xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72 
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90 
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 	POSTING_READ(GEN8_##type##_IMR(which)); \
95 	I915_WRITE(GEN8_##type##_IER(which), 0); \
96 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 	POSTING_READ(GEN8_##type##_IIR(which)); \
98 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 	POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101 
102 #define GEN5_IRQ_RESET(type) do { \
103 	I915_WRITE(type##IMR, 0xffffffff); \
104 	POSTING_READ(type##IMR); \
105 	I915_WRITE(type##IER, 0); \
106 	I915_WRITE(type##IIR, 0xffffffff); \
107 	POSTING_READ(type##IIR); \
108 	I915_WRITE(type##IIR, 0xffffffff); \
109 	POSTING_READ(type##IIR); \
110 } while (0)
111 
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 	u32 val = I915_READ(reg); \
117 	if (val) { \
118 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 		     (reg), val); \
120 		I915_WRITE((reg), 0xffffffff); \
121 		POSTING_READ(reg); \
122 		I915_WRITE((reg), 0xffffffff); \
123 		POSTING_READ(reg); \
124 	} \
125 } while (0)
126 
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 	POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133 
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 	I915_WRITE(type##IER, (ier_val)); \
137 	I915_WRITE(type##IMR, (imr_val)); \
138 	POSTING_READ(type##IMR); \
139 } while (0)
140 
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142 
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 	assert_spin_locked(&dev_priv->irq_lock);
148 
149 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 		return;
151 
152 	if ((dev_priv->irq_mask & mask) != 0) {
153 		dev_priv->irq_mask &= ~mask;
154 		I915_WRITE(DEIMR, dev_priv->irq_mask);
155 		POSTING_READ(DEIMR);
156 	}
157 }
158 
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 	assert_spin_locked(&dev_priv->irq_lock);
163 
164 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 		return;
166 
167 	if ((dev_priv->irq_mask & mask) != mask) {
168 		dev_priv->irq_mask |= mask;
169 		I915_WRITE(DEIMR, dev_priv->irq_mask);
170 		POSTING_READ(DEIMR);
171 	}
172 }
173 
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 			      uint32_t interrupt_mask,
182 			      uint32_t enabled_irq_mask)
183 {
184 	assert_spin_locked(&dev_priv->irq_lock);
185 
186 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
187 
188 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189 		return;
190 
191 	dev_priv->gt_irq_mask &= ~interrupt_mask;
192 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194 	POSTING_READ(GTIMR);
195 }
196 
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199 	ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201 
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204 	ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206 
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211 
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216 
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221 
222 /**
223   * snb_update_pm_irq - update GEN6_PMIMR
224   * @dev_priv: driver private
225   * @interrupt_mask: mask of interrupt bits to update
226   * @enabled_irq_mask: mask of interrupt bits to enable
227   */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229 			      uint32_t interrupt_mask,
230 			      uint32_t enabled_irq_mask)
231 {
232 	uint32_t new_val;
233 
234 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
235 
236 	assert_spin_locked(&dev_priv->irq_lock);
237 
238 	new_val = dev_priv->pm_irq_mask;
239 	new_val &= ~interrupt_mask;
240 	new_val |= (~enabled_irq_mask & interrupt_mask);
241 
242 	if (new_val != dev_priv->pm_irq_mask) {
243 		dev_priv->pm_irq_mask = new_val;
244 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245 		POSTING_READ(gen6_pm_imr(dev_priv));
246 	}
247 }
248 
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252 		return;
253 
254 	snb_update_pm_irq(dev_priv, mask, mask);
255 }
256 
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258 				  uint32_t mask)
259 {
260 	snb_update_pm_irq(dev_priv, mask, 0);
261 }
262 
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266 		return;
267 
268 	__gen6_disable_pm_irq(dev_priv, mask);
269 }
270 
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273 	struct drm_i915_private *dev_priv = dev->dev_private;
274 	uint32_t reg = gen6_pm_iir(dev_priv);
275 
276 	spin_lock_irq(&dev_priv->irq_lock);
277 	I915_WRITE(reg, dev_priv->pm_rps_events);
278 	I915_WRITE(reg, dev_priv->pm_rps_events);
279 	POSTING_READ(reg);
280 	spin_unlock_irq(&dev_priv->irq_lock);
281 }
282 
283 void gen6_enable_rps_interrupts(struct drm_device *dev)
284 {
285 	struct drm_i915_private *dev_priv = dev->dev_private;
286 
287 	spin_lock_irq(&dev_priv->irq_lock);
288 
289 	WARN_ON(dev_priv->rps.pm_iir);
290 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
291 	dev_priv->rps.interrupts_enabled = true;
292 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
293 				dev_priv->pm_rps_events);
294 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
295 
296 	spin_unlock_irq(&dev_priv->irq_lock);
297 }
298 
299 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
300 {
301 	/*
302 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
303 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
304 	 *
305 	 * TODO: verify if this can be reproduced on VLV,CHV.
306 	 */
307 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
308 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
309 
310 	if (INTEL_INFO(dev_priv)->gen >= 8)
311 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
312 
313 	return mask;
314 }
315 
316 void gen6_disable_rps_interrupts(struct drm_device *dev)
317 {
318 	struct drm_i915_private *dev_priv = dev->dev_private;
319 
320 	spin_lock_irq(&dev_priv->irq_lock);
321 	dev_priv->rps.interrupts_enabled = false;
322 	spin_unlock_irq(&dev_priv->irq_lock);
323 
324 	cancel_work_sync(&dev_priv->rps.work);
325 
326 	spin_lock_irq(&dev_priv->irq_lock);
327 
328 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
329 
330 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
331 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
332 				~dev_priv->pm_rps_events);
333 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
334 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
335 
336 	dev_priv->rps.pm_iir = 0;
337 
338 	spin_unlock_irq(&dev_priv->irq_lock);
339 }
340 
341 /**
342  * ibx_display_interrupt_update - update SDEIMR
343  * @dev_priv: driver private
344  * @interrupt_mask: mask of interrupt bits to update
345  * @enabled_irq_mask: mask of interrupt bits to enable
346  */
347 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
348 				  uint32_t interrupt_mask,
349 				  uint32_t enabled_irq_mask)
350 {
351 	uint32_t sdeimr = I915_READ(SDEIMR);
352 	sdeimr &= ~interrupt_mask;
353 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
354 
355 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
356 
357 	assert_spin_locked(&dev_priv->irq_lock);
358 
359 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
360 		return;
361 
362 	I915_WRITE(SDEIMR, sdeimr);
363 	POSTING_READ(SDEIMR);
364 }
365 
366 static void
367 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
368 		       u32 enable_mask, u32 status_mask)
369 {
370 	u32 reg = PIPESTAT(pipe);
371 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
372 
373 	assert_spin_locked(&dev_priv->irq_lock);
374 	WARN_ON(!intel_irqs_enabled(dev_priv));
375 
376 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
377 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
378 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
379 		      pipe_name(pipe), enable_mask, status_mask))
380 		return;
381 
382 	if ((pipestat & enable_mask) == enable_mask)
383 		return;
384 
385 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
386 
387 	/* Enable the interrupt, clear any pending status */
388 	pipestat |= enable_mask | status_mask;
389 	I915_WRITE(reg, pipestat);
390 	POSTING_READ(reg);
391 }
392 
393 static void
394 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
395 		        u32 enable_mask, u32 status_mask)
396 {
397 	u32 reg = PIPESTAT(pipe);
398 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
399 
400 	assert_spin_locked(&dev_priv->irq_lock);
401 	WARN_ON(!intel_irqs_enabled(dev_priv));
402 
403 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
404 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
405 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
406 		      pipe_name(pipe), enable_mask, status_mask))
407 		return;
408 
409 	if ((pipestat & enable_mask) == 0)
410 		return;
411 
412 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
413 
414 	pipestat &= ~enable_mask;
415 	I915_WRITE(reg, pipestat);
416 	POSTING_READ(reg);
417 }
418 
419 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
420 {
421 	u32 enable_mask = status_mask << 16;
422 
423 	/*
424 	 * On pipe A we don't support the PSR interrupt yet,
425 	 * on pipe B and C the same bit MBZ.
426 	 */
427 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
428 		return 0;
429 	/*
430 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
431 	 * A the same bit is for perf counters which we don't use either.
432 	 */
433 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
434 		return 0;
435 
436 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
437 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
438 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
439 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
440 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
441 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
442 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
443 
444 	return enable_mask;
445 }
446 
447 void
448 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
449 		     u32 status_mask)
450 {
451 	u32 enable_mask;
452 
453 	if (IS_VALLEYVIEW(dev_priv->dev))
454 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
455 							   status_mask);
456 	else
457 		enable_mask = status_mask << 16;
458 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
459 }
460 
461 void
462 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
463 		      u32 status_mask)
464 {
465 	u32 enable_mask;
466 
467 	if (IS_VALLEYVIEW(dev_priv->dev))
468 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
469 							   status_mask);
470 	else
471 		enable_mask = status_mask << 16;
472 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
473 }
474 
475 /**
476  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
477  */
478 static void i915_enable_asle_pipestat(struct drm_device *dev)
479 {
480 	struct drm_i915_private *dev_priv = dev->dev_private;
481 
482 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
483 		return;
484 
485 	spin_lock_irq(&dev_priv->irq_lock);
486 
487 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
488 	if (INTEL_INFO(dev)->gen >= 4)
489 		i915_enable_pipestat(dev_priv, PIPE_A,
490 				     PIPE_LEGACY_BLC_EVENT_STATUS);
491 
492 	spin_unlock_irq(&dev_priv->irq_lock);
493 }
494 
495 /**
496  * i915_pipe_enabled - check if a pipe is enabled
497  * @dev: DRM device
498  * @pipe: pipe to check
499  *
500  * Reading certain registers when the pipe is disabled can hang the chip.
501  * Use this routine to make sure the PLL is running and the pipe is active
502  * before reading such registers if unsure.
503  */
504 static int
505 i915_pipe_enabled(struct drm_device *dev, int pipe)
506 {
507 	struct drm_i915_private *dev_priv = dev->dev_private;
508 
509 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510 		/* Locking is horribly broken here, but whatever. */
511 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
512 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
513 
514 		return intel_crtc->active;
515 	} else {
516 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
517 	}
518 }
519 
520 /*
521  * This timing diagram depicts the video signal in and
522  * around the vertical blanking period.
523  *
524  * Assumptions about the fictitious mode used in this example:
525  *  vblank_start >= 3
526  *  vsync_start = vblank_start + 1
527  *  vsync_end = vblank_start + 2
528  *  vtotal = vblank_start + 3
529  *
530  *           start of vblank:
531  *           latch double buffered registers
532  *           increment frame counter (ctg+)
533  *           generate start of vblank interrupt (gen4+)
534  *           |
535  *           |          frame start:
536  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
537  *           |          may be shifted forward 1-3 extra lines via PIPECONF
538  *           |          |
539  *           |          |  start of vsync:
540  *           |          |  generate vsync interrupt
541  *           |          |  |
542  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
543  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
544  * ----va---> <-----------------vb--------------------> <--------va-------------
545  *       |          |       <----vs----->                     |
546  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
547  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
548  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
549  *       |          |                                         |
550  *       last visible pixel                                   first visible pixel
551  *                  |                                         increment frame counter (gen3/4)
552  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
553  *
554  * x  = horizontal active
555  * _  = horizontal blanking
556  * hs = horizontal sync
557  * va = vertical active
558  * vb = vertical blanking
559  * vs = vertical sync
560  * vbs = vblank_start (number)
561  *
562  * Summary:
563  * - most events happen at the start of horizontal sync
564  * - frame start happens at the start of horizontal blank, 1-4 lines
565  *   (depending on PIPECONF settings) after the start of vblank
566  * - gen3/4 pixel and frame counter are synchronized with the start
567  *   of horizontal active on the first line of vertical active
568  */
569 
570 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
571 {
572 	/* Gen2 doesn't have a hardware frame counter */
573 	return 0;
574 }
575 
576 /* Called from drm generic code, passed a 'crtc', which
577  * we use as a pipe index
578  */
579 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
580 {
581 	struct drm_i915_private *dev_priv = dev->dev_private;
582 	unsigned long high_frame;
583 	unsigned long low_frame;
584 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
585 
586 	if (!i915_pipe_enabled(dev, pipe)) {
587 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588 				"pipe %c\n", pipe_name(pipe));
589 		return 0;
590 	}
591 
592 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
593 		struct intel_crtc *intel_crtc =
594 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
595 		const struct drm_display_mode *mode =
596 			&intel_crtc->config->base.adjusted_mode;
597 
598 		htotal = mode->crtc_htotal;
599 		hsync_start = mode->crtc_hsync_start;
600 		vbl_start = mode->crtc_vblank_start;
601 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
603 	} else {
604 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
605 
606 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
607 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
608 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
609 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
610 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
611 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
612 	}
613 
614 	/* Convert to pixel count */
615 	vbl_start *= htotal;
616 
617 	/* Start of vblank event occurs at start of hsync */
618 	vbl_start -= htotal - hsync_start;
619 
620 	high_frame = PIPEFRAME(pipe);
621 	low_frame = PIPEFRAMEPIXEL(pipe);
622 
623 	/*
624 	 * High & low register fields aren't synchronized, so make sure
625 	 * we get a low value that's stable across two reads of the high
626 	 * register.
627 	 */
628 	do {
629 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
630 		low   = I915_READ(low_frame);
631 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
632 	} while (high1 != high2);
633 
634 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
635 	pixel = low & PIPE_PIXEL_MASK;
636 	low >>= PIPE_FRAME_LOW_SHIFT;
637 
638 	/*
639 	 * The frame counter increments at beginning of active.
640 	 * Cook up a vblank counter by also checking the pixel
641 	 * counter against vblank start.
642 	 */
643 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645 
646 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
647 {
648 	struct drm_i915_private *dev_priv = dev->dev_private;
649 	int reg = PIPE_FRMCOUNT_GM45(pipe);
650 
651 	if (!i915_pipe_enabled(dev, pipe)) {
652 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
653 				 "pipe %c\n", pipe_name(pipe));
654 		return 0;
655 	}
656 
657 	return I915_READ(reg);
658 }
659 
660 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
661 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
662 
663 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
664 {
665 	struct drm_device *dev = crtc->base.dev;
666 	struct drm_i915_private *dev_priv = dev->dev_private;
667 	const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
668 	enum pipe pipe = crtc->pipe;
669 	int position, vtotal;
670 
671 	vtotal = mode->crtc_vtotal;
672 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
673 		vtotal /= 2;
674 
675 	if (IS_GEN2(dev))
676 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
677 	else
678 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
679 
680 	/*
681 	 * See update_scanline_offset() for the details on the
682 	 * scanline_offset adjustment.
683 	 */
684 	return (position + crtc->scanline_offset) % vtotal;
685 }
686 
687 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
688 				    unsigned int flags, int *vpos, int *hpos,
689 				    ktime_t *stime, ktime_t *etime)
690 {
691 	struct drm_i915_private *dev_priv = dev->dev_private;
692 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
693 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
694 	const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
695 	int position;
696 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
697 	bool in_vbl = true;
698 	int ret = 0;
699 	unsigned long irqflags;
700 
701 	if (!intel_crtc->active) {
702 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
703 				 "pipe %c\n", pipe_name(pipe));
704 		return 0;
705 	}
706 
707 	htotal = mode->crtc_htotal;
708 	hsync_start = mode->crtc_hsync_start;
709 	vtotal = mode->crtc_vtotal;
710 	vbl_start = mode->crtc_vblank_start;
711 	vbl_end = mode->crtc_vblank_end;
712 
713 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
714 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
715 		vbl_end /= 2;
716 		vtotal /= 2;
717 	}
718 
719 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
720 
721 	/*
722 	 * Lock uncore.lock, as we will do multiple timing critical raw
723 	 * register reads, potentially with preemption disabled, so the
724 	 * following code must not block on uncore.lock.
725 	 */
726 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
727 
728 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
729 
730 	/* Get optional system timestamp before query. */
731 	if (stime)
732 		*stime = ktime_get();
733 
734 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
735 		/* No obvious pixelcount register. Only query vertical
736 		 * scanout position from Display scan line register.
737 		 */
738 		position = __intel_get_crtc_scanline(intel_crtc);
739 	} else {
740 		/* Have access to pixelcount since start of frame.
741 		 * We can split this into vertical and horizontal
742 		 * scanout position.
743 		 */
744 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
745 
746 		/* convert to pixel counts */
747 		vbl_start *= htotal;
748 		vbl_end *= htotal;
749 		vtotal *= htotal;
750 
751 		/*
752 		 * In interlaced modes, the pixel counter counts all pixels,
753 		 * so one field will have htotal more pixels. In order to avoid
754 		 * the reported position from jumping backwards when the pixel
755 		 * counter is beyond the length of the shorter field, just
756 		 * clamp the position the length of the shorter field. This
757 		 * matches how the scanline counter based position works since
758 		 * the scanline counter doesn't count the two half lines.
759 		 */
760 		if (position >= vtotal)
761 			position = vtotal - 1;
762 
763 		/*
764 		 * Start of vblank interrupt is triggered at start of hsync,
765 		 * just prior to the first active line of vblank. However we
766 		 * consider lines to start at the leading edge of horizontal
767 		 * active. So, should we get here before we've crossed into
768 		 * the horizontal active of the first line in vblank, we would
769 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
770 		 * always add htotal-hsync_start to the current pixel position.
771 		 */
772 		position = (position + htotal - hsync_start) % vtotal;
773 	}
774 
775 	/* Get optional system timestamp after query. */
776 	if (etime)
777 		*etime = ktime_get();
778 
779 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
780 
781 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782 
783 	in_vbl = position >= vbl_start && position < vbl_end;
784 
785 	/*
786 	 * While in vblank, position will be negative
787 	 * counting up towards 0 at vbl_end. And outside
788 	 * vblank, position will be positive counting
789 	 * up since vbl_end.
790 	 */
791 	if (position >= vbl_start)
792 		position -= vbl_end;
793 	else
794 		position += vtotal - vbl_end;
795 
796 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797 		*vpos = position;
798 		*hpos = 0;
799 	} else {
800 		*vpos = position / htotal;
801 		*hpos = position - (*vpos * htotal);
802 	}
803 
804 	/* In vblank? */
805 	if (in_vbl)
806 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
807 
808 	return ret;
809 }
810 
811 int intel_get_crtc_scanline(struct intel_crtc *crtc)
812 {
813 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
814 	unsigned long irqflags;
815 	int position;
816 
817 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
818 	position = __intel_get_crtc_scanline(crtc);
819 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
820 
821 	return position;
822 }
823 
824 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
825 			      int *max_error,
826 			      struct timeval *vblank_time,
827 			      unsigned flags)
828 {
829 	struct drm_crtc *crtc;
830 
831 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
832 		DRM_ERROR("Invalid crtc %d\n", pipe);
833 		return -EINVAL;
834 	}
835 
836 	/* Get drm_crtc to timestamp: */
837 	crtc = intel_get_crtc_for_pipe(dev, pipe);
838 	if (crtc == NULL) {
839 		DRM_ERROR("Invalid crtc %d\n", pipe);
840 		return -EINVAL;
841 	}
842 
843 	if (!crtc->enabled) {
844 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
845 		return -EBUSY;
846 	}
847 
848 	/* Helper routine in DRM core does all the work: */
849 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
850 						     vblank_time, flags,
851 						     crtc,
852 						     &to_intel_crtc(crtc)->config->base.adjusted_mode);
853 }
854 
855 static bool intel_hpd_irq_event(struct drm_device *dev,
856 				struct drm_connector *connector)
857 {
858 	enum drm_connector_status old_status;
859 
860 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
861 	old_status = connector->status;
862 
863 	connector->status = connector->funcs->detect(connector, false);
864 	if (old_status == connector->status)
865 		return false;
866 
867 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
868 		      connector->base.id,
869 		      connector->name,
870 		      drm_get_connector_status_name(old_status),
871 		      drm_get_connector_status_name(connector->status));
872 
873 	return true;
874 }
875 
876 static void i915_digport_work_func(struct work_struct *work)
877 {
878 	struct drm_i915_private *dev_priv =
879 		container_of(work, struct drm_i915_private, dig_port_work);
880 	u32 long_port_mask, short_port_mask;
881 	struct intel_digital_port *intel_dig_port;
882 	int i;
883 	u32 old_bits = 0;
884 
885 	spin_lock_irq(&dev_priv->irq_lock);
886 	long_port_mask = dev_priv->long_hpd_port_mask;
887 	dev_priv->long_hpd_port_mask = 0;
888 	short_port_mask = dev_priv->short_hpd_port_mask;
889 	dev_priv->short_hpd_port_mask = 0;
890 	spin_unlock_irq(&dev_priv->irq_lock);
891 
892 	for (i = 0; i < I915_MAX_PORTS; i++) {
893 		bool valid = false;
894 		bool long_hpd = false;
895 		intel_dig_port = dev_priv->hpd_irq_port[i];
896 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
897 			continue;
898 
899 		if (long_port_mask & (1 << i))  {
900 			valid = true;
901 			long_hpd = true;
902 		} else if (short_port_mask & (1 << i))
903 			valid = true;
904 
905 		if (valid) {
906 			enum irqreturn ret;
907 
908 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
909 			if (ret == IRQ_NONE) {
910 				/* fall back to old school hpd */
911 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
912 			}
913 		}
914 	}
915 
916 	if (old_bits) {
917 		spin_lock_irq(&dev_priv->irq_lock);
918 		dev_priv->hpd_event_bits |= old_bits;
919 		spin_unlock_irq(&dev_priv->irq_lock);
920 		schedule_work(&dev_priv->hotplug_work);
921 	}
922 }
923 
924 /*
925  * Handle hotplug events outside the interrupt handler proper.
926  */
927 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
928 
929 static void i915_hotplug_work_func(struct work_struct *work)
930 {
931 	struct drm_i915_private *dev_priv =
932 		container_of(work, struct drm_i915_private, hotplug_work);
933 	struct drm_device *dev = dev_priv->dev;
934 	struct drm_mode_config *mode_config = &dev->mode_config;
935 	struct intel_connector *intel_connector;
936 	struct intel_encoder *intel_encoder;
937 	struct drm_connector *connector;
938 	bool hpd_disabled = false;
939 	bool changed = false;
940 	u32 hpd_event_bits;
941 
942 	mutex_lock(&mode_config->mutex);
943 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
944 
945 	spin_lock_irq(&dev_priv->irq_lock);
946 
947 	hpd_event_bits = dev_priv->hpd_event_bits;
948 	dev_priv->hpd_event_bits = 0;
949 	list_for_each_entry(connector, &mode_config->connector_list, head) {
950 		intel_connector = to_intel_connector(connector);
951 		if (!intel_connector->encoder)
952 			continue;
953 		intel_encoder = intel_connector->encoder;
954 		if (intel_encoder->hpd_pin > HPD_NONE &&
955 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
956 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
957 			DRM_INFO("HPD interrupt storm detected on connector %s: "
958 				 "switching from hotplug detection to polling\n",
959 				connector->name);
960 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
961 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
962 				| DRM_CONNECTOR_POLL_DISCONNECT;
963 			hpd_disabled = true;
964 		}
965 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
966 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
967 				      connector->name, intel_encoder->hpd_pin);
968 		}
969 	}
970 	 /* if there were no outputs to poll, poll was disabled,
971 	  * therefore make sure it's enabled when disabling HPD on
972 	  * some connectors */
973 	if (hpd_disabled) {
974 		drm_kms_helper_poll_enable(dev);
975 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
976 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
977 	}
978 
979 	spin_unlock_irq(&dev_priv->irq_lock);
980 
981 	list_for_each_entry(connector, &mode_config->connector_list, head) {
982 		intel_connector = to_intel_connector(connector);
983 		if (!intel_connector->encoder)
984 			continue;
985 		intel_encoder = intel_connector->encoder;
986 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
987 			if (intel_encoder->hot_plug)
988 				intel_encoder->hot_plug(intel_encoder);
989 			if (intel_hpd_irq_event(dev, connector))
990 				changed = true;
991 		}
992 	}
993 	mutex_unlock(&mode_config->mutex);
994 
995 	if (changed)
996 		drm_kms_helper_hotplug_event(dev);
997 }
998 
999 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1000 {
1001 	struct drm_i915_private *dev_priv = dev->dev_private;
1002 	u32 busy_up, busy_down, max_avg, min_avg;
1003 	u8 new_delay;
1004 
1005 	spin_lock(&mchdev_lock);
1006 
1007 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1008 
1009 	new_delay = dev_priv->ips.cur_delay;
1010 
1011 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1012 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1013 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1014 	max_avg = I915_READ(RCBMAXAVG);
1015 	min_avg = I915_READ(RCBMINAVG);
1016 
1017 	/* Handle RCS change request from hw */
1018 	if (busy_up > max_avg) {
1019 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1020 			new_delay = dev_priv->ips.cur_delay - 1;
1021 		if (new_delay < dev_priv->ips.max_delay)
1022 			new_delay = dev_priv->ips.max_delay;
1023 	} else if (busy_down < min_avg) {
1024 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1025 			new_delay = dev_priv->ips.cur_delay + 1;
1026 		if (new_delay > dev_priv->ips.min_delay)
1027 			new_delay = dev_priv->ips.min_delay;
1028 	}
1029 
1030 	if (ironlake_set_drps(dev, new_delay))
1031 		dev_priv->ips.cur_delay = new_delay;
1032 
1033 	spin_unlock(&mchdev_lock);
1034 
1035 	return;
1036 }
1037 
1038 static void notify_ring(struct drm_device *dev,
1039 			struct intel_engine_cs *ring)
1040 {
1041 	if (!intel_ring_initialized(ring))
1042 		return;
1043 
1044 	trace_i915_gem_request_notify(ring);
1045 
1046 	wake_up_all(&ring->irq_queue);
1047 }
1048 
1049 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1050 			    struct intel_rps_ei *rps_ei)
1051 {
1052 	u32 cz_ts, cz_freq_khz;
1053 	u32 render_count, media_count;
1054 	u32 elapsed_render, elapsed_media, elapsed_time;
1055 	u32 residency = 0;
1056 
1057 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1058 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1059 
1060 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1061 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1062 
1063 	if (rps_ei->cz_clock == 0) {
1064 		rps_ei->cz_clock = cz_ts;
1065 		rps_ei->render_c0 = render_count;
1066 		rps_ei->media_c0 = media_count;
1067 
1068 		return dev_priv->rps.cur_freq;
1069 	}
1070 
1071 	elapsed_time = cz_ts - rps_ei->cz_clock;
1072 	rps_ei->cz_clock = cz_ts;
1073 
1074 	elapsed_render = render_count - rps_ei->render_c0;
1075 	rps_ei->render_c0 = render_count;
1076 
1077 	elapsed_media = media_count - rps_ei->media_c0;
1078 	rps_ei->media_c0 = media_count;
1079 
1080 	/* Convert all the counters into common unit of milli sec */
1081 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1082 	elapsed_render /=  cz_freq_khz;
1083 	elapsed_media /= cz_freq_khz;
1084 
1085 	/*
1086 	 * Calculate overall C0 residency percentage
1087 	 * only if elapsed time is non zero
1088 	 */
1089 	if (elapsed_time) {
1090 		residency =
1091 			((max(elapsed_render, elapsed_media) * 100)
1092 				/ elapsed_time);
1093 	}
1094 
1095 	return residency;
1096 }
1097 
1098 /**
1099  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1100  * busy-ness calculated from C0 counters of render & media power wells
1101  * @dev_priv: DRM device private
1102  *
1103  */
1104 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1105 {
1106 	u32 residency_C0_up = 0, residency_C0_down = 0;
1107 	int new_delay, adj;
1108 
1109 	dev_priv->rps.ei_interrupt_count++;
1110 
1111 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1112 
1113 
1114 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1115 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1116 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1117 		return dev_priv->rps.cur_freq;
1118 	}
1119 
1120 
1121 	/*
1122 	 * To down throttle, C0 residency should be less than down threshold
1123 	 * for continous EI intervals. So calculate down EI counters
1124 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1125 	 */
1126 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1127 
1128 		dev_priv->rps.ei_interrupt_count = 0;
1129 
1130 		residency_C0_down = vlv_c0_residency(dev_priv,
1131 						     &dev_priv->rps.down_ei);
1132 	} else {
1133 		residency_C0_up = vlv_c0_residency(dev_priv,
1134 						   &dev_priv->rps.up_ei);
1135 	}
1136 
1137 	new_delay = dev_priv->rps.cur_freq;
1138 
1139 	adj = dev_priv->rps.last_adj;
1140 	/* C0 residency is greater than UP threshold. Increase Frequency */
1141 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1142 		if (adj > 0)
1143 			adj *= 2;
1144 		else
1145 			adj = 1;
1146 
1147 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1148 			new_delay = dev_priv->rps.cur_freq + adj;
1149 
1150 		/*
1151 		 * For better performance, jump directly
1152 		 * to RPe if we're below it.
1153 		 */
1154 		if (new_delay < dev_priv->rps.efficient_freq)
1155 			new_delay = dev_priv->rps.efficient_freq;
1156 
1157 	} else if (!dev_priv->rps.ei_interrupt_count &&
1158 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1159 		if (adj < 0)
1160 			adj *= 2;
1161 		else
1162 			adj = -1;
1163 		/*
1164 		 * This means, C0 residency is less than down threshold over
1165 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1166 		 */
1167 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1168 			new_delay = dev_priv->rps.cur_freq + adj;
1169 	}
1170 
1171 	return new_delay;
1172 }
1173 
1174 static void gen6_pm_rps_work(struct work_struct *work)
1175 {
1176 	struct drm_i915_private *dev_priv =
1177 		container_of(work, struct drm_i915_private, rps.work);
1178 	u32 pm_iir;
1179 	int new_delay, adj;
1180 
1181 	spin_lock_irq(&dev_priv->irq_lock);
1182 	/* Speed up work cancelation during disabling rps interrupts. */
1183 	if (!dev_priv->rps.interrupts_enabled) {
1184 		spin_unlock_irq(&dev_priv->irq_lock);
1185 		return;
1186 	}
1187 	pm_iir = dev_priv->rps.pm_iir;
1188 	dev_priv->rps.pm_iir = 0;
1189 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1190 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1191 	spin_unlock_irq(&dev_priv->irq_lock);
1192 
1193 	/* Make sure we didn't queue anything we're not going to process. */
1194 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1195 
1196 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1197 		return;
1198 
1199 	mutex_lock(&dev_priv->rps.hw_lock);
1200 
1201 	adj = dev_priv->rps.last_adj;
1202 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1203 		if (adj > 0)
1204 			adj *= 2;
1205 		else {
1206 			/* CHV needs even encode values */
1207 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1208 		}
1209 		new_delay = dev_priv->rps.cur_freq + adj;
1210 
1211 		/*
1212 		 * For better performance, jump directly
1213 		 * to RPe if we're below it.
1214 		 */
1215 		if (new_delay < dev_priv->rps.efficient_freq)
1216 			new_delay = dev_priv->rps.efficient_freq;
1217 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1218 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1219 			new_delay = dev_priv->rps.efficient_freq;
1220 		else
1221 			new_delay = dev_priv->rps.min_freq_softlimit;
1222 		adj = 0;
1223 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1224 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1225 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1226 		if (adj < 0)
1227 			adj *= 2;
1228 		else {
1229 			/* CHV needs even encode values */
1230 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1231 		}
1232 		new_delay = dev_priv->rps.cur_freq + adj;
1233 	} else { /* unknown event */
1234 		new_delay = dev_priv->rps.cur_freq;
1235 	}
1236 
1237 	/* sysfs frequency interfaces may have snuck in while servicing the
1238 	 * interrupt
1239 	 */
1240 	new_delay = clamp_t(int, new_delay,
1241 			    dev_priv->rps.min_freq_softlimit,
1242 			    dev_priv->rps.max_freq_softlimit);
1243 
1244 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1245 
1246 	if (IS_VALLEYVIEW(dev_priv->dev))
1247 		valleyview_set_rps(dev_priv->dev, new_delay);
1248 	else
1249 		gen6_set_rps(dev_priv->dev, new_delay);
1250 
1251 	mutex_unlock(&dev_priv->rps.hw_lock);
1252 }
1253 
1254 
1255 /**
1256  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1257  * occurred.
1258  * @work: workqueue struct
1259  *
1260  * Doesn't actually do anything except notify userspace. As a consequence of
1261  * this event, userspace should try to remap the bad rows since statistically
1262  * it is likely the same row is more likely to go bad again.
1263  */
1264 static void ivybridge_parity_work(struct work_struct *work)
1265 {
1266 	struct drm_i915_private *dev_priv =
1267 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1268 	u32 error_status, row, bank, subbank;
1269 	char *parity_event[6];
1270 	uint32_t misccpctl;
1271 	uint8_t slice = 0;
1272 
1273 	/* We must turn off DOP level clock gating to access the L3 registers.
1274 	 * In order to prevent a get/put style interface, acquire struct mutex
1275 	 * any time we access those registers.
1276 	 */
1277 	mutex_lock(&dev_priv->dev->struct_mutex);
1278 
1279 	/* If we've screwed up tracking, just let the interrupt fire again */
1280 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1281 		goto out;
1282 
1283 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1284 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1285 	POSTING_READ(GEN7_MISCCPCTL);
1286 
1287 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1288 		u32 reg;
1289 
1290 		slice--;
1291 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1292 			break;
1293 
1294 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1295 
1296 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1297 
1298 		error_status = I915_READ(reg);
1299 		row = GEN7_PARITY_ERROR_ROW(error_status);
1300 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1301 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1302 
1303 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1304 		POSTING_READ(reg);
1305 
1306 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1307 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1308 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1309 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1310 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1311 		parity_event[5] = NULL;
1312 
1313 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1314 				   KOBJ_CHANGE, parity_event);
1315 
1316 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1317 			  slice, row, bank, subbank);
1318 
1319 		kfree(parity_event[4]);
1320 		kfree(parity_event[3]);
1321 		kfree(parity_event[2]);
1322 		kfree(parity_event[1]);
1323 	}
1324 
1325 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1326 
1327 out:
1328 	WARN_ON(dev_priv->l3_parity.which_slice);
1329 	spin_lock_irq(&dev_priv->irq_lock);
1330 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1331 	spin_unlock_irq(&dev_priv->irq_lock);
1332 
1333 	mutex_unlock(&dev_priv->dev->struct_mutex);
1334 }
1335 
1336 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1337 {
1338 	struct drm_i915_private *dev_priv = dev->dev_private;
1339 
1340 	if (!HAS_L3_DPF(dev))
1341 		return;
1342 
1343 	spin_lock(&dev_priv->irq_lock);
1344 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1345 	spin_unlock(&dev_priv->irq_lock);
1346 
1347 	iir &= GT_PARITY_ERROR(dev);
1348 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1349 		dev_priv->l3_parity.which_slice |= 1 << 1;
1350 
1351 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1352 		dev_priv->l3_parity.which_slice |= 1 << 0;
1353 
1354 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1355 }
1356 
1357 static void ilk_gt_irq_handler(struct drm_device *dev,
1358 			       struct drm_i915_private *dev_priv,
1359 			       u32 gt_iir)
1360 {
1361 	if (gt_iir &
1362 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1363 		notify_ring(dev, &dev_priv->ring[RCS]);
1364 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1365 		notify_ring(dev, &dev_priv->ring[VCS]);
1366 }
1367 
1368 static void snb_gt_irq_handler(struct drm_device *dev,
1369 			       struct drm_i915_private *dev_priv,
1370 			       u32 gt_iir)
1371 {
1372 
1373 	if (gt_iir &
1374 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1375 		notify_ring(dev, &dev_priv->ring[RCS]);
1376 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1377 		notify_ring(dev, &dev_priv->ring[VCS]);
1378 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1379 		notify_ring(dev, &dev_priv->ring[BCS]);
1380 
1381 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1382 		      GT_BSD_CS_ERROR_INTERRUPT |
1383 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1384 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1385 
1386 	if (gt_iir & GT_PARITY_ERROR(dev))
1387 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1388 }
1389 
1390 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1391 				       struct drm_i915_private *dev_priv,
1392 				       u32 master_ctl)
1393 {
1394 	struct intel_engine_cs *ring;
1395 	u32 rcs, bcs, vcs;
1396 	uint32_t tmp = 0;
1397 	irqreturn_t ret = IRQ_NONE;
1398 
1399 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1400 		tmp = I915_READ(GEN8_GT_IIR(0));
1401 		if (tmp) {
1402 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1403 			ret = IRQ_HANDLED;
1404 
1405 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1406 			ring = &dev_priv->ring[RCS];
1407 			if (rcs & GT_RENDER_USER_INTERRUPT)
1408 				notify_ring(dev, ring);
1409 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1410 				intel_lrc_irq_handler(ring);
1411 
1412 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1413 			ring = &dev_priv->ring[BCS];
1414 			if (bcs & GT_RENDER_USER_INTERRUPT)
1415 				notify_ring(dev, ring);
1416 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1417 				intel_lrc_irq_handler(ring);
1418 		} else
1419 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1420 	}
1421 
1422 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1423 		tmp = I915_READ(GEN8_GT_IIR(1));
1424 		if (tmp) {
1425 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1426 			ret = IRQ_HANDLED;
1427 
1428 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1429 			ring = &dev_priv->ring[VCS];
1430 			if (vcs & GT_RENDER_USER_INTERRUPT)
1431 				notify_ring(dev, ring);
1432 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1433 				intel_lrc_irq_handler(ring);
1434 
1435 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1436 			ring = &dev_priv->ring[VCS2];
1437 			if (vcs & GT_RENDER_USER_INTERRUPT)
1438 				notify_ring(dev, ring);
1439 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1440 				intel_lrc_irq_handler(ring);
1441 		} else
1442 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1443 	}
1444 
1445 	if (master_ctl & GEN8_GT_PM_IRQ) {
1446 		tmp = I915_READ(GEN8_GT_IIR(2));
1447 		if (tmp & dev_priv->pm_rps_events) {
1448 			I915_WRITE(GEN8_GT_IIR(2),
1449 				   tmp & dev_priv->pm_rps_events);
1450 			ret = IRQ_HANDLED;
1451 			gen6_rps_irq_handler(dev_priv, tmp);
1452 		} else
1453 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1454 	}
1455 
1456 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1457 		tmp = I915_READ(GEN8_GT_IIR(3));
1458 		if (tmp) {
1459 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1460 			ret = IRQ_HANDLED;
1461 
1462 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1463 			ring = &dev_priv->ring[VECS];
1464 			if (vcs & GT_RENDER_USER_INTERRUPT)
1465 				notify_ring(dev, ring);
1466 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1467 				intel_lrc_irq_handler(ring);
1468 		} else
1469 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1470 	}
1471 
1472 	return ret;
1473 }
1474 
1475 #define HPD_STORM_DETECT_PERIOD 1000
1476 #define HPD_STORM_THRESHOLD 5
1477 
1478 static int pch_port_to_hotplug_shift(enum port port)
1479 {
1480 	switch (port) {
1481 	case PORT_A:
1482 	case PORT_E:
1483 	default:
1484 		return -1;
1485 	case PORT_B:
1486 		return 0;
1487 	case PORT_C:
1488 		return 8;
1489 	case PORT_D:
1490 		return 16;
1491 	}
1492 }
1493 
1494 static int i915_port_to_hotplug_shift(enum port port)
1495 {
1496 	switch (port) {
1497 	case PORT_A:
1498 	case PORT_E:
1499 	default:
1500 		return -1;
1501 	case PORT_B:
1502 		return 17;
1503 	case PORT_C:
1504 		return 19;
1505 	case PORT_D:
1506 		return 21;
1507 	}
1508 }
1509 
1510 static inline enum port get_port_from_pin(enum hpd_pin pin)
1511 {
1512 	switch (pin) {
1513 	case HPD_PORT_B:
1514 		return PORT_B;
1515 	case HPD_PORT_C:
1516 		return PORT_C;
1517 	case HPD_PORT_D:
1518 		return PORT_D;
1519 	default:
1520 		return PORT_A; /* no hpd */
1521 	}
1522 }
1523 
1524 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1525 					 u32 hotplug_trigger,
1526 					 u32 dig_hotplug_reg,
1527 					 const u32 hpd[HPD_NUM_PINS])
1528 {
1529 	struct drm_i915_private *dev_priv = dev->dev_private;
1530 	int i;
1531 	enum port port;
1532 	bool storm_detected = false;
1533 	bool queue_dig = false, queue_hp = false;
1534 	u32 dig_shift;
1535 	u32 dig_port_mask = 0;
1536 
1537 	if (!hotplug_trigger)
1538 		return;
1539 
1540 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1541 			 hotplug_trigger, dig_hotplug_reg);
1542 
1543 	spin_lock(&dev_priv->irq_lock);
1544 	for (i = 1; i < HPD_NUM_PINS; i++) {
1545 		if (!(hpd[i] & hotplug_trigger))
1546 			continue;
1547 
1548 		port = get_port_from_pin(i);
1549 		if (port && dev_priv->hpd_irq_port[port]) {
1550 			bool long_hpd;
1551 
1552 			if (HAS_PCH_SPLIT(dev)) {
1553 				dig_shift = pch_port_to_hotplug_shift(port);
1554 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1555 			} else {
1556 				dig_shift = i915_port_to_hotplug_shift(port);
1557 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1558 			}
1559 
1560 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1561 					 port_name(port),
1562 					 long_hpd ? "long" : "short");
1563 			/* for long HPD pulses we want to have the digital queue happen,
1564 			   but we still want HPD storm detection to function. */
1565 			if (long_hpd) {
1566 				dev_priv->long_hpd_port_mask |= (1 << port);
1567 				dig_port_mask |= hpd[i];
1568 			} else {
1569 				/* for short HPD just trigger the digital queue */
1570 				dev_priv->short_hpd_port_mask |= (1 << port);
1571 				hotplug_trigger &= ~hpd[i];
1572 			}
1573 			queue_dig = true;
1574 		}
1575 	}
1576 
1577 	for (i = 1; i < HPD_NUM_PINS; i++) {
1578 		if (hpd[i] & hotplug_trigger &&
1579 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1580 			/*
1581 			 * On GMCH platforms the interrupt mask bits only
1582 			 * prevent irq generation, not the setting of the
1583 			 * hotplug bits itself. So only WARN about unexpected
1584 			 * interrupts on saner platforms.
1585 			 */
1586 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1587 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1588 				  hotplug_trigger, i, hpd[i]);
1589 
1590 			continue;
1591 		}
1592 
1593 		if (!(hpd[i] & hotplug_trigger) ||
1594 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1595 			continue;
1596 
1597 		if (!(dig_port_mask & hpd[i])) {
1598 			dev_priv->hpd_event_bits |= (1 << i);
1599 			queue_hp = true;
1600 		}
1601 
1602 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1603 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1604 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1605 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1606 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1607 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1608 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1609 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1610 			dev_priv->hpd_event_bits &= ~(1 << i);
1611 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1612 			storm_detected = true;
1613 		} else {
1614 			dev_priv->hpd_stats[i].hpd_cnt++;
1615 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1616 				      dev_priv->hpd_stats[i].hpd_cnt);
1617 		}
1618 	}
1619 
1620 	if (storm_detected)
1621 		dev_priv->display.hpd_irq_setup(dev);
1622 	spin_unlock(&dev_priv->irq_lock);
1623 
1624 	/*
1625 	 * Our hotplug handler can grab modeset locks (by calling down into the
1626 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1627 	 * queue for otherwise the flush_work in the pageflip code will
1628 	 * deadlock.
1629 	 */
1630 	if (queue_dig)
1631 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1632 	if (queue_hp)
1633 		schedule_work(&dev_priv->hotplug_work);
1634 }
1635 
1636 static void gmbus_irq_handler(struct drm_device *dev)
1637 {
1638 	struct drm_i915_private *dev_priv = dev->dev_private;
1639 
1640 	wake_up_all(&dev_priv->gmbus_wait_queue);
1641 }
1642 
1643 static void dp_aux_irq_handler(struct drm_device *dev)
1644 {
1645 	struct drm_i915_private *dev_priv = dev->dev_private;
1646 
1647 	wake_up_all(&dev_priv->gmbus_wait_queue);
1648 }
1649 
1650 #if defined(CONFIG_DEBUG_FS)
1651 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1652 					 uint32_t crc0, uint32_t crc1,
1653 					 uint32_t crc2, uint32_t crc3,
1654 					 uint32_t crc4)
1655 {
1656 	struct drm_i915_private *dev_priv = dev->dev_private;
1657 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1658 	struct intel_pipe_crc_entry *entry;
1659 	int head, tail;
1660 
1661 	spin_lock(&pipe_crc->lock);
1662 
1663 	if (!pipe_crc->entries) {
1664 		spin_unlock(&pipe_crc->lock);
1665 		DRM_DEBUG_KMS("spurious interrupt\n");
1666 		return;
1667 	}
1668 
1669 	head = pipe_crc->head;
1670 	tail = pipe_crc->tail;
1671 
1672 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1673 		spin_unlock(&pipe_crc->lock);
1674 		DRM_ERROR("CRC buffer overflowing\n");
1675 		return;
1676 	}
1677 
1678 	entry = &pipe_crc->entries[head];
1679 
1680 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1681 	entry->crc[0] = crc0;
1682 	entry->crc[1] = crc1;
1683 	entry->crc[2] = crc2;
1684 	entry->crc[3] = crc3;
1685 	entry->crc[4] = crc4;
1686 
1687 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1688 	pipe_crc->head = head;
1689 
1690 	spin_unlock(&pipe_crc->lock);
1691 
1692 	wake_up_interruptible(&pipe_crc->wq);
1693 }
1694 #else
1695 static inline void
1696 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1697 			     uint32_t crc0, uint32_t crc1,
1698 			     uint32_t crc2, uint32_t crc3,
1699 			     uint32_t crc4) {}
1700 #endif
1701 
1702 
1703 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1704 {
1705 	struct drm_i915_private *dev_priv = dev->dev_private;
1706 
1707 	display_pipe_crc_irq_handler(dev, pipe,
1708 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1709 				     0, 0, 0, 0);
1710 }
1711 
1712 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1713 {
1714 	struct drm_i915_private *dev_priv = dev->dev_private;
1715 
1716 	display_pipe_crc_irq_handler(dev, pipe,
1717 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1718 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1719 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1720 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1721 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1722 }
1723 
1724 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1725 {
1726 	struct drm_i915_private *dev_priv = dev->dev_private;
1727 	uint32_t res1, res2;
1728 
1729 	if (INTEL_INFO(dev)->gen >= 3)
1730 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1731 	else
1732 		res1 = 0;
1733 
1734 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1735 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1736 	else
1737 		res2 = 0;
1738 
1739 	display_pipe_crc_irq_handler(dev, pipe,
1740 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1741 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1742 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1743 				     res1, res2);
1744 }
1745 
1746 /* The RPS events need forcewake, so we add them to a work queue and mask their
1747  * IMR bits until the work is done. Other interrupts can be processed without
1748  * the work queue. */
1749 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1750 {
1751 	/* TODO: RPS on GEN9+ is not supported yet. */
1752 	if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1753 		      "GEN9+: unexpected RPS IRQ\n"))
1754 		return;
1755 
1756 	if (pm_iir & dev_priv->pm_rps_events) {
1757 		spin_lock(&dev_priv->irq_lock);
1758 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1759 		if (dev_priv->rps.interrupts_enabled) {
1760 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1761 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1762 		}
1763 		spin_unlock(&dev_priv->irq_lock);
1764 	}
1765 
1766 	if (INTEL_INFO(dev_priv)->gen >= 8)
1767 		return;
1768 
1769 	if (HAS_VEBOX(dev_priv->dev)) {
1770 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1771 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1772 
1773 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1774 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1775 	}
1776 }
1777 
1778 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1779 {
1780 	if (!drm_handle_vblank(dev, pipe))
1781 		return false;
1782 
1783 	return true;
1784 }
1785 
1786 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1787 {
1788 	struct drm_i915_private *dev_priv = dev->dev_private;
1789 	u32 pipe_stats[I915_MAX_PIPES] = { };
1790 	int pipe;
1791 
1792 	spin_lock(&dev_priv->irq_lock);
1793 	for_each_pipe(dev_priv, pipe) {
1794 		int reg;
1795 		u32 mask, iir_bit = 0;
1796 
1797 		/*
1798 		 * PIPESTAT bits get signalled even when the interrupt is
1799 		 * disabled with the mask bits, and some of the status bits do
1800 		 * not generate interrupts at all (like the underrun bit). Hence
1801 		 * we need to be careful that we only handle what we want to
1802 		 * handle.
1803 		 */
1804 
1805 		/* fifo underruns are filterered in the underrun handler. */
1806 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1807 
1808 		switch (pipe) {
1809 		case PIPE_A:
1810 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1811 			break;
1812 		case PIPE_B:
1813 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1814 			break;
1815 		case PIPE_C:
1816 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1817 			break;
1818 		}
1819 		if (iir & iir_bit)
1820 			mask |= dev_priv->pipestat_irq_mask[pipe];
1821 
1822 		if (!mask)
1823 			continue;
1824 
1825 		reg = PIPESTAT(pipe);
1826 		mask |= PIPESTAT_INT_ENABLE_MASK;
1827 		pipe_stats[pipe] = I915_READ(reg) & mask;
1828 
1829 		/*
1830 		 * Clear the PIPE*STAT regs before the IIR
1831 		 */
1832 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1833 					PIPESTAT_INT_STATUS_MASK))
1834 			I915_WRITE(reg, pipe_stats[pipe]);
1835 	}
1836 	spin_unlock(&dev_priv->irq_lock);
1837 
1838 	for_each_pipe(dev_priv, pipe) {
1839 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1840 		    intel_pipe_handle_vblank(dev, pipe))
1841 			intel_check_page_flip(dev, pipe);
1842 
1843 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1844 			intel_prepare_page_flip(dev, pipe);
1845 			intel_finish_page_flip(dev, pipe);
1846 		}
1847 
1848 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1849 			i9xx_pipe_crc_irq_handler(dev, pipe);
1850 
1851 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1852 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1853 	}
1854 
1855 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1856 		gmbus_irq_handler(dev);
1857 }
1858 
1859 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1860 {
1861 	struct drm_i915_private *dev_priv = dev->dev_private;
1862 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1863 
1864 	if (hotplug_status) {
1865 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1866 		/*
1867 		 * Make sure hotplug status is cleared before we clear IIR, or else we
1868 		 * may miss hotplug events.
1869 		 */
1870 		POSTING_READ(PORT_HOTPLUG_STAT);
1871 
1872 		if (IS_G4X(dev)) {
1873 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1874 
1875 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1876 		} else {
1877 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1878 
1879 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1880 		}
1881 
1882 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1883 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1884 			dp_aux_irq_handler(dev);
1885 	}
1886 }
1887 
1888 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1889 {
1890 	struct drm_device *dev = arg;
1891 	struct drm_i915_private *dev_priv = dev->dev_private;
1892 	u32 iir, gt_iir, pm_iir;
1893 	irqreturn_t ret = IRQ_NONE;
1894 
1895 	if (!intel_irqs_enabled(dev_priv))
1896 		return IRQ_NONE;
1897 
1898 	while (true) {
1899 		/* Find, clear, then process each source of interrupt */
1900 
1901 		gt_iir = I915_READ(GTIIR);
1902 		if (gt_iir)
1903 			I915_WRITE(GTIIR, gt_iir);
1904 
1905 		pm_iir = I915_READ(GEN6_PMIIR);
1906 		if (pm_iir)
1907 			I915_WRITE(GEN6_PMIIR, pm_iir);
1908 
1909 		iir = I915_READ(VLV_IIR);
1910 		if (iir) {
1911 			/* Consume port before clearing IIR or we'll miss events */
1912 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1913 				i9xx_hpd_irq_handler(dev);
1914 			I915_WRITE(VLV_IIR, iir);
1915 		}
1916 
1917 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1918 			goto out;
1919 
1920 		ret = IRQ_HANDLED;
1921 
1922 		if (gt_iir)
1923 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1924 		if (pm_iir)
1925 			gen6_rps_irq_handler(dev_priv, pm_iir);
1926 		/* Call regardless, as some status bits might not be
1927 		 * signalled in iir */
1928 		valleyview_pipestat_irq_handler(dev, iir);
1929 	}
1930 
1931 out:
1932 	return ret;
1933 }
1934 
1935 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1936 {
1937 	struct drm_device *dev = arg;
1938 	struct drm_i915_private *dev_priv = dev->dev_private;
1939 	u32 master_ctl, iir;
1940 	irqreturn_t ret = IRQ_NONE;
1941 
1942 	if (!intel_irqs_enabled(dev_priv))
1943 		return IRQ_NONE;
1944 
1945 	for (;;) {
1946 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1947 		iir = I915_READ(VLV_IIR);
1948 
1949 		if (master_ctl == 0 && iir == 0)
1950 			break;
1951 
1952 		ret = IRQ_HANDLED;
1953 
1954 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1955 
1956 		/* Find, clear, then process each source of interrupt */
1957 
1958 		if (iir) {
1959 			/* Consume port before clearing IIR or we'll miss events */
1960 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1961 				i9xx_hpd_irq_handler(dev);
1962 			I915_WRITE(VLV_IIR, iir);
1963 		}
1964 
1965 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1966 
1967 		/* Call regardless, as some status bits might not be
1968 		 * signalled in iir */
1969 		valleyview_pipestat_irq_handler(dev, iir);
1970 
1971 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1972 		POSTING_READ(GEN8_MASTER_IRQ);
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1979 {
1980 	struct drm_i915_private *dev_priv = dev->dev_private;
1981 	int pipe;
1982 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1983 	u32 dig_hotplug_reg;
1984 
1985 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1986 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1987 
1988 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1989 
1990 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1991 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1992 			       SDE_AUDIO_POWER_SHIFT);
1993 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1994 				 port_name(port));
1995 	}
1996 
1997 	if (pch_iir & SDE_AUX_MASK)
1998 		dp_aux_irq_handler(dev);
1999 
2000 	if (pch_iir & SDE_GMBUS)
2001 		gmbus_irq_handler(dev);
2002 
2003 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2004 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2005 
2006 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2007 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2008 
2009 	if (pch_iir & SDE_POISON)
2010 		DRM_ERROR("PCH poison interrupt\n");
2011 
2012 	if (pch_iir & SDE_FDI_MASK)
2013 		for_each_pipe(dev_priv, pipe)
2014 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2015 					 pipe_name(pipe),
2016 					 I915_READ(FDI_RX_IIR(pipe)));
2017 
2018 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2019 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2020 
2021 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2022 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2023 
2024 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2025 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2026 
2027 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2028 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2029 }
2030 
2031 static void ivb_err_int_handler(struct drm_device *dev)
2032 {
2033 	struct drm_i915_private *dev_priv = dev->dev_private;
2034 	u32 err_int = I915_READ(GEN7_ERR_INT);
2035 	enum pipe pipe;
2036 
2037 	if (err_int & ERR_INT_POISON)
2038 		DRM_ERROR("Poison interrupt\n");
2039 
2040 	for_each_pipe(dev_priv, pipe) {
2041 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2042 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2043 
2044 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2045 			if (IS_IVYBRIDGE(dev))
2046 				ivb_pipe_crc_irq_handler(dev, pipe);
2047 			else
2048 				hsw_pipe_crc_irq_handler(dev, pipe);
2049 		}
2050 	}
2051 
2052 	I915_WRITE(GEN7_ERR_INT, err_int);
2053 }
2054 
2055 static void cpt_serr_int_handler(struct drm_device *dev)
2056 {
2057 	struct drm_i915_private *dev_priv = dev->dev_private;
2058 	u32 serr_int = I915_READ(SERR_INT);
2059 
2060 	if (serr_int & SERR_INT_POISON)
2061 		DRM_ERROR("PCH poison interrupt\n");
2062 
2063 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2064 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2065 
2066 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2067 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2068 
2069 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2070 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2071 
2072 	I915_WRITE(SERR_INT, serr_int);
2073 }
2074 
2075 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2076 {
2077 	struct drm_i915_private *dev_priv = dev->dev_private;
2078 	int pipe;
2079 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2080 	u32 dig_hotplug_reg;
2081 
2082 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2083 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2084 
2085 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2086 
2087 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2088 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2089 			       SDE_AUDIO_POWER_SHIFT_CPT);
2090 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2091 				 port_name(port));
2092 	}
2093 
2094 	if (pch_iir & SDE_AUX_MASK_CPT)
2095 		dp_aux_irq_handler(dev);
2096 
2097 	if (pch_iir & SDE_GMBUS_CPT)
2098 		gmbus_irq_handler(dev);
2099 
2100 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2101 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2102 
2103 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2104 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2105 
2106 	if (pch_iir & SDE_FDI_MASK_CPT)
2107 		for_each_pipe(dev_priv, pipe)
2108 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2109 					 pipe_name(pipe),
2110 					 I915_READ(FDI_RX_IIR(pipe)));
2111 
2112 	if (pch_iir & SDE_ERROR_CPT)
2113 		cpt_serr_int_handler(dev);
2114 }
2115 
2116 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2117 {
2118 	struct drm_i915_private *dev_priv = dev->dev_private;
2119 	enum pipe pipe;
2120 
2121 	if (de_iir & DE_AUX_CHANNEL_A)
2122 		dp_aux_irq_handler(dev);
2123 
2124 	if (de_iir & DE_GSE)
2125 		intel_opregion_asle_intr(dev);
2126 
2127 	if (de_iir & DE_POISON)
2128 		DRM_ERROR("Poison interrupt\n");
2129 
2130 	for_each_pipe(dev_priv, pipe) {
2131 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2132 		    intel_pipe_handle_vblank(dev, pipe))
2133 			intel_check_page_flip(dev, pipe);
2134 
2135 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2136 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2137 
2138 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2139 			i9xx_pipe_crc_irq_handler(dev, pipe);
2140 
2141 		/* plane/pipes map 1:1 on ilk+ */
2142 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2143 			intel_prepare_page_flip(dev, pipe);
2144 			intel_finish_page_flip_plane(dev, pipe);
2145 		}
2146 	}
2147 
2148 	/* check event from PCH */
2149 	if (de_iir & DE_PCH_EVENT) {
2150 		u32 pch_iir = I915_READ(SDEIIR);
2151 
2152 		if (HAS_PCH_CPT(dev))
2153 			cpt_irq_handler(dev, pch_iir);
2154 		else
2155 			ibx_irq_handler(dev, pch_iir);
2156 
2157 		/* should clear PCH hotplug event before clear CPU irq */
2158 		I915_WRITE(SDEIIR, pch_iir);
2159 	}
2160 
2161 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2162 		ironlake_rps_change_irq_handler(dev);
2163 }
2164 
2165 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2166 {
2167 	struct drm_i915_private *dev_priv = dev->dev_private;
2168 	enum pipe pipe;
2169 
2170 	if (de_iir & DE_ERR_INT_IVB)
2171 		ivb_err_int_handler(dev);
2172 
2173 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2174 		dp_aux_irq_handler(dev);
2175 
2176 	if (de_iir & DE_GSE_IVB)
2177 		intel_opregion_asle_intr(dev);
2178 
2179 	for_each_pipe(dev_priv, pipe) {
2180 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2181 		    intel_pipe_handle_vblank(dev, pipe))
2182 			intel_check_page_flip(dev, pipe);
2183 
2184 		/* plane/pipes map 1:1 on ilk+ */
2185 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2186 			intel_prepare_page_flip(dev, pipe);
2187 			intel_finish_page_flip_plane(dev, pipe);
2188 		}
2189 	}
2190 
2191 	/* check event from PCH */
2192 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2193 		u32 pch_iir = I915_READ(SDEIIR);
2194 
2195 		cpt_irq_handler(dev, pch_iir);
2196 
2197 		/* clear PCH hotplug event before clear CPU irq */
2198 		I915_WRITE(SDEIIR, pch_iir);
2199 	}
2200 }
2201 
2202 /*
2203  * To handle irqs with the minimum potential races with fresh interrupts, we:
2204  * 1 - Disable Master Interrupt Control.
2205  * 2 - Find the source(s) of the interrupt.
2206  * 3 - Clear the Interrupt Identity bits (IIR).
2207  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2208  * 5 - Re-enable Master Interrupt Control.
2209  */
2210 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2211 {
2212 	struct drm_device *dev = arg;
2213 	struct drm_i915_private *dev_priv = dev->dev_private;
2214 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2215 	irqreturn_t ret = IRQ_NONE;
2216 
2217 	if (!intel_irqs_enabled(dev_priv))
2218 		return IRQ_NONE;
2219 
2220 	/* We get interrupts on unclaimed registers, so check for this before we
2221 	 * do any I915_{READ,WRITE}. */
2222 	intel_uncore_check_errors(dev);
2223 
2224 	/* disable master interrupt before clearing iir  */
2225 	de_ier = I915_READ(DEIER);
2226 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2227 	POSTING_READ(DEIER);
2228 
2229 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2230 	 * interrupts will will be stored on its back queue, and then we'll be
2231 	 * able to process them after we restore SDEIER (as soon as we restore
2232 	 * it, we'll get an interrupt if SDEIIR still has something to process
2233 	 * due to its back queue). */
2234 	if (!HAS_PCH_NOP(dev)) {
2235 		sde_ier = I915_READ(SDEIER);
2236 		I915_WRITE(SDEIER, 0);
2237 		POSTING_READ(SDEIER);
2238 	}
2239 
2240 	/* Find, clear, then process each source of interrupt */
2241 
2242 	gt_iir = I915_READ(GTIIR);
2243 	if (gt_iir) {
2244 		I915_WRITE(GTIIR, gt_iir);
2245 		ret = IRQ_HANDLED;
2246 		if (INTEL_INFO(dev)->gen >= 6)
2247 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2248 		else
2249 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2250 	}
2251 
2252 	de_iir = I915_READ(DEIIR);
2253 	if (de_iir) {
2254 		I915_WRITE(DEIIR, de_iir);
2255 		ret = IRQ_HANDLED;
2256 		if (INTEL_INFO(dev)->gen >= 7)
2257 			ivb_display_irq_handler(dev, de_iir);
2258 		else
2259 			ilk_display_irq_handler(dev, de_iir);
2260 	}
2261 
2262 	if (INTEL_INFO(dev)->gen >= 6) {
2263 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2264 		if (pm_iir) {
2265 			I915_WRITE(GEN6_PMIIR, pm_iir);
2266 			ret = IRQ_HANDLED;
2267 			gen6_rps_irq_handler(dev_priv, pm_iir);
2268 		}
2269 	}
2270 
2271 	I915_WRITE(DEIER, de_ier);
2272 	POSTING_READ(DEIER);
2273 	if (!HAS_PCH_NOP(dev)) {
2274 		I915_WRITE(SDEIER, sde_ier);
2275 		POSTING_READ(SDEIER);
2276 	}
2277 
2278 	return ret;
2279 }
2280 
2281 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2282 {
2283 	struct drm_device *dev = arg;
2284 	struct drm_i915_private *dev_priv = dev->dev_private;
2285 	u32 master_ctl;
2286 	irqreturn_t ret = IRQ_NONE;
2287 	uint32_t tmp = 0;
2288 	enum pipe pipe;
2289 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2290 
2291 	if (!intel_irqs_enabled(dev_priv))
2292 		return IRQ_NONE;
2293 
2294 	if (IS_GEN9(dev))
2295 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2296 			GEN9_AUX_CHANNEL_D;
2297 
2298 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2299 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2300 	if (!master_ctl)
2301 		return IRQ_NONE;
2302 
2303 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2304 	POSTING_READ(GEN8_MASTER_IRQ);
2305 
2306 	/* Find, clear, then process each source of interrupt */
2307 
2308 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2309 
2310 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2311 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2312 		if (tmp) {
2313 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2314 			ret = IRQ_HANDLED;
2315 			if (tmp & GEN8_DE_MISC_GSE)
2316 				intel_opregion_asle_intr(dev);
2317 			else
2318 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2319 		}
2320 		else
2321 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2322 	}
2323 
2324 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2325 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2326 		if (tmp) {
2327 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2328 			ret = IRQ_HANDLED;
2329 
2330 			if (tmp & aux_mask)
2331 				dp_aux_irq_handler(dev);
2332 			else
2333 				DRM_ERROR("Unexpected DE Port interrupt\n");
2334 		}
2335 		else
2336 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2337 	}
2338 
2339 	for_each_pipe(dev_priv, pipe) {
2340 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2341 
2342 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2343 			continue;
2344 
2345 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2346 		if (pipe_iir) {
2347 			ret = IRQ_HANDLED;
2348 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2349 
2350 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2351 			    intel_pipe_handle_vblank(dev, pipe))
2352 				intel_check_page_flip(dev, pipe);
2353 
2354 			if (IS_GEN9(dev))
2355 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2356 			else
2357 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2358 
2359 			if (flip_done) {
2360 				intel_prepare_page_flip(dev, pipe);
2361 				intel_finish_page_flip_plane(dev, pipe);
2362 			}
2363 
2364 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2365 				hsw_pipe_crc_irq_handler(dev, pipe);
2366 
2367 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2368 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2369 								    pipe);
2370 
2371 
2372 			if (IS_GEN9(dev))
2373 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2374 			else
2375 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2376 
2377 			if (fault_errors)
2378 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2379 					  pipe_name(pipe),
2380 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2381 		} else
2382 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2383 	}
2384 
2385 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2386 		/*
2387 		 * FIXME(BDW): Assume for now that the new interrupt handling
2388 		 * scheme also closed the SDE interrupt handling race we've seen
2389 		 * on older pch-split platforms. But this needs testing.
2390 		 */
2391 		u32 pch_iir = I915_READ(SDEIIR);
2392 		if (pch_iir) {
2393 			I915_WRITE(SDEIIR, pch_iir);
2394 			ret = IRQ_HANDLED;
2395 			cpt_irq_handler(dev, pch_iir);
2396 		} else
2397 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2398 
2399 	}
2400 
2401 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2402 	POSTING_READ(GEN8_MASTER_IRQ);
2403 
2404 	return ret;
2405 }
2406 
2407 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2408 			       bool reset_completed)
2409 {
2410 	struct intel_engine_cs *ring;
2411 	int i;
2412 
2413 	/*
2414 	 * Notify all waiters for GPU completion events that reset state has
2415 	 * been changed, and that they need to restart their wait after
2416 	 * checking for potential errors (and bail out to drop locks if there is
2417 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2418 	 */
2419 
2420 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2421 	for_each_ring(ring, dev_priv, i)
2422 		wake_up_all(&ring->irq_queue);
2423 
2424 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2425 	wake_up_all(&dev_priv->pending_flip_queue);
2426 
2427 	/*
2428 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2429 	 * reset state is cleared.
2430 	 */
2431 	if (reset_completed)
2432 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2433 }
2434 
2435 /**
2436  * i915_reset_and_wakeup - do process context error handling work
2437  *
2438  * Fire an error uevent so userspace can see that a hang or error
2439  * was detected.
2440  */
2441 static void i915_reset_and_wakeup(struct drm_device *dev)
2442 {
2443 	struct drm_i915_private *dev_priv = to_i915(dev);
2444 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2445 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2446 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2447 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2448 	int ret;
2449 
2450 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2451 
2452 	/*
2453 	 * Note that there's only one work item which does gpu resets, so we
2454 	 * need not worry about concurrent gpu resets potentially incrementing
2455 	 * error->reset_counter twice. We only need to take care of another
2456 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2457 	 * quick check for that is good enough: schedule_work ensures the
2458 	 * correct ordering between hang detection and this work item, and since
2459 	 * the reset in-progress bit is only ever set by code outside of this
2460 	 * work we don't need to worry about any other races.
2461 	 */
2462 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2463 		DRM_DEBUG_DRIVER("resetting chip\n");
2464 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2465 				   reset_event);
2466 
2467 		/*
2468 		 * In most cases it's guaranteed that we get here with an RPM
2469 		 * reference held, for example because there is a pending GPU
2470 		 * request that won't finish until the reset is done. This
2471 		 * isn't the case at least when we get here by doing a
2472 		 * simulated reset via debugs, so get an RPM reference.
2473 		 */
2474 		intel_runtime_pm_get(dev_priv);
2475 
2476 		intel_prepare_reset(dev);
2477 
2478 		/*
2479 		 * All state reset _must_ be completed before we update the
2480 		 * reset counter, for otherwise waiters might miss the reset
2481 		 * pending state and not properly drop locks, resulting in
2482 		 * deadlocks with the reset work.
2483 		 */
2484 		ret = i915_reset(dev);
2485 
2486 		intel_finish_reset(dev);
2487 
2488 		intel_runtime_pm_put(dev_priv);
2489 
2490 		if (ret == 0) {
2491 			/*
2492 			 * After all the gem state is reset, increment the reset
2493 			 * counter and wake up everyone waiting for the reset to
2494 			 * complete.
2495 			 *
2496 			 * Since unlock operations are a one-sided barrier only,
2497 			 * we need to insert a barrier here to order any seqno
2498 			 * updates before
2499 			 * the counter increment.
2500 			 */
2501 			smp_mb__before_atomic();
2502 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2503 
2504 			kobject_uevent_env(&dev->primary->kdev->kobj,
2505 					   KOBJ_CHANGE, reset_done_event);
2506 		} else {
2507 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2508 		}
2509 
2510 		/*
2511 		 * Note: The wake_up also serves as a memory barrier so that
2512 		 * waiters see the update value of the reset counter atomic_t.
2513 		 */
2514 		i915_error_wake_up(dev_priv, true);
2515 	}
2516 }
2517 
2518 static void i915_report_and_clear_eir(struct drm_device *dev)
2519 {
2520 	struct drm_i915_private *dev_priv = dev->dev_private;
2521 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2522 	u32 eir = I915_READ(EIR);
2523 	int pipe, i;
2524 
2525 	if (!eir)
2526 		return;
2527 
2528 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2529 
2530 	i915_get_extra_instdone(dev, instdone);
2531 
2532 	if (IS_G4X(dev)) {
2533 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2534 			u32 ipeir = I915_READ(IPEIR_I965);
2535 
2536 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2537 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2538 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2539 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2540 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2541 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2542 			I915_WRITE(IPEIR_I965, ipeir);
2543 			POSTING_READ(IPEIR_I965);
2544 		}
2545 		if (eir & GM45_ERROR_PAGE_TABLE) {
2546 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2547 			pr_err("page table error\n");
2548 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2549 			I915_WRITE(PGTBL_ER, pgtbl_err);
2550 			POSTING_READ(PGTBL_ER);
2551 		}
2552 	}
2553 
2554 	if (!IS_GEN2(dev)) {
2555 		if (eir & I915_ERROR_PAGE_TABLE) {
2556 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2557 			pr_err("page table error\n");
2558 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2559 			I915_WRITE(PGTBL_ER, pgtbl_err);
2560 			POSTING_READ(PGTBL_ER);
2561 		}
2562 	}
2563 
2564 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2565 		pr_err("memory refresh error:\n");
2566 		for_each_pipe(dev_priv, pipe)
2567 			pr_err("pipe %c stat: 0x%08x\n",
2568 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2569 		/* pipestat has already been acked */
2570 	}
2571 	if (eir & I915_ERROR_INSTRUCTION) {
2572 		pr_err("instruction error\n");
2573 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2574 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2575 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2576 		if (INTEL_INFO(dev)->gen < 4) {
2577 			u32 ipeir = I915_READ(IPEIR);
2578 
2579 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2580 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2581 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2582 			I915_WRITE(IPEIR, ipeir);
2583 			POSTING_READ(IPEIR);
2584 		} else {
2585 			u32 ipeir = I915_READ(IPEIR_I965);
2586 
2587 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2588 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2589 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2590 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2591 			I915_WRITE(IPEIR_I965, ipeir);
2592 			POSTING_READ(IPEIR_I965);
2593 		}
2594 	}
2595 
2596 	I915_WRITE(EIR, eir);
2597 	POSTING_READ(EIR);
2598 	eir = I915_READ(EIR);
2599 	if (eir) {
2600 		/*
2601 		 * some errors might have become stuck,
2602 		 * mask them.
2603 		 */
2604 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2605 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2606 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2607 	}
2608 }
2609 
2610 /**
2611  * i915_handle_error - handle a gpu error
2612  * @dev: drm device
2613  *
2614  * Do some basic checking of regsiter state at error time and
2615  * dump it to the syslog.  Also call i915_capture_error_state() to make
2616  * sure we get a record and make it available in debugfs.  Fire a uevent
2617  * so userspace knows something bad happened (should trigger collection
2618  * of a ring dump etc.).
2619  */
2620 void i915_handle_error(struct drm_device *dev, bool wedged,
2621 		       const char *fmt, ...)
2622 {
2623 	struct drm_i915_private *dev_priv = dev->dev_private;
2624 	va_list args;
2625 	char error_msg[80];
2626 
2627 	va_start(args, fmt);
2628 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2629 	va_end(args);
2630 
2631 	i915_capture_error_state(dev, wedged, error_msg);
2632 	i915_report_and_clear_eir(dev);
2633 
2634 	if (wedged) {
2635 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2636 				&dev_priv->gpu_error.reset_counter);
2637 
2638 		/*
2639 		 * Wakeup waiting processes so that the reset function
2640 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2641 		 * various locks. By bumping the reset counter first, the woken
2642 		 * processes will see a reset in progress and back off,
2643 		 * releasing their locks and then wait for the reset completion.
2644 		 * We must do this for _all_ gpu waiters that might hold locks
2645 		 * that the reset work needs to acquire.
2646 		 *
2647 		 * Note: The wake_up serves as the required memory barrier to
2648 		 * ensure that the waiters see the updated value of the reset
2649 		 * counter atomic_t.
2650 		 */
2651 		i915_error_wake_up(dev_priv, false);
2652 	}
2653 
2654 	i915_reset_and_wakeup(dev);
2655 }
2656 
2657 /* Called from drm generic code, passed 'crtc' which
2658  * we use as a pipe index
2659  */
2660 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2661 {
2662 	struct drm_i915_private *dev_priv = dev->dev_private;
2663 	unsigned long irqflags;
2664 
2665 	if (!i915_pipe_enabled(dev, pipe))
2666 		return -EINVAL;
2667 
2668 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2669 	if (INTEL_INFO(dev)->gen >= 4)
2670 		i915_enable_pipestat(dev_priv, pipe,
2671 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2672 	else
2673 		i915_enable_pipestat(dev_priv, pipe,
2674 				     PIPE_VBLANK_INTERRUPT_STATUS);
2675 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2676 
2677 	return 0;
2678 }
2679 
2680 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2681 {
2682 	struct drm_i915_private *dev_priv = dev->dev_private;
2683 	unsigned long irqflags;
2684 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2685 						     DE_PIPE_VBLANK(pipe);
2686 
2687 	if (!i915_pipe_enabled(dev, pipe))
2688 		return -EINVAL;
2689 
2690 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2691 	ironlake_enable_display_irq(dev_priv, bit);
2692 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2693 
2694 	return 0;
2695 }
2696 
2697 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2698 {
2699 	struct drm_i915_private *dev_priv = dev->dev_private;
2700 	unsigned long irqflags;
2701 
2702 	if (!i915_pipe_enabled(dev, pipe))
2703 		return -EINVAL;
2704 
2705 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2706 	i915_enable_pipestat(dev_priv, pipe,
2707 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2708 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2709 
2710 	return 0;
2711 }
2712 
2713 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2714 {
2715 	struct drm_i915_private *dev_priv = dev->dev_private;
2716 	unsigned long irqflags;
2717 
2718 	if (!i915_pipe_enabled(dev, pipe))
2719 		return -EINVAL;
2720 
2721 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2723 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2724 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2725 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2726 	return 0;
2727 }
2728 
2729 /* Called from drm generic code, passed 'crtc' which
2730  * we use as a pipe index
2731  */
2732 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2733 {
2734 	struct drm_i915_private *dev_priv = dev->dev_private;
2735 	unsigned long irqflags;
2736 
2737 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2738 	i915_disable_pipestat(dev_priv, pipe,
2739 			      PIPE_VBLANK_INTERRUPT_STATUS |
2740 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2741 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742 }
2743 
2744 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2745 {
2746 	struct drm_i915_private *dev_priv = dev->dev_private;
2747 	unsigned long irqflags;
2748 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2749 						     DE_PIPE_VBLANK(pipe);
2750 
2751 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 	ironlake_disable_display_irq(dev_priv, bit);
2753 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755 
2756 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2757 {
2758 	struct drm_i915_private *dev_priv = dev->dev_private;
2759 	unsigned long irqflags;
2760 
2761 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762 	i915_disable_pipestat(dev_priv, pipe,
2763 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2764 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2765 }
2766 
2767 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2768 {
2769 	struct drm_i915_private *dev_priv = dev->dev_private;
2770 	unsigned long irqflags;
2771 
2772 	if (!i915_pipe_enabled(dev, pipe))
2773 		return;
2774 
2775 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2777 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2778 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2779 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2780 }
2781 
2782 static struct drm_i915_gem_request *
2783 ring_last_request(struct intel_engine_cs *ring)
2784 {
2785 	return list_entry(ring->request_list.prev,
2786 			  struct drm_i915_gem_request, list);
2787 }
2788 
2789 static bool
2790 ring_idle(struct intel_engine_cs *ring)
2791 {
2792 	return (list_empty(&ring->request_list) ||
2793 		i915_gem_request_completed(ring_last_request(ring), false));
2794 }
2795 
2796 static bool
2797 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2798 {
2799 	if (INTEL_INFO(dev)->gen >= 8) {
2800 		return (ipehr >> 23) == 0x1c;
2801 	} else {
2802 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2803 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2804 				 MI_SEMAPHORE_REGISTER);
2805 	}
2806 }
2807 
2808 static struct intel_engine_cs *
2809 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2810 {
2811 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2812 	struct intel_engine_cs *signaller;
2813 	int i;
2814 
2815 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2816 		for_each_ring(signaller, dev_priv, i) {
2817 			if (ring == signaller)
2818 				continue;
2819 
2820 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2821 				return signaller;
2822 		}
2823 	} else {
2824 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2825 
2826 		for_each_ring(signaller, dev_priv, i) {
2827 			if(ring == signaller)
2828 				continue;
2829 
2830 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2831 				return signaller;
2832 		}
2833 	}
2834 
2835 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2836 		  ring->id, ipehr, offset);
2837 
2838 	return NULL;
2839 }
2840 
2841 static struct intel_engine_cs *
2842 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2843 {
2844 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2845 	u32 cmd, ipehr, head;
2846 	u64 offset = 0;
2847 	int i, backwards;
2848 
2849 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2850 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2851 		return NULL;
2852 
2853 	/*
2854 	 * HEAD is likely pointing to the dword after the actual command,
2855 	 * so scan backwards until we find the MBOX. But limit it to just 3
2856 	 * or 4 dwords depending on the semaphore wait command size.
2857 	 * Note that we don't care about ACTHD here since that might
2858 	 * point at at batch, and semaphores are always emitted into the
2859 	 * ringbuffer itself.
2860 	 */
2861 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2862 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2863 
2864 	for (i = backwards; i; --i) {
2865 		/*
2866 		 * Be paranoid and presume the hw has gone off into the wild -
2867 		 * our ring is smaller than what the hardware (and hence
2868 		 * HEAD_ADDR) allows. Also handles wrap-around.
2869 		 */
2870 		head &= ring->buffer->size - 1;
2871 
2872 		/* This here seems to blow up */
2873 		cmd = ioread32(ring->buffer->virtual_start + head);
2874 		if (cmd == ipehr)
2875 			break;
2876 
2877 		head -= 4;
2878 	}
2879 
2880 	if (!i)
2881 		return NULL;
2882 
2883 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2884 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2885 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2886 		offset <<= 32;
2887 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2888 	}
2889 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2890 }
2891 
2892 static int semaphore_passed(struct intel_engine_cs *ring)
2893 {
2894 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2895 	struct intel_engine_cs *signaller;
2896 	u32 seqno;
2897 
2898 	ring->hangcheck.deadlock++;
2899 
2900 	signaller = semaphore_waits_for(ring, &seqno);
2901 	if (signaller == NULL)
2902 		return -1;
2903 
2904 	/* Prevent pathological recursion due to driver bugs */
2905 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2906 		return -1;
2907 
2908 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2909 		return 1;
2910 
2911 	/* cursory check for an unkickable deadlock */
2912 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2913 	    semaphore_passed(signaller) < 0)
2914 		return -1;
2915 
2916 	return 0;
2917 }
2918 
2919 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2920 {
2921 	struct intel_engine_cs *ring;
2922 	int i;
2923 
2924 	for_each_ring(ring, dev_priv, i)
2925 		ring->hangcheck.deadlock = 0;
2926 }
2927 
2928 static enum intel_ring_hangcheck_action
2929 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2930 {
2931 	struct drm_device *dev = ring->dev;
2932 	struct drm_i915_private *dev_priv = dev->dev_private;
2933 	u32 tmp;
2934 
2935 	if (acthd != ring->hangcheck.acthd) {
2936 		if (acthd > ring->hangcheck.max_acthd) {
2937 			ring->hangcheck.max_acthd = acthd;
2938 			return HANGCHECK_ACTIVE;
2939 		}
2940 
2941 		return HANGCHECK_ACTIVE_LOOP;
2942 	}
2943 
2944 	if (IS_GEN2(dev))
2945 		return HANGCHECK_HUNG;
2946 
2947 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2948 	 * If so we can simply poke the RB_WAIT bit
2949 	 * and break the hang. This should work on
2950 	 * all but the second generation chipsets.
2951 	 */
2952 	tmp = I915_READ_CTL(ring);
2953 	if (tmp & RING_WAIT) {
2954 		i915_handle_error(dev, false,
2955 				  "Kicking stuck wait on %s",
2956 				  ring->name);
2957 		I915_WRITE_CTL(ring, tmp);
2958 		return HANGCHECK_KICK;
2959 	}
2960 
2961 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2962 		switch (semaphore_passed(ring)) {
2963 		default:
2964 			return HANGCHECK_HUNG;
2965 		case 1:
2966 			i915_handle_error(dev, false,
2967 					  "Kicking stuck semaphore on %s",
2968 					  ring->name);
2969 			I915_WRITE_CTL(ring, tmp);
2970 			return HANGCHECK_KICK;
2971 		case 0:
2972 			return HANGCHECK_WAIT;
2973 		}
2974 	}
2975 
2976 	return HANGCHECK_HUNG;
2977 }
2978 
2979 /*
2980  * This is called when the chip hasn't reported back with completed
2981  * batchbuffers in a long time. We keep track per ring seqno progress and
2982  * if there are no progress, hangcheck score for that ring is increased.
2983  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2984  * we kick the ring. If we see no progress on three subsequent calls
2985  * we assume chip is wedged and try to fix it by resetting the chip.
2986  */
2987 static void i915_hangcheck_elapsed(struct work_struct *work)
2988 {
2989 	struct drm_i915_private *dev_priv =
2990 		container_of(work, typeof(*dev_priv),
2991 			     gpu_error.hangcheck_work.work);
2992 	struct drm_device *dev = dev_priv->dev;
2993 	struct intel_engine_cs *ring;
2994 	int i;
2995 	int busy_count = 0, rings_hung = 0;
2996 	bool stuck[I915_NUM_RINGS] = { 0 };
2997 #define BUSY 1
2998 #define KICK 5
2999 #define HUNG 20
3000 
3001 	if (!i915.enable_hangcheck)
3002 		return;
3003 
3004 	for_each_ring(ring, dev_priv, i) {
3005 		u64 acthd;
3006 		u32 seqno;
3007 		bool busy = true;
3008 
3009 		semaphore_clear_deadlocks(dev_priv);
3010 
3011 		seqno = ring->get_seqno(ring, false);
3012 		acthd = intel_ring_get_active_head(ring);
3013 
3014 		if (ring->hangcheck.seqno == seqno) {
3015 			if (ring_idle(ring)) {
3016 				ring->hangcheck.action = HANGCHECK_IDLE;
3017 
3018 				if (waitqueue_active(&ring->irq_queue)) {
3019 					/* Issue a wake-up to catch stuck h/w. */
3020 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3021 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3022 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3023 								  ring->name);
3024 						else
3025 							DRM_INFO("Fake missed irq on %s\n",
3026 								 ring->name);
3027 						wake_up_all(&ring->irq_queue);
3028 					}
3029 					/* Safeguard against driver failure */
3030 					ring->hangcheck.score += BUSY;
3031 				} else
3032 					busy = false;
3033 			} else {
3034 				/* We always increment the hangcheck score
3035 				 * if the ring is busy and still processing
3036 				 * the same request, so that no single request
3037 				 * can run indefinitely (such as a chain of
3038 				 * batches). The only time we do not increment
3039 				 * the hangcheck score on this ring, if this
3040 				 * ring is in a legitimate wait for another
3041 				 * ring. In that case the waiting ring is a
3042 				 * victim and we want to be sure we catch the
3043 				 * right culprit. Then every time we do kick
3044 				 * the ring, add a small increment to the
3045 				 * score so that we can catch a batch that is
3046 				 * being repeatedly kicked and so responsible
3047 				 * for stalling the machine.
3048 				 */
3049 				ring->hangcheck.action = ring_stuck(ring,
3050 								    acthd);
3051 
3052 				switch (ring->hangcheck.action) {
3053 				case HANGCHECK_IDLE:
3054 				case HANGCHECK_WAIT:
3055 				case HANGCHECK_ACTIVE:
3056 					break;
3057 				case HANGCHECK_ACTIVE_LOOP:
3058 					ring->hangcheck.score += BUSY;
3059 					break;
3060 				case HANGCHECK_KICK:
3061 					ring->hangcheck.score += KICK;
3062 					break;
3063 				case HANGCHECK_HUNG:
3064 					ring->hangcheck.score += HUNG;
3065 					stuck[i] = true;
3066 					break;
3067 				}
3068 			}
3069 		} else {
3070 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3071 
3072 			/* Gradually reduce the count so that we catch DoS
3073 			 * attempts across multiple batches.
3074 			 */
3075 			if (ring->hangcheck.score > 0)
3076 				ring->hangcheck.score--;
3077 
3078 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3079 		}
3080 
3081 		ring->hangcheck.seqno = seqno;
3082 		ring->hangcheck.acthd = acthd;
3083 		busy_count += busy;
3084 	}
3085 
3086 	for_each_ring(ring, dev_priv, i) {
3087 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3088 			DRM_INFO("%s on %s\n",
3089 				 stuck[i] ? "stuck" : "no progress",
3090 				 ring->name);
3091 			rings_hung++;
3092 		}
3093 	}
3094 
3095 	if (rings_hung)
3096 		return i915_handle_error(dev, true, "Ring hung");
3097 
3098 	if (busy_count)
3099 		/* Reset timer case chip hangs without another request
3100 		 * being added */
3101 		i915_queue_hangcheck(dev);
3102 }
3103 
3104 void i915_queue_hangcheck(struct drm_device *dev)
3105 {
3106 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3107 
3108 	if (!i915.enable_hangcheck)
3109 		return;
3110 
3111 	/* Don't continually defer the hangcheck so that it is always run at
3112 	 * least once after work has been scheduled on any ring. Otherwise,
3113 	 * we will ignore a hung ring if a second ring is kept busy.
3114 	 */
3115 
3116 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3117 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3118 }
3119 
3120 static void ibx_irq_reset(struct drm_device *dev)
3121 {
3122 	struct drm_i915_private *dev_priv = dev->dev_private;
3123 
3124 	if (HAS_PCH_NOP(dev))
3125 		return;
3126 
3127 	GEN5_IRQ_RESET(SDE);
3128 
3129 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3130 		I915_WRITE(SERR_INT, 0xffffffff);
3131 }
3132 
3133 /*
3134  * SDEIER is also touched by the interrupt handler to work around missed PCH
3135  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3136  * instead we unconditionally enable all PCH interrupt sources here, but then
3137  * only unmask them as needed with SDEIMR.
3138  *
3139  * This function needs to be called before interrupts are enabled.
3140  */
3141 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3142 {
3143 	struct drm_i915_private *dev_priv = dev->dev_private;
3144 
3145 	if (HAS_PCH_NOP(dev))
3146 		return;
3147 
3148 	WARN_ON(I915_READ(SDEIER) != 0);
3149 	I915_WRITE(SDEIER, 0xffffffff);
3150 	POSTING_READ(SDEIER);
3151 }
3152 
3153 static void gen5_gt_irq_reset(struct drm_device *dev)
3154 {
3155 	struct drm_i915_private *dev_priv = dev->dev_private;
3156 
3157 	GEN5_IRQ_RESET(GT);
3158 	if (INTEL_INFO(dev)->gen >= 6)
3159 		GEN5_IRQ_RESET(GEN6_PM);
3160 }
3161 
3162 /* drm_dma.h hooks
3163 */
3164 static void ironlake_irq_reset(struct drm_device *dev)
3165 {
3166 	struct drm_i915_private *dev_priv = dev->dev_private;
3167 
3168 	I915_WRITE(HWSTAM, 0xffffffff);
3169 
3170 	GEN5_IRQ_RESET(DE);
3171 	if (IS_GEN7(dev))
3172 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3173 
3174 	gen5_gt_irq_reset(dev);
3175 
3176 	ibx_irq_reset(dev);
3177 }
3178 
3179 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3180 {
3181 	enum pipe pipe;
3182 
3183 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3184 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3185 
3186 	for_each_pipe(dev_priv, pipe)
3187 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3188 
3189 	GEN5_IRQ_RESET(VLV_);
3190 }
3191 
3192 static void valleyview_irq_preinstall(struct drm_device *dev)
3193 {
3194 	struct drm_i915_private *dev_priv = dev->dev_private;
3195 
3196 	/* VLV magic */
3197 	I915_WRITE(VLV_IMR, 0);
3198 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3199 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3200 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3201 
3202 	gen5_gt_irq_reset(dev);
3203 
3204 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3205 
3206 	vlv_display_irq_reset(dev_priv);
3207 }
3208 
3209 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3210 {
3211 	GEN8_IRQ_RESET_NDX(GT, 0);
3212 	GEN8_IRQ_RESET_NDX(GT, 1);
3213 	GEN8_IRQ_RESET_NDX(GT, 2);
3214 	GEN8_IRQ_RESET_NDX(GT, 3);
3215 }
3216 
3217 static void gen8_irq_reset(struct drm_device *dev)
3218 {
3219 	struct drm_i915_private *dev_priv = dev->dev_private;
3220 	int pipe;
3221 
3222 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3223 	POSTING_READ(GEN8_MASTER_IRQ);
3224 
3225 	gen8_gt_irq_reset(dev_priv);
3226 
3227 	for_each_pipe(dev_priv, pipe)
3228 		if (intel_display_power_is_enabled(dev_priv,
3229 						   POWER_DOMAIN_PIPE(pipe)))
3230 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3231 
3232 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3233 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3234 	GEN5_IRQ_RESET(GEN8_PCU_);
3235 
3236 	ibx_irq_reset(dev);
3237 }
3238 
3239 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3240 {
3241 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3242 
3243 	spin_lock_irq(&dev_priv->irq_lock);
3244 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3245 			  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3246 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3247 			  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3248 	spin_unlock_irq(&dev_priv->irq_lock);
3249 }
3250 
3251 static void cherryview_irq_preinstall(struct drm_device *dev)
3252 {
3253 	struct drm_i915_private *dev_priv = dev->dev_private;
3254 
3255 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3256 	POSTING_READ(GEN8_MASTER_IRQ);
3257 
3258 	gen8_gt_irq_reset(dev_priv);
3259 
3260 	GEN5_IRQ_RESET(GEN8_PCU_);
3261 
3262 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3263 
3264 	vlv_display_irq_reset(dev_priv);
3265 }
3266 
3267 static void ibx_hpd_irq_setup(struct drm_device *dev)
3268 {
3269 	struct drm_i915_private *dev_priv = dev->dev_private;
3270 	struct intel_encoder *intel_encoder;
3271 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3272 
3273 	if (HAS_PCH_IBX(dev)) {
3274 		hotplug_irqs = SDE_HOTPLUG_MASK;
3275 		for_each_intel_encoder(dev, intel_encoder)
3276 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3277 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3278 	} else {
3279 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3280 		for_each_intel_encoder(dev, intel_encoder)
3281 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3282 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3283 	}
3284 
3285 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3286 
3287 	/*
3288 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3289 	 * duration to 2ms (which is the minimum in the Display Port spec)
3290 	 *
3291 	 * This register is the same on all known PCH chips.
3292 	 */
3293 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3294 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3295 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3296 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3297 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3298 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3299 }
3300 
3301 static void ibx_irq_postinstall(struct drm_device *dev)
3302 {
3303 	struct drm_i915_private *dev_priv = dev->dev_private;
3304 	u32 mask;
3305 
3306 	if (HAS_PCH_NOP(dev))
3307 		return;
3308 
3309 	if (HAS_PCH_IBX(dev))
3310 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3311 	else
3312 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3313 
3314 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3315 	I915_WRITE(SDEIMR, ~mask);
3316 }
3317 
3318 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3319 {
3320 	struct drm_i915_private *dev_priv = dev->dev_private;
3321 	u32 pm_irqs, gt_irqs;
3322 
3323 	pm_irqs = gt_irqs = 0;
3324 
3325 	dev_priv->gt_irq_mask = ~0;
3326 	if (HAS_L3_DPF(dev)) {
3327 		/* L3 parity interrupt is always unmasked. */
3328 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3329 		gt_irqs |= GT_PARITY_ERROR(dev);
3330 	}
3331 
3332 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3333 	if (IS_GEN5(dev)) {
3334 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3335 			   ILK_BSD_USER_INTERRUPT;
3336 	} else {
3337 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3338 	}
3339 
3340 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3341 
3342 	if (INTEL_INFO(dev)->gen >= 6) {
3343 		/*
3344 		 * RPS interrupts will get enabled/disabled on demand when RPS
3345 		 * itself is enabled/disabled.
3346 		 */
3347 		if (HAS_VEBOX(dev))
3348 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3349 
3350 		dev_priv->pm_irq_mask = 0xffffffff;
3351 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3352 	}
3353 }
3354 
3355 static int ironlake_irq_postinstall(struct drm_device *dev)
3356 {
3357 	struct drm_i915_private *dev_priv = dev->dev_private;
3358 	u32 display_mask, extra_mask;
3359 
3360 	if (INTEL_INFO(dev)->gen >= 7) {
3361 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3362 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3363 				DE_PLANEB_FLIP_DONE_IVB |
3364 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3365 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3366 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3367 	} else {
3368 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3369 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3370 				DE_AUX_CHANNEL_A |
3371 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3372 				DE_POISON);
3373 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3374 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3375 	}
3376 
3377 	dev_priv->irq_mask = ~display_mask;
3378 
3379 	I915_WRITE(HWSTAM, 0xeffe);
3380 
3381 	ibx_irq_pre_postinstall(dev);
3382 
3383 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3384 
3385 	gen5_gt_irq_postinstall(dev);
3386 
3387 	ibx_irq_postinstall(dev);
3388 
3389 	if (IS_IRONLAKE_M(dev)) {
3390 		/* Enable PCU event interrupts
3391 		 *
3392 		 * spinlocking not required here for correctness since interrupt
3393 		 * setup is guaranteed to run in single-threaded context. But we
3394 		 * need it to make the assert_spin_locked happy. */
3395 		spin_lock_irq(&dev_priv->irq_lock);
3396 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3397 		spin_unlock_irq(&dev_priv->irq_lock);
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3404 {
3405 	u32 pipestat_mask;
3406 	u32 iir_mask;
3407 	enum pipe pipe;
3408 
3409 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3410 			PIPE_FIFO_UNDERRUN_STATUS;
3411 
3412 	for_each_pipe(dev_priv, pipe)
3413 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3414 	POSTING_READ(PIPESTAT(PIPE_A));
3415 
3416 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3417 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3418 
3419 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3420 	for_each_pipe(dev_priv, pipe)
3421 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3422 
3423 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3424 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3425 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3426 	if (IS_CHERRYVIEW(dev_priv))
3427 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3428 	dev_priv->irq_mask &= ~iir_mask;
3429 
3430 	I915_WRITE(VLV_IIR, iir_mask);
3431 	I915_WRITE(VLV_IIR, iir_mask);
3432 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3433 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3434 	POSTING_READ(VLV_IMR);
3435 }
3436 
3437 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3438 {
3439 	u32 pipestat_mask;
3440 	u32 iir_mask;
3441 	enum pipe pipe;
3442 
3443 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3444 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3445 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3446 	if (IS_CHERRYVIEW(dev_priv))
3447 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3448 
3449 	dev_priv->irq_mask |= iir_mask;
3450 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3451 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3452 	I915_WRITE(VLV_IIR, iir_mask);
3453 	I915_WRITE(VLV_IIR, iir_mask);
3454 	POSTING_READ(VLV_IIR);
3455 
3456 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3457 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3458 
3459 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3460 	for_each_pipe(dev_priv, pipe)
3461 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3462 
3463 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3464 			PIPE_FIFO_UNDERRUN_STATUS;
3465 
3466 	for_each_pipe(dev_priv, pipe)
3467 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3468 	POSTING_READ(PIPESTAT(PIPE_A));
3469 }
3470 
3471 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3472 {
3473 	assert_spin_locked(&dev_priv->irq_lock);
3474 
3475 	if (dev_priv->display_irqs_enabled)
3476 		return;
3477 
3478 	dev_priv->display_irqs_enabled = true;
3479 
3480 	if (intel_irqs_enabled(dev_priv))
3481 		valleyview_display_irqs_install(dev_priv);
3482 }
3483 
3484 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3485 {
3486 	assert_spin_locked(&dev_priv->irq_lock);
3487 
3488 	if (!dev_priv->display_irqs_enabled)
3489 		return;
3490 
3491 	dev_priv->display_irqs_enabled = false;
3492 
3493 	if (intel_irqs_enabled(dev_priv))
3494 		valleyview_display_irqs_uninstall(dev_priv);
3495 }
3496 
3497 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3498 {
3499 	dev_priv->irq_mask = ~0;
3500 
3501 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3502 	POSTING_READ(PORT_HOTPLUG_EN);
3503 
3504 	I915_WRITE(VLV_IIR, 0xffffffff);
3505 	I915_WRITE(VLV_IIR, 0xffffffff);
3506 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3507 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3508 	POSTING_READ(VLV_IMR);
3509 
3510 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3511 	 * just to make the assert_spin_locked check happy. */
3512 	spin_lock_irq(&dev_priv->irq_lock);
3513 	if (dev_priv->display_irqs_enabled)
3514 		valleyview_display_irqs_install(dev_priv);
3515 	spin_unlock_irq(&dev_priv->irq_lock);
3516 }
3517 
3518 static int valleyview_irq_postinstall(struct drm_device *dev)
3519 {
3520 	struct drm_i915_private *dev_priv = dev->dev_private;
3521 
3522 	vlv_display_irq_postinstall(dev_priv);
3523 
3524 	gen5_gt_irq_postinstall(dev);
3525 
3526 	/* ack & enable invalid PTE error interrupts */
3527 #if 0 /* FIXME: add support to irq handler for checking these bits */
3528 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3529 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3530 #endif
3531 
3532 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3533 
3534 	return 0;
3535 }
3536 
3537 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3538 {
3539 	/* These are interrupts we'll toggle with the ring mask register */
3540 	uint32_t gt_interrupts[] = {
3541 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3542 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3543 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3544 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3545 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3546 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3547 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3548 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3549 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3550 		0,
3551 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3552 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3553 		};
3554 
3555 	dev_priv->pm_irq_mask = 0xffffffff;
3556 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3557 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3558 	/*
3559 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3560 	 * is enabled/disabled.
3561 	 */
3562 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3563 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3564 }
3565 
3566 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3567 {
3568 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3569 	uint32_t de_pipe_enables;
3570 	int pipe;
3571 	u32 aux_en = GEN8_AUX_CHANNEL_A;
3572 
3573 	if (IS_GEN9(dev_priv)) {
3574 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3575 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3576 		aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3577 			GEN9_AUX_CHANNEL_D;
3578 	} else
3579 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3580 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3581 
3582 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3583 					   GEN8_PIPE_FIFO_UNDERRUN;
3584 
3585 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3586 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3587 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3588 
3589 	for_each_pipe(dev_priv, pipe)
3590 		if (intel_display_power_is_enabled(dev_priv,
3591 				POWER_DOMAIN_PIPE(pipe)))
3592 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3593 					  dev_priv->de_irq_mask[pipe],
3594 					  de_pipe_enables);
3595 
3596 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3597 }
3598 
3599 static int gen8_irq_postinstall(struct drm_device *dev)
3600 {
3601 	struct drm_i915_private *dev_priv = dev->dev_private;
3602 
3603 	ibx_irq_pre_postinstall(dev);
3604 
3605 	gen8_gt_irq_postinstall(dev_priv);
3606 	gen8_de_irq_postinstall(dev_priv);
3607 
3608 	ibx_irq_postinstall(dev);
3609 
3610 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3611 	POSTING_READ(GEN8_MASTER_IRQ);
3612 
3613 	return 0;
3614 }
3615 
3616 static int cherryview_irq_postinstall(struct drm_device *dev)
3617 {
3618 	struct drm_i915_private *dev_priv = dev->dev_private;
3619 
3620 	vlv_display_irq_postinstall(dev_priv);
3621 
3622 	gen8_gt_irq_postinstall(dev_priv);
3623 
3624 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3625 	POSTING_READ(GEN8_MASTER_IRQ);
3626 
3627 	return 0;
3628 }
3629 
3630 static void gen8_irq_uninstall(struct drm_device *dev)
3631 {
3632 	struct drm_i915_private *dev_priv = dev->dev_private;
3633 
3634 	if (!dev_priv)
3635 		return;
3636 
3637 	gen8_irq_reset(dev);
3638 }
3639 
3640 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3641 {
3642 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3643 	 * just to make the assert_spin_locked check happy. */
3644 	spin_lock_irq(&dev_priv->irq_lock);
3645 	if (dev_priv->display_irqs_enabled)
3646 		valleyview_display_irqs_uninstall(dev_priv);
3647 	spin_unlock_irq(&dev_priv->irq_lock);
3648 
3649 	vlv_display_irq_reset(dev_priv);
3650 
3651 	dev_priv->irq_mask = ~0;
3652 }
3653 
3654 static void valleyview_irq_uninstall(struct drm_device *dev)
3655 {
3656 	struct drm_i915_private *dev_priv = dev->dev_private;
3657 
3658 	if (!dev_priv)
3659 		return;
3660 
3661 	I915_WRITE(VLV_MASTER_IER, 0);
3662 
3663 	gen5_gt_irq_reset(dev);
3664 
3665 	I915_WRITE(HWSTAM, 0xffffffff);
3666 
3667 	vlv_display_irq_uninstall(dev_priv);
3668 }
3669 
3670 static void cherryview_irq_uninstall(struct drm_device *dev)
3671 {
3672 	struct drm_i915_private *dev_priv = dev->dev_private;
3673 
3674 	if (!dev_priv)
3675 		return;
3676 
3677 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3678 	POSTING_READ(GEN8_MASTER_IRQ);
3679 
3680 	gen8_gt_irq_reset(dev_priv);
3681 
3682 	GEN5_IRQ_RESET(GEN8_PCU_);
3683 
3684 	vlv_display_irq_uninstall(dev_priv);
3685 }
3686 
3687 static void ironlake_irq_uninstall(struct drm_device *dev)
3688 {
3689 	struct drm_i915_private *dev_priv = dev->dev_private;
3690 
3691 	if (!dev_priv)
3692 		return;
3693 
3694 	ironlake_irq_reset(dev);
3695 }
3696 
3697 static void i8xx_irq_preinstall(struct drm_device * dev)
3698 {
3699 	struct drm_i915_private *dev_priv = dev->dev_private;
3700 	int pipe;
3701 
3702 	for_each_pipe(dev_priv, pipe)
3703 		I915_WRITE(PIPESTAT(pipe), 0);
3704 	I915_WRITE16(IMR, 0xffff);
3705 	I915_WRITE16(IER, 0x0);
3706 	POSTING_READ16(IER);
3707 }
3708 
3709 static int i8xx_irq_postinstall(struct drm_device *dev)
3710 {
3711 	struct drm_i915_private *dev_priv = dev->dev_private;
3712 
3713 	I915_WRITE16(EMR,
3714 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3715 
3716 	/* Unmask the interrupts that we always want on. */
3717 	dev_priv->irq_mask =
3718 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3719 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3720 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3721 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3722 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3723 	I915_WRITE16(IMR, dev_priv->irq_mask);
3724 
3725 	I915_WRITE16(IER,
3726 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3727 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3728 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3729 		     I915_USER_INTERRUPT);
3730 	POSTING_READ16(IER);
3731 
3732 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3733 	 * just to make the assert_spin_locked check happy. */
3734 	spin_lock_irq(&dev_priv->irq_lock);
3735 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3736 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3737 	spin_unlock_irq(&dev_priv->irq_lock);
3738 
3739 	return 0;
3740 }
3741 
3742 /*
3743  * Returns true when a page flip has completed.
3744  */
3745 static bool i8xx_handle_vblank(struct drm_device *dev,
3746 			       int plane, int pipe, u32 iir)
3747 {
3748 	struct drm_i915_private *dev_priv = dev->dev_private;
3749 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3750 
3751 	if (!intel_pipe_handle_vblank(dev, pipe))
3752 		return false;
3753 
3754 	if ((iir & flip_pending) == 0)
3755 		goto check_page_flip;
3756 
3757 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3758 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3759 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3760 	 * the flip is completed (no longer pending). Since this doesn't raise
3761 	 * an interrupt per se, we watch for the change at vblank.
3762 	 */
3763 	if (I915_READ16(ISR) & flip_pending)
3764 		goto check_page_flip;
3765 
3766 	intel_prepare_page_flip(dev, plane);
3767 	intel_finish_page_flip(dev, pipe);
3768 	return true;
3769 
3770 check_page_flip:
3771 	intel_check_page_flip(dev, pipe);
3772 	return false;
3773 }
3774 
3775 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3776 {
3777 	struct drm_device *dev = arg;
3778 	struct drm_i915_private *dev_priv = dev->dev_private;
3779 	u16 iir, new_iir;
3780 	u32 pipe_stats[2];
3781 	int pipe;
3782 	u16 flip_mask =
3783 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3784 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3785 
3786 	if (!intel_irqs_enabled(dev_priv))
3787 		return IRQ_NONE;
3788 
3789 	iir = I915_READ16(IIR);
3790 	if (iir == 0)
3791 		return IRQ_NONE;
3792 
3793 	while (iir & ~flip_mask) {
3794 		/* Can't rely on pipestat interrupt bit in iir as it might
3795 		 * have been cleared after the pipestat interrupt was received.
3796 		 * It doesn't set the bit in iir again, but it still produces
3797 		 * interrupts (for non-MSI).
3798 		 */
3799 		spin_lock(&dev_priv->irq_lock);
3800 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3801 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3802 
3803 		for_each_pipe(dev_priv, pipe) {
3804 			int reg = PIPESTAT(pipe);
3805 			pipe_stats[pipe] = I915_READ(reg);
3806 
3807 			/*
3808 			 * Clear the PIPE*STAT regs before the IIR
3809 			 */
3810 			if (pipe_stats[pipe] & 0x8000ffff)
3811 				I915_WRITE(reg, pipe_stats[pipe]);
3812 		}
3813 		spin_unlock(&dev_priv->irq_lock);
3814 
3815 		I915_WRITE16(IIR, iir & ~flip_mask);
3816 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3817 
3818 		if (iir & I915_USER_INTERRUPT)
3819 			notify_ring(dev, &dev_priv->ring[RCS]);
3820 
3821 		for_each_pipe(dev_priv, pipe) {
3822 			int plane = pipe;
3823 			if (HAS_FBC(dev))
3824 				plane = !plane;
3825 
3826 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3827 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3828 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3829 
3830 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3831 				i9xx_pipe_crc_irq_handler(dev, pipe);
3832 
3833 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3834 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3835 								    pipe);
3836 		}
3837 
3838 		iir = new_iir;
3839 	}
3840 
3841 	return IRQ_HANDLED;
3842 }
3843 
3844 static void i8xx_irq_uninstall(struct drm_device * dev)
3845 {
3846 	struct drm_i915_private *dev_priv = dev->dev_private;
3847 	int pipe;
3848 
3849 	for_each_pipe(dev_priv, pipe) {
3850 		/* Clear enable bits; then clear status bits */
3851 		I915_WRITE(PIPESTAT(pipe), 0);
3852 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3853 	}
3854 	I915_WRITE16(IMR, 0xffff);
3855 	I915_WRITE16(IER, 0x0);
3856 	I915_WRITE16(IIR, I915_READ16(IIR));
3857 }
3858 
3859 static void i915_irq_preinstall(struct drm_device * dev)
3860 {
3861 	struct drm_i915_private *dev_priv = dev->dev_private;
3862 	int pipe;
3863 
3864 	if (I915_HAS_HOTPLUG(dev)) {
3865 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3866 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3867 	}
3868 
3869 	I915_WRITE16(HWSTAM, 0xeffe);
3870 	for_each_pipe(dev_priv, pipe)
3871 		I915_WRITE(PIPESTAT(pipe), 0);
3872 	I915_WRITE(IMR, 0xffffffff);
3873 	I915_WRITE(IER, 0x0);
3874 	POSTING_READ(IER);
3875 }
3876 
3877 static int i915_irq_postinstall(struct drm_device *dev)
3878 {
3879 	struct drm_i915_private *dev_priv = dev->dev_private;
3880 	u32 enable_mask;
3881 
3882 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3883 
3884 	/* Unmask the interrupts that we always want on. */
3885 	dev_priv->irq_mask =
3886 		~(I915_ASLE_INTERRUPT |
3887 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3888 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3889 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3890 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3891 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3892 
3893 	enable_mask =
3894 		I915_ASLE_INTERRUPT |
3895 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3896 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3897 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3898 		I915_USER_INTERRUPT;
3899 
3900 	if (I915_HAS_HOTPLUG(dev)) {
3901 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3902 		POSTING_READ(PORT_HOTPLUG_EN);
3903 
3904 		/* Enable in IER... */
3905 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3906 		/* and unmask in IMR */
3907 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3908 	}
3909 
3910 	I915_WRITE(IMR, dev_priv->irq_mask);
3911 	I915_WRITE(IER, enable_mask);
3912 	POSTING_READ(IER);
3913 
3914 	i915_enable_asle_pipestat(dev);
3915 
3916 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3917 	 * just to make the assert_spin_locked check happy. */
3918 	spin_lock_irq(&dev_priv->irq_lock);
3919 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3920 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3921 	spin_unlock_irq(&dev_priv->irq_lock);
3922 
3923 	return 0;
3924 }
3925 
3926 /*
3927  * Returns true when a page flip has completed.
3928  */
3929 static bool i915_handle_vblank(struct drm_device *dev,
3930 			       int plane, int pipe, u32 iir)
3931 {
3932 	struct drm_i915_private *dev_priv = dev->dev_private;
3933 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3934 
3935 	if (!intel_pipe_handle_vblank(dev, pipe))
3936 		return false;
3937 
3938 	if ((iir & flip_pending) == 0)
3939 		goto check_page_flip;
3940 
3941 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3942 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3943 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3944 	 * the flip is completed (no longer pending). Since this doesn't raise
3945 	 * an interrupt per se, we watch for the change at vblank.
3946 	 */
3947 	if (I915_READ(ISR) & flip_pending)
3948 		goto check_page_flip;
3949 
3950 	intel_prepare_page_flip(dev, plane);
3951 	intel_finish_page_flip(dev, pipe);
3952 	return true;
3953 
3954 check_page_flip:
3955 	intel_check_page_flip(dev, pipe);
3956 	return false;
3957 }
3958 
3959 static irqreturn_t i915_irq_handler(int irq, void *arg)
3960 {
3961 	struct drm_device *dev = arg;
3962 	struct drm_i915_private *dev_priv = dev->dev_private;
3963 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3964 	u32 flip_mask =
3965 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3966 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3967 	int pipe, ret = IRQ_NONE;
3968 
3969 	if (!intel_irqs_enabled(dev_priv))
3970 		return IRQ_NONE;
3971 
3972 	iir = I915_READ(IIR);
3973 	do {
3974 		bool irq_received = (iir & ~flip_mask) != 0;
3975 		bool blc_event = false;
3976 
3977 		/* Can't rely on pipestat interrupt bit in iir as it might
3978 		 * have been cleared after the pipestat interrupt was received.
3979 		 * It doesn't set the bit in iir again, but it still produces
3980 		 * interrupts (for non-MSI).
3981 		 */
3982 		spin_lock(&dev_priv->irq_lock);
3983 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3984 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3985 
3986 		for_each_pipe(dev_priv, pipe) {
3987 			int reg = PIPESTAT(pipe);
3988 			pipe_stats[pipe] = I915_READ(reg);
3989 
3990 			/* Clear the PIPE*STAT regs before the IIR */
3991 			if (pipe_stats[pipe] & 0x8000ffff) {
3992 				I915_WRITE(reg, pipe_stats[pipe]);
3993 				irq_received = true;
3994 			}
3995 		}
3996 		spin_unlock(&dev_priv->irq_lock);
3997 
3998 		if (!irq_received)
3999 			break;
4000 
4001 		/* Consume port.  Then clear IIR or we'll miss events */
4002 		if (I915_HAS_HOTPLUG(dev) &&
4003 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4004 			i9xx_hpd_irq_handler(dev);
4005 
4006 		I915_WRITE(IIR, iir & ~flip_mask);
4007 		new_iir = I915_READ(IIR); /* Flush posted writes */
4008 
4009 		if (iir & I915_USER_INTERRUPT)
4010 			notify_ring(dev, &dev_priv->ring[RCS]);
4011 
4012 		for_each_pipe(dev_priv, pipe) {
4013 			int plane = pipe;
4014 			if (HAS_FBC(dev))
4015 				plane = !plane;
4016 
4017 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4018 			    i915_handle_vblank(dev, plane, pipe, iir))
4019 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4020 
4021 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4022 				blc_event = true;
4023 
4024 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4025 				i9xx_pipe_crc_irq_handler(dev, pipe);
4026 
4027 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4028 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4029 								    pipe);
4030 		}
4031 
4032 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4033 			intel_opregion_asle_intr(dev);
4034 
4035 		/* With MSI, interrupts are only generated when iir
4036 		 * transitions from zero to nonzero.  If another bit got
4037 		 * set while we were handling the existing iir bits, then
4038 		 * we would never get another interrupt.
4039 		 *
4040 		 * This is fine on non-MSI as well, as if we hit this path
4041 		 * we avoid exiting the interrupt handler only to generate
4042 		 * another one.
4043 		 *
4044 		 * Note that for MSI this could cause a stray interrupt report
4045 		 * if an interrupt landed in the time between writing IIR and
4046 		 * the posting read.  This should be rare enough to never
4047 		 * trigger the 99% of 100,000 interrupts test for disabling
4048 		 * stray interrupts.
4049 		 */
4050 		ret = IRQ_HANDLED;
4051 		iir = new_iir;
4052 	} while (iir & ~flip_mask);
4053 
4054 	return ret;
4055 }
4056 
4057 static void i915_irq_uninstall(struct drm_device * dev)
4058 {
4059 	struct drm_i915_private *dev_priv = dev->dev_private;
4060 	int pipe;
4061 
4062 	if (I915_HAS_HOTPLUG(dev)) {
4063 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4064 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4065 	}
4066 
4067 	I915_WRITE16(HWSTAM, 0xffff);
4068 	for_each_pipe(dev_priv, pipe) {
4069 		/* Clear enable bits; then clear status bits */
4070 		I915_WRITE(PIPESTAT(pipe), 0);
4071 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4072 	}
4073 	I915_WRITE(IMR, 0xffffffff);
4074 	I915_WRITE(IER, 0x0);
4075 
4076 	I915_WRITE(IIR, I915_READ(IIR));
4077 }
4078 
4079 static void i965_irq_preinstall(struct drm_device * dev)
4080 {
4081 	struct drm_i915_private *dev_priv = dev->dev_private;
4082 	int pipe;
4083 
4084 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4085 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4086 
4087 	I915_WRITE(HWSTAM, 0xeffe);
4088 	for_each_pipe(dev_priv, pipe)
4089 		I915_WRITE(PIPESTAT(pipe), 0);
4090 	I915_WRITE(IMR, 0xffffffff);
4091 	I915_WRITE(IER, 0x0);
4092 	POSTING_READ(IER);
4093 }
4094 
4095 static int i965_irq_postinstall(struct drm_device *dev)
4096 {
4097 	struct drm_i915_private *dev_priv = dev->dev_private;
4098 	u32 enable_mask;
4099 	u32 error_mask;
4100 
4101 	/* Unmask the interrupts that we always want on. */
4102 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4103 			       I915_DISPLAY_PORT_INTERRUPT |
4104 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4105 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4106 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4107 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4108 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4109 
4110 	enable_mask = ~dev_priv->irq_mask;
4111 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4112 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4113 	enable_mask |= I915_USER_INTERRUPT;
4114 
4115 	if (IS_G4X(dev))
4116 		enable_mask |= I915_BSD_USER_INTERRUPT;
4117 
4118 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4119 	 * just to make the assert_spin_locked check happy. */
4120 	spin_lock_irq(&dev_priv->irq_lock);
4121 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4122 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4123 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4124 	spin_unlock_irq(&dev_priv->irq_lock);
4125 
4126 	/*
4127 	 * Enable some error detection, note the instruction error mask
4128 	 * bit is reserved, so we leave it masked.
4129 	 */
4130 	if (IS_G4X(dev)) {
4131 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4132 			       GM45_ERROR_MEM_PRIV |
4133 			       GM45_ERROR_CP_PRIV |
4134 			       I915_ERROR_MEMORY_REFRESH);
4135 	} else {
4136 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4137 			       I915_ERROR_MEMORY_REFRESH);
4138 	}
4139 	I915_WRITE(EMR, error_mask);
4140 
4141 	I915_WRITE(IMR, dev_priv->irq_mask);
4142 	I915_WRITE(IER, enable_mask);
4143 	POSTING_READ(IER);
4144 
4145 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4146 	POSTING_READ(PORT_HOTPLUG_EN);
4147 
4148 	i915_enable_asle_pipestat(dev);
4149 
4150 	return 0;
4151 }
4152 
4153 static void i915_hpd_irq_setup(struct drm_device *dev)
4154 {
4155 	struct drm_i915_private *dev_priv = dev->dev_private;
4156 	struct intel_encoder *intel_encoder;
4157 	u32 hotplug_en;
4158 
4159 	assert_spin_locked(&dev_priv->irq_lock);
4160 
4161 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4162 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4163 	/* Note HDMI and DP share hotplug bits */
4164 	/* enable bits are the same for all generations */
4165 	for_each_intel_encoder(dev, intel_encoder)
4166 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4167 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4168 	/* Programming the CRT detection parameters tends
4169 	   to generate a spurious hotplug event about three
4170 	   seconds later.  So just do it once.
4171 	*/
4172 	if (IS_G4X(dev))
4173 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4174 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4175 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4176 
4177 	/* Ignore TV since it's buggy */
4178 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4179 }
4180 
4181 static irqreturn_t i965_irq_handler(int irq, void *arg)
4182 {
4183 	struct drm_device *dev = arg;
4184 	struct drm_i915_private *dev_priv = dev->dev_private;
4185 	u32 iir, new_iir;
4186 	u32 pipe_stats[I915_MAX_PIPES];
4187 	int ret = IRQ_NONE, pipe;
4188 	u32 flip_mask =
4189 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4190 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4191 
4192 	if (!intel_irqs_enabled(dev_priv))
4193 		return IRQ_NONE;
4194 
4195 	iir = I915_READ(IIR);
4196 
4197 	for (;;) {
4198 		bool irq_received = (iir & ~flip_mask) != 0;
4199 		bool blc_event = false;
4200 
4201 		/* Can't rely on pipestat interrupt bit in iir as it might
4202 		 * have been cleared after the pipestat interrupt was received.
4203 		 * It doesn't set the bit in iir again, but it still produces
4204 		 * interrupts (for non-MSI).
4205 		 */
4206 		spin_lock(&dev_priv->irq_lock);
4207 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4208 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4209 
4210 		for_each_pipe(dev_priv, pipe) {
4211 			int reg = PIPESTAT(pipe);
4212 			pipe_stats[pipe] = I915_READ(reg);
4213 
4214 			/*
4215 			 * Clear the PIPE*STAT regs before the IIR
4216 			 */
4217 			if (pipe_stats[pipe] & 0x8000ffff) {
4218 				I915_WRITE(reg, pipe_stats[pipe]);
4219 				irq_received = true;
4220 			}
4221 		}
4222 		spin_unlock(&dev_priv->irq_lock);
4223 
4224 		if (!irq_received)
4225 			break;
4226 
4227 		ret = IRQ_HANDLED;
4228 
4229 		/* Consume port.  Then clear IIR or we'll miss events */
4230 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4231 			i9xx_hpd_irq_handler(dev);
4232 
4233 		I915_WRITE(IIR, iir & ~flip_mask);
4234 		new_iir = I915_READ(IIR); /* Flush posted writes */
4235 
4236 		if (iir & I915_USER_INTERRUPT)
4237 			notify_ring(dev, &dev_priv->ring[RCS]);
4238 		if (iir & I915_BSD_USER_INTERRUPT)
4239 			notify_ring(dev, &dev_priv->ring[VCS]);
4240 
4241 		for_each_pipe(dev_priv, pipe) {
4242 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4243 			    i915_handle_vblank(dev, pipe, pipe, iir))
4244 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4245 
4246 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4247 				blc_event = true;
4248 
4249 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4250 				i9xx_pipe_crc_irq_handler(dev, pipe);
4251 
4252 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4253 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4254 		}
4255 
4256 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4257 			intel_opregion_asle_intr(dev);
4258 
4259 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4260 			gmbus_irq_handler(dev);
4261 
4262 		/* With MSI, interrupts are only generated when iir
4263 		 * transitions from zero to nonzero.  If another bit got
4264 		 * set while we were handling the existing iir bits, then
4265 		 * we would never get another interrupt.
4266 		 *
4267 		 * This is fine on non-MSI as well, as if we hit this path
4268 		 * we avoid exiting the interrupt handler only to generate
4269 		 * another one.
4270 		 *
4271 		 * Note that for MSI this could cause a stray interrupt report
4272 		 * if an interrupt landed in the time between writing IIR and
4273 		 * the posting read.  This should be rare enough to never
4274 		 * trigger the 99% of 100,000 interrupts test for disabling
4275 		 * stray interrupts.
4276 		 */
4277 		iir = new_iir;
4278 	}
4279 
4280 	return ret;
4281 }
4282 
4283 static void i965_irq_uninstall(struct drm_device * dev)
4284 {
4285 	struct drm_i915_private *dev_priv = dev->dev_private;
4286 	int pipe;
4287 
4288 	if (!dev_priv)
4289 		return;
4290 
4291 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4292 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4293 
4294 	I915_WRITE(HWSTAM, 0xffffffff);
4295 	for_each_pipe(dev_priv, pipe)
4296 		I915_WRITE(PIPESTAT(pipe), 0);
4297 	I915_WRITE(IMR, 0xffffffff);
4298 	I915_WRITE(IER, 0x0);
4299 
4300 	for_each_pipe(dev_priv, pipe)
4301 		I915_WRITE(PIPESTAT(pipe),
4302 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4303 	I915_WRITE(IIR, I915_READ(IIR));
4304 }
4305 
4306 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4307 {
4308 	struct drm_i915_private *dev_priv =
4309 		container_of(work, typeof(*dev_priv),
4310 			     hotplug_reenable_work.work);
4311 	struct drm_device *dev = dev_priv->dev;
4312 	struct drm_mode_config *mode_config = &dev->mode_config;
4313 	int i;
4314 
4315 	intel_runtime_pm_get(dev_priv);
4316 
4317 	spin_lock_irq(&dev_priv->irq_lock);
4318 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4319 		struct drm_connector *connector;
4320 
4321 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4322 			continue;
4323 
4324 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4325 
4326 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4327 			struct intel_connector *intel_connector = to_intel_connector(connector);
4328 
4329 			if (intel_connector->encoder->hpd_pin == i) {
4330 				if (connector->polled != intel_connector->polled)
4331 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4332 							 connector->name);
4333 				connector->polled = intel_connector->polled;
4334 				if (!connector->polled)
4335 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4336 			}
4337 		}
4338 	}
4339 	if (dev_priv->display.hpd_irq_setup)
4340 		dev_priv->display.hpd_irq_setup(dev);
4341 	spin_unlock_irq(&dev_priv->irq_lock);
4342 
4343 	intel_runtime_pm_put(dev_priv);
4344 }
4345 
4346 /**
4347  * intel_irq_init - initializes irq support
4348  * @dev_priv: i915 device instance
4349  *
4350  * This function initializes all the irq support including work items, timers
4351  * and all the vtables. It does not setup the interrupt itself though.
4352  */
4353 void intel_irq_init(struct drm_i915_private *dev_priv)
4354 {
4355 	struct drm_device *dev = dev_priv->dev;
4356 
4357 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4358 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4359 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4360 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4361 
4362 	/* Let's track the enabled rps events */
4363 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4364 		/* WaGsvRC0ResidencyMethod:vlv */
4365 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4366 	else
4367 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4368 
4369 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4370 			  i915_hangcheck_elapsed);
4371 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4372 			  intel_hpd_irq_reenable_work);
4373 
4374 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4375 
4376 	if (IS_GEN2(dev_priv)) {
4377 		dev->max_vblank_count = 0;
4378 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4379 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4380 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4381 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4382 	} else {
4383 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4384 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4385 	}
4386 
4387 	/*
4388 	 * Opt out of the vblank disable timer on everything except gen2.
4389 	 * Gen2 doesn't have a hardware frame counter and so depends on
4390 	 * vblank interrupts to produce sane vblank seuquence numbers.
4391 	 */
4392 	if (!IS_GEN2(dev_priv))
4393 		dev->vblank_disable_immediate = true;
4394 
4395 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4396 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4397 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4398 	}
4399 
4400 	if (IS_CHERRYVIEW(dev_priv)) {
4401 		dev->driver->irq_handler = cherryview_irq_handler;
4402 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4403 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4404 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4405 		dev->driver->enable_vblank = valleyview_enable_vblank;
4406 		dev->driver->disable_vblank = valleyview_disable_vblank;
4407 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408 	} else if (IS_VALLEYVIEW(dev_priv)) {
4409 		dev->driver->irq_handler = valleyview_irq_handler;
4410 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4411 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4412 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4413 		dev->driver->enable_vblank = valleyview_enable_vblank;
4414 		dev->driver->disable_vblank = valleyview_disable_vblank;
4415 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4416 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4417 		dev->driver->irq_handler = gen8_irq_handler;
4418 		dev->driver->irq_preinstall = gen8_irq_reset;
4419 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4420 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4421 		dev->driver->enable_vblank = gen8_enable_vblank;
4422 		dev->driver->disable_vblank = gen8_disable_vblank;
4423 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4424 	} else if (HAS_PCH_SPLIT(dev)) {
4425 		dev->driver->irq_handler = ironlake_irq_handler;
4426 		dev->driver->irq_preinstall = ironlake_irq_reset;
4427 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4428 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4429 		dev->driver->enable_vblank = ironlake_enable_vblank;
4430 		dev->driver->disable_vblank = ironlake_disable_vblank;
4431 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4432 	} else {
4433 		if (INTEL_INFO(dev_priv)->gen == 2) {
4434 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4435 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4436 			dev->driver->irq_handler = i8xx_irq_handler;
4437 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4438 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4439 			dev->driver->irq_preinstall = i915_irq_preinstall;
4440 			dev->driver->irq_postinstall = i915_irq_postinstall;
4441 			dev->driver->irq_uninstall = i915_irq_uninstall;
4442 			dev->driver->irq_handler = i915_irq_handler;
4443 		} else {
4444 			dev->driver->irq_preinstall = i965_irq_preinstall;
4445 			dev->driver->irq_postinstall = i965_irq_postinstall;
4446 			dev->driver->irq_uninstall = i965_irq_uninstall;
4447 			dev->driver->irq_handler = i965_irq_handler;
4448 		}
4449 		if (I915_HAS_HOTPLUG(dev_priv))
4450 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4451 		dev->driver->enable_vblank = i915_enable_vblank;
4452 		dev->driver->disable_vblank = i915_disable_vblank;
4453 	}
4454 }
4455 
4456 /**
4457  * intel_hpd_init - initializes and enables hpd support
4458  * @dev_priv: i915 device instance
4459  *
4460  * This function enables the hotplug support. It requires that interrupts have
4461  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4462  * poll request can run concurrently to other code, so locking rules must be
4463  * obeyed.
4464  *
4465  * This is a separate step from interrupt enabling to simplify the locking rules
4466  * in the driver load and resume code.
4467  */
4468 void intel_hpd_init(struct drm_i915_private *dev_priv)
4469 {
4470 	struct drm_device *dev = dev_priv->dev;
4471 	struct drm_mode_config *mode_config = &dev->mode_config;
4472 	struct drm_connector *connector;
4473 	int i;
4474 
4475 	for (i = 1; i < HPD_NUM_PINS; i++) {
4476 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4477 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4478 	}
4479 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4480 		struct intel_connector *intel_connector = to_intel_connector(connector);
4481 		connector->polled = intel_connector->polled;
4482 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4483 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4484 		if (intel_connector->mst_port)
4485 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4486 	}
4487 
4488 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4489 	 * just to make the assert_spin_locked checks happy. */
4490 	spin_lock_irq(&dev_priv->irq_lock);
4491 	if (dev_priv->display.hpd_irq_setup)
4492 		dev_priv->display.hpd_irq_setup(dev);
4493 	spin_unlock_irq(&dev_priv->irq_lock);
4494 }
4495 
4496 /**
4497  * intel_irq_install - enables the hardware interrupt
4498  * @dev_priv: i915 device instance
4499  *
4500  * This function enables the hardware interrupt handling, but leaves the hotplug
4501  * handling still disabled. It is called after intel_irq_init().
4502  *
4503  * In the driver load and resume code we need working interrupts in a few places
4504  * but don't want to deal with the hassle of concurrent probe and hotplug
4505  * workers. Hence the split into this two-stage approach.
4506  */
4507 int intel_irq_install(struct drm_i915_private *dev_priv)
4508 {
4509 	/*
4510 	 * We enable some interrupt sources in our postinstall hooks, so mark
4511 	 * interrupts as enabled _before_ actually enabling them to avoid
4512 	 * special cases in our ordering checks.
4513 	 */
4514 	dev_priv->pm.irqs_enabled = true;
4515 
4516 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4517 }
4518 
4519 /**
4520  * intel_irq_uninstall - finilizes all irq handling
4521  * @dev_priv: i915 device instance
4522  *
4523  * This stops interrupt and hotplug handling and unregisters and frees all
4524  * resources acquired in the init functions.
4525  */
4526 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4527 {
4528 	drm_irq_uninstall(dev_priv->dev);
4529 	intel_hpd_cancel_work(dev_priv);
4530 	dev_priv->pm.irqs_enabled = false;
4531 }
4532 
4533 /**
4534  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4535  * @dev_priv: i915 device instance
4536  *
4537  * This function is used to disable interrupts at runtime, both in the runtime
4538  * pm and the system suspend/resume code.
4539  */
4540 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4541 {
4542 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4543 	dev_priv->pm.irqs_enabled = false;
4544 	synchronize_irq(dev_priv->dev->irq);
4545 }
4546 
4547 /**
4548  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4549  * @dev_priv: i915 device instance
4550  *
4551  * This function is used to enable interrupts at runtime, both in the runtime
4552  * pm and the system suspend/resume code.
4553  */
4554 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4555 {
4556 	dev_priv->pm.irqs_enabled = true;
4557 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4558 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4559 }
4560