xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_regs.h"
208 #include "gt/intel_lrc.h"
209 #include "gt/intel_lrc_reg.h"
210 #include "gt/intel_ring.h"
211 
212 #include "i915_drv.h"
213 #include "i915_file_private.h"
214 #include "i915_perf.h"
215 #include "i915_perf_oa_regs.h"
216 
217 /* HW requires this to be a power of two, between 128k and 16M, though driver
218  * is currently generally designed assuming the largest 16M size is used such
219  * that the overflow cases are unlikely in normal operation.
220  */
221 #define OA_BUFFER_SIZE		SZ_16M
222 
223 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
224 
225 /**
226  * DOC: OA Tail Pointer Race
227  *
228  * There's a HW race condition between OA unit tail pointer register updates and
229  * writes to memory whereby the tail pointer can sometimes get ahead of what's
230  * been written out to the OA buffer so far (in terms of what's visible to the
231  * CPU).
232  *
233  * Although this can be observed explicitly while copying reports to userspace
234  * by checking for a zeroed report-id field in tail reports, we want to account
235  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
236  * redundant read() attempts.
237  *
238  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
239  * in the OA buffer, starting from the tail reported by the HW until we find a
240  * report with its first 2 dwords not 0 meaning its previous report is
241  * completely in memory and ready to be read. Those dwords are also set to 0
242  * once read and the whole buffer is cleared upon OA buffer initialization. The
243  * first dword is the reason for this report while the second is the timestamp,
244  * making the chances of having those 2 fields at 0 fairly unlikely. A more
245  * detailed explanation is available in oa_buffer_check_unlocked().
246  *
247  * Most of the implementation details for this workaround are in
248  * oa_buffer_check_unlocked() and _append_oa_reports()
249  *
250  * Note for posterity: previously the driver used to define an effective tail
251  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
252  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
253  * This was flawed considering that the OA unit may also automatically generate
254  * non-periodic reports (such as on context switch) or the OA unit may be
255  * enabled without any periodic sampling.
256  */
257 #define OA_TAIL_MARGIN_NSEC	100000ULL
258 #define INVALID_TAIL_PTR	0xffffffff
259 
260 /* The default frequency for checking whether the OA unit has written new
261  * reports to the circular OA buffer...
262  */
263 #define DEFAULT_POLL_FREQUENCY_HZ 200
264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
265 
266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
267 static u32 i915_perf_stream_paranoid = true;
268 
269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
270  * of the 64bit timestamp bits to trigger reports from) but there's currently
271  * no known use case for sampling as infrequently as once per 47 thousand years.
272  *
273  * Since the timestamps included in OA reports are only 32bits it seems
274  * reasonable to limit the OA exponent where it's still possible to account for
275  * overflow in OA report timestamps.
276  */
277 #define OA_EXPONENT_MAX 31
278 
279 #define INVALID_CTX_ID 0xffffffff
280 
281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
282 #define OAREPORT_REASON_MASK           0x3f
283 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
284 #define OAREPORT_REASON_SHIFT          19
285 #define OAREPORT_REASON_TIMER          (1<<0)
286 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
287 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
288 
289 
290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
291  *
292  * The highest sampling frequency we can theoretically program the OA unit
293  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
294  *
295  * Initialized just before we register the sysctl parameter.
296  */
297 static int oa_sample_rate_hard_limit;
298 
299 /* Theoretically we can program the OA unit to sample every 160ns but don't
300  * allow that by default unless root...
301  *
302  * The default threshold of 100000Hz is based on perf's similar
303  * kernel.perf_event_max_sample_rate sysctl parameter.
304  */
305 static u32 i915_oa_max_sample_rate = 100000;
306 
307 /* XXX: beware if future OA HW adds new report formats that the current
308  * code assumes all reports have a power-of-two size and ~(size - 1) can
309  * be used as a mask to align the OA tail pointer.
310  */
311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
312 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
313 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
314 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
315 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
316 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
317 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
318 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
319 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
320 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
321 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
322 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
323 };
324 
325 #define SAMPLE_OA_REPORT      (1<<0)
326 
327 /**
328  * struct perf_open_properties - for validated properties given to open a stream
329  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
330  * @single_context: Whether a single or all gpu contexts should be monitored
331  * @hold_preemption: Whether the preemption is disabled for the filtered
332  *                   context
333  * @ctx_handle: A gem ctx handle for use with @single_context
334  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
335  * @oa_format: An OA unit HW report format
336  * @oa_periodic: Whether to enable periodic OA unit sampling
337  * @oa_period_exponent: The OA unit sampling period is derived from this
338  * @engine: The engine (typically rcs0) being monitored by the OA unit
339  * @has_sseu: Whether @sseu was specified by userspace
340  * @sseu: internal SSEU configuration computed either from the userspace
341  *        specified configuration in the opening parameters or a default value
342  *        (see get_default_sseu_config())
343  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
344  * data availability
345  *
346  * As read_properties_unlocked() enumerates and validates the properties given
347  * to open a stream of metrics the configuration is built up in the structure
348  * which starts out zero initialized.
349  */
350 struct perf_open_properties {
351 	u32 sample_flags;
352 
353 	u64 single_context:1;
354 	u64 hold_preemption:1;
355 	u64 ctx_handle;
356 
357 	/* OA sampling state */
358 	int metrics_set;
359 	int oa_format;
360 	bool oa_periodic;
361 	int oa_period_exponent;
362 
363 	struct intel_engine_cs *engine;
364 
365 	bool has_sseu;
366 	struct intel_sseu sseu;
367 
368 	u64 poll_oa_period;
369 };
370 
371 struct i915_oa_config_bo {
372 	struct llist_node node;
373 
374 	struct i915_oa_config *oa_config;
375 	struct i915_vma *vma;
376 };
377 
378 static struct ctl_table_header *sysctl_header;
379 
380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
381 
382 void i915_oa_config_release(struct kref *ref)
383 {
384 	struct i915_oa_config *oa_config =
385 		container_of(ref, typeof(*oa_config), ref);
386 
387 	kfree(oa_config->flex_regs);
388 	kfree(oa_config->b_counter_regs);
389 	kfree(oa_config->mux_regs);
390 
391 	kfree_rcu(oa_config, rcu);
392 }
393 
394 struct i915_oa_config *
395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396 {
397 	struct i915_oa_config *oa_config;
398 
399 	rcu_read_lock();
400 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
401 	if (oa_config)
402 		oa_config = i915_oa_config_get(oa_config);
403 	rcu_read_unlock();
404 
405 	return oa_config;
406 }
407 
408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
409 {
410 	i915_oa_config_put(oa_bo->oa_config);
411 	i915_vma_put(oa_bo->vma);
412 	kfree(oa_bo);
413 }
414 
415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
416 {
417 	struct intel_uncore *uncore = stream->uncore;
418 
419 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
420 	       GEN12_OAG_OATAILPTR_MASK;
421 }
422 
423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
424 {
425 	struct intel_uncore *uncore = stream->uncore;
426 
427 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
428 }
429 
430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
431 {
432 	struct intel_uncore *uncore = stream->uncore;
433 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
434 
435 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
436 }
437 
438 /**
439  * oa_buffer_check_unlocked - check for data and update tail ptr state
440  * @stream: i915 stream instance
441  *
442  * This is either called via fops (for blocking reads in user ctx) or the poll
443  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
444  * if there is data available for userspace to read.
445  *
446  * This function is central to providing a workaround for the OA unit tail
447  * pointer having a race with respect to what data is visible to the CPU.
448  * It is responsible for reading tail pointers from the hardware and giving
449  * the pointers time to 'age' before they are made available for reading.
450  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451  *
452  * Besides returning true when there is data available to read() this function
453  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
454  * object.
455  *
456  * Note: It's safe to read OA config state here unlocked, assuming that this is
457  * only called while the stream is enabled, while the global OA configuration
458  * can't be modified.
459  *
460  * Returns: %true if the OA buffer contains data, else %false
461  */
462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
463 {
464 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
465 	int report_size = stream->oa_buffer.format_size;
466 	unsigned long flags;
467 	bool pollin;
468 	u32 hw_tail;
469 	u64 now;
470 
471 	/* We have to consider the (unlikely) possibility that read() errors
472 	 * could result in an OA buffer reset which might reset the head and
473 	 * tail state.
474 	 */
475 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
476 
477 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
478 
479 	/* The tail pointer increases in 64 byte increments,
480 	 * not in report_size steps...
481 	 */
482 	hw_tail &= ~(report_size - 1);
483 
484 	now = ktime_get_mono_fast_ns();
485 
486 	if (hw_tail == stream->oa_buffer.aging_tail &&
487 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
488 		/* If the HW tail hasn't move since the last check and the HW
489 		 * tail has been aging for long enough, declare it the new
490 		 * tail.
491 		 */
492 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
493 	} else {
494 		u32 head, tail, aged_tail;
495 
496 		/* NB: The head we observe here might effectively be a little
497 		 * out of date. If a read() is in progress, the head could be
498 		 * anywhere between this head and stream->oa_buffer.tail.
499 		 */
500 		head = stream->oa_buffer.head - gtt_offset;
501 		aged_tail = stream->oa_buffer.tail - gtt_offset;
502 
503 		hw_tail -= gtt_offset;
504 		tail = hw_tail;
505 
506 		/* Walk the stream backward until we find a report with dword 0
507 		 * & 1 not at 0. Since the circular buffer pointers progress by
508 		 * increments of 64 bytes and that reports can be up to 256
509 		 * bytes long, we can't tell whether a report has fully landed
510 		 * in memory before the first 2 dwords of the following report
511 		 * have effectively landed.
512 		 *
513 		 * This is assuming that the writes of the OA unit land in
514 		 * memory in the order they were written to.
515 		 * If not : (╯°□°)╯︵ ┻━┻
516 		 */
517 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
518 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
519 
520 			if (report32[0] != 0 || report32[1] != 0)
521 				break;
522 
523 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
524 		}
525 
526 		if (OA_TAKEN(hw_tail, tail) > report_size &&
527 		    __ratelimit(&stream->perf->tail_pointer_race))
528 			DRM_NOTE("unlanded report(s) head=0x%x "
529 				 "tail=0x%x hw_tail=0x%x\n",
530 				 head, tail, hw_tail);
531 
532 		stream->oa_buffer.tail = gtt_offset + tail;
533 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
534 		stream->oa_buffer.aging_timestamp = now;
535 	}
536 
537 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
538 			  stream->oa_buffer.head - gtt_offset) >= report_size;
539 
540 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
541 
542 	return pollin;
543 }
544 
545 /**
546  * append_oa_status - Appends a status record to a userspace read() buffer.
547  * @stream: An i915-perf stream opened for OA metrics
548  * @buf: destination buffer given by userspace
549  * @count: the number of bytes userspace wants to read
550  * @offset: (inout): the current position for writing into @buf
551  * @type: The kind of status to report to userspace
552  *
553  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
554  * into the userspace read() buffer.
555  *
556  * The @buf @offset will only be updated on success.
557  *
558  * Returns: 0 on success, negative error code on failure.
559  */
560 static int append_oa_status(struct i915_perf_stream *stream,
561 			    char __user *buf,
562 			    size_t count,
563 			    size_t *offset,
564 			    enum drm_i915_perf_record_type type)
565 {
566 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567 
568 	if ((count - *offset) < header.size)
569 		return -ENOSPC;
570 
571 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 		return -EFAULT;
573 
574 	(*offset) += header.size;
575 
576 	return 0;
577 }
578 
579 /**
580  * append_oa_sample - Copies single OA report into userspace read() buffer.
581  * @stream: An i915-perf stream opened for OA metrics
582  * @buf: destination buffer given by userspace
583  * @count: the number of bytes userspace wants to read
584  * @offset: (inout): the current position for writing into @buf
585  * @report: A single OA report to (optionally) include as part of the sample
586  *
587  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
588  * properties when opening a stream, tracked as `stream->sample_flags`. This
589  * function copies the requested components of a single sample to the given
590  * read() @buf.
591  *
592  * The @buf @offset will only be updated on success.
593  *
594  * Returns: 0 on success, negative error code on failure.
595  */
596 static int append_oa_sample(struct i915_perf_stream *stream,
597 			    char __user *buf,
598 			    size_t count,
599 			    size_t *offset,
600 			    const u8 *report)
601 {
602 	int report_size = stream->oa_buffer.format_size;
603 	struct drm_i915_perf_record_header header;
604 
605 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 	header.pad = 0;
607 	header.size = stream->sample_size;
608 
609 	if ((count - *offset) < header.size)
610 		return -ENOSPC;
611 
612 	buf += *offset;
613 	if (copy_to_user(buf, &header, sizeof(header)))
614 		return -EFAULT;
615 	buf += sizeof(header);
616 
617 	if (copy_to_user(buf, report, report_size))
618 		return -EFAULT;
619 
620 	(*offset) += header.size;
621 
622 	return 0;
623 }
624 
625 /**
626  * gen8_append_oa_reports - Copies all buffered OA reports into
627  *			    userspace read() buffer.
628  * @stream: An i915-perf stream opened for OA metrics
629  * @buf: destination buffer given by userspace
630  * @count: the number of bytes userspace wants to read
631  * @offset: (inout): the current position for writing into @buf
632  *
633  * Notably any error condition resulting in a short read (-%ENOSPC or
634  * -%EFAULT) will be returned even though one or more records may
635  * have been successfully copied. In this case it's up to the caller
636  * to decide if the error should be squashed before returning to
637  * userspace.
638  *
639  * Note: reports are consumed from the head, and appended to the
640  * tail, so the tail chases the head?... If you think that's mad
641  * and back-to-front you're not alone, but this follows the
642  * Gen PRM naming convention.
643  *
644  * Returns: 0 on success, negative error code on failure.
645  */
646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 				  char __user *buf,
648 				  size_t count,
649 				  size_t *offset)
650 {
651 	struct intel_uncore *uncore = stream->uncore;
652 	int report_size = stream->oa_buffer.format_size;
653 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
654 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
655 	u32 mask = (OA_BUFFER_SIZE - 1);
656 	size_t start_offset = *offset;
657 	unsigned long flags;
658 	u32 head, tail;
659 	u32 taken;
660 	int ret = 0;
661 
662 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
663 		return -EIO;
664 
665 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
666 
667 	head = stream->oa_buffer.head;
668 	tail = stream->oa_buffer.tail;
669 
670 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
671 
672 	/*
673 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
674 	 * while indexing relative to oa_buf_base.
675 	 */
676 	head -= gtt_offset;
677 	tail -= gtt_offset;
678 
679 	/*
680 	 * An out of bounds or misaligned head or tail pointer implies a driver
681 	 * bug since we validate + align the tail pointers we read from the
682 	 * hardware and we are in full control of the head pointer which should
683 	 * only be incremented by multiples of the report size (notably also
684 	 * all a power of two).
685 	 */
686 	if (drm_WARN_ONCE(&uncore->i915->drm,
687 			  head > OA_BUFFER_SIZE || head % report_size ||
688 			  tail > OA_BUFFER_SIZE || tail % report_size,
689 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
690 			  head, tail))
691 		return -EIO;
692 
693 
694 	for (/* none */;
695 	     (taken = OA_TAKEN(tail, head));
696 	     head = (head + report_size) & mask) {
697 		u8 *report = oa_buf_base + head;
698 		u32 *report32 = (void *)report;
699 		u32 ctx_id;
700 		u32 reason;
701 
702 		/*
703 		 * All the report sizes factor neatly into the buffer
704 		 * size so we never expect to see a report split
705 		 * between the beginning and end of the buffer.
706 		 *
707 		 * Given the initial alignment check a misalignment
708 		 * here would imply a driver bug that would result
709 		 * in an overrun.
710 		 */
711 		if (drm_WARN_ON(&uncore->i915->drm,
712 				(OA_BUFFER_SIZE - head) < report_size)) {
713 			drm_err(&uncore->i915->drm,
714 				"Spurious OA head ptr: non-integral report offset\n");
715 			break;
716 		}
717 
718 		/*
719 		 * The reason field includes flags identifying what
720 		 * triggered this specific report (mostly timer
721 		 * triggered or e.g. due to a context switch).
722 		 *
723 		 * This field is never expected to be zero so we can
724 		 * check that the report isn't invalid before copying
725 		 * it to userspace...
726 		 */
727 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
728 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
729 			   OAREPORT_REASON_MASK_EXTENDED :
730 			   OAREPORT_REASON_MASK));
731 
732 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
733 
734 		/*
735 		 * Squash whatever is in the CTX_ID field if it's marked as
736 		 * invalid to be sure we avoid false-positive, single-context
737 		 * filtering below...
738 		 *
739 		 * Note: that we don't clear the valid_ctx_bit so userspace can
740 		 * understand that the ID has been squashed by the kernel.
741 		 */
742 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
743 		    GRAPHICS_VER(stream->perf->i915) <= 11)
744 			ctx_id = report32[2] = INVALID_CTX_ID;
745 
746 		/*
747 		 * NB: For Gen 8 the OA unit no longer supports clock gating
748 		 * off for a specific context and the kernel can't securely
749 		 * stop the counters from updating as system-wide / global
750 		 * values.
751 		 *
752 		 * Automatic reports now include a context ID so reports can be
753 		 * filtered on the cpu but it's not worth trying to
754 		 * automatically subtract/hide counter progress for other
755 		 * contexts while filtering since we can't stop userspace
756 		 * issuing MI_REPORT_PERF_COUNT commands which would still
757 		 * provide a side-band view of the real values.
758 		 *
759 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
760 		 * to normalize counters for a single filtered context then it
761 		 * needs be forwarded bookend context-switch reports so that it
762 		 * can track switches in between MI_REPORT_PERF_COUNT commands
763 		 * and can itself subtract/ignore the progress of counters
764 		 * associated with other contexts. Note that the hardware
765 		 * automatically triggers reports when switching to a new
766 		 * context which are tagged with the ID of the newly active
767 		 * context. To avoid the complexity (and likely fragility) of
768 		 * reading ahead while parsing reports to try and minimize
769 		 * forwarding redundant context switch reports (i.e. between
770 		 * other, unrelated contexts) we simply elect to forward them
771 		 * all.
772 		 *
773 		 * We don't rely solely on the reason field to identify context
774 		 * switches since it's not-uncommon for periodic samples to
775 		 * identify a switch before any 'context switch' report.
776 		 */
777 		if (!stream->perf->exclusive_stream->ctx ||
778 		    stream->specific_ctx_id == ctx_id ||
779 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
780 		    reason & OAREPORT_REASON_CTX_SWITCH) {
781 
782 			/*
783 			 * While filtering for a single context we avoid
784 			 * leaking the IDs of other contexts.
785 			 */
786 			if (stream->perf->exclusive_stream->ctx &&
787 			    stream->specific_ctx_id != ctx_id) {
788 				report32[2] = INVALID_CTX_ID;
789 			}
790 
791 			ret = append_oa_sample(stream, buf, count, offset,
792 					       report);
793 			if (ret)
794 				break;
795 
796 			stream->oa_buffer.last_ctx_id = ctx_id;
797 		}
798 
799 		/*
800 		 * Clear out the first 2 dword as a mean to detect unlanded
801 		 * reports.
802 		 */
803 		report32[0] = 0;
804 		report32[1] = 0;
805 	}
806 
807 	if (start_offset != *offset) {
808 		i915_reg_t oaheadptr;
809 
810 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
811 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
812 
813 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
814 
815 		/*
816 		 * We removed the gtt_offset for the copy loop above, indexing
817 		 * relative to oa_buf_base so put back here...
818 		 */
819 		head += gtt_offset;
820 		intel_uncore_write(uncore, oaheadptr,
821 				   head & GEN12_OAG_OAHEADPTR_MASK);
822 		stream->oa_buffer.head = head;
823 
824 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
825 	}
826 
827 	return ret;
828 }
829 
830 /**
831  * gen8_oa_read - copy status records then buffered OA reports
832  * @stream: An i915-perf stream opened for OA metrics
833  * @buf: destination buffer given by userspace
834  * @count: the number of bytes userspace wants to read
835  * @offset: (inout): the current position for writing into @buf
836  *
837  * Checks OA unit status registers and if necessary appends corresponding
838  * status records for userspace (such as for a buffer full condition) and then
839  * initiate appending any buffered OA reports.
840  *
841  * Updates @offset according to the number of bytes successfully copied into
842  * the userspace buffer.
843  *
844  * NB: some data may be successfully copied to the userspace buffer
845  * even if an error is returned, and this is reflected in the
846  * updated @offset.
847  *
848  * Returns: zero on success or a negative error code
849  */
850 static int gen8_oa_read(struct i915_perf_stream *stream,
851 			char __user *buf,
852 			size_t count,
853 			size_t *offset)
854 {
855 	struct intel_uncore *uncore = stream->uncore;
856 	u32 oastatus;
857 	i915_reg_t oastatus_reg;
858 	int ret;
859 
860 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
861 		return -EIO;
862 
863 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
864 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
865 
866 	oastatus = intel_uncore_read(uncore, oastatus_reg);
867 
868 	/*
869 	 * We treat OABUFFER_OVERFLOW as a significant error:
870 	 *
871 	 * Although theoretically we could handle this more gracefully
872 	 * sometimes, some Gens don't correctly suppress certain
873 	 * automatically triggered reports in this condition and so we
874 	 * have to assume that old reports are now being trampled
875 	 * over.
876 	 *
877 	 * Considering how we don't currently give userspace control
878 	 * over the OA buffer size and always configure a large 16MB
879 	 * buffer, then a buffer overflow does anyway likely indicate
880 	 * that something has gone quite badly wrong.
881 	 */
882 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
883 		ret = append_oa_status(stream, buf, count, offset,
884 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
885 		if (ret)
886 			return ret;
887 
888 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
889 			  stream->period_exponent);
890 
891 		stream->perf->ops.oa_disable(stream);
892 		stream->perf->ops.oa_enable(stream);
893 
894 		/*
895 		 * Note: .oa_enable() is expected to re-init the oabuffer and
896 		 * reset GEN8_OASTATUS for us
897 		 */
898 		oastatus = intel_uncore_read(uncore, oastatus_reg);
899 	}
900 
901 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
902 		ret = append_oa_status(stream, buf, count, offset,
903 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
904 		if (ret)
905 			return ret;
906 
907 		intel_uncore_rmw(uncore, oastatus_reg,
908 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
909 				 GEN8_OASTATUS_REPORT_LOST,
910 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
911 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
912 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
913 	}
914 
915 	return gen8_append_oa_reports(stream, buf, count, offset);
916 }
917 
918 /**
919  * gen7_append_oa_reports - Copies all buffered OA reports into
920  *			    userspace read() buffer.
921  * @stream: An i915-perf stream opened for OA metrics
922  * @buf: destination buffer given by userspace
923  * @count: the number of bytes userspace wants to read
924  * @offset: (inout): the current position for writing into @buf
925  *
926  * Notably any error condition resulting in a short read (-%ENOSPC or
927  * -%EFAULT) will be returned even though one or more records may
928  * have been successfully copied. In this case it's up to the caller
929  * to decide if the error should be squashed before returning to
930  * userspace.
931  *
932  * Note: reports are consumed from the head, and appended to the
933  * tail, so the tail chases the head?... If you think that's mad
934  * and back-to-front you're not alone, but this follows the
935  * Gen PRM naming convention.
936  *
937  * Returns: 0 on success, negative error code on failure.
938  */
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 				  char __user *buf,
941 				  size_t count,
942 				  size_t *offset)
943 {
944 	struct intel_uncore *uncore = stream->uncore;
945 	int report_size = stream->oa_buffer.format_size;
946 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
947 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948 	u32 mask = (OA_BUFFER_SIZE - 1);
949 	size_t start_offset = *offset;
950 	unsigned long flags;
951 	u32 head, tail;
952 	u32 taken;
953 	int ret = 0;
954 
955 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 		return -EIO;
957 
958 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959 
960 	head = stream->oa_buffer.head;
961 	tail = stream->oa_buffer.tail;
962 
963 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964 
965 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
966 	 * while indexing relative to oa_buf_base.
967 	 */
968 	head -= gtt_offset;
969 	tail -= gtt_offset;
970 
971 	/* An out of bounds or misaligned head or tail pointer implies a driver
972 	 * bug since we validate + align the tail pointers we read from the
973 	 * hardware and we are in full control of the head pointer which should
974 	 * only be incremented by multiples of the report size (notably also
975 	 * all a power of two).
976 	 */
977 	if (drm_WARN_ONCE(&uncore->i915->drm,
978 			  head > OA_BUFFER_SIZE || head % report_size ||
979 			  tail > OA_BUFFER_SIZE || tail % report_size,
980 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
981 			  head, tail))
982 		return -EIO;
983 
984 
985 	for (/* none */;
986 	     (taken = OA_TAKEN(tail, head));
987 	     head = (head + report_size) & mask) {
988 		u8 *report = oa_buf_base + head;
989 		u32 *report32 = (void *)report;
990 
991 		/* All the report sizes factor neatly into the buffer
992 		 * size so we never expect to see a report split
993 		 * between the beginning and end of the buffer.
994 		 *
995 		 * Given the initial alignment check a misalignment
996 		 * here would imply a driver bug that would result
997 		 * in an overrun.
998 		 */
999 		if (drm_WARN_ON(&uncore->i915->drm,
1000 				(OA_BUFFER_SIZE - head) < report_size)) {
1001 			drm_err(&uncore->i915->drm,
1002 				"Spurious OA head ptr: non-integral report offset\n");
1003 			break;
1004 		}
1005 
1006 		/* The report-ID field for periodic samples includes
1007 		 * some undocumented flags related to what triggered
1008 		 * the report and is never expected to be zero so we
1009 		 * can check that the report isn't invalid before
1010 		 * copying it to userspace...
1011 		 */
1012 		if (report32[0] == 0) {
1013 			if (__ratelimit(&stream->perf->spurious_report_rs))
1014 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 			continue;
1016 		}
1017 
1018 		ret = append_oa_sample(stream, buf, count, offset, report);
1019 		if (ret)
1020 			break;
1021 
1022 		/* Clear out the first 2 dwords as a mean to detect unlanded
1023 		 * reports.
1024 		 */
1025 		report32[0] = 0;
1026 		report32[1] = 0;
1027 	}
1028 
1029 	if (start_offset != *offset) {
1030 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031 
1032 		/* We removed the gtt_offset for the copy loop above, indexing
1033 		 * relative to oa_buf_base so put back here...
1034 		 */
1035 		head += gtt_offset;
1036 
1037 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1038 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1039 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040 		stream->oa_buffer.head = head;
1041 
1042 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /**
1049  * gen7_oa_read - copy status records then buffered OA reports
1050  * @stream: An i915-perf stream opened for OA metrics
1051  * @buf: destination buffer given by userspace
1052  * @count: the number of bytes userspace wants to read
1053  * @offset: (inout): the current position for writing into @buf
1054  *
1055  * Checks Gen 7 specific OA unit status registers and if necessary appends
1056  * corresponding status records for userspace (such as for a buffer full
1057  * condition) and then initiate appending any buffered OA reports.
1058  *
1059  * Updates @offset according to the number of bytes successfully copied into
1060  * the userspace buffer.
1061  *
1062  * Returns: zero on success or a negative error code
1063  */
1064 static int gen7_oa_read(struct i915_perf_stream *stream,
1065 			char __user *buf,
1066 			size_t count,
1067 			size_t *offset)
1068 {
1069 	struct intel_uncore *uncore = stream->uncore;
1070 	u32 oastatus1;
1071 	int ret;
1072 
1073 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 		return -EIO;
1075 
1076 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077 
1078 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1079 	 * bits while the OA unit is enabled (while the tail pointer
1080 	 * may be updated asynchronously) so we ignore status bits
1081 	 * that have already been reported to userspace.
1082 	 */
1083 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084 
1085 	/* We treat OABUFFER_OVERFLOW as a significant error:
1086 	 *
1087 	 * - The status can be interpreted to mean that the buffer is
1088 	 *   currently full (with a higher precedence than OA_TAKEN()
1089 	 *   which will start to report a near-empty buffer after an
1090 	 *   overflow) but it's awkward that we can't clear the status
1091 	 *   on Haswell, so without a reset we won't be able to catch
1092 	 *   the state again.
1093 	 *
1094 	 * - Since it also implies the HW has started overwriting old
1095 	 *   reports it may also affect our sanity checks for invalid
1096 	 *   reports when copying to userspace that assume new reports
1097 	 *   are being written to cleared memory.
1098 	 *
1099 	 * - In the future we may want to introduce a flight recorder
1100 	 *   mode where the driver will automatically maintain a safe
1101 	 *   guard band between head/tail, avoiding this overflow
1102 	 *   condition, but we avoid the added driver complexity for
1103 	 *   now.
1104 	 */
1105 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106 		ret = append_oa_status(stream, buf, count, offset,
1107 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108 		if (ret)
1109 			return ret;
1110 
1111 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112 			  stream->period_exponent);
1113 
1114 		stream->perf->ops.oa_disable(stream);
1115 		stream->perf->ops.oa_enable(stream);
1116 
1117 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 	}
1119 
1120 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121 		ret = append_oa_status(stream, buf, count, offset,
1122 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123 		if (ret)
1124 			return ret;
1125 		stream->perf->gen7_latched_oastatus1 |=
1126 			GEN7_OASTATUS1_REPORT_LOST;
1127 	}
1128 
1129 	return gen7_append_oa_reports(stream, buf, count, offset);
1130 }
1131 
1132 /**
1133  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134  * @stream: An i915-perf stream opened for OA metrics
1135  *
1136  * Called when userspace tries to read() from a blocking stream FD opened
1137  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138  * OA buffer and wakes us.
1139  *
1140  * Note: it's acceptable to have this return with some false positives
1141  * since any subsequent read handling will return -EAGAIN if there isn't
1142  * really data ready for userspace yet.
1143  *
1144  * Returns: zero on success or a negative error code
1145  */
1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147 {
1148 	/* We would wait indefinitely if periodic sampling is not enabled */
1149 	if (!stream->periodic)
1150 		return -EIO;
1151 
1152 	return wait_event_interruptible(stream->poll_wq,
1153 					oa_buffer_check_unlocked(stream));
1154 }
1155 
1156 /**
1157  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158  * @stream: An i915-perf stream opened for OA metrics
1159  * @file: An i915 perf stream file
1160  * @wait: poll() state table
1161  *
1162  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164  * when it sees data ready to read in the circular OA buffer.
1165  */
1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167 			      struct file *file,
1168 			      poll_table *wait)
1169 {
1170 	poll_wait(file, &stream->poll_wq, wait);
1171 }
1172 
1173 /**
1174  * i915_oa_read - just calls through to &i915_oa_ops->read
1175  * @stream: An i915-perf stream opened for OA metrics
1176  * @buf: destination buffer given by userspace
1177  * @count: the number of bytes userspace wants to read
1178  * @offset: (inout): the current position for writing into @buf
1179  *
1180  * Updates @offset according to the number of bytes successfully copied into
1181  * the userspace buffer.
1182  *
1183  * Returns: zero on success or a negative error code
1184  */
1185 static int i915_oa_read(struct i915_perf_stream *stream,
1186 			char __user *buf,
1187 			size_t count,
1188 			size_t *offset)
1189 {
1190 	return stream->perf->ops.read(stream, buf, count, offset);
1191 }
1192 
1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194 {
1195 	struct i915_gem_engines_iter it;
1196 	struct i915_gem_context *ctx = stream->ctx;
1197 	struct intel_context *ce;
1198 	struct i915_gem_ww_ctx ww;
1199 	int err = -ENODEV;
1200 
1201 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1202 		if (ce->engine != stream->engine) /* first match! */
1203 			continue;
1204 
1205 		err = 0;
1206 		break;
1207 	}
1208 	i915_gem_context_unlock_engines(ctx);
1209 
1210 	if (err)
1211 		return ERR_PTR(err);
1212 
1213 	i915_gem_ww_ctx_init(&ww, true);
1214 retry:
1215 	/*
1216 	 * As the ID is the gtt offset of the context's vma we
1217 	 * pin the vma to ensure the ID remains fixed.
1218 	 */
1219 	err = intel_context_pin_ww(ce, &ww);
1220 	if (err == -EDEADLK) {
1221 		err = i915_gem_ww_ctx_backoff(&ww);
1222 		if (!err)
1223 			goto retry;
1224 	}
1225 	i915_gem_ww_ctx_fini(&ww);
1226 
1227 	if (err)
1228 		return ERR_PTR(err);
1229 
1230 	stream->pinned_ctx = ce;
1231 	return stream->pinned_ctx;
1232 }
1233 
1234 /**
1235  * oa_get_render_ctx_id - determine and hold ctx hw id
1236  * @stream: An i915-perf stream opened for OA metrics
1237  *
1238  * Determine the render context hw id, and ensure it remains fixed for the
1239  * lifetime of the stream. This ensures that we don't have to worry about
1240  * updating the context ID in OACONTROL on the fly.
1241  *
1242  * Returns: zero on success or a negative error code
1243  */
1244 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1245 {
1246 	struct intel_context *ce;
1247 
1248 	ce = oa_pin_context(stream);
1249 	if (IS_ERR(ce))
1250 		return PTR_ERR(ce);
1251 
1252 	switch (GRAPHICS_VER(ce->engine->i915)) {
1253 	case 7: {
1254 		/*
1255 		 * On Haswell we don't do any post processing of the reports
1256 		 * and don't need to use the mask.
1257 		 */
1258 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1259 		stream->specific_ctx_id_mask = 0;
1260 		break;
1261 	}
1262 
1263 	case 8:
1264 	case 9:
1265 		if (intel_engine_uses_guc(ce->engine)) {
1266 			/*
1267 			 * When using GuC, the context descriptor we write in
1268 			 * i915 is read by GuC and rewritten before it's
1269 			 * actually written into the hardware. The LRCA is
1270 			 * what is put into the context id field of the
1271 			 * context descriptor by GuC. Because it's aligned to
1272 			 * a page, the lower 12bits are always at 0 and
1273 			 * dropped by GuC. They won't be part of the context
1274 			 * ID in the OA reports, so squash those lower bits.
1275 			 */
1276 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1277 
1278 			/*
1279 			 * GuC uses the top bit to signal proxy submission, so
1280 			 * ignore that bit.
1281 			 */
1282 			stream->specific_ctx_id_mask =
1283 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1284 		} else {
1285 			stream->specific_ctx_id_mask =
1286 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1287 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1288 		}
1289 		break;
1290 
1291 	case 11:
1292 	case 12:
1293 		if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) {
1294 			stream->specific_ctx_id_mask =
1295 				((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1296 				(XEHP_SW_CTX_ID_SHIFT - 32);
1297 			stream->specific_ctx_id =
1298 				(XEHP_MAX_CONTEXT_HW_ID - 1) <<
1299 				(XEHP_SW_CTX_ID_SHIFT - 32);
1300 		} else {
1301 			stream->specific_ctx_id_mask =
1302 				((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1303 			/*
1304 			 * Pick an unused context id
1305 			 * 0 - BITS_PER_LONG are used by other contexts
1306 			 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1307 			 */
1308 			stream->specific_ctx_id =
1309 				(GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1310 		}
1311 		break;
1312 
1313 	default:
1314 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1315 	}
1316 
1317 	ce->tag = stream->specific_ctx_id;
1318 
1319 	drm_dbg(&stream->perf->i915->drm,
1320 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1321 		stream->specific_ctx_id,
1322 		stream->specific_ctx_id_mask);
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1329  * @stream: An i915-perf stream opened for OA metrics
1330  *
1331  * In case anything needed doing to ensure the context HW ID would remain valid
1332  * for the lifetime of the stream, then that can be undone here.
1333  */
1334 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1335 {
1336 	struct intel_context *ce;
1337 
1338 	ce = fetch_and_zero(&stream->pinned_ctx);
1339 	if (ce) {
1340 		ce->tag = 0; /* recomputed on next submission after parking */
1341 		intel_context_unpin(ce);
1342 	}
1343 
1344 	stream->specific_ctx_id = INVALID_CTX_ID;
1345 	stream->specific_ctx_id_mask = 0;
1346 }
1347 
1348 static void
1349 free_oa_buffer(struct i915_perf_stream *stream)
1350 {
1351 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1352 				   I915_VMA_RELEASE_MAP);
1353 
1354 	stream->oa_buffer.vaddr = NULL;
1355 }
1356 
1357 static void
1358 free_oa_configs(struct i915_perf_stream *stream)
1359 {
1360 	struct i915_oa_config_bo *oa_bo, *tmp;
1361 
1362 	i915_oa_config_put(stream->oa_config);
1363 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1364 		free_oa_config_bo(oa_bo);
1365 }
1366 
1367 static void
1368 free_noa_wait(struct i915_perf_stream *stream)
1369 {
1370 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1371 }
1372 
1373 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1374 {
1375 	struct i915_perf *perf = stream->perf;
1376 
1377 	BUG_ON(stream != perf->exclusive_stream);
1378 
1379 	/*
1380 	 * Unset exclusive_stream first, it will be checked while disabling
1381 	 * the metric set on gen8+.
1382 	 *
1383 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1384 	 */
1385 	WRITE_ONCE(perf->exclusive_stream, NULL);
1386 	perf->ops.disable_metric_set(stream);
1387 
1388 	free_oa_buffer(stream);
1389 
1390 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1391 	intel_engine_pm_put(stream->engine);
1392 
1393 	if (stream->ctx)
1394 		oa_put_render_ctx_id(stream);
1395 
1396 	free_oa_configs(stream);
1397 	free_noa_wait(stream);
1398 
1399 	if (perf->spurious_report_rs.missed) {
1400 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1401 			 perf->spurious_report_rs.missed);
1402 	}
1403 }
1404 
1405 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1406 {
1407 	struct intel_uncore *uncore = stream->uncore;
1408 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1409 	unsigned long flags;
1410 
1411 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1412 
1413 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1414 	 * before OASTATUS1, but after OASTATUS2
1415 	 */
1416 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1417 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1418 	stream->oa_buffer.head = gtt_offset;
1419 
1420 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1421 
1422 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1423 			   gtt_offset | OABUFFER_SIZE_16M);
1424 
1425 	/* Mark that we need updated tail pointers to read from... */
1426 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1427 	stream->oa_buffer.tail = gtt_offset;
1428 
1429 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1430 
1431 	/* On Haswell we have to track which OASTATUS1 flags we've
1432 	 * already seen since they can't be cleared while periodic
1433 	 * sampling is enabled.
1434 	 */
1435 	stream->perf->gen7_latched_oastatus1 = 0;
1436 
1437 	/* NB: although the OA buffer will initially be allocated
1438 	 * zeroed via shmfs (and so this memset is redundant when
1439 	 * first allocating), we may re-init the OA buffer, either
1440 	 * when re-enabling a stream or in error/reset paths.
1441 	 *
1442 	 * The reason we clear the buffer for each re-init is for the
1443 	 * sanity check in gen7_append_oa_reports() that looks at the
1444 	 * report-id field to make sure it's non-zero which relies on
1445 	 * the assumption that new reports are being written to zeroed
1446 	 * memory...
1447 	 */
1448 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1449 }
1450 
1451 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1452 {
1453 	struct intel_uncore *uncore = stream->uncore;
1454 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1455 	unsigned long flags;
1456 
1457 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1458 
1459 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1460 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1461 	stream->oa_buffer.head = gtt_offset;
1462 
1463 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1464 
1465 	/*
1466 	 * PRM says:
1467 	 *
1468 	 *  "This MMIO must be set before the OATAILPTR
1469 	 *  register and after the OAHEADPTR register. This is
1470 	 *  to enable proper functionality of the overflow
1471 	 *  bit."
1472 	 */
1473 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1474 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1475 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1476 
1477 	/* Mark that we need updated tail pointers to read from... */
1478 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1479 	stream->oa_buffer.tail = gtt_offset;
1480 
1481 	/*
1482 	 * Reset state used to recognise context switches, affecting which
1483 	 * reports we will forward to userspace while filtering for a single
1484 	 * context.
1485 	 */
1486 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1487 
1488 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1489 
1490 	/*
1491 	 * NB: although the OA buffer will initially be allocated
1492 	 * zeroed via shmfs (and so this memset is redundant when
1493 	 * first allocating), we may re-init the OA buffer, either
1494 	 * when re-enabling a stream or in error/reset paths.
1495 	 *
1496 	 * The reason we clear the buffer for each re-init is for the
1497 	 * sanity check in gen8_append_oa_reports() that looks at the
1498 	 * reason field to make sure it's non-zero which relies on
1499 	 * the assumption that new reports are being written to zeroed
1500 	 * memory...
1501 	 */
1502 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1503 }
1504 
1505 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1506 {
1507 	struct intel_uncore *uncore = stream->uncore;
1508 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1509 	unsigned long flags;
1510 
1511 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1512 
1513 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1514 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1515 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1516 	stream->oa_buffer.head = gtt_offset;
1517 
1518 	/*
1519 	 * PRM says:
1520 	 *
1521 	 *  "This MMIO must be set before the OATAILPTR
1522 	 *  register and after the OAHEADPTR register. This is
1523 	 *  to enable proper functionality of the overflow
1524 	 *  bit."
1525 	 */
1526 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1527 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1528 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1529 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1530 
1531 	/* Mark that we need updated tail pointers to read from... */
1532 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1533 	stream->oa_buffer.tail = gtt_offset;
1534 
1535 	/*
1536 	 * Reset state used to recognise context switches, affecting which
1537 	 * reports we will forward to userspace while filtering for a single
1538 	 * context.
1539 	 */
1540 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1541 
1542 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1543 
1544 	/*
1545 	 * NB: although the OA buffer will initially be allocated
1546 	 * zeroed via shmfs (and so this memset is redundant when
1547 	 * first allocating), we may re-init the OA buffer, either
1548 	 * when re-enabling a stream or in error/reset paths.
1549 	 *
1550 	 * The reason we clear the buffer for each re-init is for the
1551 	 * sanity check in gen8_append_oa_reports() that looks at the
1552 	 * reason field to make sure it's non-zero which relies on
1553 	 * the assumption that new reports are being written to zeroed
1554 	 * memory...
1555 	 */
1556 	memset(stream->oa_buffer.vaddr, 0,
1557 	       stream->oa_buffer.vma->size);
1558 }
1559 
1560 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1561 {
1562 	struct drm_i915_private *i915 = stream->perf->i915;
1563 	struct drm_i915_gem_object *bo;
1564 	struct i915_vma *vma;
1565 	int ret;
1566 
1567 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1568 		return -ENODEV;
1569 
1570 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1571 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1572 
1573 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1574 	if (IS_ERR(bo)) {
1575 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1576 		return PTR_ERR(bo);
1577 	}
1578 
1579 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1580 
1581 	/* PreHSW required 512K alignment, HSW requires 16M */
1582 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1583 	if (IS_ERR(vma)) {
1584 		ret = PTR_ERR(vma);
1585 		goto err_unref;
1586 	}
1587 	stream->oa_buffer.vma = vma;
1588 
1589 	stream->oa_buffer.vaddr =
1590 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1591 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1592 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1593 		goto err_unpin;
1594 	}
1595 
1596 	return 0;
1597 
1598 err_unpin:
1599 	__i915_vma_unpin(vma);
1600 
1601 err_unref:
1602 	i915_gem_object_put(bo);
1603 
1604 	stream->oa_buffer.vaddr = NULL;
1605 	stream->oa_buffer.vma = NULL;
1606 
1607 	return ret;
1608 }
1609 
1610 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1611 				  bool save, i915_reg_t reg, u32 offset,
1612 				  u32 dword_count)
1613 {
1614 	u32 cmd;
1615 	u32 d;
1616 
1617 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1618 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1619 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1620 		cmd++;
1621 
1622 	for (d = 0; d < dword_count; d++) {
1623 		*cs++ = cmd;
1624 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1625 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1626 						offset) + 4 * d;
1627 		*cs++ = 0;
1628 	}
1629 
1630 	return cs;
1631 }
1632 
1633 static int alloc_noa_wait(struct i915_perf_stream *stream)
1634 {
1635 	struct drm_i915_private *i915 = stream->perf->i915;
1636 	struct drm_i915_gem_object *bo;
1637 	struct i915_vma *vma;
1638 	const u64 delay_ticks = 0xffffffffffffffff -
1639 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1640 		atomic64_read(&stream->perf->noa_programming_delay));
1641 	const u32 base = stream->engine->mmio_base;
1642 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1643 	u32 *batch, *ts0, *cs, *jump;
1644 	struct i915_gem_ww_ctx ww;
1645 	int ret, i;
1646 	enum {
1647 		START_TS,
1648 		NOW_TS,
1649 		DELTA_TS,
1650 		JUMP_PREDICATE,
1651 		DELTA_TARGET,
1652 		N_CS_GPR
1653 	};
1654 
1655 	bo = i915_gem_object_create_internal(i915, 4096);
1656 	if (IS_ERR(bo)) {
1657 		drm_err(&i915->drm,
1658 			"Failed to allocate NOA wait batchbuffer\n");
1659 		return PTR_ERR(bo);
1660 	}
1661 
1662 	i915_gem_ww_ctx_init(&ww, true);
1663 retry:
1664 	ret = i915_gem_object_lock(bo, &ww);
1665 	if (ret)
1666 		goto out_ww;
1667 
1668 	/*
1669 	 * We pin in GGTT because we jump into this buffer now because
1670 	 * multiple OA config BOs will have a jump to this address and it
1671 	 * needs to be fixed during the lifetime of the i915/perf stream.
1672 	 */
1673 	vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1674 	if (IS_ERR(vma)) {
1675 		ret = PTR_ERR(vma);
1676 		goto out_ww;
1677 	}
1678 
1679 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1680 	if (IS_ERR(batch)) {
1681 		ret = PTR_ERR(batch);
1682 		goto err_unpin;
1683 	}
1684 
1685 	/* Save registers. */
1686 	for (i = 0; i < N_CS_GPR; i++)
1687 		cs = save_restore_register(
1688 			stream, cs, true /* save */, CS_GPR(i),
1689 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1690 	cs = save_restore_register(
1691 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1692 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1693 
1694 	/* First timestamp snapshot location. */
1695 	ts0 = cs;
1696 
1697 	/*
1698 	 * Initial snapshot of the timestamp register to implement the wait.
1699 	 * We work with 32b values, so clear out the top 32b bits of the
1700 	 * register because the ALU works 64bits.
1701 	 */
1702 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1703 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1704 	*cs++ = 0;
1705 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1706 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1707 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1708 
1709 	/*
1710 	 * This is the location we're going to jump back into until the
1711 	 * required amount of time has passed.
1712 	 */
1713 	jump = cs;
1714 
1715 	/*
1716 	 * Take another snapshot of the timestamp register. Take care to clear
1717 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1718 	 * operations below.
1719 	 */
1720 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1721 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1722 	*cs++ = 0;
1723 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1724 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1725 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1726 
1727 	/*
1728 	 * Do a diff between the 2 timestamps and store the result back into
1729 	 * CS_GPR(1).
1730 	 */
1731 	*cs++ = MI_MATH(5);
1732 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1733 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1734 	*cs++ = MI_MATH_SUB;
1735 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1736 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1737 
1738 	/*
1739 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1740 	 * timestamp have rolled over the 32bits) into the predicate register
1741 	 * to be used for the predicated jump.
1742 	 */
1743 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1744 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1745 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1746 
1747 	/* Restart from the beginning if we had timestamps roll over. */
1748 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1749 		 MI_BATCH_BUFFER_START :
1750 		 MI_BATCH_BUFFER_START_GEN8) |
1751 		MI_BATCH_PREDICATE;
1752 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1753 	*cs++ = 0;
1754 
1755 	/*
1756 	 * Now add the diff between to previous timestamps and add it to :
1757 	 *      (((1 * << 64) - 1) - delay_ns)
1758 	 *
1759 	 * When the Carry Flag contains 1 this means the elapsed time is
1760 	 * longer than the expected delay, and we can exit the wait loop.
1761 	 */
1762 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1763 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1764 	*cs++ = lower_32_bits(delay_ticks);
1765 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1766 	*cs++ = upper_32_bits(delay_ticks);
1767 
1768 	*cs++ = MI_MATH(4);
1769 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1770 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1771 	*cs++ = MI_MATH_ADD;
1772 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1773 
1774 	*cs++ = MI_ARB_CHECK;
1775 
1776 	/*
1777 	 * Transfer the result into the predicate register to be used for the
1778 	 * predicated jump.
1779 	 */
1780 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1781 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1782 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1783 
1784 	/* Predicate the jump.  */
1785 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1786 		 MI_BATCH_BUFFER_START :
1787 		 MI_BATCH_BUFFER_START_GEN8) |
1788 		MI_BATCH_PREDICATE;
1789 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1790 	*cs++ = 0;
1791 
1792 	/* Restore registers. */
1793 	for (i = 0; i < N_CS_GPR; i++)
1794 		cs = save_restore_register(
1795 			stream, cs, false /* restore */, CS_GPR(i),
1796 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1797 	cs = save_restore_register(
1798 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1799 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1800 
1801 	/* And return to the ring. */
1802 	*cs++ = MI_BATCH_BUFFER_END;
1803 
1804 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1805 
1806 	i915_gem_object_flush_map(bo);
1807 	__i915_gem_object_release_map(bo);
1808 
1809 	stream->noa_wait = vma;
1810 	goto out_ww;
1811 
1812 err_unpin:
1813 	i915_vma_unpin_and_release(&vma, 0);
1814 out_ww:
1815 	if (ret == -EDEADLK) {
1816 		ret = i915_gem_ww_ctx_backoff(&ww);
1817 		if (!ret)
1818 			goto retry;
1819 	}
1820 	i915_gem_ww_ctx_fini(&ww);
1821 	if (ret)
1822 		i915_gem_object_put(bo);
1823 	return ret;
1824 }
1825 
1826 static u32 *write_cs_mi_lri(u32 *cs,
1827 			    const struct i915_oa_reg *reg_data,
1828 			    u32 n_regs)
1829 {
1830 	u32 i;
1831 
1832 	for (i = 0; i < n_regs; i++) {
1833 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1834 			u32 n_lri = min_t(u32,
1835 					  n_regs - i,
1836 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1837 
1838 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1839 		}
1840 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1841 		*cs++ = reg_data[i].value;
1842 	}
1843 
1844 	return cs;
1845 }
1846 
1847 static int num_lri_dwords(int num_regs)
1848 {
1849 	int count = 0;
1850 
1851 	if (num_regs > 0) {
1852 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1853 		count += num_regs * 2;
1854 	}
1855 
1856 	return count;
1857 }
1858 
1859 static struct i915_oa_config_bo *
1860 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1861 		       struct i915_oa_config *oa_config)
1862 {
1863 	struct drm_i915_gem_object *obj;
1864 	struct i915_oa_config_bo *oa_bo;
1865 	struct i915_gem_ww_ctx ww;
1866 	size_t config_length = 0;
1867 	u32 *cs;
1868 	int err;
1869 
1870 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1871 	if (!oa_bo)
1872 		return ERR_PTR(-ENOMEM);
1873 
1874 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1875 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1876 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1877 	config_length += 3; /* MI_BATCH_BUFFER_START */
1878 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1879 
1880 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1881 	if (IS_ERR(obj)) {
1882 		err = PTR_ERR(obj);
1883 		goto err_free;
1884 	}
1885 
1886 	i915_gem_ww_ctx_init(&ww, true);
1887 retry:
1888 	err = i915_gem_object_lock(obj, &ww);
1889 	if (err)
1890 		goto out_ww;
1891 
1892 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1893 	if (IS_ERR(cs)) {
1894 		err = PTR_ERR(cs);
1895 		goto out_ww;
1896 	}
1897 
1898 	cs = write_cs_mi_lri(cs,
1899 			     oa_config->mux_regs,
1900 			     oa_config->mux_regs_len);
1901 	cs = write_cs_mi_lri(cs,
1902 			     oa_config->b_counter_regs,
1903 			     oa_config->b_counter_regs_len);
1904 	cs = write_cs_mi_lri(cs,
1905 			     oa_config->flex_regs,
1906 			     oa_config->flex_regs_len);
1907 
1908 	/* Jump into the active wait. */
1909 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1910 		 MI_BATCH_BUFFER_START :
1911 		 MI_BATCH_BUFFER_START_GEN8);
1912 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1913 	*cs++ = 0;
1914 
1915 	i915_gem_object_flush_map(obj);
1916 	__i915_gem_object_release_map(obj);
1917 
1918 	oa_bo->vma = i915_vma_instance(obj,
1919 				       &stream->engine->gt->ggtt->vm,
1920 				       NULL);
1921 	if (IS_ERR(oa_bo->vma)) {
1922 		err = PTR_ERR(oa_bo->vma);
1923 		goto out_ww;
1924 	}
1925 
1926 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1927 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1928 
1929 out_ww:
1930 	if (err == -EDEADLK) {
1931 		err = i915_gem_ww_ctx_backoff(&ww);
1932 		if (!err)
1933 			goto retry;
1934 	}
1935 	i915_gem_ww_ctx_fini(&ww);
1936 
1937 	if (err)
1938 		i915_gem_object_put(obj);
1939 err_free:
1940 	if (err) {
1941 		kfree(oa_bo);
1942 		return ERR_PTR(err);
1943 	}
1944 	return oa_bo;
1945 }
1946 
1947 static struct i915_vma *
1948 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1949 {
1950 	struct i915_oa_config_bo *oa_bo;
1951 
1952 	/*
1953 	 * Look for the buffer in the already allocated BOs attached
1954 	 * to the stream.
1955 	 */
1956 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1957 		if (oa_bo->oa_config == oa_config &&
1958 		    memcmp(oa_bo->oa_config->uuid,
1959 			   oa_config->uuid,
1960 			   sizeof(oa_config->uuid)) == 0)
1961 			goto out;
1962 	}
1963 
1964 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1965 	if (IS_ERR(oa_bo))
1966 		return ERR_CAST(oa_bo);
1967 
1968 out:
1969 	return i915_vma_get(oa_bo->vma);
1970 }
1971 
1972 static int
1973 emit_oa_config(struct i915_perf_stream *stream,
1974 	       struct i915_oa_config *oa_config,
1975 	       struct intel_context *ce,
1976 	       struct i915_active *active)
1977 {
1978 	struct i915_request *rq;
1979 	struct i915_vma *vma;
1980 	struct i915_gem_ww_ctx ww;
1981 	int err;
1982 
1983 	vma = get_oa_vma(stream, oa_config);
1984 	if (IS_ERR(vma))
1985 		return PTR_ERR(vma);
1986 
1987 	i915_gem_ww_ctx_init(&ww, true);
1988 retry:
1989 	err = i915_gem_object_lock(vma->obj, &ww);
1990 	if (err)
1991 		goto err;
1992 
1993 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1994 	if (err)
1995 		goto err;
1996 
1997 	intel_engine_pm_get(ce->engine);
1998 	rq = i915_request_create(ce);
1999 	intel_engine_pm_put(ce->engine);
2000 	if (IS_ERR(rq)) {
2001 		err = PTR_ERR(rq);
2002 		goto err_vma_unpin;
2003 	}
2004 
2005 	if (!IS_ERR_OR_NULL(active)) {
2006 		/* After all individual context modifications */
2007 		err = i915_request_await_active(rq, active,
2008 						I915_ACTIVE_AWAIT_ACTIVE);
2009 		if (err)
2010 			goto err_add_request;
2011 
2012 		err = i915_active_add_request(active, rq);
2013 		if (err)
2014 			goto err_add_request;
2015 	}
2016 
2017 	err = i915_request_await_object(rq, vma->obj, 0);
2018 	if (!err)
2019 		err = i915_vma_move_to_active(vma, rq, 0);
2020 	if (err)
2021 		goto err_add_request;
2022 
2023 	err = rq->engine->emit_bb_start(rq,
2024 					vma->node.start, 0,
2025 					I915_DISPATCH_SECURE);
2026 	if (err)
2027 		goto err_add_request;
2028 
2029 err_add_request:
2030 	i915_request_add(rq);
2031 err_vma_unpin:
2032 	i915_vma_unpin(vma);
2033 err:
2034 	if (err == -EDEADLK) {
2035 		err = i915_gem_ww_ctx_backoff(&ww);
2036 		if (!err)
2037 			goto retry;
2038 	}
2039 
2040 	i915_gem_ww_ctx_fini(&ww);
2041 	i915_vma_put(vma);
2042 	return err;
2043 }
2044 
2045 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2046 {
2047 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2048 }
2049 
2050 static int
2051 hsw_enable_metric_set(struct i915_perf_stream *stream,
2052 		      struct i915_active *active)
2053 {
2054 	struct intel_uncore *uncore = stream->uncore;
2055 
2056 	/*
2057 	 * PRM:
2058 	 *
2059 	 * OA unit is using “crclk” for its functionality. When trunk
2060 	 * level clock gating takes place, OA clock would be gated,
2061 	 * unable to count the events from non-render clock domain.
2062 	 * Render clock gating must be disabled when OA is enabled to
2063 	 * count the events from non-render domain. Unit level clock
2064 	 * gating for RCS should also be disabled.
2065 	 */
2066 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2067 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2068 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2069 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2070 
2071 	return emit_oa_config(stream,
2072 			      stream->oa_config, oa_context(stream),
2073 			      active);
2074 }
2075 
2076 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2077 {
2078 	struct intel_uncore *uncore = stream->uncore;
2079 
2080 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2081 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2082 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2083 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2084 
2085 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2086 }
2087 
2088 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2089 			      i915_reg_t reg)
2090 {
2091 	u32 mmio = i915_mmio_reg_offset(reg);
2092 	int i;
2093 
2094 	/*
2095 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2096 	 * Active' event. In the future it's anticipated that there
2097 	 * will be an explicit 'No Event' we can select, but not yet...
2098 	 */
2099 	if (!oa_config)
2100 		return 0;
2101 
2102 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2103 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2104 			return oa_config->flex_regs[i].value;
2105 	}
2106 
2107 	return 0;
2108 }
2109 /*
2110  * NB: It must always remain pointer safe to run this even if the OA unit
2111  * has been disabled.
2112  *
2113  * It's fine to put out-of-date values into these per-context registers
2114  * in the case that the OA unit has been disabled.
2115  */
2116 static void
2117 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2118 			       const struct i915_perf_stream *stream)
2119 {
2120 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2121 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2122 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2123 	static const i915_reg_t flex_regs[] = {
2124 		EU_PERF_CNTL0,
2125 		EU_PERF_CNTL1,
2126 		EU_PERF_CNTL2,
2127 		EU_PERF_CNTL3,
2128 		EU_PERF_CNTL4,
2129 		EU_PERF_CNTL5,
2130 		EU_PERF_CNTL6,
2131 	};
2132 	u32 *reg_state = ce->lrc_reg_state;
2133 	int i;
2134 
2135 	reg_state[ctx_oactxctrl + 1] =
2136 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2137 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2138 		GEN8_OA_COUNTER_RESUME;
2139 
2140 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2141 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2142 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2143 }
2144 
2145 struct flex {
2146 	i915_reg_t reg;
2147 	u32 offset;
2148 	u32 value;
2149 };
2150 
2151 static int
2152 gen8_store_flex(struct i915_request *rq,
2153 		struct intel_context *ce,
2154 		const struct flex *flex, unsigned int count)
2155 {
2156 	u32 offset;
2157 	u32 *cs;
2158 
2159 	cs = intel_ring_begin(rq, 4 * count);
2160 	if (IS_ERR(cs))
2161 		return PTR_ERR(cs);
2162 
2163 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2164 	do {
2165 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2166 		*cs++ = offset + flex->offset * sizeof(u32);
2167 		*cs++ = 0;
2168 		*cs++ = flex->value;
2169 	} while (flex++, --count);
2170 
2171 	intel_ring_advance(rq, cs);
2172 
2173 	return 0;
2174 }
2175 
2176 static int
2177 gen8_load_flex(struct i915_request *rq,
2178 	       struct intel_context *ce,
2179 	       const struct flex *flex, unsigned int count)
2180 {
2181 	u32 *cs;
2182 
2183 	GEM_BUG_ON(!count || count > 63);
2184 
2185 	cs = intel_ring_begin(rq, 2 * count + 2);
2186 	if (IS_ERR(cs))
2187 		return PTR_ERR(cs);
2188 
2189 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2190 	do {
2191 		*cs++ = i915_mmio_reg_offset(flex->reg);
2192 		*cs++ = flex->value;
2193 	} while (flex++, --count);
2194 	*cs++ = MI_NOOP;
2195 
2196 	intel_ring_advance(rq, cs);
2197 
2198 	return 0;
2199 }
2200 
2201 static int gen8_modify_context(struct intel_context *ce,
2202 			       const struct flex *flex, unsigned int count)
2203 {
2204 	struct i915_request *rq;
2205 	int err;
2206 
2207 	rq = intel_engine_create_kernel_request(ce->engine);
2208 	if (IS_ERR(rq))
2209 		return PTR_ERR(rq);
2210 
2211 	/* Serialise with the remote context */
2212 	err = intel_context_prepare_remote_request(ce, rq);
2213 	if (err == 0)
2214 		err = gen8_store_flex(rq, ce, flex, count);
2215 
2216 	i915_request_add(rq);
2217 	return err;
2218 }
2219 
2220 static int
2221 gen8_modify_self(struct intel_context *ce,
2222 		 const struct flex *flex, unsigned int count,
2223 		 struct i915_active *active)
2224 {
2225 	struct i915_request *rq;
2226 	int err;
2227 
2228 	intel_engine_pm_get(ce->engine);
2229 	rq = i915_request_create(ce);
2230 	intel_engine_pm_put(ce->engine);
2231 	if (IS_ERR(rq))
2232 		return PTR_ERR(rq);
2233 
2234 	if (!IS_ERR_OR_NULL(active)) {
2235 		err = i915_active_add_request(active, rq);
2236 		if (err)
2237 			goto err_add_request;
2238 	}
2239 
2240 	err = gen8_load_flex(rq, ce, flex, count);
2241 	if (err)
2242 		goto err_add_request;
2243 
2244 err_add_request:
2245 	i915_request_add(rq);
2246 	return err;
2247 }
2248 
2249 static int gen8_configure_context(struct i915_gem_context *ctx,
2250 				  struct flex *flex, unsigned int count)
2251 {
2252 	struct i915_gem_engines_iter it;
2253 	struct intel_context *ce;
2254 	int err = 0;
2255 
2256 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2257 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2258 
2259 		if (ce->engine->class != RENDER_CLASS)
2260 			continue;
2261 
2262 		/* Otherwise OA settings will be set upon first use */
2263 		if (!intel_context_pin_if_active(ce))
2264 			continue;
2265 
2266 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2267 		err = gen8_modify_context(ce, flex, count);
2268 
2269 		intel_context_unpin(ce);
2270 		if (err)
2271 			break;
2272 	}
2273 	i915_gem_context_unlock_engines(ctx);
2274 
2275 	return err;
2276 }
2277 
2278 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2279 				       struct i915_active *active)
2280 {
2281 	int err;
2282 	struct intel_context *ce = stream->pinned_ctx;
2283 	u32 format = stream->oa_buffer.format;
2284 	struct flex regs_context[] = {
2285 		{
2286 			GEN8_OACTXCONTROL,
2287 			stream->perf->ctx_oactxctrl_offset + 1,
2288 			active ? GEN8_OA_COUNTER_RESUME : 0,
2289 		},
2290 	};
2291 	/* Offsets in regs_lri are not used since this configuration is only
2292 	 * applied using LRI. Initialize the correct offsets for posterity.
2293 	 */
2294 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2295 	struct flex regs_lri[] = {
2296 		{
2297 			GEN12_OAR_OACONTROL,
2298 			GEN12_OAR_OACONTROL_OFFSET + 1,
2299 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2300 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2301 		},
2302 		{
2303 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2304 			CTX_CONTEXT_CONTROL,
2305 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2306 				      active ?
2307 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2308 				      0)
2309 		},
2310 	};
2311 
2312 	/* Modify the context image of pinned context with regs_context*/
2313 	err = intel_context_lock_pinned(ce);
2314 	if (err)
2315 		return err;
2316 
2317 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2318 	intel_context_unlock_pinned(ce);
2319 	if (err)
2320 		return err;
2321 
2322 	/* Apply regs_lri using LRI with pinned context */
2323 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2324 }
2325 
2326 /*
2327  * Manages updating the per-context aspects of the OA stream
2328  * configuration across all contexts.
2329  *
2330  * The awkward consideration here is that OACTXCONTROL controls the
2331  * exponent for periodic sampling which is primarily used for system
2332  * wide profiling where we'd like a consistent sampling period even in
2333  * the face of context switches.
2334  *
2335  * Our approach of updating the register state context (as opposed to
2336  * say using a workaround batch buffer) ensures that the hardware
2337  * won't automatically reload an out-of-date timer exponent even
2338  * transiently before a WA BB could be parsed.
2339  *
2340  * This function needs to:
2341  * - Ensure the currently running context's per-context OA state is
2342  *   updated
2343  * - Ensure that all existing contexts will have the correct per-context
2344  *   OA state if they are scheduled for use.
2345  * - Ensure any new contexts will be initialized with the correct
2346  *   per-context OA state.
2347  *
2348  * Note: it's only the RCS/Render context that has any OA state.
2349  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2350  */
2351 static int
2352 oa_configure_all_contexts(struct i915_perf_stream *stream,
2353 			  struct flex *regs,
2354 			  size_t num_regs,
2355 			  struct i915_active *active)
2356 {
2357 	struct drm_i915_private *i915 = stream->perf->i915;
2358 	struct intel_engine_cs *engine;
2359 	struct i915_gem_context *ctx, *cn;
2360 	int err;
2361 
2362 	lockdep_assert_held(&stream->perf->lock);
2363 
2364 	/*
2365 	 * The OA register config is setup through the context image. This image
2366 	 * might be written to by the GPU on context switch (in particular on
2367 	 * lite-restore). This means we can't safely update a context's image,
2368 	 * if this context is scheduled/submitted to run on the GPU.
2369 	 *
2370 	 * We could emit the OA register config through the batch buffer but
2371 	 * this might leave small interval of time where the OA unit is
2372 	 * configured at an invalid sampling period.
2373 	 *
2374 	 * Note that since we emit all requests from a single ring, there
2375 	 * is still an implicit global barrier here that may cause a high
2376 	 * priority context to wait for an otherwise independent low priority
2377 	 * context. Contexts idle at the time of reconfiguration are not
2378 	 * trapped behind the barrier.
2379 	 */
2380 	spin_lock(&i915->gem.contexts.lock);
2381 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2382 		if (!kref_get_unless_zero(&ctx->ref))
2383 			continue;
2384 
2385 		spin_unlock(&i915->gem.contexts.lock);
2386 
2387 		err = gen8_configure_context(ctx, regs, num_regs);
2388 		if (err) {
2389 			i915_gem_context_put(ctx);
2390 			return err;
2391 		}
2392 
2393 		spin_lock(&i915->gem.contexts.lock);
2394 		list_safe_reset_next(ctx, cn, link);
2395 		i915_gem_context_put(ctx);
2396 	}
2397 	spin_unlock(&i915->gem.contexts.lock);
2398 
2399 	/*
2400 	 * After updating all other contexts, we need to modify ourselves.
2401 	 * If we don't modify the kernel_context, we do not get events while
2402 	 * idle.
2403 	 */
2404 	for_each_uabi_engine(engine, i915) {
2405 		struct intel_context *ce = engine->kernel_context;
2406 
2407 		if (engine->class != RENDER_CLASS)
2408 			continue;
2409 
2410 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2411 
2412 		err = gen8_modify_self(ce, regs, num_regs, active);
2413 		if (err)
2414 			return err;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int
2421 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2422 			     const struct i915_oa_config *oa_config,
2423 			     struct i915_active *active)
2424 {
2425 	struct flex regs[] = {
2426 		{
2427 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2428 			CTX_R_PWR_CLK_STATE,
2429 		},
2430 	};
2431 
2432 	return oa_configure_all_contexts(stream,
2433 					 regs, ARRAY_SIZE(regs),
2434 					 active);
2435 }
2436 
2437 static int
2438 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2439 			   const struct i915_oa_config *oa_config,
2440 			   struct i915_active *active)
2441 {
2442 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2443 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2444 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2445 	struct flex regs[] = {
2446 		{
2447 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2448 			CTX_R_PWR_CLK_STATE,
2449 		},
2450 		{
2451 			GEN8_OACTXCONTROL,
2452 			stream->perf->ctx_oactxctrl_offset + 1,
2453 		},
2454 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2455 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2456 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2457 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2458 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2459 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2460 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2461 	};
2462 #undef ctx_flexeuN
2463 	int i;
2464 
2465 	regs[1].value =
2466 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2467 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2468 		GEN8_OA_COUNTER_RESUME;
2469 
2470 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2471 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2472 
2473 	return oa_configure_all_contexts(stream,
2474 					 regs, ARRAY_SIZE(regs),
2475 					 active);
2476 }
2477 
2478 static int
2479 gen8_enable_metric_set(struct i915_perf_stream *stream,
2480 		       struct i915_active *active)
2481 {
2482 	struct intel_uncore *uncore = stream->uncore;
2483 	struct i915_oa_config *oa_config = stream->oa_config;
2484 	int ret;
2485 
2486 	/*
2487 	 * We disable slice/unslice clock ratio change reports on SKL since
2488 	 * they are too noisy. The HW generates a lot of redundant reports
2489 	 * where the ratio hasn't really changed causing a lot of redundant
2490 	 * work to processes and increasing the chances we'll hit buffer
2491 	 * overruns.
2492 	 *
2493 	 * Although we don't currently use the 'disable overrun' OABUFFER
2494 	 * feature it's worth noting that clock ratio reports have to be
2495 	 * disabled before considering to use that feature since the HW doesn't
2496 	 * correctly block these reports.
2497 	 *
2498 	 * Currently none of the high-level metrics we have depend on knowing
2499 	 * this ratio to normalize.
2500 	 *
2501 	 * Note: This register is not power context saved and restored, but
2502 	 * that's OK considering that we disable RC6 while the OA unit is
2503 	 * enabled.
2504 	 *
2505 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2506 	 * be read back from automatically triggered reports, as part of the
2507 	 * RPT_ID field.
2508 	 */
2509 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2510 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2511 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2512 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2513 	}
2514 
2515 	/*
2516 	 * Update all contexts prior writing the mux configurations as we need
2517 	 * to make sure all slices/subslices are ON before writing to NOA
2518 	 * registers.
2519 	 */
2520 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2521 	if (ret)
2522 		return ret;
2523 
2524 	return emit_oa_config(stream,
2525 			      stream->oa_config, oa_context(stream),
2526 			      active);
2527 }
2528 
2529 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2530 {
2531 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2532 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2533 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2534 }
2535 
2536 static int
2537 gen12_enable_metric_set(struct i915_perf_stream *stream,
2538 			struct i915_active *active)
2539 {
2540 	struct intel_uncore *uncore = stream->uncore;
2541 	struct i915_oa_config *oa_config = stream->oa_config;
2542 	bool periodic = stream->periodic;
2543 	u32 period_exponent = stream->period_exponent;
2544 	int ret;
2545 
2546 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2547 			   /* Disable clk ratio reports, like previous Gens. */
2548 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2549 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2550 			   /*
2551 			    * If the user didn't require OA reports, instruct
2552 			    * the hardware not to emit ctx switch reports.
2553 			    */
2554 			   oag_report_ctx_switches(stream));
2555 
2556 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2557 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2558 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2559 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2560 			    : 0);
2561 
2562 	/*
2563 	 * Update all contexts prior writing the mux configurations as we need
2564 	 * to make sure all slices/subslices are ON before writing to NOA
2565 	 * registers.
2566 	 */
2567 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2568 	if (ret)
2569 		return ret;
2570 
2571 	/*
2572 	 * For Gen12, performance counters are context
2573 	 * saved/restored. Only enable it for the context that
2574 	 * requested this.
2575 	 */
2576 	if (stream->ctx) {
2577 		ret = gen12_configure_oar_context(stream, active);
2578 		if (ret)
2579 			return ret;
2580 	}
2581 
2582 	return emit_oa_config(stream,
2583 			      stream->oa_config, oa_context(stream),
2584 			      active);
2585 }
2586 
2587 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2588 {
2589 	struct intel_uncore *uncore = stream->uncore;
2590 
2591 	/* Reset all contexts' slices/subslices configurations. */
2592 	lrc_configure_all_contexts(stream, NULL, NULL);
2593 
2594 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2595 }
2596 
2597 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2598 {
2599 	struct intel_uncore *uncore = stream->uncore;
2600 
2601 	/* Reset all contexts' slices/subslices configurations. */
2602 	lrc_configure_all_contexts(stream, NULL, NULL);
2603 
2604 	/* Make sure we disable noa to save power. */
2605 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2606 }
2607 
2608 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2609 {
2610 	struct intel_uncore *uncore = stream->uncore;
2611 
2612 	/* Reset all contexts' slices/subslices configurations. */
2613 	gen12_configure_all_contexts(stream, NULL, NULL);
2614 
2615 	/* disable the context save/restore or OAR counters */
2616 	if (stream->ctx)
2617 		gen12_configure_oar_context(stream, NULL);
2618 
2619 	/* Make sure we disable noa to save power. */
2620 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2621 }
2622 
2623 static void gen7_oa_enable(struct i915_perf_stream *stream)
2624 {
2625 	struct intel_uncore *uncore = stream->uncore;
2626 	struct i915_gem_context *ctx = stream->ctx;
2627 	u32 ctx_id = stream->specific_ctx_id;
2628 	bool periodic = stream->periodic;
2629 	u32 period_exponent = stream->period_exponent;
2630 	u32 report_format = stream->oa_buffer.format;
2631 
2632 	/*
2633 	 * Reset buf pointers so we don't forward reports from before now.
2634 	 *
2635 	 * Think carefully if considering trying to avoid this, since it
2636 	 * also ensures status flags and the buffer itself are cleared
2637 	 * in error paths, and we have checks for invalid reports based
2638 	 * on the assumption that certain fields are written to zeroed
2639 	 * memory which this helps maintains.
2640 	 */
2641 	gen7_init_oa_buffer(stream);
2642 
2643 	intel_uncore_write(uncore, GEN7_OACONTROL,
2644 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2645 			   (period_exponent <<
2646 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2647 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2648 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2649 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2650 			   GEN7_OACONTROL_ENABLE);
2651 }
2652 
2653 static void gen8_oa_enable(struct i915_perf_stream *stream)
2654 {
2655 	struct intel_uncore *uncore = stream->uncore;
2656 	u32 report_format = stream->oa_buffer.format;
2657 
2658 	/*
2659 	 * Reset buf pointers so we don't forward reports from before now.
2660 	 *
2661 	 * Think carefully if considering trying to avoid this, since it
2662 	 * also ensures status flags and the buffer itself are cleared
2663 	 * in error paths, and we have checks for invalid reports based
2664 	 * on the assumption that certain fields are written to zeroed
2665 	 * memory which this helps maintains.
2666 	 */
2667 	gen8_init_oa_buffer(stream);
2668 
2669 	/*
2670 	 * Note: we don't rely on the hardware to perform single context
2671 	 * filtering and instead filter on the cpu based on the context-id
2672 	 * field of reports
2673 	 */
2674 	intel_uncore_write(uncore, GEN8_OACONTROL,
2675 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2676 			   GEN8_OA_COUNTER_ENABLE);
2677 }
2678 
2679 static void gen12_oa_enable(struct i915_perf_stream *stream)
2680 {
2681 	struct intel_uncore *uncore = stream->uncore;
2682 	u32 report_format = stream->oa_buffer.format;
2683 
2684 	/*
2685 	 * If we don't want OA reports from the OA buffer, then we don't even
2686 	 * need to program the OAG unit.
2687 	 */
2688 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2689 		return;
2690 
2691 	gen12_init_oa_buffer(stream);
2692 
2693 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2694 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2695 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2696 }
2697 
2698 /**
2699  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2700  * @stream: An i915 perf stream opened for OA metrics
2701  *
2702  * [Re]enables hardware periodic sampling according to the period configured
2703  * when opening the stream. This also starts a hrtimer that will periodically
2704  * check for data in the circular OA buffer for notifying userspace (e.g.
2705  * during a read() or poll()).
2706  */
2707 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2708 {
2709 	stream->pollin = false;
2710 
2711 	stream->perf->ops.oa_enable(stream);
2712 
2713 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2714 		hrtimer_start(&stream->poll_check_timer,
2715 			      ns_to_ktime(stream->poll_oa_period),
2716 			      HRTIMER_MODE_REL_PINNED);
2717 }
2718 
2719 static void gen7_oa_disable(struct i915_perf_stream *stream)
2720 {
2721 	struct intel_uncore *uncore = stream->uncore;
2722 
2723 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2724 	if (intel_wait_for_register(uncore,
2725 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2726 				    50))
2727 		drm_err(&stream->perf->i915->drm,
2728 			"wait for OA to be disabled timed out\n");
2729 }
2730 
2731 static void gen8_oa_disable(struct i915_perf_stream *stream)
2732 {
2733 	struct intel_uncore *uncore = stream->uncore;
2734 
2735 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2736 	if (intel_wait_for_register(uncore,
2737 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2738 				    50))
2739 		drm_err(&stream->perf->i915->drm,
2740 			"wait for OA to be disabled timed out\n");
2741 }
2742 
2743 static void gen12_oa_disable(struct i915_perf_stream *stream)
2744 {
2745 	struct intel_uncore *uncore = stream->uncore;
2746 
2747 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2748 	if (intel_wait_for_register(uncore,
2749 				    GEN12_OAG_OACONTROL,
2750 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2751 				    50))
2752 		drm_err(&stream->perf->i915->drm,
2753 			"wait for OA to be disabled timed out\n");
2754 
2755 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2756 	if (intel_wait_for_register(uncore,
2757 				    GEN12_OA_TLB_INV_CR,
2758 				    1, 0,
2759 				    50))
2760 		drm_err(&stream->perf->i915->drm,
2761 			"wait for OA tlb invalidate timed out\n");
2762 }
2763 
2764 /**
2765  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2766  * @stream: An i915 perf stream opened for OA metrics
2767  *
2768  * Stops the OA unit from periodically writing counter reports into the
2769  * circular OA buffer. This also stops the hrtimer that periodically checks for
2770  * data in the circular OA buffer, for notifying userspace.
2771  */
2772 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2773 {
2774 	stream->perf->ops.oa_disable(stream);
2775 
2776 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2777 		hrtimer_cancel(&stream->poll_check_timer);
2778 }
2779 
2780 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2781 	.destroy = i915_oa_stream_destroy,
2782 	.enable = i915_oa_stream_enable,
2783 	.disable = i915_oa_stream_disable,
2784 	.wait_unlocked = i915_oa_wait_unlocked,
2785 	.poll_wait = i915_oa_poll_wait,
2786 	.read = i915_oa_read,
2787 };
2788 
2789 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2790 {
2791 	struct i915_active *active;
2792 	int err;
2793 
2794 	active = i915_active_create();
2795 	if (!active)
2796 		return -ENOMEM;
2797 
2798 	err = stream->perf->ops.enable_metric_set(stream, active);
2799 	if (err == 0)
2800 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2801 
2802 	i915_active_put(active);
2803 	return err;
2804 }
2805 
2806 static void
2807 get_default_sseu_config(struct intel_sseu *out_sseu,
2808 			struct intel_engine_cs *engine)
2809 {
2810 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2811 
2812 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2813 
2814 	if (GRAPHICS_VER(engine->i915) == 11) {
2815 		/*
2816 		 * We only need subslice count so it doesn't matter which ones
2817 		 * we select - just turn off low bits in the amount of half of
2818 		 * all available subslices per slice.
2819 		 */
2820 		out_sseu->subslice_mask =
2821 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2822 		out_sseu->slice_mask = 0x1;
2823 	}
2824 }
2825 
2826 static int
2827 get_sseu_config(struct intel_sseu *out_sseu,
2828 		struct intel_engine_cs *engine,
2829 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2830 {
2831 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2832 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2833 		return -EINVAL;
2834 
2835 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2836 }
2837 
2838 /**
2839  * i915_oa_stream_init - validate combined props for OA stream and init
2840  * @stream: An i915 perf stream
2841  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2842  * @props: The property state that configures stream (individually validated)
2843  *
2844  * While read_properties_unlocked() validates properties in isolation it
2845  * doesn't ensure that the combination necessarily makes sense.
2846  *
2847  * At this point it has been determined that userspace wants a stream of
2848  * OA metrics, but still we need to further validate the combined
2849  * properties are OK.
2850  *
2851  * If the configuration makes sense then we can allocate memory for
2852  * a circular OA buffer and apply the requested metric set configuration.
2853  *
2854  * Returns: zero on success or a negative error code.
2855  */
2856 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2857 			       struct drm_i915_perf_open_param *param,
2858 			       struct perf_open_properties *props)
2859 {
2860 	struct drm_i915_private *i915 = stream->perf->i915;
2861 	struct i915_perf *perf = stream->perf;
2862 	int format_size;
2863 	int ret;
2864 
2865 	if (!props->engine) {
2866 		DRM_DEBUG("OA engine not specified\n");
2867 		return -EINVAL;
2868 	}
2869 
2870 	/*
2871 	 * If the sysfs metrics/ directory wasn't registered for some
2872 	 * reason then don't let userspace try their luck with config
2873 	 * IDs
2874 	 */
2875 	if (!perf->metrics_kobj) {
2876 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2877 		return -EINVAL;
2878 	}
2879 
2880 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2881 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2882 		DRM_DEBUG("Only OA report sampling supported\n");
2883 		return -EINVAL;
2884 	}
2885 
2886 	if (!perf->ops.enable_metric_set) {
2887 		DRM_DEBUG("OA unit not supported\n");
2888 		return -ENODEV;
2889 	}
2890 
2891 	/*
2892 	 * To avoid the complexity of having to accurately filter
2893 	 * counter reports and marshal to the appropriate client
2894 	 * we currently only allow exclusive access
2895 	 */
2896 	if (perf->exclusive_stream) {
2897 		DRM_DEBUG("OA unit already in use\n");
2898 		return -EBUSY;
2899 	}
2900 
2901 	if (!props->oa_format) {
2902 		DRM_DEBUG("OA report format not specified\n");
2903 		return -EINVAL;
2904 	}
2905 
2906 	stream->engine = props->engine;
2907 	stream->uncore = stream->engine->gt->uncore;
2908 
2909 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2910 
2911 	format_size = perf->oa_formats[props->oa_format].size;
2912 
2913 	stream->sample_flags = props->sample_flags;
2914 	stream->sample_size += format_size;
2915 
2916 	stream->oa_buffer.format_size = format_size;
2917 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2918 		return -EINVAL;
2919 
2920 	stream->hold_preemption = props->hold_preemption;
2921 
2922 	stream->oa_buffer.format =
2923 		perf->oa_formats[props->oa_format].format;
2924 
2925 	stream->periodic = props->oa_periodic;
2926 	if (stream->periodic)
2927 		stream->period_exponent = props->oa_period_exponent;
2928 
2929 	if (stream->ctx) {
2930 		ret = oa_get_render_ctx_id(stream);
2931 		if (ret) {
2932 			DRM_DEBUG("Invalid context id to filter with\n");
2933 			return ret;
2934 		}
2935 	}
2936 
2937 	ret = alloc_noa_wait(stream);
2938 	if (ret) {
2939 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2940 		goto err_noa_wait_alloc;
2941 	}
2942 
2943 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2944 	if (!stream->oa_config) {
2945 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2946 		ret = -EINVAL;
2947 		goto err_config;
2948 	}
2949 
2950 	/* PRM - observability performance counters:
2951 	 *
2952 	 *   OACONTROL, performance counter enable, note:
2953 	 *
2954 	 *   "When this bit is set, in order to have coherent counts,
2955 	 *   RC6 power state and trunk clock gating must be disabled.
2956 	 *   This can be achieved by programming MMIO registers as
2957 	 *   0xA094=0 and 0xA090[31]=1"
2958 	 *
2959 	 *   In our case we are expecting that taking pm + FORCEWAKE
2960 	 *   references will effectively disable RC6.
2961 	 */
2962 	intel_engine_pm_get(stream->engine);
2963 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2964 
2965 	ret = alloc_oa_buffer(stream);
2966 	if (ret)
2967 		goto err_oa_buf_alloc;
2968 
2969 	stream->ops = &i915_oa_stream_ops;
2970 
2971 	perf->sseu = props->sseu;
2972 	WRITE_ONCE(perf->exclusive_stream, stream);
2973 
2974 	ret = i915_perf_stream_enable_sync(stream);
2975 	if (ret) {
2976 		DRM_DEBUG("Unable to enable metric set\n");
2977 		goto err_enable;
2978 	}
2979 
2980 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2981 		  stream->oa_config->uuid);
2982 
2983 	hrtimer_init(&stream->poll_check_timer,
2984 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2985 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2986 	init_waitqueue_head(&stream->poll_wq);
2987 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2988 
2989 	return 0;
2990 
2991 err_enable:
2992 	WRITE_ONCE(perf->exclusive_stream, NULL);
2993 	perf->ops.disable_metric_set(stream);
2994 
2995 	free_oa_buffer(stream);
2996 
2997 err_oa_buf_alloc:
2998 	free_oa_configs(stream);
2999 
3000 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3001 	intel_engine_pm_put(stream->engine);
3002 
3003 err_config:
3004 	free_noa_wait(stream);
3005 
3006 err_noa_wait_alloc:
3007 	if (stream->ctx)
3008 		oa_put_render_ctx_id(stream);
3009 
3010 	return ret;
3011 }
3012 
3013 void i915_oa_init_reg_state(const struct intel_context *ce,
3014 			    const struct intel_engine_cs *engine)
3015 {
3016 	struct i915_perf_stream *stream;
3017 
3018 	if (engine->class != RENDER_CLASS)
3019 		return;
3020 
3021 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3022 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3023 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3024 		gen8_update_reg_state_unlocked(ce, stream);
3025 }
3026 
3027 /**
3028  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3029  * @file: An i915 perf stream file
3030  * @buf: destination buffer given by userspace
3031  * @count: the number of bytes userspace wants to read
3032  * @ppos: (inout) file seek position (unused)
3033  *
3034  * The entry point for handling a read() on a stream file descriptor from
3035  * userspace. Most of the work is left to the i915_perf_read_locked() and
3036  * &i915_perf_stream_ops->read but to save having stream implementations (of
3037  * which we might have multiple later) we handle blocking read here.
3038  *
3039  * We can also consistently treat trying to read from a disabled stream
3040  * as an IO error so implementations can assume the stream is enabled
3041  * while reading.
3042  *
3043  * Returns: The number of bytes copied or a negative error code on failure.
3044  */
3045 static ssize_t i915_perf_read(struct file *file,
3046 			      char __user *buf,
3047 			      size_t count,
3048 			      loff_t *ppos)
3049 {
3050 	struct i915_perf_stream *stream = file->private_data;
3051 	struct i915_perf *perf = stream->perf;
3052 	size_t offset = 0;
3053 	int ret;
3054 
3055 	/* To ensure it's handled consistently we simply treat all reads of a
3056 	 * disabled stream as an error. In particular it might otherwise lead
3057 	 * to a deadlock for blocking file descriptors...
3058 	 */
3059 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3060 		return -EIO;
3061 
3062 	if (!(file->f_flags & O_NONBLOCK)) {
3063 		/* There's the small chance of false positives from
3064 		 * stream->ops->wait_unlocked.
3065 		 *
3066 		 * E.g. with single context filtering since we only wait until
3067 		 * oabuffer has >= 1 report we don't immediately know whether
3068 		 * any reports really belong to the current context
3069 		 */
3070 		do {
3071 			ret = stream->ops->wait_unlocked(stream);
3072 			if (ret)
3073 				return ret;
3074 
3075 			mutex_lock(&perf->lock);
3076 			ret = stream->ops->read(stream, buf, count, &offset);
3077 			mutex_unlock(&perf->lock);
3078 		} while (!offset && !ret);
3079 	} else {
3080 		mutex_lock(&perf->lock);
3081 		ret = stream->ops->read(stream, buf, count, &offset);
3082 		mutex_unlock(&perf->lock);
3083 	}
3084 
3085 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3086 	 * events where we might actually report EAGAIN on read() if there's
3087 	 * not really any data available. In this situation though we don't
3088 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3089 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3090 	 * effectively ensures we back off until the next hrtimer callback
3091 	 * before reporting another EPOLLIN event.
3092 	 * The exception to this is if ops->read() returned -ENOSPC which means
3093 	 * that more OA data is available than could fit in the user provided
3094 	 * buffer. In this case we want the next poll() call to not block.
3095 	 */
3096 	if (ret != -ENOSPC)
3097 		stream->pollin = false;
3098 
3099 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3100 	return offset ?: (ret ?: -EAGAIN);
3101 }
3102 
3103 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3104 {
3105 	struct i915_perf_stream *stream =
3106 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3107 
3108 	if (oa_buffer_check_unlocked(stream)) {
3109 		stream->pollin = true;
3110 		wake_up(&stream->poll_wq);
3111 	}
3112 
3113 	hrtimer_forward_now(hrtimer,
3114 			    ns_to_ktime(stream->poll_oa_period));
3115 
3116 	return HRTIMER_RESTART;
3117 }
3118 
3119 /**
3120  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3121  * @stream: An i915 perf stream
3122  * @file: An i915 perf stream file
3123  * @wait: poll() state table
3124  *
3125  * For handling userspace polling on an i915 perf stream, this calls through to
3126  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3127  * will be woken for new stream data.
3128  *
3129  * Note: The &perf->lock mutex has been taken to serialize
3130  * with any non-file-operation driver hooks.
3131  *
3132  * Returns: any poll events that are ready without sleeping
3133  */
3134 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3135 				      struct file *file,
3136 				      poll_table *wait)
3137 {
3138 	__poll_t events = 0;
3139 
3140 	stream->ops->poll_wait(stream, file, wait);
3141 
3142 	/* Note: we don't explicitly check whether there's something to read
3143 	 * here since this path may be very hot depending on what else
3144 	 * userspace is polling, or on the timeout in use. We rely solely on
3145 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3146 	 * samples to read.
3147 	 */
3148 	if (stream->pollin)
3149 		events |= EPOLLIN;
3150 
3151 	return events;
3152 }
3153 
3154 /**
3155  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3156  * @file: An i915 perf stream file
3157  * @wait: poll() state table
3158  *
3159  * For handling userspace polling on an i915 perf stream, this ensures
3160  * poll_wait() gets called with a wait queue that will be woken for new stream
3161  * data.
3162  *
3163  * Note: Implementation deferred to i915_perf_poll_locked()
3164  *
3165  * Returns: any poll events that are ready without sleeping
3166  */
3167 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3168 {
3169 	struct i915_perf_stream *stream = file->private_data;
3170 	struct i915_perf *perf = stream->perf;
3171 	__poll_t ret;
3172 
3173 	mutex_lock(&perf->lock);
3174 	ret = i915_perf_poll_locked(stream, file, wait);
3175 	mutex_unlock(&perf->lock);
3176 
3177 	return ret;
3178 }
3179 
3180 /**
3181  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3182  * @stream: A disabled i915 perf stream
3183  *
3184  * [Re]enables the associated capture of data for this stream.
3185  *
3186  * If a stream was previously enabled then there's currently no intention
3187  * to provide userspace any guarantee about the preservation of previously
3188  * buffered data.
3189  */
3190 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3191 {
3192 	if (stream->enabled)
3193 		return;
3194 
3195 	/* Allow stream->ops->enable() to refer to this */
3196 	stream->enabled = true;
3197 
3198 	if (stream->ops->enable)
3199 		stream->ops->enable(stream);
3200 
3201 	if (stream->hold_preemption)
3202 		intel_context_set_nopreempt(stream->pinned_ctx);
3203 }
3204 
3205 /**
3206  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3207  * @stream: An enabled i915 perf stream
3208  *
3209  * Disables the associated capture of data for this stream.
3210  *
3211  * The intention is that disabling an re-enabling a stream will ideally be
3212  * cheaper than destroying and re-opening a stream with the same configuration,
3213  * though there are no formal guarantees about what state or buffered data
3214  * must be retained between disabling and re-enabling a stream.
3215  *
3216  * Note: while a stream is disabled it's considered an error for userspace
3217  * to attempt to read from the stream (-EIO).
3218  */
3219 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3220 {
3221 	if (!stream->enabled)
3222 		return;
3223 
3224 	/* Allow stream->ops->disable() to refer to this */
3225 	stream->enabled = false;
3226 
3227 	if (stream->hold_preemption)
3228 		intel_context_clear_nopreempt(stream->pinned_ctx);
3229 
3230 	if (stream->ops->disable)
3231 		stream->ops->disable(stream);
3232 }
3233 
3234 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3235 				    unsigned long metrics_set)
3236 {
3237 	struct i915_oa_config *config;
3238 	long ret = stream->oa_config->id;
3239 
3240 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3241 	if (!config)
3242 		return -EINVAL;
3243 
3244 	if (config != stream->oa_config) {
3245 		int err;
3246 
3247 		/*
3248 		 * If OA is bound to a specific context, emit the
3249 		 * reconfiguration inline from that context. The update
3250 		 * will then be ordered with respect to submission on that
3251 		 * context.
3252 		 *
3253 		 * When set globally, we use a low priority kernel context,
3254 		 * so it will effectively take effect when idle.
3255 		 */
3256 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3257 		if (!err)
3258 			config = xchg(&stream->oa_config, config);
3259 		else
3260 			ret = err;
3261 	}
3262 
3263 	i915_oa_config_put(config);
3264 
3265 	return ret;
3266 }
3267 
3268 /**
3269  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3270  * @stream: An i915 perf stream
3271  * @cmd: the ioctl request
3272  * @arg: the ioctl data
3273  *
3274  * Note: The &perf->lock mutex has been taken to serialize
3275  * with any non-file-operation driver hooks.
3276  *
3277  * Returns: zero on success or a negative error code. Returns -EINVAL for
3278  * an unknown ioctl request.
3279  */
3280 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3281 				   unsigned int cmd,
3282 				   unsigned long arg)
3283 {
3284 	switch (cmd) {
3285 	case I915_PERF_IOCTL_ENABLE:
3286 		i915_perf_enable_locked(stream);
3287 		return 0;
3288 	case I915_PERF_IOCTL_DISABLE:
3289 		i915_perf_disable_locked(stream);
3290 		return 0;
3291 	case I915_PERF_IOCTL_CONFIG:
3292 		return i915_perf_config_locked(stream, arg);
3293 	}
3294 
3295 	return -EINVAL;
3296 }
3297 
3298 /**
3299  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3300  * @file: An i915 perf stream file
3301  * @cmd: the ioctl request
3302  * @arg: the ioctl data
3303  *
3304  * Implementation deferred to i915_perf_ioctl_locked().
3305  *
3306  * Returns: zero on success or a negative error code. Returns -EINVAL for
3307  * an unknown ioctl request.
3308  */
3309 static long i915_perf_ioctl(struct file *file,
3310 			    unsigned int cmd,
3311 			    unsigned long arg)
3312 {
3313 	struct i915_perf_stream *stream = file->private_data;
3314 	struct i915_perf *perf = stream->perf;
3315 	long ret;
3316 
3317 	mutex_lock(&perf->lock);
3318 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3319 	mutex_unlock(&perf->lock);
3320 
3321 	return ret;
3322 }
3323 
3324 /**
3325  * i915_perf_destroy_locked - destroy an i915 perf stream
3326  * @stream: An i915 perf stream
3327  *
3328  * Frees all resources associated with the given i915 perf @stream, disabling
3329  * any associated data capture in the process.
3330  *
3331  * Note: The &perf->lock mutex has been taken to serialize
3332  * with any non-file-operation driver hooks.
3333  */
3334 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3335 {
3336 	if (stream->enabled)
3337 		i915_perf_disable_locked(stream);
3338 
3339 	if (stream->ops->destroy)
3340 		stream->ops->destroy(stream);
3341 
3342 	if (stream->ctx)
3343 		i915_gem_context_put(stream->ctx);
3344 
3345 	kfree(stream);
3346 }
3347 
3348 /**
3349  * i915_perf_release - handles userspace close() of a stream file
3350  * @inode: anonymous inode associated with file
3351  * @file: An i915 perf stream file
3352  *
3353  * Cleans up any resources associated with an open i915 perf stream file.
3354  *
3355  * NB: close() can't really fail from the userspace point of view.
3356  *
3357  * Returns: zero on success or a negative error code.
3358  */
3359 static int i915_perf_release(struct inode *inode, struct file *file)
3360 {
3361 	struct i915_perf_stream *stream = file->private_data;
3362 	struct i915_perf *perf = stream->perf;
3363 
3364 	mutex_lock(&perf->lock);
3365 	i915_perf_destroy_locked(stream);
3366 	mutex_unlock(&perf->lock);
3367 
3368 	/* Release the reference the perf stream kept on the driver. */
3369 	drm_dev_put(&perf->i915->drm);
3370 
3371 	return 0;
3372 }
3373 
3374 
3375 static const struct file_operations fops = {
3376 	.owner		= THIS_MODULE,
3377 	.llseek		= no_llseek,
3378 	.release	= i915_perf_release,
3379 	.poll		= i915_perf_poll,
3380 	.read		= i915_perf_read,
3381 	.unlocked_ioctl	= i915_perf_ioctl,
3382 	/* Our ioctl have no arguments, so it's safe to use the same function
3383 	 * to handle 32bits compatibility.
3384 	 */
3385 	.compat_ioctl   = i915_perf_ioctl,
3386 };
3387 
3388 
3389 /**
3390  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3391  * @perf: i915 perf instance
3392  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3393  * @props: individually validated u64 property value pairs
3394  * @file: drm file
3395  *
3396  * See i915_perf_ioctl_open() for interface details.
3397  *
3398  * Implements further stream config validation and stream initialization on
3399  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3400  * taken to serialize with any non-file-operation driver hooks.
3401  *
3402  * Note: at this point the @props have only been validated in isolation and
3403  * it's still necessary to validate that the combination of properties makes
3404  * sense.
3405  *
3406  * In the case where userspace is interested in OA unit metrics then further
3407  * config validation and stream initialization details will be handled by
3408  * i915_oa_stream_init(). The code here should only validate config state that
3409  * will be relevant to all stream types / backends.
3410  *
3411  * Returns: zero on success or a negative error code.
3412  */
3413 static int
3414 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3415 			    struct drm_i915_perf_open_param *param,
3416 			    struct perf_open_properties *props,
3417 			    struct drm_file *file)
3418 {
3419 	struct i915_gem_context *specific_ctx = NULL;
3420 	struct i915_perf_stream *stream = NULL;
3421 	unsigned long f_flags = 0;
3422 	bool privileged_op = true;
3423 	int stream_fd;
3424 	int ret;
3425 
3426 	if (props->single_context) {
3427 		u32 ctx_handle = props->ctx_handle;
3428 		struct drm_i915_file_private *file_priv = file->driver_priv;
3429 
3430 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3431 		if (IS_ERR(specific_ctx)) {
3432 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3433 				  ctx_handle);
3434 			ret = PTR_ERR(specific_ctx);
3435 			goto err;
3436 		}
3437 	}
3438 
3439 	/*
3440 	 * On Haswell the OA unit supports clock gating off for a specific
3441 	 * context and in this mode there's no visibility of metrics for the
3442 	 * rest of the system, which we consider acceptable for a
3443 	 * non-privileged client.
3444 	 *
3445 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3446 	 * specific context and the kernel can't securely stop the counters
3447 	 * from updating as system-wide / global values. Even though we can
3448 	 * filter reports based on the included context ID we can't block
3449 	 * clients from seeing the raw / global counter values via
3450 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3451 	 * enable the OA unit by default.
3452 	 *
3453 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3454 	 * per context basis. So we can relax requirements there if the user
3455 	 * doesn't request global stream access (i.e. query based sampling
3456 	 * using MI_RECORD_PERF_COUNT.
3457 	 */
3458 	if (IS_HASWELL(perf->i915) && specific_ctx)
3459 		privileged_op = false;
3460 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3461 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3462 		privileged_op = false;
3463 
3464 	if (props->hold_preemption) {
3465 		if (!props->single_context) {
3466 			DRM_DEBUG("preemption disable with no context\n");
3467 			ret = -EINVAL;
3468 			goto err;
3469 		}
3470 		privileged_op = true;
3471 	}
3472 
3473 	/*
3474 	 * Asking for SSEU configuration is a priviliged operation.
3475 	 */
3476 	if (props->has_sseu)
3477 		privileged_op = true;
3478 	else
3479 		get_default_sseu_config(&props->sseu, props->engine);
3480 
3481 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3482 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3483 	 * to determine if it's ok to access system wide OA counters
3484 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3485 	 */
3486 	if (privileged_op &&
3487 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3488 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3489 		ret = -EACCES;
3490 		goto err_ctx;
3491 	}
3492 
3493 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3494 	if (!stream) {
3495 		ret = -ENOMEM;
3496 		goto err_ctx;
3497 	}
3498 
3499 	stream->perf = perf;
3500 	stream->ctx = specific_ctx;
3501 	stream->poll_oa_period = props->poll_oa_period;
3502 
3503 	ret = i915_oa_stream_init(stream, param, props);
3504 	if (ret)
3505 		goto err_alloc;
3506 
3507 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3508 	 * to have _stream_init check the combination of sample flags more
3509 	 * thoroughly, but still this is the expected result at this point.
3510 	 */
3511 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3512 		ret = -ENODEV;
3513 		goto err_flags;
3514 	}
3515 
3516 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3517 		f_flags |= O_CLOEXEC;
3518 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3519 		f_flags |= O_NONBLOCK;
3520 
3521 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3522 	if (stream_fd < 0) {
3523 		ret = stream_fd;
3524 		goto err_flags;
3525 	}
3526 
3527 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3528 		i915_perf_enable_locked(stream);
3529 
3530 	/* Take a reference on the driver that will be kept with stream_fd
3531 	 * until its release.
3532 	 */
3533 	drm_dev_get(&perf->i915->drm);
3534 
3535 	return stream_fd;
3536 
3537 err_flags:
3538 	if (stream->ops->destroy)
3539 		stream->ops->destroy(stream);
3540 err_alloc:
3541 	kfree(stream);
3542 err_ctx:
3543 	if (specific_ctx)
3544 		i915_gem_context_put(specific_ctx);
3545 err:
3546 	return ret;
3547 }
3548 
3549 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3550 {
3551 	return intel_gt_clock_interval_to_ns(to_gt(perf->i915),
3552 					     2ULL << exponent);
3553 }
3554 
3555 static __always_inline bool
3556 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3557 {
3558 	return test_bit(format, perf->format_mask);
3559 }
3560 
3561 static __always_inline void
3562 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3563 {
3564 	__set_bit(format, perf->format_mask);
3565 }
3566 
3567 /**
3568  * read_properties_unlocked - validate + copy userspace stream open properties
3569  * @perf: i915 perf instance
3570  * @uprops: The array of u64 key value pairs given by userspace
3571  * @n_props: The number of key value pairs expected in @uprops
3572  * @props: The stream configuration built up while validating properties
3573  *
3574  * Note this function only validates properties in isolation it doesn't
3575  * validate that the combination of properties makes sense or that all
3576  * properties necessary for a particular kind of stream have been set.
3577  *
3578  * Note that there currently aren't any ordering requirements for properties so
3579  * we shouldn't validate or assume anything about ordering here. This doesn't
3580  * rule out defining new properties with ordering requirements in the future.
3581  */
3582 static int read_properties_unlocked(struct i915_perf *perf,
3583 				    u64 __user *uprops,
3584 				    u32 n_props,
3585 				    struct perf_open_properties *props)
3586 {
3587 	u64 __user *uprop = uprops;
3588 	u32 i;
3589 	int ret;
3590 
3591 	memset(props, 0, sizeof(struct perf_open_properties));
3592 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3593 
3594 	if (!n_props) {
3595 		DRM_DEBUG("No i915 perf properties given\n");
3596 		return -EINVAL;
3597 	}
3598 
3599 	/* At the moment we only support using i915-perf on the RCS. */
3600 	props->engine = intel_engine_lookup_user(perf->i915,
3601 						 I915_ENGINE_CLASS_RENDER,
3602 						 0);
3603 	if (!props->engine) {
3604 		DRM_DEBUG("No RENDER-capable engines\n");
3605 		return -EINVAL;
3606 	}
3607 
3608 	/* Considering that ID = 0 is reserved and assuming that we don't
3609 	 * (currently) expect any configurations to ever specify duplicate
3610 	 * values for a particular property ID then the last _PROP_MAX value is
3611 	 * one greater than the maximum number of properties we expect to get
3612 	 * from userspace.
3613 	 */
3614 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3615 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3616 		return -EINVAL;
3617 	}
3618 
3619 	for (i = 0; i < n_props; i++) {
3620 		u64 oa_period, oa_freq_hz;
3621 		u64 id, value;
3622 
3623 		ret = get_user(id, uprop);
3624 		if (ret)
3625 			return ret;
3626 
3627 		ret = get_user(value, uprop + 1);
3628 		if (ret)
3629 			return ret;
3630 
3631 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3632 			DRM_DEBUG("Unknown i915 perf property ID\n");
3633 			return -EINVAL;
3634 		}
3635 
3636 		switch ((enum drm_i915_perf_property_id)id) {
3637 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3638 			props->single_context = 1;
3639 			props->ctx_handle = value;
3640 			break;
3641 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3642 			if (value)
3643 				props->sample_flags |= SAMPLE_OA_REPORT;
3644 			break;
3645 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3646 			if (value == 0) {
3647 				DRM_DEBUG("Unknown OA metric set ID\n");
3648 				return -EINVAL;
3649 			}
3650 			props->metrics_set = value;
3651 			break;
3652 		case DRM_I915_PERF_PROP_OA_FORMAT:
3653 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3654 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3655 					  value);
3656 				return -EINVAL;
3657 			}
3658 			if (!oa_format_valid(perf, value)) {
3659 				DRM_DEBUG("Unsupported OA report format %llu\n",
3660 					  value);
3661 				return -EINVAL;
3662 			}
3663 			props->oa_format = value;
3664 			break;
3665 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3666 			if (value > OA_EXPONENT_MAX) {
3667 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3668 					 OA_EXPONENT_MAX);
3669 				return -EINVAL;
3670 			}
3671 
3672 			/* Theoretically we can program the OA unit to sample
3673 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3674 			 * for BXT. We don't allow such high sampling
3675 			 * frequencies by default unless root.
3676 			 */
3677 
3678 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3679 			oa_period = oa_exponent_to_ns(perf, value);
3680 
3681 			/* This check is primarily to ensure that oa_period <=
3682 			 * UINT32_MAX (before passing to do_div which only
3683 			 * accepts a u32 denominator), but we can also skip
3684 			 * checking anything < 1Hz which implicitly can't be
3685 			 * limited via an integer oa_max_sample_rate.
3686 			 */
3687 			if (oa_period <= NSEC_PER_SEC) {
3688 				u64 tmp = NSEC_PER_SEC;
3689 				do_div(tmp, oa_period);
3690 				oa_freq_hz = tmp;
3691 			} else
3692 				oa_freq_hz = 0;
3693 
3694 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3695 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3696 					  i915_oa_max_sample_rate);
3697 				return -EACCES;
3698 			}
3699 
3700 			props->oa_periodic = true;
3701 			props->oa_period_exponent = value;
3702 			break;
3703 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3704 			props->hold_preemption = !!value;
3705 			break;
3706 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3707 			struct drm_i915_gem_context_param_sseu user_sseu;
3708 
3709 			if (copy_from_user(&user_sseu,
3710 					   u64_to_user_ptr(value),
3711 					   sizeof(user_sseu))) {
3712 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3713 				return -EFAULT;
3714 			}
3715 
3716 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3717 			if (ret) {
3718 				DRM_DEBUG("Invalid SSEU configuration\n");
3719 				return ret;
3720 			}
3721 			props->has_sseu = true;
3722 			break;
3723 		}
3724 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3725 			if (value < 100000 /* 100us */) {
3726 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3727 					  value);
3728 				return -EINVAL;
3729 			}
3730 			props->poll_oa_period = value;
3731 			break;
3732 		case DRM_I915_PERF_PROP_MAX:
3733 			MISSING_CASE(id);
3734 			return -EINVAL;
3735 		}
3736 
3737 		uprop += 2;
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 /**
3744  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3745  * @dev: drm device
3746  * @data: ioctl data copied from userspace (unvalidated)
3747  * @file: drm file
3748  *
3749  * Validates the stream open parameters given by userspace including flags
3750  * and an array of u64 key, value pair properties.
3751  *
3752  * Very little is assumed up front about the nature of the stream being
3753  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3754  * i915-perf stream is expected to be a suitable interface for other forms of
3755  * buffered data written by the GPU besides periodic OA metrics.
3756  *
3757  * Note we copy the properties from userspace outside of the i915 perf
3758  * mutex to avoid an awkward lockdep with mmap_lock.
3759  *
3760  * Most of the implementation details are handled by
3761  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3762  * mutex for serializing with any non-file-operation driver hooks.
3763  *
3764  * Return: A newly opened i915 Perf stream file descriptor or negative
3765  * error code on failure.
3766  */
3767 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3768 			 struct drm_file *file)
3769 {
3770 	struct i915_perf *perf = &to_i915(dev)->perf;
3771 	struct drm_i915_perf_open_param *param = data;
3772 	struct perf_open_properties props;
3773 	u32 known_open_flags;
3774 	int ret;
3775 
3776 	if (!perf->i915) {
3777 		DRM_DEBUG("i915 perf interface not available for this system\n");
3778 		return -ENOTSUPP;
3779 	}
3780 
3781 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3782 			   I915_PERF_FLAG_FD_NONBLOCK |
3783 			   I915_PERF_FLAG_DISABLED;
3784 	if (param->flags & ~known_open_flags) {
3785 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3786 		return -EINVAL;
3787 	}
3788 
3789 	ret = read_properties_unlocked(perf,
3790 				       u64_to_user_ptr(param->properties_ptr),
3791 				       param->num_properties,
3792 				       &props);
3793 	if (ret)
3794 		return ret;
3795 
3796 	mutex_lock(&perf->lock);
3797 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3798 	mutex_unlock(&perf->lock);
3799 
3800 	return ret;
3801 }
3802 
3803 /**
3804  * i915_perf_register - exposes i915-perf to userspace
3805  * @i915: i915 device instance
3806  *
3807  * In particular OA metric sets are advertised under a sysfs metrics/
3808  * directory allowing userspace to enumerate valid IDs that can be
3809  * used to open an i915-perf stream.
3810  */
3811 void i915_perf_register(struct drm_i915_private *i915)
3812 {
3813 	struct i915_perf *perf = &i915->perf;
3814 
3815 	if (!perf->i915)
3816 		return;
3817 
3818 	/* To be sure we're synchronized with an attempted
3819 	 * i915_perf_open_ioctl(); considering that we register after
3820 	 * being exposed to userspace.
3821 	 */
3822 	mutex_lock(&perf->lock);
3823 
3824 	perf->metrics_kobj =
3825 		kobject_create_and_add("metrics",
3826 				       &i915->drm.primary->kdev->kobj);
3827 
3828 	mutex_unlock(&perf->lock);
3829 }
3830 
3831 /**
3832  * i915_perf_unregister - hide i915-perf from userspace
3833  * @i915: i915 device instance
3834  *
3835  * i915-perf state cleanup is split up into an 'unregister' and
3836  * 'deinit' phase where the interface is first hidden from
3837  * userspace by i915_perf_unregister() before cleaning up
3838  * remaining state in i915_perf_fini().
3839  */
3840 void i915_perf_unregister(struct drm_i915_private *i915)
3841 {
3842 	struct i915_perf *perf = &i915->perf;
3843 
3844 	if (!perf->metrics_kobj)
3845 		return;
3846 
3847 	kobject_put(perf->metrics_kobj);
3848 	perf->metrics_kobj = NULL;
3849 }
3850 
3851 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3852 {
3853 	static const i915_reg_t flex_eu_regs[] = {
3854 		EU_PERF_CNTL0,
3855 		EU_PERF_CNTL1,
3856 		EU_PERF_CNTL2,
3857 		EU_PERF_CNTL3,
3858 		EU_PERF_CNTL4,
3859 		EU_PERF_CNTL5,
3860 		EU_PERF_CNTL6,
3861 	};
3862 	int i;
3863 
3864 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3865 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3866 			return true;
3867 	}
3868 	return false;
3869 }
3870 
3871 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
3872 {
3873 	while (table->start || table->end) {
3874 		if (addr >= table->start && addr <= table->end)
3875 			return true;
3876 
3877 		table++;
3878 	}
3879 
3880 	return false;
3881 }
3882 
3883 #define REG_EQUAL(addr, mmio) \
3884 	((addr) == i915_mmio_reg_offset(mmio))
3885 
3886 static const struct i915_range gen7_oa_b_counters[] = {
3887 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
3888 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
3889 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
3890 	{}
3891 };
3892 
3893 static const struct i915_range gen12_oa_b_counters[] = {
3894 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
3895 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
3896 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
3897 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
3898 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
3899 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
3900 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
3901 	{}
3902 };
3903 
3904 static const struct i915_range gen7_oa_mux_regs[] = {
3905 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
3906 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
3907 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
3908 	{}
3909 };
3910 
3911 static const struct i915_range hsw_oa_mux_regs[] = {
3912 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
3913 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
3914 	{ .start = 0x25100, .end = 0x2ff90 },
3915 	{}
3916 };
3917 
3918 static const struct i915_range chv_oa_mux_regs[] = {
3919 	{ .start = 0x182300, .end = 0x1823a4 },
3920 	{}
3921 };
3922 
3923 static const struct i915_range gen8_oa_mux_regs[] = {
3924 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
3925 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3926 	{}
3927 };
3928 
3929 static const struct i915_range gen11_oa_mux_regs[] = {
3930 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
3931 	{}
3932 };
3933 
3934 static const struct i915_range gen12_oa_mux_regs[] = {
3935 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
3936 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
3937 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
3938 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
3939 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
3940 	{}
3941 };
3942 
3943 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3944 {
3945 	return reg_in_range_table(addr, gen7_oa_b_counters);
3946 }
3947 
3948 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3949 {
3950 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3951 		reg_in_range_table(addr, gen8_oa_mux_regs);
3952 }
3953 
3954 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3955 {
3956 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3957 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
3958 		reg_in_range_table(addr, gen11_oa_mux_regs);
3959 }
3960 
3961 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3962 {
3963 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3964 		reg_in_range_table(addr, hsw_oa_mux_regs);
3965 }
3966 
3967 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3968 {
3969 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3970 		reg_in_range_table(addr, chv_oa_mux_regs);
3971 }
3972 
3973 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3974 {
3975 	return reg_in_range_table(addr, gen12_oa_b_counters);
3976 }
3977 
3978 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3979 {
3980 	return reg_in_range_table(addr, gen12_oa_mux_regs);
3981 }
3982 
3983 static u32 mask_reg_value(u32 reg, u32 val)
3984 {
3985 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3986 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3987 	 * programmed by userspace doesn't change this.
3988 	 */
3989 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3990 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3991 
3992 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3993 	 * indicated by its name and a bunch of selection fields used by OA
3994 	 * configs.
3995 	 */
3996 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3997 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3998 
3999 	return val;
4000 }
4001 
4002 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4003 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4004 					 u32 __user *regs,
4005 					 u32 n_regs)
4006 {
4007 	struct i915_oa_reg *oa_regs;
4008 	int err;
4009 	u32 i;
4010 
4011 	if (!n_regs)
4012 		return NULL;
4013 
4014 	/* No is_valid function means we're not allowing any register to be programmed. */
4015 	GEM_BUG_ON(!is_valid);
4016 	if (!is_valid)
4017 		return ERR_PTR(-EINVAL);
4018 
4019 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4020 	if (!oa_regs)
4021 		return ERR_PTR(-ENOMEM);
4022 
4023 	for (i = 0; i < n_regs; i++) {
4024 		u32 addr, value;
4025 
4026 		err = get_user(addr, regs);
4027 		if (err)
4028 			goto addr_err;
4029 
4030 		if (!is_valid(perf, addr)) {
4031 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
4032 			err = -EINVAL;
4033 			goto addr_err;
4034 		}
4035 
4036 		err = get_user(value, regs + 1);
4037 		if (err)
4038 			goto addr_err;
4039 
4040 		oa_regs[i].addr = _MMIO(addr);
4041 		oa_regs[i].value = mask_reg_value(addr, value);
4042 
4043 		regs += 2;
4044 	}
4045 
4046 	return oa_regs;
4047 
4048 addr_err:
4049 	kfree(oa_regs);
4050 	return ERR_PTR(err);
4051 }
4052 
4053 static ssize_t show_dynamic_id(struct device *dev,
4054 			       struct device_attribute *attr,
4055 			       char *buf)
4056 {
4057 	struct i915_oa_config *oa_config =
4058 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4059 
4060 	return sprintf(buf, "%d\n", oa_config->id);
4061 }
4062 
4063 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4064 					 struct i915_oa_config *oa_config)
4065 {
4066 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4067 	oa_config->sysfs_metric_id.attr.name = "id";
4068 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4069 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4070 	oa_config->sysfs_metric_id.store = NULL;
4071 
4072 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4073 	oa_config->attrs[1] = NULL;
4074 
4075 	oa_config->sysfs_metric.name = oa_config->uuid;
4076 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4077 
4078 	return sysfs_create_group(perf->metrics_kobj,
4079 				  &oa_config->sysfs_metric);
4080 }
4081 
4082 /**
4083  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4084  * @dev: drm device
4085  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4086  *        userspace (unvalidated)
4087  * @file: drm file
4088  *
4089  * Validates the submitted OA register to be saved into a new OA config that
4090  * can then be used for programming the OA unit and its NOA network.
4091  *
4092  * Returns: A new allocated config number to be used with the perf open ioctl
4093  * or a negative error code on failure.
4094  */
4095 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4096 			       struct drm_file *file)
4097 {
4098 	struct i915_perf *perf = &to_i915(dev)->perf;
4099 	struct drm_i915_perf_oa_config *args = data;
4100 	struct i915_oa_config *oa_config, *tmp;
4101 	struct i915_oa_reg *regs;
4102 	int err, id;
4103 
4104 	if (!perf->i915) {
4105 		DRM_DEBUG("i915 perf interface not available for this system\n");
4106 		return -ENOTSUPP;
4107 	}
4108 
4109 	if (!perf->metrics_kobj) {
4110 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4111 		return -EINVAL;
4112 	}
4113 
4114 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4115 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4116 		return -EACCES;
4117 	}
4118 
4119 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4120 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4121 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4122 		DRM_DEBUG("No OA registers given\n");
4123 		return -EINVAL;
4124 	}
4125 
4126 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4127 	if (!oa_config) {
4128 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4129 		return -ENOMEM;
4130 	}
4131 
4132 	oa_config->perf = perf;
4133 	kref_init(&oa_config->ref);
4134 
4135 	if (!uuid_is_valid(args->uuid)) {
4136 		DRM_DEBUG("Invalid uuid format for OA config\n");
4137 		err = -EINVAL;
4138 		goto reg_err;
4139 	}
4140 
4141 	/* Last character in oa_config->uuid will be 0 because oa_config is
4142 	 * kzalloc.
4143 	 */
4144 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4145 
4146 	oa_config->mux_regs_len = args->n_mux_regs;
4147 	regs = alloc_oa_regs(perf,
4148 			     perf->ops.is_valid_mux_reg,
4149 			     u64_to_user_ptr(args->mux_regs_ptr),
4150 			     args->n_mux_regs);
4151 
4152 	if (IS_ERR(regs)) {
4153 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4154 		err = PTR_ERR(regs);
4155 		goto reg_err;
4156 	}
4157 	oa_config->mux_regs = regs;
4158 
4159 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4160 	regs = alloc_oa_regs(perf,
4161 			     perf->ops.is_valid_b_counter_reg,
4162 			     u64_to_user_ptr(args->boolean_regs_ptr),
4163 			     args->n_boolean_regs);
4164 
4165 	if (IS_ERR(regs)) {
4166 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4167 		err = PTR_ERR(regs);
4168 		goto reg_err;
4169 	}
4170 	oa_config->b_counter_regs = regs;
4171 
4172 	if (GRAPHICS_VER(perf->i915) < 8) {
4173 		if (args->n_flex_regs != 0) {
4174 			err = -EINVAL;
4175 			goto reg_err;
4176 		}
4177 	} else {
4178 		oa_config->flex_regs_len = args->n_flex_regs;
4179 		regs = alloc_oa_regs(perf,
4180 				     perf->ops.is_valid_flex_reg,
4181 				     u64_to_user_ptr(args->flex_regs_ptr),
4182 				     args->n_flex_regs);
4183 
4184 		if (IS_ERR(regs)) {
4185 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4186 			err = PTR_ERR(regs);
4187 			goto reg_err;
4188 		}
4189 		oa_config->flex_regs = regs;
4190 	}
4191 
4192 	err = mutex_lock_interruptible(&perf->metrics_lock);
4193 	if (err)
4194 		goto reg_err;
4195 
4196 	/* We shouldn't have too many configs, so this iteration shouldn't be
4197 	 * too costly.
4198 	 */
4199 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4200 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4201 			DRM_DEBUG("OA config already exists with this uuid\n");
4202 			err = -EADDRINUSE;
4203 			goto sysfs_err;
4204 		}
4205 	}
4206 
4207 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4208 	if (err) {
4209 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4210 		goto sysfs_err;
4211 	}
4212 
4213 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4214 	oa_config->id = idr_alloc(&perf->metrics_idr,
4215 				  oa_config, 2,
4216 				  0, GFP_KERNEL);
4217 	if (oa_config->id < 0) {
4218 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4219 		err = oa_config->id;
4220 		goto sysfs_err;
4221 	}
4222 
4223 	mutex_unlock(&perf->metrics_lock);
4224 
4225 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4226 
4227 	return oa_config->id;
4228 
4229 sysfs_err:
4230 	mutex_unlock(&perf->metrics_lock);
4231 reg_err:
4232 	i915_oa_config_put(oa_config);
4233 	DRM_DEBUG("Failed to add new OA config\n");
4234 	return err;
4235 }
4236 
4237 /**
4238  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4239  * @dev: drm device
4240  * @data: ioctl data (pointer to u64 integer) copied from userspace
4241  * @file: drm file
4242  *
4243  * Configs can be removed while being used, the will stop appearing in sysfs
4244  * and their content will be freed when the stream using the config is closed.
4245  *
4246  * Returns: 0 on success or a negative error code on failure.
4247  */
4248 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4249 				  struct drm_file *file)
4250 {
4251 	struct i915_perf *perf = &to_i915(dev)->perf;
4252 	u64 *arg = data;
4253 	struct i915_oa_config *oa_config;
4254 	int ret;
4255 
4256 	if (!perf->i915) {
4257 		DRM_DEBUG("i915 perf interface not available for this system\n");
4258 		return -ENOTSUPP;
4259 	}
4260 
4261 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4262 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4263 		return -EACCES;
4264 	}
4265 
4266 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4267 	if (ret)
4268 		return ret;
4269 
4270 	oa_config = idr_find(&perf->metrics_idr, *arg);
4271 	if (!oa_config) {
4272 		DRM_DEBUG("Failed to remove unknown OA config\n");
4273 		ret = -ENOENT;
4274 		goto err_unlock;
4275 	}
4276 
4277 	GEM_BUG_ON(*arg != oa_config->id);
4278 
4279 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4280 
4281 	idr_remove(&perf->metrics_idr, *arg);
4282 
4283 	mutex_unlock(&perf->metrics_lock);
4284 
4285 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4286 
4287 	i915_oa_config_put(oa_config);
4288 
4289 	return 0;
4290 
4291 err_unlock:
4292 	mutex_unlock(&perf->metrics_lock);
4293 	return ret;
4294 }
4295 
4296 static struct ctl_table oa_table[] = {
4297 	{
4298 	 .procname = "perf_stream_paranoid",
4299 	 .data = &i915_perf_stream_paranoid,
4300 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4301 	 .mode = 0644,
4302 	 .proc_handler = proc_dointvec_minmax,
4303 	 .extra1 = SYSCTL_ZERO,
4304 	 .extra2 = SYSCTL_ONE,
4305 	 },
4306 	{
4307 	 .procname = "oa_max_sample_rate",
4308 	 .data = &i915_oa_max_sample_rate,
4309 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4310 	 .mode = 0644,
4311 	 .proc_handler = proc_dointvec_minmax,
4312 	 .extra1 = SYSCTL_ZERO,
4313 	 .extra2 = &oa_sample_rate_hard_limit,
4314 	 },
4315 	{}
4316 };
4317 
4318 static void oa_init_supported_formats(struct i915_perf *perf)
4319 {
4320 	struct drm_i915_private *i915 = perf->i915;
4321 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4322 
4323 	switch (platform) {
4324 	case INTEL_HASWELL:
4325 		oa_format_add(perf, I915_OA_FORMAT_A13);
4326 		oa_format_add(perf, I915_OA_FORMAT_A13);
4327 		oa_format_add(perf, I915_OA_FORMAT_A29);
4328 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4329 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4330 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4331 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4332 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4333 		break;
4334 
4335 	case INTEL_BROADWELL:
4336 	case INTEL_CHERRYVIEW:
4337 	case INTEL_SKYLAKE:
4338 	case INTEL_BROXTON:
4339 	case INTEL_KABYLAKE:
4340 	case INTEL_GEMINILAKE:
4341 	case INTEL_COFFEELAKE:
4342 	case INTEL_COMETLAKE:
4343 	case INTEL_ICELAKE:
4344 	case INTEL_ELKHARTLAKE:
4345 	case INTEL_JASPERLAKE:
4346 	case INTEL_TIGERLAKE:
4347 	case INTEL_ROCKETLAKE:
4348 	case INTEL_DG1:
4349 	case INTEL_ALDERLAKE_S:
4350 	case INTEL_ALDERLAKE_P:
4351 		oa_format_add(perf, I915_OA_FORMAT_A12);
4352 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4353 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4354 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4355 		break;
4356 
4357 	default:
4358 		MISSING_CASE(platform);
4359 	}
4360 }
4361 
4362 /**
4363  * i915_perf_init - initialize i915-perf state on module bind
4364  * @i915: i915 device instance
4365  *
4366  * Initializes i915-perf state without exposing anything to userspace.
4367  *
4368  * Note: i915-perf initialization is split into an 'init' and 'register'
4369  * phase with the i915_perf_register() exposing state to userspace.
4370  */
4371 void i915_perf_init(struct drm_i915_private *i915)
4372 {
4373 	struct i915_perf *perf = &i915->perf;
4374 
4375 	/* XXX const struct i915_perf_ops! */
4376 
4377 	/* i915_perf is not enabled for DG2 yet */
4378 	if (IS_DG2(i915))
4379 		return;
4380 
4381 	perf->oa_formats = oa_formats;
4382 	if (IS_HASWELL(i915)) {
4383 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4384 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4385 		perf->ops.is_valid_flex_reg = NULL;
4386 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4387 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4388 		perf->ops.oa_enable = gen7_oa_enable;
4389 		perf->ops.oa_disable = gen7_oa_disable;
4390 		perf->ops.read = gen7_oa_read;
4391 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4392 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4393 		/* Note: that although we could theoretically also support the
4394 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4395 		 * this driver, before upstreaming did this) it didn't seem
4396 		 * worth the complexity to maintain now that BDW+ enable
4397 		 * execlist mode by default.
4398 		 */
4399 		perf->ops.read = gen8_oa_read;
4400 
4401 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4402 			perf->ops.is_valid_b_counter_reg =
4403 				gen7_is_valid_b_counter_addr;
4404 			perf->ops.is_valid_mux_reg =
4405 				gen8_is_valid_mux_addr;
4406 			perf->ops.is_valid_flex_reg =
4407 				gen8_is_valid_flex_addr;
4408 
4409 			if (IS_CHERRYVIEW(i915)) {
4410 				perf->ops.is_valid_mux_reg =
4411 					chv_is_valid_mux_addr;
4412 			}
4413 
4414 			perf->ops.oa_enable = gen8_oa_enable;
4415 			perf->ops.oa_disable = gen8_oa_disable;
4416 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4417 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4418 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4419 
4420 			if (GRAPHICS_VER(i915) == 8) {
4421 				perf->ctx_oactxctrl_offset = 0x120;
4422 				perf->ctx_flexeu0_offset = 0x2ce;
4423 
4424 				perf->gen8_valid_ctx_bit = BIT(25);
4425 			} else {
4426 				perf->ctx_oactxctrl_offset = 0x128;
4427 				perf->ctx_flexeu0_offset = 0x3de;
4428 
4429 				perf->gen8_valid_ctx_bit = BIT(16);
4430 			}
4431 		} else if (GRAPHICS_VER(i915) == 11) {
4432 			perf->ops.is_valid_b_counter_reg =
4433 				gen7_is_valid_b_counter_addr;
4434 			perf->ops.is_valid_mux_reg =
4435 				gen11_is_valid_mux_addr;
4436 			perf->ops.is_valid_flex_reg =
4437 				gen8_is_valid_flex_addr;
4438 
4439 			perf->ops.oa_enable = gen8_oa_enable;
4440 			perf->ops.oa_disable = gen8_oa_disable;
4441 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4442 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4443 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4444 
4445 			perf->ctx_oactxctrl_offset = 0x124;
4446 			perf->ctx_flexeu0_offset = 0x78e;
4447 
4448 			perf->gen8_valid_ctx_bit = BIT(16);
4449 		} else if (GRAPHICS_VER(i915) == 12) {
4450 			perf->ops.is_valid_b_counter_reg =
4451 				gen12_is_valid_b_counter_addr;
4452 			perf->ops.is_valid_mux_reg =
4453 				gen12_is_valid_mux_addr;
4454 			perf->ops.is_valid_flex_reg =
4455 				gen8_is_valid_flex_addr;
4456 
4457 			perf->ops.oa_enable = gen12_oa_enable;
4458 			perf->ops.oa_disable = gen12_oa_disable;
4459 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4460 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4461 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4462 
4463 			perf->ctx_flexeu0_offset = 0;
4464 			perf->ctx_oactxctrl_offset = 0x144;
4465 		}
4466 	}
4467 
4468 	if (perf->ops.enable_metric_set) {
4469 		mutex_init(&perf->lock);
4470 
4471 		/* Choose a representative limit */
4472 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4473 
4474 		mutex_init(&perf->metrics_lock);
4475 		idr_init_base(&perf->metrics_idr, 1);
4476 
4477 		/* We set up some ratelimit state to potentially throttle any
4478 		 * _NOTES about spurious, invalid OA reports which we don't
4479 		 * forward to userspace.
4480 		 *
4481 		 * We print a _NOTE about any throttling when closing the
4482 		 * stream instead of waiting until driver _fini which no one
4483 		 * would ever see.
4484 		 *
4485 		 * Using the same limiting factors as printk_ratelimit()
4486 		 */
4487 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4488 		/* Since we use a DRM_NOTE for spurious reports it would be
4489 		 * inconsistent to let __ratelimit() automatically print a
4490 		 * warning for throttling.
4491 		 */
4492 		ratelimit_set_flags(&perf->spurious_report_rs,
4493 				    RATELIMIT_MSG_ON_RELEASE);
4494 
4495 		ratelimit_state_init(&perf->tail_pointer_race,
4496 				     5 * HZ, 10);
4497 		ratelimit_set_flags(&perf->tail_pointer_race,
4498 				    RATELIMIT_MSG_ON_RELEASE);
4499 
4500 		atomic64_set(&perf->noa_programming_delay,
4501 			     500 * 1000 /* 500us */);
4502 
4503 		perf->i915 = i915;
4504 
4505 		oa_init_supported_formats(perf);
4506 	}
4507 }
4508 
4509 static int destroy_config(int id, void *p, void *data)
4510 {
4511 	i915_oa_config_put(p);
4512 	return 0;
4513 }
4514 
4515 int i915_perf_sysctl_register(void)
4516 {
4517 	sysctl_header = register_sysctl("dev/i915", oa_table);
4518 	return 0;
4519 }
4520 
4521 void i915_perf_sysctl_unregister(void)
4522 {
4523 	unregister_sysctl_table(sysctl_header);
4524 }
4525 
4526 /**
4527  * i915_perf_fini - Counter part to i915_perf_init()
4528  * @i915: i915 device instance
4529  */
4530 void i915_perf_fini(struct drm_i915_private *i915)
4531 {
4532 	struct i915_perf *perf = &i915->perf;
4533 
4534 	if (!perf->i915)
4535 		return;
4536 
4537 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4538 	idr_destroy(&perf->metrics_idr);
4539 
4540 	memset(&perf->ops, 0, sizeof(perf->ops));
4541 	perf->i915 = NULL;
4542 }
4543 
4544 /**
4545  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4546  *
4547  * This version number is used by userspace to detect available features.
4548  */
4549 int i915_perf_ioctl_version(void)
4550 {
4551 	/*
4552 	 * 1: Initial version
4553 	 *   I915_PERF_IOCTL_ENABLE
4554 	 *   I915_PERF_IOCTL_DISABLE
4555 	 *
4556 	 * 2: Added runtime modification of OA config.
4557 	 *   I915_PERF_IOCTL_CONFIG
4558 	 *
4559 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4560 	 *    preemption on a particular context so that performance data is
4561 	 *    accessible from a delta of MI_RPC reports without looking at the
4562 	 *    OA buffer.
4563 	 *
4564 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4565 	 *    be run for the duration of the performance recording based on
4566 	 *    their SSEU configuration.
4567 	 *
4568 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4569 	 *    interval for the hrtimer used to check for OA data.
4570 	 */
4571 	return 5;
4572 }
4573 
4574 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4575 #include "selftests/i915_perf.c"
4576 #endif
4577