUNTER_RESUME;
2775 
2776 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2777 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2778 
2779 	return oa_configure_all_contexts(stream,
2780 					 regs, ARRAY_SIZE(regs),
2781 					 active);
2782 }
2783 
2784 static int
2785 gen8_enable_metric_set(struct i915_perf_stream *stream,
2786 		       struct i915_active *active)
2787 {
2788 	struct intel_uncore *uncore = stream->uncore;
2789 	struct i915_oa_config *oa_config = stream->oa_config;
2790 	int ret;
2791 
2792 	/*
2793 	 * We disable slice/unslice clock ratio change reports on SKL since
2794 	 * they are too noisy. The HW generates a lot of redundant reports
2795 	 * where the ratio hasn't really changed causing a lot of redundant
2796 	 * work to processes and increasing the chances we'll hit buffer
2797 	 * overruns.
2798 	 *
2799 	 * Although we don't currently use the 'disable overrun' OABUFFER
2800 	 * feature it's worth noting that clock ratio reports have to be
2801 	 * disabled before considering to use that feature since the HW doesn't
2802 	 * correctly block these reports.
2803 	 *
2804 	 * Currently none of the high-level metrics we have depend on knowing
2805 	 * this ratio to normalize.
2806 	 *
2807 	 * Note: This register is not power context saved and restored, but
2808 	 * that's OK considering that we disable RC6 while the OA unit is
2809 	 * enabled.
2810 	 *
2811 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2812 	 * be read back from automatically triggered reports, as part of the
2813 	 * RPT_ID field.
2814 	 */
2815 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2816 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2817 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2818 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2819 	}
2820 
2821 	/*
2822 	 * Update all contexts prior writing the mux configurations as we need
2823 	 * to make sure all slices/subslices are ON before writing to NOA
2824 	 * registers.
2825 	 */
2826 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2827 	if (ret)
2828 		return ret;
2829 
2830 	return emit_oa_config(stream,
2831 			      stream->oa_config, oa_context(stream),
2832 			      active);
2833 }
2834 
2835 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2836 {
2837 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2838 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2839 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2840 }
2841 
2842 static int
2843 gen12_enable_metric_set(struct i915_perf_stream *stream,
2844 			struct i915_active *active)
2845 {
2846 	struct drm_i915_private *i915 = stream->perf->i915;
2847 	struct intel_uncore *uncore = stream->uncore;
2848 	struct i915_oa_config *oa_config = stream->oa_config;
2849 	bool periodic = stream->periodic;
2850 	u32 period_exponent = stream->period_exponent;
2851 	u32 sqcnt1;
2852 	int ret;
2853 
2854 	/*
2855 	 * Wa_1508761755:xehpsdv, dg2
2856 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2857 	 * Disable thread stall DOP gating and EU DOP gating.
2858 	 */
2859 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2860 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2861 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2862 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2863 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2864 	}
2865 
2866 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2867 			   /* Disable clk ratio reports, like previous Gens. */
2868 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2869 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2870 			   /*
2871 			    * If the user didn't require OA reports, instruct
2872 			    * the hardware not to emit ctx switch reports.
2873 			    */
2874 			   oag_report_ctx_switches(stream));
2875 
2876 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2877 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2878 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2879 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2880 			    : 0);
2881 
2882 	/*
2883 	 * Initialize Super Queue Internal Cnt Register
2884 	 * Set PMON Enable in order to collect valid metrics.
2885 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2886 	 */
2887 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2888 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2889 
2890 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2891 
2892 	/*
2893 	 * Update all contexts prior writing the mux configurations as we need
2894 	 * to make sure all slices/subslices are ON before writing to NOA
2895 	 * registers.
2896 	 */
2897 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2898 	if (ret)
2899 		return ret;
2900 
2901 	/*
2902 	 * For Gen12, performance counters are context
2903 	 * saved/restored. Only enable it for the context that
2904 	 * requested this.
2905 	 */
2906 	if (stream->ctx) {
2907 		ret = gen12_configure_oar_context(stream, active);
2908 		if (ret)
2909 			return ret;
2910 	}
2911 
2912 	return emit_oa_config(stream,
2913 			      stream->oa_config, oa_context(stream),
2914 			      active);
2915 }
2916 
2917 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2918 {
2919 	struct intel_uncore *uncore = stream->uncore;
2920 
2921 	/* Reset all contexts' slices/subslices configurations. */
2922 	lrc_configure_all_contexts(stream, NULL, NULL);
2923 
2924 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2925 }
2926 
2927 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2928 {
2929 	struct intel_uncore *uncore = stream->uncore;
2930 
2931 	/* Reset all contexts' slices/subslices configurations. */
2932 	lrc_configure_all_contexts(stream, NULL, NULL);
2933 
2934 	/* Make sure we disable noa to save power. */
2935 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2936 }
2937 
2938 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2939 {
2940 	struct intel_uncore *uncore = stream->uncore;
2941 	struct drm_i915_private *i915 = stream->perf->i915;
2942 	u32 sqcnt1;
2943 
2944 	/*
2945 	 * Wa_1508761755:xehpsdv, dg2
2946 	 * Enable thread stall DOP gating and EU DOP gating.
2947 	 */
2948 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2949 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2950 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2951 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2952 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2953 	}
2954 
2955 	/* Reset all contexts' slices/subslices configurations. */
2956 	gen12_configure_all_contexts(stream, NULL, NULL);
2957 
2958 	/* disable the context save/restore or OAR counters */
2959 	if (stream->ctx)
2960 		gen12_configure_oar_context(stream, NULL);
2961 
2962 	/* Make sure we disable noa to save power. */
2963 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2964 
2965 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2966 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2967 
2968 	/* Reset PMON Enable to save power. */
2969 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2970 }
2971 
2972 static void gen7_oa_enable(struct i915_perf_stream *stream)
2973 {
2974 	struct intel_uncore *uncore = stream->uncore;
2975 	struct i915_gem_context *ctx = stream->ctx;
2976 	u32 ctx_id = stream->specific_ctx_id;
2977 	bool periodic = stream->periodic;
2978 	u32 period_exponent = stream->period_exponent;
2979 	u32 report_format = stream->oa_buffer.format->format;
2980 
2981 	/*
2982 	 * Reset buf pointers so we don't forward reports from before now.
2983 	 *
2984 	 * Think carefully if considering trying to avoid this, since it
2985 	 * also ensures status flags and the buffer itself are cleared
2986 	 * in error paths, and we have checks for invalid reports based
2987 	 * on the assumption that certain fields are written to zeroed
2988 	 * memory which this helps maintains.
2989 	 */
2990 	gen7_init_oa_buffer(stream);
2991 
2992 	intel_uncore_write(uncore, GEN7_OACONTROL,
2993 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2994 			   (period_exponent <<
2995 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2996 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2997 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2998 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2999 			   GEN7_OACONTROL_ENABLE);
3000 }
3001 
3002 static void gen8_oa_enable(struct i915_perf_stream *stream)
3003 {
3004 	struct intel_uncore *uncore = stream->uncore;
3005 	u32 report_format = stream->oa_buffer.format->format;
3006 
3007 	/*
3008 	 * Reset buf pointers so we don't forward reports from before now.
3009 	 *
3010 	 * Think carefully if considering trying to avoid this, since it
3011 	 * also ensures status flags and the buffer itself are cleared
3012 	 * in error paths, and we have checks for invalid reports based
3013 	 * on the assumption that certain fields are written to zeroed
3014 	 * memory which this helps maintains.
3015 	 */
3016 	gen8_init_oa_buffer(stream);
3017 
3018 	/*
3019 	 * Note: we don't rely on the hardware to perform single context
3020 	 * filtering and instead filter on the cpu based on the context-id
3021 	 * field of reports
3022 	 */
3023 	intel_uncore_write(uncore, GEN8_OACONTROL,
3024 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3025 			   GEN8_OA_COUNTER_ENABLE);
3026 }
3027 
3028 static void gen12_oa_enable(struct i915_perf_stream *stream)
3029 {
3030 	const struct i915_perf_regs *regs;
3031 	u32 val;
3032 
3033 	/*
3034 	 * If we don't want OA reports from the OA buffer, then we don't even
3035 	 * need to program the OAG unit.
3036 	 */
3037 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3038 		return;
3039 
3040 	gen12_init_oa_buffer(stream);
3041 
3042 	regs = __oa_regs(stream);
3043 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3044 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3045 
3046 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3047 }
3048 
3049 /**
3050  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3051  * @stream: An i915 perf stream opened for OA metrics
3052  *
3053  * [Re]enables hardware periodic sampling according to the period configured
3054  * when opening the stream. This also starts a hrtimer that will periodically
3055  * check for data in the circular OA buffer for notifying userspace (e.g.
3056  * during a read() or poll()).
3057  */
3058 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3059 {
3060 	stream->pollin = false;
3061 
3062 	stream->perf->ops.oa_enable(stream);
3063 
3064 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3065 		hrtimer_start(&stream->poll_check_timer,
3066 			      ns_to_ktime(stream->poll_oa_period),
3067 			      HRTIMER_MODE_REL_PINNED);
3068 }
3069 
3070 static void gen7_oa_disable(struct i915_perf_stream *stream)
3071 {
3072 	struct intel_uncore *uncore = stream->uncore;
3073 
3074 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3075 	if (intel_wait_for_register(uncore,
3076 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3077 				    50))
3078 		drm_err(&stream->perf->i915->drm,
3079 			"wait for OA to be disabled timed out\n");
3080 }
3081 
3082 static void gen8_oa_disable(struct i915_perf_stream *stream)
3083 {
3084 	struct intel_uncore *uncore = stream->uncore;
3085 
3086 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3087 	if (intel_wait_for_register(uncore,
3088 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3089 				    50))
3090 		drm_err(&stream->perf->i915->drm,
3091 			"wait for OA to be disabled timed out\n");
3092 }
3093 
3094 static void gen12_oa_disable(struct i915_perf_stream *stream)
3095 {
3096 	struct intel_uncore *uncore = stream->uncore;
3097 
3098 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3099 	if (intel_wait_for_register(uncore,
3100 				    __oa_regs(stream)->oa_ctrl,
3101 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3102 				    50))
3103 		drm_err(&stream->perf->i915->drm,
3104 			"wait for OA to be disabled timed out\n");
3105 
3106 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3107 	if (intel_wait_for_register(uncore,
3108 				    GEN12_OA_TLB_INV_CR,
3109 				    1, 0,
3110 				    50))
3111 		drm_err(&stream->perf->i915->drm,
3112 			"wait for OA tlb invalidate timed out\n");
3113 }
3114 
3115 /**
3116  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3117  * @stream: An i915 perf stream opened for OA metrics
3118  *
3119  * Stops the OA unit from periodically writing counter reports into the
3120  * circular OA buffer. This also stops the hrtimer that periodically checks for
3121  * data in the circular OA buffer, for notifying userspace.
3122  */
3123 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3124 {
3125 	stream->perf->ops.oa_disable(stream);
3126 
3127 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3128 		hrtimer_cancel(&stream->poll_check_timer);
3129 }
3130 
3131 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3132 	.destroy = i915_oa_stream_destroy,
3133 	.enable = i915_oa_stream_enable,
3134 	.disable = i915_oa_stream_disable,
3135 	.wait_unlocked = i915_oa_wait_unlocked,
3136 	.poll_wait = i915_oa_poll_wait,
3137 	.read = i915_oa_read,
3138 };
3139 
3140 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3141 {
3142 	struct i915_active *active;
3143 	int err;
3144 
3145 	active = i915_active_create();
3146 	if (!active)
3147 		return -ENOMEM;
3148 
3149 	err = stream->perf->ops.enable_metric_set(stream, active);
3150 	if (err == 0)
3151 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3152 
3153 	i915_active_put(active);
3154 	return err;
3155 }
3156 
3157 static void
3158 get_default_sseu_config(struct intel_sseu *out_sseu,
3159 			struct intel_engine_cs *engine)
3160 {
3161 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3162 
3163 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3164 
3165 	if (GRAPHICS_VER(engine->i915) == 11) {
3166 		/*
3167 		 * We only need subslice count so it doesn't matter which ones
3168 		 * we select - just turn off low bits in the amount of half of
3169 		 * all available subslices per slice.
3170 		 */
3171 		out_sseu->subslice_mask =
3172 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3173 		out_sseu->slice_mask = 0x1;
3174 	}
3175 }
3176 
3177 static int
3178 get_sseu_config(struct intel_sseu *out_sseu,
3179 		struct intel_engine_cs *engine,
3180 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3181 {
3182 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3183 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3184 		return -EINVAL;
3185 
3186 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3187 }
3188 
3189 /*
3190  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3191  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3192  * cases, return the adjusted CS timestamp frequency to the user.
3193  */
3194 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3195 {
3196 	struct intel_gt *gt = to_gt(i915);
3197 
3198 	/* Wa_18013179988 */
3199 	if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) {
3200 		intel_wakeref_t wakeref;
3201 		u32 reg, shift;
3202 
3203 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3204 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3205 
3206 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3207 				      reg);
3208 
3209 		return to_gt(i915)->clock_frequency << (3 - shift);
3210 	}
3211 
3212 	return to_gt(i915)->clock_frequency;
3213 }
3214 
3215 /**
3216  * i915_oa_stream_init - validate combined props for OA stream and init
3217  * @stream: An i915 perf stream
3218  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3219  * @props: The property state that configures stream (individually validated)
3220  *
3221  * While read_properties_unlocked() validates properties in isolation it
3222  * doesn't ensure that the combination necessarily makes sense.
3223  *
3224  * At this point it has been determined that userspace wants a stream of
3225  * OA metrics, but still we need to further validate the combined
3226  * properties are OK.
3227  *
3228  * If the configuration makes sense then we can allocate memory for
3229  * a circular OA buffer and apply the requested metric set configuration.
3230  *
3231  * Returns: zero on success or a negative error code.
3232  */
3233 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3234 			       struct drm_i915_perf_open_param *param,
3235 			       struct perf_open_properties *props)
3236 {
3237 	struct drm_i915_private *i915 = stream->perf->i915;
3238 	struct i915_perf *perf = stream->perf;
3239 	struct i915_perf_group *g;
3240 	int ret;
3241 
3242 	if (!props->engine) {
3243 		drm_dbg(&stream->perf->i915->drm,
3244 			"OA engine not specified\n");
3245 		return -EINVAL;
3246 	}
3247 	g = props->engine->oa_group;
3248 
3249 	/*
3250 	 * If the sysfs metrics/ directory wasn't registered for some
3251 	 * reason then don't let userspace try their luck with config
3252 	 * IDs
3253 	 */
3254 	if (!perf->metrics_kobj) {
3255 		drm_dbg(&stream->perf->i915->drm,
3256 			"OA metrics weren't advertised via sysfs\n");
3257 		return -EINVAL;
3258 	}
3259 
3260 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3261 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3262 		drm_dbg(&stream->perf->i915->drm,
3263 			"Only OA report sampling supported\n");
3264 		return -EINVAL;
3265 	}
3266 
3267 	if (!perf->ops.enable_metric_set) {
3268 		drm_dbg(&stream->perf->i915->drm,
3269 			"OA unit not supported\n");
3270 		return -ENODEV;
3271 	}
3272 
3273 	/*
3274 	 * To avoid the complexity of having to accurately filter
3275 	 * counter reports and marshal to the appropriate client
3276 	 * we currently only allow exclusive access
3277 	 */
3278 	if (g->exclusive_stream) {
3279 		drm_dbg(&stream->perf->i915->drm,
3280 			"OA unit already in use\n");
3281 		return -EBUSY;
3282 	}
3283 
3284 	if (!props->oa_format) {
3285 		drm_dbg(&stream->perf->i915->drm,
3286 			"OA report format not specified\n");
3287 		return -EINVAL;
3288 	}
3289 
3290 	stream->engine = props->engine;
3291 	stream->uncore = stream->engine->gt->uncore;
3292 
3293 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3294 
3295 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3296 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3297 		return -EINVAL;
3298 
3299 	stream->sample_flags = props->sample_flags;
3300 	stream->sample_size += stream->oa_buffer.format->size;
3301 
3302 	stream->hold_preemption = props->hold_preemption;
3303 
3304 	stream->periodic = props->oa_periodic;
3305 	if (stream->periodic)
3306 		stream->period_exponent = props->oa_period_exponent;
3307 
3308 	if (stream->ctx) {
3309 		ret = oa_get_render_ctx_id(stream);
3310 		if (ret) {
3311 			drm_dbg(&stream->perf->i915->drm,
3312 				"Invalid context id to filter with\n");
3313 			return ret;
3314 		}
3315 	}
3316 
3317 	ret = alloc_noa_wait(stream);
3318 	if (ret) {
3319 		drm_dbg(&stream->perf->i915->drm,
3320 			"Unable to allocate NOA wait batch buffer\n");
3321 		goto err_noa_wait_alloc;
3322 	}
3323 
3324 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3325 	if (!stream->oa_config) {
3326 		drm_dbg(&stream->perf->i915->drm,
3327 			"Invalid OA config id=%i\n", props->metrics_set);
3328 		ret = -EINVAL;
3329 		goto err_config;
3330 	}
3331 
3332 	/* PRM - observability performance counters:
3333 	 *
3334 	 *   OACONTROL, performance counter enable, note:
3335 	 *
3336 	 *   "When this bit is set, in order to have coherent counts,
3337 	 *   RC6 power state and trunk clock gating must be disabled.
3338 	 *   This can be achieved by programming MMIO registers as
3339 	 *   0xA094=0 and 0xA090[31]=1"
3340 	 *
3341 	 *   In our case we are expecting that taking pm + FORCEWAKE
3342 	 *   references will effectively disable RC6.
3343 	 */
3344 	intel_engine_pm_get(stream->engine);
3345 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3346 
3347 	ret = alloc_oa_buffer(stream);
3348 	if (ret)
3349 		goto err_oa_buf_alloc;
3350 
3351 	stream->ops = &i915_oa_stream_ops;
3352 
3353 	stream->engine->gt->perf.sseu = props->sseu;
3354 	WRITE_ONCE(g->exclusive_stream, stream);
3355 
3356 	ret = i915_perf_stream_enable_sync(stream);
3357 	if (ret) {
3358 		drm_dbg(&stream->perf->i915->drm,
3359 			"Unable to enable metric set\n");
3360 		goto err_enable;
3361 	}
3362 
3363 	drm_dbg(&stream->perf->i915->drm,
3364 		"opening stream oa config uuid=%s\n",
3365 		  stream->oa_config->uuid);
3366 
3367 	hrtimer_init(&stream->poll_check_timer,
3368 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3369 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3370 	init_waitqueue_head(&stream->poll_wq);
3371 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3372 	mutex_init(&stream->lock);
3373 
3374 	return 0;
3375 
3376 err_enable:
3377 	WRITE_ONCE(g->exclusive_stream, NULL);
3378 	perf->ops.disable_metric_set(stream);
3379 
3380 	free_oa_buffer(stream);
3381 
3382 err_oa_buf_alloc:
3383 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3384 	intel_engine_pm_put(stream->engine);
3385 
3386 	free_oa_configs(stream);
3387 
3388 err_config:
3389 	free_noa_wait(stream);
3390 
3391 err_noa_wait_alloc:
3392 	if (stream->ctx)
3393 		oa_put_render_ctx_id(stream);
3394 
3395 	return ret;
3396 }
3397 
3398 void i915_oa_init_reg_state(const struct intel_context *ce,
3399 			    const struct intel_engine_cs *engine)
3400 {
3401 	struct i915_perf_stream *stream;
3402 
3403 	if (engine->class != RENDER_CLASS)
3404 		return;
3405 
3406 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3407 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3408 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3409 		gen8_update_reg_state_unlocked(ce, stream);
3410 }
3411 
3412 /**
3413  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3414  * @file: An i915 perf stream file
3415  * @buf: destination buffer given by userspace
3416  * @count: the number of bytes userspace wants to read
3417  * @ppos: (inout) file seek position (unused)
3418  *
3419  * The entry point for handling a read() on a stream file descriptor from
3420  * userspace. Most of the work is left to the i915_perf_read_locked() and
3421  * &i915_perf_stream_ops->read but to save having stream implementations (of
3422  * which we might have multiple later) we handle blocking read here.
3423  *
3424  * We can also consistently treat trying to read from a disabled stream
3425  * as an IO error so implementations can assume the stream is enabled
3426  * while reading.
3427  *
3428  * Returns: The number of bytes copied or a negative error code on failure.
3429  */
3430 static ssize_t i915_perf_read(struct file *file,
3431 			      char __user *buf,
3432 			      size_t count,
3433 			      loff_t *ppos)
3434 {
3435 	struct i915_perf_stream *stream = file->private_data;
3436 	size_t offset = 0;
3437 	int ret;
3438 
3439 	/* To ensure it's handled consistently we simply treat all reads of a
3440 	 * disabled stream as an error. In particular it might otherwise lead
3441 	 * to a deadlock for blocking file descriptors...
3442 	 */
3443 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3444 		return -EIO;
3445 
3446 	if (!(file->f_flags & O_NONBLOCK)) {
3447 		/* There's the small chance of false positives from
3448 		 * stream->ops->wait_unlocked.
3449 		 *
3450 		 * E.g. with single context filtering since we only wait until
3451 		 * oabuffer has >= 1 report we don't immediately know whether
3452 		 * any reports really belong to the current context
3453 		 */
3454 		do {
3455 			ret = stream->ops->wait_unlocked(stream);
3456 			if (ret)
3457 				return ret;
3458 
3459 			mutex_lock(&stream->lock);
3460 			ret = stream->ops->read(stream, buf, count, &offset);
3461 			mutex_unlock(&stream->lock);
3462 		} while (!offset && !ret);
3463 	} else {
3464 		mutex_lock(&stream->lock);
3465 		ret = stream->ops->read(stream, buf, count, &offset);
3466 		mutex_unlock(&stream->lock);
3467 	}
3468 
3469 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3470 	 * events where we might actually report EAGAIN on read() if there's
3471 	 * not really any data available. In this situation though we don't
3472 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3473 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3474 	 * effectively ensures we back off until the next hrtimer callback
3475 	 * before reporting another EPOLLIN event.
3476 	 * The exception to this is if ops->read() returned -ENOSPC which means
3477 	 * that more OA data is available than could fit in the user provided
3478 	 * buffer. In this case we want the next poll() call to not block.
3479 	 */
3480 	if (ret != -ENOSPC)
3481 		stream->pollin = false;
3482 
3483 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3484 	return offset ?: (ret ?: -EAGAIN);
3485 }
3486 
3487 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3488 {
3489 	struct i915_perf_stream *stream =
3490 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3491 
3492 	if (oa_buffer_check_unlocked(stream)) {
3493 		stream->pollin = true;
3494 		wake_up(&stream->poll_wq);
3495 	}
3496 
3497 	hrtimer_forward_now(hrtimer,
3498 			    ns_to_ktime(stream->poll_oa_period));
3499 
3500 	return HRTIMER_RESTART;
3501 }
3502 
3503 /**
3504  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3505  * @stream: An i915 perf stream
3506  * @file: An i915 perf stream file
3507  * @wait: poll() state table
3508  *
3509  * For handling userspace polling on an i915 perf stream, this calls through to
3510  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3511  * will be woken for new stream data.
3512  *
3513  * Returns: any poll events that are ready without sleeping
3514  */
3515 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3516 				      struct file *file,
3517 				      poll_table *wait)
3518 {
3519 	__poll_t events = 0;
3520 
3521 	stream->ops->poll_wait(stream, file, wait);
3522 
3523 	/* Note: we don't explicitly check whether there's something to read
3524 	 * here since this path may be very hot depending on what else
3525 	 * userspace is polling, or on the timeout in use. We rely solely on
3526 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3527 	 * samples to read.
3528 	 */
3529 	if (stream->pollin)
3530 		events |= EPOLLIN;
3531 
3532 	return events;
3533 }
3534 
3535 /**
3536  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3537  * @file: An i915 perf stream file
3538  * @wait: poll() state table
3539  *
3540  * For handling userspace polling on an i915 perf stream, this ensures
3541  * poll_wait() gets called with a wait queue that will be woken for new stream
3542  * data.
3543  *
3544  * Note: Implementation deferred to i915_perf_poll_locked()
3545  *
3546  * Returns: any poll events that are ready without sleeping
3547  */
3548 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3549 {
3550 	struct i915_perf_stream *stream = file->private_data;
3551 	__poll_t ret;
3552 
3553 	mutex_lock(&stream->lock);
3554 	ret = i915_perf_poll_locked(stream, file, wait);
3555 	mutex_unlock(&stream->lock);
3556 
3557 	return ret;
3558 }
3559 
3560 /**
3561  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3562  * @stream: A disabled i915 perf stream
3563  *
3564  * [Re]enables the associated capture of data for this stream.
3565  *
3566  * If a stream was previously enabled then there's currently no intention
3567  * to provide userspace any guarantee about the preservation of previously
3568  * buffered data.
3569  */
3570 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3571 {
3572 	if (stream->enabled)
3573 		return;
3574 
3575 	/* Allow stream->ops->enable() to refer to this */
3576 	stream->enabled = true;
3577 
3578 	if (stream->ops->enable)
3579 		stream->ops->enable(stream);
3580 
3581 	if (stream->hold_preemption)
3582 		intel_context_set_nopreempt(stream->pinned_ctx);
3583 }
3584 
3585 /**
3586  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3587  * @stream: An enabled i915 perf stream
3588  *
3589  * Disables the associated capture of data for this stream.
3590  *
3591  * The intention is that disabling an re-enabling a stream will ideally be
3592  * cheaper than destroying and re-opening a stream with the same configuration,
3593  * though there are no formal guarantees about what state or buffered data
3594  * must be retained between disabling and re-enabling a stream.
3595  *
3596  * Note: while a stream is disabled it's considered an error for userspace
3597  * to attempt to read from the stream (-EIO).
3598  */
3599 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3600 {
3601 	if (!stream->enabled)
3602 		return;
3603 
3604 	/* Allow stream->ops->disable() to refer to this */
3605 	stream->enabled = false;
3606 
3607 	if (stream->hold_preemption)
3608 		intel_context_clear_nopreempt(stream->pinned_ctx);
3609 
3610 	if (stream->ops->disable)
3611 		stream->ops->disable(stream);
3612 }
3613 
3614 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3615 				    unsigned long metrics_set)
3616 {
3617 	struct i915_oa_config *config;
3618 	long ret = stream->oa_config->id;
3619 
3620 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3621 	if (!config)
3622 		return -EINVAL;
3623 
3624 	if (config != stream->oa_config) {
3625 		int err;
3626 
3627 		/*
3628 		 * If OA is bound to a specific context, emit the
3629 		 * reconfiguration inline from that context. The update
3630 		 * will then be ordered with respect to submission on that
3631 		 * context.
3632 		 *
3633 		 * When set globally, we use a low priority kernel context,
3634 		 * so it will effectively take effect when idle.
3635 		 */
3636 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3637 		if (!err)
3638 			config = xchg(&stream->oa_config, config);
3639 		else
3640 			ret = err;
3641 	}
3642 
3643 	i915_oa_config_put(config);
3644 
3645 	return ret;
3646 }
3647 
3648 /**
3649  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3650  * @stream: An i915 perf stream
3651  * @cmd: the ioctl request
3652  * @arg: the ioctl data
3653  *
3654  * Returns: zero on success or a negative error code. Returns -EINVAL for
3655  * an unknown ioctl request.
3656  */
3657 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3658 				   unsigned int cmd,
3659 				   unsigned long arg)
3660 {
3661 	switch (cmd) {
3662 	case I915_PERF_IOCTL_ENABLE:
3663 		i915_perf_enable_locked(stream);
3664 		return 0;
3665 	case I915_PERF_IOCTL_DISABLE:
3666 		i915_perf_disable_locked(stream);
3667 		return 0;
3668 	case I915_PERF_IOCTL_CONFIG:
3669 		return i915_perf_config_locked(stream, arg);
3670 	}
3671 
3672 	return -EINVAL;
3673 }
3674 
3675 /**
3676  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3677  * @file: An i915 perf stream file
3678  * @cmd: the ioctl request
3679  * @arg: the ioctl data
3680  *
3681  * Implementation deferred to i915_perf_ioctl_locked().
3682  *
3683  * Returns: zero on success or a negative error code. Returns -EINVAL for
3684  * an unknown ioctl request.
3685  */
3686 static long i915_perf_ioctl(struct file *file,
3687 			    unsigned int cmd,
3688 			    unsigned long arg)
3689 {
3690 	struct i915_perf_stream *stream = file->private_data;
3691 	long ret;
3692 
3693 	mutex_lock(&stream->lock);
3694 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3695 	mutex_unlock(&stream->lock);
3696 
3697 	return ret;
3698 }
3699 
3700 /**
3701  * i915_perf_destroy_locked - destroy an i915 perf stream
3702  * @stream: An i915 perf stream
3703  *
3704  * Frees all resources associated with the given i915 perf @stream, disabling
3705  * any associated data capture in the process.
3706  *
3707  * Note: The &gt->perf.lock mutex has been taken to serialize
3708  * with any non-file-operation driver hooks.
3709  */
3710 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3711 {
3712 	if (stream->enabled)
3713 		i915_perf_disable_locked(stream);
3714 
3715 	if (stream->ops->destroy)
3716 		stream->ops->destroy(stream);
3717 
3718 	if (stream->ctx)
3719 		i915_gem_context_put(stream->ctx);
3720 
3721 	kfree(stream);
3722 }
3723 
3724 /**
3725  * i915_perf_release - handles userspace close() of a stream file
3726  * @inode: anonymous inode associated with file
3727  * @file: An i915 perf stream file
3728  *
3729  * Cleans up any resources associated with an open i915 perf stream file.
3730  *
3731  * NB: close() can't really fail from the userspace point of view.
3732  *
3733  * Returns: zero on success or a negative error code.
3734  */
3735 static int i915_perf_release(struct inode *inode, struct file *file)
3736 {
3737 	struct i915_perf_stream *stream = file->private_data;
3738 	struct i915_perf *perf = stream->perf;
3739 	struct intel_gt *gt = stream->engine->gt;
3740 
3741 	/*
3742 	 * Within this call, we know that the fd is being closed and we have no
3743 	 * other user of stream->lock. Use the perf lock to destroy the stream
3744 	 * here.
3745 	 */
3746 	mutex_lock(&gt->perf.lock);
3747 	i915_perf_destroy_locked(stream);
3748 	mutex_unlock(&gt->perf.lock);
3749 
3750 	/* Release the reference the perf stream kept on the driver. */
3751 	drm_dev_put(&perf->i915->drm);
3752 
3753 	return 0;
3754 }
3755 
3756 
3757 static const struct file_operations fops = {
3758 	.owner		= THIS_MODULE,
3759 	.llseek		= no_llseek,
3760 	.release	= i915_perf_release,
3761 	.poll		= i915_perf_poll,
3762 	.read		= i915_perf_read,
3763 	.unlocked_ioctl	= i915_perf_ioctl,
3764 	/* Our ioctl have no arguments, so it's safe to use the same function
3765 	 * to handle 32bits compatibility.
3766 	 */
3767 	.compat_ioctl   = i915_perf_ioctl,
3768 };
3769 
3770 
3771 /**
3772  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3773  * @perf: i915 perf instance
3774  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3775  * @props: individually validated u64 property value pairs
3776  * @file: drm file
3777  *
3778  * See i915_perf_ioctl_open() for interface details.
3779  *
3780  * Implements further stream config validation and stream initialization on
3781  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3782  * taken to serialize with any non-file-operation driver hooks.
3783  *
3784  * Note: at this point the @props have only been validated in isolation and
3785  * it's still necessary to validate that the combination of properties makes
3786  * sense.
3787  *
3788  * In the case where userspace is interested in OA unit metrics then further
3789  * config validation and stream initialization details will be handled by
3790  * i915_oa_stream_init(). The code here should only validate config state that
3791  * will be relevant to all stream types / backends.
3792  *
3793  * Returns: zero on success or a negative error code.
3794  */
3795 static int
3796 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3797 			    struct drm_i915_perf_open_param *param,
3798 			    struct perf_open_properties *props,
3799 			    struct drm_file *file)
3800 {
3801 	struct i915_gem_context *specific_ctx = NULL;
3802 	struct i915_perf_stream *stream = NULL;
3803 	unsigned long f_flags = 0;
3804 	bool privileged_op = true;
3805 	int stream_fd;
3806 	int ret;
3807 
3808 	if (props->single_context) {
3809 		u32 ctx_handle = props->ctx_handle;
3810 		struct drm_i915_file_private *file_priv = file->driver_priv;
3811 
3812 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3813 		if (IS_ERR(specific_ctx)) {
3814 			drm_dbg(&perf->i915->drm,
3815 				"Failed to look up context with ID %u for opening perf stream\n",
3816 				  ctx_handle);
3817 			ret = PTR_ERR(specific_ctx);
3818 			goto err;
3819 		}
3820 	}
3821 
3822 	/*
3823 	 * On Haswell the OA unit supports clock gating off for a specific
3824 	 * context and in this mode there's no visibility of metrics for the
3825 	 * rest of the system, which we consider acceptable for a
3826 	 * non-privileged client.
3827 	 *
3828 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3829 	 * specific context and the kernel can't securely stop the counters
3830 	 * from updating as system-wide / global values. Even though we can
3831 	 * filter reports based on the included context ID we can't block
3832 	 * clients from seeing the raw / global counter values via
3833 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3834 	 * enable the OA unit by default.
3835 	 *
3836 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3837 	 * per context basis. So we can relax requirements there if the user
3838 	 * doesn't request global stream access (i.e. query based sampling
3839 	 * using MI_RECORD_PERF_COUNT.
3840 	 */
3841 	if (IS_HASWELL(perf->i915) && specific_ctx)
3842 		privileged_op = false;
3843 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3844 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3845 		privileged_op = false;
3846 
3847 	if (props->hold_preemption) {
3848 		if (!props->single_context) {
3849 			drm_dbg(&perf->i915->drm,
3850 				"preemption disable with no context\n");
3851 			ret = -EINVAL;
3852 			goto err;
3853 		}
3854 		privileged_op = true;
3855 	}
3856 
3857 	/*
3858 	 * Asking for SSEU configuration is a priviliged operation.
3859 	 */
3860 	if (props->has_sseu)
3861 		privileged_op = true;
3862 	else
3863 		get_default_sseu_config(&props->sseu, props->engine);
3864 
3865 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3866 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3867 	 * to determine if it's ok to access system wide OA counters
3868 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3869 	 */
3870 	if (privileged_op &&
3871 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3872 		drm_dbg(&perf->i915->drm,
3873 			"Insufficient privileges to open i915 perf stream\n");
3874 		ret = -EACCES;
3875 		goto err_ctx;
3876 	}
3877 
3878 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3879 	if (!stream) {
3880 		ret = -ENOMEM;
3881 		goto err_ctx;
3882 	}
3883 
3884 	stream->perf = perf;
3885 	stream->ctx = specific_ctx;
3886 	stream->poll_oa_period = props->poll_oa_period;
3887 
3888 	ret = i915_oa_stream_init(stream, param, props);
3889 	if (ret)
3890 		goto err_alloc;
3891 
3892 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3893 	 * to have _stream_init check the combination of sample flags more
3894 	 * thoroughly, but still this is the expected result at this point.
3895 	 */
3896 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3897 		ret = -ENODEV;
3898 		goto err_flags;
3899 	}
3900 
3901 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3902 		f_flags |= O_CLOEXEC;
3903 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3904 		f_flags |= O_NONBLOCK;
3905 
3906 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3907 	if (stream_fd < 0) {
3908 		ret = stream_fd;
3909 		goto err_flags;
3910 	}
3911 
3912 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3913 		i915_perf_enable_locked(stream);
3914 
3915 	/* Take a reference on the driver that will be kept with stream_fd
3916 	 * until its release.
3917 	 */
3918 	drm_dev_get(&perf->i915->drm);
3919 
3920 	return stream_fd;
3921 
3922 err_flags:
3923 	if (stream->ops->destroy)
3924 		stream->ops->destroy(stream);
3925 err_alloc:
3926 	kfree(stream);
3927 err_ctx:
3928 	if (specific_ctx)
3929 		i915_gem_context_put(specific_ctx);
3930 err:
3931 	return ret;
3932 }
3933 
3934 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3935 {
3936 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3937 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3938 
3939 	return div_u64(nom + den - 1, den);
3940 }
3941 
3942 static __always_inline bool
3943 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3944 {
3945 	return test_bit(format, perf->format_mask);
3946 }
3947 
3948 static __always_inline void
3949 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3950 {
3951 	__set_bit(format, perf->format_mask);
3952 }
3953 
3954 /**
3955  * read_properties_unlocked - validate + copy userspace stream open properties
3956  * @perf: i915 perf instance
3957  * @uprops: The array of u64 key value pairs given by userspace
3958  * @n_props: The number of key value pairs expected in @uprops
3959  * @props: The stream configuration built up while validating properties
3960  *
3961  * Note this function only validates properties in isolation it doesn't
3962  * validate that the combination of properties makes sense or that all
3963  * properties necessary for a particular kind of stream have been set.
3964  *
3965  * Note that there currently aren't any ordering requirements for properties so
3966  * we shouldn't validate or assume anything about ordering here. This doesn't
3967  * rule out defining new properties with ordering requirements in the future.
3968  */
3969 static int read_properties_unlocked(struct i915_perf *perf,
3970 				    u64 __user *uprops,
3971 				    u32 n_props,
3972 				    struct perf_open_properties *props)
3973 {
3974 	struct drm_i915_gem_context_param_sseu user_sseu;
3975 	const struct i915_oa_format *f;
3976 	u64 __user *uprop = uprops;
3977 	bool config_instance = false;
3978 	bool config_class = false;
3979 	bool config_sseu = false;
3980 	u8 class, instance;
3981 	u32 i;
3982 	int ret;
3983 
3984 	memset(props, 0, sizeof(struct perf_open_properties));
3985 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3986 
3987 	/* Considering that ID = 0 is reserved and assuming that we don't
3988 	 * (currently) expect any configurations to ever specify duplicate
3989 	 * values for a particular property ID then the last _PROP_MAX value is
3990 	 * one greater than the maximum number of properties we expect to get
3991 	 * from userspace.
3992 	 */
3993 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
3994 		drm_dbg(&perf->i915->drm,
3995 			"Invalid number of i915 perf properties given\n");
3996 		return -EINVAL;
3997 	}
3998 
3999 	/* Defaults when class:instance is not passed */
4000 	class = I915_ENGINE_CLASS_RENDER;
4001 	instance = 0;
4002 
4003 	for (i = 0; i < n_props; i++) {
4004 		u64 oa_period, oa_freq_hz;
4005 		u64 id, value;
4006 
4007 		ret = get_user(id, uprop);
4008 		if (ret)
4009 			return ret;
4010 
4011 		ret = get_user(value, uprop + 1);
4012 		if (ret)
4013 			return ret;
4014 
4015 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4016 			drm_dbg(&perf->i915->drm,
4017 				"Unknown i915 perf property ID\n");
4018 			return -EINVAL;
4019 		}
4020 
4021 		switch ((enum drm_i915_perf_property_id)id) {
4022 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4023 			props->single_context = 1;
4024 			props->ctx_handle = value;
4025 			break;
4026 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4027 			if (value)
4028 				props->sample_flags |= SAMPLE_OA_REPORT;
4029 			break;
4030 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4031 			if (value == 0) {
4032 				drm_dbg(&perf->i915->drm,
4033 					"Unknown OA metric set ID\n");
4034 				return -EINVAL;
4035 			}
4036 			props->metrics_set = value;
4037 			break;
4038 		case DRM_I915_PERF_PROP_OA_FORMAT:
4039 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4040 				drm_dbg(&perf->i915->drm,
4041 					"Out-of-range OA report format %llu\n",
4042 					  value);
4043 				return -EINVAL;
4044 			}
4045 			if (!oa_format_valid(perf, value)) {
4046 				drm_dbg(&perf->i915->drm,
4047 					"Unsupported OA report format %llu\n",
4048 					  value);
4049 				return -EINVAL;
4050 			}
4051 			props->oa_format = value;
4052 			break;
4053 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4054 			if (value > OA_EXPONENT_MAX) {
4055 				drm_dbg(&perf->i915->drm,
4056 					"OA timer exponent too high (> %u)\n",
4057 					 OA_EXPONENT_MAX);
4058 				return -EINVAL;
4059 			}
4060 
4061 			/* Theoretically we can program the OA unit to sample
4062 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4063 			 * for BXT. We don't allow such high sampling
4064 			 * frequencies by default unless root.
4065 			 */
4066 
4067 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4068 			oa_period = oa_exponent_to_ns(perf, value);
4069 
4070 			/* This check is primarily to ensure that oa_period <=
4071 			 * UINT32_MAX (before passing to do_div which only
4072 			 * accepts a u32 denominator), but we can also skip
4073 			 * checking anything < 1Hz which implicitly can't be
4074 			 * limited via an integer oa_max_sample_rate.
4075 			 */
4076 			if (oa_period <= NSEC_PER_SEC) {
4077 				u64 tmp = NSEC_PER_SEC;
4078 				do_div(tmp, oa_period);
4079 				oa_freq_hz = tmp;
4080 			} else
4081 				oa_freq_hz = 0;
4082 
4083 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4084 				drm_dbg(&perf->i915->drm,
4085 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4086 					  i915_oa_max_sample_rate);
4087 				return -EACCES;
4088 			}
4089 
4090 			props->oa_periodic = true;
4091 			props->oa_period_exponent = value;
4092 			break;
4093 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4094 			props->hold_preemption = !!value;
4095 			break;
4096 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4097 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4098 				drm_dbg(&perf->i915->drm,
4099 					"SSEU config not supported on gfx %x\n",
4100 					GRAPHICS_VER_FULL(perf->i915));
4101 				return -ENODEV;
4102 			}
4103 
4104 			if (copy_from_user(&user_sseu,
4105 					   u64_to_user_ptr(value),
4106 					   sizeof(user_sseu))) {
4107 				drm_dbg(&perf->i915->drm,
4108 					"Unable to copy global sseu parameter\n");
4109 				return -EFAULT;
4110 			}
4111 			config_sseu = true;
4112 			break;
4113 		}
4114 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4115 			if (value < 100000 /* 100us */) {
4116 				drm_dbg(&perf->i915->drm,
4117 					"OA availability timer too small (%lluns < 100us)\n",
4118 					  value);
4119 				return -EINVAL;
4120 			}
4121 			props->poll_oa_period = value;
4122 			break;
4123 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4124 			class = (u8)value;
4125 			config_class = true;
4126 			break;
4127 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4128 			instance = (u8)value;
4129 			config_instance = true;
4130 			break;
4131 		default:
4132 			MISSING_CASE(id);
4133 			return -EINVAL;
4134 		}
4135 
4136 		uprop += 2;
4137 	}
4138 
4139 	if ((config_class && !config_instance) ||
4140 	    (config_instance && !config_class)) {
4141 		drm_dbg(&perf->i915->drm,
4142 			"OA engine-class and engine-instance parameters must be passed together\n");
4143 		return -EINVAL;
4144 	}
4145 
4146 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4147 	if (!props->engine) {
4148 		drm_dbg(&perf->i915->drm,
4149 			"OA engine class and instance invalid %d:%d\n",
4150 			class, instance);
4151 		return -EINVAL;
4152 	}
4153 
4154 	if (!engine_supports_oa(props->engine)) {
4155 		drm_dbg(&perf->i915->drm,
4156 			"Engine not supported by OA %d:%d\n",
4157 			class, instance);
4158 		return -EINVAL;
4159 	}
4160 
4161 	/*
4162 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4163 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4164 	 * does not work as expected.
4165 	 */
4166 	if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4167 	    props->engine->oa_group->type == TYPE_OAM &&
4168 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4169 		drm_dbg(&perf->i915->drm,
4170 			"OAM requires media C6 to be disabled in BIOS\n");
4171 		return -EINVAL;
4172 	}
4173 
4174 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4175 	f = &perf->oa_formats[i];
4176 	if (!engine_supports_oa_format(props->engine, f->type)) {
4177 		drm_dbg(&perf->i915->drm,
4178 			"Invalid OA format %d for class %d\n",
4179 			f->type, props->engine->class);
4180 		return -EINVAL;
4181 	}
4182 
4183 	if (config_sseu) {
4184 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4185 		if (ret) {
4186 			drm_dbg(&perf->i915->drm,
4187 				"Invalid SSEU configuration\n");
4188 			return ret;
4189 		}
4190 		props->has_sseu = true;
4191 	}
4192 
4193 	return 0;
4194 }
4195 
4196 /**
4197  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4198  * @dev: drm device
4199  * @data: ioctl data copied from userspace (unvalidated)
4200  * @file: drm file
4201  *
4202  * Validates the stream open parameters given by userspace including flags
4203  * and an array of u64 key, value pair properties.
4204  *
4205  * Very little is assumed up front about the nature of the stream being
4206  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4207  * i915-perf stream is expected to be a suitable interface for other forms of
4208  * buffered data written by the GPU besides periodic OA metrics.
4209  *
4210  * Note we copy the properties from userspace outside of the i915 perf
4211  * mutex to avoid an awkward lockdep with mmap_lock.
4212  *
4213  * Most of the implementation details are handled by
4214  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4215  * mutex for serializing with any non-file-operation driver hooks.
4216  *
4217  * Return: A newly opened i915 Perf stream file descriptor or negative
4218  * error code on failure.
4219  */
4220 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4221 			 struct drm_file *file)
4222 {
4223 	struct i915_perf *perf = &to_i915(dev)->perf;
4224 	struct drm_i915_perf_open_param *param = data;
4225 	struct intel_gt *gt;
4226 	struct perf_open_properties props;
4227 	u32 known_open_flags;
4228 	int ret;
4229 
4230 	if (!perf->i915)
4231 		return -ENOTSUPP;
4232 
4233 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4234 			   I915_PERF_FLAG_FD_NONBLOCK |
4235 			   I915_PERF_FLAG_DISABLED;
4236 	if (param->flags & ~known_open_flags) {
4237 		drm_dbg(&perf->i915->drm,
4238 			"Unknown drm_i915_perf_open_param flag\n");
4239 		return -EINVAL;
4240 	}
4241 
4242 	ret = read_properties_unlocked(perf,
4243 				       u64_to_user_ptr(param->properties_ptr),
4244 				       param->num_properties,
4245 				       &props);
4246 	if (ret)
4247 		return ret;
4248 
4249 	gt = props.engine->gt;
4250 
4251 	mutex_lock(&gt->perf.lock);
4252 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4253 	mutex_unlock(&gt->perf.lock);
4254 
4255 	return ret;
4256 }
4257 
4258 /**
4259  * i915_perf_register - exposes i915-perf to userspace
4260  * @i915: i915 device instance
4261  *
4262  * In particular OA metric sets are advertised under a sysfs metrics/
4263  * directory allowing userspace to enumerate valid IDs that can be
4264  * used to open an i915-perf stream.
4265  */
4266 void i915_perf_register(struct drm_i915_private *i915)
4267 {
4268 	struct i915_perf *perf = &i915->perf;
4269 	struct intel_gt *gt = to_gt(i915);
4270 
4271 	if (!perf->i915)
4272 		return;
4273 
4274 	/* To be sure we're synchronized with an attempted
4275 	 * i915_perf_open_ioctl(); considering that we register after
4276 	 * being exposed to userspace.
4277 	 */
4278 	mutex_lock(&gt->perf.lock);
4279 
4280 	perf->metrics_kobj =
4281 		kobject_create_and_add("metrics",
4282 				       &i915->drm.primary->kdev->kobj);
4283 
4284 	mutex_unlock(&gt->perf.lock);
4285 }
4286 
4287 /**
4288  * i915_perf_unregister - hide i915-perf from userspace
4289  * @i915: i915 device instance
4290  *
4291  * i915-perf state cleanup is split up into an 'unregister' and
4292  * 'deinit' phase where the interface is first hidden from
4293  * userspace by i915_perf_unregister() before cleaning up
4294  * remaining state in i915_perf_fini().
4295  */
4296 void i915_perf_unregister(struct drm_i915_private *i915)
4297 {
4298 	struct i915_perf *perf = &i915->perf;
4299 
4300 	if (!perf->metrics_kobj)
4301 		return;
4302 
4303 	kobject_put(perf->metrics_kobj);
4304 	perf->metrics_kobj = NULL;
4305 }
4306 
4307 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4308 {
4309 	static const i915_reg_t flex_eu_regs[] = {
4310 		EU_PERF_CNTL0,
4311 		EU_PERF_CNTL1,
4312 		EU_PERF_CNTL2,
4313 		EU_PERF_CNTL3,
4314 		EU_PERF_CNTL4,
4315 		EU_PERF_CNTL5,
4316 		EU_PERF_CNTL6,
4317 	};
4318 	int i;
4319 
4320 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4321 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4322 			return true;
4323 	}
4324 	return false;
4325 }
4326 
4327 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4328 {
4329 	while (table->start || table->end) {
4330 		if (addr >= table->start && addr <= table->end)
4331 			return true;
4332 
4333 		table++;
4334 	}
4335 
4336 	return false;
4337 }
4338 
4339 #define REG_EQUAL(addr, mmio) \
4340 	((addr) == i915_mmio_reg_offset(mmio))
4341 
4342 static const struct i915_range gen7_oa_b_counters[] = {
4343 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4344 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4345 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4346 	{}
4347 };
4348 
4349 static const struct i915_range gen12_oa_b_counters[] = {
4350 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4351 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4352 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4353 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4354 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4355 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4356 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4357 	{}
4358 };
4359 
4360 static const struct i915_range mtl_oam_b_counters[] = {
4361 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4362 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4363 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4364 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4365 	{}
4366 };
4367 
4368 static const struct i915_range xehp_oa_b_counters[] = {
4369 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4370 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4371 	{}
4372 };
4373 
4374 static const struct i915_range gen7_oa_mux_regs[] = {
4375 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4376 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4377 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4378 	{}
4379 };
4380 
4381 static const struct i915_range hsw_oa_mux_regs[] = {
4382 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4383 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4384 	{ .start = 0x25100, .end = 0x2ff90 },
4385 	{}
4386 };
4387 
4388 static const struct i915_range chv_oa_mux_regs[] = {
4389 	{ .start = 0x182300, .end = 0x1823a4 },
4390 	{}
4391 };
4392 
4393 static const struct i915_range gen8_oa_mux_regs[] = {
4394 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4395 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4396 	{}
4397 };
4398 
4399 static const struct i915_range gen11_oa_mux_regs[] = {
4400 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4401 	{}
4402 };
4403 
4404 static const struct i915_range gen12_oa_mux_regs[] = {
4405 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4406 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4407 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4408 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4409 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4410 	{}
4411 };
4412 
4413 /*
4414  * Ref: 14010536224:
4415  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4416  */
4417 static const struct i915_range mtl_oa_mux_regs[] = {
4418 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4419 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4420 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4421 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4422 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4423 	{}
4424 };
4425 
4426 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4427 {
4428 	return reg_in_range_table(addr, gen7_oa_b_counters);
4429 }
4430 
4431 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4432 {
4433 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4434 		reg_in_range_table(addr, gen8_oa_mux_regs);
4435 }
4436 
4437 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4438 {
4439 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4440 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4441 		reg_in_range_table(addr, gen11_oa_mux_regs);
4442 }
4443 
4444 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4445 {
4446 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4447 		reg_in_range_table(addr, hsw_oa_mux_regs);
4448 }
4449 
4450 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4451 {
4452 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4453 		reg_in_range_table(addr, chv_oa_mux_regs);
4454 }
4455 
4456 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4457 {
4458 	return reg_in_range_table(addr, gen12_oa_b_counters);
4459 }
4460 
4461 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4462 {
4463 	if (HAS_OAM(perf->i915) &&
4464 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4465 		return reg_in_range_table(addr, mtl_oam_b_counters);
4466 
4467 	return false;
4468 }
4469 
4470 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4471 {
4472 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4473 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4474 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4475 }
4476 
4477 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4478 {
4479 	if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4480 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4481 	else
4482 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4483 }
4484 
4485 static u32 mask_reg_value(u32 reg, u32 val)
4486 {
4487 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4488 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4489 	 * programmed by userspace doesn't change this.
4490 	 */
4491 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4492 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4493 
4494 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4495 	 * indicated by its name and a bunch of selection fields used by OA
4496 	 * configs.
4497 	 */
4498 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4499 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4500 
4501 	return val;
4502 }
4503 
4504 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4505 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4506 					 u32 __user *regs,
4507 					 u32 n_regs)
4508 {
4509 	struct i915_oa_reg *oa_regs;
4510 	int err;
4511 	u32 i;
4512 
4513 	if (!n_regs)
4514 		return NULL;
4515 
4516 	/* No is_valid function means we're not allowing any register to be programmed. */
4517 	GEM_BUG_ON(!is_valid);
4518 	if (!is_valid)
4519 		return ERR_PTR(-EINVAL);
4520 
4521 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4522 	if (!oa_regs)
4523 		return ERR_PTR(-ENOMEM);
4524 
4525 	for (i = 0; i < n_regs; i++) {
4526 		u32 addr, value;
4527 
4528 		err = get_user(addr, regs);
4529 		if (err)
4530 			goto addr_err;
4531 
4532 		if (!is_valid(perf, addr)) {
4533 			drm_dbg(&perf->i915->drm,
4534 				"Invalid oa_reg address: %X\n", addr);
4535 			err = -EINVAL;
4536 			goto addr_err;
4537 		}
4538 
4539 		err = get_user(value, regs + 1);
4540 		if (err)
4541 			goto addr_err;
4542 
4543 		oa_regs[i].addr = _MMIO(addr);
4544 		oa_regs[i].value = mask_reg_value(addr, value);
4545 
4546 		regs += 2;
4547 	}
4548 
4549 	return oa_regs;
4550 
4551 addr_err:
4552 	kfree(oa_regs);
4553 	return ERR_PTR(err);
4554 }
4555 
4556 static ssize_t show_dynamic_id(struct kobject *kobj,
4557 			       struct kobj_attribute *attr,
4558 			       char *buf)
4559 {
4560 	struct i915_oa_config *oa_config =
4561 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4562 
4563 	return sprintf(buf, "%d\n", oa_config->id);
4564 }
4565 
4566 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4567 					 struct i915_oa_config *oa_config)
4568 {
4569 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4570 	oa_config->sysfs_metric_id.attr.name = "id";
4571 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4572 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4573 	oa_config->sysfs_metric_id.store = NULL;
4574 
4575 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4576 	oa_config->attrs[1] = NULL;
4577 
4578 	oa_config->sysfs_metric.name = oa_config->uuid;
4579 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4580 
4581 	return sysfs_create_group(perf->metrics_kobj,
4582 				  &oa_config->sysfs_metric);
4583 }
4584 
4585 /**
4586  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4587  * @dev: drm device
4588  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4589  *        userspace (unvalidated)
4590  * @file: drm file
4591  *
4592  * Validates the submitted OA register to be saved into a new OA config that
4593  * can then be used for programming the OA unit and its NOA network.
4594  *
4595  * Returns: A new allocated config number to be used with the perf open ioctl
4596  * or a negative error code on failure.
4597  */
4598 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4599 			       struct drm_file *file)
4600 {
4601 	struct i915_perf *perf = &to_i915(dev)->perf;
4602 	struct drm_i915_perf_oa_config *args = data;
4603 	struct i915_oa_config *oa_config, *tmp;
4604 	struct i915_oa_reg *regs;
4605 	int err, id;
4606 
4607 	if (!perf->i915)
4608 		return -ENOTSUPP;
4609 
4610 	if (!perf->metrics_kobj) {
4611 		drm_dbg(&perf->i915->drm,
4612 			"OA metrics weren't advertised via sysfs\n");
4613 		return -EINVAL;
4614 	}
4615 
4616 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4617 		drm_dbg(&perf->i915->drm,
4618 			"Insufficient privileges to add i915 OA config\n");
4619 		return -EACCES;
4620 	}
4621 
4622 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4623 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4624 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4625 		drm_dbg(&perf->i915->drm,
4626 			"No OA registers given\n");
4627 		return -EINVAL;
4628 	}
4629 
4630 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4631 	if (!oa_config) {
4632 		drm_dbg(&perf->i915->drm,
4633 			"Failed to allocate memory for the OA config\n");
4634 		return -ENOMEM;
4635 	}
4636 
4637 	oa_config->perf = perf;
4638 	kref_init(&oa_config->ref);
4639 
4640 	if (!uuid_is_valid(args->uuid)) {
4641 		drm_dbg(&perf->i915->drm,
4642 			"Invalid uuid format for OA config\n");
4643 		err = -EINVAL;
4644 		goto reg_err;
4645 	}
4646 
4647 	/* Last character in oa_config->uuid will be 0 because oa_config is
4648 	 * kzalloc.
4649 	 */
4650 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4651 
4652 	oa_config->mux_regs_len = args->n_mux_regs;
4653 	regs = alloc_oa_regs(perf,
4654 			     perf->ops.is_valid_mux_reg,
4655 			     u64_to_user_ptr(args->mux_regs_ptr),
4656 			     args->n_mux_regs);
4657 
4658 	if (IS_ERR(regs)) {
4659 		drm_dbg(&perf->i915->drm,
4660 			"Failed to create OA config for mux_regs\n");
4661 		err = PTR_ERR(regs);
4662 		goto reg_err;
4663 	}
4664 	oa_config->mux_regs = regs;
4665 
4666 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4667 	regs = alloc_oa_regs(perf,
4668 			     perf->ops.is_valid_b_counter_reg,
4669 			     u64_to_user_ptr(args->boolean_regs_ptr),
4670 			     args->n_boolean_regs);
4671 
4672 	if (IS_ERR(regs)) {
4673 		drm_dbg(&perf->i915->drm,
4674 			"Failed to create OA config for b_counter_regs\n");
4675 		err = PTR_ERR(regs);
4676 		goto reg_err;
4677 	}
4678 	oa_config->b_counter_regs = regs;
4679 
4680 	if (GRAPHICS_VER(perf->i915) < 8) {
4681 		if (args->n_flex_regs != 0) {
4682 			err = -EINVAL;
4683 			goto reg_err;
4684 		}
4685 	} else {
4686 		oa_config->flex_regs_len = args->n_flex_regs;
4687 		regs = alloc_oa_regs(perf,
4688 				     perf->ops.is_valid_flex_reg,
4689 				     u64_to_user_ptr(args->flex_regs_ptr),
4690 				     args->n_flex_regs);
4691 
4692 		if (IS_ERR(regs)) {
4693 			drm_dbg(&perf->i915->drm,
4694 				"Failed to create OA config for flex_regs\n");
4695 			err = PTR_ERR(regs);
4696 			goto reg_err;
4697 		}
4698 		oa_config->flex_regs = regs;
4699 	}
4700 
4701 	err = mutex_lock_interruptible(&perf->metrics_lock);
4702 	if (err)
4703 		goto reg_err;
4704 
4705 	/* We shouldn't have too many configs, so this iteration shouldn't be
4706 	 * too costly.
4707 	 */
4708 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4709 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4710 			drm_dbg(&perf->i915->drm,
4711 				"OA config already exists with this uuid\n");
4712 			err = -EADDRINUSE;
4713 			goto sysfs_err;
4714 		}
4715 	}
4716 
4717 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4718 	if (err) {
4719 		drm_dbg(&perf->i915->drm,
4720 			"Failed to create sysfs entry for OA config\n");
4721 		goto sysfs_err;
4722 	}
4723 
4724 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4725 	oa_config->id = idr_alloc(&perf->metrics_idr,
4726 				  oa_config, 2,
4727 				  0, GFP_KERNEL);
4728 	if (oa_config->id < 0) {
4729 		drm_dbg(&perf->i915->drm,
4730 			"Failed to create sysfs entry for OA config\n");
4731 		err = oa_config->id;
4732 		goto sysfs_err;
4733 	}
4734 	id = oa_config->id;
4735 
4736 	drm_dbg(&perf->i915->drm,
4737 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4738 	mutex_unlock(&perf->metrics_lock);
4739 
4740 	return id;
4741 
4742 sysfs_err:
4743 	mutex_unlock(&perf->metrics_lock);
4744 reg_err:
4745 	i915_oa_config_put(oa_config);
4746 	drm_dbg(&perf->i915->drm,
4747 		"Failed to add new OA config\n");
4748 	return err;
4749 }
4750 
4751 /**
4752  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4753  * @dev: drm device
4754  * @data: ioctl data (pointer to u64 integer) copied from userspace
4755  * @file: drm file
4756  *
4757  * Configs can be removed while being used, the will stop appearing in sysfs
4758  * and their content will be freed when the stream using the config is closed.
4759  *
4760  * Returns: 0 on success or a negative error code on failure.
4761  */
4762 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4763 				  struct drm_file *file)
4764 {
4765 	struct i915_perf *perf = &to_i915(dev)->perf;
4766 	u64 *arg = data;
4767 	struct i915_oa_config *oa_config;
4768 	int ret;
4769 
4770 	if (!perf->i915)
4771 		return -ENOTSUPP;
4772 
4773 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4774 		drm_dbg(&perf->i915->drm,
4775 			"Insufficient privileges to remove i915 OA config\n");
4776 		return -EACCES;
4777 	}
4778 
4779 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4780 	if (ret)
4781 		return ret;
4782 
4783 	oa_config = idr_find(&perf->metrics_idr, *arg);
4784 	if (!oa_config) {
4785 		drm_dbg(&perf->i915->drm,
4786 			"Failed to remove unknown OA config\n");
4787 		ret = -ENOENT;
4788 		goto err_unlock;
4789 	}
4790 
4791 	GEM_BUG_ON(*arg != oa_config->id);
4792 
4793 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4794 
4795 	idr_remove(&perf->metrics_idr, *arg);
4796 
4797 	mutex_unlock(&perf->metrics_lock);
4798 
4799 	drm_dbg(&perf->i915->drm,
4800 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4801 
4802 	i915_oa_config_put(oa_config);
4803 
4804 	return 0;
4805 
4806 err_unlock:
4807 	mutex_unlock(&perf->metrics_lock);
4808 	return ret;
4809 }
4810 
4811 static struct ctl_table oa_table[] = {
4812 	{
4813 	 .procname = "perf_stream_paranoid",
4814 	 .data = &i915_perf_stream_paranoid,
4815 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4816 	 .mode = 0644,
4817 	 .proc_handler = proc_dointvec_minmax,
4818 	 .extra1 = SYSCTL_ZERO,
4819 	 .extra2 = SYSCTL_ONE,
4820 	 },
4821 	{
4822 	 .procname = "oa_max_sample_rate",
4823 	 .data = &i915_oa_max_sample_rate,
4824 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4825 	 .mode = 0644,
4826 	 .proc_handler = proc_dointvec_minmax,
4827 	 .extra1 = SYSCTL_ZERO,
4828 	 .extra2 = &oa_sample_rate_hard_limit,
4829 	 },
4830 };
4831 
4832 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4833 {
4834 	return 1;
4835 }
4836 
4837 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4838 {
4839 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4840 		/*
4841 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4842 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4843 		 */
4844 		drm_WARN_ON(&engine->i915->drm,
4845 			    engine->gt->type != GT_MEDIA);
4846 
4847 		return PERF_GROUP_OAM_SAMEDIA_0;
4848 	}
4849 
4850 	return PERF_GROUP_INVALID;
4851 }
4852 
4853 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4854 {
4855 	switch (engine->class) {
4856 	case RENDER_CLASS:
4857 		return PERF_GROUP_OAG;
4858 
4859 	case VIDEO_DECODE_CLASS:
4860 	case VIDEO_ENHANCEMENT_CLASS:
4861 		return __oam_engine_group(engine);
4862 
4863 	default:
4864 		return PERF_GROUP_INVALID;
4865 	}
4866 }
4867 
4868 static struct i915_perf_regs __oam_regs(u32 base)
4869 {
4870 	return (struct i915_perf_regs) {
4871 		base,
4872 		GEN12_OAM_HEAD_POINTER(base),
4873 		GEN12_OAM_TAIL_POINTER(base),
4874 		GEN12_OAM_BUFFER(base),
4875 		GEN12_OAM_CONTEXT_CONTROL(base),
4876 		GEN12_OAM_CONTROL(base),
4877 		GEN12_OAM_DEBUG(base),
4878 		GEN12_OAM_STATUS(base),
4879 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4880 	};
4881 }
4882 
4883 static struct i915_perf_regs __oag_regs(void)
4884 {
4885 	return (struct i915_perf_regs) {
4886 		0,
4887 		GEN12_OAG_OAHEADPTR,
4888 		GEN12_OAG_OATAILPTR,
4889 		GEN12_OAG_OABUFFER,
4890 		GEN12_OAG_OAGLBCTXCTRL,
4891 		GEN12_OAG_OACONTROL,
4892 		GEN12_OAG_OA_DEBUG,
4893 		GEN12_OAG_OASTATUS,
4894 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4895 	};
4896 }
4897 
4898 static void oa_init_groups(struct intel_gt *gt)
4899 {
4900 	int i, num_groups = gt->perf.num_perf_groups;
4901 
4902 	for (i = 0; i < num_groups; i++) {
4903 		struct i915_perf_group *g = &gt->perf.group[i];
4904 
4905 		/* Fused off engines can result in a group with num_engines == 0 */
4906 		if (g->num_engines == 0)
4907 			continue;
4908 
4909 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4910 			g->regs = __oag_regs();
4911 			g->type = TYPE_OAG;
4912 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4913 			g->regs = __oam_regs(mtl_oa_base[i]);
4914 			g->type = TYPE_OAM;
4915 		}
4916 	}
4917 }
4918 
4919 static int oa_init_gt(struct intel_gt *gt)
4920 {
4921 	u32 num_groups = num_perf_groups_per_gt(gt);
4922 	struct intel_engine_cs *engine;
4923 	struct i915_perf_group *g;
4924 	intel_engine_mask_t tmp;
4925 
4926 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4927 	if (!g)
4928 		return -ENOMEM;
4929 
4930 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4931 		u32 index = __oa_engine_group(engine);
4932 
4933 		engine->oa_group = NULL;
4934 		if (index < num_groups) {
4935 			g[index].num_engines++;
4936 			engine->oa_group = &g[index];
4937 		}
4938 	}
4939 
4940 	gt->perf.num_perf_groups = num_groups;
4941 	gt->perf.group = g;
4942 
4943 	oa_init_groups(gt);
4944 
4945 	return 0;
4946 }
4947 
4948 static int oa_init_engine_groups(struct i915_perf *perf)
4949 {
4950 	struct intel_gt *gt;
4951 	int i, ret;
4952 
4953 	for_each_gt(gt, perf->i915, i) {
4954 		ret = oa_init_gt(gt);
4955 		if (ret)
4956 			return ret;
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static void oa_init_supported_formats(struct i915_perf *perf)
4963 {
4964 	struct drm_i915_private *i915 = perf->i915;
4965 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4966 
4967 	switch (platform) {
4968 	case INTEL_HASWELL:
4969 		oa_format_add(perf, I915_OA_FORMAT_A13);
4970 		oa_format_add(perf, I915_OA_FORMAT_A13);
4971 		oa_format_add(perf, I915_OA_FORMAT_A29);
4972 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4973 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4974 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4975 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4976 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4977 		break;
4978 
4979 	case INTEL_BROADWELL:
4980 	case INTEL_CHERRYVIEW:
4981 	case INTEL_SKYLAKE:
4982 	case INTEL_BROXTON:
4983 	case INTEL_KABYLAKE:
4984 	case INTEL_GEMINILAKE:
4985 	case INTEL_COFFEELAKE:
4986 	case INTEL_COMETLAKE:
4987 	case INTEL_ICELAKE:
4988 	case INTEL_ELKHARTLAKE:
4989 	case INTEL_JASPERLAKE:
4990 	case INTEL_TIGERLAKE:
4991 	case INTEL_ROCKETLAKE:
4992 	case INTEL_DG1:
4993 	case INTEL_ALDERLAKE_S:
4994 	case INTEL_ALDERLAKE_P:
4995 		oa_format_add(perf, I915_OA_FORMAT_A12);
4996 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4997 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4998 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4999 		break;
5000 
5001 	case INTEL_DG2:
5002 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5003 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5004 		break;
5005 
5006 	case INTEL_METEORLAKE:
5007 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5008 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5009 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5010 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5011 		break;
5012 
5013 	default:
5014 		MISSING_CASE(platform);
5015 	}
5016 }
5017 
5018 static void i915_perf_init_info(struct drm_i915_private *i915)
5019 {
5020 	struct i915_perf *perf = &i915->perf;
5021 
5022 	switch (GRAPHICS_VER(i915)) {
5023 	case 8:
5024 		perf->ctx_oactxctrl_offset = 0x120;
5025 		perf->ctx_flexeu0_offset = 0x2ce;
5026 		perf->gen8_valid_ctx_bit = BIT(25);
5027 		break;
5028 	case 9:
5029 		perf->ctx_oactxctrl_offset = 0x128;
5030 		perf->ctx_flexeu0_offset = 0x3de;
5031 		perf->gen8_valid_ctx_bit = BIT(16);
5032 		break;
5033 	case 11:
5034 		perf->ctx_oactxctrl_offset = 0x124;
5035 		perf->ctx_flexeu0_offset = 0x78e;
5036 		perf->gen8_valid_ctx_bit = BIT(16);
5037 		break;
5038 	case 12:
5039 		perf->gen8_valid_ctx_bit = BIT(16);
5040 		/*
5041 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5042 		 * cache the value in perf->ctx_oactxctrl_offset.
5043 		 */
5044 		break;
5045 	default:
5046 		MISSING_CASE(GRAPHICS_VER(i915));
5047 	}
5048 }
5049 
5050 /**
5051  * i915_perf_init - initialize i915-perf state on module bind
5052  * @i915: i915 device instance
5053  *
5054  * Initializes i915-perf state without exposing anything to userspace.
5055  *
5056  * Note: i915-perf initialization is split into an 'init' and 'register'
5057  * phase with the i915_perf_register() exposing state to userspace.
5058  */
5059 int i915_perf_init(struct drm_i915_private *i915)
5060 {
5061 	struct i915_perf *perf = &i915->perf;
5062 
5063 	perf->oa_formats = oa_formats;
5064 	if (IS_HASWELL(i915)) {
5065 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5066 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5067 		perf->ops.is_valid_flex_reg = NULL;
5068 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5069 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5070 		perf->ops.oa_enable = gen7_oa_enable;
5071 		perf->ops.oa_disable = gen7_oa_disable;
5072 		perf->ops.read = gen7_oa_read;
5073 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5074 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5075 		/* Note: that although we could theoretically also support the
5076 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5077 		 * this driver, before upstreaming did this) it didn't seem
5078 		 * worth the complexity to maintain now that BDW+ enable
5079 		 * execlist mode by default.
5080 		 */
5081 		perf->ops.read = gen8_oa_read;
5082 		i915_perf_init_info(i915);
5083 
5084 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5085 			perf->ops.is_valid_b_counter_reg =
5086 				gen7_is_valid_b_counter_addr;
5087 			perf->ops.is_valid_mux_reg =
5088 				gen8_is_valid_mux_addr;
5089 			perf->ops.is_valid_flex_reg =
5090 				gen8_is_valid_flex_addr;
5091 
5092 			if (IS_CHERRYVIEW(i915)) {
5093 				perf->ops.is_valid_mux_reg =
5094 					chv_is_valid_mux_addr;
5095 			}
5096 
5097 			perf->ops.oa_enable = gen8_oa_enable;
5098 			perf->ops.oa_disable = gen8_oa_disable;
5099 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5100 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5101 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5102 		} else if (GRAPHICS_VER(i915) == 11) {
5103 			perf->ops.is_valid_b_counter_reg =
5104 				gen7_is_valid_b_counter_addr;
5105 			perf->ops.is_valid_mux_reg =
5106 				gen11_is_valid_mux_addr;
5107 			perf->ops.is_valid_flex_reg =
5108 				gen8_is_valid_flex_addr;
5109 
5110 			perf->ops.oa_enable = gen8_oa_enable;
5111 			perf->ops.oa_disable = gen8_oa_disable;
5112 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5113 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5114 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5115 		} else if (GRAPHICS_VER(i915) == 12) {
5116 			perf->ops.is_valid_b_counter_reg =
5117 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5118 				xehp_is_valid_b_counter_addr :
5119 				gen12_is_valid_b_counter_addr;
5120 			perf->ops.is_valid_mux_reg =
5121 				gen12_is_valid_mux_addr;
5122 			perf->ops.is_valid_flex_reg =
5123 				gen8_is_valid_flex_addr;
5124 
5125 			perf->ops.oa_enable = gen12_oa_enable;
5126 			perf->ops.oa_disable = gen12_oa_disable;
5127 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5128 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5129 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5130 		}
5131 	}
5132 
5133 	if (perf->ops.enable_metric_set) {
5134 		struct intel_gt *gt;
5135 		int i, ret;
5136 
5137 		for_each_gt(gt, i915, i)
5138 			mutex_init(&gt->perf.lock);
5139 
5140 		/* Choose a representative limit */
5141 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5142 
5143 		mutex_init(&perf->metrics_lock);
5144 		idr_init_base(&perf->metrics_idr, 1);
5145 
5146 		/* We set up some ratelimit state to potentially throttle any
5147 		 * _NOTES about spurious, invalid OA reports which we don't
5148 		 * forward to userspace.
5149 		 *
5150 		 * We print a _NOTE about any throttling when closing the
5151 		 * stream instead of waiting until driver _fini which no one
5152 		 * would ever see.
5153 		 *
5154 		 * Using the same limiting factors as printk_ratelimit()
5155 		 */
5156 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5157 		/* Since we use a DRM_NOTE for spurious reports it would be
5158 		 * inconsistent to let __ratelimit() automatically print a
5159 		 * warning for throttling.
5160 		 */
5161 		ratelimit_set_flags(&perf->spurious_report_rs,
5162 				    RATELIMIT_MSG_ON_RELEASE);
5163 
5164 		ratelimit_state_init(&perf->tail_pointer_race,
5165 				     5 * HZ, 10);
5166 		ratelimit_set_flags(&perf->tail_pointer_race,
5167 				    RATELIMIT_MSG_ON_RELEASE);
5168 
5169 		atomic64_set(&perf->noa_programming_delay,
5170 			     500 * 1000 /* 500us */);
5171 
5172 		perf->i915 = i915;
5173 
5174 		ret = oa_init_engine_groups(perf);
5175 		if (ret) {
5176 			drm_err(&i915->drm,
5177 				"OA initialization failed %d\n", ret);
5178 			return ret;
5179 		}
5180 
5181 		oa_init_supported_formats(perf);
5182 	}
5183 
5184 	return 0;
5185 }
5186 
5187 static int destroy_config(int id, void *p, void *data)
5188 {
5189 	i915_oa_config_put(p);
5190 	return 0;
5191 }
5192 
5193 int i915_perf_sysctl_register(void)
5194 {
5195 	sysctl_header = register_sysctl("dev/i915", oa_table);
5196 	return 0;
5197 }
5198 
5199 void i915_perf_sysctl_unregister(void)
5200 {
5201 	unregister_sysctl_table(sysctl_header);
5202 }
5203 
5204 /**
5205  * i915_perf_fini - Counter part to i915_perf_init()
5206  * @i915: i915 device instance
5207  */
5208 void i915_perf_fini(struct drm_i915_private *i915)
5209 {
5210 	struct i915_perf *perf = &i915->perf;
5211 	struct intel_gt *gt;
5212 	int i;
5213 
5214 	if (!perf->i915)
5215 		return;
5216 
5217 	for_each_gt(gt, perf->i915, i)
5218 		kfree(gt->perf.group);
5219 
5220 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5221 	idr_destroy(&perf->metrics_idr);
5222 
5223 	memset(&perf->ops, 0, sizeof(perf->ops));
5224 	perf->i915 = NULL;
5225 }
5226 
5227 /**
5228  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5229  * @i915: The i915 device
5230  *
5231  * This version number is used by userspace to detect available features.
5232  */
5233 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5234 {
5235 	/*
5236 	 * 1: Initial version
5237 	 *   I915_PERF_IOCTL_ENABLE
5238 	 *   I915_PERF_IOCTL_DISABLE
5239 	 *
5240 	 * 2: Added runtime modification of OA config.
5241 	 *   I915_PERF_IOCTL_CONFIG
5242 	 *
5243 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5244 	 *    preemption on a particular context so that performance data is
5245 	 *    accessible from a delta of MI_RPC reports without looking at the
5246 	 *    OA buffer.
5247 	 *
5248 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5249 	 *    be run for the duration of the performance recording based on
5250 	 *    their SSEU configuration.
5251 	 *
5252 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5253 	 *    interval for the hrtimer used to check for OA data.
5254 	 *
5255 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5256 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5257 	 *
5258 	 * 7: Add support for video decode and enhancement classes.
5259 	 */
5260 
5261 	/*
5262 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5263 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5264 	 * to indicate that OA media is not supported.
5265 	 */
5266 	if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5267 	    intel_check_bios_c6_setup(&i915->media_gt->rc6))
5268 		return 6;
5269 
5270 	return 7;
5271 }
5272 
5273 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5274 #include "selftests/i915_perf.c"
5275 #endif
5276