xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision e08a1d97d33e2ac05cd368b955f9fdc2823f15fd)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 				     uint32_t mask,
178 				     uint32_t bits)
179 {
180 	uint32_t val;
181 
182 	assert_spin_locked(&dev_priv->irq_lock);
183 	WARN_ON(bits & ~mask);
184 
185 	val = I915_READ(PORT_HOTPLUG_EN);
186 	val &= ~mask;
187 	val |= bits;
188 	I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190 
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 				   uint32_t mask,
205 				   uint32_t bits)
206 {
207 	spin_lock_irq(&dev_priv->irq_lock);
208 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 	spin_unlock_irq(&dev_priv->irq_lock);
210 }
211 
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 			    uint32_t interrupt_mask,
220 			    uint32_t enabled_irq_mask)
221 {
222 	uint32_t new_val;
223 
224 	assert_spin_locked(&dev_priv->irq_lock);
225 
226 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
227 
228 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 		return;
230 
231 	new_val = dev_priv->irq_mask;
232 	new_val &= ~interrupt_mask;
233 	new_val |= (~enabled_irq_mask & interrupt_mask);
234 
235 	if (new_val != dev_priv->irq_mask) {
236 		dev_priv->irq_mask = new_val;
237 		I915_WRITE(DEIMR, dev_priv->irq_mask);
238 		POSTING_READ(DEIMR);
239 	}
240 }
241 
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 			      uint32_t interrupt_mask,
250 			      uint32_t enabled_irq_mask)
251 {
252 	assert_spin_locked(&dev_priv->irq_lock);
253 
254 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
255 
256 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 		return;
258 
259 	dev_priv->gt_irq_mask &= ~interrupt_mask;
260 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263 
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266 	ilk_update_gt_irq(dev_priv, mask, mask);
267 	POSTING_READ_FW(GTIMR);
268 }
269 
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 	ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274 
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279 
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284 
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289 
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 			      uint32_t interrupt_mask,
298 			      uint32_t enabled_irq_mask)
299 {
300 	uint32_t new_val;
301 
302 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
303 
304 	assert_spin_locked(&dev_priv->irq_lock);
305 
306 	new_val = dev_priv->pm_irq_mask;
307 	new_val &= ~interrupt_mask;
308 	new_val |= (~enabled_irq_mask & interrupt_mask);
309 
310 	if (new_val != dev_priv->pm_irq_mask) {
311 		dev_priv->pm_irq_mask = new_val;
312 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 		POSTING_READ(gen6_pm_imr(dev_priv));
314 	}
315 }
316 
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 		return;
321 
322 	snb_update_pm_irq(dev_priv, mask, mask);
323 }
324 
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 				  uint32_t mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_disable_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	spin_lock_irq(&dev_priv->irq_lock);
344 	I915_WRITE(reg, dev_priv->pm_rps_events);
345 	I915_WRITE(reg, dev_priv->pm_rps_events);
346 	POSTING_READ(reg);
347 	dev_priv->rps.pm_iir = 0;
348 	spin_unlock_irq(&dev_priv->irq_lock);
349 }
350 
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
354 		return;
355 
356 	spin_lock_irq(&dev_priv->irq_lock);
357 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
358 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
359 	dev_priv->rps.interrupts_enabled = true;
360 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
361 				dev_priv->pm_rps_events);
362 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
363 
364 	spin_unlock_irq(&dev_priv->irq_lock);
365 }
366 
367 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
368 {
369 	return (mask & ~dev_priv->rps.pm_intr_keep);
370 }
371 
372 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
373 {
374 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
375 		return;
376 
377 	spin_lock_irq(&dev_priv->irq_lock);
378 	dev_priv->rps.interrupts_enabled = false;
379 
380 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
381 
382 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
383 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
384 				~dev_priv->pm_rps_events);
385 
386 	spin_unlock_irq(&dev_priv->irq_lock);
387 	synchronize_irq(dev_priv->drm.irq);
388 
389 	/* Now that we will not be generating any more work, flush any
390 	 * outsanding tasks. As we are called on the RPS idle path,
391 	 * we will reset the GPU to minimum frequencies, so the current
392 	 * state of the worker can be discarded.
393 	 */
394 	cancel_work_sync(&dev_priv->rps.work);
395 	gen6_reset_rps_interrupts(dev_priv);
396 }
397 
398 /**
399  * bdw_update_port_irq - update DE port interrupt
400  * @dev_priv: driver private
401  * @interrupt_mask: mask of interrupt bits to update
402  * @enabled_irq_mask: mask of interrupt bits to enable
403  */
404 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
405 				uint32_t interrupt_mask,
406 				uint32_t enabled_irq_mask)
407 {
408 	uint32_t new_val;
409 	uint32_t old_val;
410 
411 	assert_spin_locked(&dev_priv->irq_lock);
412 
413 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
414 
415 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
416 		return;
417 
418 	old_val = I915_READ(GEN8_DE_PORT_IMR);
419 
420 	new_val = old_val;
421 	new_val &= ~interrupt_mask;
422 	new_val |= (~enabled_irq_mask & interrupt_mask);
423 
424 	if (new_val != old_val) {
425 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
426 		POSTING_READ(GEN8_DE_PORT_IMR);
427 	}
428 }
429 
430 /**
431  * bdw_update_pipe_irq - update DE pipe interrupt
432  * @dev_priv: driver private
433  * @pipe: pipe whose interrupt to update
434  * @interrupt_mask: mask of interrupt bits to update
435  * @enabled_irq_mask: mask of interrupt bits to enable
436  */
437 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
438 			 enum pipe pipe,
439 			 uint32_t interrupt_mask,
440 			 uint32_t enabled_irq_mask)
441 {
442 	uint32_t new_val;
443 
444 	assert_spin_locked(&dev_priv->irq_lock);
445 
446 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
447 
448 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
449 		return;
450 
451 	new_val = dev_priv->de_irq_mask[pipe];
452 	new_val &= ~interrupt_mask;
453 	new_val |= (~enabled_irq_mask & interrupt_mask);
454 
455 	if (new_val != dev_priv->de_irq_mask[pipe]) {
456 		dev_priv->de_irq_mask[pipe] = new_val;
457 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
458 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
459 	}
460 }
461 
462 /**
463  * ibx_display_interrupt_update - update SDEIMR
464  * @dev_priv: driver private
465  * @interrupt_mask: mask of interrupt bits to update
466  * @enabled_irq_mask: mask of interrupt bits to enable
467  */
468 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
469 				  uint32_t interrupt_mask,
470 				  uint32_t enabled_irq_mask)
471 {
472 	uint32_t sdeimr = I915_READ(SDEIMR);
473 	sdeimr &= ~interrupt_mask;
474 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
475 
476 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
477 
478 	assert_spin_locked(&dev_priv->irq_lock);
479 
480 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
481 		return;
482 
483 	I915_WRITE(SDEIMR, sdeimr);
484 	POSTING_READ(SDEIMR);
485 }
486 
487 static void
488 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
489 		       u32 enable_mask, u32 status_mask)
490 {
491 	i915_reg_t reg = PIPESTAT(pipe);
492 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
493 
494 	assert_spin_locked(&dev_priv->irq_lock);
495 	WARN_ON(!intel_irqs_enabled(dev_priv));
496 
497 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
498 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
499 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
500 		      pipe_name(pipe), enable_mask, status_mask))
501 		return;
502 
503 	if ((pipestat & enable_mask) == enable_mask)
504 		return;
505 
506 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
507 
508 	/* Enable the interrupt, clear any pending status */
509 	pipestat |= enable_mask | status_mask;
510 	I915_WRITE(reg, pipestat);
511 	POSTING_READ(reg);
512 }
513 
514 static void
515 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
516 		        u32 enable_mask, u32 status_mask)
517 {
518 	i915_reg_t reg = PIPESTAT(pipe);
519 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
520 
521 	assert_spin_locked(&dev_priv->irq_lock);
522 	WARN_ON(!intel_irqs_enabled(dev_priv));
523 
524 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
525 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
526 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
527 		      pipe_name(pipe), enable_mask, status_mask))
528 		return;
529 
530 	if ((pipestat & enable_mask) == 0)
531 		return;
532 
533 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
534 
535 	pipestat &= ~enable_mask;
536 	I915_WRITE(reg, pipestat);
537 	POSTING_READ(reg);
538 }
539 
540 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
541 {
542 	u32 enable_mask = status_mask << 16;
543 
544 	/*
545 	 * On pipe A we don't support the PSR interrupt yet,
546 	 * on pipe B and C the same bit MBZ.
547 	 */
548 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
549 		return 0;
550 	/*
551 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
552 	 * A the same bit is for perf counters which we don't use either.
553 	 */
554 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
555 		return 0;
556 
557 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
558 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
559 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
560 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
561 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
562 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
563 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
564 
565 	return enable_mask;
566 }
567 
568 void
569 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
570 		     u32 status_mask)
571 {
572 	u32 enable_mask;
573 
574 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
575 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
576 							   status_mask);
577 	else
578 		enable_mask = status_mask << 16;
579 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
580 }
581 
582 void
583 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
584 		      u32 status_mask)
585 {
586 	u32 enable_mask;
587 
588 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
589 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
590 							   status_mask);
591 	else
592 		enable_mask = status_mask << 16;
593 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
594 }
595 
596 /**
597  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
598  * @dev_priv: i915 device private
599  */
600 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
601 {
602 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
603 		return;
604 
605 	spin_lock_irq(&dev_priv->irq_lock);
606 
607 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 	if (INTEL_GEN(dev_priv) >= 4)
609 		i915_enable_pipestat(dev_priv, PIPE_A,
610 				     PIPE_LEGACY_BLC_EVENT_STATUS);
611 
612 	spin_unlock_irq(&dev_priv->irq_lock);
613 }
614 
615 /*
616  * This timing diagram depicts the video signal in and
617  * around the vertical blanking period.
618  *
619  * Assumptions about the fictitious mode used in this example:
620  *  vblank_start >= 3
621  *  vsync_start = vblank_start + 1
622  *  vsync_end = vblank_start + 2
623  *  vtotal = vblank_start + 3
624  *
625  *           start of vblank:
626  *           latch double buffered registers
627  *           increment frame counter (ctg+)
628  *           generate start of vblank interrupt (gen4+)
629  *           |
630  *           |          frame start:
631  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
632  *           |          may be shifted forward 1-3 extra lines via PIPECONF
633  *           |          |
634  *           |          |  start of vsync:
635  *           |          |  generate vsync interrupt
636  *           |          |  |
637  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
638  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
639  * ----va---> <-----------------vb--------------------> <--------va-------------
640  *       |          |       <----vs----->                     |
641  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
642  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
643  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
644  *       |          |                                         |
645  *       last visible pixel                                   first visible pixel
646  *                  |                                         increment frame counter (gen3/4)
647  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
648  *
649  * x  = horizontal active
650  * _  = horizontal blanking
651  * hs = horizontal sync
652  * va = vertical active
653  * vb = vertical blanking
654  * vs = vertical sync
655  * vbs = vblank_start (number)
656  *
657  * Summary:
658  * - most events happen at the start of horizontal sync
659  * - frame start happens at the start of horizontal blank, 1-4 lines
660  *   (depending on PIPECONF settings) after the start of vblank
661  * - gen3/4 pixel and frame counter are synchronized with the start
662  *   of horizontal active on the first line of vertical active
663  */
664 
665 /* Called from drm generic code, passed a 'crtc', which
666  * we use as a pipe index
667  */
668 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
669 {
670 	struct drm_i915_private *dev_priv = to_i915(dev);
671 	i915_reg_t high_frame, low_frame;
672 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
673 	struct intel_crtc *intel_crtc =
674 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
675 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
676 
677 	htotal = mode->crtc_htotal;
678 	hsync_start = mode->crtc_hsync_start;
679 	vbl_start = mode->crtc_vblank_start;
680 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
681 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
682 
683 	/* Convert to pixel count */
684 	vbl_start *= htotal;
685 
686 	/* Start of vblank event occurs at start of hsync */
687 	vbl_start -= htotal - hsync_start;
688 
689 	high_frame = PIPEFRAME(pipe);
690 	low_frame = PIPEFRAMEPIXEL(pipe);
691 
692 	/*
693 	 * High & low register fields aren't synchronized, so make sure
694 	 * we get a low value that's stable across two reads of the high
695 	 * register.
696 	 */
697 	do {
698 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699 		low   = I915_READ(low_frame);
700 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701 	} while (high1 != high2);
702 
703 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
704 	pixel = low & PIPE_PIXEL_MASK;
705 	low >>= PIPE_FRAME_LOW_SHIFT;
706 
707 	/*
708 	 * The frame counter increments at beginning of active.
709 	 * Cook up a vblank counter by also checking the pixel
710 	 * counter against vblank start.
711 	 */
712 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
713 }
714 
715 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
716 {
717 	struct drm_i915_private *dev_priv = to_i915(dev);
718 
719 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
720 }
721 
722 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725 	struct drm_device *dev = crtc->base.dev;
726 	struct drm_i915_private *dev_priv = to_i915(dev);
727 	const struct drm_display_mode *mode = &crtc->base.hwmode;
728 	enum pipe pipe = crtc->pipe;
729 	int position, vtotal;
730 
731 	vtotal = mode->crtc_vtotal;
732 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733 		vtotal /= 2;
734 
735 	if (IS_GEN2(dev_priv))
736 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737 	else
738 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739 
740 	/*
741 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
742 	 * read it just before the start of vblank.  So try it again
743 	 * so we don't accidentally end up spanning a vblank frame
744 	 * increment, causing the pipe_update_end() code to squak at us.
745 	 *
746 	 * The nature of this problem means we can't simply check the ISR
747 	 * bit and return the vblank start value; nor can we use the scanline
748 	 * debug register in the transcoder as it appears to have the same
749 	 * problem.  We may need to extend this to include other platforms,
750 	 * but so far testing only shows the problem on HSW.
751 	 */
752 	if (HAS_DDI(dev_priv) && !position) {
753 		int i, temp;
754 
755 		for (i = 0; i < 100; i++) {
756 			udelay(1);
757 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758 				DSL_LINEMASK_GEN3;
759 			if (temp != position) {
760 				position = temp;
761 				break;
762 			}
763 		}
764 	}
765 
766 	/*
767 	 * See update_scanline_offset() for the details on the
768 	 * scanline_offset adjustment.
769 	 */
770 	return (position + crtc->scanline_offset) % vtotal;
771 }
772 
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774 				    unsigned int flags, int *vpos, int *hpos,
775 				    ktime_t *stime, ktime_t *etime,
776 				    const struct drm_display_mode *mode)
777 {
778 	struct drm_i915_private *dev_priv = to_i915(dev);
779 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781 	int position;
782 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783 	bool in_vbl = true;
784 	int ret = 0;
785 	unsigned long irqflags;
786 
787 	if (WARN_ON(!mode->crtc_clock)) {
788 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789 				 "pipe %c\n", pipe_name(pipe));
790 		return 0;
791 	}
792 
793 	htotal = mode->crtc_htotal;
794 	hsync_start = mode->crtc_hsync_start;
795 	vtotal = mode->crtc_vtotal;
796 	vbl_start = mode->crtc_vblank_start;
797 	vbl_end = mode->crtc_vblank_end;
798 
799 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
801 		vbl_end /= 2;
802 		vtotal /= 2;
803 	}
804 
805 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806 
807 	/*
808 	 * Lock uncore.lock, as we will do multiple timing critical raw
809 	 * register reads, potentially with preemption disabled, so the
810 	 * following code must not block on uncore.lock.
811 	 */
812 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813 
814 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815 
816 	/* Get optional system timestamp before query. */
817 	if (stime)
818 		*stime = ktime_get();
819 
820 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
821 		/* No obvious pixelcount register. Only query vertical
822 		 * scanout position from Display scan line register.
823 		 */
824 		position = __intel_get_crtc_scanline(intel_crtc);
825 	} else {
826 		/* Have access to pixelcount since start of frame.
827 		 * We can split this into vertical and horizontal
828 		 * scanout position.
829 		 */
830 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831 
832 		/* convert to pixel counts */
833 		vbl_start *= htotal;
834 		vbl_end *= htotal;
835 		vtotal *= htotal;
836 
837 		/*
838 		 * In interlaced modes, the pixel counter counts all pixels,
839 		 * so one field will have htotal more pixels. In order to avoid
840 		 * the reported position from jumping backwards when the pixel
841 		 * counter is beyond the length of the shorter field, just
842 		 * clamp the position the length of the shorter field. This
843 		 * matches how the scanline counter based position works since
844 		 * the scanline counter doesn't count the two half lines.
845 		 */
846 		if (position >= vtotal)
847 			position = vtotal - 1;
848 
849 		/*
850 		 * Start of vblank interrupt is triggered at start of hsync,
851 		 * just prior to the first active line of vblank. However we
852 		 * consider lines to start at the leading edge of horizontal
853 		 * active. So, should we get here before we've crossed into
854 		 * the horizontal active of the first line in vblank, we would
855 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856 		 * always add htotal-hsync_start to the current pixel position.
857 		 */
858 		position = (position + htotal - hsync_start) % vtotal;
859 	}
860 
861 	/* Get optional system timestamp after query. */
862 	if (etime)
863 		*etime = ktime_get();
864 
865 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866 
867 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868 
869 	in_vbl = position >= vbl_start && position < vbl_end;
870 
871 	/*
872 	 * While in vblank, position will be negative
873 	 * counting up towards 0 at vbl_end. And outside
874 	 * vblank, position will be positive counting
875 	 * up since vbl_end.
876 	 */
877 	if (position >= vbl_start)
878 		position -= vbl_end;
879 	else
880 		position += vtotal - vbl_end;
881 
882 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
883 		*vpos = position;
884 		*hpos = 0;
885 	} else {
886 		*vpos = position / htotal;
887 		*hpos = position - (*vpos * htotal);
888 	}
889 
890 	/* In vblank? */
891 	if (in_vbl)
892 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
893 
894 	return ret;
895 }
896 
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900 	unsigned long irqflags;
901 	int position;
902 
903 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904 	position = __intel_get_crtc_scanline(crtc);
905 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906 
907 	return position;
908 }
909 
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911 			      int *max_error,
912 			      struct timeval *vblank_time,
913 			      unsigned flags)
914 {
915 	struct drm_crtc *crtc;
916 
917 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
918 		DRM_ERROR("Invalid crtc %u\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	/* Get drm_crtc to timestamp: */
923 	crtc = intel_get_crtc_for_pipe(dev, pipe);
924 	if (crtc == NULL) {
925 		DRM_ERROR("Invalid crtc %u\n", pipe);
926 		return -EINVAL;
927 	}
928 
929 	if (!crtc->hwmode.crtc_clock) {
930 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931 		return -EBUSY;
932 	}
933 
934 	/* Helper routine in DRM core does all the work: */
935 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936 						     vblank_time, flags,
937 						     &crtc->hwmode);
938 }
939 
940 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
941 {
942 	u32 busy_up, busy_down, max_avg, min_avg;
943 	u8 new_delay;
944 
945 	spin_lock(&mchdev_lock);
946 
947 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948 
949 	new_delay = dev_priv->ips.cur_delay;
950 
951 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952 	busy_up = I915_READ(RCPREVBSYTUPAVG);
953 	busy_down = I915_READ(RCPREVBSYTDNAVG);
954 	max_avg = I915_READ(RCBMAXAVG);
955 	min_avg = I915_READ(RCBMINAVG);
956 
957 	/* Handle RCS change request from hw */
958 	if (busy_up > max_avg) {
959 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960 			new_delay = dev_priv->ips.cur_delay - 1;
961 		if (new_delay < dev_priv->ips.max_delay)
962 			new_delay = dev_priv->ips.max_delay;
963 	} else if (busy_down < min_avg) {
964 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965 			new_delay = dev_priv->ips.cur_delay + 1;
966 		if (new_delay > dev_priv->ips.min_delay)
967 			new_delay = dev_priv->ips.min_delay;
968 	}
969 
970 	if (ironlake_set_drps(dev_priv, new_delay))
971 		dev_priv->ips.cur_delay = new_delay;
972 
973 	spin_unlock(&mchdev_lock);
974 
975 	return;
976 }
977 
978 static void notify_ring(struct intel_engine_cs *engine)
979 {
980 	smp_store_mb(engine->breadcrumbs.irq_posted, true);
981 	if (intel_engine_wakeup(engine))
982 		trace_i915_gem_request_notify(engine);
983 }
984 
985 static void vlv_c0_read(struct drm_i915_private *dev_priv,
986 			struct intel_rps_ei *ei)
987 {
988 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
989 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
990 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
991 }
992 
993 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
994 			 const struct intel_rps_ei *old,
995 			 const struct intel_rps_ei *now,
996 			 int threshold)
997 {
998 	u64 time, c0;
999 	unsigned int mul = 100;
1000 
1001 	if (old->cz_clock == 0)
1002 		return false;
1003 
1004 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1005 		mul <<= 8;
1006 
1007 	time = now->cz_clock - old->cz_clock;
1008 	time *= threshold * dev_priv->czclk_freq;
1009 
1010 	/* Workload can be split between render + media, e.g. SwapBuffers
1011 	 * being blitted in X after being rendered in mesa. To account for
1012 	 * this we need to combine both engines into our activity counter.
1013 	 */
1014 	c0 = now->render_c0 - old->render_c0;
1015 	c0 += now->media_c0 - old->media_c0;
1016 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1017 
1018 	return c0 >= time;
1019 }
1020 
1021 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1022 {
1023 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1024 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1025 }
1026 
1027 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1028 {
1029 	struct intel_rps_ei now;
1030 	u32 events = 0;
1031 
1032 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1033 		return 0;
1034 
1035 	vlv_c0_read(dev_priv, &now);
1036 	if (now.cz_clock == 0)
1037 		return 0;
1038 
1039 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1040 		if (!vlv_c0_above(dev_priv,
1041 				  &dev_priv->rps.down_ei, &now,
1042 				  dev_priv->rps.down_threshold))
1043 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1044 		dev_priv->rps.down_ei = now;
1045 	}
1046 
1047 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1048 		if (vlv_c0_above(dev_priv,
1049 				 &dev_priv->rps.up_ei, &now,
1050 				 dev_priv->rps.up_threshold))
1051 			events |= GEN6_PM_RP_UP_THRESHOLD;
1052 		dev_priv->rps.up_ei = now;
1053 	}
1054 
1055 	return events;
1056 }
1057 
1058 static bool any_waiters(struct drm_i915_private *dev_priv)
1059 {
1060 	struct intel_engine_cs *engine;
1061 	enum intel_engine_id id;
1062 
1063 	for_each_engine(engine, dev_priv, id)
1064 		if (intel_engine_has_waiter(engine))
1065 			return true;
1066 
1067 	return false;
1068 }
1069 
1070 static void gen6_pm_rps_work(struct work_struct *work)
1071 {
1072 	struct drm_i915_private *dev_priv =
1073 		container_of(work, struct drm_i915_private, rps.work);
1074 	bool client_boost;
1075 	int new_delay, adj, min, max;
1076 	u32 pm_iir;
1077 
1078 	spin_lock_irq(&dev_priv->irq_lock);
1079 	/* Speed up work cancelation during disabling rps interrupts. */
1080 	if (!dev_priv->rps.interrupts_enabled) {
1081 		spin_unlock_irq(&dev_priv->irq_lock);
1082 		return;
1083 	}
1084 
1085 	pm_iir = dev_priv->rps.pm_iir;
1086 	dev_priv->rps.pm_iir = 0;
1087 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1088 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1089 	client_boost = dev_priv->rps.client_boost;
1090 	dev_priv->rps.client_boost = false;
1091 	spin_unlock_irq(&dev_priv->irq_lock);
1092 
1093 	/* Make sure we didn't queue anything we're not going to process. */
1094 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1095 
1096 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1097 		return;
1098 
1099 	mutex_lock(&dev_priv->rps.hw_lock);
1100 
1101 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1102 
1103 	adj = dev_priv->rps.last_adj;
1104 	new_delay = dev_priv->rps.cur_freq;
1105 	min = dev_priv->rps.min_freq_softlimit;
1106 	max = dev_priv->rps.max_freq_softlimit;
1107 	if (client_boost || any_waiters(dev_priv))
1108 		max = dev_priv->rps.max_freq;
1109 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1110 		new_delay = dev_priv->rps.boost_freq;
1111 		adj = 0;
1112 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1113 		if (adj > 0)
1114 			adj *= 2;
1115 		else /* CHV needs even encode values */
1116 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1117 		/*
1118 		 * For better performance, jump directly
1119 		 * to RPe if we're below it.
1120 		 */
1121 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1122 			new_delay = dev_priv->rps.efficient_freq;
1123 			adj = 0;
1124 		}
1125 	} else if (client_boost || any_waiters(dev_priv)) {
1126 		adj = 0;
1127 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1128 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1129 			new_delay = dev_priv->rps.efficient_freq;
1130 		else
1131 			new_delay = dev_priv->rps.min_freq_softlimit;
1132 		adj = 0;
1133 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1134 		if (adj < 0)
1135 			adj *= 2;
1136 		else /* CHV needs even encode values */
1137 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1138 	} else { /* unknown event */
1139 		adj = 0;
1140 	}
1141 
1142 	dev_priv->rps.last_adj = adj;
1143 
1144 	/* sysfs frequency interfaces may have snuck in while servicing the
1145 	 * interrupt
1146 	 */
1147 	new_delay += adj;
1148 	new_delay = clamp_t(int, new_delay, min, max);
1149 
1150 	intel_set_rps(dev_priv, new_delay);
1151 
1152 	mutex_unlock(&dev_priv->rps.hw_lock);
1153 }
1154 
1155 
1156 /**
1157  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1158  * occurred.
1159  * @work: workqueue struct
1160  *
1161  * Doesn't actually do anything except notify userspace. As a consequence of
1162  * this event, userspace should try to remap the bad rows since statistically
1163  * it is likely the same row is more likely to go bad again.
1164  */
1165 static void ivybridge_parity_work(struct work_struct *work)
1166 {
1167 	struct drm_i915_private *dev_priv =
1168 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1169 	u32 error_status, row, bank, subbank;
1170 	char *parity_event[6];
1171 	uint32_t misccpctl;
1172 	uint8_t slice = 0;
1173 
1174 	/* We must turn off DOP level clock gating to access the L3 registers.
1175 	 * In order to prevent a get/put style interface, acquire struct mutex
1176 	 * any time we access those registers.
1177 	 */
1178 	mutex_lock(&dev_priv->drm.struct_mutex);
1179 
1180 	/* If we've screwed up tracking, just let the interrupt fire again */
1181 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1182 		goto out;
1183 
1184 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1185 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1186 	POSTING_READ(GEN7_MISCCPCTL);
1187 
1188 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1189 		i915_reg_t reg;
1190 
1191 		slice--;
1192 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1193 			break;
1194 
1195 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1196 
1197 		reg = GEN7_L3CDERRST1(slice);
1198 
1199 		error_status = I915_READ(reg);
1200 		row = GEN7_PARITY_ERROR_ROW(error_status);
1201 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1202 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1203 
1204 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1205 		POSTING_READ(reg);
1206 
1207 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1208 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1209 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1210 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1211 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1212 		parity_event[5] = NULL;
1213 
1214 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1215 				   KOBJ_CHANGE, parity_event);
1216 
1217 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1218 			  slice, row, bank, subbank);
1219 
1220 		kfree(parity_event[4]);
1221 		kfree(parity_event[3]);
1222 		kfree(parity_event[2]);
1223 		kfree(parity_event[1]);
1224 	}
1225 
1226 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1227 
1228 out:
1229 	WARN_ON(dev_priv->l3_parity.which_slice);
1230 	spin_lock_irq(&dev_priv->irq_lock);
1231 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1232 	spin_unlock_irq(&dev_priv->irq_lock);
1233 
1234 	mutex_unlock(&dev_priv->drm.struct_mutex);
1235 }
1236 
1237 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1238 					       u32 iir)
1239 {
1240 	if (!HAS_L3_DPF(dev_priv))
1241 		return;
1242 
1243 	spin_lock(&dev_priv->irq_lock);
1244 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1245 	spin_unlock(&dev_priv->irq_lock);
1246 
1247 	iir &= GT_PARITY_ERROR(dev_priv);
1248 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1249 		dev_priv->l3_parity.which_slice |= 1 << 1;
1250 
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1252 		dev_priv->l3_parity.which_slice |= 1 << 0;
1253 
1254 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1255 }
1256 
1257 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1258 			       u32 gt_iir)
1259 {
1260 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1261 		notify_ring(dev_priv->engine[RCS]);
1262 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1263 		notify_ring(dev_priv->engine[VCS]);
1264 }
1265 
1266 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1267 			       u32 gt_iir)
1268 {
1269 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1270 		notify_ring(dev_priv->engine[RCS]);
1271 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1272 		notify_ring(dev_priv->engine[VCS]);
1273 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1274 		notify_ring(dev_priv->engine[BCS]);
1275 
1276 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1277 		      GT_BSD_CS_ERROR_INTERRUPT |
1278 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1279 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1280 
1281 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1282 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1283 }
1284 
1285 static __always_inline void
1286 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1287 {
1288 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1289 		notify_ring(engine);
1290 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1291 		tasklet_schedule(&engine->irq_tasklet);
1292 }
1293 
1294 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1295 				   u32 master_ctl,
1296 				   u32 gt_iir[4])
1297 {
1298 	irqreturn_t ret = IRQ_NONE;
1299 
1300 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1301 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1302 		if (gt_iir[0]) {
1303 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1304 			ret = IRQ_HANDLED;
1305 		} else
1306 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1307 	}
1308 
1309 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1310 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1311 		if (gt_iir[1]) {
1312 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1313 			ret = IRQ_HANDLED;
1314 		} else
1315 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1316 	}
1317 
1318 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1319 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1320 		if (gt_iir[3]) {
1321 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1322 			ret = IRQ_HANDLED;
1323 		} else
1324 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1325 	}
1326 
1327 	if (master_ctl & GEN8_GT_PM_IRQ) {
1328 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1329 		if (gt_iir[2] & dev_priv->pm_rps_events) {
1330 			I915_WRITE_FW(GEN8_GT_IIR(2),
1331 				      gt_iir[2] & dev_priv->pm_rps_events);
1332 			ret = IRQ_HANDLED;
1333 		} else
1334 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1341 				u32 gt_iir[4])
1342 {
1343 	if (gt_iir[0]) {
1344 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1345 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1346 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1347 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1348 	}
1349 
1350 	if (gt_iir[1]) {
1351 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1352 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1353 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1354 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1355 	}
1356 
1357 	if (gt_iir[3])
1358 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1359 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1360 
1361 	if (gt_iir[2] & dev_priv->pm_rps_events)
1362 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1363 }
1364 
1365 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1366 {
1367 	switch (port) {
1368 	case PORT_A:
1369 		return val & PORTA_HOTPLUG_LONG_DETECT;
1370 	case PORT_B:
1371 		return val & PORTB_HOTPLUG_LONG_DETECT;
1372 	case PORT_C:
1373 		return val & PORTC_HOTPLUG_LONG_DETECT;
1374 	default:
1375 		return false;
1376 	}
1377 }
1378 
1379 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1380 {
1381 	switch (port) {
1382 	case PORT_E:
1383 		return val & PORTE_HOTPLUG_LONG_DETECT;
1384 	default:
1385 		return false;
1386 	}
1387 }
1388 
1389 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1390 {
1391 	switch (port) {
1392 	case PORT_A:
1393 		return val & PORTA_HOTPLUG_LONG_DETECT;
1394 	case PORT_B:
1395 		return val & PORTB_HOTPLUG_LONG_DETECT;
1396 	case PORT_C:
1397 		return val & PORTC_HOTPLUG_LONG_DETECT;
1398 	case PORT_D:
1399 		return val & PORTD_HOTPLUG_LONG_DETECT;
1400 	default:
1401 		return false;
1402 	}
1403 }
1404 
1405 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407 	switch (port) {
1408 	case PORT_A:
1409 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1410 	default:
1411 		return false;
1412 	}
1413 }
1414 
1415 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 	switch (port) {
1418 	case PORT_B:
1419 		return val & PORTB_HOTPLUG_LONG_DETECT;
1420 	case PORT_C:
1421 		return val & PORTC_HOTPLUG_LONG_DETECT;
1422 	case PORT_D:
1423 		return val & PORTD_HOTPLUG_LONG_DETECT;
1424 	default:
1425 		return false;
1426 	}
1427 }
1428 
1429 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431 	switch (port) {
1432 	case PORT_B:
1433 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1434 	case PORT_C:
1435 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1436 	case PORT_D:
1437 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1438 	default:
1439 		return false;
1440 	}
1441 }
1442 
1443 /*
1444  * Get a bit mask of pins that have triggered, and which ones may be long.
1445  * This can be called multiple times with the same masks to accumulate
1446  * hotplug detection results from several registers.
1447  *
1448  * Note that the caller is expected to zero out the masks initially.
1449  */
1450 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1451 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1452 			     const u32 hpd[HPD_NUM_PINS],
1453 			     bool long_pulse_detect(enum port port, u32 val))
1454 {
1455 	enum port port;
1456 	int i;
1457 
1458 	for_each_hpd_pin(i) {
1459 		if ((hpd[i] & hotplug_trigger) == 0)
1460 			continue;
1461 
1462 		*pin_mask |= BIT(i);
1463 
1464 		if (!intel_hpd_pin_to_port(i, &port))
1465 			continue;
1466 
1467 		if (long_pulse_detect(port, dig_hotplug_reg))
1468 			*long_mask |= BIT(i);
1469 	}
1470 
1471 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1472 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1473 
1474 }
1475 
1476 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1477 {
1478 	wake_up_all(&dev_priv->gmbus_wait_queue);
1479 }
1480 
1481 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1482 {
1483 	wake_up_all(&dev_priv->gmbus_wait_queue);
1484 }
1485 
1486 #if defined(CONFIG_DEBUG_FS)
1487 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1488 					 enum pipe pipe,
1489 					 uint32_t crc0, uint32_t crc1,
1490 					 uint32_t crc2, uint32_t crc3,
1491 					 uint32_t crc4)
1492 {
1493 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1494 	struct intel_pipe_crc_entry *entry;
1495 	int head, tail;
1496 
1497 	spin_lock(&pipe_crc->lock);
1498 
1499 	if (!pipe_crc->entries) {
1500 		spin_unlock(&pipe_crc->lock);
1501 		DRM_DEBUG_KMS("spurious interrupt\n");
1502 		return;
1503 	}
1504 
1505 	head = pipe_crc->head;
1506 	tail = pipe_crc->tail;
1507 
1508 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1509 		spin_unlock(&pipe_crc->lock);
1510 		DRM_ERROR("CRC buffer overflowing\n");
1511 		return;
1512 	}
1513 
1514 	entry = &pipe_crc->entries[head];
1515 
1516 	entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1517 								 pipe);
1518 	entry->crc[0] = crc0;
1519 	entry->crc[1] = crc1;
1520 	entry->crc[2] = crc2;
1521 	entry->crc[3] = crc3;
1522 	entry->crc[4] = crc4;
1523 
1524 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1525 	pipe_crc->head = head;
1526 
1527 	spin_unlock(&pipe_crc->lock);
1528 
1529 	wake_up_interruptible(&pipe_crc->wq);
1530 }
1531 #else
1532 static inline void
1533 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1534 			     enum pipe pipe,
1535 			     uint32_t crc0, uint32_t crc1,
1536 			     uint32_t crc2, uint32_t crc3,
1537 			     uint32_t crc4) {}
1538 #endif
1539 
1540 
1541 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1542 				     enum pipe pipe)
1543 {
1544 	display_pipe_crc_irq_handler(dev_priv, pipe,
1545 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1546 				     0, 0, 0, 0);
1547 }
1548 
1549 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1550 				     enum pipe pipe)
1551 {
1552 	display_pipe_crc_irq_handler(dev_priv, pipe,
1553 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1554 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1555 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1556 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1557 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1558 }
1559 
1560 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1561 				      enum pipe pipe)
1562 {
1563 	uint32_t res1, res2;
1564 
1565 	if (INTEL_GEN(dev_priv) >= 3)
1566 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1567 	else
1568 		res1 = 0;
1569 
1570 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1571 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1572 	else
1573 		res2 = 0;
1574 
1575 	display_pipe_crc_irq_handler(dev_priv, pipe,
1576 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1577 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1578 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1579 				     res1, res2);
1580 }
1581 
1582 /* The RPS events need forcewake, so we add them to a work queue and mask their
1583  * IMR bits until the work is done. Other interrupts can be processed without
1584  * the work queue. */
1585 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1586 {
1587 	if (pm_iir & dev_priv->pm_rps_events) {
1588 		spin_lock(&dev_priv->irq_lock);
1589 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1590 		if (dev_priv->rps.interrupts_enabled) {
1591 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1592 			schedule_work(&dev_priv->rps.work);
1593 		}
1594 		spin_unlock(&dev_priv->irq_lock);
1595 	}
1596 
1597 	if (INTEL_INFO(dev_priv)->gen >= 8)
1598 		return;
1599 
1600 	if (HAS_VEBOX(dev_priv)) {
1601 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1602 			notify_ring(dev_priv->engine[VECS]);
1603 
1604 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1605 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1606 	}
1607 }
1608 
1609 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1610 				     enum pipe pipe)
1611 {
1612 	bool ret;
1613 
1614 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1615 	if (ret)
1616 		intel_finish_page_flip_mmio(dev_priv, pipe);
1617 
1618 	return ret;
1619 }
1620 
1621 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1622 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1623 {
1624 	int pipe;
1625 
1626 	spin_lock(&dev_priv->irq_lock);
1627 
1628 	if (!dev_priv->display_irqs_enabled) {
1629 		spin_unlock(&dev_priv->irq_lock);
1630 		return;
1631 	}
1632 
1633 	for_each_pipe(dev_priv, pipe) {
1634 		i915_reg_t reg;
1635 		u32 mask, iir_bit = 0;
1636 
1637 		/*
1638 		 * PIPESTAT bits get signalled even when the interrupt is
1639 		 * disabled with the mask bits, and some of the status bits do
1640 		 * not generate interrupts at all (like the underrun bit). Hence
1641 		 * we need to be careful that we only handle what we want to
1642 		 * handle.
1643 		 */
1644 
1645 		/* fifo underruns are filterered in the underrun handler. */
1646 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1647 
1648 		switch (pipe) {
1649 		case PIPE_A:
1650 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1651 			break;
1652 		case PIPE_B:
1653 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1654 			break;
1655 		case PIPE_C:
1656 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1657 			break;
1658 		}
1659 		if (iir & iir_bit)
1660 			mask |= dev_priv->pipestat_irq_mask[pipe];
1661 
1662 		if (!mask)
1663 			continue;
1664 
1665 		reg = PIPESTAT(pipe);
1666 		mask |= PIPESTAT_INT_ENABLE_MASK;
1667 		pipe_stats[pipe] = I915_READ(reg) & mask;
1668 
1669 		/*
1670 		 * Clear the PIPE*STAT regs before the IIR
1671 		 */
1672 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1673 					PIPESTAT_INT_STATUS_MASK))
1674 			I915_WRITE(reg, pipe_stats[pipe]);
1675 	}
1676 	spin_unlock(&dev_priv->irq_lock);
1677 }
1678 
1679 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1680 					    u32 pipe_stats[I915_MAX_PIPES])
1681 {
1682 	enum pipe pipe;
1683 
1684 	for_each_pipe(dev_priv, pipe) {
1685 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1686 		    intel_pipe_handle_vblank(dev_priv, pipe))
1687 			intel_check_page_flip(dev_priv, pipe);
1688 
1689 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1690 			intel_finish_page_flip_cs(dev_priv, pipe);
1691 
1692 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1693 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1694 
1695 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1696 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1697 	}
1698 
1699 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1700 		gmbus_irq_handler(dev_priv);
1701 }
1702 
1703 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1704 {
1705 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1706 
1707 	if (hotplug_status)
1708 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1709 
1710 	return hotplug_status;
1711 }
1712 
1713 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1714 				 u32 hotplug_status)
1715 {
1716 	u32 pin_mask = 0, long_mask = 0;
1717 
1718 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1719 	    IS_CHERRYVIEW(dev_priv)) {
1720 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1721 
1722 		if (hotplug_trigger) {
1723 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1724 					   hotplug_trigger, hpd_status_g4x,
1725 					   i9xx_port_hotplug_long_detect);
1726 
1727 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1728 		}
1729 
1730 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1731 			dp_aux_irq_handler(dev_priv);
1732 	} else {
1733 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1734 
1735 		if (hotplug_trigger) {
1736 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1737 					   hotplug_trigger, hpd_status_i915,
1738 					   i9xx_port_hotplug_long_detect);
1739 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1740 		}
1741 	}
1742 }
1743 
1744 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1745 {
1746 	struct drm_device *dev = arg;
1747 	struct drm_i915_private *dev_priv = to_i915(dev);
1748 	irqreturn_t ret = IRQ_NONE;
1749 
1750 	if (!intel_irqs_enabled(dev_priv))
1751 		return IRQ_NONE;
1752 
1753 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1754 	disable_rpm_wakeref_asserts(dev_priv);
1755 
1756 	do {
1757 		u32 iir, gt_iir, pm_iir;
1758 		u32 pipe_stats[I915_MAX_PIPES] = {};
1759 		u32 hotplug_status = 0;
1760 		u32 ier = 0;
1761 
1762 		gt_iir = I915_READ(GTIIR);
1763 		pm_iir = I915_READ(GEN6_PMIIR);
1764 		iir = I915_READ(VLV_IIR);
1765 
1766 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1767 			break;
1768 
1769 		ret = IRQ_HANDLED;
1770 
1771 		/*
1772 		 * Theory on interrupt generation, based on empirical evidence:
1773 		 *
1774 		 * x = ((VLV_IIR & VLV_IER) ||
1775 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1776 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1777 		 *
1778 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1779 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1780 		 * guarantee the CPU interrupt will be raised again even if we
1781 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1782 		 * bits this time around.
1783 		 */
1784 		I915_WRITE(VLV_MASTER_IER, 0);
1785 		ier = I915_READ(VLV_IER);
1786 		I915_WRITE(VLV_IER, 0);
1787 
1788 		if (gt_iir)
1789 			I915_WRITE(GTIIR, gt_iir);
1790 		if (pm_iir)
1791 			I915_WRITE(GEN6_PMIIR, pm_iir);
1792 
1793 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1794 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1795 
1796 		/* Call regardless, as some status bits might not be
1797 		 * signalled in iir */
1798 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1799 
1800 		/*
1801 		 * VLV_IIR is single buffered, and reflects the level
1802 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1803 		 */
1804 		if (iir)
1805 			I915_WRITE(VLV_IIR, iir);
1806 
1807 		I915_WRITE(VLV_IER, ier);
1808 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1809 		POSTING_READ(VLV_MASTER_IER);
1810 
1811 		if (gt_iir)
1812 			snb_gt_irq_handler(dev_priv, gt_iir);
1813 		if (pm_iir)
1814 			gen6_rps_irq_handler(dev_priv, pm_iir);
1815 
1816 		if (hotplug_status)
1817 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1818 
1819 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1820 	} while (0);
1821 
1822 	enable_rpm_wakeref_asserts(dev_priv);
1823 
1824 	return ret;
1825 }
1826 
1827 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1828 {
1829 	struct drm_device *dev = arg;
1830 	struct drm_i915_private *dev_priv = to_i915(dev);
1831 	irqreturn_t ret = IRQ_NONE;
1832 
1833 	if (!intel_irqs_enabled(dev_priv))
1834 		return IRQ_NONE;
1835 
1836 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1837 	disable_rpm_wakeref_asserts(dev_priv);
1838 
1839 	do {
1840 		u32 master_ctl, iir;
1841 		u32 gt_iir[4] = {};
1842 		u32 pipe_stats[I915_MAX_PIPES] = {};
1843 		u32 hotplug_status = 0;
1844 		u32 ier = 0;
1845 
1846 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1847 		iir = I915_READ(VLV_IIR);
1848 
1849 		if (master_ctl == 0 && iir == 0)
1850 			break;
1851 
1852 		ret = IRQ_HANDLED;
1853 
1854 		/*
1855 		 * Theory on interrupt generation, based on empirical evidence:
1856 		 *
1857 		 * x = ((VLV_IIR & VLV_IER) ||
1858 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1859 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1860 		 *
1861 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1862 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1863 		 * guarantee the CPU interrupt will be raised again even if we
1864 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1865 		 * bits this time around.
1866 		 */
1867 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1868 		ier = I915_READ(VLV_IER);
1869 		I915_WRITE(VLV_IER, 0);
1870 
1871 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1872 
1873 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1874 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1875 
1876 		/* Call regardless, as some status bits might not be
1877 		 * signalled in iir */
1878 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1879 
1880 		/*
1881 		 * VLV_IIR is single buffered, and reflects the level
1882 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1883 		 */
1884 		if (iir)
1885 			I915_WRITE(VLV_IIR, iir);
1886 
1887 		I915_WRITE(VLV_IER, ier);
1888 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1889 		POSTING_READ(GEN8_MASTER_IRQ);
1890 
1891 		gen8_gt_irq_handler(dev_priv, gt_iir);
1892 
1893 		if (hotplug_status)
1894 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1895 
1896 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1897 	} while (0);
1898 
1899 	enable_rpm_wakeref_asserts(dev_priv);
1900 
1901 	return ret;
1902 }
1903 
1904 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1905 				u32 hotplug_trigger,
1906 				const u32 hpd[HPD_NUM_PINS])
1907 {
1908 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1909 
1910 	/*
1911 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1912 	 * unless we touch the hotplug register, even if hotplug_trigger is
1913 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1914 	 * errors.
1915 	 */
1916 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1917 	if (!hotplug_trigger) {
1918 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1919 			PORTD_HOTPLUG_STATUS_MASK |
1920 			PORTC_HOTPLUG_STATUS_MASK |
1921 			PORTB_HOTPLUG_STATUS_MASK;
1922 		dig_hotplug_reg &= ~mask;
1923 	}
1924 
1925 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1926 	if (!hotplug_trigger)
1927 		return;
1928 
1929 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1930 			   dig_hotplug_reg, hpd,
1931 			   pch_port_hotplug_long_detect);
1932 
1933 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1934 }
1935 
1936 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1937 {
1938 	int pipe;
1939 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1940 
1941 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1942 
1943 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1944 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1945 			       SDE_AUDIO_POWER_SHIFT);
1946 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1947 				 port_name(port));
1948 	}
1949 
1950 	if (pch_iir & SDE_AUX_MASK)
1951 		dp_aux_irq_handler(dev_priv);
1952 
1953 	if (pch_iir & SDE_GMBUS)
1954 		gmbus_irq_handler(dev_priv);
1955 
1956 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1957 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1958 
1959 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1960 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1961 
1962 	if (pch_iir & SDE_POISON)
1963 		DRM_ERROR("PCH poison interrupt\n");
1964 
1965 	if (pch_iir & SDE_FDI_MASK)
1966 		for_each_pipe(dev_priv, pipe)
1967 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1968 					 pipe_name(pipe),
1969 					 I915_READ(FDI_RX_IIR(pipe)));
1970 
1971 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1972 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1973 
1974 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1975 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1976 
1977 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1978 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1979 
1980 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1981 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1982 }
1983 
1984 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1985 {
1986 	u32 err_int = I915_READ(GEN7_ERR_INT);
1987 	enum pipe pipe;
1988 
1989 	if (err_int & ERR_INT_POISON)
1990 		DRM_ERROR("Poison interrupt\n");
1991 
1992 	for_each_pipe(dev_priv, pipe) {
1993 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1994 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1995 
1996 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1997 			if (IS_IVYBRIDGE(dev_priv))
1998 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1999 			else
2000 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2001 		}
2002 	}
2003 
2004 	I915_WRITE(GEN7_ERR_INT, err_int);
2005 }
2006 
2007 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2008 {
2009 	u32 serr_int = I915_READ(SERR_INT);
2010 
2011 	if (serr_int & SERR_INT_POISON)
2012 		DRM_ERROR("PCH poison interrupt\n");
2013 
2014 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2015 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016 
2017 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2018 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019 
2020 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2021 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2022 
2023 	I915_WRITE(SERR_INT, serr_int);
2024 }
2025 
2026 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2027 {
2028 	int pipe;
2029 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2030 
2031 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2032 
2033 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2034 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2035 			       SDE_AUDIO_POWER_SHIFT_CPT);
2036 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2037 				 port_name(port));
2038 	}
2039 
2040 	if (pch_iir & SDE_AUX_MASK_CPT)
2041 		dp_aux_irq_handler(dev_priv);
2042 
2043 	if (pch_iir & SDE_GMBUS_CPT)
2044 		gmbus_irq_handler(dev_priv);
2045 
2046 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2047 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2048 
2049 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2050 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2051 
2052 	if (pch_iir & SDE_FDI_MASK_CPT)
2053 		for_each_pipe(dev_priv, pipe)
2054 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2055 					 pipe_name(pipe),
2056 					 I915_READ(FDI_RX_IIR(pipe)));
2057 
2058 	if (pch_iir & SDE_ERROR_CPT)
2059 		cpt_serr_int_handler(dev_priv);
2060 }
2061 
2062 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2063 {
2064 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2065 		~SDE_PORTE_HOTPLUG_SPT;
2066 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2067 	u32 pin_mask = 0, long_mask = 0;
2068 
2069 	if (hotplug_trigger) {
2070 		u32 dig_hotplug_reg;
2071 
2072 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2073 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2074 
2075 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 				   dig_hotplug_reg, hpd_spt,
2077 				   spt_port_hotplug_long_detect);
2078 	}
2079 
2080 	if (hotplug2_trigger) {
2081 		u32 dig_hotplug_reg;
2082 
2083 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2084 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2085 
2086 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2087 				   dig_hotplug_reg, hpd_spt,
2088 				   spt_port_hotplug2_long_detect);
2089 	}
2090 
2091 	if (pin_mask)
2092 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2093 
2094 	if (pch_iir & SDE_GMBUS_CPT)
2095 		gmbus_irq_handler(dev_priv);
2096 }
2097 
2098 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2099 				u32 hotplug_trigger,
2100 				const u32 hpd[HPD_NUM_PINS])
2101 {
2102 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2103 
2104 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2105 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2106 
2107 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2108 			   dig_hotplug_reg, hpd,
2109 			   ilk_port_hotplug_long_detect);
2110 
2111 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2112 }
2113 
2114 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2115 				    u32 de_iir)
2116 {
2117 	enum pipe pipe;
2118 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2119 
2120 	if (hotplug_trigger)
2121 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2122 
2123 	if (de_iir & DE_AUX_CHANNEL_A)
2124 		dp_aux_irq_handler(dev_priv);
2125 
2126 	if (de_iir & DE_GSE)
2127 		intel_opregion_asle_intr(dev_priv);
2128 
2129 	if (de_iir & DE_POISON)
2130 		DRM_ERROR("Poison interrupt\n");
2131 
2132 	for_each_pipe(dev_priv, pipe) {
2133 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2134 		    intel_pipe_handle_vblank(dev_priv, pipe))
2135 			intel_check_page_flip(dev_priv, pipe);
2136 
2137 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2138 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2139 
2140 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2141 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2142 
2143 		/* plane/pipes map 1:1 on ilk+ */
2144 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2145 			intel_finish_page_flip_cs(dev_priv, pipe);
2146 	}
2147 
2148 	/* check event from PCH */
2149 	if (de_iir & DE_PCH_EVENT) {
2150 		u32 pch_iir = I915_READ(SDEIIR);
2151 
2152 		if (HAS_PCH_CPT(dev_priv))
2153 			cpt_irq_handler(dev_priv, pch_iir);
2154 		else
2155 			ibx_irq_handler(dev_priv, pch_iir);
2156 
2157 		/* should clear PCH hotplug event before clear CPU irq */
2158 		I915_WRITE(SDEIIR, pch_iir);
2159 	}
2160 
2161 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2162 		ironlake_rps_change_irq_handler(dev_priv);
2163 }
2164 
2165 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2166 				    u32 de_iir)
2167 {
2168 	enum pipe pipe;
2169 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2170 
2171 	if (hotplug_trigger)
2172 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2173 
2174 	if (de_iir & DE_ERR_INT_IVB)
2175 		ivb_err_int_handler(dev_priv);
2176 
2177 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2178 		dp_aux_irq_handler(dev_priv);
2179 
2180 	if (de_iir & DE_GSE_IVB)
2181 		intel_opregion_asle_intr(dev_priv);
2182 
2183 	for_each_pipe(dev_priv, pipe) {
2184 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2185 		    intel_pipe_handle_vblank(dev_priv, pipe))
2186 			intel_check_page_flip(dev_priv, pipe);
2187 
2188 		/* plane/pipes map 1:1 on ilk+ */
2189 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2190 			intel_finish_page_flip_cs(dev_priv, pipe);
2191 	}
2192 
2193 	/* check event from PCH */
2194 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2195 		u32 pch_iir = I915_READ(SDEIIR);
2196 
2197 		cpt_irq_handler(dev_priv, pch_iir);
2198 
2199 		/* clear PCH hotplug event before clear CPU irq */
2200 		I915_WRITE(SDEIIR, pch_iir);
2201 	}
2202 }
2203 
2204 /*
2205  * To handle irqs with the minimum potential races with fresh interrupts, we:
2206  * 1 - Disable Master Interrupt Control.
2207  * 2 - Find the source(s) of the interrupt.
2208  * 3 - Clear the Interrupt Identity bits (IIR).
2209  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2210  * 5 - Re-enable Master Interrupt Control.
2211  */
2212 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2213 {
2214 	struct drm_device *dev = arg;
2215 	struct drm_i915_private *dev_priv = to_i915(dev);
2216 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2217 	irqreturn_t ret = IRQ_NONE;
2218 
2219 	if (!intel_irqs_enabled(dev_priv))
2220 		return IRQ_NONE;
2221 
2222 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2223 	disable_rpm_wakeref_asserts(dev_priv);
2224 
2225 	/* disable master interrupt before clearing iir  */
2226 	de_ier = I915_READ(DEIER);
2227 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2228 	POSTING_READ(DEIER);
2229 
2230 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2231 	 * interrupts will will be stored on its back queue, and then we'll be
2232 	 * able to process them after we restore SDEIER (as soon as we restore
2233 	 * it, we'll get an interrupt if SDEIIR still has something to process
2234 	 * due to its back queue). */
2235 	if (!HAS_PCH_NOP(dev_priv)) {
2236 		sde_ier = I915_READ(SDEIER);
2237 		I915_WRITE(SDEIER, 0);
2238 		POSTING_READ(SDEIER);
2239 	}
2240 
2241 	/* Find, clear, then process each source of interrupt */
2242 
2243 	gt_iir = I915_READ(GTIIR);
2244 	if (gt_iir) {
2245 		I915_WRITE(GTIIR, gt_iir);
2246 		ret = IRQ_HANDLED;
2247 		if (INTEL_GEN(dev_priv) >= 6)
2248 			snb_gt_irq_handler(dev_priv, gt_iir);
2249 		else
2250 			ilk_gt_irq_handler(dev_priv, gt_iir);
2251 	}
2252 
2253 	de_iir = I915_READ(DEIIR);
2254 	if (de_iir) {
2255 		I915_WRITE(DEIIR, de_iir);
2256 		ret = IRQ_HANDLED;
2257 		if (INTEL_GEN(dev_priv) >= 7)
2258 			ivb_display_irq_handler(dev_priv, de_iir);
2259 		else
2260 			ilk_display_irq_handler(dev_priv, de_iir);
2261 	}
2262 
2263 	if (INTEL_GEN(dev_priv) >= 6) {
2264 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2265 		if (pm_iir) {
2266 			I915_WRITE(GEN6_PMIIR, pm_iir);
2267 			ret = IRQ_HANDLED;
2268 			gen6_rps_irq_handler(dev_priv, pm_iir);
2269 		}
2270 	}
2271 
2272 	I915_WRITE(DEIER, de_ier);
2273 	POSTING_READ(DEIER);
2274 	if (!HAS_PCH_NOP(dev_priv)) {
2275 		I915_WRITE(SDEIER, sde_ier);
2276 		POSTING_READ(SDEIER);
2277 	}
2278 
2279 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2280 	enable_rpm_wakeref_asserts(dev_priv);
2281 
2282 	return ret;
2283 }
2284 
2285 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2286 				u32 hotplug_trigger,
2287 				const u32 hpd[HPD_NUM_PINS])
2288 {
2289 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2290 
2291 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2292 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2293 
2294 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2295 			   dig_hotplug_reg, hpd,
2296 			   bxt_port_hotplug_long_detect);
2297 
2298 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2299 }
2300 
2301 static irqreturn_t
2302 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2303 {
2304 	irqreturn_t ret = IRQ_NONE;
2305 	u32 iir;
2306 	enum pipe pipe;
2307 
2308 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2309 		iir = I915_READ(GEN8_DE_MISC_IIR);
2310 		if (iir) {
2311 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2312 			ret = IRQ_HANDLED;
2313 			if (iir & GEN8_DE_MISC_GSE)
2314 				intel_opregion_asle_intr(dev_priv);
2315 			else
2316 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2317 		}
2318 		else
2319 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2320 	}
2321 
2322 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2323 		iir = I915_READ(GEN8_DE_PORT_IIR);
2324 		if (iir) {
2325 			u32 tmp_mask;
2326 			bool found = false;
2327 
2328 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2329 			ret = IRQ_HANDLED;
2330 
2331 			tmp_mask = GEN8_AUX_CHANNEL_A;
2332 			if (INTEL_INFO(dev_priv)->gen >= 9)
2333 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2334 					    GEN9_AUX_CHANNEL_C |
2335 					    GEN9_AUX_CHANNEL_D;
2336 
2337 			if (iir & tmp_mask) {
2338 				dp_aux_irq_handler(dev_priv);
2339 				found = true;
2340 			}
2341 
2342 			if (IS_BROXTON(dev_priv)) {
2343 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2344 				if (tmp_mask) {
2345 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2346 							    hpd_bxt);
2347 					found = true;
2348 				}
2349 			} else if (IS_BROADWELL(dev_priv)) {
2350 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2351 				if (tmp_mask) {
2352 					ilk_hpd_irq_handler(dev_priv,
2353 							    tmp_mask, hpd_bdw);
2354 					found = true;
2355 				}
2356 			}
2357 
2358 			if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2359 				gmbus_irq_handler(dev_priv);
2360 				found = true;
2361 			}
2362 
2363 			if (!found)
2364 				DRM_ERROR("Unexpected DE Port interrupt\n");
2365 		}
2366 		else
2367 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2368 	}
2369 
2370 	for_each_pipe(dev_priv, pipe) {
2371 		u32 flip_done, fault_errors;
2372 
2373 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2374 			continue;
2375 
2376 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2377 		if (!iir) {
2378 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2379 			continue;
2380 		}
2381 
2382 		ret = IRQ_HANDLED;
2383 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2384 
2385 		if (iir & GEN8_PIPE_VBLANK &&
2386 		    intel_pipe_handle_vblank(dev_priv, pipe))
2387 			intel_check_page_flip(dev_priv, pipe);
2388 
2389 		flip_done = iir;
2390 		if (INTEL_INFO(dev_priv)->gen >= 9)
2391 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2392 		else
2393 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2394 
2395 		if (flip_done)
2396 			intel_finish_page_flip_cs(dev_priv, pipe);
2397 
2398 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2399 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2400 
2401 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2402 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2403 
2404 		fault_errors = iir;
2405 		if (INTEL_INFO(dev_priv)->gen >= 9)
2406 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2407 		else
2408 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2409 
2410 		if (fault_errors)
2411 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2412 				  pipe_name(pipe),
2413 				  fault_errors);
2414 	}
2415 
2416 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2417 	    master_ctl & GEN8_DE_PCH_IRQ) {
2418 		/*
2419 		 * FIXME(BDW): Assume for now that the new interrupt handling
2420 		 * scheme also closed the SDE interrupt handling race we've seen
2421 		 * on older pch-split platforms. But this needs testing.
2422 		 */
2423 		iir = I915_READ(SDEIIR);
2424 		if (iir) {
2425 			I915_WRITE(SDEIIR, iir);
2426 			ret = IRQ_HANDLED;
2427 
2428 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2429 				spt_irq_handler(dev_priv, iir);
2430 			else
2431 				cpt_irq_handler(dev_priv, iir);
2432 		} else {
2433 			/*
2434 			 * Like on previous PCH there seems to be something
2435 			 * fishy going on with forwarding PCH interrupts.
2436 			 */
2437 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2438 		}
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2445 {
2446 	struct drm_device *dev = arg;
2447 	struct drm_i915_private *dev_priv = to_i915(dev);
2448 	u32 master_ctl;
2449 	u32 gt_iir[4] = {};
2450 	irqreturn_t ret;
2451 
2452 	if (!intel_irqs_enabled(dev_priv))
2453 		return IRQ_NONE;
2454 
2455 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2456 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2457 	if (!master_ctl)
2458 		return IRQ_NONE;
2459 
2460 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2461 
2462 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2463 	disable_rpm_wakeref_asserts(dev_priv);
2464 
2465 	/* Find, clear, then process each source of interrupt */
2466 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2467 	gen8_gt_irq_handler(dev_priv, gt_iir);
2468 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2469 
2470 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2471 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2472 
2473 	enable_rpm_wakeref_asserts(dev_priv);
2474 
2475 	return ret;
2476 }
2477 
2478 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2479 {
2480 	/*
2481 	 * Notify all waiters for GPU completion events that reset state has
2482 	 * been changed, and that they need to restart their wait after
2483 	 * checking for potential errors (and bail out to drop locks if there is
2484 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2485 	 */
2486 
2487 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2488 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2489 
2490 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2491 	wake_up_all(&dev_priv->pending_flip_queue);
2492 }
2493 
2494 /**
2495  * i915_reset_and_wakeup - do process context error handling work
2496  * @dev_priv: i915 device private
2497  *
2498  * Fire an error uevent so userspace can see that a hang or error
2499  * was detected.
2500  */
2501 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2502 {
2503 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2504 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2505 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2506 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2507 
2508 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2509 
2510 	DRM_DEBUG_DRIVER("resetting chip\n");
2511 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2512 
2513 	/*
2514 	 * In most cases it's guaranteed that we get here with an RPM
2515 	 * reference held, for example because there is a pending GPU
2516 	 * request that won't finish until the reset is done. This
2517 	 * isn't the case at least when we get here by doing a
2518 	 * simulated reset via debugs, so get an RPM reference.
2519 	 */
2520 	intel_runtime_pm_get(dev_priv);
2521 	intel_prepare_reset(dev_priv);
2522 
2523 	do {
2524 		/*
2525 		 * All state reset _must_ be completed before we update the
2526 		 * reset counter, for otherwise waiters might miss the reset
2527 		 * pending state and not properly drop locks, resulting in
2528 		 * deadlocks with the reset work.
2529 		 */
2530 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2531 			i915_reset(dev_priv);
2532 			mutex_unlock(&dev_priv->drm.struct_mutex);
2533 		}
2534 
2535 		/* We need to wait for anyone holding the lock to wakeup */
2536 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2537 				     I915_RESET_IN_PROGRESS,
2538 				     TASK_UNINTERRUPTIBLE,
2539 				     HZ));
2540 
2541 	intel_finish_reset(dev_priv);
2542 	intel_runtime_pm_put(dev_priv);
2543 
2544 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2545 		kobject_uevent_env(kobj,
2546 				   KOBJ_CHANGE, reset_done_event);
2547 
2548 	/*
2549 	 * Note: The wake_up also serves as a memory barrier so that
2550 	 * waiters see the updated value of the dev_priv->gpu_error.
2551 	 */
2552 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2553 }
2554 
2555 static inline void
2556 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2557 			struct intel_instdone *instdone)
2558 {
2559 	int slice;
2560 	int subslice;
2561 
2562 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2563 
2564 	if (INTEL_GEN(dev_priv) <= 3)
2565 		return;
2566 
2567 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2568 
2569 	if (INTEL_GEN(dev_priv) <= 6)
2570 		return;
2571 
2572 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2573 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2574 		       slice, subslice, instdone->sampler[slice][subslice]);
2575 
2576 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2577 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2578 		       slice, subslice, instdone->row[slice][subslice]);
2579 }
2580 
2581 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2582 {
2583 	u32 eir;
2584 
2585 	if (!IS_GEN2(dev_priv))
2586 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2587 
2588 	if (INTEL_GEN(dev_priv) < 4)
2589 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2590 	else
2591 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2592 
2593 	I915_WRITE(EIR, I915_READ(EIR));
2594 	eir = I915_READ(EIR);
2595 	if (eir) {
2596 		/*
2597 		 * some errors might have become stuck,
2598 		 * mask them.
2599 		 */
2600 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2601 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2602 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2603 	}
2604 }
2605 
2606 /**
2607  * i915_handle_error - handle a gpu error
2608  * @dev_priv: i915 device private
2609  * @engine_mask: mask representing engines that are hung
2610  * Do some basic checking of register state at error time and
2611  * dump it to the syslog.  Also call i915_capture_error_state() to make
2612  * sure we get a record and make it available in debugfs.  Fire a uevent
2613  * so userspace knows something bad happened (should trigger collection
2614  * of a ring dump etc.).
2615  * @fmt: Error message format string
2616  */
2617 void i915_handle_error(struct drm_i915_private *dev_priv,
2618 		       u32 engine_mask,
2619 		       const char *fmt, ...)
2620 {
2621 	va_list args;
2622 	char error_msg[80];
2623 
2624 	va_start(args, fmt);
2625 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2626 	va_end(args);
2627 
2628 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2629 	i915_clear_error_registers(dev_priv);
2630 
2631 	if (!engine_mask)
2632 		return;
2633 
2634 	if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2635 			     &dev_priv->gpu_error.flags))
2636 		return;
2637 
2638 	/*
2639 	 * Wakeup waiting processes so that the reset function
2640 	 * i915_reset_and_wakeup doesn't deadlock trying to grab
2641 	 * various locks. By bumping the reset counter first, the woken
2642 	 * processes will see a reset in progress and back off,
2643 	 * releasing their locks and then wait for the reset completion.
2644 	 * We must do this for _all_ gpu waiters that might hold locks
2645 	 * that the reset work needs to acquire.
2646 	 *
2647 	 * Note: The wake_up also provides a memory barrier to ensure that the
2648 	 * waiters see the updated value of the reset flags.
2649 	 */
2650 	i915_error_wake_up(dev_priv);
2651 
2652 	i915_reset_and_wakeup(dev_priv);
2653 }
2654 
2655 /* Called from drm generic code, passed 'crtc' which
2656  * we use as a pipe index
2657  */
2658 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2659 {
2660 	struct drm_i915_private *dev_priv = to_i915(dev);
2661 	unsigned long irqflags;
2662 
2663 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2664 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2665 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2666 
2667 	return 0;
2668 }
2669 
2670 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2671 {
2672 	struct drm_i915_private *dev_priv = to_i915(dev);
2673 	unsigned long irqflags;
2674 
2675 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2676 	i915_enable_pipestat(dev_priv, pipe,
2677 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2678 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2679 
2680 	return 0;
2681 }
2682 
2683 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2684 {
2685 	struct drm_i915_private *dev_priv = to_i915(dev);
2686 	unsigned long irqflags;
2687 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2688 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2689 
2690 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2691 	ilk_enable_display_irq(dev_priv, bit);
2692 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2693 
2694 	return 0;
2695 }
2696 
2697 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2698 {
2699 	struct drm_i915_private *dev_priv = to_i915(dev);
2700 	unsigned long irqflags;
2701 
2702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2704 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2705 
2706 	return 0;
2707 }
2708 
2709 /* Called from drm generic code, passed 'crtc' which
2710  * we use as a pipe index
2711  */
2712 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2713 {
2714 	struct drm_i915_private *dev_priv = to_i915(dev);
2715 	unsigned long irqflags;
2716 
2717 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2719 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2720 }
2721 
2722 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2723 {
2724 	struct drm_i915_private *dev_priv = to_i915(dev);
2725 	unsigned long irqflags;
2726 
2727 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728 	i915_disable_pipestat(dev_priv, pipe,
2729 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2730 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731 }
2732 
2733 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735 	struct drm_i915_private *dev_priv = to_i915(dev);
2736 	unsigned long irqflags;
2737 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2738 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2739 
2740 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2741 	ilk_disable_display_irq(dev_priv, bit);
2742 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743 }
2744 
2745 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2746 {
2747 	struct drm_i915_private *dev_priv = to_i915(dev);
2748 	unsigned long irqflags;
2749 
2750 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2751 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2752 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2753 }
2754 
2755 static bool
2756 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2757 {
2758 	if (INTEL_GEN(engine->i915) >= 8) {
2759 		return (ipehr >> 23) == 0x1c;
2760 	} else {
2761 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2762 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2763 				 MI_SEMAPHORE_REGISTER);
2764 	}
2765 }
2766 
2767 static struct intel_engine_cs *
2768 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2769 				 u64 offset)
2770 {
2771 	struct drm_i915_private *dev_priv = engine->i915;
2772 	struct intel_engine_cs *signaller;
2773 	enum intel_engine_id id;
2774 
2775 	if (INTEL_GEN(dev_priv) >= 8) {
2776 		for_each_engine(signaller, dev_priv, id) {
2777 			if (engine == signaller)
2778 				continue;
2779 
2780 			if (offset == signaller->semaphore.signal_ggtt[engine->hw_id])
2781 				return signaller;
2782 		}
2783 	} else {
2784 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2785 
2786 		for_each_engine(signaller, dev_priv, id) {
2787 			if(engine == signaller)
2788 				continue;
2789 
2790 			if (sync_bits == signaller->semaphore.mbox.wait[engine->hw_id])
2791 				return signaller;
2792 		}
2793 	}
2794 
2795 	DRM_DEBUG_DRIVER("No signaller ring found for %s, ipehr 0x%08x, offset 0x%016llx\n",
2796 			 engine->name, ipehr, offset);
2797 
2798 	return ERR_PTR(-ENODEV);
2799 }
2800 
2801 static struct intel_engine_cs *
2802 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2803 {
2804 	struct drm_i915_private *dev_priv = engine->i915;
2805 	void __iomem *vaddr;
2806 	u32 cmd, ipehr, head;
2807 	u64 offset = 0;
2808 	int i, backwards;
2809 
2810 	/*
2811 	 * This function does not support execlist mode - any attempt to
2812 	 * proceed further into this function will result in a kernel panic
2813 	 * when dereferencing ring->buffer, which is not set up in execlist
2814 	 * mode.
2815 	 *
2816 	 * The correct way of doing it would be to derive the currently
2817 	 * executing ring buffer from the current context, which is derived
2818 	 * from the currently running request. Unfortunately, to get the
2819 	 * current request we would have to grab the struct_mutex before doing
2820 	 * anything else, which would be ill-advised since some other thread
2821 	 * might have grabbed it already and managed to hang itself, causing
2822 	 * the hang checker to deadlock.
2823 	 *
2824 	 * Therefore, this function does not support execlist mode in its
2825 	 * current form. Just return NULL and move on.
2826 	 */
2827 	if (engine->buffer == NULL)
2828 		return NULL;
2829 
2830 	ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2831 	if (!ipehr_is_semaphore_wait(engine, ipehr))
2832 		return NULL;
2833 
2834 	/*
2835 	 * HEAD is likely pointing to the dword after the actual command,
2836 	 * so scan backwards until we find the MBOX. But limit it to just 3
2837 	 * or 4 dwords depending on the semaphore wait command size.
2838 	 * Note that we don't care about ACTHD here since that might
2839 	 * point at at batch, and semaphores are always emitted into the
2840 	 * ringbuffer itself.
2841 	 */
2842 	head = I915_READ_HEAD(engine) & HEAD_ADDR;
2843 	backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2844 	vaddr = (void __iomem *)engine->buffer->vaddr;
2845 
2846 	for (i = backwards; i; --i) {
2847 		/*
2848 		 * Be paranoid and presume the hw has gone off into the wild -
2849 		 * our ring is smaller than what the hardware (and hence
2850 		 * HEAD_ADDR) allows. Also handles wrap-around.
2851 		 */
2852 		head &= engine->buffer->size - 1;
2853 
2854 		/* This here seems to blow up */
2855 		cmd = ioread32(vaddr + head);
2856 		if (cmd == ipehr)
2857 			break;
2858 
2859 		head -= 4;
2860 	}
2861 
2862 	if (!i)
2863 		return NULL;
2864 
2865 	*seqno = ioread32(vaddr + head + 4) + 1;
2866 	if (INTEL_GEN(dev_priv) >= 8) {
2867 		offset = ioread32(vaddr + head + 12);
2868 		offset <<= 32;
2869 		offset |= ioread32(vaddr + head + 8);
2870 	}
2871 	return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2872 }
2873 
2874 static int semaphore_passed(struct intel_engine_cs *engine)
2875 {
2876 	struct drm_i915_private *dev_priv = engine->i915;
2877 	struct intel_engine_cs *signaller;
2878 	u32 seqno;
2879 
2880 	engine->hangcheck.deadlock++;
2881 
2882 	signaller = semaphore_waits_for(engine, &seqno);
2883 	if (signaller == NULL)
2884 		return -1;
2885 
2886 	if (IS_ERR(signaller))
2887 		return 0;
2888 
2889 	/* Prevent pathological recursion due to driver bugs */
2890 	if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2891 		return -1;
2892 
2893 	if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2894 		return 1;
2895 
2896 	/* cursory check for an unkickable deadlock */
2897 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2898 	    semaphore_passed(signaller) < 0)
2899 		return -1;
2900 
2901 	return 0;
2902 }
2903 
2904 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2905 {
2906 	struct intel_engine_cs *engine;
2907 	enum intel_engine_id id;
2908 
2909 	for_each_engine(engine, dev_priv, id)
2910 		engine->hangcheck.deadlock = 0;
2911 }
2912 
2913 static bool instdone_unchanged(u32 current_instdone, u32 *old_instdone)
2914 {
2915 	u32 tmp = current_instdone | *old_instdone;
2916 	bool unchanged;
2917 
2918 	unchanged = tmp == *old_instdone;
2919 	*old_instdone |= tmp;
2920 
2921 	return unchanged;
2922 }
2923 
2924 static bool subunits_stuck(struct intel_engine_cs *engine)
2925 {
2926 	struct drm_i915_private *dev_priv = engine->i915;
2927 	struct intel_instdone instdone;
2928 	struct intel_instdone *accu_instdone = &engine->hangcheck.instdone;
2929 	bool stuck;
2930 	int slice;
2931 	int subslice;
2932 
2933 	if (engine->id != RCS)
2934 		return true;
2935 
2936 	intel_engine_get_instdone(engine, &instdone);
2937 
2938 	/* There might be unstable subunit states even when
2939 	 * actual head is not moving. Filter out the unstable ones by
2940 	 * accumulating the undone -> done transitions and only
2941 	 * consider those as progress.
2942 	 */
2943 	stuck = instdone_unchanged(instdone.instdone,
2944 				   &accu_instdone->instdone);
2945 	stuck &= instdone_unchanged(instdone.slice_common,
2946 				    &accu_instdone->slice_common);
2947 
2948 	for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
2949 		stuck &= instdone_unchanged(instdone.sampler[slice][subslice],
2950 					    &accu_instdone->sampler[slice][subslice]);
2951 		stuck &= instdone_unchanged(instdone.row[slice][subslice],
2952 					    &accu_instdone->row[slice][subslice]);
2953 	}
2954 
2955 	return stuck;
2956 }
2957 
2958 static enum intel_engine_hangcheck_action
2959 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2960 {
2961 	if (acthd != engine->hangcheck.acthd) {
2962 
2963 		/* Clear subunit states on head movement */
2964 		memset(&engine->hangcheck.instdone, 0,
2965 		       sizeof(engine->hangcheck.instdone));
2966 
2967 		return HANGCHECK_ACTIVE;
2968 	}
2969 
2970 	if (!subunits_stuck(engine))
2971 		return HANGCHECK_ACTIVE;
2972 
2973 	return HANGCHECK_HUNG;
2974 }
2975 
2976 static enum intel_engine_hangcheck_action
2977 engine_stuck(struct intel_engine_cs *engine, u64 acthd)
2978 {
2979 	struct drm_i915_private *dev_priv = engine->i915;
2980 	enum intel_engine_hangcheck_action ha;
2981 	u32 tmp;
2982 
2983 	ha = head_stuck(engine, acthd);
2984 	if (ha != HANGCHECK_HUNG)
2985 		return ha;
2986 
2987 	if (IS_GEN2(dev_priv))
2988 		return HANGCHECK_HUNG;
2989 
2990 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2991 	 * If so we can simply poke the RB_WAIT bit
2992 	 * and break the hang. This should work on
2993 	 * all but the second generation chipsets.
2994 	 */
2995 	tmp = I915_READ_CTL(engine);
2996 	if (tmp & RING_WAIT) {
2997 		i915_handle_error(dev_priv, 0,
2998 				  "Kicking stuck wait on %s",
2999 				  engine->name);
3000 		I915_WRITE_CTL(engine, tmp);
3001 		return HANGCHECK_KICK;
3002 	}
3003 
3004 	if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3005 		switch (semaphore_passed(engine)) {
3006 		default:
3007 			return HANGCHECK_HUNG;
3008 		case 1:
3009 			i915_handle_error(dev_priv, 0,
3010 					  "Kicking stuck semaphore on %s",
3011 					  engine->name);
3012 			I915_WRITE_CTL(engine, tmp);
3013 			return HANGCHECK_KICK;
3014 		case 0:
3015 			return HANGCHECK_WAIT;
3016 		}
3017 	}
3018 
3019 	return HANGCHECK_HUNG;
3020 }
3021 
3022 /*
3023  * This is called when the chip hasn't reported back with completed
3024  * batchbuffers in a long time. We keep track per ring seqno progress and
3025  * if there are no progress, hangcheck score for that ring is increased.
3026  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3027  * we kick the ring. If we see no progress on three subsequent calls
3028  * we assume chip is wedged and try to fix it by resetting the chip.
3029  */
3030 static void i915_hangcheck_elapsed(struct work_struct *work)
3031 {
3032 	struct drm_i915_private *dev_priv =
3033 		container_of(work, typeof(*dev_priv),
3034 			     gpu_error.hangcheck_work.work);
3035 	struct intel_engine_cs *engine;
3036 	enum intel_engine_id id;
3037 	unsigned int hung = 0, stuck = 0;
3038 	int busy_count = 0;
3039 #define BUSY 1
3040 #define KICK 5
3041 #define HUNG 20
3042 #define ACTIVE_DECAY 15
3043 
3044 	if (!i915.enable_hangcheck)
3045 		return;
3046 
3047 	if (!READ_ONCE(dev_priv->gt.awake))
3048 		return;
3049 
3050 	/* As enabling the GPU requires fairly extensive mmio access,
3051 	 * periodically arm the mmio checker to see if we are triggering
3052 	 * any invalid access.
3053 	 */
3054 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3055 
3056 	for_each_engine(engine, dev_priv, id) {
3057 		bool busy = intel_engine_has_waiter(engine);
3058 		u64 acthd;
3059 		u32 seqno;
3060 		u32 submit;
3061 
3062 		semaphore_clear_deadlocks(dev_priv);
3063 
3064 		/* We don't strictly need an irq-barrier here, as we are not
3065 		 * serving an interrupt request, be paranoid in case the
3066 		 * barrier has side-effects (such as preventing a broken
3067 		 * cacheline snoop) and so be sure that we can see the seqno
3068 		 * advance. If the seqno should stick, due to a stale
3069 		 * cacheline, we would erroneously declare the GPU hung.
3070 		 */
3071 		if (engine->irq_seqno_barrier)
3072 			engine->irq_seqno_barrier(engine);
3073 
3074 		acthd = intel_engine_get_active_head(engine);
3075 		seqno = intel_engine_get_seqno(engine);
3076 		submit = READ_ONCE(engine->last_submitted_seqno);
3077 
3078 		if (engine->hangcheck.seqno == seqno) {
3079 			if (i915_seqno_passed(seqno, submit)) {
3080 				engine->hangcheck.action = HANGCHECK_IDLE;
3081 			} else {
3082 				/* We always increment the hangcheck score
3083 				 * if the engine is busy and still processing
3084 				 * the same request, so that no single request
3085 				 * can run indefinitely (such as a chain of
3086 				 * batches). The only time we do not increment
3087 				 * the hangcheck score on this ring, if this
3088 				 * engine is in a legitimate wait for another
3089 				 * engine. In that case the waiting engine is a
3090 				 * victim and we want to be sure we catch the
3091 				 * right culprit. Then every time we do kick
3092 				 * the ring, add a small increment to the
3093 				 * score so that we can catch a batch that is
3094 				 * being repeatedly kicked and so responsible
3095 				 * for stalling the machine.
3096 				 */
3097 				engine->hangcheck.action =
3098 					engine_stuck(engine, acthd);
3099 
3100 				switch (engine->hangcheck.action) {
3101 				case HANGCHECK_IDLE:
3102 				case HANGCHECK_WAIT:
3103 					break;
3104 				case HANGCHECK_ACTIVE:
3105 					engine->hangcheck.score += BUSY;
3106 					break;
3107 				case HANGCHECK_KICK:
3108 					engine->hangcheck.score += KICK;
3109 					break;
3110 				case HANGCHECK_HUNG:
3111 					engine->hangcheck.score += HUNG;
3112 					break;
3113 				}
3114 			}
3115 
3116 			if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3117 				hung |= intel_engine_flag(engine);
3118 				if (engine->hangcheck.action != HANGCHECK_HUNG)
3119 					stuck |= intel_engine_flag(engine);
3120 			}
3121 		} else {
3122 			engine->hangcheck.action = HANGCHECK_ACTIVE;
3123 
3124 			/* Gradually reduce the count so that we catch DoS
3125 			 * attempts across multiple batches.
3126 			 */
3127 			if (engine->hangcheck.score > 0)
3128 				engine->hangcheck.score -= ACTIVE_DECAY;
3129 			if (engine->hangcheck.score < 0)
3130 				engine->hangcheck.score = 0;
3131 
3132 			/* Clear head and subunit states on seqno movement */
3133 			acthd = 0;
3134 
3135 			memset(&engine->hangcheck.instdone, 0,
3136 			       sizeof(engine->hangcheck.instdone));
3137 		}
3138 
3139 		engine->hangcheck.seqno = seqno;
3140 		engine->hangcheck.acthd = acthd;
3141 		busy_count += busy;
3142 	}
3143 
3144 	if (hung) {
3145 		char msg[80];
3146 		unsigned int tmp;
3147 		int len;
3148 
3149 		/* If some rings hung but others were still busy, only
3150 		 * blame the hanging rings in the synopsis.
3151 		 */
3152 		if (stuck != hung)
3153 			hung &= ~stuck;
3154 		len = scnprintf(msg, sizeof(msg),
3155 				"%s on ", stuck == hung ? "No progress" : "Hang");
3156 		for_each_engine_masked(engine, dev_priv, hung, tmp)
3157 			len += scnprintf(msg + len, sizeof(msg) - len,
3158 					 "%s, ", engine->name);
3159 		msg[len-2] = '\0';
3160 
3161 		return i915_handle_error(dev_priv, hung, msg);
3162 	}
3163 
3164 	/* Reset timer in case GPU hangs without another request being added */
3165 	if (busy_count)
3166 		i915_queue_hangcheck(dev_priv);
3167 }
3168 
3169 static void ibx_irq_reset(struct drm_device *dev)
3170 {
3171 	struct drm_i915_private *dev_priv = to_i915(dev);
3172 
3173 	if (HAS_PCH_NOP(dev_priv))
3174 		return;
3175 
3176 	GEN5_IRQ_RESET(SDE);
3177 
3178 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3179 		I915_WRITE(SERR_INT, 0xffffffff);
3180 }
3181 
3182 /*
3183  * SDEIER is also touched by the interrupt handler to work around missed PCH
3184  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3185  * instead we unconditionally enable all PCH interrupt sources here, but then
3186  * only unmask them as needed with SDEIMR.
3187  *
3188  * This function needs to be called before interrupts are enabled.
3189  */
3190 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3191 {
3192 	struct drm_i915_private *dev_priv = to_i915(dev);
3193 
3194 	if (HAS_PCH_NOP(dev_priv))
3195 		return;
3196 
3197 	WARN_ON(I915_READ(SDEIER) != 0);
3198 	I915_WRITE(SDEIER, 0xffffffff);
3199 	POSTING_READ(SDEIER);
3200 }
3201 
3202 static void gen5_gt_irq_reset(struct drm_device *dev)
3203 {
3204 	struct drm_i915_private *dev_priv = to_i915(dev);
3205 
3206 	GEN5_IRQ_RESET(GT);
3207 	if (INTEL_INFO(dev)->gen >= 6)
3208 		GEN5_IRQ_RESET(GEN6_PM);
3209 }
3210 
3211 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3212 {
3213 	enum pipe pipe;
3214 
3215 	if (IS_CHERRYVIEW(dev_priv))
3216 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3217 	else
3218 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3219 
3220 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3221 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3222 
3223 	for_each_pipe(dev_priv, pipe) {
3224 		I915_WRITE(PIPESTAT(pipe),
3225 			   PIPE_FIFO_UNDERRUN_STATUS |
3226 			   PIPESTAT_INT_STATUS_MASK);
3227 		dev_priv->pipestat_irq_mask[pipe] = 0;
3228 	}
3229 
3230 	GEN5_IRQ_RESET(VLV_);
3231 	dev_priv->irq_mask = ~0;
3232 }
3233 
3234 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3235 {
3236 	u32 pipestat_mask;
3237 	u32 enable_mask;
3238 	enum pipe pipe;
3239 
3240 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3241 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3242 
3243 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3244 	for_each_pipe(dev_priv, pipe)
3245 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3246 
3247 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3248 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3249 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3250 	if (IS_CHERRYVIEW(dev_priv))
3251 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3252 
3253 	WARN_ON(dev_priv->irq_mask != ~0);
3254 
3255 	dev_priv->irq_mask = ~enable_mask;
3256 
3257 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3258 }
3259 
3260 /* drm_dma.h hooks
3261 */
3262 static void ironlake_irq_reset(struct drm_device *dev)
3263 {
3264 	struct drm_i915_private *dev_priv = to_i915(dev);
3265 
3266 	I915_WRITE(HWSTAM, 0xffffffff);
3267 
3268 	GEN5_IRQ_RESET(DE);
3269 	if (IS_GEN7(dev_priv))
3270 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3271 
3272 	gen5_gt_irq_reset(dev);
3273 
3274 	ibx_irq_reset(dev);
3275 }
3276 
3277 static void valleyview_irq_preinstall(struct drm_device *dev)
3278 {
3279 	struct drm_i915_private *dev_priv = to_i915(dev);
3280 
3281 	I915_WRITE(VLV_MASTER_IER, 0);
3282 	POSTING_READ(VLV_MASTER_IER);
3283 
3284 	gen5_gt_irq_reset(dev);
3285 
3286 	spin_lock_irq(&dev_priv->irq_lock);
3287 	if (dev_priv->display_irqs_enabled)
3288 		vlv_display_irq_reset(dev_priv);
3289 	spin_unlock_irq(&dev_priv->irq_lock);
3290 }
3291 
3292 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3293 {
3294 	GEN8_IRQ_RESET_NDX(GT, 0);
3295 	GEN8_IRQ_RESET_NDX(GT, 1);
3296 	GEN8_IRQ_RESET_NDX(GT, 2);
3297 	GEN8_IRQ_RESET_NDX(GT, 3);
3298 }
3299 
3300 static void gen8_irq_reset(struct drm_device *dev)
3301 {
3302 	struct drm_i915_private *dev_priv = to_i915(dev);
3303 	int pipe;
3304 
3305 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3306 	POSTING_READ(GEN8_MASTER_IRQ);
3307 
3308 	gen8_gt_irq_reset(dev_priv);
3309 
3310 	for_each_pipe(dev_priv, pipe)
3311 		if (intel_display_power_is_enabled(dev_priv,
3312 						   POWER_DOMAIN_PIPE(pipe)))
3313 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3314 
3315 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3316 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3317 	GEN5_IRQ_RESET(GEN8_PCU_);
3318 
3319 	if (HAS_PCH_SPLIT(dev_priv))
3320 		ibx_irq_reset(dev);
3321 }
3322 
3323 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3324 				     unsigned int pipe_mask)
3325 {
3326 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3327 	enum pipe pipe;
3328 
3329 	spin_lock_irq(&dev_priv->irq_lock);
3330 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3331 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3332 				  dev_priv->de_irq_mask[pipe],
3333 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3334 	spin_unlock_irq(&dev_priv->irq_lock);
3335 }
3336 
3337 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3338 				     unsigned int pipe_mask)
3339 {
3340 	enum pipe pipe;
3341 
3342 	spin_lock_irq(&dev_priv->irq_lock);
3343 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3344 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3345 	spin_unlock_irq(&dev_priv->irq_lock);
3346 
3347 	/* make sure we're done processing display irqs */
3348 	synchronize_irq(dev_priv->drm.irq);
3349 }
3350 
3351 static void cherryview_irq_preinstall(struct drm_device *dev)
3352 {
3353 	struct drm_i915_private *dev_priv = to_i915(dev);
3354 
3355 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3356 	POSTING_READ(GEN8_MASTER_IRQ);
3357 
3358 	gen8_gt_irq_reset(dev_priv);
3359 
3360 	GEN5_IRQ_RESET(GEN8_PCU_);
3361 
3362 	spin_lock_irq(&dev_priv->irq_lock);
3363 	if (dev_priv->display_irqs_enabled)
3364 		vlv_display_irq_reset(dev_priv);
3365 	spin_unlock_irq(&dev_priv->irq_lock);
3366 }
3367 
3368 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3369 				  const u32 hpd[HPD_NUM_PINS])
3370 {
3371 	struct intel_encoder *encoder;
3372 	u32 enabled_irqs = 0;
3373 
3374 	for_each_intel_encoder(&dev_priv->drm, encoder)
3375 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3376 			enabled_irqs |= hpd[encoder->hpd_pin];
3377 
3378 	return enabled_irqs;
3379 }
3380 
3381 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3382 {
3383 	u32 hotplug_irqs, hotplug, enabled_irqs;
3384 
3385 	if (HAS_PCH_IBX(dev_priv)) {
3386 		hotplug_irqs = SDE_HOTPLUG_MASK;
3387 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3388 	} else {
3389 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3390 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3391 	}
3392 
3393 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3394 
3395 	/*
3396 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3397 	 * duration to 2ms (which is the minimum in the Display Port spec).
3398 	 * The pulse duration bits are reserved on LPT+.
3399 	 */
3400 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3401 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3402 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3403 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3404 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3405 	/*
3406 	 * When CPU and PCH are on the same package, port A
3407 	 * HPD must be enabled in both north and south.
3408 	 */
3409 	if (HAS_PCH_LPT_LP(dev_priv))
3410 		hotplug |= PORTA_HOTPLUG_ENABLE;
3411 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3412 }
3413 
3414 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3415 {
3416 	u32 hotplug_irqs, hotplug, enabled_irqs;
3417 
3418 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3419 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3420 
3421 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3422 
3423 	/* Enable digital hotplug on the PCH */
3424 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3425 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3426 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3427 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3428 
3429 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3430 	hotplug |= PORTE_HOTPLUG_ENABLE;
3431 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3432 }
3433 
3434 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435 {
3436 	u32 hotplug_irqs, hotplug, enabled_irqs;
3437 
3438 	if (INTEL_GEN(dev_priv) >= 8) {
3439 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3440 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3441 
3442 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3443 	} else if (INTEL_GEN(dev_priv) >= 7) {
3444 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3445 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3446 
3447 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3448 	} else {
3449 		hotplug_irqs = DE_DP_A_HOTPLUG;
3450 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3451 
3452 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3453 	}
3454 
3455 	/*
3456 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3457 	 * duration to 2ms (which is the minimum in the Display Port spec)
3458 	 * The pulse duration bits are reserved on HSW+.
3459 	 */
3460 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3461 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3462 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3463 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3464 
3465 	ibx_hpd_irq_setup(dev_priv);
3466 }
3467 
3468 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3469 {
3470 	u32 hotplug_irqs, hotplug, enabled_irqs;
3471 
3472 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3473 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3474 
3475 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476 
3477 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3478 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3479 		PORTA_HOTPLUG_ENABLE;
3480 
3481 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3482 		      hotplug, enabled_irqs);
3483 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3484 
3485 	/*
3486 	 * For BXT invert bit has to be set based on AOB design
3487 	 * for HPD detection logic, update it based on VBT fields.
3488 	 */
3489 
3490 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3491 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3492 		hotplug |= BXT_DDIA_HPD_INVERT;
3493 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3494 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3495 		hotplug |= BXT_DDIB_HPD_INVERT;
3496 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3497 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3498 		hotplug |= BXT_DDIC_HPD_INVERT;
3499 
3500 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3501 }
3502 
3503 static void ibx_irq_postinstall(struct drm_device *dev)
3504 {
3505 	struct drm_i915_private *dev_priv = to_i915(dev);
3506 	u32 mask;
3507 
3508 	if (HAS_PCH_NOP(dev_priv))
3509 		return;
3510 
3511 	if (HAS_PCH_IBX(dev_priv))
3512 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3513 	else
3514 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3515 
3516 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3517 	I915_WRITE(SDEIMR, ~mask);
3518 }
3519 
3520 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3521 {
3522 	struct drm_i915_private *dev_priv = to_i915(dev);
3523 	u32 pm_irqs, gt_irqs;
3524 
3525 	pm_irqs = gt_irqs = 0;
3526 
3527 	dev_priv->gt_irq_mask = ~0;
3528 	if (HAS_L3_DPF(dev_priv)) {
3529 		/* L3 parity interrupt is always unmasked. */
3530 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3531 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3532 	}
3533 
3534 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3535 	if (IS_GEN5(dev_priv)) {
3536 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3537 	} else {
3538 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3539 	}
3540 
3541 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3542 
3543 	if (INTEL_INFO(dev)->gen >= 6) {
3544 		/*
3545 		 * RPS interrupts will get enabled/disabled on demand when RPS
3546 		 * itself is enabled/disabled.
3547 		 */
3548 		if (HAS_VEBOX(dev))
3549 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3550 
3551 		dev_priv->pm_irq_mask = 0xffffffff;
3552 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3553 	}
3554 }
3555 
3556 static int ironlake_irq_postinstall(struct drm_device *dev)
3557 {
3558 	struct drm_i915_private *dev_priv = to_i915(dev);
3559 	u32 display_mask, extra_mask;
3560 
3561 	if (INTEL_INFO(dev)->gen >= 7) {
3562 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3563 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3564 				DE_PLANEB_FLIP_DONE_IVB |
3565 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3566 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3567 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3568 			      DE_DP_A_HOTPLUG_IVB);
3569 	} else {
3570 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3571 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3572 				DE_AUX_CHANNEL_A |
3573 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3574 				DE_POISON);
3575 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3576 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3577 			      DE_DP_A_HOTPLUG);
3578 	}
3579 
3580 	dev_priv->irq_mask = ~display_mask;
3581 
3582 	I915_WRITE(HWSTAM, 0xeffe);
3583 
3584 	ibx_irq_pre_postinstall(dev);
3585 
3586 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3587 
3588 	gen5_gt_irq_postinstall(dev);
3589 
3590 	ibx_irq_postinstall(dev);
3591 
3592 	if (IS_IRONLAKE_M(dev_priv)) {
3593 		/* Enable PCU event interrupts
3594 		 *
3595 		 * spinlocking not required here for correctness since interrupt
3596 		 * setup is guaranteed to run in single-threaded context. But we
3597 		 * need it to make the assert_spin_locked happy. */
3598 		spin_lock_irq(&dev_priv->irq_lock);
3599 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3600 		spin_unlock_irq(&dev_priv->irq_lock);
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3607 {
3608 	assert_spin_locked(&dev_priv->irq_lock);
3609 
3610 	if (dev_priv->display_irqs_enabled)
3611 		return;
3612 
3613 	dev_priv->display_irqs_enabled = true;
3614 
3615 	if (intel_irqs_enabled(dev_priv)) {
3616 		vlv_display_irq_reset(dev_priv);
3617 		vlv_display_irq_postinstall(dev_priv);
3618 	}
3619 }
3620 
3621 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3622 {
3623 	assert_spin_locked(&dev_priv->irq_lock);
3624 
3625 	if (!dev_priv->display_irqs_enabled)
3626 		return;
3627 
3628 	dev_priv->display_irqs_enabled = false;
3629 
3630 	if (intel_irqs_enabled(dev_priv))
3631 		vlv_display_irq_reset(dev_priv);
3632 }
3633 
3634 
3635 static int valleyview_irq_postinstall(struct drm_device *dev)
3636 {
3637 	struct drm_i915_private *dev_priv = to_i915(dev);
3638 
3639 	gen5_gt_irq_postinstall(dev);
3640 
3641 	spin_lock_irq(&dev_priv->irq_lock);
3642 	if (dev_priv->display_irqs_enabled)
3643 		vlv_display_irq_postinstall(dev_priv);
3644 	spin_unlock_irq(&dev_priv->irq_lock);
3645 
3646 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3647 	POSTING_READ(VLV_MASTER_IER);
3648 
3649 	return 0;
3650 }
3651 
3652 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3653 {
3654 	/* These are interrupts we'll toggle with the ring mask register */
3655 	uint32_t gt_interrupts[] = {
3656 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3657 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3658 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3659 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3660 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3661 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3662 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3663 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3664 		0,
3665 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3666 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3667 		};
3668 
3669 	if (HAS_L3_DPF(dev_priv))
3670 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3671 
3672 	dev_priv->pm_irq_mask = 0xffffffff;
3673 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3674 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3675 	/*
3676 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3677 	 * is enabled/disabled.
3678 	 */
3679 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3680 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3681 }
3682 
3683 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3684 {
3685 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3686 	uint32_t de_pipe_enables;
3687 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3688 	u32 de_port_enables;
3689 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3690 	enum pipe pipe;
3691 
3692 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3693 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3694 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3695 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3696 				  GEN9_AUX_CHANNEL_D;
3697 		if (IS_BROXTON(dev_priv))
3698 			de_port_masked |= BXT_DE_PORT_GMBUS;
3699 	} else {
3700 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3701 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3702 	}
3703 
3704 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3705 					   GEN8_PIPE_FIFO_UNDERRUN;
3706 
3707 	de_port_enables = de_port_masked;
3708 	if (IS_BROXTON(dev_priv))
3709 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3710 	else if (IS_BROADWELL(dev_priv))
3711 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3712 
3713 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3714 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3715 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3716 
3717 	for_each_pipe(dev_priv, pipe)
3718 		if (intel_display_power_is_enabled(dev_priv,
3719 				POWER_DOMAIN_PIPE(pipe)))
3720 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3721 					  dev_priv->de_irq_mask[pipe],
3722 					  de_pipe_enables);
3723 
3724 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3725 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3726 }
3727 
3728 static int gen8_irq_postinstall(struct drm_device *dev)
3729 {
3730 	struct drm_i915_private *dev_priv = to_i915(dev);
3731 
3732 	if (HAS_PCH_SPLIT(dev_priv))
3733 		ibx_irq_pre_postinstall(dev);
3734 
3735 	gen8_gt_irq_postinstall(dev_priv);
3736 	gen8_de_irq_postinstall(dev_priv);
3737 
3738 	if (HAS_PCH_SPLIT(dev_priv))
3739 		ibx_irq_postinstall(dev);
3740 
3741 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3742 	POSTING_READ(GEN8_MASTER_IRQ);
3743 
3744 	return 0;
3745 }
3746 
3747 static int cherryview_irq_postinstall(struct drm_device *dev)
3748 {
3749 	struct drm_i915_private *dev_priv = to_i915(dev);
3750 
3751 	gen8_gt_irq_postinstall(dev_priv);
3752 
3753 	spin_lock_irq(&dev_priv->irq_lock);
3754 	if (dev_priv->display_irqs_enabled)
3755 		vlv_display_irq_postinstall(dev_priv);
3756 	spin_unlock_irq(&dev_priv->irq_lock);
3757 
3758 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3759 	POSTING_READ(GEN8_MASTER_IRQ);
3760 
3761 	return 0;
3762 }
3763 
3764 static void gen8_irq_uninstall(struct drm_device *dev)
3765 {
3766 	struct drm_i915_private *dev_priv = to_i915(dev);
3767 
3768 	if (!dev_priv)
3769 		return;
3770 
3771 	gen8_irq_reset(dev);
3772 }
3773 
3774 static void valleyview_irq_uninstall(struct drm_device *dev)
3775 {
3776 	struct drm_i915_private *dev_priv = to_i915(dev);
3777 
3778 	if (!dev_priv)
3779 		return;
3780 
3781 	I915_WRITE(VLV_MASTER_IER, 0);
3782 	POSTING_READ(VLV_MASTER_IER);
3783 
3784 	gen5_gt_irq_reset(dev);
3785 
3786 	I915_WRITE(HWSTAM, 0xffffffff);
3787 
3788 	spin_lock_irq(&dev_priv->irq_lock);
3789 	if (dev_priv->display_irqs_enabled)
3790 		vlv_display_irq_reset(dev_priv);
3791 	spin_unlock_irq(&dev_priv->irq_lock);
3792 }
3793 
3794 static void cherryview_irq_uninstall(struct drm_device *dev)
3795 {
3796 	struct drm_i915_private *dev_priv = to_i915(dev);
3797 
3798 	if (!dev_priv)
3799 		return;
3800 
3801 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3802 	POSTING_READ(GEN8_MASTER_IRQ);
3803 
3804 	gen8_gt_irq_reset(dev_priv);
3805 
3806 	GEN5_IRQ_RESET(GEN8_PCU_);
3807 
3808 	spin_lock_irq(&dev_priv->irq_lock);
3809 	if (dev_priv->display_irqs_enabled)
3810 		vlv_display_irq_reset(dev_priv);
3811 	spin_unlock_irq(&dev_priv->irq_lock);
3812 }
3813 
3814 static void ironlake_irq_uninstall(struct drm_device *dev)
3815 {
3816 	struct drm_i915_private *dev_priv = to_i915(dev);
3817 
3818 	if (!dev_priv)
3819 		return;
3820 
3821 	ironlake_irq_reset(dev);
3822 }
3823 
3824 static void i8xx_irq_preinstall(struct drm_device * dev)
3825 {
3826 	struct drm_i915_private *dev_priv = to_i915(dev);
3827 	int pipe;
3828 
3829 	for_each_pipe(dev_priv, pipe)
3830 		I915_WRITE(PIPESTAT(pipe), 0);
3831 	I915_WRITE16(IMR, 0xffff);
3832 	I915_WRITE16(IER, 0x0);
3833 	POSTING_READ16(IER);
3834 }
3835 
3836 static int i8xx_irq_postinstall(struct drm_device *dev)
3837 {
3838 	struct drm_i915_private *dev_priv = to_i915(dev);
3839 
3840 	I915_WRITE16(EMR,
3841 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3842 
3843 	/* Unmask the interrupts that we always want on. */
3844 	dev_priv->irq_mask =
3845 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3846 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3847 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3848 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3849 	I915_WRITE16(IMR, dev_priv->irq_mask);
3850 
3851 	I915_WRITE16(IER,
3852 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3853 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3854 		     I915_USER_INTERRUPT);
3855 	POSTING_READ16(IER);
3856 
3857 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3858 	 * just to make the assert_spin_locked check happy. */
3859 	spin_lock_irq(&dev_priv->irq_lock);
3860 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3861 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3862 	spin_unlock_irq(&dev_priv->irq_lock);
3863 
3864 	return 0;
3865 }
3866 
3867 /*
3868  * Returns true when a page flip has completed.
3869  */
3870 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3871 			       int plane, int pipe, u32 iir)
3872 {
3873 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3874 
3875 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3876 		return false;
3877 
3878 	if ((iir & flip_pending) == 0)
3879 		goto check_page_flip;
3880 
3881 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3882 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3883 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3884 	 * the flip is completed (no longer pending). Since this doesn't raise
3885 	 * an interrupt per se, we watch for the change at vblank.
3886 	 */
3887 	if (I915_READ16(ISR) & flip_pending)
3888 		goto check_page_flip;
3889 
3890 	intel_finish_page_flip_cs(dev_priv, pipe);
3891 	return true;
3892 
3893 check_page_flip:
3894 	intel_check_page_flip(dev_priv, pipe);
3895 	return false;
3896 }
3897 
3898 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3899 {
3900 	struct drm_device *dev = arg;
3901 	struct drm_i915_private *dev_priv = to_i915(dev);
3902 	u16 iir, new_iir;
3903 	u32 pipe_stats[2];
3904 	int pipe;
3905 	u16 flip_mask =
3906 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3907 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3908 	irqreturn_t ret;
3909 
3910 	if (!intel_irqs_enabled(dev_priv))
3911 		return IRQ_NONE;
3912 
3913 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3914 	disable_rpm_wakeref_asserts(dev_priv);
3915 
3916 	ret = IRQ_NONE;
3917 	iir = I915_READ16(IIR);
3918 	if (iir == 0)
3919 		goto out;
3920 
3921 	while (iir & ~flip_mask) {
3922 		/* Can't rely on pipestat interrupt bit in iir as it might
3923 		 * have been cleared after the pipestat interrupt was received.
3924 		 * It doesn't set the bit in iir again, but it still produces
3925 		 * interrupts (for non-MSI).
3926 		 */
3927 		spin_lock(&dev_priv->irq_lock);
3928 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3929 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3930 
3931 		for_each_pipe(dev_priv, pipe) {
3932 			i915_reg_t reg = PIPESTAT(pipe);
3933 			pipe_stats[pipe] = I915_READ(reg);
3934 
3935 			/*
3936 			 * Clear the PIPE*STAT regs before the IIR
3937 			 */
3938 			if (pipe_stats[pipe] & 0x8000ffff)
3939 				I915_WRITE(reg, pipe_stats[pipe]);
3940 		}
3941 		spin_unlock(&dev_priv->irq_lock);
3942 
3943 		I915_WRITE16(IIR, iir & ~flip_mask);
3944 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3945 
3946 		if (iir & I915_USER_INTERRUPT)
3947 			notify_ring(dev_priv->engine[RCS]);
3948 
3949 		for_each_pipe(dev_priv, pipe) {
3950 			int plane = pipe;
3951 			if (HAS_FBC(dev_priv))
3952 				plane = !plane;
3953 
3954 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3955 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3956 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3957 
3958 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3959 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3960 
3961 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3962 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3963 								    pipe);
3964 		}
3965 
3966 		iir = new_iir;
3967 	}
3968 	ret = IRQ_HANDLED;
3969 
3970 out:
3971 	enable_rpm_wakeref_asserts(dev_priv);
3972 
3973 	return ret;
3974 }
3975 
3976 static void i8xx_irq_uninstall(struct drm_device * dev)
3977 {
3978 	struct drm_i915_private *dev_priv = to_i915(dev);
3979 	int pipe;
3980 
3981 	for_each_pipe(dev_priv, pipe) {
3982 		/* Clear enable bits; then clear status bits */
3983 		I915_WRITE(PIPESTAT(pipe), 0);
3984 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3985 	}
3986 	I915_WRITE16(IMR, 0xffff);
3987 	I915_WRITE16(IER, 0x0);
3988 	I915_WRITE16(IIR, I915_READ16(IIR));
3989 }
3990 
3991 static void i915_irq_preinstall(struct drm_device * dev)
3992 {
3993 	struct drm_i915_private *dev_priv = to_i915(dev);
3994 	int pipe;
3995 
3996 	if (I915_HAS_HOTPLUG(dev)) {
3997 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3998 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3999 	}
4000 
4001 	I915_WRITE16(HWSTAM, 0xeffe);
4002 	for_each_pipe(dev_priv, pipe)
4003 		I915_WRITE(PIPESTAT(pipe), 0);
4004 	I915_WRITE(IMR, 0xffffffff);
4005 	I915_WRITE(IER, 0x0);
4006 	POSTING_READ(IER);
4007 }
4008 
4009 static int i915_irq_postinstall(struct drm_device *dev)
4010 {
4011 	struct drm_i915_private *dev_priv = to_i915(dev);
4012 	u32 enable_mask;
4013 
4014 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4015 
4016 	/* Unmask the interrupts that we always want on. */
4017 	dev_priv->irq_mask =
4018 		~(I915_ASLE_INTERRUPT |
4019 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4020 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4021 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4022 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4023 
4024 	enable_mask =
4025 		I915_ASLE_INTERRUPT |
4026 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4027 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4028 		I915_USER_INTERRUPT;
4029 
4030 	if (I915_HAS_HOTPLUG(dev)) {
4031 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4032 		POSTING_READ(PORT_HOTPLUG_EN);
4033 
4034 		/* Enable in IER... */
4035 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4036 		/* and unmask in IMR */
4037 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4038 	}
4039 
4040 	I915_WRITE(IMR, dev_priv->irq_mask);
4041 	I915_WRITE(IER, enable_mask);
4042 	POSTING_READ(IER);
4043 
4044 	i915_enable_asle_pipestat(dev_priv);
4045 
4046 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4047 	 * just to make the assert_spin_locked check happy. */
4048 	spin_lock_irq(&dev_priv->irq_lock);
4049 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4050 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4051 	spin_unlock_irq(&dev_priv->irq_lock);
4052 
4053 	return 0;
4054 }
4055 
4056 /*
4057  * Returns true when a page flip has completed.
4058  */
4059 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4060 			       int plane, int pipe, u32 iir)
4061 {
4062 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4063 
4064 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
4065 		return false;
4066 
4067 	if ((iir & flip_pending) == 0)
4068 		goto check_page_flip;
4069 
4070 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4071 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4072 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4073 	 * the flip is completed (no longer pending). Since this doesn't raise
4074 	 * an interrupt per se, we watch for the change at vblank.
4075 	 */
4076 	if (I915_READ(ISR) & flip_pending)
4077 		goto check_page_flip;
4078 
4079 	intel_finish_page_flip_cs(dev_priv, pipe);
4080 	return true;
4081 
4082 check_page_flip:
4083 	intel_check_page_flip(dev_priv, pipe);
4084 	return false;
4085 }
4086 
4087 static irqreturn_t i915_irq_handler(int irq, void *arg)
4088 {
4089 	struct drm_device *dev = arg;
4090 	struct drm_i915_private *dev_priv = to_i915(dev);
4091 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4092 	u32 flip_mask =
4093 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4094 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4095 	int pipe, ret = IRQ_NONE;
4096 
4097 	if (!intel_irqs_enabled(dev_priv))
4098 		return IRQ_NONE;
4099 
4100 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4101 	disable_rpm_wakeref_asserts(dev_priv);
4102 
4103 	iir = I915_READ(IIR);
4104 	do {
4105 		bool irq_received = (iir & ~flip_mask) != 0;
4106 		bool blc_event = false;
4107 
4108 		/* Can't rely on pipestat interrupt bit in iir as it might
4109 		 * have been cleared after the pipestat interrupt was received.
4110 		 * It doesn't set the bit in iir again, but it still produces
4111 		 * interrupts (for non-MSI).
4112 		 */
4113 		spin_lock(&dev_priv->irq_lock);
4114 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4115 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4116 
4117 		for_each_pipe(dev_priv, pipe) {
4118 			i915_reg_t reg = PIPESTAT(pipe);
4119 			pipe_stats[pipe] = I915_READ(reg);
4120 
4121 			/* Clear the PIPE*STAT regs before the IIR */
4122 			if (pipe_stats[pipe] & 0x8000ffff) {
4123 				I915_WRITE(reg, pipe_stats[pipe]);
4124 				irq_received = true;
4125 			}
4126 		}
4127 		spin_unlock(&dev_priv->irq_lock);
4128 
4129 		if (!irq_received)
4130 			break;
4131 
4132 		/* Consume port.  Then clear IIR or we'll miss events */
4133 		if (I915_HAS_HOTPLUG(dev_priv) &&
4134 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
4135 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4136 			if (hotplug_status)
4137 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4138 		}
4139 
4140 		I915_WRITE(IIR, iir & ~flip_mask);
4141 		new_iir = I915_READ(IIR); /* Flush posted writes */
4142 
4143 		if (iir & I915_USER_INTERRUPT)
4144 			notify_ring(dev_priv->engine[RCS]);
4145 
4146 		for_each_pipe(dev_priv, pipe) {
4147 			int plane = pipe;
4148 			if (HAS_FBC(dev_priv))
4149 				plane = !plane;
4150 
4151 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4152 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
4153 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4154 
4155 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4156 				blc_event = true;
4157 
4158 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4159 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4160 
4161 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4162 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4163 								    pipe);
4164 		}
4165 
4166 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4167 			intel_opregion_asle_intr(dev_priv);
4168 
4169 		/* With MSI, interrupts are only generated when iir
4170 		 * transitions from zero to nonzero.  If another bit got
4171 		 * set while we were handling the existing iir bits, then
4172 		 * we would never get another interrupt.
4173 		 *
4174 		 * This is fine on non-MSI as well, as if we hit this path
4175 		 * we avoid exiting the interrupt handler only to generate
4176 		 * another one.
4177 		 *
4178 		 * Note that for MSI this could cause a stray interrupt report
4179 		 * if an interrupt landed in the time between writing IIR and
4180 		 * the posting read.  This should be rare enough to never
4181 		 * trigger the 99% of 100,000 interrupts test for disabling
4182 		 * stray interrupts.
4183 		 */
4184 		ret = IRQ_HANDLED;
4185 		iir = new_iir;
4186 	} while (iir & ~flip_mask);
4187 
4188 	enable_rpm_wakeref_asserts(dev_priv);
4189 
4190 	return ret;
4191 }
4192 
4193 static void i915_irq_uninstall(struct drm_device * dev)
4194 {
4195 	struct drm_i915_private *dev_priv = to_i915(dev);
4196 	int pipe;
4197 
4198 	if (I915_HAS_HOTPLUG(dev)) {
4199 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4200 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4201 	}
4202 
4203 	I915_WRITE16(HWSTAM, 0xffff);
4204 	for_each_pipe(dev_priv, pipe) {
4205 		/* Clear enable bits; then clear status bits */
4206 		I915_WRITE(PIPESTAT(pipe), 0);
4207 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4208 	}
4209 	I915_WRITE(IMR, 0xffffffff);
4210 	I915_WRITE(IER, 0x0);
4211 
4212 	I915_WRITE(IIR, I915_READ(IIR));
4213 }
4214 
4215 static void i965_irq_preinstall(struct drm_device * dev)
4216 {
4217 	struct drm_i915_private *dev_priv = to_i915(dev);
4218 	int pipe;
4219 
4220 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4221 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4222 
4223 	I915_WRITE(HWSTAM, 0xeffe);
4224 	for_each_pipe(dev_priv, pipe)
4225 		I915_WRITE(PIPESTAT(pipe), 0);
4226 	I915_WRITE(IMR, 0xffffffff);
4227 	I915_WRITE(IER, 0x0);
4228 	POSTING_READ(IER);
4229 }
4230 
4231 static int i965_irq_postinstall(struct drm_device *dev)
4232 {
4233 	struct drm_i915_private *dev_priv = to_i915(dev);
4234 	u32 enable_mask;
4235 	u32 error_mask;
4236 
4237 	/* Unmask the interrupts that we always want on. */
4238 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4239 			       I915_DISPLAY_PORT_INTERRUPT |
4240 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4241 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4242 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4243 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4244 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4245 
4246 	enable_mask = ~dev_priv->irq_mask;
4247 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4248 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4249 	enable_mask |= I915_USER_INTERRUPT;
4250 
4251 	if (IS_G4X(dev_priv))
4252 		enable_mask |= I915_BSD_USER_INTERRUPT;
4253 
4254 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4255 	 * just to make the assert_spin_locked check happy. */
4256 	spin_lock_irq(&dev_priv->irq_lock);
4257 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4258 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4259 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4260 	spin_unlock_irq(&dev_priv->irq_lock);
4261 
4262 	/*
4263 	 * Enable some error detection, note the instruction error mask
4264 	 * bit is reserved, so we leave it masked.
4265 	 */
4266 	if (IS_G4X(dev_priv)) {
4267 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4268 			       GM45_ERROR_MEM_PRIV |
4269 			       GM45_ERROR_CP_PRIV |
4270 			       I915_ERROR_MEMORY_REFRESH);
4271 	} else {
4272 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4273 			       I915_ERROR_MEMORY_REFRESH);
4274 	}
4275 	I915_WRITE(EMR, error_mask);
4276 
4277 	I915_WRITE(IMR, dev_priv->irq_mask);
4278 	I915_WRITE(IER, enable_mask);
4279 	POSTING_READ(IER);
4280 
4281 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4282 	POSTING_READ(PORT_HOTPLUG_EN);
4283 
4284 	i915_enable_asle_pipestat(dev_priv);
4285 
4286 	return 0;
4287 }
4288 
4289 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4290 {
4291 	u32 hotplug_en;
4292 
4293 	assert_spin_locked(&dev_priv->irq_lock);
4294 
4295 	/* Note HDMI and DP share hotplug bits */
4296 	/* enable bits are the same for all generations */
4297 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4298 	/* Programming the CRT detection parameters tends
4299 	   to generate a spurious hotplug event about three
4300 	   seconds later.  So just do it once.
4301 	*/
4302 	if (IS_G4X(dev_priv))
4303 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4304 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4305 
4306 	/* Ignore TV since it's buggy */
4307 	i915_hotplug_interrupt_update_locked(dev_priv,
4308 					     HOTPLUG_INT_EN_MASK |
4309 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4310 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4311 					     hotplug_en);
4312 }
4313 
4314 static irqreturn_t i965_irq_handler(int irq, void *arg)
4315 {
4316 	struct drm_device *dev = arg;
4317 	struct drm_i915_private *dev_priv = to_i915(dev);
4318 	u32 iir, new_iir;
4319 	u32 pipe_stats[I915_MAX_PIPES];
4320 	int ret = IRQ_NONE, pipe;
4321 	u32 flip_mask =
4322 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4323 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4324 
4325 	if (!intel_irqs_enabled(dev_priv))
4326 		return IRQ_NONE;
4327 
4328 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4329 	disable_rpm_wakeref_asserts(dev_priv);
4330 
4331 	iir = I915_READ(IIR);
4332 
4333 	for (;;) {
4334 		bool irq_received = (iir & ~flip_mask) != 0;
4335 		bool blc_event = false;
4336 
4337 		/* Can't rely on pipestat interrupt bit in iir as it might
4338 		 * have been cleared after the pipestat interrupt was received.
4339 		 * It doesn't set the bit in iir again, but it still produces
4340 		 * interrupts (for non-MSI).
4341 		 */
4342 		spin_lock(&dev_priv->irq_lock);
4343 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4344 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4345 
4346 		for_each_pipe(dev_priv, pipe) {
4347 			i915_reg_t reg = PIPESTAT(pipe);
4348 			pipe_stats[pipe] = I915_READ(reg);
4349 
4350 			/*
4351 			 * Clear the PIPE*STAT regs before the IIR
4352 			 */
4353 			if (pipe_stats[pipe] & 0x8000ffff) {
4354 				I915_WRITE(reg, pipe_stats[pipe]);
4355 				irq_received = true;
4356 			}
4357 		}
4358 		spin_unlock(&dev_priv->irq_lock);
4359 
4360 		if (!irq_received)
4361 			break;
4362 
4363 		ret = IRQ_HANDLED;
4364 
4365 		/* Consume port.  Then clear IIR or we'll miss events */
4366 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4367 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4368 			if (hotplug_status)
4369 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4370 		}
4371 
4372 		I915_WRITE(IIR, iir & ~flip_mask);
4373 		new_iir = I915_READ(IIR); /* Flush posted writes */
4374 
4375 		if (iir & I915_USER_INTERRUPT)
4376 			notify_ring(dev_priv->engine[RCS]);
4377 		if (iir & I915_BSD_USER_INTERRUPT)
4378 			notify_ring(dev_priv->engine[VCS]);
4379 
4380 		for_each_pipe(dev_priv, pipe) {
4381 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4382 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4383 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4384 
4385 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4386 				blc_event = true;
4387 
4388 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4389 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4390 
4391 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4392 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4393 		}
4394 
4395 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4396 			intel_opregion_asle_intr(dev_priv);
4397 
4398 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4399 			gmbus_irq_handler(dev_priv);
4400 
4401 		/* With MSI, interrupts are only generated when iir
4402 		 * transitions from zero to nonzero.  If another bit got
4403 		 * set while we were handling the existing iir bits, then
4404 		 * we would never get another interrupt.
4405 		 *
4406 		 * This is fine on non-MSI as well, as if we hit this path
4407 		 * we avoid exiting the interrupt handler only to generate
4408 		 * another one.
4409 		 *
4410 		 * Note that for MSI this could cause a stray interrupt report
4411 		 * if an interrupt landed in the time between writing IIR and
4412 		 * the posting read.  This should be rare enough to never
4413 		 * trigger the 99% of 100,000 interrupts test for disabling
4414 		 * stray interrupts.
4415 		 */
4416 		iir = new_iir;
4417 	}
4418 
4419 	enable_rpm_wakeref_asserts(dev_priv);
4420 
4421 	return ret;
4422 }
4423 
4424 static void i965_irq_uninstall(struct drm_device * dev)
4425 {
4426 	struct drm_i915_private *dev_priv = to_i915(dev);
4427 	int pipe;
4428 
4429 	if (!dev_priv)
4430 		return;
4431 
4432 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4433 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4434 
4435 	I915_WRITE(HWSTAM, 0xffffffff);
4436 	for_each_pipe(dev_priv, pipe)
4437 		I915_WRITE(PIPESTAT(pipe), 0);
4438 	I915_WRITE(IMR, 0xffffffff);
4439 	I915_WRITE(IER, 0x0);
4440 
4441 	for_each_pipe(dev_priv, pipe)
4442 		I915_WRITE(PIPESTAT(pipe),
4443 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4444 	I915_WRITE(IIR, I915_READ(IIR));
4445 }
4446 
4447 /**
4448  * intel_irq_init - initializes irq support
4449  * @dev_priv: i915 device instance
4450  *
4451  * This function initializes all the irq support including work items, timers
4452  * and all the vtables. It does not setup the interrupt itself though.
4453  */
4454 void intel_irq_init(struct drm_i915_private *dev_priv)
4455 {
4456 	struct drm_device *dev = &dev_priv->drm;
4457 
4458 	intel_hpd_init_work(dev_priv);
4459 
4460 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4461 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4462 
4463 	/* Let's track the enabled rps events */
4464 	if (IS_VALLEYVIEW(dev_priv))
4465 		/* WaGsvRC0ResidencyMethod:vlv */
4466 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4467 	else
4468 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4469 
4470 	dev_priv->rps.pm_intr_keep = 0;
4471 
4472 	/*
4473 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4474 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4475 	 *
4476 	 * TODO: verify if this can be reproduced on VLV,CHV.
4477 	 */
4478 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4479 		dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4480 
4481 	if (INTEL_INFO(dev_priv)->gen >= 8)
4482 		dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4483 
4484 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4485 			  i915_hangcheck_elapsed);
4486 
4487 	if (IS_GEN2(dev_priv)) {
4488 		/* Gen2 doesn't have a hardware frame counter */
4489 		dev->max_vblank_count = 0;
4490 		dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4491 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4492 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4493 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4494 	} else {
4495 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4496 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4497 	}
4498 
4499 	/*
4500 	 * Opt out of the vblank disable timer on everything except gen2.
4501 	 * Gen2 doesn't have a hardware frame counter and so depends on
4502 	 * vblank interrupts to produce sane vblank seuquence numbers.
4503 	 */
4504 	if (!IS_GEN2(dev_priv))
4505 		dev->vblank_disable_immediate = true;
4506 
4507 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4508 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4509 
4510 	if (IS_CHERRYVIEW(dev_priv)) {
4511 		dev->driver->irq_handler = cherryview_irq_handler;
4512 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4513 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4514 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4515 		dev->driver->enable_vblank = i965_enable_vblank;
4516 		dev->driver->disable_vblank = i965_disable_vblank;
4517 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4518 	} else if (IS_VALLEYVIEW(dev_priv)) {
4519 		dev->driver->irq_handler = valleyview_irq_handler;
4520 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4521 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4522 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4523 		dev->driver->enable_vblank = i965_enable_vblank;
4524 		dev->driver->disable_vblank = i965_disable_vblank;
4525 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4526 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4527 		dev->driver->irq_handler = gen8_irq_handler;
4528 		dev->driver->irq_preinstall = gen8_irq_reset;
4529 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4530 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4531 		dev->driver->enable_vblank = gen8_enable_vblank;
4532 		dev->driver->disable_vblank = gen8_disable_vblank;
4533 		if (IS_BROXTON(dev_priv))
4534 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4535 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4536 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4537 		else
4538 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4539 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4540 		dev->driver->irq_handler = ironlake_irq_handler;
4541 		dev->driver->irq_preinstall = ironlake_irq_reset;
4542 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4543 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4544 		dev->driver->enable_vblank = ironlake_enable_vblank;
4545 		dev->driver->disable_vblank = ironlake_disable_vblank;
4546 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4547 	} else {
4548 		if (IS_GEN2(dev_priv)) {
4549 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4550 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4551 			dev->driver->irq_handler = i8xx_irq_handler;
4552 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4553 			dev->driver->enable_vblank = i8xx_enable_vblank;
4554 			dev->driver->disable_vblank = i8xx_disable_vblank;
4555 		} else if (IS_GEN3(dev_priv)) {
4556 			dev->driver->irq_preinstall = i915_irq_preinstall;
4557 			dev->driver->irq_postinstall = i915_irq_postinstall;
4558 			dev->driver->irq_uninstall = i915_irq_uninstall;
4559 			dev->driver->irq_handler = i915_irq_handler;
4560 			dev->driver->enable_vblank = i8xx_enable_vblank;
4561 			dev->driver->disable_vblank = i8xx_disable_vblank;
4562 		} else {
4563 			dev->driver->irq_preinstall = i965_irq_preinstall;
4564 			dev->driver->irq_postinstall = i965_irq_postinstall;
4565 			dev->driver->irq_uninstall = i965_irq_uninstall;
4566 			dev->driver->irq_handler = i965_irq_handler;
4567 			dev->driver->enable_vblank = i965_enable_vblank;
4568 			dev->driver->disable_vblank = i965_disable_vblank;
4569 		}
4570 		if (I915_HAS_HOTPLUG(dev_priv))
4571 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4572 	}
4573 }
4574 
4575 /**
4576  * intel_irq_install - enables the hardware interrupt
4577  * @dev_priv: i915 device instance
4578  *
4579  * This function enables the hardware interrupt handling, but leaves the hotplug
4580  * handling still disabled. It is called after intel_irq_init().
4581  *
4582  * In the driver load and resume code we need working interrupts in a few places
4583  * but don't want to deal with the hassle of concurrent probe and hotplug
4584  * workers. Hence the split into this two-stage approach.
4585  */
4586 int intel_irq_install(struct drm_i915_private *dev_priv)
4587 {
4588 	/*
4589 	 * We enable some interrupt sources in our postinstall hooks, so mark
4590 	 * interrupts as enabled _before_ actually enabling them to avoid
4591 	 * special cases in our ordering checks.
4592 	 */
4593 	dev_priv->pm.irqs_enabled = true;
4594 
4595 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4596 }
4597 
4598 /**
4599  * intel_irq_uninstall - finilizes all irq handling
4600  * @dev_priv: i915 device instance
4601  *
4602  * This stops interrupt and hotplug handling and unregisters and frees all
4603  * resources acquired in the init functions.
4604  */
4605 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4606 {
4607 	drm_irq_uninstall(&dev_priv->drm);
4608 	intel_hpd_cancel_work(dev_priv);
4609 	dev_priv->pm.irqs_enabled = false;
4610 }
4611 
4612 /**
4613  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4614  * @dev_priv: i915 device instance
4615  *
4616  * This function is used to disable interrupts at runtime, both in the runtime
4617  * pm and the system suspend/resume code.
4618  */
4619 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4620 {
4621 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4622 	dev_priv->pm.irqs_enabled = false;
4623 	synchronize_irq(dev_priv->drm.irq);
4624 }
4625 
4626 /**
4627  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4628  * @dev_priv: i915 device instance
4629  *
4630  * This function is used to enable interrupts at runtime, both in the runtime
4631  * pm and the system suspend/resume code.
4632  */
4633 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4634 {
4635 	dev_priv->pm.irqs_enabled = true;
4636 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4637 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4638 }
4639