1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/cpuidle.h> 33 #include <linux/slab.h> 34 #include <linux/sysrq.h> 35 36 #include <drm/drm_drv.h> 37 #include <drm/drm_irq.h> 38 #include <drm/i915_drm.h> 39 40 #include "i915_drv.h" 41 #include "i915_irq.h" 42 #include "i915_trace.h" 43 #include "intel_drv.h" 44 #include "intel_fifo_underrun.h" 45 #include "intel_hotplug.h" 46 #include "intel_lpe_audio.h" 47 #include "intel_psr.h" 48 49 /** 50 * DOC: interrupt handling 51 * 52 * These functions provide the basic support for enabling and disabling the 53 * interrupt handling support. There's a lot more functionality in i915_irq.c 54 * and related files, but that will be described in separate chapters. 55 */ 56 57 static const u32 hpd_ilk[HPD_NUM_PINS] = { 58 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 59 }; 60 61 static const u32 hpd_ivb[HPD_NUM_PINS] = { 62 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 63 }; 64 65 static const u32 hpd_bdw[HPD_NUM_PINS] = { 66 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 67 }; 68 69 static const u32 hpd_ibx[HPD_NUM_PINS] = { 70 [HPD_CRT] = SDE_CRT_HOTPLUG, 71 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 72 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 73 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 74 [HPD_PORT_D] = SDE_PORTD_HOTPLUG 75 }; 76 77 static const u32 hpd_cpt[HPD_NUM_PINS] = { 78 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT 83 }; 84 85 static const u32 hpd_spt[HPD_NUM_PINS] = { 86 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 87 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 88 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 89 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 90 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT 91 }; 92 93 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 94 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN 100 }; 101 102 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 109 }; 110 111 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 112 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 113 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 114 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 115 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 116 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 117 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS 118 }; 119 120 /* BXT hpd list */ 121 static const u32 hpd_bxt[HPD_NUM_PINS] = { 122 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 123 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 124 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC 125 }; 126 127 static const u32 hpd_gen11[HPD_NUM_PINS] = { 128 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, 129 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, 130 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, 131 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG 132 }; 133 134 static const u32 hpd_icp[HPD_NUM_PINS] = { 135 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, 136 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, 137 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP, 138 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP, 139 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP, 140 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP 141 }; 142 143 static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 144 i915_reg_t iir, i915_reg_t ier) 145 { 146 intel_uncore_write(uncore, imr, 0xffffffff); 147 intel_uncore_posting_read(uncore, imr); 148 149 intel_uncore_write(uncore, ier, 0); 150 151 /* IIR can theoretically queue up two events. Be paranoid. */ 152 intel_uncore_write(uncore, iir, 0xffffffff); 153 intel_uncore_posting_read(uncore, iir); 154 intel_uncore_write(uncore, iir, 0xffffffff); 155 intel_uncore_posting_read(uncore, iir); 156 } 157 158 static void gen2_irq_reset(struct intel_uncore *uncore) 159 { 160 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 161 intel_uncore_posting_read16(uncore, GEN2_IMR); 162 163 intel_uncore_write16(uncore, GEN2_IER, 0); 164 165 /* IIR can theoretically queue up two events. Be paranoid. */ 166 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 167 intel_uncore_posting_read16(uncore, GEN2_IIR); 168 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 169 intel_uncore_posting_read16(uncore, GEN2_IIR); 170 } 171 172 #define GEN8_IRQ_RESET_NDX(uncore, type, which) \ 173 ({ \ 174 unsigned int which_ = which; \ 175 gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \ 176 GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \ 177 }) 178 179 #define GEN3_IRQ_RESET(uncore, type) \ 180 gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER) 181 182 #define GEN2_IRQ_RESET(uncore) \ 183 gen2_irq_reset(uncore) 184 185 /* 186 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 187 */ 188 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 189 { 190 u32 val = intel_uncore_read(uncore, reg); 191 192 if (val == 0) 193 return; 194 195 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 196 i915_mmio_reg_offset(reg), val); 197 intel_uncore_write(uncore, reg, 0xffffffff); 198 intel_uncore_posting_read(uncore, reg); 199 intel_uncore_write(uncore, reg, 0xffffffff); 200 intel_uncore_posting_read(uncore, reg); 201 } 202 203 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 204 { 205 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 206 207 if (val == 0) 208 return; 209 210 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", 211 i915_mmio_reg_offset(GEN2_IIR), val); 212 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 213 intel_uncore_posting_read16(uncore, GEN2_IIR); 214 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 215 intel_uncore_posting_read16(uncore, GEN2_IIR); 216 } 217 218 static void gen3_irq_init(struct intel_uncore *uncore, 219 i915_reg_t imr, u32 imr_val, 220 i915_reg_t ier, u32 ier_val, 221 i915_reg_t iir) 222 { 223 gen3_assert_iir_is_zero(uncore, iir); 224 225 intel_uncore_write(uncore, ier, ier_val); 226 intel_uncore_write(uncore, imr, imr_val); 227 intel_uncore_posting_read(uncore, imr); 228 } 229 230 static void gen2_irq_init(struct intel_uncore *uncore, 231 u32 imr_val, u32 ier_val) 232 { 233 gen2_assert_iir_is_zero(uncore); 234 235 intel_uncore_write16(uncore, GEN2_IER, ier_val); 236 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 237 intel_uncore_posting_read16(uncore, GEN2_IMR); 238 } 239 240 #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \ 241 ({ \ 242 unsigned int which_ = which; \ 243 gen3_irq_init((uncore), \ 244 GEN8_##type##_IMR(which_), imr_val, \ 245 GEN8_##type##_IER(which_), ier_val, \ 246 GEN8_##type##_IIR(which_)); \ 247 }) 248 249 #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \ 250 gen3_irq_init((uncore), \ 251 type##IMR, imr_val, \ 252 type##IER, ier_val, \ 253 type##IIR) 254 255 #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \ 256 gen2_irq_init((uncore), imr_val, ier_val) 257 258 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 259 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); 260 261 /* For display hotplug interrupt */ 262 static inline void 263 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 264 u32 mask, 265 u32 bits) 266 { 267 u32 val; 268 269 lockdep_assert_held(&dev_priv->irq_lock); 270 WARN_ON(bits & ~mask); 271 272 val = I915_READ(PORT_HOTPLUG_EN); 273 val &= ~mask; 274 val |= bits; 275 I915_WRITE(PORT_HOTPLUG_EN, val); 276 } 277 278 /** 279 * i915_hotplug_interrupt_update - update hotplug interrupt enable 280 * @dev_priv: driver private 281 * @mask: bits to update 282 * @bits: bits to enable 283 * NOTE: the HPD enable bits are modified both inside and outside 284 * of an interrupt context. To avoid that read-modify-write cycles 285 * interfer, these bits are protected by a spinlock. Since this 286 * function is usually not called from a context where the lock is 287 * held already, this function acquires the lock itself. A non-locking 288 * version is also available. 289 */ 290 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 291 u32 mask, 292 u32 bits) 293 { 294 spin_lock_irq(&dev_priv->irq_lock); 295 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 296 spin_unlock_irq(&dev_priv->irq_lock); 297 } 298 299 static u32 300 gen11_gt_engine_identity(struct drm_i915_private * const i915, 301 const unsigned int bank, const unsigned int bit); 302 303 static bool gen11_reset_one_iir(struct drm_i915_private * const i915, 304 const unsigned int bank, 305 const unsigned int bit) 306 { 307 void __iomem * const regs = i915->uncore.regs; 308 u32 dw; 309 310 lockdep_assert_held(&i915->irq_lock); 311 312 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 313 if (dw & BIT(bit)) { 314 /* 315 * According to the BSpec, DW_IIR bits cannot be cleared without 316 * first servicing the Selector & Shared IIR registers. 317 */ 318 gen11_gt_engine_identity(i915, bank, bit); 319 320 /* 321 * We locked GT INT DW by reading it. If we want to (try 322 * to) recover from this succesfully, we need to clear 323 * our bit, otherwise we are locking the register for 324 * everybody. 325 */ 326 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); 327 328 return true; 329 } 330 331 return false; 332 } 333 334 /** 335 * ilk_update_display_irq - update DEIMR 336 * @dev_priv: driver private 337 * @interrupt_mask: mask of interrupt bits to update 338 * @enabled_irq_mask: mask of interrupt bits to enable 339 */ 340 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 341 u32 interrupt_mask, 342 u32 enabled_irq_mask) 343 { 344 u32 new_val; 345 346 lockdep_assert_held(&dev_priv->irq_lock); 347 348 WARN_ON(enabled_irq_mask & ~interrupt_mask); 349 350 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 351 return; 352 353 new_val = dev_priv->irq_mask; 354 new_val &= ~interrupt_mask; 355 new_val |= (~enabled_irq_mask & interrupt_mask); 356 357 if (new_val != dev_priv->irq_mask) { 358 dev_priv->irq_mask = new_val; 359 I915_WRITE(DEIMR, dev_priv->irq_mask); 360 POSTING_READ(DEIMR); 361 } 362 } 363 364 /** 365 * ilk_update_gt_irq - update GTIMR 366 * @dev_priv: driver private 367 * @interrupt_mask: mask of interrupt bits to update 368 * @enabled_irq_mask: mask of interrupt bits to enable 369 */ 370 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, 371 u32 interrupt_mask, 372 u32 enabled_irq_mask) 373 { 374 lockdep_assert_held(&dev_priv->irq_lock); 375 376 WARN_ON(enabled_irq_mask & ~interrupt_mask); 377 378 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 379 return; 380 381 dev_priv->gt_irq_mask &= ~interrupt_mask; 382 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); 383 I915_WRITE(GTIMR, dev_priv->gt_irq_mask); 384 } 385 386 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) 387 { 388 ilk_update_gt_irq(dev_priv, mask, mask); 389 POSTING_READ_FW(GTIMR); 390 } 391 392 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) 393 { 394 ilk_update_gt_irq(dev_priv, mask, 0); 395 } 396 397 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) 398 { 399 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11); 400 401 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; 402 } 403 404 static void write_pm_imr(struct drm_i915_private *dev_priv) 405 { 406 i915_reg_t reg; 407 u32 mask = dev_priv->pm_imr; 408 409 if (INTEL_GEN(dev_priv) >= 11) { 410 reg = GEN11_GPM_WGBOXPERF_INTR_MASK; 411 /* pm is in upper half */ 412 mask = mask << 16; 413 } else if (INTEL_GEN(dev_priv) >= 8) { 414 reg = GEN8_GT_IMR(2); 415 } else { 416 reg = GEN6_PMIMR; 417 } 418 419 I915_WRITE(reg, mask); 420 POSTING_READ(reg); 421 } 422 423 static void write_pm_ier(struct drm_i915_private *dev_priv) 424 { 425 i915_reg_t reg; 426 u32 mask = dev_priv->pm_ier; 427 428 if (INTEL_GEN(dev_priv) >= 11) { 429 reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE; 430 /* pm is in upper half */ 431 mask = mask << 16; 432 } else if (INTEL_GEN(dev_priv) >= 8) { 433 reg = GEN8_GT_IER(2); 434 } else { 435 reg = GEN6_PMIER; 436 } 437 438 I915_WRITE(reg, mask); 439 } 440 441 /** 442 * snb_update_pm_irq - update GEN6_PMIMR 443 * @dev_priv: driver private 444 * @interrupt_mask: mask of interrupt bits to update 445 * @enabled_irq_mask: mask of interrupt bits to enable 446 */ 447 static void snb_update_pm_irq(struct drm_i915_private *dev_priv, 448 u32 interrupt_mask, 449 u32 enabled_irq_mask) 450 { 451 u32 new_val; 452 453 WARN_ON(enabled_irq_mask & ~interrupt_mask); 454 455 lockdep_assert_held(&dev_priv->irq_lock); 456 457 new_val = dev_priv->pm_imr; 458 new_val &= ~interrupt_mask; 459 new_val |= (~enabled_irq_mask & interrupt_mask); 460 461 if (new_val != dev_priv->pm_imr) { 462 dev_priv->pm_imr = new_val; 463 write_pm_imr(dev_priv); 464 } 465 } 466 467 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 468 { 469 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 470 return; 471 472 snb_update_pm_irq(dev_priv, mask, mask); 473 } 474 475 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 476 { 477 snb_update_pm_irq(dev_priv, mask, 0); 478 } 479 480 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) 481 { 482 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 483 return; 484 485 __gen6_mask_pm_irq(dev_priv, mask); 486 } 487 488 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) 489 { 490 i915_reg_t reg = gen6_pm_iir(dev_priv); 491 492 lockdep_assert_held(&dev_priv->irq_lock); 493 494 I915_WRITE(reg, reset_mask); 495 I915_WRITE(reg, reset_mask); 496 POSTING_READ(reg); 497 } 498 499 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) 500 { 501 lockdep_assert_held(&dev_priv->irq_lock); 502 503 dev_priv->pm_ier |= enable_mask; 504 write_pm_ier(dev_priv); 505 gen6_unmask_pm_irq(dev_priv, enable_mask); 506 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ 507 } 508 509 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) 510 { 511 lockdep_assert_held(&dev_priv->irq_lock); 512 513 dev_priv->pm_ier &= ~disable_mask; 514 __gen6_mask_pm_irq(dev_priv, disable_mask); 515 write_pm_ier(dev_priv); 516 /* though a barrier is missing here, but don't really need a one */ 517 } 518 519 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv) 520 { 521 spin_lock_irq(&dev_priv->irq_lock); 522 523 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)) 524 ; 525 526 dev_priv->gt_pm.rps.pm_iir = 0; 527 528 spin_unlock_irq(&dev_priv->irq_lock); 529 } 530 531 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) 532 { 533 spin_lock_irq(&dev_priv->irq_lock); 534 gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS); 535 dev_priv->gt_pm.rps.pm_iir = 0; 536 spin_unlock_irq(&dev_priv->irq_lock); 537 } 538 539 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) 540 { 541 struct intel_rps *rps = &dev_priv->gt_pm.rps; 542 543 if (READ_ONCE(rps->interrupts_enabled)) 544 return; 545 546 spin_lock_irq(&dev_priv->irq_lock); 547 WARN_ON_ONCE(rps->pm_iir); 548 549 if (INTEL_GEN(dev_priv) >= 11) 550 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM)); 551 else 552 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); 553 554 rps->interrupts_enabled = true; 555 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); 556 557 spin_unlock_irq(&dev_priv->irq_lock); 558 } 559 560 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) 561 { 562 struct intel_rps *rps = &dev_priv->gt_pm.rps; 563 564 if (!READ_ONCE(rps->interrupts_enabled)) 565 return; 566 567 spin_lock_irq(&dev_priv->irq_lock); 568 rps->interrupts_enabled = false; 569 570 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); 571 572 gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS); 573 574 spin_unlock_irq(&dev_priv->irq_lock); 575 synchronize_irq(dev_priv->drm.irq); 576 577 /* Now that we will not be generating any more work, flush any 578 * outstanding tasks. As we are called on the RPS idle path, 579 * we will reset the GPU to minimum frequencies, so the current 580 * state of the worker can be discarded. 581 */ 582 cancel_work_sync(&rps->work); 583 if (INTEL_GEN(dev_priv) >= 11) 584 gen11_reset_rps_interrupts(dev_priv); 585 else 586 gen6_reset_rps_interrupts(dev_priv); 587 } 588 589 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) 590 { 591 assert_rpm_wakelock_held(dev_priv); 592 593 spin_lock_irq(&dev_priv->irq_lock); 594 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); 595 spin_unlock_irq(&dev_priv->irq_lock); 596 } 597 598 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) 599 { 600 assert_rpm_wakelock_held(dev_priv); 601 602 spin_lock_irq(&dev_priv->irq_lock); 603 if (!dev_priv->guc.interrupts_enabled) { 604 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & 605 dev_priv->pm_guc_events); 606 dev_priv->guc.interrupts_enabled = true; 607 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); 608 } 609 spin_unlock_irq(&dev_priv->irq_lock); 610 } 611 612 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) 613 { 614 assert_rpm_wakelock_held(dev_priv); 615 616 spin_lock_irq(&dev_priv->irq_lock); 617 dev_priv->guc.interrupts_enabled = false; 618 619 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); 620 621 spin_unlock_irq(&dev_priv->irq_lock); 622 synchronize_irq(dev_priv->drm.irq); 623 624 gen9_reset_guc_interrupts(dev_priv); 625 } 626 627 /** 628 * bdw_update_port_irq - update DE port interrupt 629 * @dev_priv: driver private 630 * @interrupt_mask: mask of interrupt bits to update 631 * @enabled_irq_mask: mask of interrupt bits to enable 632 */ 633 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 634 u32 interrupt_mask, 635 u32 enabled_irq_mask) 636 { 637 u32 new_val; 638 u32 old_val; 639 640 lockdep_assert_held(&dev_priv->irq_lock); 641 642 WARN_ON(enabled_irq_mask & ~interrupt_mask); 643 644 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 645 return; 646 647 old_val = I915_READ(GEN8_DE_PORT_IMR); 648 649 new_val = old_val; 650 new_val &= ~interrupt_mask; 651 new_val |= (~enabled_irq_mask & interrupt_mask); 652 653 if (new_val != old_val) { 654 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 655 POSTING_READ(GEN8_DE_PORT_IMR); 656 } 657 } 658 659 /** 660 * bdw_update_pipe_irq - update DE pipe interrupt 661 * @dev_priv: driver private 662 * @pipe: pipe whose interrupt to update 663 * @interrupt_mask: mask of interrupt bits to update 664 * @enabled_irq_mask: mask of interrupt bits to enable 665 */ 666 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 667 enum pipe pipe, 668 u32 interrupt_mask, 669 u32 enabled_irq_mask) 670 { 671 u32 new_val; 672 673 lockdep_assert_held(&dev_priv->irq_lock); 674 675 WARN_ON(enabled_irq_mask & ~interrupt_mask); 676 677 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 678 return; 679 680 new_val = dev_priv->de_irq_mask[pipe]; 681 new_val &= ~interrupt_mask; 682 new_val |= (~enabled_irq_mask & interrupt_mask); 683 684 if (new_val != dev_priv->de_irq_mask[pipe]) { 685 dev_priv->de_irq_mask[pipe] = new_val; 686 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 687 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 688 } 689 } 690 691 /** 692 * ibx_display_interrupt_update - update SDEIMR 693 * @dev_priv: driver private 694 * @interrupt_mask: mask of interrupt bits to update 695 * @enabled_irq_mask: mask of interrupt bits to enable 696 */ 697 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 698 u32 interrupt_mask, 699 u32 enabled_irq_mask) 700 { 701 u32 sdeimr = I915_READ(SDEIMR); 702 sdeimr &= ~interrupt_mask; 703 sdeimr |= (~enabled_irq_mask & interrupt_mask); 704 705 WARN_ON(enabled_irq_mask & ~interrupt_mask); 706 707 lockdep_assert_held(&dev_priv->irq_lock); 708 709 if (WARN_ON(!intel_irqs_enabled(dev_priv))) 710 return; 711 712 I915_WRITE(SDEIMR, sdeimr); 713 POSTING_READ(SDEIMR); 714 } 715 716 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 717 enum pipe pipe) 718 { 719 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 720 u32 enable_mask = status_mask << 16; 721 722 lockdep_assert_held(&dev_priv->irq_lock); 723 724 if (INTEL_GEN(dev_priv) < 5) 725 goto out; 726 727 /* 728 * On pipe A we don't support the PSR interrupt yet, 729 * on pipe B and C the same bit MBZ. 730 */ 731 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) 732 return 0; 733 /* 734 * On pipe B and C we don't support the PSR interrupt yet, on pipe 735 * A the same bit is for perf counters which we don't use either. 736 */ 737 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) 738 return 0; 739 740 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 741 SPRITE0_FLIP_DONE_INT_EN_VLV | 742 SPRITE1_FLIP_DONE_INT_EN_VLV); 743 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 744 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 745 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 746 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 747 748 out: 749 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 750 status_mask & ~PIPESTAT_INT_STATUS_MASK, 751 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 752 pipe_name(pipe), enable_mask, status_mask); 753 754 return enable_mask; 755 } 756 757 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 758 enum pipe pipe, u32 status_mask) 759 { 760 i915_reg_t reg = PIPESTAT(pipe); 761 u32 enable_mask; 762 763 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 764 "pipe %c: status_mask=0x%x\n", 765 pipe_name(pipe), status_mask); 766 767 lockdep_assert_held(&dev_priv->irq_lock); 768 WARN_ON(!intel_irqs_enabled(dev_priv)); 769 770 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 771 return; 772 773 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 774 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 775 776 I915_WRITE(reg, enable_mask | status_mask); 777 POSTING_READ(reg); 778 } 779 780 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 781 enum pipe pipe, u32 status_mask) 782 { 783 i915_reg_t reg = PIPESTAT(pipe); 784 u32 enable_mask; 785 786 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, 787 "pipe %c: status_mask=0x%x\n", 788 pipe_name(pipe), status_mask); 789 790 lockdep_assert_held(&dev_priv->irq_lock); 791 WARN_ON(!intel_irqs_enabled(dev_priv)); 792 793 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 794 return; 795 796 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 797 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 798 799 I915_WRITE(reg, enable_mask | status_mask); 800 POSTING_READ(reg); 801 } 802 803 static bool i915_has_asle(struct drm_i915_private *dev_priv) 804 { 805 if (!dev_priv->opregion.asle) 806 return false; 807 808 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 809 } 810 811 /** 812 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 813 * @dev_priv: i915 device private 814 */ 815 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 816 { 817 if (!i915_has_asle(dev_priv)) 818 return; 819 820 spin_lock_irq(&dev_priv->irq_lock); 821 822 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 823 if (INTEL_GEN(dev_priv) >= 4) 824 i915_enable_pipestat(dev_priv, PIPE_A, 825 PIPE_LEGACY_BLC_EVENT_STATUS); 826 827 spin_unlock_irq(&dev_priv->irq_lock); 828 } 829 830 /* 831 * This timing diagram depicts the video signal in and 832 * around the vertical blanking period. 833 * 834 * Assumptions about the fictitious mode used in this example: 835 * vblank_start >= 3 836 * vsync_start = vblank_start + 1 837 * vsync_end = vblank_start + 2 838 * vtotal = vblank_start + 3 839 * 840 * start of vblank: 841 * latch double buffered registers 842 * increment frame counter (ctg+) 843 * generate start of vblank interrupt (gen4+) 844 * | 845 * | frame start: 846 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 847 * | may be shifted forward 1-3 extra lines via PIPECONF 848 * | | 849 * | | start of vsync: 850 * | | generate vsync interrupt 851 * | | | 852 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 853 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 854 * ----va---> <-----------------vb--------------------> <--------va------------- 855 * | | <----vs-----> | 856 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 857 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 858 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 859 * | | | 860 * last visible pixel first visible pixel 861 * | increment frame counter (gen3/4) 862 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 863 * 864 * x = horizontal active 865 * _ = horizontal blanking 866 * hs = horizontal sync 867 * va = vertical active 868 * vb = vertical blanking 869 * vs = vertical sync 870 * vbs = vblank_start (number) 871 * 872 * Summary: 873 * - most events happen at the start of horizontal sync 874 * - frame start happens at the start of horizontal blank, 1-4 lines 875 * (depending on PIPECONF settings) after the start of vblank 876 * - gen3/4 pixel and frame counter are synchronized with the start 877 * of horizontal active on the first line of vertical active 878 */ 879 880 /* Called from drm generic code, passed a 'crtc', which 881 * we use as a pipe index 882 */ 883 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 884 { 885 struct drm_i915_private *dev_priv = to_i915(dev); 886 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 887 const struct drm_display_mode *mode = &vblank->hwmode; 888 i915_reg_t high_frame, low_frame; 889 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 890 unsigned long irqflags; 891 892 /* 893 * On i965gm TV output the frame counter only works up to 894 * the point when we enable the TV encoder. After that the 895 * frame counter ceases to work and reads zero. We need a 896 * vblank wait before enabling the TV encoder and so we 897 * have to enable vblank interrupts while the frame counter 898 * is still in a working state. However the core vblank code 899 * does not like us returning non-zero frame counter values 900 * when we've told it that we don't have a working frame 901 * counter. Thus we must stop non-zero values leaking out. 902 */ 903 if (!vblank->max_vblank_count) 904 return 0; 905 906 htotal = mode->crtc_htotal; 907 hsync_start = mode->crtc_hsync_start; 908 vbl_start = mode->crtc_vblank_start; 909 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 910 vbl_start = DIV_ROUND_UP(vbl_start, 2); 911 912 /* Convert to pixel count */ 913 vbl_start *= htotal; 914 915 /* Start of vblank event occurs at start of hsync */ 916 vbl_start -= htotal - hsync_start; 917 918 high_frame = PIPEFRAME(pipe); 919 low_frame = PIPEFRAMEPIXEL(pipe); 920 921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 922 923 /* 924 * High & low register fields aren't synchronized, so make sure 925 * we get a low value that's stable across two reads of the high 926 * register. 927 */ 928 do { 929 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 930 low = I915_READ_FW(low_frame); 931 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; 932 } while (high1 != high2); 933 934 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 935 936 high1 >>= PIPE_FRAME_HIGH_SHIFT; 937 pixel = low & PIPE_PIXEL_MASK; 938 low >>= PIPE_FRAME_LOW_SHIFT; 939 940 /* 941 * The frame counter increments at beginning of active. 942 * Cook up a vblank counter by also checking the pixel 943 * counter against vblank start. 944 */ 945 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 946 } 947 948 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 949 { 950 struct drm_i915_private *dev_priv = to_i915(dev); 951 952 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 953 } 954 955 /* 956 * On certain encoders on certain platforms, pipe 957 * scanline register will not work to get the scanline, 958 * since the timings are driven from the PORT or issues 959 * with scanline register updates. 960 * This function will use Framestamp and current 961 * timestamp registers to calculate the scanline. 962 */ 963 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 964 { 965 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 966 struct drm_vblank_crtc *vblank = 967 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 968 const struct drm_display_mode *mode = &vblank->hwmode; 969 u32 vblank_start = mode->crtc_vblank_start; 970 u32 vtotal = mode->crtc_vtotal; 971 u32 htotal = mode->crtc_htotal; 972 u32 clock = mode->crtc_clock; 973 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 974 975 /* 976 * To avoid the race condition where we might cross into the 977 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 978 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 979 * during the same frame. 980 */ 981 do { 982 /* 983 * This field provides read back of the display 984 * pipe frame time stamp. The time stamp value 985 * is sampled at every start of vertical blank. 986 */ 987 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 988 989 /* 990 * The TIMESTAMP_CTR register has the current 991 * time stamp value. 992 */ 993 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR); 994 995 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); 996 } while (scan_post_time != scan_prev_time); 997 998 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 999 clock), 1000 * htotal); 1000 scanline = min(scanline, vtotal - 1); 1001 scanline = (scanline + vblank_start) % vtotal; 1002 1003 return scanline; 1004 } 1005 1006 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ 1007 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 1008 { 1009 struct drm_device *dev = crtc->base.dev; 1010 struct drm_i915_private *dev_priv = to_i915(dev); 1011 const struct drm_display_mode *mode; 1012 struct drm_vblank_crtc *vblank; 1013 enum pipe pipe = crtc->pipe; 1014 int position, vtotal; 1015 1016 if (!crtc->active) 1017 return -1; 1018 1019 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 1020 mode = &vblank->hwmode; 1021 1022 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 1023 return __intel_get_crtc_scanline_from_timestamp(crtc); 1024 1025 vtotal = mode->crtc_vtotal; 1026 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1027 vtotal /= 2; 1028 1029 if (IS_GEN(dev_priv, 2)) 1030 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 1031 else 1032 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 1033 1034 /* 1035 * On HSW, the DSL reg (0x70000) appears to return 0 if we 1036 * read it just before the start of vblank. So try it again 1037 * so we don't accidentally end up spanning a vblank frame 1038 * increment, causing the pipe_update_end() code to squak at us. 1039 * 1040 * The nature of this problem means we can't simply check the ISR 1041 * bit and return the vblank start value; nor can we use the scanline 1042 * debug register in the transcoder as it appears to have the same 1043 * problem. We may need to extend this to include other platforms, 1044 * but so far testing only shows the problem on HSW. 1045 */ 1046 if (HAS_DDI(dev_priv) && !position) { 1047 int i, temp; 1048 1049 for (i = 0; i < 100; i++) { 1050 udelay(1); 1051 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 1052 if (temp != position) { 1053 position = temp; 1054 break; 1055 } 1056 } 1057 } 1058 1059 /* 1060 * See update_scanline_offset() for the details on the 1061 * scanline_offset adjustment. 1062 */ 1063 return (position + crtc->scanline_offset) % vtotal; 1064 } 1065 1066 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, 1067 bool in_vblank_irq, int *vpos, int *hpos, 1068 ktime_t *stime, ktime_t *etime, 1069 const struct drm_display_mode *mode) 1070 { 1071 struct drm_i915_private *dev_priv = to_i915(dev); 1072 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, 1073 pipe); 1074 int position; 1075 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 1076 unsigned long irqflags; 1077 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || 1078 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || 1079 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1080 1081 if (WARN_ON(!mode->crtc_clock)) { 1082 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " 1083 "pipe %c\n", pipe_name(pipe)); 1084 return false; 1085 } 1086 1087 htotal = mode->crtc_htotal; 1088 hsync_start = mode->crtc_hsync_start; 1089 vtotal = mode->crtc_vtotal; 1090 vbl_start = mode->crtc_vblank_start; 1091 vbl_end = mode->crtc_vblank_end; 1092 1093 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 1094 vbl_start = DIV_ROUND_UP(vbl_start, 2); 1095 vbl_end /= 2; 1096 vtotal /= 2; 1097 } 1098 1099 /* 1100 * Lock uncore.lock, as we will do multiple timing critical raw 1101 * register reads, potentially with preemption disabled, so the 1102 * following code must not block on uncore.lock. 1103 */ 1104 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1105 1106 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 1107 1108 /* Get optional system timestamp before query. */ 1109 if (stime) 1110 *stime = ktime_get(); 1111 1112 if (use_scanline_counter) { 1113 /* No obvious pixelcount register. Only query vertical 1114 * scanout position from Display scan line register. 1115 */ 1116 position = __intel_get_crtc_scanline(intel_crtc); 1117 } else { 1118 /* Have access to pixelcount since start of frame. 1119 * We can split this into vertical and horizontal 1120 * scanout position. 1121 */ 1122 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 1123 1124 /* convert to pixel counts */ 1125 vbl_start *= htotal; 1126 vbl_end *= htotal; 1127 vtotal *= htotal; 1128 1129 /* 1130 * In interlaced modes, the pixel counter counts all pixels, 1131 * so one field will have htotal more pixels. In order to avoid 1132 * the reported position from jumping backwards when the pixel 1133 * counter is beyond the length of the shorter field, just 1134 * clamp the position the length of the shorter field. This 1135 * matches how the scanline counter based position works since 1136 * the scanline counter doesn't count the two half lines. 1137 */ 1138 if (position >= vtotal) 1139 position = vtotal - 1; 1140 1141 /* 1142 * Start of vblank interrupt is triggered at start of hsync, 1143 * just prior to the first active line of vblank. However we 1144 * consider lines to start at the leading edge of horizontal 1145 * active. So, should we get here before we've crossed into 1146 * the horizontal active of the first line in vblank, we would 1147 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 1148 * always add htotal-hsync_start to the current pixel position. 1149 */ 1150 position = (position + htotal - hsync_start) % vtotal; 1151 } 1152 1153 /* Get optional system timestamp after query. */ 1154 if (etime) 1155 *etime = ktime_get(); 1156 1157 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 1158 1159 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1160 1161 /* 1162 * While in vblank, position will be negative 1163 * counting up towards 0 at vbl_end. And outside 1164 * vblank, position will be positive counting 1165 * up since vbl_end. 1166 */ 1167 if (position >= vbl_start) 1168 position -= vbl_end; 1169 else 1170 position += vtotal - vbl_end; 1171 1172 if (use_scanline_counter) { 1173 *vpos = position; 1174 *hpos = 0; 1175 } else { 1176 *vpos = position / htotal; 1177 *hpos = position - (*vpos * htotal); 1178 } 1179 1180 return true; 1181 } 1182 1183 int intel_get_crtc_scanline(struct intel_crtc *crtc) 1184 { 1185 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1186 unsigned long irqflags; 1187 int position; 1188 1189 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 1190 position = __intel_get_crtc_scanline(crtc); 1191 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 1192 1193 return position; 1194 } 1195 1196 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) 1197 { 1198 u32 busy_up, busy_down, max_avg, min_avg; 1199 u8 new_delay; 1200 1201 spin_lock(&mchdev_lock); 1202 1203 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); 1204 1205 new_delay = dev_priv->ips.cur_delay; 1206 1207 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); 1208 busy_up = I915_READ(RCPREVBSYTUPAVG); 1209 busy_down = I915_READ(RCPREVBSYTDNAVG); 1210 max_avg = I915_READ(RCBMAXAVG); 1211 min_avg = I915_READ(RCBMINAVG); 1212 1213 /* Handle RCS change request from hw */ 1214 if (busy_up > max_avg) { 1215 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) 1216 new_delay = dev_priv->ips.cur_delay - 1; 1217 if (new_delay < dev_priv->ips.max_delay) 1218 new_delay = dev_priv->ips.max_delay; 1219 } else if (busy_down < min_avg) { 1220 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) 1221 new_delay = dev_priv->ips.cur_delay + 1; 1222 if (new_delay > dev_priv->ips.min_delay) 1223 new_delay = dev_priv->ips.min_delay; 1224 } 1225 1226 if (ironlake_set_drps(dev_priv, new_delay)) 1227 dev_priv->ips.cur_delay = new_delay; 1228 1229 spin_unlock(&mchdev_lock); 1230 1231 return; 1232 } 1233 1234 static void vlv_c0_read(struct drm_i915_private *dev_priv, 1235 struct intel_rps_ei *ei) 1236 { 1237 ei->ktime = ktime_get_raw(); 1238 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); 1239 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); 1240 } 1241 1242 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) 1243 { 1244 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei)); 1245 } 1246 1247 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) 1248 { 1249 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1250 const struct intel_rps_ei *prev = &rps->ei; 1251 struct intel_rps_ei now; 1252 u32 events = 0; 1253 1254 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) 1255 return 0; 1256 1257 vlv_c0_read(dev_priv, &now); 1258 1259 if (prev->ktime) { 1260 u64 time, c0; 1261 u32 render, media; 1262 1263 time = ktime_us_delta(now.ktime, prev->ktime); 1264 1265 time *= dev_priv->czclk_freq; 1266 1267 /* Workload can be split between render + media, 1268 * e.g. SwapBuffers being blitted in X after being rendered in 1269 * mesa. To account for this we need to combine both engines 1270 * into our activity counter. 1271 */ 1272 render = now.render_c0 - prev->render_c0; 1273 media = now.media_c0 - prev->media_c0; 1274 c0 = max(render, media); 1275 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ 1276 1277 if (c0 > time * rps->power.up_threshold) 1278 events = GEN6_PM_RP_UP_THRESHOLD; 1279 else if (c0 < time * rps->power.down_threshold) 1280 events = GEN6_PM_RP_DOWN_THRESHOLD; 1281 } 1282 1283 rps->ei = now; 1284 return events; 1285 } 1286 1287 static void gen6_pm_rps_work(struct work_struct *work) 1288 { 1289 struct drm_i915_private *dev_priv = 1290 container_of(work, struct drm_i915_private, gt_pm.rps.work); 1291 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1292 bool client_boost = false; 1293 int new_delay, adj, min, max; 1294 u32 pm_iir = 0; 1295 1296 spin_lock_irq(&dev_priv->irq_lock); 1297 if (rps->interrupts_enabled) { 1298 pm_iir = fetch_and_zero(&rps->pm_iir); 1299 client_boost = atomic_read(&rps->num_waiters); 1300 } 1301 spin_unlock_irq(&dev_priv->irq_lock); 1302 1303 /* Make sure we didn't queue anything we're not going to process. */ 1304 WARN_ON(pm_iir & ~dev_priv->pm_rps_events); 1305 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) 1306 goto out; 1307 1308 mutex_lock(&rps->lock); 1309 1310 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); 1311 1312 adj = rps->last_adj; 1313 new_delay = rps->cur_freq; 1314 min = rps->min_freq_softlimit; 1315 max = rps->max_freq_softlimit; 1316 if (client_boost) 1317 max = rps->max_freq; 1318 if (client_boost && new_delay < rps->boost_freq) { 1319 new_delay = rps->boost_freq; 1320 adj = 0; 1321 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1322 if (adj > 0) 1323 adj *= 2; 1324 else /* CHV needs even encode values */ 1325 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; 1326 1327 if (new_delay >= rps->max_freq_softlimit) 1328 adj = 0; 1329 } else if (client_boost) { 1330 adj = 0; 1331 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1332 if (rps->cur_freq > rps->efficient_freq) 1333 new_delay = rps->efficient_freq; 1334 else if (rps->cur_freq > rps->min_freq_softlimit) 1335 new_delay = rps->min_freq_softlimit; 1336 adj = 0; 1337 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1338 if (adj < 0) 1339 adj *= 2; 1340 else /* CHV needs even encode values */ 1341 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; 1342 1343 if (new_delay <= rps->min_freq_softlimit) 1344 adj = 0; 1345 } else { /* unknown event */ 1346 adj = 0; 1347 } 1348 1349 rps->last_adj = adj; 1350 1351 /* 1352 * Limit deboosting and boosting to keep ourselves at the extremes 1353 * when in the respective power modes (i.e. slowly decrease frequencies 1354 * while in the HIGH_POWER zone and slowly increase frequencies while 1355 * in the LOW_POWER zone). On idle, we will hit the timeout and drop 1356 * to the next level quickly, and conversely if busy we expect to 1357 * hit a waitboost and rapidly switch into max power. 1358 */ 1359 if ((adj < 0 && rps->power.mode == HIGH_POWER) || 1360 (adj > 0 && rps->power.mode == LOW_POWER)) 1361 rps->last_adj = 0; 1362 1363 /* sysfs frequency interfaces may have snuck in while servicing the 1364 * interrupt 1365 */ 1366 new_delay += adj; 1367 new_delay = clamp_t(int, new_delay, min, max); 1368 1369 if (intel_set_rps(dev_priv, new_delay)) { 1370 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); 1371 rps->last_adj = 0; 1372 } 1373 1374 mutex_unlock(&rps->lock); 1375 1376 out: 1377 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ 1378 spin_lock_irq(&dev_priv->irq_lock); 1379 if (rps->interrupts_enabled) 1380 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); 1381 spin_unlock_irq(&dev_priv->irq_lock); 1382 } 1383 1384 1385 /** 1386 * ivybridge_parity_work - Workqueue called when a parity error interrupt 1387 * occurred. 1388 * @work: workqueue struct 1389 * 1390 * Doesn't actually do anything except notify userspace. As a consequence of 1391 * this event, userspace should try to remap the bad rows since statistically 1392 * it is likely the same row is more likely to go bad again. 1393 */ 1394 static void ivybridge_parity_work(struct work_struct *work) 1395 { 1396 struct drm_i915_private *dev_priv = 1397 container_of(work, typeof(*dev_priv), l3_parity.error_work); 1398 u32 error_status, row, bank, subbank; 1399 char *parity_event[6]; 1400 u32 misccpctl; 1401 u8 slice = 0; 1402 1403 /* We must turn off DOP level clock gating to access the L3 registers. 1404 * In order to prevent a get/put style interface, acquire struct mutex 1405 * any time we access those registers. 1406 */ 1407 mutex_lock(&dev_priv->drm.struct_mutex); 1408 1409 /* If we've screwed up tracking, just let the interrupt fire again */ 1410 if (WARN_ON(!dev_priv->l3_parity.which_slice)) 1411 goto out; 1412 1413 misccpctl = I915_READ(GEN7_MISCCPCTL); 1414 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 1415 POSTING_READ(GEN7_MISCCPCTL); 1416 1417 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 1418 i915_reg_t reg; 1419 1420 slice--; 1421 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) 1422 break; 1423 1424 dev_priv->l3_parity.which_slice &= ~(1<<slice); 1425 1426 reg = GEN7_L3CDERRST1(slice); 1427 1428 error_status = I915_READ(reg); 1429 row = GEN7_PARITY_ERROR_ROW(error_status); 1430 bank = GEN7_PARITY_ERROR_BANK(error_status); 1431 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 1432 1433 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 1434 POSTING_READ(reg); 1435 1436 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 1437 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 1438 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 1439 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 1440 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 1441 parity_event[5] = NULL; 1442 1443 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 1444 KOBJ_CHANGE, parity_event); 1445 1446 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 1447 slice, row, bank, subbank); 1448 1449 kfree(parity_event[4]); 1450 kfree(parity_event[3]); 1451 kfree(parity_event[2]); 1452 kfree(parity_event[1]); 1453 } 1454 1455 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 1456 1457 out: 1458 WARN_ON(dev_priv->l3_parity.which_slice); 1459 spin_lock_irq(&dev_priv->irq_lock); 1460 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1461 spin_unlock_irq(&dev_priv->irq_lock); 1462 1463 mutex_unlock(&dev_priv->drm.struct_mutex); 1464 } 1465 1466 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, 1467 u32 iir) 1468 { 1469 if (!HAS_L3_DPF(dev_priv)) 1470 return; 1471 1472 spin_lock(&dev_priv->irq_lock); 1473 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); 1474 spin_unlock(&dev_priv->irq_lock); 1475 1476 iir &= GT_PARITY_ERROR(dev_priv); 1477 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) 1478 dev_priv->l3_parity.which_slice |= 1 << 1; 1479 1480 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) 1481 dev_priv->l3_parity.which_slice |= 1 << 0; 1482 1483 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); 1484 } 1485 1486 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, 1487 u32 gt_iir) 1488 { 1489 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1490 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 1491 if (gt_iir & ILK_BSD_USER_INTERRUPT) 1492 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 1493 } 1494 1495 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, 1496 u32 gt_iir) 1497 { 1498 if (gt_iir & GT_RENDER_USER_INTERRUPT) 1499 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 1500 if (gt_iir & GT_BSD_USER_INTERRUPT) 1501 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 1502 if (gt_iir & GT_BLT_USER_INTERRUPT) 1503 intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]); 1504 1505 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | 1506 GT_BSD_CS_ERROR_INTERRUPT | 1507 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) 1508 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); 1509 1510 if (gt_iir & GT_PARITY_ERROR(dev_priv)) 1511 ivybridge_parity_error_irq_handler(dev_priv, gt_iir); 1512 } 1513 1514 static void 1515 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir) 1516 { 1517 bool tasklet = false; 1518 1519 if (iir & GT_CONTEXT_SWITCH_INTERRUPT) 1520 tasklet = true; 1521 1522 if (iir & GT_RENDER_USER_INTERRUPT) { 1523 intel_engine_breadcrumbs_irq(engine); 1524 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine); 1525 } 1526 1527 if (tasklet) 1528 tasklet_hi_schedule(&engine->execlists.tasklet); 1529 } 1530 1531 static void gen8_gt_irq_ack(struct drm_i915_private *i915, 1532 u32 master_ctl, u32 gt_iir[4]) 1533 { 1534 void __iomem * const regs = i915->uncore.regs; 1535 1536 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \ 1537 GEN8_GT_BCS_IRQ | \ 1538 GEN8_GT_VCS0_IRQ | \ 1539 GEN8_GT_VCS1_IRQ | \ 1540 GEN8_GT_VECS_IRQ | \ 1541 GEN8_GT_PM_IRQ | \ 1542 GEN8_GT_GUC_IRQ) 1543 1544 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1545 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0)); 1546 if (likely(gt_iir[0])) 1547 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]); 1548 } 1549 1550 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { 1551 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1)); 1552 if (likely(gt_iir[1])) 1553 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]); 1554 } 1555 1556 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1557 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2)); 1558 if (likely(gt_iir[2])) 1559 raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]); 1560 } 1561 1562 if (master_ctl & GEN8_GT_VECS_IRQ) { 1563 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3)); 1564 if (likely(gt_iir[3])) 1565 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]); 1566 } 1567 } 1568 1569 static void gen8_gt_irq_handler(struct drm_i915_private *i915, 1570 u32 master_ctl, u32 gt_iir[4]) 1571 { 1572 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { 1573 gen8_cs_irq_handler(i915->engine[RCS0], 1574 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT); 1575 gen8_cs_irq_handler(i915->engine[BCS0], 1576 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT); 1577 } 1578 1579 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { 1580 gen8_cs_irq_handler(i915->engine[VCS0], 1581 gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT); 1582 gen8_cs_irq_handler(i915->engine[VCS1], 1583 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT); 1584 } 1585 1586 if (master_ctl & GEN8_GT_VECS_IRQ) { 1587 gen8_cs_irq_handler(i915->engine[VECS0], 1588 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT); 1589 } 1590 1591 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { 1592 gen6_rps_irq_handler(i915, gt_iir[2]); 1593 gen9_guc_irq_handler(i915, gt_iir[2]); 1594 } 1595 } 1596 1597 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1598 { 1599 switch (pin) { 1600 case HPD_PORT_C: 1601 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); 1602 case HPD_PORT_D: 1603 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); 1604 case HPD_PORT_E: 1605 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); 1606 case HPD_PORT_F: 1607 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); 1608 default: 1609 return false; 1610 } 1611 } 1612 1613 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1614 { 1615 switch (pin) { 1616 case HPD_PORT_A: 1617 return val & PORTA_HOTPLUG_LONG_DETECT; 1618 case HPD_PORT_B: 1619 return val & PORTB_HOTPLUG_LONG_DETECT; 1620 case HPD_PORT_C: 1621 return val & PORTC_HOTPLUG_LONG_DETECT; 1622 default: 1623 return false; 1624 } 1625 } 1626 1627 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1628 { 1629 switch (pin) { 1630 case HPD_PORT_A: 1631 return val & ICP_DDIA_HPD_LONG_DETECT; 1632 case HPD_PORT_B: 1633 return val & ICP_DDIB_HPD_LONG_DETECT; 1634 default: 1635 return false; 1636 } 1637 } 1638 1639 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1640 { 1641 switch (pin) { 1642 case HPD_PORT_C: 1643 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); 1644 case HPD_PORT_D: 1645 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); 1646 case HPD_PORT_E: 1647 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); 1648 case HPD_PORT_F: 1649 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); 1650 default: 1651 return false; 1652 } 1653 } 1654 1655 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1656 { 1657 switch (pin) { 1658 case HPD_PORT_E: 1659 return val & PORTE_HOTPLUG_LONG_DETECT; 1660 default: 1661 return false; 1662 } 1663 } 1664 1665 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1666 { 1667 switch (pin) { 1668 case HPD_PORT_A: 1669 return val & PORTA_HOTPLUG_LONG_DETECT; 1670 case HPD_PORT_B: 1671 return val & PORTB_HOTPLUG_LONG_DETECT; 1672 case HPD_PORT_C: 1673 return val & PORTC_HOTPLUG_LONG_DETECT; 1674 case HPD_PORT_D: 1675 return val & PORTD_HOTPLUG_LONG_DETECT; 1676 default: 1677 return false; 1678 } 1679 } 1680 1681 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1682 { 1683 switch (pin) { 1684 case HPD_PORT_A: 1685 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1686 default: 1687 return false; 1688 } 1689 } 1690 1691 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1692 { 1693 switch (pin) { 1694 case HPD_PORT_B: 1695 return val & PORTB_HOTPLUG_LONG_DETECT; 1696 case HPD_PORT_C: 1697 return val & PORTC_HOTPLUG_LONG_DETECT; 1698 case HPD_PORT_D: 1699 return val & PORTD_HOTPLUG_LONG_DETECT; 1700 default: 1701 return false; 1702 } 1703 } 1704 1705 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1706 { 1707 switch (pin) { 1708 case HPD_PORT_B: 1709 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1710 case HPD_PORT_C: 1711 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1712 case HPD_PORT_D: 1713 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1714 default: 1715 return false; 1716 } 1717 } 1718 1719 /* 1720 * Get a bit mask of pins that have triggered, and which ones may be long. 1721 * This can be called multiple times with the same masks to accumulate 1722 * hotplug detection results from several registers. 1723 * 1724 * Note that the caller is expected to zero out the masks initially. 1725 */ 1726 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1727 u32 *pin_mask, u32 *long_mask, 1728 u32 hotplug_trigger, u32 dig_hotplug_reg, 1729 const u32 hpd[HPD_NUM_PINS], 1730 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1731 { 1732 enum hpd_pin pin; 1733 1734 for_each_hpd_pin(pin) { 1735 if ((hpd[pin] & hotplug_trigger) == 0) 1736 continue; 1737 1738 *pin_mask |= BIT(pin); 1739 1740 if (long_pulse_detect(pin, dig_hotplug_reg)) 1741 *long_mask |= BIT(pin); 1742 } 1743 1744 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1745 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1746 1747 } 1748 1749 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1750 { 1751 wake_up_all(&dev_priv->gmbus_wait_queue); 1752 } 1753 1754 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1755 { 1756 wake_up_all(&dev_priv->gmbus_wait_queue); 1757 } 1758 1759 #if defined(CONFIG_DEBUG_FS) 1760 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1761 enum pipe pipe, 1762 u32 crc0, u32 crc1, 1763 u32 crc2, u32 crc3, 1764 u32 crc4) 1765 { 1766 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 1767 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1768 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1769 1770 trace_intel_pipe_crc(crtc, crcs); 1771 1772 spin_lock(&pipe_crc->lock); 1773 /* 1774 * For some not yet identified reason, the first CRC is 1775 * bonkers. So let's just wait for the next vblank and read 1776 * out the buggy result. 1777 * 1778 * On GEN8+ sometimes the second CRC is bonkers as well, so 1779 * don't trust that one either. 1780 */ 1781 if (pipe_crc->skipped <= 0 || 1782 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1783 pipe_crc->skipped++; 1784 spin_unlock(&pipe_crc->lock); 1785 return; 1786 } 1787 spin_unlock(&pipe_crc->lock); 1788 1789 drm_crtc_add_crc_entry(&crtc->base, true, 1790 drm_crtc_accurate_vblank_count(&crtc->base), 1791 crcs); 1792 } 1793 #else 1794 static inline void 1795 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1796 enum pipe pipe, 1797 u32 crc0, u32 crc1, 1798 u32 crc2, u32 crc3, 1799 u32 crc4) {} 1800 #endif 1801 1802 1803 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1804 enum pipe pipe) 1805 { 1806 display_pipe_crc_irq_handler(dev_priv, pipe, 1807 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1808 0, 0, 0, 0); 1809 } 1810 1811 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1812 enum pipe pipe) 1813 { 1814 display_pipe_crc_irq_handler(dev_priv, pipe, 1815 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1816 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1817 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1818 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1819 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1820 } 1821 1822 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1823 enum pipe pipe) 1824 { 1825 u32 res1, res2; 1826 1827 if (INTEL_GEN(dev_priv) >= 3) 1828 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1829 else 1830 res1 = 0; 1831 1832 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1833 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1834 else 1835 res2 = 0; 1836 1837 display_pipe_crc_irq_handler(dev_priv, pipe, 1838 I915_READ(PIPE_CRC_RES_RED(pipe)), 1839 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1840 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1841 res1, res2); 1842 } 1843 1844 /* The RPS events need forcewake, so we add them to a work queue and mask their 1845 * IMR bits until the work is done. Other interrupts can be processed without 1846 * the work queue. */ 1847 static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir) 1848 { 1849 struct intel_rps *rps = &i915->gt_pm.rps; 1850 const u32 events = i915->pm_rps_events & pm_iir; 1851 1852 lockdep_assert_held(&i915->irq_lock); 1853 1854 if (unlikely(!events)) 1855 return; 1856 1857 gen6_mask_pm_irq(i915, events); 1858 1859 if (!rps->interrupts_enabled) 1860 return; 1861 1862 rps->pm_iir |= events; 1863 schedule_work(&rps->work); 1864 } 1865 1866 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) 1867 { 1868 struct intel_rps *rps = &dev_priv->gt_pm.rps; 1869 1870 if (pm_iir & dev_priv->pm_rps_events) { 1871 spin_lock(&dev_priv->irq_lock); 1872 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); 1873 if (rps->interrupts_enabled) { 1874 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events; 1875 schedule_work(&rps->work); 1876 } 1877 spin_unlock(&dev_priv->irq_lock); 1878 } 1879 1880 if (INTEL_GEN(dev_priv) >= 8) 1881 return; 1882 1883 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1884 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]); 1885 1886 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1887 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1888 } 1889 1890 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) 1891 { 1892 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) 1893 intel_guc_to_host_event_handler(&dev_priv->guc); 1894 } 1895 1896 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1897 { 1898 enum pipe pipe; 1899 1900 for_each_pipe(dev_priv, pipe) { 1901 I915_WRITE(PIPESTAT(pipe), 1902 PIPESTAT_INT_STATUS_MASK | 1903 PIPE_FIFO_UNDERRUN_STATUS); 1904 1905 dev_priv->pipestat_irq_mask[pipe] = 0; 1906 } 1907 } 1908 1909 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1910 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1911 { 1912 int pipe; 1913 1914 spin_lock(&dev_priv->irq_lock); 1915 1916 if (!dev_priv->display_irqs_enabled) { 1917 spin_unlock(&dev_priv->irq_lock); 1918 return; 1919 } 1920 1921 for_each_pipe(dev_priv, pipe) { 1922 i915_reg_t reg; 1923 u32 status_mask, enable_mask, iir_bit = 0; 1924 1925 /* 1926 * PIPESTAT bits get signalled even when the interrupt is 1927 * disabled with the mask bits, and some of the status bits do 1928 * not generate interrupts at all (like the underrun bit). Hence 1929 * we need to be careful that we only handle what we want to 1930 * handle. 1931 */ 1932 1933 /* fifo underruns are filterered in the underrun handler. */ 1934 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1935 1936 switch (pipe) { 1937 case PIPE_A: 1938 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1939 break; 1940 case PIPE_B: 1941 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1942 break; 1943 case PIPE_C: 1944 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1945 break; 1946 } 1947 if (iir & iir_bit) 1948 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1949 1950 if (!status_mask) 1951 continue; 1952 1953 reg = PIPESTAT(pipe); 1954 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1955 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1956 1957 /* 1958 * Clear the PIPE*STAT regs before the IIR 1959 * 1960 * Toggle the enable bits to make sure we get an 1961 * edge in the ISR pipe event bit if we don't clear 1962 * all the enabled status bits. Otherwise the edge 1963 * triggered IIR on i965/g4x wouldn't notice that 1964 * an interrupt is still pending. 1965 */ 1966 if (pipe_stats[pipe]) { 1967 I915_WRITE(reg, pipe_stats[pipe]); 1968 I915_WRITE(reg, enable_mask); 1969 } 1970 } 1971 spin_unlock(&dev_priv->irq_lock); 1972 } 1973 1974 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1975 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1976 { 1977 enum pipe pipe; 1978 1979 for_each_pipe(dev_priv, pipe) { 1980 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1981 drm_handle_vblank(&dev_priv->drm, pipe); 1982 1983 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1984 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1985 1986 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1987 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1988 } 1989 } 1990 1991 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1992 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1993 { 1994 bool blc_event = false; 1995 enum pipe pipe; 1996 1997 for_each_pipe(dev_priv, pipe) { 1998 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1999 drm_handle_vblank(&dev_priv->drm, pipe); 2000 2001 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 2002 blc_event = true; 2003 2004 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2005 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2006 2007 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2008 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2009 } 2010 2011 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 2012 intel_opregion_asle_intr(dev_priv); 2013 } 2014 2015 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2016 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 2017 { 2018 bool blc_event = false; 2019 enum pipe pipe; 2020 2021 for_each_pipe(dev_priv, pipe) { 2022 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 2023 drm_handle_vblank(&dev_priv->drm, pipe); 2024 2025 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 2026 blc_event = true; 2027 2028 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2029 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2030 2031 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2032 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2033 } 2034 2035 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 2036 intel_opregion_asle_intr(dev_priv); 2037 2038 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 2039 gmbus_irq_handler(dev_priv); 2040 } 2041 2042 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 2043 u32 pipe_stats[I915_MAX_PIPES]) 2044 { 2045 enum pipe pipe; 2046 2047 for_each_pipe(dev_priv, pipe) { 2048 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 2049 drm_handle_vblank(&dev_priv->drm, pipe); 2050 2051 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 2052 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2053 2054 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 2055 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2056 } 2057 2058 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 2059 gmbus_irq_handler(dev_priv); 2060 } 2061 2062 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 2063 { 2064 u32 hotplug_status = 0, hotplug_status_mask; 2065 int i; 2066 2067 if (IS_G4X(dev_priv) || 2068 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2069 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 2070 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 2071 else 2072 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 2073 2074 /* 2075 * We absolutely have to clear all the pending interrupt 2076 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 2077 * interrupt bit won't have an edge, and the i965/g4x 2078 * edge triggered IIR will not notice that an interrupt 2079 * is still pending. We can't use PORT_HOTPLUG_EN to 2080 * guarantee the edge as the act of toggling the enable 2081 * bits can itself generate a new hotplug interrupt :( 2082 */ 2083 for (i = 0; i < 10; i++) { 2084 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; 2085 2086 if (tmp == 0) 2087 return hotplug_status; 2088 2089 hotplug_status |= tmp; 2090 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 2091 } 2092 2093 WARN_ONCE(1, 2094 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 2095 I915_READ(PORT_HOTPLUG_STAT)); 2096 2097 return hotplug_status; 2098 } 2099 2100 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2101 u32 hotplug_status) 2102 { 2103 u32 pin_mask = 0, long_mask = 0; 2104 2105 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 2106 IS_CHERRYVIEW(dev_priv)) { 2107 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 2108 2109 if (hotplug_trigger) { 2110 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2111 hotplug_trigger, hotplug_trigger, 2112 hpd_status_g4x, 2113 i9xx_port_hotplug_long_detect); 2114 2115 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2116 } 2117 2118 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 2119 dp_aux_irq_handler(dev_priv); 2120 } else { 2121 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 2122 2123 if (hotplug_trigger) { 2124 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2125 hotplug_trigger, hotplug_trigger, 2126 hpd_status_i915, 2127 i9xx_port_hotplug_long_detect); 2128 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2129 } 2130 } 2131 } 2132 2133 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 2134 { 2135 struct drm_device *dev = arg; 2136 struct drm_i915_private *dev_priv = to_i915(dev); 2137 irqreturn_t ret = IRQ_NONE; 2138 2139 if (!intel_irqs_enabled(dev_priv)) 2140 return IRQ_NONE; 2141 2142 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2143 disable_rpm_wakeref_asserts(dev_priv); 2144 2145 do { 2146 u32 iir, gt_iir, pm_iir; 2147 u32 pipe_stats[I915_MAX_PIPES] = {}; 2148 u32 hotplug_status = 0; 2149 u32 ier = 0; 2150 2151 gt_iir = I915_READ(GTIIR); 2152 pm_iir = I915_READ(GEN6_PMIIR); 2153 iir = I915_READ(VLV_IIR); 2154 2155 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 2156 break; 2157 2158 ret = IRQ_HANDLED; 2159 2160 /* 2161 * Theory on interrupt generation, based on empirical evidence: 2162 * 2163 * x = ((VLV_IIR & VLV_IER) || 2164 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 2165 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 2166 * 2167 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2168 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 2169 * guarantee the CPU interrupt will be raised again even if we 2170 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 2171 * bits this time around. 2172 */ 2173 I915_WRITE(VLV_MASTER_IER, 0); 2174 ier = I915_READ(VLV_IER); 2175 I915_WRITE(VLV_IER, 0); 2176 2177 if (gt_iir) 2178 I915_WRITE(GTIIR, gt_iir); 2179 if (pm_iir) 2180 I915_WRITE(GEN6_PMIIR, pm_iir); 2181 2182 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2183 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2184 2185 /* Call regardless, as some status bits might not be 2186 * signalled in iir */ 2187 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2188 2189 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2190 I915_LPE_PIPE_B_INTERRUPT)) 2191 intel_lpe_audio_irq_handler(dev_priv); 2192 2193 /* 2194 * VLV_IIR is single buffered, and reflects the level 2195 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2196 */ 2197 if (iir) 2198 I915_WRITE(VLV_IIR, iir); 2199 2200 I915_WRITE(VLV_IER, ier); 2201 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 2202 2203 if (gt_iir) 2204 snb_gt_irq_handler(dev_priv, gt_iir); 2205 if (pm_iir) 2206 gen6_rps_irq_handler(dev_priv, pm_iir); 2207 2208 if (hotplug_status) 2209 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2210 2211 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2212 } while (0); 2213 2214 enable_rpm_wakeref_asserts(dev_priv); 2215 2216 return ret; 2217 } 2218 2219 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 2220 { 2221 struct drm_device *dev = arg; 2222 struct drm_i915_private *dev_priv = to_i915(dev); 2223 irqreturn_t ret = IRQ_NONE; 2224 2225 if (!intel_irqs_enabled(dev_priv)) 2226 return IRQ_NONE; 2227 2228 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2229 disable_rpm_wakeref_asserts(dev_priv); 2230 2231 do { 2232 u32 master_ctl, iir; 2233 u32 pipe_stats[I915_MAX_PIPES] = {}; 2234 u32 hotplug_status = 0; 2235 u32 gt_iir[4]; 2236 u32 ier = 0; 2237 2238 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 2239 iir = I915_READ(VLV_IIR); 2240 2241 if (master_ctl == 0 && iir == 0) 2242 break; 2243 2244 ret = IRQ_HANDLED; 2245 2246 /* 2247 * Theory on interrupt generation, based on empirical evidence: 2248 * 2249 * x = ((VLV_IIR & VLV_IER) || 2250 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 2251 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 2252 * 2253 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 2254 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 2255 * guarantee the CPU interrupt will be raised again even if we 2256 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 2257 * bits this time around. 2258 */ 2259 I915_WRITE(GEN8_MASTER_IRQ, 0); 2260 ier = I915_READ(VLV_IER); 2261 I915_WRITE(VLV_IER, 0); 2262 2263 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2264 2265 if (iir & I915_DISPLAY_PORT_INTERRUPT) 2266 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 2267 2268 /* Call regardless, as some status bits might not be 2269 * signalled in iir */ 2270 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 2271 2272 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 2273 I915_LPE_PIPE_B_INTERRUPT | 2274 I915_LPE_PIPE_C_INTERRUPT)) 2275 intel_lpe_audio_irq_handler(dev_priv); 2276 2277 /* 2278 * VLV_IIR is single buffered, and reflects the level 2279 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 2280 */ 2281 if (iir) 2282 I915_WRITE(VLV_IIR, iir); 2283 2284 I915_WRITE(VLV_IER, ier); 2285 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2286 2287 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2288 2289 if (hotplug_status) 2290 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 2291 2292 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 2293 } while (0); 2294 2295 enable_rpm_wakeref_asserts(dev_priv); 2296 2297 return ret; 2298 } 2299 2300 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 2301 u32 hotplug_trigger, 2302 const u32 hpd[HPD_NUM_PINS]) 2303 { 2304 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2305 2306 /* 2307 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 2308 * unless we touch the hotplug register, even if hotplug_trigger is 2309 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 2310 * errors. 2311 */ 2312 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2313 if (!hotplug_trigger) { 2314 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 2315 PORTD_HOTPLUG_STATUS_MASK | 2316 PORTC_HOTPLUG_STATUS_MASK | 2317 PORTB_HOTPLUG_STATUS_MASK; 2318 dig_hotplug_reg &= ~mask; 2319 } 2320 2321 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2322 if (!hotplug_trigger) 2323 return; 2324 2325 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2326 dig_hotplug_reg, hpd, 2327 pch_port_hotplug_long_detect); 2328 2329 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2330 } 2331 2332 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2333 { 2334 int pipe; 2335 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 2336 2337 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 2338 2339 if (pch_iir & SDE_AUDIO_POWER_MASK) { 2340 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 2341 SDE_AUDIO_POWER_SHIFT); 2342 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", 2343 port_name(port)); 2344 } 2345 2346 if (pch_iir & SDE_AUX_MASK) 2347 dp_aux_irq_handler(dev_priv); 2348 2349 if (pch_iir & SDE_GMBUS) 2350 gmbus_irq_handler(dev_priv); 2351 2352 if (pch_iir & SDE_AUDIO_HDCP_MASK) 2353 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); 2354 2355 if (pch_iir & SDE_AUDIO_TRANS_MASK) 2356 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); 2357 2358 if (pch_iir & SDE_POISON) 2359 DRM_ERROR("PCH poison interrupt\n"); 2360 2361 if (pch_iir & SDE_FDI_MASK) 2362 for_each_pipe(dev_priv, pipe) 2363 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2364 pipe_name(pipe), 2365 I915_READ(FDI_RX_IIR(pipe))); 2366 2367 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 2368 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); 2369 2370 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 2371 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); 2372 2373 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 2374 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 2375 2376 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 2377 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 2378 } 2379 2380 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 2381 { 2382 u32 err_int = I915_READ(GEN7_ERR_INT); 2383 enum pipe pipe; 2384 2385 if (err_int & ERR_INT_POISON) 2386 DRM_ERROR("Poison interrupt\n"); 2387 2388 for_each_pipe(dev_priv, pipe) { 2389 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 2390 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2391 2392 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 2393 if (IS_IVYBRIDGE(dev_priv)) 2394 ivb_pipe_crc_irq_handler(dev_priv, pipe); 2395 else 2396 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2397 } 2398 } 2399 2400 I915_WRITE(GEN7_ERR_INT, err_int); 2401 } 2402 2403 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 2404 { 2405 u32 serr_int = I915_READ(SERR_INT); 2406 enum pipe pipe; 2407 2408 if (serr_int & SERR_INT_POISON) 2409 DRM_ERROR("PCH poison interrupt\n"); 2410 2411 for_each_pipe(dev_priv, pipe) 2412 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 2413 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 2414 2415 I915_WRITE(SERR_INT, serr_int); 2416 } 2417 2418 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2419 { 2420 int pipe; 2421 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 2422 2423 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 2424 2425 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 2426 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 2427 SDE_AUDIO_POWER_SHIFT_CPT); 2428 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", 2429 port_name(port)); 2430 } 2431 2432 if (pch_iir & SDE_AUX_MASK_CPT) 2433 dp_aux_irq_handler(dev_priv); 2434 2435 if (pch_iir & SDE_GMBUS_CPT) 2436 gmbus_irq_handler(dev_priv); 2437 2438 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 2439 DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); 2440 2441 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 2442 DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); 2443 2444 if (pch_iir & SDE_FDI_MASK_CPT) 2445 for_each_pipe(dev_priv, pipe) 2446 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", 2447 pipe_name(pipe), 2448 I915_READ(FDI_RX_IIR(pipe))); 2449 2450 if (pch_iir & SDE_ERROR_CPT) 2451 cpt_serr_int_handler(dev_priv); 2452 } 2453 2454 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2455 { 2456 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 2457 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP; 2458 u32 pin_mask = 0, long_mask = 0; 2459 2460 if (ddi_hotplug_trigger) { 2461 u32 dig_hotplug_reg; 2462 2463 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); 2464 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); 2465 2466 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2467 ddi_hotplug_trigger, 2468 dig_hotplug_reg, hpd_icp, 2469 icp_ddi_port_hotplug_long_detect); 2470 } 2471 2472 if (tc_hotplug_trigger) { 2473 u32 dig_hotplug_reg; 2474 2475 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); 2476 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); 2477 2478 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2479 tc_hotplug_trigger, 2480 dig_hotplug_reg, hpd_icp, 2481 icp_tc_port_hotplug_long_detect); 2482 } 2483 2484 if (pin_mask) 2485 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2486 2487 if (pch_iir & SDE_GMBUS_ICP) 2488 gmbus_irq_handler(dev_priv); 2489 } 2490 2491 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 2492 { 2493 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 2494 ~SDE_PORTE_HOTPLUG_SPT; 2495 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 2496 u32 pin_mask = 0, long_mask = 0; 2497 2498 if (hotplug_trigger) { 2499 u32 dig_hotplug_reg; 2500 2501 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2502 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2503 2504 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2505 hotplug_trigger, dig_hotplug_reg, hpd_spt, 2506 spt_port_hotplug_long_detect); 2507 } 2508 2509 if (hotplug2_trigger) { 2510 u32 dig_hotplug_reg; 2511 2512 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 2513 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 2514 2515 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 2516 hotplug2_trigger, dig_hotplug_reg, hpd_spt, 2517 spt_port_hotplug2_long_detect); 2518 } 2519 2520 if (pin_mask) 2521 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2522 2523 if (pch_iir & SDE_GMBUS_CPT) 2524 gmbus_irq_handler(dev_priv); 2525 } 2526 2527 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 2528 u32 hotplug_trigger, 2529 const u32 hpd[HPD_NUM_PINS]) 2530 { 2531 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2532 2533 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 2534 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 2535 2536 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2537 dig_hotplug_reg, hpd, 2538 ilk_port_hotplug_long_detect); 2539 2540 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2541 } 2542 2543 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 2544 u32 de_iir) 2545 { 2546 enum pipe pipe; 2547 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 2548 2549 if (hotplug_trigger) 2550 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 2551 2552 if (de_iir & DE_AUX_CHANNEL_A) 2553 dp_aux_irq_handler(dev_priv); 2554 2555 if (de_iir & DE_GSE) 2556 intel_opregion_asle_intr(dev_priv); 2557 2558 if (de_iir & DE_POISON) 2559 DRM_ERROR("Poison interrupt\n"); 2560 2561 for_each_pipe(dev_priv, pipe) { 2562 if (de_iir & DE_PIPE_VBLANK(pipe)) 2563 drm_handle_vblank(&dev_priv->drm, pipe); 2564 2565 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 2566 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2567 2568 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 2569 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 2570 } 2571 2572 /* check event from PCH */ 2573 if (de_iir & DE_PCH_EVENT) { 2574 u32 pch_iir = I915_READ(SDEIIR); 2575 2576 if (HAS_PCH_CPT(dev_priv)) 2577 cpt_irq_handler(dev_priv, pch_iir); 2578 else 2579 ibx_irq_handler(dev_priv, pch_iir); 2580 2581 /* should clear PCH hotplug event before clear CPU irq */ 2582 I915_WRITE(SDEIIR, pch_iir); 2583 } 2584 2585 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) 2586 ironlake_rps_change_irq_handler(dev_priv); 2587 } 2588 2589 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2590 u32 de_iir) 2591 { 2592 enum pipe pipe; 2593 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2594 2595 if (hotplug_trigger) 2596 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2597 2598 if (de_iir & DE_ERR_INT_IVB) 2599 ivb_err_int_handler(dev_priv); 2600 2601 if (de_iir & DE_EDP_PSR_INT_HSW) { 2602 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2603 2604 intel_psr_irq_handler(dev_priv, psr_iir); 2605 I915_WRITE(EDP_PSR_IIR, psr_iir); 2606 } 2607 2608 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2609 dp_aux_irq_handler(dev_priv); 2610 2611 if (de_iir & DE_GSE_IVB) 2612 intel_opregion_asle_intr(dev_priv); 2613 2614 for_each_pipe(dev_priv, pipe) { 2615 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2616 drm_handle_vblank(&dev_priv->drm, pipe); 2617 } 2618 2619 /* check event from PCH */ 2620 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2621 u32 pch_iir = I915_READ(SDEIIR); 2622 2623 cpt_irq_handler(dev_priv, pch_iir); 2624 2625 /* clear PCH hotplug event before clear CPU irq */ 2626 I915_WRITE(SDEIIR, pch_iir); 2627 } 2628 } 2629 2630 /* 2631 * To handle irqs with the minimum potential races with fresh interrupts, we: 2632 * 1 - Disable Master Interrupt Control. 2633 * 2 - Find the source(s) of the interrupt. 2634 * 3 - Clear the Interrupt Identity bits (IIR). 2635 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2636 * 5 - Re-enable Master Interrupt Control. 2637 */ 2638 static irqreturn_t ironlake_irq_handler(int irq, void *arg) 2639 { 2640 struct drm_device *dev = arg; 2641 struct drm_i915_private *dev_priv = to_i915(dev); 2642 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2643 irqreturn_t ret = IRQ_NONE; 2644 2645 if (!intel_irqs_enabled(dev_priv)) 2646 return IRQ_NONE; 2647 2648 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2649 disable_rpm_wakeref_asserts(dev_priv); 2650 2651 /* disable master interrupt before clearing iir */ 2652 de_ier = I915_READ(DEIER); 2653 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2654 2655 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2656 * interrupts will will be stored on its back queue, and then we'll be 2657 * able to process them after we restore SDEIER (as soon as we restore 2658 * it, we'll get an interrupt if SDEIIR still has something to process 2659 * due to its back queue). */ 2660 if (!HAS_PCH_NOP(dev_priv)) { 2661 sde_ier = I915_READ(SDEIER); 2662 I915_WRITE(SDEIER, 0); 2663 } 2664 2665 /* Find, clear, then process each source of interrupt */ 2666 2667 gt_iir = I915_READ(GTIIR); 2668 if (gt_iir) { 2669 I915_WRITE(GTIIR, gt_iir); 2670 ret = IRQ_HANDLED; 2671 if (INTEL_GEN(dev_priv) >= 6) 2672 snb_gt_irq_handler(dev_priv, gt_iir); 2673 else 2674 ilk_gt_irq_handler(dev_priv, gt_iir); 2675 } 2676 2677 de_iir = I915_READ(DEIIR); 2678 if (de_iir) { 2679 I915_WRITE(DEIIR, de_iir); 2680 ret = IRQ_HANDLED; 2681 if (INTEL_GEN(dev_priv) >= 7) 2682 ivb_display_irq_handler(dev_priv, de_iir); 2683 else 2684 ilk_display_irq_handler(dev_priv, de_iir); 2685 } 2686 2687 if (INTEL_GEN(dev_priv) >= 6) { 2688 u32 pm_iir = I915_READ(GEN6_PMIIR); 2689 if (pm_iir) { 2690 I915_WRITE(GEN6_PMIIR, pm_iir); 2691 ret = IRQ_HANDLED; 2692 gen6_rps_irq_handler(dev_priv, pm_iir); 2693 } 2694 } 2695 2696 I915_WRITE(DEIER, de_ier); 2697 if (!HAS_PCH_NOP(dev_priv)) 2698 I915_WRITE(SDEIER, sde_ier); 2699 2700 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2701 enable_rpm_wakeref_asserts(dev_priv); 2702 2703 return ret; 2704 } 2705 2706 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2707 u32 hotplug_trigger, 2708 const u32 hpd[HPD_NUM_PINS]) 2709 { 2710 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2711 2712 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2713 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2714 2715 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2716 dig_hotplug_reg, hpd, 2717 bxt_port_hotplug_long_detect); 2718 2719 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2720 } 2721 2722 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2723 { 2724 u32 pin_mask = 0, long_mask = 0; 2725 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2726 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2727 2728 if (trigger_tc) { 2729 u32 dig_hotplug_reg; 2730 2731 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); 2732 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2733 2734 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc, 2735 dig_hotplug_reg, hpd_gen11, 2736 gen11_port_hotplug_long_detect); 2737 } 2738 2739 if (trigger_tbt) { 2740 u32 dig_hotplug_reg; 2741 2742 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); 2743 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2744 2745 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt, 2746 dig_hotplug_reg, hpd_gen11, 2747 gen11_port_hotplug_long_detect); 2748 } 2749 2750 if (pin_mask) 2751 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2752 else 2753 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir); 2754 } 2755 2756 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2757 { 2758 u32 mask = GEN8_AUX_CHANNEL_A; 2759 2760 if (INTEL_GEN(dev_priv) >= 9) 2761 mask |= GEN9_AUX_CHANNEL_B | 2762 GEN9_AUX_CHANNEL_C | 2763 GEN9_AUX_CHANNEL_D; 2764 2765 if (IS_CNL_WITH_PORT_F(dev_priv)) 2766 mask |= CNL_AUX_CHANNEL_F; 2767 2768 if (INTEL_GEN(dev_priv) >= 11) 2769 mask |= ICL_AUX_CHANNEL_E | 2770 CNL_AUX_CHANNEL_F; 2771 2772 return mask; 2773 } 2774 2775 static irqreturn_t 2776 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2777 { 2778 irqreturn_t ret = IRQ_NONE; 2779 u32 iir; 2780 enum pipe pipe; 2781 2782 if (master_ctl & GEN8_DE_MISC_IRQ) { 2783 iir = I915_READ(GEN8_DE_MISC_IIR); 2784 if (iir) { 2785 bool found = false; 2786 2787 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2788 ret = IRQ_HANDLED; 2789 2790 if (iir & GEN8_DE_MISC_GSE) { 2791 intel_opregion_asle_intr(dev_priv); 2792 found = true; 2793 } 2794 2795 if (iir & GEN8_DE_EDP_PSR) { 2796 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2797 2798 intel_psr_irq_handler(dev_priv, psr_iir); 2799 I915_WRITE(EDP_PSR_IIR, psr_iir); 2800 found = true; 2801 } 2802 2803 if (!found) 2804 DRM_ERROR("Unexpected DE Misc interrupt\n"); 2805 } 2806 else 2807 DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); 2808 } 2809 2810 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2811 iir = I915_READ(GEN11_DE_HPD_IIR); 2812 if (iir) { 2813 I915_WRITE(GEN11_DE_HPD_IIR, iir); 2814 ret = IRQ_HANDLED; 2815 gen11_hpd_irq_handler(dev_priv, iir); 2816 } else { 2817 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n"); 2818 } 2819 } 2820 2821 if (master_ctl & GEN8_DE_PORT_IRQ) { 2822 iir = I915_READ(GEN8_DE_PORT_IIR); 2823 if (iir) { 2824 u32 tmp_mask; 2825 bool found = false; 2826 2827 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2828 ret = IRQ_HANDLED; 2829 2830 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2831 dp_aux_irq_handler(dev_priv); 2832 found = true; 2833 } 2834 2835 if (IS_GEN9_LP(dev_priv)) { 2836 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2837 if (tmp_mask) { 2838 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2839 hpd_bxt); 2840 found = true; 2841 } 2842 } else if (IS_BROADWELL(dev_priv)) { 2843 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2844 if (tmp_mask) { 2845 ilk_hpd_irq_handler(dev_priv, 2846 tmp_mask, hpd_bdw); 2847 found = true; 2848 } 2849 } 2850 2851 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2852 gmbus_irq_handler(dev_priv); 2853 found = true; 2854 } 2855 2856 if (!found) 2857 DRM_ERROR("Unexpected DE Port interrupt\n"); 2858 } 2859 else 2860 DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); 2861 } 2862 2863 for_each_pipe(dev_priv, pipe) { 2864 u32 fault_errors; 2865 2866 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2867 continue; 2868 2869 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2870 if (!iir) { 2871 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); 2872 continue; 2873 } 2874 2875 ret = IRQ_HANDLED; 2876 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2877 2878 if (iir & GEN8_PIPE_VBLANK) 2879 drm_handle_vblank(&dev_priv->drm, pipe); 2880 2881 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2882 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2883 2884 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2885 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2886 2887 fault_errors = iir; 2888 if (INTEL_GEN(dev_priv) >= 9) 2889 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2890 else 2891 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2892 2893 if (fault_errors) 2894 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", 2895 pipe_name(pipe), 2896 fault_errors); 2897 } 2898 2899 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2900 master_ctl & GEN8_DE_PCH_IRQ) { 2901 /* 2902 * FIXME(BDW): Assume for now that the new interrupt handling 2903 * scheme also closed the SDE interrupt handling race we've seen 2904 * on older pch-split platforms. But this needs testing. 2905 */ 2906 iir = I915_READ(SDEIIR); 2907 if (iir) { 2908 I915_WRITE(SDEIIR, iir); 2909 ret = IRQ_HANDLED; 2910 2911 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2912 icp_irq_handler(dev_priv, iir); 2913 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2914 spt_irq_handler(dev_priv, iir); 2915 else 2916 cpt_irq_handler(dev_priv, iir); 2917 } else { 2918 /* 2919 * Like on previous PCH there seems to be something 2920 * fishy going on with forwarding PCH interrupts. 2921 */ 2922 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); 2923 } 2924 } 2925 2926 return ret; 2927 } 2928 2929 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2930 { 2931 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2932 2933 /* 2934 * Now with master disabled, get a sample of level indications 2935 * for this interrupt. Indications will be cleared on related acks. 2936 * New indications can and will light up during processing, 2937 * and will generate new interrupt after enabling master. 2938 */ 2939 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2940 } 2941 2942 static inline void gen8_master_intr_enable(void __iomem * const regs) 2943 { 2944 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2945 } 2946 2947 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2948 { 2949 struct drm_i915_private *dev_priv = to_i915(arg); 2950 void __iomem * const regs = dev_priv->uncore.regs; 2951 u32 master_ctl; 2952 u32 gt_iir[4]; 2953 2954 if (!intel_irqs_enabled(dev_priv)) 2955 return IRQ_NONE; 2956 2957 master_ctl = gen8_master_intr_disable(regs); 2958 if (!master_ctl) { 2959 gen8_master_intr_enable(regs); 2960 return IRQ_NONE; 2961 } 2962 2963 /* Find, clear, then process each source of interrupt */ 2964 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); 2965 2966 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2967 if (master_ctl & ~GEN8_GT_IRQS) { 2968 disable_rpm_wakeref_asserts(dev_priv); 2969 gen8_de_irq_handler(dev_priv, master_ctl); 2970 enable_rpm_wakeref_asserts(dev_priv); 2971 } 2972 2973 gen8_master_intr_enable(regs); 2974 2975 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); 2976 2977 return IRQ_HANDLED; 2978 } 2979 2980 static u32 2981 gen11_gt_engine_identity(struct drm_i915_private * const i915, 2982 const unsigned int bank, const unsigned int bit) 2983 { 2984 void __iomem * const regs = i915->uncore.regs; 2985 u32 timeout_ts; 2986 u32 ident; 2987 2988 lockdep_assert_held(&i915->irq_lock); 2989 2990 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); 2991 2992 /* 2993 * NB: Specs do not specify how long to spin wait, 2994 * so we do ~100us as an educated guess. 2995 */ 2996 timeout_ts = (local_clock() >> 10) + 100; 2997 do { 2998 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); 2999 } while (!(ident & GEN11_INTR_DATA_VALID) && 3000 !time_after32(local_clock() >> 10, timeout_ts)); 3001 3002 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { 3003 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", 3004 bank, bit, ident); 3005 return 0; 3006 } 3007 3008 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), 3009 GEN11_INTR_DATA_VALID); 3010 3011 return ident; 3012 } 3013 3014 static void 3015 gen11_other_irq_handler(struct drm_i915_private * const i915, 3016 const u8 instance, const u16 iir) 3017 { 3018 if (instance == OTHER_GTPM_INSTANCE) 3019 return gen11_rps_irq_handler(i915, iir); 3020 3021 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", 3022 instance, iir); 3023 } 3024 3025 static void 3026 gen11_engine_irq_handler(struct drm_i915_private * const i915, 3027 const u8 class, const u8 instance, const u16 iir) 3028 { 3029 struct intel_engine_cs *engine; 3030 3031 if (instance <= MAX_ENGINE_INSTANCE) 3032 engine = i915->engine_class[class][instance]; 3033 else 3034 engine = NULL; 3035 3036 if (likely(engine)) 3037 return gen8_cs_irq_handler(engine, iir); 3038 3039 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n", 3040 class, instance); 3041 } 3042 3043 static void 3044 gen11_gt_identity_handler(struct drm_i915_private * const i915, 3045 const u32 identity) 3046 { 3047 const u8 class = GEN11_INTR_ENGINE_CLASS(identity); 3048 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); 3049 const u16 intr = GEN11_INTR_ENGINE_INTR(identity); 3050 3051 if (unlikely(!intr)) 3052 return; 3053 3054 if (class <= COPY_ENGINE_CLASS) 3055 return gen11_engine_irq_handler(i915, class, instance, intr); 3056 3057 if (class == OTHER_CLASS) 3058 return gen11_other_irq_handler(i915, instance, intr); 3059 3060 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", 3061 class, instance, intr); 3062 } 3063 3064 static void 3065 gen11_gt_bank_handler(struct drm_i915_private * const i915, 3066 const unsigned int bank) 3067 { 3068 void __iomem * const regs = i915->uncore.regs; 3069 unsigned long intr_dw; 3070 unsigned int bit; 3071 3072 lockdep_assert_held(&i915->irq_lock); 3073 3074 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); 3075 3076 for_each_set_bit(bit, &intr_dw, 32) { 3077 const u32 ident = gen11_gt_engine_identity(i915, bank, bit); 3078 3079 gen11_gt_identity_handler(i915, ident); 3080 } 3081 3082 /* Clear must be after shared has been served for engine */ 3083 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); 3084 } 3085 3086 static void 3087 gen11_gt_irq_handler(struct drm_i915_private * const i915, 3088 const u32 master_ctl) 3089 { 3090 unsigned int bank; 3091 3092 spin_lock(&i915->irq_lock); 3093 3094 for (bank = 0; bank < 2; bank++) { 3095 if (master_ctl & GEN11_GT_DW_IRQ(bank)) 3096 gen11_gt_bank_handler(i915, bank); 3097 } 3098 3099 spin_unlock(&i915->irq_lock); 3100 } 3101 3102 static u32 3103 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl) 3104 { 3105 void __iomem * const regs = dev_priv->uncore.regs; 3106 u32 iir; 3107 3108 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 3109 return 0; 3110 3111 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 3112 if (likely(iir)) 3113 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 3114 3115 return iir; 3116 } 3117 3118 static void 3119 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir) 3120 { 3121 if (iir & GEN11_GU_MISC_GSE) 3122 intel_opregion_asle_intr(dev_priv); 3123 } 3124 3125 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 3126 { 3127 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 3128 3129 /* 3130 * Now with master disabled, get a sample of level indications 3131 * for this interrupt. Indications will be cleared on related acks. 3132 * New indications can and will light up during processing, 3133 * and will generate new interrupt after enabling master. 3134 */ 3135 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 3136 } 3137 3138 static inline void gen11_master_intr_enable(void __iomem * const regs) 3139 { 3140 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 3141 } 3142 3143 static irqreturn_t gen11_irq_handler(int irq, void *arg) 3144 { 3145 struct drm_i915_private * const i915 = to_i915(arg); 3146 void __iomem * const regs = i915->uncore.regs; 3147 u32 master_ctl; 3148 u32 gu_misc_iir; 3149 3150 if (!intel_irqs_enabled(i915)) 3151 return IRQ_NONE; 3152 3153 master_ctl = gen11_master_intr_disable(regs); 3154 if (!master_ctl) { 3155 gen11_master_intr_enable(regs); 3156 return IRQ_NONE; 3157 } 3158 3159 /* Find, clear, then process each source of interrupt. */ 3160 gen11_gt_irq_handler(i915, master_ctl); 3161 3162 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3163 if (master_ctl & GEN11_DISPLAY_IRQ) { 3164 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 3165 3166 disable_rpm_wakeref_asserts(i915); 3167 /* 3168 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 3169 * for the display related bits. 3170 */ 3171 gen8_de_irq_handler(i915, disp_ctl); 3172 enable_rpm_wakeref_asserts(i915); 3173 } 3174 3175 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); 3176 3177 gen11_master_intr_enable(regs); 3178 3179 gen11_gu_misc_irq_handler(i915, gu_misc_iir); 3180 3181 return IRQ_HANDLED; 3182 } 3183 3184 /* Called from drm generic code, passed 'crtc' which 3185 * we use as a pipe index 3186 */ 3187 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) 3188 { 3189 struct drm_i915_private *dev_priv = to_i915(dev); 3190 unsigned long irqflags; 3191 3192 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3193 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3194 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3195 3196 return 0; 3197 } 3198 3199 static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe) 3200 { 3201 struct drm_i915_private *dev_priv = to_i915(dev); 3202 3203 if (dev_priv->i945gm_vblank.enabled++ == 0) 3204 schedule_work(&dev_priv->i945gm_vblank.work); 3205 3206 return i8xx_enable_vblank(dev, pipe); 3207 } 3208 3209 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) 3210 { 3211 struct drm_i915_private *dev_priv = to_i915(dev); 3212 unsigned long irqflags; 3213 3214 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3215 i915_enable_pipestat(dev_priv, pipe, 3216 PIPE_START_VBLANK_INTERRUPT_STATUS); 3217 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3218 3219 return 0; 3220 } 3221 3222 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) 3223 { 3224 struct drm_i915_private *dev_priv = to_i915(dev); 3225 unsigned long irqflags; 3226 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 3227 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3228 3229 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3230 ilk_enable_display_irq(dev_priv, bit); 3231 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3232 3233 /* Even though there is no DMC, frame counter can get stuck when 3234 * PSR is active as no frames are generated. 3235 */ 3236 if (HAS_PSR(dev_priv)) 3237 drm_vblank_restore(dev, pipe); 3238 3239 return 0; 3240 } 3241 3242 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) 3243 { 3244 struct drm_i915_private *dev_priv = to_i915(dev); 3245 unsigned long irqflags; 3246 3247 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3248 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3249 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3250 3251 /* Even if there is no DMC, frame counter can get stuck when 3252 * PSR is active as no frames are generated, so check only for PSR. 3253 */ 3254 if (HAS_PSR(dev_priv)) 3255 drm_vblank_restore(dev, pipe); 3256 3257 return 0; 3258 } 3259 3260 /* Called from drm generic code, passed 'crtc' which 3261 * we use as a pipe index 3262 */ 3263 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) 3264 { 3265 struct drm_i915_private *dev_priv = to_i915(dev); 3266 unsigned long irqflags; 3267 3268 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3269 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 3270 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3271 } 3272 3273 static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe) 3274 { 3275 struct drm_i915_private *dev_priv = to_i915(dev); 3276 3277 i8xx_disable_vblank(dev, pipe); 3278 3279 if (--dev_priv->i945gm_vblank.enabled == 0) 3280 schedule_work(&dev_priv->i945gm_vblank.work); 3281 } 3282 3283 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) 3284 { 3285 struct drm_i915_private *dev_priv = to_i915(dev); 3286 unsigned long irqflags; 3287 3288 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3289 i915_disable_pipestat(dev_priv, pipe, 3290 PIPE_START_VBLANK_INTERRUPT_STATUS); 3291 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3292 } 3293 3294 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) 3295 { 3296 struct drm_i915_private *dev_priv = to_i915(dev); 3297 unsigned long irqflags; 3298 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 3299 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 3300 3301 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3302 ilk_disable_display_irq(dev_priv, bit); 3303 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3304 } 3305 3306 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) 3307 { 3308 struct drm_i915_private *dev_priv = to_i915(dev); 3309 unsigned long irqflags; 3310 3311 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 3312 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 3313 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 3314 } 3315 3316 static void i945gm_vblank_work_func(struct work_struct *work) 3317 { 3318 struct drm_i915_private *dev_priv = 3319 container_of(work, struct drm_i915_private, i945gm_vblank.work); 3320 3321 /* 3322 * Vblank interrupts fail to wake up the device from C3, 3323 * hence we want to prevent C3 usage while vblank interrupts 3324 * are enabled. 3325 */ 3326 pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos, 3327 READ_ONCE(dev_priv->i945gm_vblank.enabled) ? 3328 dev_priv->i945gm_vblank.c3_disable_latency : 3329 PM_QOS_DEFAULT_VALUE); 3330 } 3331 3332 static int cstate_disable_latency(const char *name) 3333 { 3334 const struct cpuidle_driver *drv; 3335 int i; 3336 3337 drv = cpuidle_get_driver(); 3338 if (!drv) 3339 return 0; 3340 3341 for (i = 0; i < drv->state_count; i++) { 3342 const struct cpuidle_state *state = &drv->states[i]; 3343 3344 if (!strcmp(state->name, name)) 3345 return state->exit_latency ? 3346 state->exit_latency - 1 : 0; 3347 } 3348 3349 return 0; 3350 } 3351 3352 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv) 3353 { 3354 INIT_WORK(&dev_priv->i945gm_vblank.work, 3355 i945gm_vblank_work_func); 3356 3357 dev_priv->i945gm_vblank.c3_disable_latency = 3358 cstate_disable_latency("C3"); 3359 pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos, 3360 PM_QOS_CPU_DMA_LATENCY, 3361 PM_QOS_DEFAULT_VALUE); 3362 } 3363 3364 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv) 3365 { 3366 cancel_work_sync(&dev_priv->i945gm_vblank.work); 3367 pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos); 3368 } 3369 3370 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 3371 { 3372 struct intel_uncore *uncore = &dev_priv->uncore; 3373 3374 if (HAS_PCH_NOP(dev_priv)) 3375 return; 3376 3377 GEN3_IRQ_RESET(uncore, SDE); 3378 3379 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3380 I915_WRITE(SERR_INT, 0xffffffff); 3381 } 3382 3383 /* 3384 * SDEIER is also touched by the interrupt handler to work around missed PCH 3385 * interrupts. Hence we can't update it after the interrupt handler is enabled - 3386 * instead we unconditionally enable all PCH interrupt sources here, but then 3387 * only unmask them as needed with SDEIMR. 3388 * 3389 * This function needs to be called before interrupts are enabled. 3390 */ 3391 static void ibx_irq_pre_postinstall(struct drm_device *dev) 3392 { 3393 struct drm_i915_private *dev_priv = to_i915(dev); 3394 3395 if (HAS_PCH_NOP(dev_priv)) 3396 return; 3397 3398 WARN_ON(I915_READ(SDEIER) != 0); 3399 I915_WRITE(SDEIER, 0xffffffff); 3400 POSTING_READ(SDEIER); 3401 } 3402 3403 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) 3404 { 3405 struct intel_uncore *uncore = &dev_priv->uncore; 3406 3407 GEN3_IRQ_RESET(uncore, GT); 3408 if (INTEL_GEN(dev_priv) >= 6) 3409 GEN3_IRQ_RESET(uncore, GEN6_PM); 3410 } 3411 3412 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 3413 { 3414 struct intel_uncore *uncore = &dev_priv->uncore; 3415 3416 if (IS_CHERRYVIEW(dev_priv)) 3417 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 3418 else 3419 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); 3420 3421 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 3422 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3423 3424 i9xx_pipestat_irq_reset(dev_priv); 3425 3426 GEN3_IRQ_RESET(uncore, VLV_); 3427 dev_priv->irq_mask = ~0u; 3428 } 3429 3430 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 3431 { 3432 struct intel_uncore *uncore = &dev_priv->uncore; 3433 3434 u32 pipestat_mask; 3435 u32 enable_mask; 3436 enum pipe pipe; 3437 3438 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 3439 3440 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3441 for_each_pipe(dev_priv, pipe) 3442 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 3443 3444 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 3445 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3446 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3447 I915_LPE_PIPE_A_INTERRUPT | 3448 I915_LPE_PIPE_B_INTERRUPT; 3449 3450 if (IS_CHERRYVIEW(dev_priv)) 3451 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 3452 I915_LPE_PIPE_C_INTERRUPT; 3453 3454 WARN_ON(dev_priv->irq_mask != ~0u); 3455 3456 dev_priv->irq_mask = ~enable_mask; 3457 3458 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 3459 } 3460 3461 /* drm_dma.h hooks 3462 */ 3463 static void ironlake_irq_reset(struct drm_device *dev) 3464 { 3465 struct drm_i915_private *dev_priv = to_i915(dev); 3466 struct intel_uncore *uncore = &dev_priv->uncore; 3467 3468 GEN3_IRQ_RESET(uncore, DE); 3469 if (IS_GEN(dev_priv, 7)) 3470 I915_WRITE(GEN7_ERR_INT, 0xffffffff); 3471 3472 if (IS_HASWELL(dev_priv)) { 3473 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3474 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3475 } 3476 3477 gen5_gt_irq_reset(dev_priv); 3478 3479 ibx_irq_reset(dev_priv); 3480 } 3481 3482 static void valleyview_irq_reset(struct drm_device *dev) 3483 { 3484 struct drm_i915_private *dev_priv = to_i915(dev); 3485 3486 I915_WRITE(VLV_MASTER_IER, 0); 3487 POSTING_READ(VLV_MASTER_IER); 3488 3489 gen5_gt_irq_reset(dev_priv); 3490 3491 spin_lock_irq(&dev_priv->irq_lock); 3492 if (dev_priv->display_irqs_enabled) 3493 vlv_display_irq_reset(dev_priv); 3494 spin_unlock_irq(&dev_priv->irq_lock); 3495 } 3496 3497 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) 3498 { 3499 struct intel_uncore *uncore = &dev_priv->uncore; 3500 3501 GEN8_IRQ_RESET_NDX(uncore, GT, 0); 3502 GEN8_IRQ_RESET_NDX(uncore, GT, 1); 3503 GEN8_IRQ_RESET_NDX(uncore, GT, 2); 3504 GEN8_IRQ_RESET_NDX(uncore, GT, 3); 3505 } 3506 3507 static void gen8_irq_reset(struct drm_device *dev) 3508 { 3509 struct drm_i915_private *dev_priv = to_i915(dev); 3510 struct intel_uncore *uncore = &dev_priv->uncore; 3511 int pipe; 3512 3513 gen8_master_intr_disable(dev_priv->uncore.regs); 3514 3515 gen8_gt_irq_reset(dev_priv); 3516 3517 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3518 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3519 3520 for_each_pipe(dev_priv, pipe) 3521 if (intel_display_power_is_enabled(dev_priv, 3522 POWER_DOMAIN_PIPE(pipe))) 3523 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3524 3525 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3526 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3527 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3528 3529 if (HAS_PCH_SPLIT(dev_priv)) 3530 ibx_irq_reset(dev_priv); 3531 } 3532 3533 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv) 3534 { 3535 /* Disable RCS, BCS, VCS and VECS class engines. */ 3536 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0); 3537 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0); 3538 3539 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ 3540 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0); 3541 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0); 3542 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0); 3543 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0); 3544 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0); 3545 3546 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 3547 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 3548 } 3549 3550 static void gen11_irq_reset(struct drm_device *dev) 3551 { 3552 struct drm_i915_private *dev_priv = dev->dev_private; 3553 struct intel_uncore *uncore = &dev_priv->uncore; 3554 int pipe; 3555 3556 gen11_master_intr_disable(dev_priv->uncore.regs); 3557 3558 gen11_gt_irq_reset(dev_priv); 3559 3560 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0); 3561 3562 I915_WRITE(EDP_PSR_IMR, 0xffffffff); 3563 I915_WRITE(EDP_PSR_IIR, 0xffffffff); 3564 3565 for_each_pipe(dev_priv, pipe) 3566 if (intel_display_power_is_enabled(dev_priv, 3567 POWER_DOMAIN_PIPE(pipe))) 3568 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3569 3570 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 3571 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 3572 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 3573 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 3574 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3575 3576 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3577 GEN3_IRQ_RESET(uncore, SDE); 3578 } 3579 3580 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 3581 u8 pipe_mask) 3582 { 3583 struct intel_uncore *uncore = &dev_priv->uncore; 3584 3585 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 3586 enum pipe pipe; 3587 3588 spin_lock_irq(&dev_priv->irq_lock); 3589 3590 if (!intel_irqs_enabled(dev_priv)) { 3591 spin_unlock_irq(&dev_priv->irq_lock); 3592 return; 3593 } 3594 3595 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3596 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3597 dev_priv->de_irq_mask[pipe], 3598 ~dev_priv->de_irq_mask[pipe] | extra_ier); 3599 3600 spin_unlock_irq(&dev_priv->irq_lock); 3601 } 3602 3603 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 3604 u8 pipe_mask) 3605 { 3606 struct intel_uncore *uncore = &dev_priv->uncore; 3607 enum pipe pipe; 3608 3609 spin_lock_irq(&dev_priv->irq_lock); 3610 3611 if (!intel_irqs_enabled(dev_priv)) { 3612 spin_unlock_irq(&dev_priv->irq_lock); 3613 return; 3614 } 3615 3616 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 3617 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 3618 3619 spin_unlock_irq(&dev_priv->irq_lock); 3620 3621 /* make sure we're done processing display irqs */ 3622 synchronize_irq(dev_priv->drm.irq); 3623 } 3624 3625 static void cherryview_irq_reset(struct drm_device *dev) 3626 { 3627 struct drm_i915_private *dev_priv = to_i915(dev); 3628 struct intel_uncore *uncore = &dev_priv->uncore; 3629 3630 I915_WRITE(GEN8_MASTER_IRQ, 0); 3631 POSTING_READ(GEN8_MASTER_IRQ); 3632 3633 gen8_gt_irq_reset(dev_priv); 3634 3635 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 3636 3637 spin_lock_irq(&dev_priv->irq_lock); 3638 if (dev_priv->display_irqs_enabled) 3639 vlv_display_irq_reset(dev_priv); 3640 spin_unlock_irq(&dev_priv->irq_lock); 3641 } 3642 3643 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 3644 const u32 hpd[HPD_NUM_PINS]) 3645 { 3646 struct intel_encoder *encoder; 3647 u32 enabled_irqs = 0; 3648 3649 for_each_intel_encoder(&dev_priv->drm, encoder) 3650 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 3651 enabled_irqs |= hpd[encoder->hpd_pin]; 3652 3653 return enabled_irqs; 3654 } 3655 3656 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 3657 { 3658 u32 hotplug; 3659 3660 /* 3661 * Enable digital hotplug on the PCH, and configure the DP short pulse 3662 * duration to 2ms (which is the minimum in the Display Port spec). 3663 * The pulse duration bits are reserved on LPT+. 3664 */ 3665 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3666 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 3667 PORTC_PULSE_DURATION_MASK | 3668 PORTD_PULSE_DURATION_MASK); 3669 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 3670 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 3671 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 3672 /* 3673 * When CPU and PCH are on the same package, port A 3674 * HPD must be enabled in both north and south. 3675 */ 3676 if (HAS_PCH_LPT_LP(dev_priv)) 3677 hotplug |= PORTA_HOTPLUG_ENABLE; 3678 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3679 } 3680 3681 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 3682 { 3683 u32 hotplug_irqs, enabled_irqs; 3684 3685 if (HAS_PCH_IBX(dev_priv)) { 3686 hotplug_irqs = SDE_HOTPLUG_MASK; 3687 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 3688 } else { 3689 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 3690 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 3691 } 3692 3693 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3694 3695 ibx_hpd_detection_setup(dev_priv); 3696 } 3697 3698 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv) 3699 { 3700 u32 hotplug; 3701 3702 hotplug = I915_READ(SHOTPLUG_CTL_DDI); 3703 hotplug |= ICP_DDIA_HPD_ENABLE | 3704 ICP_DDIB_HPD_ENABLE; 3705 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); 3706 3707 hotplug = I915_READ(SHOTPLUG_CTL_TC); 3708 hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) | 3709 ICP_TC_HPD_ENABLE(PORT_TC2) | 3710 ICP_TC_HPD_ENABLE(PORT_TC3) | 3711 ICP_TC_HPD_ENABLE(PORT_TC4); 3712 I915_WRITE(SHOTPLUG_CTL_TC, hotplug); 3713 } 3714 3715 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3716 { 3717 u32 hotplug_irqs, enabled_irqs; 3718 3719 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP; 3720 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp); 3721 3722 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3723 3724 icp_hpd_detection_setup(dev_priv); 3725 } 3726 3727 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv) 3728 { 3729 u32 hotplug; 3730 3731 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); 3732 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3733 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3734 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3735 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3736 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); 3737 3738 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); 3739 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3740 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3741 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3742 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3743 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); 3744 } 3745 3746 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3747 { 3748 u32 hotplug_irqs, enabled_irqs; 3749 u32 val; 3750 3751 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11); 3752 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK; 3753 3754 val = I915_READ(GEN11_DE_HPD_IMR); 3755 val &= ~hotplug_irqs; 3756 I915_WRITE(GEN11_DE_HPD_IMR, val); 3757 POSTING_READ(GEN11_DE_HPD_IMR); 3758 3759 gen11_hpd_detection_setup(dev_priv); 3760 3761 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3762 icp_hpd_irq_setup(dev_priv); 3763 } 3764 3765 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3766 { 3767 u32 val, hotplug; 3768 3769 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3770 if (HAS_PCH_CNP(dev_priv)) { 3771 val = I915_READ(SOUTH_CHICKEN1); 3772 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3773 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3774 I915_WRITE(SOUTH_CHICKEN1, val); 3775 } 3776 3777 /* Enable digital hotplug on the PCH */ 3778 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3779 hotplug |= PORTA_HOTPLUG_ENABLE | 3780 PORTB_HOTPLUG_ENABLE | 3781 PORTC_HOTPLUG_ENABLE | 3782 PORTD_HOTPLUG_ENABLE; 3783 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3784 3785 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3786 hotplug |= PORTE_HOTPLUG_ENABLE; 3787 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3788 } 3789 3790 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3791 { 3792 u32 hotplug_irqs, enabled_irqs; 3793 3794 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3795 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3796 3797 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3798 3799 spt_hpd_detection_setup(dev_priv); 3800 } 3801 3802 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3803 { 3804 u32 hotplug; 3805 3806 /* 3807 * Enable digital hotplug on the CPU, and configure the DP short pulse 3808 * duration to 2ms (which is the minimum in the Display Port spec) 3809 * The pulse duration bits are reserved on HSW+. 3810 */ 3811 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3812 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3813 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3814 DIGITAL_PORTA_PULSE_DURATION_2ms; 3815 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3816 } 3817 3818 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3819 { 3820 u32 hotplug_irqs, enabled_irqs; 3821 3822 if (INTEL_GEN(dev_priv) >= 8) { 3823 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3824 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3825 3826 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3827 } else if (INTEL_GEN(dev_priv) >= 7) { 3828 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3829 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3830 3831 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3832 } else { 3833 hotplug_irqs = DE_DP_A_HOTPLUG; 3834 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3835 3836 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3837 } 3838 3839 ilk_hpd_detection_setup(dev_priv); 3840 3841 ibx_hpd_irq_setup(dev_priv); 3842 } 3843 3844 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3845 u32 enabled_irqs) 3846 { 3847 u32 hotplug; 3848 3849 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3850 hotplug |= PORTA_HOTPLUG_ENABLE | 3851 PORTB_HOTPLUG_ENABLE | 3852 PORTC_HOTPLUG_ENABLE; 3853 3854 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", 3855 hotplug, enabled_irqs); 3856 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3857 3858 /* 3859 * For BXT invert bit has to be set based on AOB design 3860 * for HPD detection logic, update it based on VBT fields. 3861 */ 3862 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3863 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3864 hotplug |= BXT_DDIA_HPD_INVERT; 3865 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3866 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3867 hotplug |= BXT_DDIB_HPD_INVERT; 3868 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3869 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3870 hotplug |= BXT_DDIC_HPD_INVERT; 3871 3872 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3873 } 3874 3875 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3876 { 3877 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3878 } 3879 3880 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3881 { 3882 u32 hotplug_irqs, enabled_irqs; 3883 3884 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3885 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3886 3887 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3888 3889 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3890 } 3891 3892 static void ibx_irq_postinstall(struct drm_device *dev) 3893 { 3894 struct drm_i915_private *dev_priv = to_i915(dev); 3895 u32 mask; 3896 3897 if (HAS_PCH_NOP(dev_priv)) 3898 return; 3899 3900 if (HAS_PCH_IBX(dev_priv)) 3901 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3902 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3903 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3904 else 3905 mask = SDE_GMBUS_CPT; 3906 3907 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3908 I915_WRITE(SDEIMR, ~mask); 3909 3910 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3911 HAS_PCH_LPT(dev_priv)) 3912 ibx_hpd_detection_setup(dev_priv); 3913 else 3914 spt_hpd_detection_setup(dev_priv); 3915 } 3916 3917 static void gen5_gt_irq_postinstall(struct drm_device *dev) 3918 { 3919 struct drm_i915_private *dev_priv = to_i915(dev); 3920 struct intel_uncore *uncore = &dev_priv->uncore; 3921 u32 pm_irqs, gt_irqs; 3922 3923 pm_irqs = gt_irqs = 0; 3924 3925 dev_priv->gt_irq_mask = ~0; 3926 if (HAS_L3_DPF(dev_priv)) { 3927 /* L3 parity interrupt is always unmasked. */ 3928 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); 3929 gt_irqs |= GT_PARITY_ERROR(dev_priv); 3930 } 3931 3932 gt_irqs |= GT_RENDER_USER_INTERRUPT; 3933 if (IS_GEN(dev_priv, 5)) { 3934 gt_irqs |= ILK_BSD_USER_INTERRUPT; 3935 } else { 3936 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; 3937 } 3938 3939 GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs); 3940 3941 if (INTEL_GEN(dev_priv) >= 6) { 3942 /* 3943 * RPS interrupts will get enabled/disabled on demand when RPS 3944 * itself is enabled/disabled. 3945 */ 3946 if (HAS_ENGINE(dev_priv, VECS0)) { 3947 pm_irqs |= PM_VEBOX_USER_INTERRUPT; 3948 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; 3949 } 3950 3951 dev_priv->pm_imr = 0xffffffff; 3952 GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs); 3953 } 3954 } 3955 3956 static int ironlake_irq_postinstall(struct drm_device *dev) 3957 { 3958 struct drm_i915_private *dev_priv = to_i915(dev); 3959 struct intel_uncore *uncore = &dev_priv->uncore; 3960 u32 display_mask, extra_mask; 3961 3962 if (INTEL_GEN(dev_priv) >= 7) { 3963 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3964 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3965 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3966 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3967 DE_DP_A_HOTPLUG_IVB); 3968 } else { 3969 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3970 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3971 DE_PIPEA_CRC_DONE | DE_POISON); 3972 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3973 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3974 DE_DP_A_HOTPLUG); 3975 } 3976 3977 if (IS_HASWELL(dev_priv)) { 3978 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3979 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 3980 display_mask |= DE_EDP_PSR_INT_HSW; 3981 } 3982 3983 dev_priv->irq_mask = ~display_mask; 3984 3985 ibx_irq_pre_postinstall(dev); 3986 3987 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3988 display_mask | extra_mask); 3989 3990 gen5_gt_irq_postinstall(dev); 3991 3992 ilk_hpd_detection_setup(dev_priv); 3993 3994 ibx_irq_postinstall(dev); 3995 3996 if (IS_IRONLAKE_M(dev_priv)) { 3997 /* Enable PCU event interrupts 3998 * 3999 * spinlocking not required here for correctness since interrupt 4000 * setup is guaranteed to run in single-threaded context. But we 4001 * need it to make the assert_spin_locked happy. */ 4002 spin_lock_irq(&dev_priv->irq_lock); 4003 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 4004 spin_unlock_irq(&dev_priv->irq_lock); 4005 } 4006 4007 return 0; 4008 } 4009 4010 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 4011 { 4012 lockdep_assert_held(&dev_priv->irq_lock); 4013 4014 if (dev_priv->display_irqs_enabled) 4015 return; 4016 4017 dev_priv->display_irqs_enabled = true; 4018 4019 if (intel_irqs_enabled(dev_priv)) { 4020 vlv_display_irq_reset(dev_priv); 4021 vlv_display_irq_postinstall(dev_priv); 4022 } 4023 } 4024 4025 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 4026 { 4027 lockdep_assert_held(&dev_priv->irq_lock); 4028 4029 if (!dev_priv->display_irqs_enabled) 4030 return; 4031 4032 dev_priv->display_irqs_enabled = false; 4033 4034 if (intel_irqs_enabled(dev_priv)) 4035 vlv_display_irq_reset(dev_priv); 4036 } 4037 4038 4039 static int valleyview_irq_postinstall(struct drm_device *dev) 4040 { 4041 struct drm_i915_private *dev_priv = to_i915(dev); 4042 4043 gen5_gt_irq_postinstall(dev); 4044 4045 spin_lock_irq(&dev_priv->irq_lock); 4046 if (dev_priv->display_irqs_enabled) 4047 vlv_display_irq_postinstall(dev_priv); 4048 spin_unlock_irq(&dev_priv->irq_lock); 4049 4050 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 4051 POSTING_READ(VLV_MASTER_IER); 4052 4053 return 0; 4054 } 4055 4056 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) 4057 { 4058 struct intel_uncore *uncore = &dev_priv->uncore; 4059 4060 /* These are interrupts we'll toggle with the ring mask register */ 4061 u32 gt_interrupts[] = { 4062 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 4063 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 4064 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | 4065 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT), 4066 4067 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | 4068 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | 4069 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | 4070 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT), 4071 4072 0, 4073 4074 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | 4075 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT) 4076 }; 4077 4078 dev_priv->pm_ier = 0x0; 4079 dev_priv->pm_imr = ~dev_priv->pm_ier; 4080 GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]); 4081 GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]); 4082 /* 4083 * RPS interrupts will get enabled/disabled on demand when RPS itself 4084 * is enabled/disabled. Same wil be the case for GuC interrupts. 4085 */ 4086 GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); 4087 GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]); 4088 } 4089 4090 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 4091 { 4092 struct intel_uncore *uncore = &dev_priv->uncore; 4093 4094 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; 4095 u32 de_pipe_enables; 4096 u32 de_port_masked = GEN8_AUX_CHANNEL_A; 4097 u32 de_port_enables; 4098 u32 de_misc_masked = GEN8_DE_EDP_PSR; 4099 enum pipe pipe; 4100 4101 if (INTEL_GEN(dev_priv) <= 10) 4102 de_misc_masked |= GEN8_DE_MISC_GSE; 4103 4104 if (INTEL_GEN(dev_priv) >= 9) { 4105 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 4106 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | 4107 GEN9_AUX_CHANNEL_D; 4108 if (IS_GEN9_LP(dev_priv)) 4109 de_port_masked |= BXT_DE_PORT_GMBUS; 4110 } else { 4111 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 4112 } 4113 4114 if (INTEL_GEN(dev_priv) >= 11) 4115 de_port_masked |= ICL_AUX_CHANNEL_E; 4116 4117 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11) 4118 de_port_masked |= CNL_AUX_CHANNEL_F; 4119 4120 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 4121 GEN8_PIPE_FIFO_UNDERRUN; 4122 4123 de_port_enables = de_port_masked; 4124 if (IS_GEN9_LP(dev_priv)) 4125 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 4126 else if (IS_BROADWELL(dev_priv)) 4127 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 4128 4129 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 4130 intel_psr_irq_control(dev_priv, dev_priv->psr.debug); 4131 4132 for_each_pipe(dev_priv, pipe) { 4133 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 4134 4135 if (intel_display_power_is_enabled(dev_priv, 4136 POWER_DOMAIN_PIPE(pipe))) 4137 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 4138 dev_priv->de_irq_mask[pipe], 4139 de_pipe_enables); 4140 } 4141 4142 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 4143 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 4144 4145 if (INTEL_GEN(dev_priv) >= 11) { 4146 u32 de_hpd_masked = 0; 4147 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 4148 GEN11_DE_TBT_HOTPLUG_MASK; 4149 4150 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 4151 de_hpd_enables); 4152 gen11_hpd_detection_setup(dev_priv); 4153 } else if (IS_GEN9_LP(dev_priv)) { 4154 bxt_hpd_detection_setup(dev_priv); 4155 } else if (IS_BROADWELL(dev_priv)) { 4156 ilk_hpd_detection_setup(dev_priv); 4157 } 4158 } 4159 4160 static int gen8_irq_postinstall(struct drm_device *dev) 4161 { 4162 struct drm_i915_private *dev_priv = to_i915(dev); 4163 4164 if (HAS_PCH_SPLIT(dev_priv)) 4165 ibx_irq_pre_postinstall(dev); 4166 4167 gen8_gt_irq_postinstall(dev_priv); 4168 gen8_de_irq_postinstall(dev_priv); 4169 4170 if (HAS_PCH_SPLIT(dev_priv)) 4171 ibx_irq_postinstall(dev); 4172 4173 gen8_master_intr_enable(dev_priv->uncore.regs); 4174 4175 return 0; 4176 } 4177 4178 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv) 4179 { 4180 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT; 4181 4182 BUILD_BUG_ON(irqs & 0xffff0000); 4183 4184 /* Enable RCS, BCS, VCS and VECS class interrupts. */ 4185 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs); 4186 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs); 4187 4188 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ 4189 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16)); 4190 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16)); 4191 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16)); 4192 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16)); 4193 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16)); 4194 4195 /* 4196 * RPS interrupts will get enabled/disabled on demand when RPS itself 4197 * is enabled/disabled. 4198 */ 4199 dev_priv->pm_ier = 0x0; 4200 dev_priv->pm_imr = ~dev_priv->pm_ier; 4201 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); 4202 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); 4203 } 4204 4205 static void icp_irq_postinstall(struct drm_device *dev) 4206 { 4207 struct drm_i915_private *dev_priv = to_i915(dev); 4208 u32 mask = SDE_GMBUS_ICP; 4209 4210 WARN_ON(I915_READ(SDEIER) != 0); 4211 I915_WRITE(SDEIER, 0xffffffff); 4212 POSTING_READ(SDEIER); 4213 4214 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 4215 I915_WRITE(SDEIMR, ~mask); 4216 4217 icp_hpd_detection_setup(dev_priv); 4218 } 4219 4220 static int gen11_irq_postinstall(struct drm_device *dev) 4221 { 4222 struct drm_i915_private *dev_priv = dev->dev_private; 4223 struct intel_uncore *uncore = &dev_priv->uncore; 4224 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 4225 4226 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 4227 icp_irq_postinstall(dev); 4228 4229 gen11_gt_irq_postinstall(dev_priv); 4230 gen8_de_irq_postinstall(dev_priv); 4231 4232 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 4233 4234 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 4235 4236 gen11_master_intr_enable(dev_priv->uncore.regs); 4237 POSTING_READ(GEN11_GFX_MSTR_IRQ); 4238 4239 return 0; 4240 } 4241 4242 static int cherryview_irq_postinstall(struct drm_device *dev) 4243 { 4244 struct drm_i915_private *dev_priv = to_i915(dev); 4245 4246 gen8_gt_irq_postinstall(dev_priv); 4247 4248 spin_lock_irq(&dev_priv->irq_lock); 4249 if (dev_priv->display_irqs_enabled) 4250 vlv_display_irq_postinstall(dev_priv); 4251 spin_unlock_irq(&dev_priv->irq_lock); 4252 4253 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 4254 POSTING_READ(GEN8_MASTER_IRQ); 4255 4256 return 0; 4257 } 4258 4259 static void i8xx_irq_reset(struct drm_device *dev) 4260 { 4261 struct drm_i915_private *dev_priv = to_i915(dev); 4262 struct intel_uncore *uncore = &dev_priv->uncore; 4263 4264 i9xx_pipestat_irq_reset(dev_priv); 4265 4266 GEN2_IRQ_RESET(uncore); 4267 } 4268 4269 static int i8xx_irq_postinstall(struct drm_device *dev) 4270 { 4271 struct drm_i915_private *dev_priv = to_i915(dev); 4272 struct intel_uncore *uncore = &dev_priv->uncore; 4273 u16 enable_mask; 4274 4275 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | 4276 I915_ERROR_MEMORY_REFRESH)); 4277 4278 /* Unmask the interrupts that we always want on. */ 4279 dev_priv->irq_mask = 4280 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4281 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4282 I915_MASTER_ERROR_INTERRUPT); 4283 4284 enable_mask = 4285 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4286 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4287 I915_MASTER_ERROR_INTERRUPT | 4288 I915_USER_INTERRUPT; 4289 4290 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 4291 4292 /* Interrupt setup is already guaranteed to be single-threaded, this is 4293 * just to make the assert_spin_locked check happy. */ 4294 spin_lock_irq(&dev_priv->irq_lock); 4295 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4296 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4297 spin_unlock_irq(&dev_priv->irq_lock); 4298 4299 return 0; 4300 } 4301 4302 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv, 4303 u16 *eir, u16 *eir_stuck) 4304 { 4305 u16 emr; 4306 4307 *eir = I915_READ16(EIR); 4308 4309 if (*eir) 4310 I915_WRITE16(EIR, *eir); 4311 4312 *eir_stuck = I915_READ16(EIR); 4313 if (*eir_stuck == 0) 4314 return; 4315 4316 /* 4317 * Toggle all EMR bits to make sure we get an edge 4318 * in the ISR master error bit if we don't clear 4319 * all the EIR bits. Otherwise the edge triggered 4320 * IIR on i965/g4x wouldn't notice that an interrupt 4321 * is still pending. Also some EIR bits can't be 4322 * cleared except by handling the underlying error 4323 * (or by a GPU reset) so we mask any bit that 4324 * remains set. 4325 */ 4326 emr = I915_READ16(EMR); 4327 I915_WRITE16(EMR, 0xffff); 4328 I915_WRITE16(EMR, emr | *eir_stuck); 4329 } 4330 4331 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 4332 u16 eir, u16 eir_stuck) 4333 { 4334 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 4335 4336 if (eir_stuck) 4337 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck); 4338 } 4339 4340 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 4341 u32 *eir, u32 *eir_stuck) 4342 { 4343 u32 emr; 4344 4345 *eir = I915_READ(EIR); 4346 4347 I915_WRITE(EIR, *eir); 4348 4349 *eir_stuck = I915_READ(EIR); 4350 if (*eir_stuck == 0) 4351 return; 4352 4353 /* 4354 * Toggle all EMR bits to make sure we get an edge 4355 * in the ISR master error bit if we don't clear 4356 * all the EIR bits. Otherwise the edge triggered 4357 * IIR on i965/g4x wouldn't notice that an interrupt 4358 * is still pending. Also some EIR bits can't be 4359 * cleared except by handling the underlying error 4360 * (or by a GPU reset) so we mask any bit that 4361 * remains set. 4362 */ 4363 emr = I915_READ(EMR); 4364 I915_WRITE(EMR, 0xffffffff); 4365 I915_WRITE(EMR, emr | *eir_stuck); 4366 } 4367 4368 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 4369 u32 eir, u32 eir_stuck) 4370 { 4371 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 4372 4373 if (eir_stuck) 4374 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck); 4375 } 4376 4377 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 4378 { 4379 struct drm_device *dev = arg; 4380 struct drm_i915_private *dev_priv = to_i915(dev); 4381 irqreturn_t ret = IRQ_NONE; 4382 4383 if (!intel_irqs_enabled(dev_priv)) 4384 return IRQ_NONE; 4385 4386 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4387 disable_rpm_wakeref_asserts(dev_priv); 4388 4389 do { 4390 u32 pipe_stats[I915_MAX_PIPES] = {}; 4391 u16 eir = 0, eir_stuck = 0; 4392 u16 iir; 4393 4394 iir = I915_READ16(GEN2_IIR); 4395 if (iir == 0) 4396 break; 4397 4398 ret = IRQ_HANDLED; 4399 4400 /* Call regardless, as some status bits might not be 4401 * signalled in iir */ 4402 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4403 4404 if (iir & I915_MASTER_ERROR_INTERRUPT) 4405 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4406 4407 I915_WRITE16(GEN2_IIR, iir); 4408 4409 if (iir & I915_USER_INTERRUPT) 4410 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4411 4412 if (iir & I915_MASTER_ERROR_INTERRUPT) 4413 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 4414 4415 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4416 } while (0); 4417 4418 enable_rpm_wakeref_asserts(dev_priv); 4419 4420 return ret; 4421 } 4422 4423 static void i915_irq_reset(struct drm_device *dev) 4424 { 4425 struct drm_i915_private *dev_priv = to_i915(dev); 4426 struct intel_uncore *uncore = &dev_priv->uncore; 4427 4428 if (I915_HAS_HOTPLUG(dev_priv)) { 4429 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4430 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4431 } 4432 4433 i9xx_pipestat_irq_reset(dev_priv); 4434 4435 GEN3_IRQ_RESET(uncore, GEN2_); 4436 } 4437 4438 static int i915_irq_postinstall(struct drm_device *dev) 4439 { 4440 struct drm_i915_private *dev_priv = to_i915(dev); 4441 struct intel_uncore *uncore = &dev_priv->uncore; 4442 u32 enable_mask; 4443 4444 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 4445 I915_ERROR_MEMORY_REFRESH)); 4446 4447 /* Unmask the interrupts that we always want on. */ 4448 dev_priv->irq_mask = 4449 ~(I915_ASLE_INTERRUPT | 4450 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4451 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4452 I915_MASTER_ERROR_INTERRUPT); 4453 4454 enable_mask = 4455 I915_ASLE_INTERRUPT | 4456 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4457 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4458 I915_MASTER_ERROR_INTERRUPT | 4459 I915_USER_INTERRUPT; 4460 4461 if (I915_HAS_HOTPLUG(dev_priv)) { 4462 /* Enable in IER... */ 4463 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 4464 /* and unmask in IMR */ 4465 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 4466 } 4467 4468 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4469 4470 /* Interrupt setup is already guaranteed to be single-threaded, this is 4471 * just to make the assert_spin_locked check happy. */ 4472 spin_lock_irq(&dev_priv->irq_lock); 4473 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4474 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4475 spin_unlock_irq(&dev_priv->irq_lock); 4476 4477 i915_enable_asle_pipestat(dev_priv); 4478 4479 return 0; 4480 } 4481 4482 static irqreturn_t i915_irq_handler(int irq, void *arg) 4483 { 4484 struct drm_device *dev = arg; 4485 struct drm_i915_private *dev_priv = to_i915(dev); 4486 irqreturn_t ret = IRQ_NONE; 4487 4488 if (!intel_irqs_enabled(dev_priv)) 4489 return IRQ_NONE; 4490 4491 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4492 disable_rpm_wakeref_asserts(dev_priv); 4493 4494 do { 4495 u32 pipe_stats[I915_MAX_PIPES] = {}; 4496 u32 eir = 0, eir_stuck = 0; 4497 u32 hotplug_status = 0; 4498 u32 iir; 4499 4500 iir = I915_READ(GEN2_IIR); 4501 if (iir == 0) 4502 break; 4503 4504 ret = IRQ_HANDLED; 4505 4506 if (I915_HAS_HOTPLUG(dev_priv) && 4507 iir & I915_DISPLAY_PORT_INTERRUPT) 4508 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4509 4510 /* Call regardless, as some status bits might not be 4511 * signalled in iir */ 4512 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4513 4514 if (iir & I915_MASTER_ERROR_INTERRUPT) 4515 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4516 4517 I915_WRITE(GEN2_IIR, iir); 4518 4519 if (iir & I915_USER_INTERRUPT) 4520 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4521 4522 if (iir & I915_MASTER_ERROR_INTERRUPT) 4523 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4524 4525 if (hotplug_status) 4526 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4527 4528 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4529 } while (0); 4530 4531 enable_rpm_wakeref_asserts(dev_priv); 4532 4533 return ret; 4534 } 4535 4536 static void i965_irq_reset(struct drm_device *dev) 4537 { 4538 struct drm_i915_private *dev_priv = to_i915(dev); 4539 struct intel_uncore *uncore = &dev_priv->uncore; 4540 4541 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 4542 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 4543 4544 i9xx_pipestat_irq_reset(dev_priv); 4545 4546 GEN3_IRQ_RESET(uncore, GEN2_); 4547 } 4548 4549 static int i965_irq_postinstall(struct drm_device *dev) 4550 { 4551 struct drm_i915_private *dev_priv = to_i915(dev); 4552 struct intel_uncore *uncore = &dev_priv->uncore; 4553 u32 enable_mask; 4554 u32 error_mask; 4555 4556 /* 4557 * Enable some error detection, note the instruction error mask 4558 * bit is reserved, so we leave it masked. 4559 */ 4560 if (IS_G4X(dev_priv)) { 4561 error_mask = ~(GM45_ERROR_PAGE_TABLE | 4562 GM45_ERROR_MEM_PRIV | 4563 GM45_ERROR_CP_PRIV | 4564 I915_ERROR_MEMORY_REFRESH); 4565 } else { 4566 error_mask = ~(I915_ERROR_PAGE_TABLE | 4567 I915_ERROR_MEMORY_REFRESH); 4568 } 4569 I915_WRITE(EMR, error_mask); 4570 4571 /* Unmask the interrupts that we always want on. */ 4572 dev_priv->irq_mask = 4573 ~(I915_ASLE_INTERRUPT | 4574 I915_DISPLAY_PORT_INTERRUPT | 4575 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4576 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4577 I915_MASTER_ERROR_INTERRUPT); 4578 4579 enable_mask = 4580 I915_ASLE_INTERRUPT | 4581 I915_DISPLAY_PORT_INTERRUPT | 4582 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 4583 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 4584 I915_MASTER_ERROR_INTERRUPT | 4585 I915_USER_INTERRUPT; 4586 4587 if (IS_G4X(dev_priv)) 4588 enable_mask |= I915_BSD_USER_INTERRUPT; 4589 4590 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 4591 4592 /* Interrupt setup is already guaranteed to be single-threaded, this is 4593 * just to make the assert_spin_locked check happy. */ 4594 spin_lock_irq(&dev_priv->irq_lock); 4595 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 4596 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 4597 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 4598 spin_unlock_irq(&dev_priv->irq_lock); 4599 4600 i915_enable_asle_pipestat(dev_priv); 4601 4602 return 0; 4603 } 4604 4605 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 4606 { 4607 u32 hotplug_en; 4608 4609 lockdep_assert_held(&dev_priv->irq_lock); 4610 4611 /* Note HDMI and DP share hotplug bits */ 4612 /* enable bits are the same for all generations */ 4613 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 4614 /* Programming the CRT detection parameters tends 4615 to generate a spurious hotplug event about three 4616 seconds later. So just do it once. 4617 */ 4618 if (IS_G4X(dev_priv)) 4619 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 4620 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 4621 4622 /* Ignore TV since it's buggy */ 4623 i915_hotplug_interrupt_update_locked(dev_priv, 4624 HOTPLUG_INT_EN_MASK | 4625 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 4626 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 4627 hotplug_en); 4628 } 4629 4630 static irqreturn_t i965_irq_handler(int irq, void *arg) 4631 { 4632 struct drm_device *dev = arg; 4633 struct drm_i915_private *dev_priv = to_i915(dev); 4634 irqreturn_t ret = IRQ_NONE; 4635 4636 if (!intel_irqs_enabled(dev_priv)) 4637 return IRQ_NONE; 4638 4639 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 4640 disable_rpm_wakeref_asserts(dev_priv); 4641 4642 do { 4643 u32 pipe_stats[I915_MAX_PIPES] = {}; 4644 u32 eir = 0, eir_stuck = 0; 4645 u32 hotplug_status = 0; 4646 u32 iir; 4647 4648 iir = I915_READ(GEN2_IIR); 4649 if (iir == 0) 4650 break; 4651 4652 ret = IRQ_HANDLED; 4653 4654 if (iir & I915_DISPLAY_PORT_INTERRUPT) 4655 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 4656 4657 /* Call regardless, as some status bits might not be 4658 * signalled in iir */ 4659 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 4660 4661 if (iir & I915_MASTER_ERROR_INTERRUPT) 4662 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 4663 4664 I915_WRITE(GEN2_IIR, iir); 4665 4666 if (iir & I915_USER_INTERRUPT) 4667 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); 4668 4669 if (iir & I915_BSD_USER_INTERRUPT) 4670 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); 4671 4672 if (iir & I915_MASTER_ERROR_INTERRUPT) 4673 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 4674 4675 if (hotplug_status) 4676 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 4677 4678 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 4679 } while (0); 4680 4681 enable_rpm_wakeref_asserts(dev_priv); 4682 4683 return ret; 4684 } 4685 4686 /** 4687 * intel_irq_init - initializes irq support 4688 * @dev_priv: i915 device instance 4689 * 4690 * This function initializes all the irq support including work items, timers 4691 * and all the vtables. It does not setup the interrupt itself though. 4692 */ 4693 void intel_irq_init(struct drm_i915_private *dev_priv) 4694 { 4695 struct drm_device *dev = &dev_priv->drm; 4696 struct intel_rps *rps = &dev_priv->gt_pm.rps; 4697 int i; 4698 4699 if (IS_I945GM(dev_priv)) 4700 i945gm_vblank_work_init(dev_priv); 4701 4702 intel_hpd_init_work(dev_priv); 4703 4704 INIT_WORK(&rps->work, gen6_pm_rps_work); 4705 4706 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); 4707 for (i = 0; i < MAX_L3_SLICES; ++i) 4708 dev_priv->l3_parity.remap_info[i] = NULL; 4709 4710 if (HAS_GUC_SCHED(dev_priv)) 4711 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; 4712 4713 /* Let's track the enabled rps events */ 4714 if (IS_VALLEYVIEW(dev_priv)) 4715 /* WaGsvRC0ResidencyMethod:vlv */ 4716 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; 4717 else 4718 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD | 4719 GEN6_PM_RP_DOWN_THRESHOLD | 4720 GEN6_PM_RP_DOWN_TIMEOUT); 4721 4722 /* We share the register with other engine */ 4723 if (INTEL_GEN(dev_priv) > 9) 4724 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000); 4725 4726 rps->pm_intrmsk_mbz = 0; 4727 4728 /* 4729 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer 4730 * if GEN6_PM_UP_EI_EXPIRED is masked. 4731 * 4732 * TODO: verify if this can be reproduced on VLV,CHV. 4733 */ 4734 if (INTEL_GEN(dev_priv) <= 7) 4735 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; 4736 4737 if (INTEL_GEN(dev_priv) >= 8) 4738 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 4739 4740 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4741 dev->driver->get_vblank_counter = g4x_get_vblank_counter; 4742 else if (INTEL_GEN(dev_priv) >= 3) 4743 dev->driver->get_vblank_counter = i915_get_vblank_counter; 4744 4745 dev->vblank_disable_immediate = true; 4746 4747 /* Most platforms treat the display irq block as an always-on 4748 * power domain. vlv/chv can disable it at runtime and need 4749 * special care to avoid writing any of the display block registers 4750 * outside of the power domain. We defer setting up the display irqs 4751 * in this case to the runtime pm. 4752 */ 4753 dev_priv->display_irqs_enabled = true; 4754 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4755 dev_priv->display_irqs_enabled = false; 4756 4757 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 4758 /* If we have MST support, we want to avoid doing short HPD IRQ storm 4759 * detection, as short HPD storms will occur as a natural part of 4760 * sideband messaging with MST. 4761 * On older platforms however, IRQ storms can occur with both long and 4762 * short pulses, as seen on some G4x systems. 4763 */ 4764 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 4765 4766 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos; 4767 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; 4768 4769 if (IS_CHERRYVIEW(dev_priv)) { 4770 dev->driver->irq_handler = cherryview_irq_handler; 4771 dev->driver->irq_preinstall = cherryview_irq_reset; 4772 dev->driver->irq_postinstall = cherryview_irq_postinstall; 4773 dev->driver->irq_uninstall = cherryview_irq_reset; 4774 dev->driver->enable_vblank = i965_enable_vblank; 4775 dev->driver->disable_vblank = i965_disable_vblank; 4776 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4777 } else if (IS_VALLEYVIEW(dev_priv)) { 4778 dev->driver->irq_handler = valleyview_irq_handler; 4779 dev->driver->irq_preinstall = valleyview_irq_reset; 4780 dev->driver->irq_postinstall = valleyview_irq_postinstall; 4781 dev->driver->irq_uninstall = valleyview_irq_reset; 4782 dev->driver->enable_vblank = i965_enable_vblank; 4783 dev->driver->disable_vblank = i965_disable_vblank; 4784 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4785 } else if (INTEL_GEN(dev_priv) >= 11) { 4786 dev->driver->irq_handler = gen11_irq_handler; 4787 dev->driver->irq_preinstall = gen11_irq_reset; 4788 dev->driver->irq_postinstall = gen11_irq_postinstall; 4789 dev->driver->irq_uninstall = gen11_irq_reset; 4790 dev->driver->enable_vblank = gen8_enable_vblank; 4791 dev->driver->disable_vblank = gen8_disable_vblank; 4792 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; 4793 } else if (INTEL_GEN(dev_priv) >= 8) { 4794 dev->driver->irq_handler = gen8_irq_handler; 4795 dev->driver->irq_preinstall = gen8_irq_reset; 4796 dev->driver->irq_postinstall = gen8_irq_postinstall; 4797 dev->driver->irq_uninstall = gen8_irq_reset; 4798 dev->driver->enable_vblank = gen8_enable_vblank; 4799 dev->driver->disable_vblank = gen8_disable_vblank; 4800 if (IS_GEN9_LP(dev_priv)) 4801 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 4802 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 4803 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 4804 else 4805 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4806 } else if (HAS_PCH_SPLIT(dev_priv)) { 4807 dev->driver->irq_handler = ironlake_irq_handler; 4808 dev->driver->irq_preinstall = ironlake_irq_reset; 4809 dev->driver->irq_postinstall = ironlake_irq_postinstall; 4810 dev->driver->irq_uninstall = ironlake_irq_reset; 4811 dev->driver->enable_vblank = ironlake_enable_vblank; 4812 dev->driver->disable_vblank = ironlake_disable_vblank; 4813 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 4814 } else { 4815 if (IS_GEN(dev_priv, 2)) { 4816 dev->driver->irq_preinstall = i8xx_irq_reset; 4817 dev->driver->irq_postinstall = i8xx_irq_postinstall; 4818 dev->driver->irq_handler = i8xx_irq_handler; 4819 dev->driver->irq_uninstall = i8xx_irq_reset; 4820 dev->driver->enable_vblank = i8xx_enable_vblank; 4821 dev->driver->disable_vblank = i8xx_disable_vblank; 4822 } else if (IS_I945GM(dev_priv)) { 4823 dev->driver->irq_preinstall = i915_irq_reset; 4824 dev->driver->irq_postinstall = i915_irq_postinstall; 4825 dev->driver->irq_uninstall = i915_irq_reset; 4826 dev->driver->irq_handler = i915_irq_handler; 4827 dev->driver->enable_vblank = i945gm_enable_vblank; 4828 dev->driver->disable_vblank = i945gm_disable_vblank; 4829 } else if (IS_GEN(dev_priv, 3)) { 4830 dev->driver->irq_preinstall = i915_irq_reset; 4831 dev->driver->irq_postinstall = i915_irq_postinstall; 4832 dev->driver->irq_uninstall = i915_irq_reset; 4833 dev->driver->irq_handler = i915_irq_handler; 4834 dev->driver->enable_vblank = i8xx_enable_vblank; 4835 dev->driver->disable_vblank = i8xx_disable_vblank; 4836 } else { 4837 dev->driver->irq_preinstall = i965_irq_reset; 4838 dev->driver->irq_postinstall = i965_irq_postinstall; 4839 dev->driver->irq_uninstall = i965_irq_reset; 4840 dev->driver->irq_handler = i965_irq_handler; 4841 dev->driver->enable_vblank = i965_enable_vblank; 4842 dev->driver->disable_vblank = i965_disable_vblank; 4843 } 4844 if (I915_HAS_HOTPLUG(dev_priv)) 4845 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 4846 } 4847 } 4848 4849 /** 4850 * intel_irq_fini - deinitializes IRQ support 4851 * @i915: i915 device instance 4852 * 4853 * This function deinitializes all the IRQ support. 4854 */ 4855 void intel_irq_fini(struct drm_i915_private *i915) 4856 { 4857 int i; 4858 4859 if (IS_I945GM(i915)) 4860 i945gm_vblank_work_fini(i915); 4861 4862 for (i = 0; i < MAX_L3_SLICES; ++i) 4863 kfree(i915->l3_parity.remap_info[i]); 4864 } 4865 4866 /** 4867 * intel_irq_install - enables the hardware interrupt 4868 * @dev_priv: i915 device instance 4869 * 4870 * This function enables the hardware interrupt handling, but leaves the hotplug 4871 * handling still disabled. It is called after intel_irq_init(). 4872 * 4873 * In the driver load and resume code we need working interrupts in a few places 4874 * but don't want to deal with the hassle of concurrent probe and hotplug 4875 * workers. Hence the split into this two-stage approach. 4876 */ 4877 int intel_irq_install(struct drm_i915_private *dev_priv) 4878 { 4879 /* 4880 * We enable some interrupt sources in our postinstall hooks, so mark 4881 * interrupts as enabled _before_ actually enabling them to avoid 4882 * special cases in our ordering checks. 4883 */ 4884 dev_priv->runtime_pm.irqs_enabled = true; 4885 4886 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); 4887 } 4888 4889 /** 4890 * intel_irq_uninstall - finilizes all irq handling 4891 * @dev_priv: i915 device instance 4892 * 4893 * This stops interrupt and hotplug handling and unregisters and frees all 4894 * resources acquired in the init functions. 4895 */ 4896 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4897 { 4898 drm_irq_uninstall(&dev_priv->drm); 4899 intel_hpd_cancel_work(dev_priv); 4900 dev_priv->runtime_pm.irqs_enabled = false; 4901 } 4902 4903 /** 4904 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4905 * @dev_priv: i915 device instance 4906 * 4907 * This function is used to disable interrupts at runtime, both in the runtime 4908 * pm and the system suspend/resume code. 4909 */ 4910 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4911 { 4912 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); 4913 dev_priv->runtime_pm.irqs_enabled = false; 4914 synchronize_irq(dev_priv->drm.irq); 4915 } 4916 4917 /** 4918 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4919 * @dev_priv: i915 device instance 4920 * 4921 * This function is used to enable interrupts at runtime, both in the runtime 4922 * pm and the system suspend/resume code. 4923 */ 4924 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4925 { 4926 dev_priv->runtime_pm.irqs_enabled = true; 4927 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); 4928 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); 4929 } 4930