xref: /linux/drivers/gpu/drm/i915/i915_perf.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_print.h"
210 #include "gt/intel_gt_regs.h"
211 #include "gt/intel_lrc.h"
212 #include "gt/intel_lrc_reg.h"
213 #include "gt/intel_rc6.h"
214 #include "gt/intel_ring.h"
215 #include "gt/uc/intel_guc_slpc.h"
216 
217 #include "i915_drv.h"
218 #include "i915_file_private.h"
219 #include "i915_perf.h"
220 #include "i915_perf_oa_regs.h"
221 #include "i915_reg.h"
222 
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224  * is currently generally designed assuming the largest 16M size is used such
225  * that the overflow cases are unlikely in normal operation.
226  */
227 #define OA_BUFFER_SIZE		SZ_16M
228 
229 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
230 
231 /**
232  * DOC: OA Tail Pointer Race
233  *
234  * There's a HW race condition between OA unit tail pointer register updates and
235  * writes to memory whereby the tail pointer can sometimes get ahead of what's
236  * been written out to the OA buffer so far (in terms of what's visible to the
237  * CPU).
238  *
239  * Although this can be observed explicitly while copying reports to userspace
240  * by checking for a zeroed report-id field in tail reports, we want to account
241  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
242  * redundant read() attempts.
243  *
244  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
245  * in the OA buffer, starting from the tail reported by the HW until we find a
246  * report with its first 2 dwords not 0 meaning its previous report is
247  * completely in memory and ready to be read. Those dwords are also set to 0
248  * once read and the whole buffer is cleared upon OA buffer initialization. The
249  * first dword is the reason for this report while the second is the timestamp,
250  * making the chances of having those 2 fields at 0 fairly unlikely. A more
251  * detailed explanation is available in oa_buffer_check_unlocked().
252  *
253  * Most of the implementation details for this workaround are in
254  * oa_buffer_check_unlocked() and _append_oa_reports()
255  *
256  * Note for posterity: previously the driver used to define an effective tail
257  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259  * This was flawed considering that the OA unit may also automatically generate
260  * non-periodic reports (such as on context switch) or the OA unit may be
261  * enabled without any periodic sampling.
262  */
263 #define OA_TAIL_MARGIN_NSEC	100000ULL
264 #define INVALID_TAIL_PTR	0xffffffff
265 
266 /* The default frequency for checking whether the OA unit has written new
267  * reports to the circular OA buffer...
268  */
269 #define DEFAULT_POLL_FREQUENCY_HZ 200
270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
271 
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273 static u32 i915_perf_stream_paranoid = true;
274 
275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
276  * of the 64bit timestamp bits to trigger reports from) but there's currently
277  * no known use case for sampling as infrequently as once per 47 thousand years.
278  *
279  * Since the timestamps included in OA reports are only 32bits it seems
280  * reasonable to limit the OA exponent where it's still possible to account for
281  * overflow in OA report timestamps.
282  */
283 #define OA_EXPONENT_MAX 31
284 
285 #define INVALID_CTX_ID 0xffffffff
286 
287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288 #define OAREPORT_REASON_MASK           0x3f
289 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
290 #define OAREPORT_REASON_SHIFT          19
291 #define OAREPORT_REASON_TIMER          (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
294 
295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
296 
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298  *
299  * The highest sampling frequency we can theoretically program the OA unit
300  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301  *
302  * Initialized just before we register the sysctl parameter.
303  */
304 static int oa_sample_rate_hard_limit;
305 
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307  * allow that by default unless root...
308  *
309  * The default threshold of 100000Hz is based on perf's similar
310  * kernel.perf_event_max_sample_rate sysctl parameter.
311  */
312 static u32 i915_oa_max_sample_rate = 100000;
313 
314 /* XXX: beware if future OA HW adds new report formats that the current
315  * code assumes all reports have a power-of-two size and ~(size - 1) can
316  * be used as a mask to align the OA tail pointer.
317  */
318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
319 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
320 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
321 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
322 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
324 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
325 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
326 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
327 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
328 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
329 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
330 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
331 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
332 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
333 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
334 };
335 
336 static const u32 mtl_oa_base[] = {
337 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
338 };
339 
340 #define SAMPLE_OA_REPORT      (1<<0)
341 
342 /**
343  * struct perf_open_properties - for validated properties given to open a stream
344  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345  * @single_context: Whether a single or all gpu contexts should be monitored
346  * @hold_preemption: Whether the preemption is disabled for the filtered
347  *                   context
348  * @ctx_handle: A gem ctx handle for use with @single_context
349  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
350  * @oa_format: An OA unit HW report format
351  * @oa_periodic: Whether to enable periodic OA unit sampling
352  * @oa_period_exponent: The OA unit sampling period is derived from this
353  * @engine: The engine (typically rcs0) being monitored by the OA unit
354  * @has_sseu: Whether @sseu was specified by userspace
355  * @sseu: internal SSEU configuration computed either from the userspace
356  *        specified configuration in the opening parameters or a default value
357  *        (see get_default_sseu_config())
358  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
359  * data availability
360  *
361  * As read_properties_unlocked() enumerates and validates the properties given
362  * to open a stream of metrics the configuration is built up in the structure
363  * which starts out zero initialized.
364  */
365 struct perf_open_properties {
366 	u32 sample_flags;
367 
368 	u64 single_context:1;
369 	u64 hold_preemption:1;
370 	u64 ctx_handle;
371 
372 	/* OA sampling state */
373 	int metrics_set;
374 	int oa_format;
375 	bool oa_periodic;
376 	int oa_period_exponent;
377 
378 	struct intel_engine_cs *engine;
379 
380 	bool has_sseu;
381 	struct intel_sseu sseu;
382 
383 	u64 poll_oa_period;
384 };
385 
386 struct i915_oa_config_bo {
387 	struct llist_node node;
388 
389 	struct i915_oa_config *oa_config;
390 	struct i915_vma *vma;
391 };
392 
393 static struct ctl_table_header *sysctl_header;
394 
395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
396 
397 void i915_oa_config_release(struct kref *ref)
398 {
399 	struct i915_oa_config *oa_config =
400 		container_of(ref, typeof(*oa_config), ref);
401 
402 	kfree(oa_config->flex_regs);
403 	kfree(oa_config->b_counter_regs);
404 	kfree(oa_config->mux_regs);
405 
406 	kfree_rcu(oa_config, rcu);
407 }
408 
409 struct i915_oa_config *
410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
411 {
412 	struct i915_oa_config *oa_config;
413 
414 	rcu_read_lock();
415 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 	if (oa_config)
417 		oa_config = i915_oa_config_get(oa_config);
418 	rcu_read_unlock();
419 
420 	return oa_config;
421 }
422 
423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424 {
425 	i915_oa_config_put(oa_bo->oa_config);
426 	i915_vma_put(oa_bo->vma);
427 	kfree(oa_bo);
428 }
429 
430 static inline const
431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
432 {
433 	return &stream->engine->oa_group->regs;
434 }
435 
436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
437 {
438 	struct intel_uncore *uncore = stream->uncore;
439 
440 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
441 	       GEN12_OAG_OATAILPTR_MASK;
442 }
443 
444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
445 {
446 	struct intel_uncore *uncore = stream->uncore;
447 
448 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
449 }
450 
451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
452 {
453 	struct intel_uncore *uncore = stream->uncore;
454 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
455 
456 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
457 }
458 
459 #define oa_report_header_64bit(__s) \
460 	((__s)->oa_buffer.format->header == HDR_64_BIT)
461 
462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
463 {
464 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
465 }
466 
467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
468 {
469 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
470 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
471 		OAREPORT_REASON_MASK_EXTENDED :
472 		OAREPORT_REASON_MASK);
473 }
474 
475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
476 {
477 	if (oa_report_header_64bit(stream))
478 		*(u64 *)report = 0;
479 	else
480 		*report = 0;
481 }
482 
483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
484 {
485 	return !(oa_report_id(stream, report) &
486 	       stream->perf->gen8_valid_ctx_bit);
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail in the oa_buffer object.
535  *
536  * Note: It's safe to read OA config state here unlocked, assuming that this is
537  * only called while the stream is enabled, while the global OA configuration
538  * can't be modified.
539  *
540  * Returns: %true if the OA buffer contains data, else %false
541  */
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 	int report_size = stream->oa_buffer.format->size;
546 	u32 tail, hw_tail;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 partial_report_size;
550 
551 	/* We have to consider the (unlikely) possibility that read() errors
552 	 * could result in an OA buffer reset which might reset the head and
553 	 * tail state.
554 	 */
555 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
556 
557 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558 	hw_tail -= gtt_offset;
559 
560 	/* The tail pointer increases in 64 byte increments, not in report_size
561 	 * steps. Also the report size may not be a power of 2. Compute
562 	 * potentially partially landed report in the OA buffer
563 	 */
564 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 	partial_report_size %= report_size;
566 
567 	/* Subtract partial amount off the tail */
568 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569 
570 	tail = hw_tail;
571 
572 	/* Walk the stream backward until we find a report with report
573 	 * id and timestmap not at 0. Since the circular buffer pointers
574 	 * progress by increments of 64 bytes and that reports can be up
575 	 * to 256 bytes long, we can't tell whether a report has fully
576 	 * landed in memory before the report id and timestamp of the
577 	 * following report have effectively landed.
578 	 *
579 	 * This is assuming that the writes of the OA unit land in
580 	 * memory in the order they were written to.
581 	 * If not : (╯°□°)╯︵ ┻━┻
582 	 */
583 	while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
584 		void *report = stream->oa_buffer.vaddr + tail;
585 
586 		if (oa_report_id(stream, report) ||
587 		    oa_timestamp(stream, report))
588 			break;
589 
590 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
591 	}
592 
593 	if (OA_TAKEN(hw_tail, tail) > report_size &&
594 	    __ratelimit(&stream->perf->tail_pointer_race))
595 		drm_notice(&stream->uncore->i915->drm,
596 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
597 		 stream->oa_buffer.head, tail, hw_tail);
598 
599 	stream->oa_buffer.tail = tail;
600 
601 	pollin = OA_TAKEN(stream->oa_buffer.tail,
602 			  stream->oa_buffer.head) >= report_size;
603 
604 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
605 
606 	return pollin;
607 }
608 
609 /**
610  * append_oa_status - Appends a status record to a userspace read() buffer.
611  * @stream: An i915-perf stream opened for OA metrics
612  * @buf: destination buffer given by userspace
613  * @count: the number of bytes userspace wants to read
614  * @offset: (inout): the current position for writing into @buf
615  * @type: The kind of status to report to userspace
616  *
617  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
618  * into the userspace read() buffer.
619  *
620  * The @buf @offset will only be updated on success.
621  *
622  * Returns: 0 on success, negative error code on failure.
623  */
624 static int append_oa_status(struct i915_perf_stream *stream,
625 			    char __user *buf,
626 			    size_t count,
627 			    size_t *offset,
628 			    enum drm_i915_perf_record_type type)
629 {
630 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
631 
632 	if ((count - *offset) < header.size)
633 		return -ENOSPC;
634 
635 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
636 		return -EFAULT;
637 
638 	(*offset) += header.size;
639 
640 	return 0;
641 }
642 
643 /**
644  * append_oa_sample - Copies single OA report into userspace read() buffer.
645  * @stream: An i915-perf stream opened for OA metrics
646  * @buf: destination buffer given by userspace
647  * @count: the number of bytes userspace wants to read
648  * @offset: (inout): the current position for writing into @buf
649  * @report: A single OA report to (optionally) include as part of the sample
650  *
651  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
652  * properties when opening a stream, tracked as `stream->sample_flags`. This
653  * function copies the requested components of a single sample to the given
654  * read() @buf.
655  *
656  * The @buf @offset will only be updated on success.
657  *
658  * Returns: 0 on success, negative error code on failure.
659  */
660 static int append_oa_sample(struct i915_perf_stream *stream,
661 			    char __user *buf,
662 			    size_t count,
663 			    size_t *offset,
664 			    const u8 *report)
665 {
666 	int report_size = stream->oa_buffer.format->size;
667 	struct drm_i915_perf_record_header header;
668 	int report_size_partial;
669 	u8 *oa_buf_end;
670 
671 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
672 	header.pad = 0;
673 	header.size = stream->sample_size;
674 
675 	if ((count - *offset) < header.size)
676 		return -ENOSPC;
677 
678 	buf += *offset;
679 	if (copy_to_user(buf, &header, sizeof(header)))
680 		return -EFAULT;
681 	buf += sizeof(header);
682 
683 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
684 	report_size_partial = oa_buf_end - report;
685 
686 	if (report_size_partial < report_size) {
687 		if (copy_to_user(buf, report, report_size_partial))
688 			return -EFAULT;
689 		buf += report_size_partial;
690 
691 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
692 				 report_size - report_size_partial))
693 			return -EFAULT;
694 	} else if (copy_to_user(buf, report, report_size)) {
695 		return -EFAULT;
696 	}
697 
698 	(*offset) += header.size;
699 
700 	return 0;
701 }
702 
703 /**
704  * gen8_append_oa_reports - Copies all buffered OA reports into
705  *			    userspace read() buffer.
706  * @stream: An i915-perf stream opened for OA metrics
707  * @buf: destination buffer given by userspace
708  * @count: the number of bytes userspace wants to read
709  * @offset: (inout): the current position for writing into @buf
710  *
711  * Notably any error condition resulting in a short read (-%ENOSPC or
712  * -%EFAULT) will be returned even though one or more records may
713  * have been successfully copied. In this case it's up to the caller
714  * to decide if the error should be squashed before returning to
715  * userspace.
716  *
717  * Note: reports are consumed from the head, and appended to the
718  * tail, so the tail chases the head?... If you think that's mad
719  * and back-to-front you're not alone, but this follows the
720  * Gen PRM naming convention.
721  *
722  * Returns: 0 on success, negative error code on failure.
723  */
724 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
725 				  char __user *buf,
726 				  size_t count,
727 				  size_t *offset)
728 {
729 	struct intel_uncore *uncore = stream->uncore;
730 	int report_size = stream->oa_buffer.format->size;
731 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
732 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
733 	u32 mask = (OA_BUFFER_SIZE - 1);
734 	size_t start_offset = *offset;
735 	unsigned long flags;
736 	u32 head, tail;
737 	int ret = 0;
738 
739 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
740 		return -EIO;
741 
742 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
743 
744 	head = stream->oa_buffer.head;
745 	tail = stream->oa_buffer.tail;
746 
747 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
748 
749 	/*
750 	 * An out of bounds or misaligned head or tail pointer implies a driver
751 	 * bug since we validate + align the tail pointers we read from the
752 	 * hardware and we are in full control of the head pointer which should
753 	 * only be incremented by multiples of the report size.
754 	 */
755 	if (drm_WARN_ONCE(&uncore->i915->drm,
756 			  head > OA_BUFFER_SIZE ||
757 			  tail > OA_BUFFER_SIZE,
758 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
759 			  head, tail))
760 		return -EIO;
761 
762 
763 	for (/* none */;
764 	     OA_TAKEN(tail, head);
765 	     head = (head + report_size) & mask) {
766 		u8 *report = oa_buf_base + head;
767 		u32 *report32 = (void *)report;
768 		u32 ctx_id;
769 		u64 reason;
770 
771 		/*
772 		 * The reason field includes flags identifying what
773 		 * triggered this specific report (mostly timer
774 		 * triggered or e.g. due to a context switch).
775 		 */
776 		reason = oa_report_reason(stream, report);
777 		ctx_id = oa_context_id(stream, report32);
778 
779 		/*
780 		 * Squash whatever is in the CTX_ID field if it's marked as
781 		 * invalid to be sure we avoid false-positive, single-context
782 		 * filtering below...
783 		 *
784 		 * Note: that we don't clear the valid_ctx_bit so userspace can
785 		 * understand that the ID has been squashed by the kernel.
786 		 *
787 		 * Update:
788 		 *
789 		 * On XEHP platforms the behavior of context id valid bit has
790 		 * changed compared to prior platforms. To describe this, we
791 		 * define a few terms:
792 		 *
793 		 * context-switch-report: This is a report with the reason type
794 		 * being context-switch. It is generated when a context switches
795 		 * out.
796 		 *
797 		 * context-valid-bit: A bit that is set in the report ID field
798 		 * to indicate that a valid context has been loaded.
799 		 *
800 		 * gpu-idle: A condition characterized by a
801 		 * context-switch-report with context-valid-bit set to 0.
802 		 *
803 		 * On prior platforms, context-id-valid bit is set to 0 only
804 		 * when GPU goes idle. In all other reports, it is set to 1.
805 		 *
806 		 * On XEHP platforms, context-valid-bit is set to 1 in a context
807 		 * switch report if a new context switched in. For all other
808 		 * reports it is set to 0.
809 		 *
810 		 * This change in behavior causes an issue with MMIO triggered
811 		 * reports. MMIO triggered reports have the markers in the
812 		 * context ID field and the context-valid-bit is 0. The logic
813 		 * below to squash the context ID would render the report
814 		 * useless since the user will not be able to find it in the OA
815 		 * buffer. Since MMIO triggered reports exist only on XEHP,
816 		 * we should avoid squashing these for XEHP platforms.
817 		 */
818 
819 		if (oa_report_ctx_invalid(stream, report) &&
820 		    GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) {
821 			ctx_id = INVALID_CTX_ID;
822 			oa_context_id_squash(stream, report32);
823 		}
824 
825 		/*
826 		 * NB: For Gen 8 the OA unit no longer supports clock gating
827 		 * off for a specific context and the kernel can't securely
828 		 * stop the counters from updating as system-wide / global
829 		 * values.
830 		 *
831 		 * Automatic reports now include a context ID so reports can be
832 		 * filtered on the cpu but it's not worth trying to
833 		 * automatically subtract/hide counter progress for other
834 		 * contexts while filtering since we can't stop userspace
835 		 * issuing MI_REPORT_PERF_COUNT commands which would still
836 		 * provide a side-band view of the real values.
837 		 *
838 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
839 		 * to normalize counters for a single filtered context then it
840 		 * needs be forwarded bookend context-switch reports so that it
841 		 * can track switches in between MI_REPORT_PERF_COUNT commands
842 		 * and can itself subtract/ignore the progress of counters
843 		 * associated with other contexts. Note that the hardware
844 		 * automatically triggers reports when switching to a new
845 		 * context which are tagged with the ID of the newly active
846 		 * context. To avoid the complexity (and likely fragility) of
847 		 * reading ahead while parsing reports to try and minimize
848 		 * forwarding redundant context switch reports (i.e. between
849 		 * other, unrelated contexts) we simply elect to forward them
850 		 * all.
851 		 *
852 		 * We don't rely solely on the reason field to identify context
853 		 * switches since it's not-uncommon for periodic samples to
854 		 * identify a switch before any 'context switch' report.
855 		 */
856 		if (!stream->ctx ||
857 		    stream->specific_ctx_id == ctx_id ||
858 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
859 		    reason & OAREPORT_REASON_CTX_SWITCH) {
860 
861 			/*
862 			 * While filtering for a single context we avoid
863 			 * leaking the IDs of other contexts.
864 			 */
865 			if (stream->ctx &&
866 			    stream->specific_ctx_id != ctx_id) {
867 				oa_context_id_squash(stream, report32);
868 			}
869 
870 			ret = append_oa_sample(stream, buf, count, offset,
871 					       report);
872 			if (ret)
873 				break;
874 
875 			stream->oa_buffer.last_ctx_id = ctx_id;
876 		}
877 
878 		if (is_power_of_2(report_size)) {
879 			/*
880 			 * Clear out the report id and timestamp as a means
881 			 * to detect unlanded reports.
882 			 */
883 			oa_report_id_clear(stream, report32);
884 			oa_timestamp_clear(stream, report32);
885 		} else {
886 			u8 *oa_buf_end = stream->oa_buffer.vaddr +
887 					 OA_BUFFER_SIZE;
888 			u32 part = oa_buf_end - (u8 *)report32;
889 
890 			/* Zero out the entire report */
891 			if (report_size <= part) {
892 				memset(report32, 0, report_size);
893 			} else {
894 				memset(report32, 0, part);
895 				memset(oa_buf_base, 0, report_size - part);
896 			}
897 		}
898 	}
899 
900 	if (start_offset != *offset) {
901 		i915_reg_t oaheadptr;
902 
903 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
904 			    __oa_regs(stream)->oa_head_ptr :
905 			    GEN8_OAHEADPTR;
906 
907 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
908 
909 		/*
910 		 * We removed the gtt_offset for the copy loop above, indexing
911 		 * relative to oa_buf_base so put back here...
912 		 */
913 		intel_uncore_write(uncore, oaheadptr,
914 				   (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
915 		stream->oa_buffer.head = head;
916 
917 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
918 	}
919 
920 	return ret;
921 }
922 
923 /**
924  * gen8_oa_read - copy status records then buffered OA reports
925  * @stream: An i915-perf stream opened for OA metrics
926  * @buf: destination buffer given by userspace
927  * @count: the number of bytes userspace wants to read
928  * @offset: (inout): the current position for writing into @buf
929  *
930  * Checks OA unit status registers and if necessary appends corresponding
931  * status records for userspace (such as for a buffer full condition) and then
932  * initiate appending any buffered OA reports.
933  *
934  * Updates @offset according to the number of bytes successfully copied into
935  * the userspace buffer.
936  *
937  * NB: some data may be successfully copied to the userspace buffer
938  * even if an error is returned, and this is reflected in the
939  * updated @offset.
940  *
941  * Returns: zero on success or a negative error code
942  */
943 static int gen8_oa_read(struct i915_perf_stream *stream,
944 			char __user *buf,
945 			size_t count,
946 			size_t *offset)
947 {
948 	struct intel_uncore *uncore = stream->uncore;
949 	u32 oastatus;
950 	i915_reg_t oastatus_reg;
951 	int ret;
952 
953 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
954 		return -EIO;
955 
956 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
957 		       __oa_regs(stream)->oa_status :
958 		       GEN8_OASTATUS;
959 
960 	oastatus = intel_uncore_read(uncore, oastatus_reg);
961 
962 	/*
963 	 * We treat OABUFFER_OVERFLOW as a significant error:
964 	 *
965 	 * Although theoretically we could handle this more gracefully
966 	 * sometimes, some Gens don't correctly suppress certain
967 	 * automatically triggered reports in this condition and so we
968 	 * have to assume that old reports are now being trampled
969 	 * over.
970 	 *
971 	 * Considering how we don't currently give userspace control
972 	 * over the OA buffer size and always configure a large 16MB
973 	 * buffer, then a buffer overflow does anyway likely indicate
974 	 * that something has gone quite badly wrong.
975 	 */
976 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
977 		ret = append_oa_status(stream, buf, count, offset,
978 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
979 		if (ret)
980 			return ret;
981 
982 		drm_dbg(&stream->perf->i915->drm,
983 			"OA buffer overflow (exponent = %d): force restart\n",
984 			stream->period_exponent);
985 
986 		stream->perf->ops.oa_disable(stream);
987 		stream->perf->ops.oa_enable(stream);
988 
989 		/*
990 		 * Note: .oa_enable() is expected to re-init the oabuffer and
991 		 * reset GEN8_OASTATUS for us
992 		 */
993 		oastatus = intel_uncore_read(uncore, oastatus_reg);
994 	}
995 
996 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
997 		ret = append_oa_status(stream, buf, count, offset,
998 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
999 		if (ret)
1000 			return ret;
1001 
1002 		intel_uncore_rmw(uncore, oastatus_reg,
1003 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
1004 				 GEN8_OASTATUS_REPORT_LOST,
1005 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1006 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1007 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1008 	}
1009 
1010 	return gen8_append_oa_reports(stream, buf, count, offset);
1011 }
1012 
1013 /**
1014  * gen7_append_oa_reports - Copies all buffered OA reports into
1015  *			    userspace read() buffer.
1016  * @stream: An i915-perf stream opened for OA metrics
1017  * @buf: destination buffer given by userspace
1018  * @count: the number of bytes userspace wants to read
1019  * @offset: (inout): the current position for writing into @buf
1020  *
1021  * Notably any error condition resulting in a short read (-%ENOSPC or
1022  * -%EFAULT) will be returned even though one or more records may
1023  * have been successfully copied. In this case it's up to the caller
1024  * to decide if the error should be squashed before returning to
1025  * userspace.
1026  *
1027  * Note: reports are consumed from the head, and appended to the
1028  * tail, so the tail chases the head?... If you think that's mad
1029  * and back-to-front you're not alone, but this follows the
1030  * Gen PRM naming convention.
1031  *
1032  * Returns: 0 on success, negative error code on failure.
1033  */
1034 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1035 				  char __user *buf,
1036 				  size_t count,
1037 				  size_t *offset)
1038 {
1039 	struct intel_uncore *uncore = stream->uncore;
1040 	int report_size = stream->oa_buffer.format->size;
1041 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1042 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1043 	u32 mask = (OA_BUFFER_SIZE - 1);
1044 	size_t start_offset = *offset;
1045 	unsigned long flags;
1046 	u32 head, tail;
1047 	int ret = 0;
1048 
1049 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1050 		return -EIO;
1051 
1052 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1053 
1054 	head = stream->oa_buffer.head;
1055 	tail = stream->oa_buffer.tail;
1056 
1057 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1058 
1059 	/* An out of bounds or misaligned head or tail pointer implies a driver
1060 	 * bug since we validate + align the tail pointers we read from the
1061 	 * hardware and we are in full control of the head pointer which should
1062 	 * only be incremented by multiples of the report size (notably also
1063 	 * all a power of two).
1064 	 */
1065 	if (drm_WARN_ONCE(&uncore->i915->drm,
1066 			  head > OA_BUFFER_SIZE || head % report_size ||
1067 			  tail > OA_BUFFER_SIZE || tail % report_size,
1068 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1069 			  head, tail))
1070 		return -EIO;
1071 
1072 
1073 	for (/* none */;
1074 	     OA_TAKEN(tail, head);
1075 	     head = (head + report_size) & mask) {
1076 		u8 *report = oa_buf_base + head;
1077 		u32 *report32 = (void *)report;
1078 
1079 		/* All the report sizes factor neatly into the buffer
1080 		 * size so we never expect to see a report split
1081 		 * between the beginning and end of the buffer.
1082 		 *
1083 		 * Given the initial alignment check a misalignment
1084 		 * here would imply a driver bug that would result
1085 		 * in an overrun.
1086 		 */
1087 		if (drm_WARN_ON(&uncore->i915->drm,
1088 				(OA_BUFFER_SIZE - head) < report_size)) {
1089 			drm_err(&uncore->i915->drm,
1090 				"Spurious OA head ptr: non-integral report offset\n");
1091 			break;
1092 		}
1093 
1094 		/* The report-ID field for periodic samples includes
1095 		 * some undocumented flags related to what triggered
1096 		 * the report and is never expected to be zero so we
1097 		 * can check that the report isn't invalid before
1098 		 * copying it to userspace...
1099 		 */
1100 		if (report32[0] == 0) {
1101 			if (__ratelimit(&stream->perf->spurious_report_rs))
1102 				drm_notice(&uncore->i915->drm,
1103 					   "Skipping spurious, invalid OA report\n");
1104 			continue;
1105 		}
1106 
1107 		ret = append_oa_sample(stream, buf, count, offset, report);
1108 		if (ret)
1109 			break;
1110 
1111 		/* Clear out the first 2 dwords as a mean to detect unlanded
1112 		 * reports.
1113 		 */
1114 		report32[0] = 0;
1115 		report32[1] = 0;
1116 	}
1117 
1118 	if (start_offset != *offset) {
1119 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1120 
1121 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1122 				   ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1123 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1124 		stream->oa_buffer.head = head;
1125 
1126 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1127 	}
1128 
1129 	return ret;
1130 }
1131 
1132 /**
1133  * gen7_oa_read - copy status records then buffered OA reports
1134  * @stream: An i915-perf stream opened for OA metrics
1135  * @buf: destination buffer given by userspace
1136  * @count: the number of bytes userspace wants to read
1137  * @offset: (inout): the current position for writing into @buf
1138  *
1139  * Checks Gen 7 specific OA unit status registers and if necessary appends
1140  * corresponding status records for userspace (such as for a buffer full
1141  * condition) and then initiate appending any buffered OA reports.
1142  *
1143  * Updates @offset according to the number of bytes successfully copied into
1144  * the userspace buffer.
1145  *
1146  * Returns: zero on success or a negative error code
1147  */
1148 static int gen7_oa_read(struct i915_perf_stream *stream,
1149 			char __user *buf,
1150 			size_t count,
1151 			size_t *offset)
1152 {
1153 	struct intel_uncore *uncore = stream->uncore;
1154 	u32 oastatus1;
1155 	int ret;
1156 
1157 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1158 		return -EIO;
1159 
1160 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1161 
1162 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1163 	 * bits while the OA unit is enabled (while the tail pointer
1164 	 * may be updated asynchronously) so we ignore status bits
1165 	 * that have already been reported to userspace.
1166 	 */
1167 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1168 
1169 	/* We treat OABUFFER_OVERFLOW as a significant error:
1170 	 *
1171 	 * - The status can be interpreted to mean that the buffer is
1172 	 *   currently full (with a higher precedence than OA_TAKEN()
1173 	 *   which will start to report a near-empty buffer after an
1174 	 *   overflow) but it's awkward that we can't clear the status
1175 	 *   on Haswell, so without a reset we won't be able to catch
1176 	 *   the state again.
1177 	 *
1178 	 * - Since it also implies the HW has started overwriting old
1179 	 *   reports it may also affect our sanity checks for invalid
1180 	 *   reports when copying to userspace that assume new reports
1181 	 *   are being written to cleared memory.
1182 	 *
1183 	 * - In the future we may want to introduce a flight recorder
1184 	 *   mode where the driver will automatically maintain a safe
1185 	 *   guard band between head/tail, avoiding this overflow
1186 	 *   condition, but we avoid the added driver complexity for
1187 	 *   now.
1188 	 */
1189 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1190 		ret = append_oa_status(stream, buf, count, offset,
1191 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1192 		if (ret)
1193 			return ret;
1194 
1195 		drm_dbg(&stream->perf->i915->drm,
1196 			"OA buffer overflow (exponent = %d): force restart\n",
1197 			stream->period_exponent);
1198 
1199 		stream->perf->ops.oa_disable(stream);
1200 		stream->perf->ops.oa_enable(stream);
1201 
1202 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1203 	}
1204 
1205 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1206 		ret = append_oa_status(stream, buf, count, offset,
1207 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1208 		if (ret)
1209 			return ret;
1210 		stream->perf->gen7_latched_oastatus1 |=
1211 			GEN7_OASTATUS1_REPORT_LOST;
1212 	}
1213 
1214 	return gen7_append_oa_reports(stream, buf, count, offset);
1215 }
1216 
1217 /**
1218  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1219  * @stream: An i915-perf stream opened for OA metrics
1220  *
1221  * Called when userspace tries to read() from a blocking stream FD opened
1222  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1223  * OA buffer and wakes us.
1224  *
1225  * Note: it's acceptable to have this return with some false positives
1226  * since any subsequent read handling will return -EAGAIN if there isn't
1227  * really data ready for userspace yet.
1228  *
1229  * Returns: zero on success or a negative error code
1230  */
1231 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1232 {
1233 	/* We would wait indefinitely if periodic sampling is not enabled */
1234 	if (!stream->periodic)
1235 		return -EIO;
1236 
1237 	return wait_event_interruptible(stream->poll_wq,
1238 					oa_buffer_check_unlocked(stream));
1239 }
1240 
1241 /**
1242  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1243  * @stream: An i915-perf stream opened for OA metrics
1244  * @file: An i915 perf stream file
1245  * @wait: poll() state table
1246  *
1247  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1248  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1249  * when it sees data ready to read in the circular OA buffer.
1250  */
1251 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1252 			      struct file *file,
1253 			      poll_table *wait)
1254 {
1255 	poll_wait(file, &stream->poll_wq, wait);
1256 }
1257 
1258 /**
1259  * i915_oa_read - just calls through to &i915_oa_ops->read
1260  * @stream: An i915-perf stream opened for OA metrics
1261  * @buf: destination buffer given by userspace
1262  * @count: the number of bytes userspace wants to read
1263  * @offset: (inout): the current position for writing into @buf
1264  *
1265  * Updates @offset according to the number of bytes successfully copied into
1266  * the userspace buffer.
1267  *
1268  * Returns: zero on success or a negative error code
1269  */
1270 static int i915_oa_read(struct i915_perf_stream *stream,
1271 			char __user *buf,
1272 			size_t count,
1273 			size_t *offset)
1274 {
1275 	return stream->perf->ops.read(stream, buf, count, offset);
1276 }
1277 
1278 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1279 {
1280 	struct i915_gem_engines_iter it;
1281 	struct i915_gem_context *ctx = stream->ctx;
1282 	struct intel_context *ce;
1283 	struct i915_gem_ww_ctx ww;
1284 	int err = -ENODEV;
1285 
1286 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1287 		if (ce->engine != stream->engine) /* first match! */
1288 			continue;
1289 
1290 		err = 0;
1291 		break;
1292 	}
1293 	i915_gem_context_unlock_engines(ctx);
1294 
1295 	if (err)
1296 		return ERR_PTR(err);
1297 
1298 	i915_gem_ww_ctx_init(&ww, true);
1299 retry:
1300 	/*
1301 	 * As the ID is the gtt offset of the context's vma we
1302 	 * pin the vma to ensure the ID remains fixed.
1303 	 */
1304 	err = intel_context_pin_ww(ce, &ww);
1305 	if (err == -EDEADLK) {
1306 		err = i915_gem_ww_ctx_backoff(&ww);
1307 		if (!err)
1308 			goto retry;
1309 	}
1310 	i915_gem_ww_ctx_fini(&ww);
1311 
1312 	if (err)
1313 		return ERR_PTR(err);
1314 
1315 	stream->pinned_ctx = ce;
1316 	return stream->pinned_ctx;
1317 }
1318 
1319 static int
1320 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1321 {
1322 	u32 *cs, cmd;
1323 
1324 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1325 	if (GRAPHICS_VER(rq->i915) >= 8)
1326 		cmd++;
1327 
1328 	cs = intel_ring_begin(rq, 4);
1329 	if (IS_ERR(cs))
1330 		return PTR_ERR(cs);
1331 
1332 	*cs++ = cmd;
1333 	*cs++ = i915_mmio_reg_offset(reg);
1334 	*cs++ = ggtt_offset;
1335 	*cs++ = 0;
1336 
1337 	intel_ring_advance(rq, cs);
1338 
1339 	return 0;
1340 }
1341 
1342 static int
1343 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1344 {
1345 	struct i915_request *rq;
1346 	int err;
1347 
1348 	rq = i915_request_create(ce);
1349 	if (IS_ERR(rq))
1350 		return PTR_ERR(rq);
1351 
1352 	i915_request_get(rq);
1353 
1354 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1355 
1356 	i915_request_add(rq);
1357 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1358 		err = -ETIME;
1359 
1360 	i915_request_put(rq);
1361 
1362 	return err;
1363 }
1364 
1365 static int
1366 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1367 {
1368 	struct i915_vma *scratch;
1369 	u32 *val;
1370 	int err;
1371 
1372 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1373 	if (IS_ERR(scratch))
1374 		return PTR_ERR(scratch);
1375 
1376 	err = i915_vma_sync(scratch);
1377 	if (err)
1378 		goto err_scratch;
1379 
1380 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1381 			 i915_ggtt_offset(scratch));
1382 	if (err)
1383 		goto err_scratch;
1384 
1385 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1386 	if (IS_ERR(val)) {
1387 		err = PTR_ERR(val);
1388 		goto err_scratch;
1389 	}
1390 
1391 	*ctx_id = *val;
1392 	i915_gem_object_unpin_map(scratch->obj);
1393 
1394 err_scratch:
1395 	i915_vma_unpin_and_release(&scratch, 0);
1396 	return err;
1397 }
1398 
1399 /*
1400  * For execlist mode of submission, pick an unused context id
1401  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1402  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1403  *
1404  * For GuC mode of submission read context id from the upper dword of the
1405  * EXECLIST_STATUS register. Note that we read this value only once and expect
1406  * that the value stays fixed for the entire OA use case. There are cases where
1407  * GuC KMD implementation may deregister a context to reuse it's context id, but
1408  * we prevent that from happening to the OA context by pinning it.
1409  */
1410 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1411 {
1412 	u32 ctx_id, mask;
1413 	int ret;
1414 
1415 	if (intel_engine_uses_guc(stream->engine)) {
1416 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1417 		if (ret)
1418 			return ret;
1419 
1420 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1421 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1422 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) {
1423 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1424 			(XEHP_SW_CTX_ID_SHIFT - 32);
1425 
1426 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1427 			(XEHP_SW_CTX_ID_SHIFT - 32);
1428 	} else {
1429 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1430 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1431 
1432 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1433 			(GEN11_SW_CTX_ID_SHIFT - 32);
1434 	}
1435 	stream->specific_ctx_id = ctx_id & mask;
1436 	stream->specific_ctx_id_mask = mask;
1437 
1438 	return 0;
1439 }
1440 
1441 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1442 {
1443 	u32 idx = *offset;
1444 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1445 	bool found = false;
1446 
1447 	idx++;
1448 	for (; idx < len; idx += 2) {
1449 		if (state[idx] == reg) {
1450 			found = true;
1451 			break;
1452 		}
1453 	}
1454 
1455 	*offset = idx;
1456 	return found;
1457 }
1458 
1459 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1460 {
1461 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1462 	u32 *state = ce->lrc_reg_state;
1463 
1464 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1465 		return U32_MAX;
1466 
1467 	for (offset = 0; offset < len; ) {
1468 		if (IS_MI_LRI_CMD(state[offset])) {
1469 			/*
1470 			 * We expect reg-value pairs in MI_LRI command, so
1471 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1472 			 */
1473 			drm_WARN_ON(&ce->engine->i915->drm,
1474 				    MI_LRI_LEN(state[offset]) & 0x1);
1475 
1476 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1477 				break;
1478 		} else {
1479 			offset++;
1480 		}
1481 	}
1482 
1483 	return offset < len ? offset : U32_MAX;
1484 }
1485 
1486 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1487 {
1488 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1489 	struct i915_perf *perf = &ce->engine->i915->perf;
1490 	u32 offset = perf->ctx_oactxctrl_offset;
1491 
1492 	/* Do this only once. Failure is stored as offset of U32_MAX */
1493 	if (offset)
1494 		goto exit;
1495 
1496 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1497 	perf->ctx_oactxctrl_offset = offset;
1498 
1499 	drm_dbg(&ce->engine->i915->drm,
1500 		"%s oa ctx control at 0x%08x dword offset\n",
1501 		ce->engine->name, offset);
1502 
1503 exit:
1504 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1505 }
1506 
1507 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1508 {
1509 	return engine->class == RENDER_CLASS;
1510 }
1511 
1512 /**
1513  * oa_get_render_ctx_id - determine and hold ctx hw id
1514  * @stream: An i915-perf stream opened for OA metrics
1515  *
1516  * Determine the render context hw id, and ensure it remains fixed for the
1517  * lifetime of the stream. This ensures that we don't have to worry about
1518  * updating the context ID in OACONTROL on the fly.
1519  *
1520  * Returns: zero on success or a negative error code
1521  */
1522 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1523 {
1524 	struct intel_context *ce;
1525 	int ret = 0;
1526 
1527 	ce = oa_pin_context(stream);
1528 	if (IS_ERR(ce))
1529 		return PTR_ERR(ce);
1530 
1531 	if (engine_supports_mi_query(stream->engine) &&
1532 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1533 		/*
1534 		 * We are enabling perf query here. If we don't find the context
1535 		 * offset here, just return an error.
1536 		 */
1537 		ret = set_oa_ctx_ctrl_offset(ce);
1538 		if (ret) {
1539 			intel_context_unpin(ce);
1540 			drm_err(&stream->perf->i915->drm,
1541 				"Enabling perf query failed for %s\n",
1542 				stream->engine->name);
1543 			return ret;
1544 		}
1545 	}
1546 
1547 	switch (GRAPHICS_VER(ce->engine->i915)) {
1548 	case 7: {
1549 		/*
1550 		 * On Haswell we don't do any post processing of the reports
1551 		 * and don't need to use the mask.
1552 		 */
1553 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1554 		stream->specific_ctx_id_mask = 0;
1555 		break;
1556 	}
1557 
1558 	case 8:
1559 	case 9:
1560 		if (intel_engine_uses_guc(ce->engine)) {
1561 			/*
1562 			 * When using GuC, the context descriptor we write in
1563 			 * i915 is read by GuC and rewritten before it's
1564 			 * actually written into the hardware. The LRCA is
1565 			 * what is put into the context id field of the
1566 			 * context descriptor by GuC. Because it's aligned to
1567 			 * a page, the lower 12bits are always at 0 and
1568 			 * dropped by GuC. They won't be part of the context
1569 			 * ID in the OA reports, so squash those lower bits.
1570 			 */
1571 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1572 
1573 			/*
1574 			 * GuC uses the top bit to signal proxy submission, so
1575 			 * ignore that bit.
1576 			 */
1577 			stream->specific_ctx_id_mask =
1578 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1579 		} else {
1580 			stream->specific_ctx_id_mask =
1581 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1582 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1583 		}
1584 		break;
1585 
1586 	case 11:
1587 	case 12:
1588 		ret = gen12_get_render_context_id(stream);
1589 		break;
1590 
1591 	default:
1592 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1593 	}
1594 
1595 	ce->tag = stream->specific_ctx_id;
1596 
1597 	drm_dbg(&stream->perf->i915->drm,
1598 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1599 		stream->specific_ctx_id,
1600 		stream->specific_ctx_id_mask);
1601 
1602 	return ret;
1603 }
1604 
1605 /**
1606  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1607  * @stream: An i915-perf stream opened for OA metrics
1608  *
1609  * In case anything needed doing to ensure the context HW ID would remain valid
1610  * for the lifetime of the stream, then that can be undone here.
1611  */
1612 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1613 {
1614 	struct intel_context *ce;
1615 
1616 	ce = fetch_and_zero(&stream->pinned_ctx);
1617 	if (ce) {
1618 		ce->tag = 0; /* recomputed on next submission after parking */
1619 		intel_context_unpin(ce);
1620 	}
1621 
1622 	stream->specific_ctx_id = INVALID_CTX_ID;
1623 	stream->specific_ctx_id_mask = 0;
1624 }
1625 
1626 static void
1627 free_oa_buffer(struct i915_perf_stream *stream)
1628 {
1629 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1630 				   I915_VMA_RELEASE_MAP);
1631 
1632 	stream->oa_buffer.vaddr = NULL;
1633 }
1634 
1635 static void
1636 free_oa_configs(struct i915_perf_stream *stream)
1637 {
1638 	struct i915_oa_config_bo *oa_bo, *tmp;
1639 
1640 	i915_oa_config_put(stream->oa_config);
1641 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1642 		free_oa_config_bo(oa_bo);
1643 }
1644 
1645 static void
1646 free_noa_wait(struct i915_perf_stream *stream)
1647 {
1648 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1649 }
1650 
1651 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1652 {
1653 	return engine->oa_group;
1654 }
1655 
1656 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1657 {
1658 	return engine->oa_group && engine->oa_group->type == type;
1659 }
1660 
1661 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1662 {
1663 	struct i915_perf *perf = stream->perf;
1664 	struct intel_gt *gt = stream->engine->gt;
1665 	struct i915_perf_group *g = stream->engine->oa_group;
1666 
1667 	if (WARN_ON(stream != g->exclusive_stream))
1668 		return;
1669 
1670 	/*
1671 	 * Unset exclusive_stream first, it will be checked while disabling
1672 	 * the metric set on gen8+.
1673 	 *
1674 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1675 	 */
1676 	WRITE_ONCE(g->exclusive_stream, NULL);
1677 	perf->ops.disable_metric_set(stream);
1678 
1679 	free_oa_buffer(stream);
1680 
1681 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1682 	intel_engine_pm_put(stream->engine);
1683 
1684 	if (stream->ctx)
1685 		oa_put_render_ctx_id(stream);
1686 
1687 	free_oa_configs(stream);
1688 	free_noa_wait(stream);
1689 
1690 	if (perf->spurious_report_rs.missed) {
1691 		gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n",
1692 			  perf->spurious_report_rs.missed);
1693 	}
1694 }
1695 
1696 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1697 {
1698 	struct intel_uncore *uncore = stream->uncore;
1699 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1700 	unsigned long flags;
1701 
1702 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1703 
1704 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1705 	 * before OASTATUS1, but after OASTATUS2
1706 	 */
1707 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1708 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1709 	stream->oa_buffer.head = 0;
1710 
1711 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1712 
1713 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1714 			   gtt_offset | OABUFFER_SIZE_16M);
1715 
1716 	/* Mark that we need updated tail pointers to read from... */
1717 	stream->oa_buffer.tail = 0;
1718 
1719 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1720 
1721 	/* On Haswell we have to track which OASTATUS1 flags we've
1722 	 * already seen since they can't be cleared while periodic
1723 	 * sampling is enabled.
1724 	 */
1725 	stream->perf->gen7_latched_oastatus1 = 0;
1726 
1727 	/* NB: although the OA buffer will initially be allocated
1728 	 * zeroed via shmfs (and so this memset is redundant when
1729 	 * first allocating), we may re-init the OA buffer, either
1730 	 * when re-enabling a stream or in error/reset paths.
1731 	 *
1732 	 * The reason we clear the buffer for each re-init is for the
1733 	 * sanity check in gen7_append_oa_reports() that looks at the
1734 	 * report-id field to make sure it's non-zero which relies on
1735 	 * the assumption that new reports are being written to zeroed
1736 	 * memory...
1737 	 */
1738 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1739 }
1740 
1741 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1742 {
1743 	struct intel_uncore *uncore = stream->uncore;
1744 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1745 	unsigned long flags;
1746 
1747 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1748 
1749 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1750 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1751 	stream->oa_buffer.head = 0;
1752 
1753 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1754 
1755 	/*
1756 	 * PRM says:
1757 	 *
1758 	 *  "This MMIO must be set before the OATAILPTR
1759 	 *  register and after the OAHEADPTR register. This is
1760 	 *  to enable proper functionality of the overflow
1761 	 *  bit."
1762 	 */
1763 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1764 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1765 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1766 
1767 	/* Mark that we need updated tail pointers to read from... */
1768 	stream->oa_buffer.tail = 0;
1769 
1770 	/*
1771 	 * Reset state used to recognise context switches, affecting which
1772 	 * reports we will forward to userspace while filtering for a single
1773 	 * context.
1774 	 */
1775 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1776 
1777 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1778 
1779 	/*
1780 	 * NB: although the OA buffer will initially be allocated
1781 	 * zeroed via shmfs (and so this memset is redundant when
1782 	 * first allocating), we may re-init the OA buffer, either
1783 	 * when re-enabling a stream or in error/reset paths.
1784 	 *
1785 	 * The reason we clear the buffer for each re-init is for the
1786 	 * sanity check in gen8_append_oa_reports() that looks at the
1787 	 * reason field to make sure it's non-zero which relies on
1788 	 * the assumption that new reports are being written to zeroed
1789 	 * memory...
1790 	 */
1791 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1792 }
1793 
1794 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1795 {
1796 	struct intel_uncore *uncore = stream->uncore;
1797 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1798 	unsigned long flags;
1799 
1800 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1801 
1802 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1803 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1804 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1805 	stream->oa_buffer.head = 0;
1806 
1807 	/*
1808 	 * PRM says:
1809 	 *
1810 	 *  "This MMIO must be set before the OATAILPTR
1811 	 *  register and after the OAHEADPTR register. This is
1812 	 *  to enable proper functionality of the overflow
1813 	 *  bit."
1814 	 */
1815 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1816 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1817 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1818 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1819 
1820 	/* Mark that we need updated tail pointers to read from... */
1821 	stream->oa_buffer.tail = 0;
1822 
1823 	/*
1824 	 * Reset state used to recognise context switches, affecting which
1825 	 * reports we will forward to userspace while filtering for a single
1826 	 * context.
1827 	 */
1828 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1829 
1830 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1831 
1832 	/*
1833 	 * NB: although the OA buffer will initially be allocated
1834 	 * zeroed via shmfs (and so this memset is redundant when
1835 	 * first allocating), we may re-init the OA buffer, either
1836 	 * when re-enabling a stream or in error/reset paths.
1837 	 *
1838 	 * The reason we clear the buffer for each re-init is for the
1839 	 * sanity check in gen8_append_oa_reports() that looks at the
1840 	 * reason field to make sure it's non-zero which relies on
1841 	 * the assumption that new reports are being written to zeroed
1842 	 * memory...
1843 	 */
1844 	memset(stream->oa_buffer.vaddr, 0,
1845 	       stream->oa_buffer.vma->size);
1846 }
1847 
1848 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1849 {
1850 	struct drm_i915_private *i915 = stream->perf->i915;
1851 	struct intel_gt *gt = stream->engine->gt;
1852 	struct drm_i915_gem_object *bo;
1853 	struct i915_vma *vma;
1854 	int ret;
1855 
1856 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1857 		return -ENODEV;
1858 
1859 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1860 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1861 
1862 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1863 	if (IS_ERR(bo)) {
1864 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1865 		return PTR_ERR(bo);
1866 	}
1867 
1868 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1869 
1870 	/* PreHSW required 512K alignment, HSW requires 16M */
1871 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1872 	if (IS_ERR(vma)) {
1873 		ret = PTR_ERR(vma);
1874 		goto err_unref;
1875 	}
1876 
1877 	/*
1878 	 * PreHSW required 512K alignment.
1879 	 * HSW and onwards, align to requested size of OA buffer.
1880 	 */
1881 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1882 	if (ret) {
1883 		gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1884 		goto err_unref;
1885 	}
1886 
1887 	stream->oa_buffer.vma = vma;
1888 
1889 	stream->oa_buffer.vaddr =
1890 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1891 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1892 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1893 		goto err_unpin;
1894 	}
1895 
1896 	return 0;
1897 
1898 err_unpin:
1899 	__i915_vma_unpin(vma);
1900 
1901 err_unref:
1902 	i915_gem_object_put(bo);
1903 
1904 	stream->oa_buffer.vaddr = NULL;
1905 	stream->oa_buffer.vma = NULL;
1906 
1907 	return ret;
1908 }
1909 
1910 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1911 				  bool save, i915_reg_t reg, u32 offset,
1912 				  u32 dword_count)
1913 {
1914 	u32 cmd;
1915 	u32 d;
1916 
1917 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1918 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1919 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1920 		cmd++;
1921 
1922 	for (d = 0; d < dword_count; d++) {
1923 		*cs++ = cmd;
1924 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1925 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1926 		*cs++ = 0;
1927 	}
1928 
1929 	return cs;
1930 }
1931 
1932 static int alloc_noa_wait(struct i915_perf_stream *stream)
1933 {
1934 	struct drm_i915_private *i915 = stream->perf->i915;
1935 	struct intel_gt *gt = stream->engine->gt;
1936 	struct drm_i915_gem_object *bo;
1937 	struct i915_vma *vma;
1938 	const u64 delay_ticks = 0xffffffffffffffff -
1939 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1940 		atomic64_read(&stream->perf->noa_programming_delay));
1941 	const u32 base = stream->engine->mmio_base;
1942 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1943 	u32 *batch, *ts0, *cs, *jump;
1944 	struct i915_gem_ww_ctx ww;
1945 	int ret, i;
1946 	enum {
1947 		START_TS,
1948 		NOW_TS,
1949 		DELTA_TS,
1950 		JUMP_PREDICATE,
1951 		DELTA_TARGET,
1952 		N_CS_GPR
1953 	};
1954 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1955 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1956 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1957 
1958 	/*
1959 	 * gt->scratch was being used to save/restore the GPR registers, but on
1960 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1961 	 * causes an engine hang. Instead allocate an additional page here to
1962 	 * save/restore GPR registers
1963 	 */
1964 	bo = i915_gem_object_create_internal(i915, 8192);
1965 	if (IS_ERR(bo)) {
1966 		drm_err(&i915->drm,
1967 			"Failed to allocate NOA wait batchbuffer\n");
1968 		return PTR_ERR(bo);
1969 	}
1970 
1971 	i915_gem_ww_ctx_init(&ww, true);
1972 retry:
1973 	ret = i915_gem_object_lock(bo, &ww);
1974 	if (ret)
1975 		goto out_ww;
1976 
1977 	/*
1978 	 * We pin in GGTT because we jump into this buffer now because
1979 	 * multiple OA config BOs will have a jump to this address and it
1980 	 * needs to be fixed during the lifetime of the i915/perf stream.
1981 	 */
1982 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1983 	if (IS_ERR(vma)) {
1984 		ret = PTR_ERR(vma);
1985 		goto out_ww;
1986 	}
1987 
1988 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1989 	if (ret)
1990 		goto out_ww;
1991 
1992 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1993 	if (IS_ERR(batch)) {
1994 		ret = PTR_ERR(batch);
1995 		goto err_unpin;
1996 	}
1997 
1998 	stream->noa_wait = vma;
1999 
2000 #define GPR_SAVE_OFFSET 4096
2001 #define PREDICATE_SAVE_OFFSET 4160
2002 
2003 	/* Save registers. */
2004 	for (i = 0; i < N_CS_GPR; i++)
2005 		cs = save_restore_register(
2006 			stream, cs, true /* save */, CS_GPR(i),
2007 			GPR_SAVE_OFFSET + 8 * i, 2);
2008 	cs = save_restore_register(
2009 		stream, cs, true /* save */, mi_predicate_result,
2010 		PREDICATE_SAVE_OFFSET, 1);
2011 
2012 	/* First timestamp snapshot location. */
2013 	ts0 = cs;
2014 
2015 	/*
2016 	 * Initial snapshot of the timestamp register to implement the wait.
2017 	 * We work with 32b values, so clear out the top 32b bits of the
2018 	 * register because the ALU works 64bits.
2019 	 */
2020 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2021 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2022 	*cs++ = 0;
2023 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2024 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2025 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2026 
2027 	/*
2028 	 * This is the location we're going to jump back into until the
2029 	 * required amount of time has passed.
2030 	 */
2031 	jump = cs;
2032 
2033 	/*
2034 	 * Take another snapshot of the timestamp register. Take care to clear
2035 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2036 	 * operations below.
2037 	 */
2038 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2039 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2040 	*cs++ = 0;
2041 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2042 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2043 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2044 
2045 	/*
2046 	 * Do a diff between the 2 timestamps and store the result back into
2047 	 * CS_GPR(1).
2048 	 */
2049 	*cs++ = MI_MATH(5);
2050 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2051 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2052 	*cs++ = MI_MATH_SUB;
2053 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2054 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2055 
2056 	/*
2057 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2058 	 * timestamp have rolled over the 32bits) into the predicate register
2059 	 * to be used for the predicated jump.
2060 	 */
2061 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2062 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2063 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2064 
2065 	if (HAS_MI_SET_PREDICATE(i915))
2066 		*cs++ = MI_SET_PREDICATE | 1;
2067 
2068 	/* Restart from the beginning if we had timestamps roll over. */
2069 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2070 		 MI_BATCH_BUFFER_START :
2071 		 MI_BATCH_BUFFER_START_GEN8) |
2072 		MI_BATCH_PREDICATE;
2073 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2074 	*cs++ = 0;
2075 
2076 	if (HAS_MI_SET_PREDICATE(i915))
2077 		*cs++ = MI_SET_PREDICATE;
2078 
2079 	/*
2080 	 * Now add the diff between to previous timestamps and add it to :
2081 	 *      (((1 * << 64) - 1) - delay_ns)
2082 	 *
2083 	 * When the Carry Flag contains 1 this means the elapsed time is
2084 	 * longer than the expected delay, and we can exit the wait loop.
2085 	 */
2086 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2087 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2088 	*cs++ = lower_32_bits(delay_ticks);
2089 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2090 	*cs++ = upper_32_bits(delay_ticks);
2091 
2092 	*cs++ = MI_MATH(4);
2093 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2094 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2095 	*cs++ = MI_MATH_ADD;
2096 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2097 
2098 	*cs++ = MI_ARB_CHECK;
2099 
2100 	/*
2101 	 * Transfer the result into the predicate register to be used for the
2102 	 * predicated jump.
2103 	 */
2104 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2105 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2106 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2107 
2108 	if (HAS_MI_SET_PREDICATE(i915))
2109 		*cs++ = MI_SET_PREDICATE | 1;
2110 
2111 	/* Predicate the jump.  */
2112 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2113 		 MI_BATCH_BUFFER_START :
2114 		 MI_BATCH_BUFFER_START_GEN8) |
2115 		MI_BATCH_PREDICATE;
2116 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2117 	*cs++ = 0;
2118 
2119 	if (HAS_MI_SET_PREDICATE(i915))
2120 		*cs++ = MI_SET_PREDICATE;
2121 
2122 	/* Restore registers. */
2123 	for (i = 0; i < N_CS_GPR; i++)
2124 		cs = save_restore_register(
2125 			stream, cs, false /* restore */, CS_GPR(i),
2126 			GPR_SAVE_OFFSET + 8 * i, 2);
2127 	cs = save_restore_register(
2128 		stream, cs, false /* restore */, mi_predicate_result,
2129 		PREDICATE_SAVE_OFFSET, 1);
2130 
2131 	/* And return to the ring. */
2132 	*cs++ = MI_BATCH_BUFFER_END;
2133 
2134 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2135 
2136 	i915_gem_object_flush_map(bo);
2137 	__i915_gem_object_release_map(bo);
2138 
2139 	goto out_ww;
2140 
2141 err_unpin:
2142 	i915_vma_unpin_and_release(&vma, 0);
2143 out_ww:
2144 	if (ret == -EDEADLK) {
2145 		ret = i915_gem_ww_ctx_backoff(&ww);
2146 		if (!ret)
2147 			goto retry;
2148 	}
2149 	i915_gem_ww_ctx_fini(&ww);
2150 	if (ret)
2151 		i915_gem_object_put(bo);
2152 	return ret;
2153 }
2154 
2155 static u32 *write_cs_mi_lri(u32 *cs,
2156 			    const struct i915_oa_reg *reg_data,
2157 			    u32 n_regs)
2158 {
2159 	u32 i;
2160 
2161 	for (i = 0; i < n_regs; i++) {
2162 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2163 			u32 n_lri = min_t(u32,
2164 					  n_regs - i,
2165 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2166 
2167 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2168 		}
2169 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2170 		*cs++ = reg_data[i].value;
2171 	}
2172 
2173 	return cs;
2174 }
2175 
2176 static int num_lri_dwords(int num_regs)
2177 {
2178 	int count = 0;
2179 
2180 	if (num_regs > 0) {
2181 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2182 		count += num_regs * 2;
2183 	}
2184 
2185 	return count;
2186 }
2187 
2188 static struct i915_oa_config_bo *
2189 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2190 		       struct i915_oa_config *oa_config)
2191 {
2192 	struct drm_i915_gem_object *obj;
2193 	struct i915_oa_config_bo *oa_bo;
2194 	struct i915_gem_ww_ctx ww;
2195 	size_t config_length = 0;
2196 	u32 *cs;
2197 	int err;
2198 
2199 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2200 	if (!oa_bo)
2201 		return ERR_PTR(-ENOMEM);
2202 
2203 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2204 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2205 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2206 	config_length += 3; /* MI_BATCH_BUFFER_START */
2207 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2208 
2209 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2210 	if (IS_ERR(obj)) {
2211 		err = PTR_ERR(obj);
2212 		goto err_free;
2213 	}
2214 
2215 	i915_gem_ww_ctx_init(&ww, true);
2216 retry:
2217 	err = i915_gem_object_lock(obj, &ww);
2218 	if (err)
2219 		goto out_ww;
2220 
2221 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2222 	if (IS_ERR(cs)) {
2223 		err = PTR_ERR(cs);
2224 		goto out_ww;
2225 	}
2226 
2227 	cs = write_cs_mi_lri(cs,
2228 			     oa_config->mux_regs,
2229 			     oa_config->mux_regs_len);
2230 	cs = write_cs_mi_lri(cs,
2231 			     oa_config->b_counter_regs,
2232 			     oa_config->b_counter_regs_len);
2233 	cs = write_cs_mi_lri(cs,
2234 			     oa_config->flex_regs,
2235 			     oa_config->flex_regs_len);
2236 
2237 	/* Jump into the active wait. */
2238 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2239 		 MI_BATCH_BUFFER_START :
2240 		 MI_BATCH_BUFFER_START_GEN8);
2241 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2242 	*cs++ = 0;
2243 
2244 	i915_gem_object_flush_map(obj);
2245 	__i915_gem_object_release_map(obj);
2246 
2247 	oa_bo->vma = i915_vma_instance(obj,
2248 				       &stream->engine->gt->ggtt->vm,
2249 				       NULL);
2250 	if (IS_ERR(oa_bo->vma)) {
2251 		err = PTR_ERR(oa_bo->vma);
2252 		goto out_ww;
2253 	}
2254 
2255 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2256 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2257 
2258 out_ww:
2259 	if (err == -EDEADLK) {
2260 		err = i915_gem_ww_ctx_backoff(&ww);
2261 		if (!err)
2262 			goto retry;
2263 	}
2264 	i915_gem_ww_ctx_fini(&ww);
2265 
2266 	if (err)
2267 		i915_gem_object_put(obj);
2268 err_free:
2269 	if (err) {
2270 		kfree(oa_bo);
2271 		return ERR_PTR(err);
2272 	}
2273 	return oa_bo;
2274 }
2275 
2276 static struct i915_vma *
2277 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2278 {
2279 	struct i915_oa_config_bo *oa_bo;
2280 
2281 	/*
2282 	 * Look for the buffer in the already allocated BOs attached
2283 	 * to the stream.
2284 	 */
2285 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2286 		if (oa_bo->oa_config == oa_config &&
2287 		    memcmp(oa_bo->oa_config->uuid,
2288 			   oa_config->uuid,
2289 			   sizeof(oa_config->uuid)) == 0)
2290 			goto out;
2291 	}
2292 
2293 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2294 	if (IS_ERR(oa_bo))
2295 		return ERR_CAST(oa_bo);
2296 
2297 out:
2298 	return i915_vma_get(oa_bo->vma);
2299 }
2300 
2301 static int
2302 emit_oa_config(struct i915_perf_stream *stream,
2303 	       struct i915_oa_config *oa_config,
2304 	       struct intel_context *ce,
2305 	       struct i915_active *active)
2306 {
2307 	struct i915_request *rq;
2308 	struct i915_vma *vma;
2309 	struct i915_gem_ww_ctx ww;
2310 	int err;
2311 
2312 	vma = get_oa_vma(stream, oa_config);
2313 	if (IS_ERR(vma))
2314 		return PTR_ERR(vma);
2315 
2316 	i915_gem_ww_ctx_init(&ww, true);
2317 retry:
2318 	err = i915_gem_object_lock(vma->obj, &ww);
2319 	if (err)
2320 		goto err;
2321 
2322 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2323 	if (err)
2324 		goto err;
2325 
2326 	intel_engine_pm_get(ce->engine);
2327 	rq = i915_request_create(ce);
2328 	intel_engine_pm_put(ce->engine);
2329 	if (IS_ERR(rq)) {
2330 		err = PTR_ERR(rq);
2331 		goto err_vma_unpin;
2332 	}
2333 
2334 	if (!IS_ERR_OR_NULL(active)) {
2335 		/* After all individual context modifications */
2336 		err = i915_request_await_active(rq, active,
2337 						I915_ACTIVE_AWAIT_ACTIVE);
2338 		if (err)
2339 			goto err_add_request;
2340 
2341 		err = i915_active_add_request(active, rq);
2342 		if (err)
2343 			goto err_add_request;
2344 	}
2345 
2346 	err = i915_vma_move_to_active(vma, rq, 0);
2347 	if (err)
2348 		goto err_add_request;
2349 
2350 	err = rq->engine->emit_bb_start(rq,
2351 					i915_vma_offset(vma), 0,
2352 					I915_DISPATCH_SECURE);
2353 	if (err)
2354 		goto err_add_request;
2355 
2356 err_add_request:
2357 	i915_request_add(rq);
2358 err_vma_unpin:
2359 	i915_vma_unpin(vma);
2360 err:
2361 	if (err == -EDEADLK) {
2362 		err = i915_gem_ww_ctx_backoff(&ww);
2363 		if (!err)
2364 			goto retry;
2365 	}
2366 
2367 	i915_gem_ww_ctx_fini(&ww);
2368 	i915_vma_put(vma);
2369 	return err;
2370 }
2371 
2372 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2373 {
2374 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2375 }
2376 
2377 static int
2378 hsw_enable_metric_set(struct i915_perf_stream *stream,
2379 		      struct i915_active *active)
2380 {
2381 	struct intel_uncore *uncore = stream->uncore;
2382 
2383 	/*
2384 	 * PRM:
2385 	 *
2386 	 * OA unit is using “crclk” for its functionality. When trunk
2387 	 * level clock gating takes place, OA clock would be gated,
2388 	 * unable to count the events from non-render clock domain.
2389 	 * Render clock gating must be disabled when OA is enabled to
2390 	 * count the events from non-render domain. Unit level clock
2391 	 * gating for RCS should also be disabled.
2392 	 */
2393 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2394 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2395 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2396 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2397 
2398 	return emit_oa_config(stream,
2399 			      stream->oa_config, oa_context(stream),
2400 			      active);
2401 }
2402 
2403 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2404 {
2405 	struct intel_uncore *uncore = stream->uncore;
2406 
2407 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2408 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2409 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2410 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2411 
2412 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2413 }
2414 
2415 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2416 			      i915_reg_t reg)
2417 {
2418 	u32 mmio = i915_mmio_reg_offset(reg);
2419 	int i;
2420 
2421 	/*
2422 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2423 	 * Active' event. In the future it's anticipated that there
2424 	 * will be an explicit 'No Event' we can select, but not yet...
2425 	 */
2426 	if (!oa_config)
2427 		return 0;
2428 
2429 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2430 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2431 			return oa_config->flex_regs[i].value;
2432 	}
2433 
2434 	return 0;
2435 }
2436 /*
2437  * NB: It must always remain pointer safe to run this even if the OA unit
2438  * has been disabled.
2439  *
2440  * It's fine to put out-of-date values into these per-context registers
2441  * in the case that the OA unit has been disabled.
2442  */
2443 static void
2444 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2445 			       const struct i915_perf_stream *stream)
2446 {
2447 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2448 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2449 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2450 	static const i915_reg_t flex_regs[] = {
2451 		EU_PERF_CNTL0,
2452 		EU_PERF_CNTL1,
2453 		EU_PERF_CNTL2,
2454 		EU_PERF_CNTL3,
2455 		EU_PERF_CNTL4,
2456 		EU_PERF_CNTL5,
2457 		EU_PERF_CNTL6,
2458 	};
2459 	u32 *reg_state = ce->lrc_reg_state;
2460 	int i;
2461 
2462 	reg_state[ctx_oactxctrl + 1] =
2463 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2464 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2465 		GEN8_OA_COUNTER_RESUME;
2466 
2467 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2468 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2469 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2470 }
2471 
2472 struct flex {
2473 	i915_reg_t reg;
2474 	u32 offset;
2475 	u32 value;
2476 };
2477 
2478 static int
2479 gen8_store_flex(struct i915_request *rq,
2480 		struct intel_context *ce,
2481 		const struct flex *flex, unsigned int count)
2482 {
2483 	u32 offset;
2484 	u32 *cs;
2485 
2486 	cs = intel_ring_begin(rq, 4 * count);
2487 	if (IS_ERR(cs))
2488 		return PTR_ERR(cs);
2489 
2490 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2491 	do {
2492 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2493 		*cs++ = offset + flex->offset * sizeof(u32);
2494 		*cs++ = 0;
2495 		*cs++ = flex->value;
2496 	} while (flex++, --count);
2497 
2498 	intel_ring_advance(rq, cs);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 gen8_load_flex(struct i915_request *rq,
2505 	       struct intel_context *ce,
2506 	       const struct flex *flex, unsigned int count)
2507 {
2508 	u32 *cs;
2509 
2510 	GEM_BUG_ON(!count || count > 63);
2511 
2512 	cs = intel_ring_begin(rq, 2 * count + 2);
2513 	if (IS_ERR(cs))
2514 		return PTR_ERR(cs);
2515 
2516 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2517 	do {
2518 		*cs++ = i915_mmio_reg_offset(flex->reg);
2519 		*cs++ = flex->value;
2520 	} while (flex++, --count);
2521 	*cs++ = MI_NOOP;
2522 
2523 	intel_ring_advance(rq, cs);
2524 
2525 	return 0;
2526 }
2527 
2528 static int gen8_modify_context(struct intel_context *ce,
2529 			       const struct flex *flex, unsigned int count)
2530 {
2531 	struct i915_request *rq;
2532 	int err;
2533 
2534 	rq = intel_engine_create_kernel_request(ce->engine);
2535 	if (IS_ERR(rq))
2536 		return PTR_ERR(rq);
2537 
2538 	/* Serialise with the remote context */
2539 	err = intel_context_prepare_remote_request(ce, rq);
2540 	if (err == 0)
2541 		err = gen8_store_flex(rq, ce, flex, count);
2542 
2543 	i915_request_add(rq);
2544 	return err;
2545 }
2546 
2547 static int
2548 gen8_modify_self(struct intel_context *ce,
2549 		 const struct flex *flex, unsigned int count,
2550 		 struct i915_active *active)
2551 {
2552 	struct i915_request *rq;
2553 	int err;
2554 
2555 	intel_engine_pm_get(ce->engine);
2556 	rq = i915_request_create(ce);
2557 	intel_engine_pm_put(ce->engine);
2558 	if (IS_ERR(rq))
2559 		return PTR_ERR(rq);
2560 
2561 	if (!IS_ERR_OR_NULL(active)) {
2562 		err = i915_active_add_request(active, rq);
2563 		if (err)
2564 			goto err_add_request;
2565 	}
2566 
2567 	err = gen8_load_flex(rq, ce, flex, count);
2568 	if (err)
2569 		goto err_add_request;
2570 
2571 err_add_request:
2572 	i915_request_add(rq);
2573 	return err;
2574 }
2575 
2576 static int gen8_configure_context(struct i915_perf_stream *stream,
2577 				  struct i915_gem_context *ctx,
2578 				  struct flex *flex, unsigned int count)
2579 {
2580 	struct i915_gem_engines_iter it;
2581 	struct intel_context *ce;
2582 	int err = 0;
2583 
2584 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2585 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2586 
2587 		if (ce->engine->class != RENDER_CLASS)
2588 			continue;
2589 
2590 		/* Otherwise OA settings will be set upon first use */
2591 		if (!intel_context_pin_if_active(ce))
2592 			continue;
2593 
2594 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2595 		err = gen8_modify_context(ce, flex, count);
2596 
2597 		intel_context_unpin(ce);
2598 		if (err)
2599 			break;
2600 	}
2601 	i915_gem_context_unlock_engines(ctx);
2602 
2603 	return err;
2604 }
2605 
2606 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2607 				       struct i915_active *active)
2608 {
2609 	int err;
2610 	struct intel_context *ce = stream->pinned_ctx;
2611 	u32 format = stream->oa_buffer.format->format;
2612 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2613 	struct flex regs_context[] = {
2614 		{
2615 			GEN8_OACTXCONTROL,
2616 			offset + 1,
2617 			active ? GEN8_OA_COUNTER_RESUME : 0,
2618 		},
2619 	};
2620 	/* Offsets in regs_lri are not used since this configuration is only
2621 	 * applied using LRI. Initialize the correct offsets for posterity.
2622 	 */
2623 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2624 	struct flex regs_lri[] = {
2625 		{
2626 			GEN12_OAR_OACONTROL,
2627 			GEN12_OAR_OACONTROL_OFFSET + 1,
2628 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2629 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2630 		},
2631 		{
2632 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2633 			CTX_CONTEXT_CONTROL,
2634 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2635 				      active ?
2636 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2637 				      0)
2638 		},
2639 	};
2640 
2641 	/* Modify the context image of pinned context with regs_context */
2642 	err = intel_context_lock_pinned(ce);
2643 	if (err)
2644 		return err;
2645 
2646 	err = gen8_modify_context(ce, regs_context,
2647 				  ARRAY_SIZE(regs_context));
2648 	intel_context_unlock_pinned(ce);
2649 	if (err)
2650 		return err;
2651 
2652 	/* Apply regs_lri using LRI with pinned context */
2653 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2654 }
2655 
2656 /*
2657  * Manages updating the per-context aspects of the OA stream
2658  * configuration across all contexts.
2659  *
2660  * The awkward consideration here is that OACTXCONTROL controls the
2661  * exponent for periodic sampling which is primarily used for system
2662  * wide profiling where we'd like a consistent sampling period even in
2663  * the face of context switches.
2664  *
2665  * Our approach of updating the register state context (as opposed to
2666  * say using a workaround batch buffer) ensures that the hardware
2667  * won't automatically reload an out-of-date timer exponent even
2668  * transiently before a WA BB could be parsed.
2669  *
2670  * This function needs to:
2671  * - Ensure the currently running context's per-context OA state is
2672  *   updated
2673  * - Ensure that all existing contexts will have the correct per-context
2674  *   OA state if they are scheduled for use.
2675  * - Ensure any new contexts will be initialized with the correct
2676  *   per-context OA state.
2677  *
2678  * Note: it's only the RCS/Render context that has any OA state.
2679  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2680  */
2681 static int
2682 oa_configure_all_contexts(struct i915_perf_stream *stream,
2683 			  struct flex *regs,
2684 			  size_t num_regs,
2685 			  struct i915_active *active)
2686 {
2687 	struct drm_i915_private *i915 = stream->perf->i915;
2688 	struct intel_engine_cs *engine;
2689 	struct intel_gt *gt = stream->engine->gt;
2690 	struct i915_gem_context *ctx, *cn;
2691 	int err;
2692 
2693 	lockdep_assert_held(&gt->perf.lock);
2694 
2695 	/*
2696 	 * The OA register config is setup through the context image. This image
2697 	 * might be written to by the GPU on context switch (in particular on
2698 	 * lite-restore). This means we can't safely update a context's image,
2699 	 * if this context is scheduled/submitted to run on the GPU.
2700 	 *
2701 	 * We could emit the OA register config through the batch buffer but
2702 	 * this might leave small interval of time where the OA unit is
2703 	 * configured at an invalid sampling period.
2704 	 *
2705 	 * Note that since we emit all requests from a single ring, there
2706 	 * is still an implicit global barrier here that may cause a high
2707 	 * priority context to wait for an otherwise independent low priority
2708 	 * context. Contexts idle at the time of reconfiguration are not
2709 	 * trapped behind the barrier.
2710 	 */
2711 	spin_lock(&i915->gem.contexts.lock);
2712 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2713 		if (!kref_get_unless_zero(&ctx->ref))
2714 			continue;
2715 
2716 		spin_unlock(&i915->gem.contexts.lock);
2717 
2718 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2719 		if (err) {
2720 			i915_gem_context_put(ctx);
2721 			return err;
2722 		}
2723 
2724 		spin_lock(&i915->gem.contexts.lock);
2725 		list_safe_reset_next(ctx, cn, link);
2726 		i915_gem_context_put(ctx);
2727 	}
2728 	spin_unlock(&i915->gem.contexts.lock);
2729 
2730 	/*
2731 	 * After updating all other contexts, we need to modify ourselves.
2732 	 * If we don't modify the kernel_context, we do not get events while
2733 	 * idle.
2734 	 */
2735 	for_each_uabi_engine(engine, i915) {
2736 		struct intel_context *ce = engine->kernel_context;
2737 
2738 		if (engine->class != RENDER_CLASS)
2739 			continue;
2740 
2741 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2742 
2743 		err = gen8_modify_self(ce, regs, num_regs, active);
2744 		if (err)
2745 			return err;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static int
2752 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2753 			     const struct i915_oa_config *oa_config,
2754 			     struct i915_active *active)
2755 {
2756 	struct flex regs[] = {
2757 		{
2758 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2759 			CTX_R_PWR_CLK_STATE,
2760 		},
2761 	};
2762 
2763 	if (stream->engine->class != RENDER_CLASS)
2764 		return 0;
2765 
2766 	return oa_configure_all_contexts(stream,
2767 					 regs, ARRAY_SIZE(regs),
2768 					 active);
2769 }
2770 
2771 static int
2772 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2773 			   const struct i915_oa_config *oa_config,
2774 			   struct i915_active *active)
2775 {
2776 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2777 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2778 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2779 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2780 	struct flex regs[] = {
2781 		{
2782 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2783 			CTX_R_PWR_CLK_STATE,
2784 		},
2785 		{
2786 			GEN8_OACTXCONTROL,
2787 			ctx_oactxctrl + 1,
2788 		},
2789 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2790 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2791 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2792 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2793 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2794 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2795 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2796 	};
2797 #undef ctx_flexeuN
2798 	int i;
2799 
2800 	regs[1].value =
2801 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2802 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2803 		GEN8_OA_COUNTER_RESUME;
2804 
2805 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2806 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2807 
2808 	return oa_configure_all_contexts(stream,
2809 					 regs, ARRAY_SIZE(regs),
2810 					 active);
2811 }
2812 
2813 static int
2814 gen8_enable_metric_set(struct i915_perf_stream *stream,
2815 		       struct i915_active *active)
2816 {
2817 	struct intel_uncore *uncore = stream->uncore;
2818 	struct i915_oa_config *oa_config = stream->oa_config;
2819 	int ret;
2820 
2821 	/*
2822 	 * We disable slice/unslice clock ratio change reports on SKL since
2823 	 * they are too noisy. The HW generates a lot of redundant reports
2824 	 * where the ratio hasn't really changed causing a lot of redundant
2825 	 * work to processes and increasing the chances we'll hit buffer
2826 	 * overruns.
2827 	 *
2828 	 * Although we don't currently use the 'disable overrun' OABUFFER
2829 	 * feature it's worth noting that clock ratio reports have to be
2830 	 * disabled before considering to use that feature since the HW doesn't
2831 	 * correctly block these reports.
2832 	 *
2833 	 * Currently none of the high-level metrics we have depend on knowing
2834 	 * this ratio to normalize.
2835 	 *
2836 	 * Note: This register is not power context saved and restored, but
2837 	 * that's OK considering that we disable RC6 while the OA unit is
2838 	 * enabled.
2839 	 *
2840 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2841 	 * be read back from automatically triggered reports, as part of the
2842 	 * RPT_ID field.
2843 	 */
2844 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2845 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2846 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2847 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2848 	}
2849 
2850 	/*
2851 	 * Update all contexts prior writing the mux configurations as we need
2852 	 * to make sure all slices/subslices are ON before writing to NOA
2853 	 * registers.
2854 	 */
2855 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2856 	if (ret)
2857 		return ret;
2858 
2859 	return emit_oa_config(stream,
2860 			      stream->oa_config, oa_context(stream),
2861 			      active);
2862 }
2863 
2864 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2865 {
2866 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2867 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2868 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2869 }
2870 
2871 static int
2872 gen12_enable_metric_set(struct i915_perf_stream *stream,
2873 			struct i915_active *active)
2874 {
2875 	struct drm_i915_private *i915 = stream->perf->i915;
2876 	struct intel_uncore *uncore = stream->uncore;
2877 	struct i915_oa_config *oa_config = stream->oa_config;
2878 	bool periodic = stream->periodic;
2879 	u32 period_exponent = stream->period_exponent;
2880 	u32 sqcnt1;
2881 	int ret;
2882 
2883 	/*
2884 	 * Wa_1508761755
2885 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2886 	 * Disable thread stall DOP gating and EU DOP gating.
2887 	 */
2888 	if (IS_DG2(i915)) {
2889 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2890 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2891 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2892 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2893 	}
2894 
2895 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2896 			   /* Disable clk ratio reports, like previous Gens. */
2897 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2898 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2899 			   /*
2900 			    * If the user didn't require OA reports, instruct
2901 			    * the hardware not to emit ctx switch reports.
2902 			    */
2903 			   oag_report_ctx_switches(stream));
2904 
2905 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2906 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2907 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2908 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2909 			    : 0);
2910 
2911 	/*
2912 	 * Initialize Super Queue Internal Cnt Register
2913 	 * Set PMON Enable in order to collect valid metrics.
2914 	 * Enable bytes per clock reporting in OA.
2915 	 */
2916 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2917 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2918 
2919 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2920 
2921 	/*
2922 	 * Update all contexts prior writing the mux configurations as we need
2923 	 * to make sure all slices/subslices are ON before writing to NOA
2924 	 * registers.
2925 	 */
2926 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2927 	if (ret)
2928 		return ret;
2929 
2930 	/*
2931 	 * For Gen12, performance counters are context
2932 	 * saved/restored. Only enable it for the context that
2933 	 * requested this.
2934 	 */
2935 	if (stream->ctx) {
2936 		ret = gen12_configure_oar_context(stream, active);
2937 		if (ret)
2938 			return ret;
2939 	}
2940 
2941 	return emit_oa_config(stream,
2942 			      stream->oa_config, oa_context(stream),
2943 			      active);
2944 }
2945 
2946 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2947 {
2948 	struct intel_uncore *uncore = stream->uncore;
2949 
2950 	/* Reset all contexts' slices/subslices configurations. */
2951 	lrc_configure_all_contexts(stream, NULL, NULL);
2952 
2953 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2954 }
2955 
2956 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2957 {
2958 	struct intel_uncore *uncore = stream->uncore;
2959 
2960 	/* Reset all contexts' slices/subslices configurations. */
2961 	lrc_configure_all_contexts(stream, NULL, NULL);
2962 
2963 	/* Make sure we disable noa to save power. */
2964 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2965 }
2966 
2967 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2968 {
2969 	struct intel_uncore *uncore = stream->uncore;
2970 	struct drm_i915_private *i915 = stream->perf->i915;
2971 	u32 sqcnt1;
2972 
2973 	/*
2974 	 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating.
2975 	 */
2976 	if (IS_DG2(i915)) {
2977 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2978 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2979 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2980 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2981 	}
2982 
2983 	/* Reset all contexts' slices/subslices configurations. */
2984 	gen12_configure_all_contexts(stream, NULL, NULL);
2985 
2986 	/* disable the context save/restore or OAR counters */
2987 	if (stream->ctx)
2988 		gen12_configure_oar_context(stream, NULL);
2989 
2990 	/* Make sure we disable noa to save power. */
2991 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2992 
2993 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2994 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2995 
2996 	/* Reset PMON Enable to save power. */
2997 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2998 }
2999 
3000 static void gen7_oa_enable(struct i915_perf_stream *stream)
3001 {
3002 	struct intel_uncore *uncore = stream->uncore;
3003 	struct i915_gem_context *ctx = stream->ctx;
3004 	u32 ctx_id = stream->specific_ctx_id;
3005 	bool periodic = stream->periodic;
3006 	u32 period_exponent = stream->period_exponent;
3007 	u32 report_format = stream->oa_buffer.format->format;
3008 
3009 	/*
3010 	 * Reset buf pointers so we don't forward reports from before now.
3011 	 *
3012 	 * Think carefully if considering trying to avoid this, since it
3013 	 * also ensures status flags and the buffer itself are cleared
3014 	 * in error paths, and we have checks for invalid reports based
3015 	 * on the assumption that certain fields are written to zeroed
3016 	 * memory which this helps maintains.
3017 	 */
3018 	gen7_init_oa_buffer(stream);
3019 
3020 	intel_uncore_write(uncore, GEN7_OACONTROL,
3021 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3022 			   (period_exponent <<
3023 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3024 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3025 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3026 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3027 			   GEN7_OACONTROL_ENABLE);
3028 }
3029 
3030 static void gen8_oa_enable(struct i915_perf_stream *stream)
3031 {
3032 	struct intel_uncore *uncore = stream->uncore;
3033 	u32 report_format = stream->oa_buffer.format->format;
3034 
3035 	/*
3036 	 * Reset buf pointers so we don't forward reports from before now.
3037 	 *
3038 	 * Think carefully if considering trying to avoid this, since it
3039 	 * also ensures status flags and the buffer itself are cleared
3040 	 * in error paths, and we have checks for invalid reports based
3041 	 * on the assumption that certain fields are written to zeroed
3042 	 * memory which this helps maintains.
3043 	 */
3044 	gen8_init_oa_buffer(stream);
3045 
3046 	/*
3047 	 * Note: we don't rely on the hardware to perform single context
3048 	 * filtering and instead filter on the cpu based on the context-id
3049 	 * field of reports
3050 	 */
3051 	intel_uncore_write(uncore, GEN8_OACONTROL,
3052 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3053 			   GEN8_OA_COUNTER_ENABLE);
3054 }
3055 
3056 static void gen12_oa_enable(struct i915_perf_stream *stream)
3057 {
3058 	const struct i915_perf_regs *regs;
3059 	u32 val;
3060 
3061 	/*
3062 	 * If we don't want OA reports from the OA buffer, then we don't even
3063 	 * need to program the OAG unit.
3064 	 */
3065 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3066 		return;
3067 
3068 	gen12_init_oa_buffer(stream);
3069 
3070 	regs = __oa_regs(stream);
3071 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3072 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3073 
3074 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3075 }
3076 
3077 /**
3078  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3079  * @stream: An i915 perf stream opened for OA metrics
3080  *
3081  * [Re]enables hardware periodic sampling according to the period configured
3082  * when opening the stream. This also starts a hrtimer that will periodically
3083  * check for data in the circular OA buffer for notifying userspace (e.g.
3084  * during a read() or poll()).
3085  */
3086 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3087 {
3088 	stream->pollin = false;
3089 
3090 	stream->perf->ops.oa_enable(stream);
3091 
3092 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3093 		hrtimer_start(&stream->poll_check_timer,
3094 			      ns_to_ktime(stream->poll_oa_period),
3095 			      HRTIMER_MODE_REL_PINNED);
3096 }
3097 
3098 static void gen7_oa_disable(struct i915_perf_stream *stream)
3099 {
3100 	struct intel_uncore *uncore = stream->uncore;
3101 
3102 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3103 	if (intel_wait_for_register(uncore,
3104 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3105 				    50))
3106 		drm_err(&stream->perf->i915->drm,
3107 			"wait for OA to be disabled timed out\n");
3108 }
3109 
3110 static void gen8_oa_disable(struct i915_perf_stream *stream)
3111 {
3112 	struct intel_uncore *uncore = stream->uncore;
3113 
3114 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3115 	if (intel_wait_for_register(uncore,
3116 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3117 				    50))
3118 		drm_err(&stream->perf->i915->drm,
3119 			"wait for OA to be disabled timed out\n");
3120 }
3121 
3122 static void gen12_oa_disable(struct i915_perf_stream *stream)
3123 {
3124 	struct intel_uncore *uncore = stream->uncore;
3125 
3126 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3127 	if (intel_wait_for_register(uncore,
3128 				    __oa_regs(stream)->oa_ctrl,
3129 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3130 				    50))
3131 		drm_err(&stream->perf->i915->drm,
3132 			"wait for OA to be disabled timed out\n");
3133 
3134 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3135 	if (intel_wait_for_register(uncore,
3136 				    GEN12_OA_TLB_INV_CR,
3137 				    1, 0,
3138 				    50))
3139 		drm_err(&stream->perf->i915->drm,
3140 			"wait for OA tlb invalidate timed out\n");
3141 }
3142 
3143 /**
3144  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3145  * @stream: An i915 perf stream opened for OA metrics
3146  *
3147  * Stops the OA unit from periodically writing counter reports into the
3148  * circular OA buffer. This also stops the hrtimer that periodically checks for
3149  * data in the circular OA buffer, for notifying userspace.
3150  */
3151 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3152 {
3153 	stream->perf->ops.oa_disable(stream);
3154 
3155 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3156 		hrtimer_cancel(&stream->poll_check_timer);
3157 }
3158 
3159 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3160 	.destroy = i915_oa_stream_destroy,
3161 	.enable = i915_oa_stream_enable,
3162 	.disable = i915_oa_stream_disable,
3163 	.wait_unlocked = i915_oa_wait_unlocked,
3164 	.poll_wait = i915_oa_poll_wait,
3165 	.read = i915_oa_read,
3166 };
3167 
3168 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3169 {
3170 	struct i915_active *active;
3171 	int err;
3172 
3173 	active = i915_active_create();
3174 	if (!active)
3175 		return -ENOMEM;
3176 
3177 	err = stream->perf->ops.enable_metric_set(stream, active);
3178 	if (err == 0)
3179 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3180 
3181 	i915_active_put(active);
3182 	return err;
3183 }
3184 
3185 static void
3186 get_default_sseu_config(struct intel_sseu *out_sseu,
3187 			struct intel_engine_cs *engine)
3188 {
3189 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3190 
3191 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3192 
3193 	if (GRAPHICS_VER(engine->i915) == 11) {
3194 		/*
3195 		 * We only need subslice count so it doesn't matter which ones
3196 		 * we select - just turn off low bits in the amount of half of
3197 		 * all available subslices per slice.
3198 		 */
3199 		out_sseu->subslice_mask =
3200 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3201 		out_sseu->slice_mask = 0x1;
3202 	}
3203 }
3204 
3205 static int
3206 get_sseu_config(struct intel_sseu *out_sseu,
3207 		struct intel_engine_cs *engine,
3208 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3209 {
3210 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3211 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3212 		return -EINVAL;
3213 
3214 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3215 }
3216 
3217 /*
3218  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3219  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3220  * cases, return the adjusted CS timestamp frequency to the user.
3221  */
3222 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3223 {
3224 	struct intel_gt *gt = to_gt(i915);
3225 
3226 	/* Wa_18013179988 */
3227 	if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
3228 		intel_wakeref_t wakeref;
3229 		u32 reg, shift;
3230 
3231 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3232 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3233 
3234 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3235 				      reg);
3236 
3237 		return to_gt(i915)->clock_frequency << (3 - shift);
3238 	}
3239 
3240 	return to_gt(i915)->clock_frequency;
3241 }
3242 
3243 /**
3244  * i915_oa_stream_init - validate combined props for OA stream and init
3245  * @stream: An i915 perf stream
3246  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3247  * @props: The property state that configures stream (individually validated)
3248  *
3249  * While read_properties_unlocked() validates properties in isolation it
3250  * doesn't ensure that the combination necessarily makes sense.
3251  *
3252  * At this point it has been determined that userspace wants a stream of
3253  * OA metrics, but still we need to further validate the combined
3254  * properties are OK.
3255  *
3256  * If the configuration makes sense then we can allocate memory for
3257  * a circular OA buffer and apply the requested metric set configuration.
3258  *
3259  * Returns: zero on success or a negative error code.
3260  */
3261 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3262 			       struct drm_i915_perf_open_param *param,
3263 			       struct perf_open_properties *props)
3264 {
3265 	struct drm_i915_private *i915 = stream->perf->i915;
3266 	struct i915_perf *perf = stream->perf;
3267 	struct i915_perf_group *g;
3268 	int ret;
3269 
3270 	if (!props->engine) {
3271 		drm_dbg(&stream->perf->i915->drm,
3272 			"OA engine not specified\n");
3273 		return -EINVAL;
3274 	}
3275 	g = props->engine->oa_group;
3276 
3277 	/*
3278 	 * If the sysfs metrics/ directory wasn't registered for some
3279 	 * reason then don't let userspace try their luck with config
3280 	 * IDs
3281 	 */
3282 	if (!perf->metrics_kobj) {
3283 		drm_dbg(&stream->perf->i915->drm,
3284 			"OA metrics weren't advertised via sysfs\n");
3285 		return -EINVAL;
3286 	}
3287 
3288 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3289 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3290 		drm_dbg(&stream->perf->i915->drm,
3291 			"Only OA report sampling supported\n");
3292 		return -EINVAL;
3293 	}
3294 
3295 	if (!perf->ops.enable_metric_set) {
3296 		drm_dbg(&stream->perf->i915->drm,
3297 			"OA unit not supported\n");
3298 		return -ENODEV;
3299 	}
3300 
3301 	/*
3302 	 * To avoid the complexity of having to accurately filter
3303 	 * counter reports and marshal to the appropriate client
3304 	 * we currently only allow exclusive access
3305 	 */
3306 	if (g->exclusive_stream) {
3307 		drm_dbg(&stream->perf->i915->drm,
3308 			"OA unit already in use\n");
3309 		return -EBUSY;
3310 	}
3311 
3312 	if (!props->oa_format) {
3313 		drm_dbg(&stream->perf->i915->drm,
3314 			"OA report format not specified\n");
3315 		return -EINVAL;
3316 	}
3317 
3318 	stream->engine = props->engine;
3319 	stream->uncore = stream->engine->gt->uncore;
3320 
3321 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3322 
3323 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3324 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3325 		return -EINVAL;
3326 
3327 	stream->sample_flags = props->sample_flags;
3328 	stream->sample_size += stream->oa_buffer.format->size;
3329 
3330 	stream->hold_preemption = props->hold_preemption;
3331 
3332 	stream->periodic = props->oa_periodic;
3333 	if (stream->periodic)
3334 		stream->period_exponent = props->oa_period_exponent;
3335 
3336 	if (stream->ctx) {
3337 		ret = oa_get_render_ctx_id(stream);
3338 		if (ret) {
3339 			drm_dbg(&stream->perf->i915->drm,
3340 				"Invalid context id to filter with\n");
3341 			return ret;
3342 		}
3343 	}
3344 
3345 	ret = alloc_noa_wait(stream);
3346 	if (ret) {
3347 		drm_dbg(&stream->perf->i915->drm,
3348 			"Unable to allocate NOA wait batch buffer\n");
3349 		goto err_noa_wait_alloc;
3350 	}
3351 
3352 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3353 	if (!stream->oa_config) {
3354 		drm_dbg(&stream->perf->i915->drm,
3355 			"Invalid OA config id=%i\n", props->metrics_set);
3356 		ret = -EINVAL;
3357 		goto err_config;
3358 	}
3359 
3360 	/* PRM - observability performance counters:
3361 	 *
3362 	 *   OACONTROL, performance counter enable, note:
3363 	 *
3364 	 *   "When this bit is set, in order to have coherent counts,
3365 	 *   RC6 power state and trunk clock gating must be disabled.
3366 	 *   This can be achieved by programming MMIO registers as
3367 	 *   0xA094=0 and 0xA090[31]=1"
3368 	 *
3369 	 *   In our case we are expecting that taking pm + FORCEWAKE
3370 	 *   references will effectively disable RC6.
3371 	 */
3372 	intel_engine_pm_get(stream->engine);
3373 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3374 
3375 	ret = alloc_oa_buffer(stream);
3376 	if (ret)
3377 		goto err_oa_buf_alloc;
3378 
3379 	stream->ops = &i915_oa_stream_ops;
3380 
3381 	stream->engine->gt->perf.sseu = props->sseu;
3382 	WRITE_ONCE(g->exclusive_stream, stream);
3383 
3384 	ret = i915_perf_stream_enable_sync(stream);
3385 	if (ret) {
3386 		drm_dbg(&stream->perf->i915->drm,
3387 			"Unable to enable metric set\n");
3388 		goto err_enable;
3389 	}
3390 
3391 	drm_dbg(&stream->perf->i915->drm,
3392 		"opening stream oa config uuid=%s\n",
3393 		  stream->oa_config->uuid);
3394 
3395 	hrtimer_init(&stream->poll_check_timer,
3396 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3397 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3398 	init_waitqueue_head(&stream->poll_wq);
3399 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3400 	mutex_init(&stream->lock);
3401 
3402 	return 0;
3403 
3404 err_enable:
3405 	WRITE_ONCE(g->exclusive_stream, NULL);
3406 	perf->ops.disable_metric_set(stream);
3407 
3408 	free_oa_buffer(stream);
3409 
3410 err_oa_buf_alloc:
3411 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3412 	intel_engine_pm_put(stream->engine);
3413 
3414 	free_oa_configs(stream);
3415 
3416 err_config:
3417 	free_noa_wait(stream);
3418 
3419 err_noa_wait_alloc:
3420 	if (stream->ctx)
3421 		oa_put_render_ctx_id(stream);
3422 
3423 	return ret;
3424 }
3425 
3426 void i915_oa_init_reg_state(const struct intel_context *ce,
3427 			    const struct intel_engine_cs *engine)
3428 {
3429 	struct i915_perf_stream *stream;
3430 
3431 	if (engine->class != RENDER_CLASS)
3432 		return;
3433 
3434 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3435 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3436 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3437 		gen8_update_reg_state_unlocked(ce, stream);
3438 }
3439 
3440 /**
3441  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3442  * @file: An i915 perf stream file
3443  * @buf: destination buffer given by userspace
3444  * @count: the number of bytes userspace wants to read
3445  * @ppos: (inout) file seek position (unused)
3446  *
3447  * The entry point for handling a read() on a stream file descriptor from
3448  * userspace. Most of the work is left to the i915_perf_read_locked() and
3449  * &i915_perf_stream_ops->read but to save having stream implementations (of
3450  * which we might have multiple later) we handle blocking read here.
3451  *
3452  * We can also consistently treat trying to read from a disabled stream
3453  * as an IO error so implementations can assume the stream is enabled
3454  * while reading.
3455  *
3456  * Returns: The number of bytes copied or a negative error code on failure.
3457  */
3458 static ssize_t i915_perf_read(struct file *file,
3459 			      char __user *buf,
3460 			      size_t count,
3461 			      loff_t *ppos)
3462 {
3463 	struct i915_perf_stream *stream = file->private_data;
3464 	size_t offset = 0;
3465 	int ret;
3466 
3467 	/* To ensure it's handled consistently we simply treat all reads of a
3468 	 * disabled stream as an error. In particular it might otherwise lead
3469 	 * to a deadlock for blocking file descriptors...
3470 	 */
3471 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3472 		return -EIO;
3473 
3474 	if (!(file->f_flags & O_NONBLOCK)) {
3475 		/* There's the small chance of false positives from
3476 		 * stream->ops->wait_unlocked.
3477 		 *
3478 		 * E.g. with single context filtering since we only wait until
3479 		 * oabuffer has >= 1 report we don't immediately know whether
3480 		 * any reports really belong to the current context
3481 		 */
3482 		do {
3483 			ret = stream->ops->wait_unlocked(stream);
3484 			if (ret)
3485 				return ret;
3486 
3487 			mutex_lock(&stream->lock);
3488 			ret = stream->ops->read(stream, buf, count, &offset);
3489 			mutex_unlock(&stream->lock);
3490 		} while (!offset && !ret);
3491 	} else {
3492 		mutex_lock(&stream->lock);
3493 		ret = stream->ops->read(stream, buf, count, &offset);
3494 		mutex_unlock(&stream->lock);
3495 	}
3496 
3497 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3498 	 * events where we might actually report EAGAIN on read() if there's
3499 	 * not really any data available. In this situation though we don't
3500 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3501 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3502 	 * effectively ensures we back off until the next hrtimer callback
3503 	 * before reporting another EPOLLIN event.
3504 	 * The exception to this is if ops->read() returned -ENOSPC which means
3505 	 * that more OA data is available than could fit in the user provided
3506 	 * buffer. In this case we want the next poll() call to not block.
3507 	 */
3508 	if (ret != -ENOSPC)
3509 		stream->pollin = false;
3510 
3511 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3512 	return offset ?: (ret ?: -EAGAIN);
3513 }
3514 
3515 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3516 {
3517 	struct i915_perf_stream *stream =
3518 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3519 
3520 	if (oa_buffer_check_unlocked(stream)) {
3521 		stream->pollin = true;
3522 		wake_up(&stream->poll_wq);
3523 	}
3524 
3525 	hrtimer_forward_now(hrtimer,
3526 			    ns_to_ktime(stream->poll_oa_period));
3527 
3528 	return HRTIMER_RESTART;
3529 }
3530 
3531 /**
3532  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3533  * @stream: An i915 perf stream
3534  * @file: An i915 perf stream file
3535  * @wait: poll() state table
3536  *
3537  * For handling userspace polling on an i915 perf stream, this calls through to
3538  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3539  * will be woken for new stream data.
3540  *
3541  * Returns: any poll events that are ready without sleeping
3542  */
3543 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3544 				      struct file *file,
3545 				      poll_table *wait)
3546 {
3547 	__poll_t events = 0;
3548 
3549 	stream->ops->poll_wait(stream, file, wait);
3550 
3551 	/* Note: we don't explicitly check whether there's something to read
3552 	 * here since this path may be very hot depending on what else
3553 	 * userspace is polling, or on the timeout in use. We rely solely on
3554 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3555 	 * samples to read.
3556 	 */
3557 	if (stream->pollin)
3558 		events |= EPOLLIN;
3559 
3560 	return events;
3561 }
3562 
3563 /**
3564  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3565  * @file: An i915 perf stream file
3566  * @wait: poll() state table
3567  *
3568  * For handling userspace polling on an i915 perf stream, this ensures
3569  * poll_wait() gets called with a wait queue that will be woken for new stream
3570  * data.
3571  *
3572  * Note: Implementation deferred to i915_perf_poll_locked()
3573  *
3574  * Returns: any poll events that are ready without sleeping
3575  */
3576 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3577 {
3578 	struct i915_perf_stream *stream = file->private_data;
3579 	__poll_t ret;
3580 
3581 	mutex_lock(&stream->lock);
3582 	ret = i915_perf_poll_locked(stream, file, wait);
3583 	mutex_unlock(&stream->lock);
3584 
3585 	return ret;
3586 }
3587 
3588 /**
3589  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3590  * @stream: A disabled i915 perf stream
3591  *
3592  * [Re]enables the associated capture of data for this stream.
3593  *
3594  * If a stream was previously enabled then there's currently no intention
3595  * to provide userspace any guarantee about the preservation of previously
3596  * buffered data.
3597  */
3598 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3599 {
3600 	if (stream->enabled)
3601 		return;
3602 
3603 	/* Allow stream->ops->enable() to refer to this */
3604 	stream->enabled = true;
3605 
3606 	if (stream->ops->enable)
3607 		stream->ops->enable(stream);
3608 
3609 	if (stream->hold_preemption)
3610 		intel_context_set_nopreempt(stream->pinned_ctx);
3611 }
3612 
3613 /**
3614  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3615  * @stream: An enabled i915 perf stream
3616  *
3617  * Disables the associated capture of data for this stream.
3618  *
3619  * The intention is that disabling an re-enabling a stream will ideally be
3620  * cheaper than destroying and re-opening a stream with the same configuration,
3621  * though there are no formal guarantees about what state or buffered data
3622  * must be retained between disabling and re-enabling a stream.
3623  *
3624  * Note: while a stream is disabled it's considered an error for userspace
3625  * to attempt to read from the stream (-EIO).
3626  */
3627 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3628 {
3629 	if (!stream->enabled)
3630 		return;
3631 
3632 	/* Allow stream->ops->disable() to refer to this */
3633 	stream->enabled = false;
3634 
3635 	if (stream->hold_preemption)
3636 		intel_context_clear_nopreempt(stream->pinned_ctx);
3637 
3638 	if (stream->ops->disable)
3639 		stream->ops->disable(stream);
3640 }
3641 
3642 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3643 				    unsigned long metrics_set)
3644 {
3645 	struct i915_oa_config *config;
3646 	long ret = stream->oa_config->id;
3647 
3648 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3649 	if (!config)
3650 		return -EINVAL;
3651 
3652 	if (config != stream->oa_config) {
3653 		int err;
3654 
3655 		/*
3656 		 * If OA is bound to a specific context, emit the
3657 		 * reconfiguration inline from that context. The update
3658 		 * will then be ordered with respect to submission on that
3659 		 * context.
3660 		 *
3661 		 * When set globally, we use a low priority kernel context,
3662 		 * so it will effectively take effect when idle.
3663 		 */
3664 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3665 		if (!err)
3666 			config = xchg(&stream->oa_config, config);
3667 		else
3668 			ret = err;
3669 	}
3670 
3671 	i915_oa_config_put(config);
3672 
3673 	return ret;
3674 }
3675 
3676 /**
3677  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3678  * @stream: An i915 perf stream
3679  * @cmd: the ioctl request
3680  * @arg: the ioctl data
3681  *
3682  * Returns: zero on success or a negative error code. Returns -EINVAL for
3683  * an unknown ioctl request.
3684  */
3685 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3686 				   unsigned int cmd,
3687 				   unsigned long arg)
3688 {
3689 	switch (cmd) {
3690 	case I915_PERF_IOCTL_ENABLE:
3691 		i915_perf_enable_locked(stream);
3692 		return 0;
3693 	case I915_PERF_IOCTL_DISABLE:
3694 		i915_perf_disable_locked(stream);
3695 		return 0;
3696 	case I915_PERF_IOCTL_CONFIG:
3697 		return i915_perf_config_locked(stream, arg);
3698 	}
3699 
3700 	return -EINVAL;
3701 }
3702 
3703 /**
3704  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3705  * @file: An i915 perf stream file
3706  * @cmd: the ioctl request
3707  * @arg: the ioctl data
3708  *
3709  * Implementation deferred to i915_perf_ioctl_locked().
3710  *
3711  * Returns: zero on success or a negative error code. Returns -EINVAL for
3712  * an unknown ioctl request.
3713  */
3714 static long i915_perf_ioctl(struct file *file,
3715 			    unsigned int cmd,
3716 			    unsigned long arg)
3717 {
3718 	struct i915_perf_stream *stream = file->private_data;
3719 	long ret;
3720 
3721 	mutex_lock(&stream->lock);
3722 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3723 	mutex_unlock(&stream->lock);
3724 
3725 	return ret;
3726 }
3727 
3728 /**
3729  * i915_perf_destroy_locked - destroy an i915 perf stream
3730  * @stream: An i915 perf stream
3731  *
3732  * Frees all resources associated with the given i915 perf @stream, disabling
3733  * any associated data capture in the process.
3734  *
3735  * Note: The &gt->perf.lock mutex has been taken to serialize
3736  * with any non-file-operation driver hooks.
3737  */
3738 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3739 {
3740 	if (stream->enabled)
3741 		i915_perf_disable_locked(stream);
3742 
3743 	if (stream->ops->destroy)
3744 		stream->ops->destroy(stream);
3745 
3746 	if (stream->ctx)
3747 		i915_gem_context_put(stream->ctx);
3748 
3749 	kfree(stream);
3750 }
3751 
3752 /**
3753  * i915_perf_release - handles userspace close() of a stream file
3754  * @inode: anonymous inode associated with file
3755  * @file: An i915 perf stream file
3756  *
3757  * Cleans up any resources associated with an open i915 perf stream file.
3758  *
3759  * NB: close() can't really fail from the userspace point of view.
3760  *
3761  * Returns: zero on success or a negative error code.
3762  */
3763 static int i915_perf_release(struct inode *inode, struct file *file)
3764 {
3765 	struct i915_perf_stream *stream = file->private_data;
3766 	struct i915_perf *perf = stream->perf;
3767 	struct intel_gt *gt = stream->engine->gt;
3768 
3769 	/*
3770 	 * Within this call, we know that the fd is being closed and we have no
3771 	 * other user of stream->lock. Use the perf lock to destroy the stream
3772 	 * here.
3773 	 */
3774 	mutex_lock(&gt->perf.lock);
3775 	i915_perf_destroy_locked(stream);
3776 	mutex_unlock(&gt->perf.lock);
3777 
3778 	/* Release the reference the perf stream kept on the driver. */
3779 	drm_dev_put(&perf->i915->drm);
3780 
3781 	return 0;
3782 }
3783 
3784 
3785 static const struct file_operations fops = {
3786 	.owner		= THIS_MODULE,
3787 	.llseek		= no_llseek,
3788 	.release	= i915_perf_release,
3789 	.poll		= i915_perf_poll,
3790 	.read		= i915_perf_read,
3791 	.unlocked_ioctl	= i915_perf_ioctl,
3792 	/* Our ioctl have no arguments, so it's safe to use the same function
3793 	 * to handle 32bits compatibility.
3794 	 */
3795 	.compat_ioctl   = i915_perf_ioctl,
3796 };
3797 
3798 
3799 /**
3800  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3801  * @perf: i915 perf instance
3802  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3803  * @props: individually validated u64 property value pairs
3804  * @file: drm file
3805  *
3806  * See i915_perf_ioctl_open() for interface details.
3807  *
3808  * Implements further stream config validation and stream initialization on
3809  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3810  * taken to serialize with any non-file-operation driver hooks.
3811  *
3812  * Note: at this point the @props have only been validated in isolation and
3813  * it's still necessary to validate that the combination of properties makes
3814  * sense.
3815  *
3816  * In the case where userspace is interested in OA unit metrics then further
3817  * config validation and stream initialization details will be handled by
3818  * i915_oa_stream_init(). The code here should only validate config state that
3819  * will be relevant to all stream types / backends.
3820  *
3821  * Returns: zero on success or a negative error code.
3822  */
3823 static int
3824 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3825 			    struct drm_i915_perf_open_param *param,
3826 			    struct perf_open_properties *props,
3827 			    struct drm_file *file)
3828 {
3829 	struct i915_gem_context *specific_ctx = NULL;
3830 	struct i915_perf_stream *stream = NULL;
3831 	unsigned long f_flags = 0;
3832 	bool privileged_op = true;
3833 	int stream_fd;
3834 	int ret;
3835 
3836 	if (props->single_context) {
3837 		u32 ctx_handle = props->ctx_handle;
3838 		struct drm_i915_file_private *file_priv = file->driver_priv;
3839 
3840 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3841 		if (IS_ERR(specific_ctx)) {
3842 			drm_dbg(&perf->i915->drm,
3843 				"Failed to look up context with ID %u for opening perf stream\n",
3844 				  ctx_handle);
3845 			ret = PTR_ERR(specific_ctx);
3846 			goto err;
3847 		}
3848 	}
3849 
3850 	/*
3851 	 * On Haswell the OA unit supports clock gating off for a specific
3852 	 * context and in this mode there's no visibility of metrics for the
3853 	 * rest of the system, which we consider acceptable for a
3854 	 * non-privileged client.
3855 	 *
3856 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3857 	 * specific context and the kernel can't securely stop the counters
3858 	 * from updating as system-wide / global values. Even though we can
3859 	 * filter reports based on the included context ID we can't block
3860 	 * clients from seeing the raw / global counter values via
3861 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3862 	 * enable the OA unit by default.
3863 	 *
3864 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3865 	 * per context basis. So we can relax requirements there if the user
3866 	 * doesn't request global stream access (i.e. query based sampling
3867 	 * using MI_RECORD_PERF_COUNT.
3868 	 */
3869 	if (IS_HASWELL(perf->i915) && specific_ctx)
3870 		privileged_op = false;
3871 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3872 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3873 		privileged_op = false;
3874 
3875 	if (props->hold_preemption) {
3876 		if (!props->single_context) {
3877 			drm_dbg(&perf->i915->drm,
3878 				"preemption disable with no context\n");
3879 			ret = -EINVAL;
3880 			goto err;
3881 		}
3882 		privileged_op = true;
3883 	}
3884 
3885 	/*
3886 	 * Asking for SSEU configuration is a priviliged operation.
3887 	 */
3888 	if (props->has_sseu)
3889 		privileged_op = true;
3890 	else
3891 		get_default_sseu_config(&props->sseu, props->engine);
3892 
3893 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3894 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3895 	 * to determine if it's ok to access system wide OA counters
3896 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3897 	 */
3898 	if (privileged_op &&
3899 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3900 		drm_dbg(&perf->i915->drm,
3901 			"Insufficient privileges to open i915 perf stream\n");
3902 		ret = -EACCES;
3903 		goto err_ctx;
3904 	}
3905 
3906 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3907 	if (!stream) {
3908 		ret = -ENOMEM;
3909 		goto err_ctx;
3910 	}
3911 
3912 	stream->perf = perf;
3913 	stream->ctx = specific_ctx;
3914 	stream->poll_oa_period = props->poll_oa_period;
3915 
3916 	ret = i915_oa_stream_init(stream, param, props);
3917 	if (ret)
3918 		goto err_alloc;
3919 
3920 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3921 	 * to have _stream_init check the combination of sample flags more
3922 	 * thoroughly, but still this is the expected result at this point.
3923 	 */
3924 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3925 		ret = -ENODEV;
3926 		goto err_flags;
3927 	}
3928 
3929 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3930 		f_flags |= O_CLOEXEC;
3931 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3932 		f_flags |= O_NONBLOCK;
3933 
3934 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3935 	if (stream_fd < 0) {
3936 		ret = stream_fd;
3937 		goto err_flags;
3938 	}
3939 
3940 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3941 		i915_perf_enable_locked(stream);
3942 
3943 	/* Take a reference on the driver that will be kept with stream_fd
3944 	 * until its release.
3945 	 */
3946 	drm_dev_get(&perf->i915->drm);
3947 
3948 	return stream_fd;
3949 
3950 err_flags:
3951 	if (stream->ops->destroy)
3952 		stream->ops->destroy(stream);
3953 err_alloc:
3954 	kfree(stream);
3955 err_ctx:
3956 	if (specific_ctx)
3957 		i915_gem_context_put(specific_ctx);
3958 err:
3959 	return ret;
3960 }
3961 
3962 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3963 {
3964 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3965 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3966 
3967 	return div_u64(nom + den - 1, den);
3968 }
3969 
3970 static __always_inline bool
3971 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3972 {
3973 	return test_bit(format, perf->format_mask);
3974 }
3975 
3976 static __always_inline void
3977 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3978 {
3979 	__set_bit(format, perf->format_mask);
3980 }
3981 
3982 /**
3983  * read_properties_unlocked - validate + copy userspace stream open properties
3984  * @perf: i915 perf instance
3985  * @uprops: The array of u64 key value pairs given by userspace
3986  * @n_props: The number of key value pairs expected in @uprops
3987  * @props: The stream configuration built up while validating properties
3988  *
3989  * Note this function only validates properties in isolation it doesn't
3990  * validate that the combination of properties makes sense or that all
3991  * properties necessary for a particular kind of stream have been set.
3992  *
3993  * Note that there currently aren't any ordering requirements for properties so
3994  * we shouldn't validate or assume anything about ordering here. This doesn't
3995  * rule out defining new properties with ordering requirements in the future.
3996  */
3997 static int read_properties_unlocked(struct i915_perf *perf,
3998 				    u64 __user *uprops,
3999 				    u32 n_props,
4000 				    struct perf_open_properties *props)
4001 {
4002 	struct drm_i915_gem_context_param_sseu user_sseu;
4003 	const struct i915_oa_format *f;
4004 	u64 __user *uprop = uprops;
4005 	bool config_instance = false;
4006 	bool config_class = false;
4007 	bool config_sseu = false;
4008 	u8 class, instance;
4009 	u32 i;
4010 	int ret;
4011 
4012 	memset(props, 0, sizeof(struct perf_open_properties));
4013 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4014 
4015 	/* Considering that ID = 0 is reserved and assuming that we don't
4016 	 * (currently) expect any configurations to ever specify duplicate
4017 	 * values for a particular property ID then the last _PROP_MAX value is
4018 	 * one greater than the maximum number of properties we expect to get
4019 	 * from userspace.
4020 	 */
4021 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4022 		drm_dbg(&perf->i915->drm,
4023 			"Invalid number of i915 perf properties given\n");
4024 		return -EINVAL;
4025 	}
4026 
4027 	/* Defaults when class:instance is not passed */
4028 	class = I915_ENGINE_CLASS_RENDER;
4029 	instance = 0;
4030 
4031 	for (i = 0; i < n_props; i++) {
4032 		u64 oa_period, oa_freq_hz;
4033 		u64 id, value;
4034 
4035 		ret = get_user(id, uprop);
4036 		if (ret)
4037 			return ret;
4038 
4039 		ret = get_user(value, uprop + 1);
4040 		if (ret)
4041 			return ret;
4042 
4043 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4044 			drm_dbg(&perf->i915->drm,
4045 				"Unknown i915 perf property ID\n");
4046 			return -EINVAL;
4047 		}
4048 
4049 		switch ((enum drm_i915_perf_property_id)id) {
4050 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4051 			props->single_context = 1;
4052 			props->ctx_handle = value;
4053 			break;
4054 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4055 			if (value)
4056 				props->sample_flags |= SAMPLE_OA_REPORT;
4057 			break;
4058 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4059 			if (value == 0) {
4060 				drm_dbg(&perf->i915->drm,
4061 					"Unknown OA metric set ID\n");
4062 				return -EINVAL;
4063 			}
4064 			props->metrics_set = value;
4065 			break;
4066 		case DRM_I915_PERF_PROP_OA_FORMAT:
4067 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4068 				drm_dbg(&perf->i915->drm,
4069 					"Out-of-range OA report format %llu\n",
4070 					  value);
4071 				return -EINVAL;
4072 			}
4073 			if (!oa_format_valid(perf, value)) {
4074 				drm_dbg(&perf->i915->drm,
4075 					"Unsupported OA report format %llu\n",
4076 					  value);
4077 				return -EINVAL;
4078 			}
4079 			props->oa_format = value;
4080 			break;
4081 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4082 			if (value > OA_EXPONENT_MAX) {
4083 				drm_dbg(&perf->i915->drm,
4084 					"OA timer exponent too high (> %u)\n",
4085 					 OA_EXPONENT_MAX);
4086 				return -EINVAL;
4087 			}
4088 
4089 			/* Theoretically we can program the OA unit to sample
4090 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4091 			 * for BXT. We don't allow such high sampling
4092 			 * frequencies by default unless root.
4093 			 */
4094 
4095 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4096 			oa_period = oa_exponent_to_ns(perf, value);
4097 
4098 			/* This check is primarily to ensure that oa_period <=
4099 			 * UINT32_MAX (before passing to do_div which only
4100 			 * accepts a u32 denominator), but we can also skip
4101 			 * checking anything < 1Hz which implicitly can't be
4102 			 * limited via an integer oa_max_sample_rate.
4103 			 */
4104 			if (oa_period <= NSEC_PER_SEC) {
4105 				u64 tmp = NSEC_PER_SEC;
4106 				do_div(tmp, oa_period);
4107 				oa_freq_hz = tmp;
4108 			} else
4109 				oa_freq_hz = 0;
4110 
4111 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4112 				drm_dbg(&perf->i915->drm,
4113 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4114 					  i915_oa_max_sample_rate);
4115 				return -EACCES;
4116 			}
4117 
4118 			props->oa_periodic = true;
4119 			props->oa_period_exponent = value;
4120 			break;
4121 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4122 			props->hold_preemption = !!value;
4123 			break;
4124 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4125 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) {
4126 				drm_dbg(&perf->i915->drm,
4127 					"SSEU config not supported on gfx %x\n",
4128 					GRAPHICS_VER_FULL(perf->i915));
4129 				return -ENODEV;
4130 			}
4131 
4132 			if (copy_from_user(&user_sseu,
4133 					   u64_to_user_ptr(value),
4134 					   sizeof(user_sseu))) {
4135 				drm_dbg(&perf->i915->drm,
4136 					"Unable to copy global sseu parameter\n");
4137 				return -EFAULT;
4138 			}
4139 			config_sseu = true;
4140 			break;
4141 		}
4142 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4143 			if (value < 100000 /* 100us */) {
4144 				drm_dbg(&perf->i915->drm,
4145 					"OA availability timer too small (%lluns < 100us)\n",
4146 					  value);
4147 				return -EINVAL;
4148 			}
4149 			props->poll_oa_period = value;
4150 			break;
4151 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4152 			class = (u8)value;
4153 			config_class = true;
4154 			break;
4155 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4156 			instance = (u8)value;
4157 			config_instance = true;
4158 			break;
4159 		default:
4160 			MISSING_CASE(id);
4161 			return -EINVAL;
4162 		}
4163 
4164 		uprop += 2;
4165 	}
4166 
4167 	if ((config_class && !config_instance) ||
4168 	    (config_instance && !config_class)) {
4169 		drm_dbg(&perf->i915->drm,
4170 			"OA engine-class and engine-instance parameters must be passed together\n");
4171 		return -EINVAL;
4172 	}
4173 
4174 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4175 	if (!props->engine) {
4176 		drm_dbg(&perf->i915->drm,
4177 			"OA engine class and instance invalid %d:%d\n",
4178 			class, instance);
4179 		return -EINVAL;
4180 	}
4181 
4182 	if (!engine_supports_oa(props->engine)) {
4183 		drm_dbg(&perf->i915->drm,
4184 			"Engine not supported by OA %d:%d\n",
4185 			class, instance);
4186 		return -EINVAL;
4187 	}
4188 
4189 	/*
4190 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4191 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4192 	 * does not work as expected.
4193 	 */
4194 	if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4195 	    props->engine->oa_group->type == TYPE_OAM &&
4196 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4197 		drm_dbg(&perf->i915->drm,
4198 			"OAM requires media C6 to be disabled in BIOS\n");
4199 		return -EINVAL;
4200 	}
4201 
4202 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4203 	f = &perf->oa_formats[i];
4204 	if (!engine_supports_oa_format(props->engine, f->type)) {
4205 		drm_dbg(&perf->i915->drm,
4206 			"Invalid OA format %d for class %d\n",
4207 			f->type, props->engine->class);
4208 		return -EINVAL;
4209 	}
4210 
4211 	if (config_sseu) {
4212 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4213 		if (ret) {
4214 			drm_dbg(&perf->i915->drm,
4215 				"Invalid SSEU configuration\n");
4216 			return ret;
4217 		}
4218 		props->has_sseu = true;
4219 	}
4220 
4221 	return 0;
4222 }
4223 
4224 /**
4225  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4226  * @dev: drm device
4227  * @data: ioctl data copied from userspace (unvalidated)
4228  * @file: drm file
4229  *
4230  * Validates the stream open parameters given by userspace including flags
4231  * and an array of u64 key, value pair properties.
4232  *
4233  * Very little is assumed up front about the nature of the stream being
4234  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4235  * i915-perf stream is expected to be a suitable interface for other forms of
4236  * buffered data written by the GPU besides periodic OA metrics.
4237  *
4238  * Note we copy the properties from userspace outside of the i915 perf
4239  * mutex to avoid an awkward lockdep with mmap_lock.
4240  *
4241  * Most of the implementation details are handled by
4242  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4243  * mutex for serializing with any non-file-operation driver hooks.
4244  *
4245  * Return: A newly opened i915 Perf stream file descriptor or negative
4246  * error code on failure.
4247  */
4248 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4249 			 struct drm_file *file)
4250 {
4251 	struct i915_perf *perf = &to_i915(dev)->perf;
4252 	struct drm_i915_perf_open_param *param = data;
4253 	struct intel_gt *gt;
4254 	struct perf_open_properties props;
4255 	u32 known_open_flags;
4256 	int ret;
4257 
4258 	if (!perf->i915)
4259 		return -ENOTSUPP;
4260 
4261 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4262 			   I915_PERF_FLAG_FD_NONBLOCK |
4263 			   I915_PERF_FLAG_DISABLED;
4264 	if (param->flags & ~known_open_flags) {
4265 		drm_dbg(&perf->i915->drm,
4266 			"Unknown drm_i915_perf_open_param flag\n");
4267 		return -EINVAL;
4268 	}
4269 
4270 	ret = read_properties_unlocked(perf,
4271 				       u64_to_user_ptr(param->properties_ptr),
4272 				       param->num_properties,
4273 				       &props);
4274 	if (ret)
4275 		return ret;
4276 
4277 	gt = props.engine->gt;
4278 
4279 	mutex_lock(&gt->perf.lock);
4280 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4281 	mutex_unlock(&gt->perf.lock);
4282 
4283 	return ret;
4284 }
4285 
4286 /**
4287  * i915_perf_register - exposes i915-perf to userspace
4288  * @i915: i915 device instance
4289  *
4290  * In particular OA metric sets are advertised under a sysfs metrics/
4291  * directory allowing userspace to enumerate valid IDs that can be
4292  * used to open an i915-perf stream.
4293  */
4294 void i915_perf_register(struct drm_i915_private *i915)
4295 {
4296 	struct i915_perf *perf = &i915->perf;
4297 	struct intel_gt *gt = to_gt(i915);
4298 
4299 	if (!perf->i915)
4300 		return;
4301 
4302 	/* To be sure we're synchronized with an attempted
4303 	 * i915_perf_open_ioctl(); considering that we register after
4304 	 * being exposed to userspace.
4305 	 */
4306 	mutex_lock(&gt->perf.lock);
4307 
4308 	perf->metrics_kobj =
4309 		kobject_create_and_add("metrics",
4310 				       &i915->drm.primary->kdev->kobj);
4311 
4312 	mutex_unlock(&gt->perf.lock);
4313 }
4314 
4315 /**
4316  * i915_perf_unregister - hide i915-perf from userspace
4317  * @i915: i915 device instance
4318  *
4319  * i915-perf state cleanup is split up into an 'unregister' and
4320  * 'deinit' phase where the interface is first hidden from
4321  * userspace by i915_perf_unregister() before cleaning up
4322  * remaining state in i915_perf_fini().
4323  */
4324 void i915_perf_unregister(struct drm_i915_private *i915)
4325 {
4326 	struct i915_perf *perf = &i915->perf;
4327 
4328 	if (!perf->metrics_kobj)
4329 		return;
4330 
4331 	kobject_put(perf->metrics_kobj);
4332 	perf->metrics_kobj = NULL;
4333 }
4334 
4335 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4336 {
4337 	static const i915_reg_t flex_eu_regs[] = {
4338 		EU_PERF_CNTL0,
4339 		EU_PERF_CNTL1,
4340 		EU_PERF_CNTL2,
4341 		EU_PERF_CNTL3,
4342 		EU_PERF_CNTL4,
4343 		EU_PERF_CNTL5,
4344 		EU_PERF_CNTL6,
4345 	};
4346 	int i;
4347 
4348 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4349 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4350 			return true;
4351 	}
4352 	return false;
4353 }
4354 
4355 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4356 {
4357 	while (table->start || table->end) {
4358 		if (addr >= table->start && addr <= table->end)
4359 			return true;
4360 
4361 		table++;
4362 	}
4363 
4364 	return false;
4365 }
4366 
4367 #define REG_EQUAL(addr, mmio) \
4368 	((addr) == i915_mmio_reg_offset(mmio))
4369 
4370 static const struct i915_range gen7_oa_b_counters[] = {
4371 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4372 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4373 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4374 	{}
4375 };
4376 
4377 static const struct i915_range gen12_oa_b_counters[] = {
4378 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4379 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4380 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4381 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4382 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4383 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4384 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4385 	{}
4386 };
4387 
4388 static const struct i915_range mtl_oam_b_counters[] = {
4389 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4390 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4391 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4392 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4393 	{}
4394 };
4395 
4396 static const struct i915_range xehp_oa_b_counters[] = {
4397 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4398 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4399 	{}
4400 };
4401 
4402 static const struct i915_range gen7_oa_mux_regs[] = {
4403 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4404 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4405 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4406 	{}
4407 };
4408 
4409 static const struct i915_range hsw_oa_mux_regs[] = {
4410 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4411 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4412 	{ .start = 0x25100, .end = 0x2ff90 },
4413 	{}
4414 };
4415 
4416 static const struct i915_range chv_oa_mux_regs[] = {
4417 	{ .start = 0x182300, .end = 0x1823a4 },
4418 	{}
4419 };
4420 
4421 static const struct i915_range gen8_oa_mux_regs[] = {
4422 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4423 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4424 	{}
4425 };
4426 
4427 static const struct i915_range gen11_oa_mux_regs[] = {
4428 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4429 	{}
4430 };
4431 
4432 static const struct i915_range gen12_oa_mux_regs[] = {
4433 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4434 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4435 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4436 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4437 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4438 	{}
4439 };
4440 
4441 /*
4442  * Ref: 14010536224:
4443  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4444  */
4445 static const struct i915_range mtl_oa_mux_regs[] = {
4446 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4447 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4448 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4449 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4450 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4451 	{}
4452 };
4453 
4454 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4455 {
4456 	return reg_in_range_table(addr, gen7_oa_b_counters);
4457 }
4458 
4459 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4460 {
4461 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4462 		reg_in_range_table(addr, gen8_oa_mux_regs);
4463 }
4464 
4465 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4466 {
4467 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4468 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4469 		reg_in_range_table(addr, gen11_oa_mux_regs);
4470 }
4471 
4472 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4473 {
4474 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4475 		reg_in_range_table(addr, hsw_oa_mux_regs);
4476 }
4477 
4478 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4479 {
4480 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4481 		reg_in_range_table(addr, chv_oa_mux_regs);
4482 }
4483 
4484 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4485 {
4486 	return reg_in_range_table(addr, gen12_oa_b_counters);
4487 }
4488 
4489 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4490 {
4491 	if (HAS_OAM(perf->i915) &&
4492 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4493 		return reg_in_range_table(addr, mtl_oam_b_counters);
4494 
4495 	return false;
4496 }
4497 
4498 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4499 {
4500 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4501 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4502 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4503 }
4504 
4505 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4506 {
4507 	if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4508 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4509 	else
4510 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4511 }
4512 
4513 static u32 mask_reg_value(u32 reg, u32 val)
4514 {
4515 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4516 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4517 	 * programmed by userspace doesn't change this.
4518 	 */
4519 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4520 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4521 
4522 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4523 	 * indicated by its name and a bunch of selection fields used by OA
4524 	 * configs.
4525 	 */
4526 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4527 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4528 
4529 	return val;
4530 }
4531 
4532 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4533 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4534 					 u32 __user *regs,
4535 					 u32 n_regs)
4536 {
4537 	struct i915_oa_reg *oa_regs;
4538 	int err;
4539 	u32 i;
4540 
4541 	if (!n_regs)
4542 		return NULL;
4543 
4544 	/* No is_valid function means we're not allowing any register to be programmed. */
4545 	GEM_BUG_ON(!is_valid);
4546 	if (!is_valid)
4547 		return ERR_PTR(-EINVAL);
4548 
4549 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4550 	if (!oa_regs)
4551 		return ERR_PTR(-ENOMEM);
4552 
4553 	for (i = 0; i < n_regs; i++) {
4554 		u32 addr, value;
4555 
4556 		err = get_user(addr, regs);
4557 		if (err)
4558 			goto addr_err;
4559 
4560 		if (!is_valid(perf, addr)) {
4561 			drm_dbg(&perf->i915->drm,
4562 				"Invalid oa_reg address: %X\n", addr);
4563 			err = -EINVAL;
4564 			goto addr_err;
4565 		}
4566 
4567 		err = get_user(value, regs + 1);
4568 		if (err)
4569 			goto addr_err;
4570 
4571 		oa_regs[i].addr = _MMIO(addr);
4572 		oa_regs[i].value = mask_reg_value(addr, value);
4573 
4574 		regs += 2;
4575 	}
4576 
4577 	return oa_regs;
4578 
4579 addr_err:
4580 	kfree(oa_regs);
4581 	return ERR_PTR(err);
4582 }
4583 
4584 static ssize_t show_dynamic_id(struct kobject *kobj,
4585 			       struct kobj_attribute *attr,
4586 			       char *buf)
4587 {
4588 	struct i915_oa_config *oa_config =
4589 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4590 
4591 	return sprintf(buf, "%d\n", oa_config->id);
4592 }
4593 
4594 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4595 					 struct i915_oa_config *oa_config)
4596 {
4597 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4598 	oa_config->sysfs_metric_id.attr.name = "id";
4599 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4600 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4601 	oa_config->sysfs_metric_id.store = NULL;
4602 
4603 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4604 	oa_config->attrs[1] = NULL;
4605 
4606 	oa_config->sysfs_metric.name = oa_config->uuid;
4607 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4608 
4609 	return sysfs_create_group(perf->metrics_kobj,
4610 				  &oa_config->sysfs_metric);
4611 }
4612 
4613 /**
4614  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4615  * @dev: drm device
4616  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4617  *        userspace (unvalidated)
4618  * @file: drm file
4619  *
4620  * Validates the submitted OA register to be saved into a new OA config that
4621  * can then be used for programming the OA unit and its NOA network.
4622  *
4623  * Returns: A new allocated config number to be used with the perf open ioctl
4624  * or a negative error code on failure.
4625  */
4626 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4627 			       struct drm_file *file)
4628 {
4629 	struct i915_perf *perf = &to_i915(dev)->perf;
4630 	struct drm_i915_perf_oa_config *args = data;
4631 	struct i915_oa_config *oa_config, *tmp;
4632 	struct i915_oa_reg *regs;
4633 	int err, id;
4634 
4635 	if (!perf->i915)
4636 		return -ENOTSUPP;
4637 
4638 	if (!perf->metrics_kobj) {
4639 		drm_dbg(&perf->i915->drm,
4640 			"OA metrics weren't advertised via sysfs\n");
4641 		return -EINVAL;
4642 	}
4643 
4644 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4645 		drm_dbg(&perf->i915->drm,
4646 			"Insufficient privileges to add i915 OA config\n");
4647 		return -EACCES;
4648 	}
4649 
4650 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4651 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4652 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4653 		drm_dbg(&perf->i915->drm,
4654 			"No OA registers given\n");
4655 		return -EINVAL;
4656 	}
4657 
4658 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4659 	if (!oa_config) {
4660 		drm_dbg(&perf->i915->drm,
4661 			"Failed to allocate memory for the OA config\n");
4662 		return -ENOMEM;
4663 	}
4664 
4665 	oa_config->perf = perf;
4666 	kref_init(&oa_config->ref);
4667 
4668 	if (!uuid_is_valid(args->uuid)) {
4669 		drm_dbg(&perf->i915->drm,
4670 			"Invalid uuid format for OA config\n");
4671 		err = -EINVAL;
4672 		goto reg_err;
4673 	}
4674 
4675 	/* Last character in oa_config->uuid will be 0 because oa_config is
4676 	 * kzalloc.
4677 	 */
4678 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4679 
4680 	oa_config->mux_regs_len = args->n_mux_regs;
4681 	regs = alloc_oa_regs(perf,
4682 			     perf->ops.is_valid_mux_reg,
4683 			     u64_to_user_ptr(args->mux_regs_ptr),
4684 			     args->n_mux_regs);
4685 
4686 	if (IS_ERR(regs)) {
4687 		drm_dbg(&perf->i915->drm,
4688 			"Failed to create OA config for mux_regs\n");
4689 		err = PTR_ERR(regs);
4690 		goto reg_err;
4691 	}
4692 	oa_config->mux_regs = regs;
4693 
4694 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4695 	regs = alloc_oa_regs(perf,
4696 			     perf->ops.is_valid_b_counter_reg,
4697 			     u64_to_user_ptr(args->boolean_regs_ptr),
4698 			     args->n_boolean_regs);
4699 
4700 	if (IS_ERR(regs)) {
4701 		drm_dbg(&perf->i915->drm,
4702 			"Failed to create OA config for b_counter_regs\n");
4703 		err = PTR_ERR(regs);
4704 		goto reg_err;
4705 	}
4706 	oa_config->b_counter_regs = regs;
4707 
4708 	if (GRAPHICS_VER(perf->i915) < 8) {
4709 		if (args->n_flex_regs != 0) {
4710 			err = -EINVAL;
4711 			goto reg_err;
4712 		}
4713 	} else {
4714 		oa_config->flex_regs_len = args->n_flex_regs;
4715 		regs = alloc_oa_regs(perf,
4716 				     perf->ops.is_valid_flex_reg,
4717 				     u64_to_user_ptr(args->flex_regs_ptr),
4718 				     args->n_flex_regs);
4719 
4720 		if (IS_ERR(regs)) {
4721 			drm_dbg(&perf->i915->drm,
4722 				"Failed to create OA config for flex_regs\n");
4723 			err = PTR_ERR(regs);
4724 			goto reg_err;
4725 		}
4726 		oa_config->flex_regs = regs;
4727 	}
4728 
4729 	err = mutex_lock_interruptible(&perf->metrics_lock);
4730 	if (err)
4731 		goto reg_err;
4732 
4733 	/* We shouldn't have too many configs, so this iteration shouldn't be
4734 	 * too costly.
4735 	 */
4736 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4737 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4738 			drm_dbg(&perf->i915->drm,
4739 				"OA config already exists with this uuid\n");
4740 			err = -EADDRINUSE;
4741 			goto sysfs_err;
4742 		}
4743 	}
4744 
4745 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4746 	if (err) {
4747 		drm_dbg(&perf->i915->drm,
4748 			"Failed to create sysfs entry for OA config\n");
4749 		goto sysfs_err;
4750 	}
4751 
4752 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4753 	oa_config->id = idr_alloc(&perf->metrics_idr,
4754 				  oa_config, 2,
4755 				  0, GFP_KERNEL);
4756 	if (oa_config->id < 0) {
4757 		drm_dbg(&perf->i915->drm,
4758 			"Failed to create sysfs entry for OA config\n");
4759 		err = oa_config->id;
4760 		goto sysfs_err;
4761 	}
4762 	id = oa_config->id;
4763 
4764 	drm_dbg(&perf->i915->drm,
4765 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4766 	mutex_unlock(&perf->metrics_lock);
4767 
4768 	return id;
4769 
4770 sysfs_err:
4771 	mutex_unlock(&perf->metrics_lock);
4772 reg_err:
4773 	i915_oa_config_put(oa_config);
4774 	drm_dbg(&perf->i915->drm,
4775 		"Failed to add new OA config\n");
4776 	return err;
4777 }
4778 
4779 /**
4780  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4781  * @dev: drm device
4782  * @data: ioctl data (pointer to u64 integer) copied from userspace
4783  * @file: drm file
4784  *
4785  * Configs can be removed while being used, the will stop appearing in sysfs
4786  * and their content will be freed when the stream using the config is closed.
4787  *
4788  * Returns: 0 on success or a negative error code on failure.
4789  */
4790 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4791 				  struct drm_file *file)
4792 {
4793 	struct i915_perf *perf = &to_i915(dev)->perf;
4794 	u64 *arg = data;
4795 	struct i915_oa_config *oa_config;
4796 	int ret;
4797 
4798 	if (!perf->i915)
4799 		return -ENOTSUPP;
4800 
4801 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4802 		drm_dbg(&perf->i915->drm,
4803 			"Insufficient privileges to remove i915 OA config\n");
4804 		return -EACCES;
4805 	}
4806 
4807 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4808 	if (ret)
4809 		return ret;
4810 
4811 	oa_config = idr_find(&perf->metrics_idr, *arg);
4812 	if (!oa_config) {
4813 		drm_dbg(&perf->i915->drm,
4814 			"Failed to remove unknown OA config\n");
4815 		ret = -ENOENT;
4816 		goto err_unlock;
4817 	}
4818 
4819 	GEM_BUG_ON(*arg != oa_config->id);
4820 
4821 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4822 
4823 	idr_remove(&perf->metrics_idr, *arg);
4824 
4825 	mutex_unlock(&perf->metrics_lock);
4826 
4827 	drm_dbg(&perf->i915->drm,
4828 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4829 
4830 	i915_oa_config_put(oa_config);
4831 
4832 	return 0;
4833 
4834 err_unlock:
4835 	mutex_unlock(&perf->metrics_lock);
4836 	return ret;
4837 }
4838 
4839 static struct ctl_table oa_table[] = {
4840 	{
4841 	 .procname = "perf_stream_paranoid",
4842 	 .data = &i915_perf_stream_paranoid,
4843 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4844 	 .mode = 0644,
4845 	 .proc_handler = proc_dointvec_minmax,
4846 	 .extra1 = SYSCTL_ZERO,
4847 	 .extra2 = SYSCTL_ONE,
4848 	 },
4849 	{
4850 	 .procname = "oa_max_sample_rate",
4851 	 .data = &i915_oa_max_sample_rate,
4852 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4853 	 .mode = 0644,
4854 	 .proc_handler = proc_dointvec_minmax,
4855 	 .extra1 = SYSCTL_ZERO,
4856 	 .extra2 = &oa_sample_rate_hard_limit,
4857 	 },
4858 };
4859 
4860 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4861 {
4862 	return 1;
4863 }
4864 
4865 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4866 {
4867 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4868 		/*
4869 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4870 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4871 		 */
4872 		drm_WARN_ON(&engine->i915->drm,
4873 			    engine->gt->type != GT_MEDIA);
4874 
4875 		return PERF_GROUP_OAM_SAMEDIA_0;
4876 	}
4877 
4878 	return PERF_GROUP_INVALID;
4879 }
4880 
4881 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4882 {
4883 	switch (engine->class) {
4884 	case RENDER_CLASS:
4885 		return PERF_GROUP_OAG;
4886 
4887 	case VIDEO_DECODE_CLASS:
4888 	case VIDEO_ENHANCEMENT_CLASS:
4889 		return __oam_engine_group(engine);
4890 
4891 	default:
4892 		return PERF_GROUP_INVALID;
4893 	}
4894 }
4895 
4896 static struct i915_perf_regs __oam_regs(u32 base)
4897 {
4898 	return (struct i915_perf_regs) {
4899 		base,
4900 		GEN12_OAM_HEAD_POINTER(base),
4901 		GEN12_OAM_TAIL_POINTER(base),
4902 		GEN12_OAM_BUFFER(base),
4903 		GEN12_OAM_CONTEXT_CONTROL(base),
4904 		GEN12_OAM_CONTROL(base),
4905 		GEN12_OAM_DEBUG(base),
4906 		GEN12_OAM_STATUS(base),
4907 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4908 	};
4909 }
4910 
4911 static struct i915_perf_regs __oag_regs(void)
4912 {
4913 	return (struct i915_perf_regs) {
4914 		0,
4915 		GEN12_OAG_OAHEADPTR,
4916 		GEN12_OAG_OATAILPTR,
4917 		GEN12_OAG_OABUFFER,
4918 		GEN12_OAG_OAGLBCTXCTRL,
4919 		GEN12_OAG_OACONTROL,
4920 		GEN12_OAG_OA_DEBUG,
4921 		GEN12_OAG_OASTATUS,
4922 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4923 	};
4924 }
4925 
4926 static void oa_init_groups(struct intel_gt *gt)
4927 {
4928 	int i, num_groups = gt->perf.num_perf_groups;
4929 
4930 	for (i = 0; i < num_groups; i++) {
4931 		struct i915_perf_group *g = &gt->perf.group[i];
4932 
4933 		/* Fused off engines can result in a group with num_engines == 0 */
4934 		if (g->num_engines == 0)
4935 			continue;
4936 
4937 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4938 			g->regs = __oag_regs();
4939 			g->type = TYPE_OAG;
4940 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4941 			g->regs = __oam_regs(mtl_oa_base[i]);
4942 			g->type = TYPE_OAM;
4943 		}
4944 	}
4945 }
4946 
4947 static int oa_init_gt(struct intel_gt *gt)
4948 {
4949 	u32 num_groups = num_perf_groups_per_gt(gt);
4950 	struct intel_engine_cs *engine;
4951 	struct i915_perf_group *g;
4952 	intel_engine_mask_t tmp;
4953 
4954 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4955 	if (!g)
4956 		return -ENOMEM;
4957 
4958 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4959 		u32 index = __oa_engine_group(engine);
4960 
4961 		engine->oa_group = NULL;
4962 		if (index < num_groups) {
4963 			g[index].num_engines++;
4964 			engine->oa_group = &g[index];
4965 		}
4966 	}
4967 
4968 	gt->perf.num_perf_groups = num_groups;
4969 	gt->perf.group = g;
4970 
4971 	oa_init_groups(gt);
4972 
4973 	return 0;
4974 }
4975 
4976 static int oa_init_engine_groups(struct i915_perf *perf)
4977 {
4978 	struct intel_gt *gt;
4979 	int i, ret;
4980 
4981 	for_each_gt(gt, perf->i915, i) {
4982 		ret = oa_init_gt(gt);
4983 		if (ret)
4984 			return ret;
4985 	}
4986 
4987 	return 0;
4988 }
4989 
4990 static void oa_init_supported_formats(struct i915_perf *perf)
4991 {
4992 	struct drm_i915_private *i915 = perf->i915;
4993 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4994 
4995 	switch (platform) {
4996 	case INTEL_HASWELL:
4997 		oa_format_add(perf, I915_OA_FORMAT_A13);
4998 		oa_format_add(perf, I915_OA_FORMAT_A13);
4999 		oa_format_add(perf, I915_OA_FORMAT_A29);
5000 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5001 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5002 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5003 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5004 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5005 		break;
5006 
5007 	case INTEL_BROADWELL:
5008 	case INTEL_CHERRYVIEW:
5009 	case INTEL_SKYLAKE:
5010 	case INTEL_BROXTON:
5011 	case INTEL_KABYLAKE:
5012 	case INTEL_GEMINILAKE:
5013 	case INTEL_COFFEELAKE:
5014 	case INTEL_COMETLAKE:
5015 	case INTEL_ICELAKE:
5016 	case INTEL_ELKHARTLAKE:
5017 	case INTEL_JASPERLAKE:
5018 	case INTEL_TIGERLAKE:
5019 	case INTEL_ROCKETLAKE:
5020 	case INTEL_DG1:
5021 	case INTEL_ALDERLAKE_S:
5022 	case INTEL_ALDERLAKE_P:
5023 		oa_format_add(perf, I915_OA_FORMAT_A12);
5024 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5025 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5026 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5027 		break;
5028 
5029 	case INTEL_DG2:
5030 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5031 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5032 		break;
5033 
5034 	case INTEL_METEORLAKE:
5035 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5036 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5037 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5038 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5039 		break;
5040 
5041 	default:
5042 		MISSING_CASE(platform);
5043 	}
5044 }
5045 
5046 static void i915_perf_init_info(struct drm_i915_private *i915)
5047 {
5048 	struct i915_perf *perf = &i915->perf;
5049 
5050 	switch (GRAPHICS_VER(i915)) {
5051 	case 8:
5052 		perf->ctx_oactxctrl_offset = 0x120;
5053 		perf->ctx_flexeu0_offset = 0x2ce;
5054 		perf->gen8_valid_ctx_bit = BIT(25);
5055 		break;
5056 	case 9:
5057 		perf->ctx_oactxctrl_offset = 0x128;
5058 		perf->ctx_flexeu0_offset = 0x3de;
5059 		perf->gen8_valid_ctx_bit = BIT(16);
5060 		break;
5061 	case 11:
5062 		perf->ctx_oactxctrl_offset = 0x124;
5063 		perf->ctx_flexeu0_offset = 0x78e;
5064 		perf->gen8_valid_ctx_bit = BIT(16);
5065 		break;
5066 	case 12:
5067 		perf->gen8_valid_ctx_bit = BIT(16);
5068 		/*
5069 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5070 		 * cache the value in perf->ctx_oactxctrl_offset.
5071 		 */
5072 		break;
5073 	default:
5074 		MISSING_CASE(GRAPHICS_VER(i915));
5075 	}
5076 }
5077 
5078 /**
5079  * i915_perf_init - initialize i915-perf state on module bind
5080  * @i915: i915 device instance
5081  *
5082  * Initializes i915-perf state without exposing anything to userspace.
5083  *
5084  * Note: i915-perf initialization is split into an 'init' and 'register'
5085  * phase with the i915_perf_register() exposing state to userspace.
5086  */
5087 int i915_perf_init(struct drm_i915_private *i915)
5088 {
5089 	struct i915_perf *perf = &i915->perf;
5090 
5091 	perf->oa_formats = oa_formats;
5092 	if (IS_HASWELL(i915)) {
5093 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5094 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5095 		perf->ops.is_valid_flex_reg = NULL;
5096 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5097 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5098 		perf->ops.oa_enable = gen7_oa_enable;
5099 		perf->ops.oa_disable = gen7_oa_disable;
5100 		perf->ops.read = gen7_oa_read;
5101 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5102 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5103 		/* Note: that although we could theoretically also support the
5104 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5105 		 * this driver, before upstreaming did this) it didn't seem
5106 		 * worth the complexity to maintain now that BDW+ enable
5107 		 * execlist mode by default.
5108 		 */
5109 		perf->ops.read = gen8_oa_read;
5110 		i915_perf_init_info(i915);
5111 
5112 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5113 			perf->ops.is_valid_b_counter_reg =
5114 				gen7_is_valid_b_counter_addr;
5115 			perf->ops.is_valid_mux_reg =
5116 				gen8_is_valid_mux_addr;
5117 			perf->ops.is_valid_flex_reg =
5118 				gen8_is_valid_flex_addr;
5119 
5120 			if (IS_CHERRYVIEW(i915)) {
5121 				perf->ops.is_valid_mux_reg =
5122 					chv_is_valid_mux_addr;
5123 			}
5124 
5125 			perf->ops.oa_enable = gen8_oa_enable;
5126 			perf->ops.oa_disable = gen8_oa_disable;
5127 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5128 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5129 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5130 		} else if (GRAPHICS_VER(i915) == 11) {
5131 			perf->ops.is_valid_b_counter_reg =
5132 				gen7_is_valid_b_counter_addr;
5133 			perf->ops.is_valid_mux_reg =
5134 				gen11_is_valid_mux_addr;
5135 			perf->ops.is_valid_flex_reg =
5136 				gen8_is_valid_flex_addr;
5137 
5138 			perf->ops.oa_enable = gen8_oa_enable;
5139 			perf->ops.oa_disable = gen8_oa_disable;
5140 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5141 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5142 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5143 		} else if (GRAPHICS_VER(i915) == 12) {
5144 			perf->ops.is_valid_b_counter_reg =
5145 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5146 				xehp_is_valid_b_counter_addr :
5147 				gen12_is_valid_b_counter_addr;
5148 			perf->ops.is_valid_mux_reg =
5149 				gen12_is_valid_mux_addr;
5150 			perf->ops.is_valid_flex_reg =
5151 				gen8_is_valid_flex_addr;
5152 
5153 			perf->ops.oa_enable = gen12_oa_enable;
5154 			perf->ops.oa_disable = gen12_oa_disable;
5155 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5156 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5157 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5158 		}
5159 	}
5160 
5161 	if (perf->ops.enable_metric_set) {
5162 		struct intel_gt *gt;
5163 		int i, ret;
5164 
5165 		for_each_gt(gt, i915, i)
5166 			mutex_init(&gt->perf.lock);
5167 
5168 		/* Choose a representative limit */
5169 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5170 
5171 		mutex_init(&perf->metrics_lock);
5172 		idr_init_base(&perf->metrics_idr, 1);
5173 
5174 		/* We set up some ratelimit state to potentially throttle any
5175 		 * _NOTES about spurious, invalid OA reports which we don't
5176 		 * forward to userspace.
5177 		 *
5178 		 * We print a _NOTE about any throttling when closing the
5179 		 * stream instead of waiting until driver _fini which no one
5180 		 * would ever see.
5181 		 *
5182 		 * Using the same limiting factors as printk_ratelimit()
5183 		 */
5184 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5185 		/* Since we use a DRM_NOTE for spurious reports it would be
5186 		 * inconsistent to let __ratelimit() automatically print a
5187 		 * warning for throttling.
5188 		 */
5189 		ratelimit_set_flags(&perf->spurious_report_rs,
5190 				    RATELIMIT_MSG_ON_RELEASE);
5191 
5192 		ratelimit_state_init(&perf->tail_pointer_race,
5193 				     5 * HZ, 10);
5194 		ratelimit_set_flags(&perf->tail_pointer_race,
5195 				    RATELIMIT_MSG_ON_RELEASE);
5196 
5197 		atomic64_set(&perf->noa_programming_delay,
5198 			     500 * 1000 /* 500us */);
5199 
5200 		perf->i915 = i915;
5201 
5202 		ret = oa_init_engine_groups(perf);
5203 		if (ret) {
5204 			drm_err(&i915->drm,
5205 				"OA initialization failed %d\n", ret);
5206 			return ret;
5207 		}
5208 
5209 		oa_init_supported_formats(perf);
5210 	}
5211 
5212 	return 0;
5213 }
5214 
5215 static int destroy_config(int id, void *p, void *data)
5216 {
5217 	i915_oa_config_put(p);
5218 	return 0;
5219 }
5220 
5221 int i915_perf_sysctl_register(void)
5222 {
5223 	sysctl_header = register_sysctl("dev/i915", oa_table);
5224 	return 0;
5225 }
5226 
5227 void i915_perf_sysctl_unregister(void)
5228 {
5229 	unregister_sysctl_table(sysctl_header);
5230 }
5231 
5232 /**
5233  * i915_perf_fini - Counter part to i915_perf_init()
5234  * @i915: i915 device instance
5235  */
5236 void i915_perf_fini(struct drm_i915_private *i915)
5237 {
5238 	struct i915_perf *perf = &i915->perf;
5239 	struct intel_gt *gt;
5240 	int i;
5241 
5242 	if (!perf->i915)
5243 		return;
5244 
5245 	for_each_gt(gt, perf->i915, i)
5246 		kfree(gt->perf.group);
5247 
5248 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5249 	idr_destroy(&perf->metrics_idr);
5250 
5251 	memset(&perf->ops, 0, sizeof(perf->ops));
5252 	perf->i915 = NULL;
5253 }
5254 
5255 /**
5256  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5257  * @i915: The i915 device
5258  *
5259  * This version number is used by userspace to detect available features.
5260  */
5261 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5262 {
5263 	/*
5264 	 * 1: Initial version
5265 	 *   I915_PERF_IOCTL_ENABLE
5266 	 *   I915_PERF_IOCTL_DISABLE
5267 	 *
5268 	 * 2: Added runtime modification of OA config.
5269 	 *   I915_PERF_IOCTL_CONFIG
5270 	 *
5271 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5272 	 *    preemption on a particular context so that performance data is
5273 	 *    accessible from a delta of MI_RPC reports without looking at the
5274 	 *    OA buffer.
5275 	 *
5276 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5277 	 *    be run for the duration of the performance recording based on
5278 	 *    their SSEU configuration.
5279 	 *
5280 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5281 	 *    interval for the hrtimer used to check for OA data.
5282 	 *
5283 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5284 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5285 	 *
5286 	 * 7: Add support for video decode and enhancement classes.
5287 	 */
5288 
5289 	/*
5290 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5291 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5292 	 * to indicate that OA media is not supported.
5293 	 */
5294 	if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5295 	    intel_check_bios_c6_setup(&i915->media_gt->rc6))
5296 		return 6;
5297 
5298 	return 7;
5299 }
5300 
5301 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5302 #include "selftests/i915_perf.c"
5303 #endif
5304