xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55 
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63 
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72 
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90 
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96 
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 	POSTING_READ(GEN8_##type##_IMR(which)); \
101 	I915_WRITE(GEN8_##type##_IER(which), 0); \
102 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 	POSTING_READ(GEN8_##type##_IIR(which)); \
104 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 	POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107 
108 #define GEN5_IRQ_RESET(type) do { \
109 	I915_WRITE(type##IMR, 0xffffffff); \
110 	POSTING_READ(type##IMR); \
111 	I915_WRITE(type##IER, 0); \
112 	I915_WRITE(type##IIR, 0xffffffff); \
113 	POSTING_READ(type##IIR); \
114 	I915_WRITE(type##IIR, 0xffffffff); \
115 	POSTING_READ(type##IIR); \
116 } while (0)
117 
118 /*
119  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120  */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 	u32 val = I915_READ(reg); \
123 	if (val) { \
124 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 		     (reg), val); \
126 		I915_WRITE((reg), 0xffffffff); \
127 		POSTING_READ(reg); \
128 		I915_WRITE((reg), 0xffffffff); \
129 		POSTING_READ(reg); \
130 	} \
131 } while (0)
132 
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139 
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 	I915_WRITE(type##IER, (ier_val)); \
143 	I915_WRITE(type##IMR, (imr_val)); \
144 	POSTING_READ(type##IMR); \
145 } while (0)
146 
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148 
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 	assert_spin_locked(&dev_priv->irq_lock);
154 
155 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 		return;
157 
158 	if ((dev_priv->irq_mask & mask) != 0) {
159 		dev_priv->irq_mask &= ~mask;
160 		I915_WRITE(DEIMR, dev_priv->irq_mask);
161 		POSTING_READ(DEIMR);
162 	}
163 }
164 
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 	assert_spin_locked(&dev_priv->irq_lock);
169 
170 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 		return;
172 
173 	if ((dev_priv->irq_mask & mask) != mask) {
174 		dev_priv->irq_mask |= mask;
175 		I915_WRITE(DEIMR, dev_priv->irq_mask);
176 		POSTING_READ(DEIMR);
177 	}
178 }
179 
180 /**
181  * ilk_update_gt_irq - update GTIMR
182  * @dev_priv: driver private
183  * @interrupt_mask: mask of interrupt bits to update
184  * @enabled_irq_mask: mask of interrupt bits to enable
185  */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 			      uint32_t interrupt_mask,
188 			      uint32_t enabled_irq_mask)
189 {
190 	assert_spin_locked(&dev_priv->irq_lock);
191 
192 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
193 
194 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 		return;
196 
197 	dev_priv->gt_irq_mask &= ~interrupt_mask;
198 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 	POSTING_READ(GTIMR);
201 }
202 
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 	ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207 
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 	ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212 
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217 
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222 
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227 
228 /**
229   * snb_update_pm_irq - update GEN6_PMIMR
230   * @dev_priv: driver private
231   * @interrupt_mask: mask of interrupt bits to update
232   * @enabled_irq_mask: mask of interrupt bits to enable
233   */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 			      uint32_t interrupt_mask,
236 			      uint32_t enabled_irq_mask)
237 {
238 	uint32_t new_val;
239 
240 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
241 
242 	assert_spin_locked(&dev_priv->irq_lock);
243 
244 	new_val = dev_priv->pm_irq_mask;
245 	new_val &= ~interrupt_mask;
246 	new_val |= (~enabled_irq_mask & interrupt_mask);
247 
248 	if (new_val != dev_priv->pm_irq_mask) {
249 		dev_priv->pm_irq_mask = new_val;
250 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 		POSTING_READ(gen6_pm_imr(dev_priv));
252 	}
253 }
254 
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	snb_update_pm_irq(dev_priv, mask, mask);
261 }
262 
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 				  uint32_t mask)
265 {
266 	snb_update_pm_irq(dev_priv, mask, 0);
267 }
268 
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 		return;
273 
274 	__gen6_disable_pm_irq(dev_priv, mask);
275 }
276 
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 	struct drm_i915_private *dev_priv = dev->dev_private;
280 	uint32_t reg = gen6_pm_iir(dev_priv);
281 
282 	spin_lock_irq(&dev_priv->irq_lock);
283 	I915_WRITE(reg, dev_priv->pm_rps_events);
284 	I915_WRITE(reg, dev_priv->pm_rps_events);
285 	POSTING_READ(reg);
286 	dev_priv->rps.pm_iir = 0;
287 	spin_unlock_irq(&dev_priv->irq_lock);
288 }
289 
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 	struct drm_i915_private *dev_priv = dev->dev_private;
293 
294 	spin_lock_irq(&dev_priv->irq_lock);
295 
296 	WARN_ON(dev_priv->rps.pm_iir);
297 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 	dev_priv->rps.interrupts_enabled = true;
299 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 				dev_priv->pm_rps_events);
301 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302 
303 	spin_unlock_irq(&dev_priv->irq_lock);
304 }
305 
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 	/*
309 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 	 *
312 	 * TODO: verify if this can be reproduced on VLV,CHV.
313 	 */
314 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316 
317 	if (INTEL_INFO(dev_priv)->gen >= 8)
318 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319 
320 	return mask;
321 }
322 
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 	struct drm_i915_private *dev_priv = dev->dev_private;
326 
327 	spin_lock_irq(&dev_priv->irq_lock);
328 	dev_priv->rps.interrupts_enabled = false;
329 	spin_unlock_irq(&dev_priv->irq_lock);
330 
331 	cancel_work_sync(&dev_priv->rps.work);
332 
333 	spin_lock_irq(&dev_priv->irq_lock);
334 
335 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336 
337 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 				~dev_priv->pm_rps_events);
340 
341 	spin_unlock_irq(&dev_priv->irq_lock);
342 
343 	synchronize_irq(dev->irq);
344 }
345 
346 /**
347  * ibx_display_interrupt_update - update SDEIMR
348  * @dev_priv: driver private
349  * @interrupt_mask: mask of interrupt bits to update
350  * @enabled_irq_mask: mask of interrupt bits to enable
351  */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 				  uint32_t interrupt_mask,
354 				  uint32_t enabled_irq_mask)
355 {
356 	uint32_t sdeimr = I915_READ(SDEIMR);
357 	sdeimr &= ~interrupt_mask;
358 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
359 
360 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
361 
362 	assert_spin_locked(&dev_priv->irq_lock);
363 
364 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 		return;
366 
367 	I915_WRITE(SDEIMR, sdeimr);
368 	POSTING_READ(SDEIMR);
369 }
370 
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 		       u32 enable_mask, u32 status_mask)
374 {
375 	u32 reg = PIPESTAT(pipe);
376 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377 
378 	assert_spin_locked(&dev_priv->irq_lock);
379 	WARN_ON(!intel_irqs_enabled(dev_priv));
380 
381 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 		      pipe_name(pipe), enable_mask, status_mask))
385 		return;
386 
387 	if ((pipestat & enable_mask) == enable_mask)
388 		return;
389 
390 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391 
392 	/* Enable the interrupt, clear any pending status */
393 	pipestat |= enable_mask | status_mask;
394 	I915_WRITE(reg, pipestat);
395 	POSTING_READ(reg);
396 }
397 
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 		        u32 enable_mask, u32 status_mask)
401 {
402 	u32 reg = PIPESTAT(pipe);
403 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404 
405 	assert_spin_locked(&dev_priv->irq_lock);
406 	WARN_ON(!intel_irqs_enabled(dev_priv));
407 
408 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 		      pipe_name(pipe), enable_mask, status_mask))
412 		return;
413 
414 	if ((pipestat & enable_mask) == 0)
415 		return;
416 
417 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418 
419 	pipestat &= ~enable_mask;
420 	I915_WRITE(reg, pipestat);
421 	POSTING_READ(reg);
422 }
423 
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 	u32 enable_mask = status_mask << 16;
427 
428 	/*
429 	 * On pipe A we don't support the PSR interrupt yet,
430 	 * on pipe B and C the same bit MBZ.
431 	 */
432 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 		return 0;
434 	/*
435 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 	 * A the same bit is for perf counters which we don't use either.
437 	 */
438 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 		return 0;
440 
441 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448 
449 	return enable_mask;
450 }
451 
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 		     u32 status_mask)
455 {
456 	u32 enable_mask;
457 
458 	if (IS_VALLEYVIEW(dev_priv->dev))
459 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 							   status_mask);
461 	else
462 		enable_mask = status_mask << 16;
463 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465 
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 		      u32 status_mask)
469 {
470 	u32 enable_mask;
471 
472 	if (IS_VALLEYVIEW(dev_priv->dev))
473 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 							   status_mask);
475 	else
476 		enable_mask = status_mask << 16;
477 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479 
480 /**
481  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482  */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 	struct drm_i915_private *dev_priv = dev->dev_private;
486 
487 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 		return;
489 
490 	spin_lock_irq(&dev_priv->irq_lock);
491 
492 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 	if (INTEL_INFO(dev)->gen >= 4)
494 		i915_enable_pipestat(dev_priv, PIPE_A,
495 				     PIPE_LEGACY_BLC_EVENT_STATUS);
496 
497 	spin_unlock_irq(&dev_priv->irq_lock);
498 }
499 
500 /*
501  * This timing diagram depicts the video signal in and
502  * around the vertical blanking period.
503  *
504  * Assumptions about the fictitious mode used in this example:
505  *  vblank_start >= 3
506  *  vsync_start = vblank_start + 1
507  *  vsync_end = vblank_start + 2
508  *  vtotal = vblank_start + 3
509  *
510  *           start of vblank:
511  *           latch double buffered registers
512  *           increment frame counter (ctg+)
513  *           generate start of vblank interrupt (gen4+)
514  *           |
515  *           |          frame start:
516  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
517  *           |          may be shifted forward 1-3 extra lines via PIPECONF
518  *           |          |
519  *           |          |  start of vsync:
520  *           |          |  generate vsync interrupt
521  *           |          |  |
522  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
523  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
524  * ----va---> <-----------------vb--------------------> <--------va-------------
525  *       |          |       <----vs----->                     |
526  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529  *       |          |                                         |
530  *       last visible pixel                                   first visible pixel
531  *                  |                                         increment frame counter (gen3/4)
532  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
533  *
534  * x  = horizontal active
535  * _  = horizontal blanking
536  * hs = horizontal sync
537  * va = vertical active
538  * vb = vertical blanking
539  * vs = vertical sync
540  * vbs = vblank_start (number)
541  *
542  * Summary:
543  * - most events happen at the start of horizontal sync
544  * - frame start happens at the start of horizontal blank, 1-4 lines
545  *   (depending on PIPECONF settings) after the start of vblank
546  * - gen3/4 pixel and frame counter are synchronized with the start
547  *   of horizontal active on the first line of vertical active
548  */
549 
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 	/* Gen2 doesn't have a hardware frame counter */
553 	return 0;
554 }
555 
556 /* Called from drm generic code, passed a 'crtc', which
557  * we use as a pipe index
558  */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 	struct drm_i915_private *dev_priv = dev->dev_private;
562 	unsigned long high_frame;
563 	unsigned long low_frame;
564 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 	struct intel_crtc *intel_crtc =
566 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 	const struct drm_display_mode *mode =
568 		&intel_crtc->config->base.adjusted_mode;
569 
570 	htotal = mode->crtc_htotal;
571 	hsync_start = mode->crtc_hsync_start;
572 	vbl_start = mode->crtc_vblank_start;
573 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
574 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
575 
576 	/* Convert to pixel count */
577 	vbl_start *= htotal;
578 
579 	/* Start of vblank event occurs at start of hsync */
580 	vbl_start -= htotal - hsync_start;
581 
582 	high_frame = PIPEFRAME(pipe);
583 	low_frame = PIPEFRAMEPIXEL(pipe);
584 
585 	/*
586 	 * High & low register fields aren't synchronized, so make sure
587 	 * we get a low value that's stable across two reads of the high
588 	 * register.
589 	 */
590 	do {
591 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 		low   = I915_READ(low_frame);
593 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
594 	} while (high1 != high2);
595 
596 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
597 	pixel = low & PIPE_PIXEL_MASK;
598 	low >>= PIPE_FRAME_LOW_SHIFT;
599 
600 	/*
601 	 * The frame counter increments at beginning of active.
602 	 * Cook up a vblank counter by also checking the pixel
603 	 * counter against vblank start.
604 	 */
605 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
606 }
607 
608 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
609 {
610 	struct drm_i915_private *dev_priv = dev->dev_private;
611 	int reg = PIPE_FRMCOUNT_GM45(pipe);
612 
613 	return I915_READ(reg);
614 }
615 
616 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
617 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
618 
619 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
620 {
621 	struct drm_device *dev = crtc->base.dev;
622 	struct drm_i915_private *dev_priv = dev->dev_private;
623 	const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
624 	enum pipe pipe = crtc->pipe;
625 	int position, vtotal;
626 
627 	vtotal = mode->crtc_vtotal;
628 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629 		vtotal /= 2;
630 
631 	if (IS_GEN2(dev))
632 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
633 	else
634 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
635 
636 	/*
637 	 * See update_scanline_offset() for the details on the
638 	 * scanline_offset adjustment.
639 	 */
640 	return (position + crtc->scanline_offset) % vtotal;
641 }
642 
643 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
644 				    unsigned int flags, int *vpos, int *hpos,
645 				    ktime_t *stime, ktime_t *etime)
646 {
647 	struct drm_i915_private *dev_priv = dev->dev_private;
648 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
649 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650 	const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
651 	int position;
652 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
653 	bool in_vbl = true;
654 	int ret = 0;
655 	unsigned long irqflags;
656 
657 	if (!intel_crtc->active) {
658 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
659 				 "pipe %c\n", pipe_name(pipe));
660 		return 0;
661 	}
662 
663 	htotal = mode->crtc_htotal;
664 	hsync_start = mode->crtc_hsync_start;
665 	vtotal = mode->crtc_vtotal;
666 	vbl_start = mode->crtc_vblank_start;
667 	vbl_end = mode->crtc_vblank_end;
668 
669 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
670 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
671 		vbl_end /= 2;
672 		vtotal /= 2;
673 	}
674 
675 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
676 
677 	/*
678 	 * Lock uncore.lock, as we will do multiple timing critical raw
679 	 * register reads, potentially with preemption disabled, so the
680 	 * following code must not block on uncore.lock.
681 	 */
682 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683 
684 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
685 
686 	/* Get optional system timestamp before query. */
687 	if (stime)
688 		*stime = ktime_get();
689 
690 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
691 		/* No obvious pixelcount register. Only query vertical
692 		 * scanout position from Display scan line register.
693 		 */
694 		position = __intel_get_crtc_scanline(intel_crtc);
695 	} else {
696 		/* Have access to pixelcount since start of frame.
697 		 * We can split this into vertical and horizontal
698 		 * scanout position.
699 		 */
700 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701 
702 		/* convert to pixel counts */
703 		vbl_start *= htotal;
704 		vbl_end *= htotal;
705 		vtotal *= htotal;
706 
707 		/*
708 		 * In interlaced modes, the pixel counter counts all pixels,
709 		 * so one field will have htotal more pixels. In order to avoid
710 		 * the reported position from jumping backwards when the pixel
711 		 * counter is beyond the length of the shorter field, just
712 		 * clamp the position the length of the shorter field. This
713 		 * matches how the scanline counter based position works since
714 		 * the scanline counter doesn't count the two half lines.
715 		 */
716 		if (position >= vtotal)
717 			position = vtotal - 1;
718 
719 		/*
720 		 * Start of vblank interrupt is triggered at start of hsync,
721 		 * just prior to the first active line of vblank. However we
722 		 * consider lines to start at the leading edge of horizontal
723 		 * active. So, should we get here before we've crossed into
724 		 * the horizontal active of the first line in vblank, we would
725 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
726 		 * always add htotal-hsync_start to the current pixel position.
727 		 */
728 		position = (position + htotal - hsync_start) % vtotal;
729 	}
730 
731 	/* Get optional system timestamp after query. */
732 	if (etime)
733 		*etime = ktime_get();
734 
735 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
736 
737 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
738 
739 	in_vbl = position >= vbl_start && position < vbl_end;
740 
741 	/*
742 	 * While in vblank, position will be negative
743 	 * counting up towards 0 at vbl_end. And outside
744 	 * vblank, position will be positive counting
745 	 * up since vbl_end.
746 	 */
747 	if (position >= vbl_start)
748 		position -= vbl_end;
749 	else
750 		position += vtotal - vbl_end;
751 
752 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
753 		*vpos = position;
754 		*hpos = 0;
755 	} else {
756 		*vpos = position / htotal;
757 		*hpos = position - (*vpos * htotal);
758 	}
759 
760 	/* In vblank? */
761 	if (in_vbl)
762 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
763 
764 	return ret;
765 }
766 
767 int intel_get_crtc_scanline(struct intel_crtc *crtc)
768 {
769 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
770 	unsigned long irqflags;
771 	int position;
772 
773 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
774 	position = __intel_get_crtc_scanline(crtc);
775 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776 
777 	return position;
778 }
779 
780 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
781 			      int *max_error,
782 			      struct timeval *vblank_time,
783 			      unsigned flags)
784 {
785 	struct drm_crtc *crtc;
786 
787 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
788 		DRM_ERROR("Invalid crtc %d\n", pipe);
789 		return -EINVAL;
790 	}
791 
792 	/* Get drm_crtc to timestamp: */
793 	crtc = intel_get_crtc_for_pipe(dev, pipe);
794 	if (crtc == NULL) {
795 		DRM_ERROR("Invalid crtc %d\n", pipe);
796 		return -EINVAL;
797 	}
798 
799 	if (!crtc->state->enable) {
800 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
801 		return -EBUSY;
802 	}
803 
804 	/* Helper routine in DRM core does all the work: */
805 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
806 						     vblank_time, flags,
807 						     crtc,
808 						     &to_intel_crtc(crtc)->config->base.adjusted_mode);
809 }
810 
811 static bool intel_hpd_irq_event(struct drm_device *dev,
812 				struct drm_connector *connector)
813 {
814 	enum drm_connector_status old_status;
815 
816 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
817 	old_status = connector->status;
818 
819 	connector->status = connector->funcs->detect(connector, false);
820 	if (old_status == connector->status)
821 		return false;
822 
823 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
824 		      connector->base.id,
825 		      connector->name,
826 		      drm_get_connector_status_name(old_status),
827 		      drm_get_connector_status_name(connector->status));
828 
829 	return true;
830 }
831 
832 static void i915_digport_work_func(struct work_struct *work)
833 {
834 	struct drm_i915_private *dev_priv =
835 		container_of(work, struct drm_i915_private, dig_port_work);
836 	u32 long_port_mask, short_port_mask;
837 	struct intel_digital_port *intel_dig_port;
838 	int i;
839 	u32 old_bits = 0;
840 
841 	spin_lock_irq(&dev_priv->irq_lock);
842 	long_port_mask = dev_priv->long_hpd_port_mask;
843 	dev_priv->long_hpd_port_mask = 0;
844 	short_port_mask = dev_priv->short_hpd_port_mask;
845 	dev_priv->short_hpd_port_mask = 0;
846 	spin_unlock_irq(&dev_priv->irq_lock);
847 
848 	for (i = 0; i < I915_MAX_PORTS; i++) {
849 		bool valid = false;
850 		bool long_hpd = false;
851 		intel_dig_port = dev_priv->hpd_irq_port[i];
852 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
853 			continue;
854 
855 		if (long_port_mask & (1 << i))  {
856 			valid = true;
857 			long_hpd = true;
858 		} else if (short_port_mask & (1 << i))
859 			valid = true;
860 
861 		if (valid) {
862 			enum irqreturn ret;
863 
864 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865 			if (ret == IRQ_NONE) {
866 				/* fall back to old school hpd */
867 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
868 			}
869 		}
870 	}
871 
872 	if (old_bits) {
873 		spin_lock_irq(&dev_priv->irq_lock);
874 		dev_priv->hpd_event_bits |= old_bits;
875 		spin_unlock_irq(&dev_priv->irq_lock);
876 		schedule_work(&dev_priv->hotplug_work);
877 	}
878 }
879 
880 /*
881  * Handle hotplug events outside the interrupt handler proper.
882  */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884 
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887 	struct drm_i915_private *dev_priv =
888 		container_of(work, struct drm_i915_private, hotplug_work);
889 	struct drm_device *dev = dev_priv->dev;
890 	struct drm_mode_config *mode_config = &dev->mode_config;
891 	struct intel_connector *intel_connector;
892 	struct intel_encoder *intel_encoder;
893 	struct drm_connector *connector;
894 	bool hpd_disabled = false;
895 	bool changed = false;
896 	u32 hpd_event_bits;
897 
898 	mutex_lock(&mode_config->mutex);
899 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
900 
901 	spin_lock_irq(&dev_priv->irq_lock);
902 
903 	hpd_event_bits = dev_priv->hpd_event_bits;
904 	dev_priv->hpd_event_bits = 0;
905 	list_for_each_entry(connector, &mode_config->connector_list, head) {
906 		intel_connector = to_intel_connector(connector);
907 		if (!intel_connector->encoder)
908 			continue;
909 		intel_encoder = intel_connector->encoder;
910 		if (intel_encoder->hpd_pin > HPD_NONE &&
911 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
912 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
913 			DRM_INFO("HPD interrupt storm detected on connector %s: "
914 				 "switching from hotplug detection to polling\n",
915 				connector->name);
916 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
917 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
918 				| DRM_CONNECTOR_POLL_DISCONNECT;
919 			hpd_disabled = true;
920 		}
921 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923 				      connector->name, intel_encoder->hpd_pin);
924 		}
925 	}
926 	 /* if there were no outputs to poll, poll was disabled,
927 	  * therefore make sure it's enabled when disabling HPD on
928 	  * some connectors */
929 	if (hpd_disabled) {
930 		drm_kms_helper_poll_enable(dev);
931 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
932 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933 	}
934 
935 	spin_unlock_irq(&dev_priv->irq_lock);
936 
937 	list_for_each_entry(connector, &mode_config->connector_list, head) {
938 		intel_connector = to_intel_connector(connector);
939 		if (!intel_connector->encoder)
940 			continue;
941 		intel_encoder = intel_connector->encoder;
942 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943 			if (intel_encoder->hot_plug)
944 				intel_encoder->hot_plug(intel_encoder);
945 			if (intel_hpd_irq_event(dev, connector))
946 				changed = true;
947 		}
948 	}
949 	mutex_unlock(&mode_config->mutex);
950 
951 	if (changed)
952 		drm_kms_helper_hotplug_event(dev);
953 }
954 
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957 	struct drm_i915_private *dev_priv = dev->dev_private;
958 	u32 busy_up, busy_down, max_avg, min_avg;
959 	u8 new_delay;
960 
961 	spin_lock(&mchdev_lock);
962 
963 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964 
965 	new_delay = dev_priv->ips.cur_delay;
966 
967 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968 	busy_up = I915_READ(RCPREVBSYTUPAVG);
969 	busy_down = I915_READ(RCPREVBSYTDNAVG);
970 	max_avg = I915_READ(RCBMAXAVG);
971 	min_avg = I915_READ(RCBMINAVG);
972 
973 	/* Handle RCS change request from hw */
974 	if (busy_up > max_avg) {
975 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976 			new_delay = dev_priv->ips.cur_delay - 1;
977 		if (new_delay < dev_priv->ips.max_delay)
978 			new_delay = dev_priv->ips.max_delay;
979 	} else if (busy_down < min_avg) {
980 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981 			new_delay = dev_priv->ips.cur_delay + 1;
982 		if (new_delay > dev_priv->ips.min_delay)
983 			new_delay = dev_priv->ips.min_delay;
984 	}
985 
986 	if (ironlake_set_drps(dev, new_delay))
987 		dev_priv->ips.cur_delay = new_delay;
988 
989 	spin_unlock(&mchdev_lock);
990 
991 	return;
992 }
993 
994 static void notify_ring(struct intel_engine_cs *ring)
995 {
996 	if (!intel_ring_initialized(ring))
997 		return;
998 
999 	trace_i915_gem_request_notify(ring);
1000 
1001 	wake_up_all(&ring->irq_queue);
1002 }
1003 
1004 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1005 			struct intel_rps_ei *ei)
1006 {
1007 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1008 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1009 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1010 }
1011 
1012 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1013 			 const struct intel_rps_ei *old,
1014 			 const struct intel_rps_ei *now,
1015 			 int threshold)
1016 {
1017 	u64 time, c0;
1018 
1019 	if (old->cz_clock == 0)
1020 		return false;
1021 
1022 	time = now->cz_clock - old->cz_clock;
1023 	time *= threshold * dev_priv->mem_freq;
1024 
1025 	/* Workload can be split between render + media, e.g. SwapBuffers
1026 	 * being blitted in X after being rendered in mesa. To account for
1027 	 * this we need to combine both engines into our activity counter.
1028 	 */
1029 	c0 = now->render_c0 - old->render_c0;
1030 	c0 += now->media_c0 - old->media_c0;
1031 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1032 
1033 	return c0 >= time;
1034 }
1035 
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041 
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044 	struct intel_rps_ei now;
1045 	u32 events = 0;
1046 
1047 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048 		return 0;
1049 
1050 	vlv_c0_read(dev_priv, &now);
1051 	if (now.cz_clock == 0)
1052 		return 0;
1053 
1054 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055 		if (!vlv_c0_above(dev_priv,
1056 				  &dev_priv->rps.down_ei, &now,
1057 				  dev_priv->rps.down_threshold))
1058 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059 		dev_priv->rps.down_ei = now;
1060 	}
1061 
1062 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063 		if (vlv_c0_above(dev_priv,
1064 				 &dev_priv->rps.up_ei, &now,
1065 				 dev_priv->rps.up_threshold))
1066 			events |= GEN6_PM_RP_UP_THRESHOLD;
1067 		dev_priv->rps.up_ei = now;
1068 	}
1069 
1070 	return events;
1071 }
1072 
1073 static bool any_waiters(struct drm_i915_private *dev_priv)
1074 {
1075 	struct intel_engine_cs *ring;
1076 	int i;
1077 
1078 	for_each_ring(ring, dev_priv, i)
1079 		if (ring->irq_refcount)
1080 			return true;
1081 
1082 	return false;
1083 }
1084 
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087 	struct drm_i915_private *dev_priv =
1088 		container_of(work, struct drm_i915_private, rps.work);
1089 	bool client_boost;
1090 	int new_delay, adj, min, max;
1091 	u32 pm_iir;
1092 
1093 	spin_lock_irq(&dev_priv->irq_lock);
1094 	/* Speed up work cancelation during disabling rps interrupts. */
1095 	if (!dev_priv->rps.interrupts_enabled) {
1096 		spin_unlock_irq(&dev_priv->irq_lock);
1097 		return;
1098 	}
1099 	pm_iir = dev_priv->rps.pm_iir;
1100 	dev_priv->rps.pm_iir = 0;
1101 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1102 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1103 	client_boost = dev_priv->rps.client_boost;
1104 	dev_priv->rps.client_boost = false;
1105 	spin_unlock_irq(&dev_priv->irq_lock);
1106 
1107 	/* Make sure we didn't queue anything we're not going to process. */
1108 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1109 
1110 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1111 		return;
1112 
1113 	mutex_lock(&dev_priv->rps.hw_lock);
1114 
1115 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1116 
1117 	adj = dev_priv->rps.last_adj;
1118 	new_delay = dev_priv->rps.cur_freq;
1119 	min = dev_priv->rps.min_freq_softlimit;
1120 	max = dev_priv->rps.max_freq_softlimit;
1121 
1122 	if (client_boost) {
1123 		new_delay = dev_priv->rps.max_freq_softlimit;
1124 		adj = 0;
1125 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1126 		if (adj > 0)
1127 			adj *= 2;
1128 		else /* CHV needs even encode values */
1129 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1130 		/*
1131 		 * For better performance, jump directly
1132 		 * to RPe if we're below it.
1133 		 */
1134 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1135 			new_delay = dev_priv->rps.efficient_freq;
1136 			adj = 0;
1137 		}
1138 	} else if (any_waiters(dev_priv)) {
1139 		adj = 0;
1140 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1141 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1142 			new_delay = dev_priv->rps.efficient_freq;
1143 		else
1144 			new_delay = dev_priv->rps.min_freq_softlimit;
1145 		adj = 0;
1146 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1147 		if (adj < 0)
1148 			adj *= 2;
1149 		else /* CHV needs even encode values */
1150 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1151 	} else { /* unknown event */
1152 		adj = 0;
1153 	}
1154 
1155 	dev_priv->rps.last_adj = adj;
1156 
1157 	/* sysfs frequency interfaces may have snuck in while servicing the
1158 	 * interrupt
1159 	 */
1160 	new_delay += adj;
1161 	new_delay = clamp_t(int, new_delay, min, max);
1162 
1163 	intel_set_rps(dev_priv->dev, new_delay);
1164 
1165 	mutex_unlock(&dev_priv->rps.hw_lock);
1166 }
1167 
1168 
1169 /**
1170  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1171  * occurred.
1172  * @work: workqueue struct
1173  *
1174  * Doesn't actually do anything except notify userspace. As a consequence of
1175  * this event, userspace should try to remap the bad rows since statistically
1176  * it is likely the same row is more likely to go bad again.
1177  */
1178 static void ivybridge_parity_work(struct work_struct *work)
1179 {
1180 	struct drm_i915_private *dev_priv =
1181 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1182 	u32 error_status, row, bank, subbank;
1183 	char *parity_event[6];
1184 	uint32_t misccpctl;
1185 	uint8_t slice = 0;
1186 
1187 	/* We must turn off DOP level clock gating to access the L3 registers.
1188 	 * In order to prevent a get/put style interface, acquire struct mutex
1189 	 * any time we access those registers.
1190 	 */
1191 	mutex_lock(&dev_priv->dev->struct_mutex);
1192 
1193 	/* If we've screwed up tracking, just let the interrupt fire again */
1194 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1195 		goto out;
1196 
1197 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1198 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1199 	POSTING_READ(GEN7_MISCCPCTL);
1200 
1201 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1202 		u32 reg;
1203 
1204 		slice--;
1205 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1206 			break;
1207 
1208 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1209 
1210 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1211 
1212 		error_status = I915_READ(reg);
1213 		row = GEN7_PARITY_ERROR_ROW(error_status);
1214 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1215 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1216 
1217 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1218 		POSTING_READ(reg);
1219 
1220 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1221 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1222 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1223 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1224 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1225 		parity_event[5] = NULL;
1226 
1227 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1228 				   KOBJ_CHANGE, parity_event);
1229 
1230 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1231 			  slice, row, bank, subbank);
1232 
1233 		kfree(parity_event[4]);
1234 		kfree(parity_event[3]);
1235 		kfree(parity_event[2]);
1236 		kfree(parity_event[1]);
1237 	}
1238 
1239 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1240 
1241 out:
1242 	WARN_ON(dev_priv->l3_parity.which_slice);
1243 	spin_lock_irq(&dev_priv->irq_lock);
1244 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1245 	spin_unlock_irq(&dev_priv->irq_lock);
1246 
1247 	mutex_unlock(&dev_priv->dev->struct_mutex);
1248 }
1249 
1250 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1251 {
1252 	struct drm_i915_private *dev_priv = dev->dev_private;
1253 
1254 	if (!HAS_L3_DPF(dev))
1255 		return;
1256 
1257 	spin_lock(&dev_priv->irq_lock);
1258 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1259 	spin_unlock(&dev_priv->irq_lock);
1260 
1261 	iir &= GT_PARITY_ERROR(dev);
1262 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1263 		dev_priv->l3_parity.which_slice |= 1 << 1;
1264 
1265 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1266 		dev_priv->l3_parity.which_slice |= 1 << 0;
1267 
1268 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1269 }
1270 
1271 static void ilk_gt_irq_handler(struct drm_device *dev,
1272 			       struct drm_i915_private *dev_priv,
1273 			       u32 gt_iir)
1274 {
1275 	if (gt_iir &
1276 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1277 		notify_ring(&dev_priv->ring[RCS]);
1278 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1279 		notify_ring(&dev_priv->ring[VCS]);
1280 }
1281 
1282 static void snb_gt_irq_handler(struct drm_device *dev,
1283 			       struct drm_i915_private *dev_priv,
1284 			       u32 gt_iir)
1285 {
1286 
1287 	if (gt_iir &
1288 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1289 		notify_ring(&dev_priv->ring[RCS]);
1290 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1291 		notify_ring(&dev_priv->ring[VCS]);
1292 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1293 		notify_ring(&dev_priv->ring[BCS]);
1294 
1295 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1296 		      GT_BSD_CS_ERROR_INTERRUPT |
1297 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1298 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1299 
1300 	if (gt_iir & GT_PARITY_ERROR(dev))
1301 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1302 }
1303 
1304 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1305 				       u32 master_ctl)
1306 {
1307 	irqreturn_t ret = IRQ_NONE;
1308 
1309 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1310 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1311 		if (tmp) {
1312 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1313 			ret = IRQ_HANDLED;
1314 
1315 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1316 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1317 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1318 				notify_ring(&dev_priv->ring[RCS]);
1319 
1320 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1321 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1322 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1323 				notify_ring(&dev_priv->ring[BCS]);
1324 		} else
1325 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1326 	}
1327 
1328 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1329 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1330 		if (tmp) {
1331 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1332 			ret = IRQ_HANDLED;
1333 
1334 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1335 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1336 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1337 				notify_ring(&dev_priv->ring[VCS]);
1338 
1339 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1340 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1341 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1342 				notify_ring(&dev_priv->ring[VCS2]);
1343 		} else
1344 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1345 	}
1346 
1347 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1348 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1349 		if (tmp) {
1350 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1351 			ret = IRQ_HANDLED;
1352 
1353 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1354 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1355 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1356 				notify_ring(&dev_priv->ring[VECS]);
1357 		} else
1358 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1359 	}
1360 
1361 	if (master_ctl & GEN8_GT_PM_IRQ) {
1362 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1363 		if (tmp & dev_priv->pm_rps_events) {
1364 			I915_WRITE_FW(GEN8_GT_IIR(2),
1365 				      tmp & dev_priv->pm_rps_events);
1366 			ret = IRQ_HANDLED;
1367 			gen6_rps_irq_handler(dev_priv, tmp);
1368 		} else
1369 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 #define HPD_STORM_DETECT_PERIOD 1000
1376 #define HPD_STORM_THRESHOLD 5
1377 
1378 static int pch_port_to_hotplug_shift(enum port port)
1379 {
1380 	switch (port) {
1381 	case PORT_A:
1382 	case PORT_E:
1383 	default:
1384 		return -1;
1385 	case PORT_B:
1386 		return 0;
1387 	case PORT_C:
1388 		return 8;
1389 	case PORT_D:
1390 		return 16;
1391 	}
1392 }
1393 
1394 static int i915_port_to_hotplug_shift(enum port port)
1395 {
1396 	switch (port) {
1397 	case PORT_A:
1398 	case PORT_E:
1399 	default:
1400 		return -1;
1401 	case PORT_B:
1402 		return 17;
1403 	case PORT_C:
1404 		return 19;
1405 	case PORT_D:
1406 		return 21;
1407 	}
1408 }
1409 
1410 static enum port get_port_from_pin(enum hpd_pin pin)
1411 {
1412 	switch (pin) {
1413 	case HPD_PORT_B:
1414 		return PORT_B;
1415 	case HPD_PORT_C:
1416 		return PORT_C;
1417 	case HPD_PORT_D:
1418 		return PORT_D;
1419 	default:
1420 		return PORT_A; /* no hpd */
1421 	}
1422 }
1423 
1424 static void intel_hpd_irq_handler(struct drm_device *dev,
1425 				  u32 hotplug_trigger,
1426 				  u32 dig_hotplug_reg,
1427 				  const u32 hpd[HPD_NUM_PINS])
1428 {
1429 	struct drm_i915_private *dev_priv = dev->dev_private;
1430 	int i;
1431 	enum port port;
1432 	bool storm_detected = false;
1433 	bool queue_dig = false, queue_hp = false;
1434 	u32 dig_shift;
1435 	u32 dig_port_mask = 0;
1436 
1437 	if (!hotplug_trigger)
1438 		return;
1439 
1440 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1441 			 hotplug_trigger, dig_hotplug_reg);
1442 
1443 	spin_lock(&dev_priv->irq_lock);
1444 	for (i = 1; i < HPD_NUM_PINS; i++) {
1445 		if (!(hpd[i] & hotplug_trigger))
1446 			continue;
1447 
1448 		port = get_port_from_pin(i);
1449 		if (port && dev_priv->hpd_irq_port[port]) {
1450 			bool long_hpd;
1451 
1452 			if (!HAS_GMCH_DISPLAY(dev_priv)) {
1453 				dig_shift = pch_port_to_hotplug_shift(port);
1454 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1455 			} else {
1456 				dig_shift = i915_port_to_hotplug_shift(port);
1457 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1458 			}
1459 
1460 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1461 					 port_name(port),
1462 					 long_hpd ? "long" : "short");
1463 			/* for long HPD pulses we want to have the digital queue happen,
1464 			   but we still want HPD storm detection to function. */
1465 			if (long_hpd) {
1466 				dev_priv->long_hpd_port_mask |= (1 << port);
1467 				dig_port_mask |= hpd[i];
1468 			} else {
1469 				/* for short HPD just trigger the digital queue */
1470 				dev_priv->short_hpd_port_mask |= (1 << port);
1471 				hotplug_trigger &= ~hpd[i];
1472 			}
1473 			queue_dig = true;
1474 		}
1475 	}
1476 
1477 	for (i = 1; i < HPD_NUM_PINS; i++) {
1478 		if (hpd[i] & hotplug_trigger &&
1479 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1480 			/*
1481 			 * On GMCH platforms the interrupt mask bits only
1482 			 * prevent irq generation, not the setting of the
1483 			 * hotplug bits itself. So only WARN about unexpected
1484 			 * interrupts on saner platforms.
1485 			 */
1486 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1487 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1488 				  hotplug_trigger, i, hpd[i]);
1489 
1490 			continue;
1491 		}
1492 
1493 		if (!(hpd[i] & hotplug_trigger) ||
1494 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1495 			continue;
1496 
1497 		if (!(dig_port_mask & hpd[i])) {
1498 			dev_priv->hpd_event_bits |= (1 << i);
1499 			queue_hp = true;
1500 		}
1501 
1502 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1503 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1504 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1505 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1506 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1507 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1508 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1509 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1510 			dev_priv->hpd_event_bits &= ~(1 << i);
1511 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1512 			storm_detected = true;
1513 		} else {
1514 			dev_priv->hpd_stats[i].hpd_cnt++;
1515 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1516 				      dev_priv->hpd_stats[i].hpd_cnt);
1517 		}
1518 	}
1519 
1520 	if (storm_detected)
1521 		dev_priv->display.hpd_irq_setup(dev);
1522 	spin_unlock(&dev_priv->irq_lock);
1523 
1524 	/*
1525 	 * Our hotplug handler can grab modeset locks (by calling down into the
1526 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1527 	 * queue for otherwise the flush_work in the pageflip code will
1528 	 * deadlock.
1529 	 */
1530 	if (queue_dig)
1531 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1532 	if (queue_hp)
1533 		schedule_work(&dev_priv->hotplug_work);
1534 }
1535 
1536 static void gmbus_irq_handler(struct drm_device *dev)
1537 {
1538 	struct drm_i915_private *dev_priv = dev->dev_private;
1539 
1540 	wake_up_all(&dev_priv->gmbus_wait_queue);
1541 }
1542 
1543 static void dp_aux_irq_handler(struct drm_device *dev)
1544 {
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 
1547 	wake_up_all(&dev_priv->gmbus_wait_queue);
1548 }
1549 
1550 #if defined(CONFIG_DEBUG_FS)
1551 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1552 					 uint32_t crc0, uint32_t crc1,
1553 					 uint32_t crc2, uint32_t crc3,
1554 					 uint32_t crc4)
1555 {
1556 	struct drm_i915_private *dev_priv = dev->dev_private;
1557 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1558 	struct intel_pipe_crc_entry *entry;
1559 	int head, tail;
1560 
1561 	spin_lock(&pipe_crc->lock);
1562 
1563 	if (!pipe_crc->entries) {
1564 		spin_unlock(&pipe_crc->lock);
1565 		DRM_DEBUG_KMS("spurious interrupt\n");
1566 		return;
1567 	}
1568 
1569 	head = pipe_crc->head;
1570 	tail = pipe_crc->tail;
1571 
1572 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1573 		spin_unlock(&pipe_crc->lock);
1574 		DRM_ERROR("CRC buffer overflowing\n");
1575 		return;
1576 	}
1577 
1578 	entry = &pipe_crc->entries[head];
1579 
1580 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1581 	entry->crc[0] = crc0;
1582 	entry->crc[1] = crc1;
1583 	entry->crc[2] = crc2;
1584 	entry->crc[3] = crc3;
1585 	entry->crc[4] = crc4;
1586 
1587 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1588 	pipe_crc->head = head;
1589 
1590 	spin_unlock(&pipe_crc->lock);
1591 
1592 	wake_up_interruptible(&pipe_crc->wq);
1593 }
1594 #else
1595 static inline void
1596 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1597 			     uint32_t crc0, uint32_t crc1,
1598 			     uint32_t crc2, uint32_t crc3,
1599 			     uint32_t crc4) {}
1600 #endif
1601 
1602 
1603 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605 	struct drm_i915_private *dev_priv = dev->dev_private;
1606 
1607 	display_pipe_crc_irq_handler(dev, pipe,
1608 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609 				     0, 0, 0, 0);
1610 }
1611 
1612 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1613 {
1614 	struct drm_i915_private *dev_priv = dev->dev_private;
1615 
1616 	display_pipe_crc_irq_handler(dev, pipe,
1617 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1618 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1619 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1620 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1621 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1622 }
1623 
1624 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1625 {
1626 	struct drm_i915_private *dev_priv = dev->dev_private;
1627 	uint32_t res1, res2;
1628 
1629 	if (INTEL_INFO(dev)->gen >= 3)
1630 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1631 	else
1632 		res1 = 0;
1633 
1634 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1635 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1636 	else
1637 		res2 = 0;
1638 
1639 	display_pipe_crc_irq_handler(dev, pipe,
1640 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1641 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1642 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1643 				     res1, res2);
1644 }
1645 
1646 /* The RPS events need forcewake, so we add them to a work queue and mask their
1647  * IMR bits until the work is done. Other interrupts can be processed without
1648  * the work queue. */
1649 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1650 {
1651 	if (pm_iir & dev_priv->pm_rps_events) {
1652 		spin_lock(&dev_priv->irq_lock);
1653 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1654 		if (dev_priv->rps.interrupts_enabled) {
1655 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1656 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1657 		}
1658 		spin_unlock(&dev_priv->irq_lock);
1659 	}
1660 
1661 	if (INTEL_INFO(dev_priv)->gen >= 8)
1662 		return;
1663 
1664 	if (HAS_VEBOX(dev_priv->dev)) {
1665 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1666 			notify_ring(&dev_priv->ring[VECS]);
1667 
1668 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1669 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1670 	}
1671 }
1672 
1673 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1674 {
1675 	if (!drm_handle_vblank(dev, pipe))
1676 		return false;
1677 
1678 	return true;
1679 }
1680 
1681 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1682 {
1683 	struct drm_i915_private *dev_priv = dev->dev_private;
1684 	u32 pipe_stats[I915_MAX_PIPES] = { };
1685 	int pipe;
1686 
1687 	spin_lock(&dev_priv->irq_lock);
1688 	for_each_pipe(dev_priv, pipe) {
1689 		int reg;
1690 		u32 mask, iir_bit = 0;
1691 
1692 		/*
1693 		 * PIPESTAT bits get signalled even when the interrupt is
1694 		 * disabled with the mask bits, and some of the status bits do
1695 		 * not generate interrupts at all (like the underrun bit). Hence
1696 		 * we need to be careful that we only handle what we want to
1697 		 * handle.
1698 		 */
1699 
1700 		/* fifo underruns are filterered in the underrun handler. */
1701 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1702 
1703 		switch (pipe) {
1704 		case PIPE_A:
1705 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1706 			break;
1707 		case PIPE_B:
1708 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1709 			break;
1710 		case PIPE_C:
1711 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1712 			break;
1713 		}
1714 		if (iir & iir_bit)
1715 			mask |= dev_priv->pipestat_irq_mask[pipe];
1716 
1717 		if (!mask)
1718 			continue;
1719 
1720 		reg = PIPESTAT(pipe);
1721 		mask |= PIPESTAT_INT_ENABLE_MASK;
1722 		pipe_stats[pipe] = I915_READ(reg) & mask;
1723 
1724 		/*
1725 		 * Clear the PIPE*STAT regs before the IIR
1726 		 */
1727 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1728 					PIPESTAT_INT_STATUS_MASK))
1729 			I915_WRITE(reg, pipe_stats[pipe]);
1730 	}
1731 	spin_unlock(&dev_priv->irq_lock);
1732 
1733 	for_each_pipe(dev_priv, pipe) {
1734 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1735 		    intel_pipe_handle_vblank(dev, pipe))
1736 			intel_check_page_flip(dev, pipe);
1737 
1738 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1739 			intel_prepare_page_flip(dev, pipe);
1740 			intel_finish_page_flip(dev, pipe);
1741 		}
1742 
1743 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1744 			i9xx_pipe_crc_irq_handler(dev, pipe);
1745 
1746 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1747 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1748 	}
1749 
1750 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1751 		gmbus_irq_handler(dev);
1752 }
1753 
1754 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1755 {
1756 	struct drm_i915_private *dev_priv = dev->dev_private;
1757 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1758 
1759 	if (hotplug_status) {
1760 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1761 		/*
1762 		 * Make sure hotplug status is cleared before we clear IIR, or else we
1763 		 * may miss hotplug events.
1764 		 */
1765 		POSTING_READ(PORT_HOTPLUG_STAT);
1766 
1767 		if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1768 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1769 
1770 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1771 		} else {
1772 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1773 
1774 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1775 		}
1776 
1777 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1778 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1779 			dp_aux_irq_handler(dev);
1780 	}
1781 }
1782 
1783 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1784 {
1785 	struct drm_device *dev = arg;
1786 	struct drm_i915_private *dev_priv = dev->dev_private;
1787 	u32 iir, gt_iir, pm_iir;
1788 	irqreturn_t ret = IRQ_NONE;
1789 
1790 	if (!intel_irqs_enabled(dev_priv))
1791 		return IRQ_NONE;
1792 
1793 	while (true) {
1794 		/* Find, clear, then process each source of interrupt */
1795 
1796 		gt_iir = I915_READ(GTIIR);
1797 		if (gt_iir)
1798 			I915_WRITE(GTIIR, gt_iir);
1799 
1800 		pm_iir = I915_READ(GEN6_PMIIR);
1801 		if (pm_iir)
1802 			I915_WRITE(GEN6_PMIIR, pm_iir);
1803 
1804 		iir = I915_READ(VLV_IIR);
1805 		if (iir) {
1806 			/* Consume port before clearing IIR or we'll miss events */
1807 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1808 				i9xx_hpd_irq_handler(dev);
1809 			I915_WRITE(VLV_IIR, iir);
1810 		}
1811 
1812 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1813 			goto out;
1814 
1815 		ret = IRQ_HANDLED;
1816 
1817 		if (gt_iir)
1818 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1819 		if (pm_iir)
1820 			gen6_rps_irq_handler(dev_priv, pm_iir);
1821 		/* Call regardless, as some status bits might not be
1822 		 * signalled in iir */
1823 		valleyview_pipestat_irq_handler(dev, iir);
1824 	}
1825 
1826 out:
1827 	return ret;
1828 }
1829 
1830 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1831 {
1832 	struct drm_device *dev = arg;
1833 	struct drm_i915_private *dev_priv = dev->dev_private;
1834 	u32 master_ctl, iir;
1835 	irqreturn_t ret = IRQ_NONE;
1836 
1837 	if (!intel_irqs_enabled(dev_priv))
1838 		return IRQ_NONE;
1839 
1840 	for (;;) {
1841 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1842 		iir = I915_READ(VLV_IIR);
1843 
1844 		if (master_ctl == 0 && iir == 0)
1845 			break;
1846 
1847 		ret = IRQ_HANDLED;
1848 
1849 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1850 
1851 		/* Find, clear, then process each source of interrupt */
1852 
1853 		if (iir) {
1854 			/* Consume port before clearing IIR or we'll miss events */
1855 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1856 				i9xx_hpd_irq_handler(dev);
1857 			I915_WRITE(VLV_IIR, iir);
1858 		}
1859 
1860 		gen8_gt_irq_handler(dev_priv, master_ctl);
1861 
1862 		/* Call regardless, as some status bits might not be
1863 		 * signalled in iir */
1864 		valleyview_pipestat_irq_handler(dev, iir);
1865 
1866 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1867 		POSTING_READ(GEN8_MASTER_IRQ);
1868 	}
1869 
1870 	return ret;
1871 }
1872 
1873 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1874 {
1875 	struct drm_i915_private *dev_priv = dev->dev_private;
1876 	int pipe;
1877 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1878 	u32 dig_hotplug_reg;
1879 
1880 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1881 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1882 
1883 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1884 
1885 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1886 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1887 			       SDE_AUDIO_POWER_SHIFT);
1888 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1889 				 port_name(port));
1890 	}
1891 
1892 	if (pch_iir & SDE_AUX_MASK)
1893 		dp_aux_irq_handler(dev);
1894 
1895 	if (pch_iir & SDE_GMBUS)
1896 		gmbus_irq_handler(dev);
1897 
1898 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1899 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1900 
1901 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1902 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1903 
1904 	if (pch_iir & SDE_POISON)
1905 		DRM_ERROR("PCH poison interrupt\n");
1906 
1907 	if (pch_iir & SDE_FDI_MASK)
1908 		for_each_pipe(dev_priv, pipe)
1909 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1910 					 pipe_name(pipe),
1911 					 I915_READ(FDI_RX_IIR(pipe)));
1912 
1913 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1914 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1915 
1916 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1917 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1918 
1919 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1920 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1921 
1922 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1923 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1924 }
1925 
1926 static void ivb_err_int_handler(struct drm_device *dev)
1927 {
1928 	struct drm_i915_private *dev_priv = dev->dev_private;
1929 	u32 err_int = I915_READ(GEN7_ERR_INT);
1930 	enum pipe pipe;
1931 
1932 	if (err_int & ERR_INT_POISON)
1933 		DRM_ERROR("Poison interrupt\n");
1934 
1935 	for_each_pipe(dev_priv, pipe) {
1936 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1937 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1938 
1939 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1940 			if (IS_IVYBRIDGE(dev))
1941 				ivb_pipe_crc_irq_handler(dev, pipe);
1942 			else
1943 				hsw_pipe_crc_irq_handler(dev, pipe);
1944 		}
1945 	}
1946 
1947 	I915_WRITE(GEN7_ERR_INT, err_int);
1948 }
1949 
1950 static void cpt_serr_int_handler(struct drm_device *dev)
1951 {
1952 	struct drm_i915_private *dev_priv = dev->dev_private;
1953 	u32 serr_int = I915_READ(SERR_INT);
1954 
1955 	if (serr_int & SERR_INT_POISON)
1956 		DRM_ERROR("PCH poison interrupt\n");
1957 
1958 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1959 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1960 
1961 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1962 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1963 
1964 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1965 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1966 
1967 	I915_WRITE(SERR_INT, serr_int);
1968 }
1969 
1970 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972 	struct drm_i915_private *dev_priv = dev->dev_private;
1973 	int pipe;
1974 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1975 	u32 dig_hotplug_reg;
1976 
1977 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979 
1980 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1981 
1982 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1983 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1984 			       SDE_AUDIO_POWER_SHIFT_CPT);
1985 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1986 				 port_name(port));
1987 	}
1988 
1989 	if (pch_iir & SDE_AUX_MASK_CPT)
1990 		dp_aux_irq_handler(dev);
1991 
1992 	if (pch_iir & SDE_GMBUS_CPT)
1993 		gmbus_irq_handler(dev);
1994 
1995 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1996 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1997 
1998 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1999 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2000 
2001 	if (pch_iir & SDE_FDI_MASK_CPT)
2002 		for_each_pipe(dev_priv, pipe)
2003 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2004 					 pipe_name(pipe),
2005 					 I915_READ(FDI_RX_IIR(pipe)));
2006 
2007 	if (pch_iir & SDE_ERROR_CPT)
2008 		cpt_serr_int_handler(dev);
2009 }
2010 
2011 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2012 {
2013 	struct drm_i915_private *dev_priv = dev->dev_private;
2014 	enum pipe pipe;
2015 
2016 	if (de_iir & DE_AUX_CHANNEL_A)
2017 		dp_aux_irq_handler(dev);
2018 
2019 	if (de_iir & DE_GSE)
2020 		intel_opregion_asle_intr(dev);
2021 
2022 	if (de_iir & DE_POISON)
2023 		DRM_ERROR("Poison interrupt\n");
2024 
2025 	for_each_pipe(dev_priv, pipe) {
2026 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2027 		    intel_pipe_handle_vblank(dev, pipe))
2028 			intel_check_page_flip(dev, pipe);
2029 
2030 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2031 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2032 
2033 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2034 			i9xx_pipe_crc_irq_handler(dev, pipe);
2035 
2036 		/* plane/pipes map 1:1 on ilk+ */
2037 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2038 			intel_prepare_page_flip(dev, pipe);
2039 			intel_finish_page_flip_plane(dev, pipe);
2040 		}
2041 	}
2042 
2043 	/* check event from PCH */
2044 	if (de_iir & DE_PCH_EVENT) {
2045 		u32 pch_iir = I915_READ(SDEIIR);
2046 
2047 		if (HAS_PCH_CPT(dev))
2048 			cpt_irq_handler(dev, pch_iir);
2049 		else
2050 			ibx_irq_handler(dev, pch_iir);
2051 
2052 		/* should clear PCH hotplug event before clear CPU irq */
2053 		I915_WRITE(SDEIIR, pch_iir);
2054 	}
2055 
2056 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2057 		ironlake_rps_change_irq_handler(dev);
2058 }
2059 
2060 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2061 {
2062 	struct drm_i915_private *dev_priv = dev->dev_private;
2063 	enum pipe pipe;
2064 
2065 	if (de_iir & DE_ERR_INT_IVB)
2066 		ivb_err_int_handler(dev);
2067 
2068 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069 		dp_aux_irq_handler(dev);
2070 
2071 	if (de_iir & DE_GSE_IVB)
2072 		intel_opregion_asle_intr(dev);
2073 
2074 	for_each_pipe(dev_priv, pipe) {
2075 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2076 		    intel_pipe_handle_vblank(dev, pipe))
2077 			intel_check_page_flip(dev, pipe);
2078 
2079 		/* plane/pipes map 1:1 on ilk+ */
2080 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2081 			intel_prepare_page_flip(dev, pipe);
2082 			intel_finish_page_flip_plane(dev, pipe);
2083 		}
2084 	}
2085 
2086 	/* check event from PCH */
2087 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2088 		u32 pch_iir = I915_READ(SDEIIR);
2089 
2090 		cpt_irq_handler(dev, pch_iir);
2091 
2092 		/* clear PCH hotplug event before clear CPU irq */
2093 		I915_WRITE(SDEIIR, pch_iir);
2094 	}
2095 }
2096 
2097 /*
2098  * To handle irqs with the minimum potential races with fresh interrupts, we:
2099  * 1 - Disable Master Interrupt Control.
2100  * 2 - Find the source(s) of the interrupt.
2101  * 3 - Clear the Interrupt Identity bits (IIR).
2102  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2103  * 5 - Re-enable Master Interrupt Control.
2104  */
2105 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2106 {
2107 	struct drm_device *dev = arg;
2108 	struct drm_i915_private *dev_priv = dev->dev_private;
2109 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2110 	irqreturn_t ret = IRQ_NONE;
2111 
2112 	if (!intel_irqs_enabled(dev_priv))
2113 		return IRQ_NONE;
2114 
2115 	/* We get interrupts on unclaimed registers, so check for this before we
2116 	 * do any I915_{READ,WRITE}. */
2117 	intel_uncore_check_errors(dev);
2118 
2119 	/* disable master interrupt before clearing iir  */
2120 	de_ier = I915_READ(DEIER);
2121 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2122 	POSTING_READ(DEIER);
2123 
2124 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2125 	 * interrupts will will be stored on its back queue, and then we'll be
2126 	 * able to process them after we restore SDEIER (as soon as we restore
2127 	 * it, we'll get an interrupt if SDEIIR still has something to process
2128 	 * due to its back queue). */
2129 	if (!HAS_PCH_NOP(dev)) {
2130 		sde_ier = I915_READ(SDEIER);
2131 		I915_WRITE(SDEIER, 0);
2132 		POSTING_READ(SDEIER);
2133 	}
2134 
2135 	/* Find, clear, then process each source of interrupt */
2136 
2137 	gt_iir = I915_READ(GTIIR);
2138 	if (gt_iir) {
2139 		I915_WRITE(GTIIR, gt_iir);
2140 		ret = IRQ_HANDLED;
2141 		if (INTEL_INFO(dev)->gen >= 6)
2142 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2143 		else
2144 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2145 	}
2146 
2147 	de_iir = I915_READ(DEIIR);
2148 	if (de_iir) {
2149 		I915_WRITE(DEIIR, de_iir);
2150 		ret = IRQ_HANDLED;
2151 		if (INTEL_INFO(dev)->gen >= 7)
2152 			ivb_display_irq_handler(dev, de_iir);
2153 		else
2154 			ilk_display_irq_handler(dev, de_iir);
2155 	}
2156 
2157 	if (INTEL_INFO(dev)->gen >= 6) {
2158 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2159 		if (pm_iir) {
2160 			I915_WRITE(GEN6_PMIIR, pm_iir);
2161 			ret = IRQ_HANDLED;
2162 			gen6_rps_irq_handler(dev_priv, pm_iir);
2163 		}
2164 	}
2165 
2166 	I915_WRITE(DEIER, de_ier);
2167 	POSTING_READ(DEIER);
2168 	if (!HAS_PCH_NOP(dev)) {
2169 		I915_WRITE(SDEIER, sde_ier);
2170 		POSTING_READ(SDEIER);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2177 {
2178 	struct drm_i915_private *dev_priv = dev->dev_private;
2179 	uint32_t hp_control;
2180 	uint32_t hp_trigger;
2181 
2182 	/* Get the status */
2183 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2184 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
2185 
2186 	/* Hotplug not enabled ? */
2187 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2188 		DRM_ERROR("Interrupt when HPD disabled\n");
2189 		return;
2190 	}
2191 
2192 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2193 		hp_control & BXT_HOTPLUG_CTL_MASK);
2194 
2195 	/* Check for HPD storm and schedule bottom half */
2196 	intel_hpd_irq_handler(dev, hp_trigger, hp_control, hpd_bxt);
2197 
2198 	/*
2199 	 * FIXME: Save the hot plug status for bottom half before
2200 	 * clearing the sticky status bits, else the status will be
2201 	 * lost.
2202 	 */
2203 
2204 	/* Clear sticky bits in hpd status */
2205 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2206 }
2207 
2208 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2209 {
2210 	struct drm_device *dev = arg;
2211 	struct drm_i915_private *dev_priv = dev->dev_private;
2212 	u32 master_ctl;
2213 	irqreturn_t ret = IRQ_NONE;
2214 	uint32_t tmp = 0;
2215 	enum pipe pipe;
2216 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2217 
2218 	if (!intel_irqs_enabled(dev_priv))
2219 		return IRQ_NONE;
2220 
2221 	if (IS_GEN9(dev))
2222 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2223 			GEN9_AUX_CHANNEL_D;
2224 
2225 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2226 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2227 	if (!master_ctl)
2228 		return IRQ_NONE;
2229 
2230 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2231 
2232 	/* Find, clear, then process each source of interrupt */
2233 
2234 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2235 
2236 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2237 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2238 		if (tmp) {
2239 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2240 			ret = IRQ_HANDLED;
2241 			if (tmp & GEN8_DE_MISC_GSE)
2242 				intel_opregion_asle_intr(dev);
2243 			else
2244 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2245 		}
2246 		else
2247 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2248 	}
2249 
2250 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2251 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2252 		if (tmp) {
2253 			bool found = false;
2254 
2255 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2256 			ret = IRQ_HANDLED;
2257 
2258 			if (tmp & aux_mask) {
2259 				dp_aux_irq_handler(dev);
2260 				found = true;
2261 			}
2262 
2263 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2264 				bxt_hpd_handler(dev, tmp);
2265 				found = true;
2266 			}
2267 
2268 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2269 				gmbus_irq_handler(dev);
2270 				found = true;
2271 			}
2272 
2273 			if (!found)
2274 				DRM_ERROR("Unexpected DE Port interrupt\n");
2275 		}
2276 		else
2277 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2278 	}
2279 
2280 	for_each_pipe(dev_priv, pipe) {
2281 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2282 
2283 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2284 			continue;
2285 
2286 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2287 		if (pipe_iir) {
2288 			ret = IRQ_HANDLED;
2289 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2290 
2291 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2292 			    intel_pipe_handle_vblank(dev, pipe))
2293 				intel_check_page_flip(dev, pipe);
2294 
2295 			if (IS_GEN9(dev))
2296 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2297 			else
2298 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2299 
2300 			if (flip_done) {
2301 				intel_prepare_page_flip(dev, pipe);
2302 				intel_finish_page_flip_plane(dev, pipe);
2303 			}
2304 
2305 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2306 				hsw_pipe_crc_irq_handler(dev, pipe);
2307 
2308 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2309 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2310 								    pipe);
2311 
2312 
2313 			if (IS_GEN9(dev))
2314 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2315 			else
2316 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2317 
2318 			if (fault_errors)
2319 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2320 					  pipe_name(pipe),
2321 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2322 		} else
2323 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2324 	}
2325 
2326 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2327 	    master_ctl & GEN8_DE_PCH_IRQ) {
2328 		/*
2329 		 * FIXME(BDW): Assume for now that the new interrupt handling
2330 		 * scheme also closed the SDE interrupt handling race we've seen
2331 		 * on older pch-split platforms. But this needs testing.
2332 		 */
2333 		u32 pch_iir = I915_READ(SDEIIR);
2334 		if (pch_iir) {
2335 			I915_WRITE(SDEIIR, pch_iir);
2336 			ret = IRQ_HANDLED;
2337 			cpt_irq_handler(dev, pch_iir);
2338 		} else
2339 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2340 
2341 	}
2342 
2343 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2344 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2345 
2346 	return ret;
2347 }
2348 
2349 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2350 			       bool reset_completed)
2351 {
2352 	struct intel_engine_cs *ring;
2353 	int i;
2354 
2355 	/*
2356 	 * Notify all waiters for GPU completion events that reset state has
2357 	 * been changed, and that they need to restart their wait after
2358 	 * checking for potential errors (and bail out to drop locks if there is
2359 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2360 	 */
2361 
2362 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2363 	for_each_ring(ring, dev_priv, i)
2364 		wake_up_all(&ring->irq_queue);
2365 
2366 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2367 	wake_up_all(&dev_priv->pending_flip_queue);
2368 
2369 	/*
2370 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2371 	 * reset state is cleared.
2372 	 */
2373 	if (reset_completed)
2374 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2375 }
2376 
2377 /**
2378  * i915_reset_and_wakeup - do process context error handling work
2379  *
2380  * Fire an error uevent so userspace can see that a hang or error
2381  * was detected.
2382  */
2383 static void i915_reset_and_wakeup(struct drm_device *dev)
2384 {
2385 	struct drm_i915_private *dev_priv = to_i915(dev);
2386 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2387 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2388 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2389 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2390 	int ret;
2391 
2392 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2393 
2394 	/*
2395 	 * Note that there's only one work item which does gpu resets, so we
2396 	 * need not worry about concurrent gpu resets potentially incrementing
2397 	 * error->reset_counter twice. We only need to take care of another
2398 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2399 	 * quick check for that is good enough: schedule_work ensures the
2400 	 * correct ordering between hang detection and this work item, and since
2401 	 * the reset in-progress bit is only ever set by code outside of this
2402 	 * work we don't need to worry about any other races.
2403 	 */
2404 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2405 		DRM_DEBUG_DRIVER("resetting chip\n");
2406 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2407 				   reset_event);
2408 
2409 		/*
2410 		 * In most cases it's guaranteed that we get here with an RPM
2411 		 * reference held, for example because there is a pending GPU
2412 		 * request that won't finish until the reset is done. This
2413 		 * isn't the case at least when we get here by doing a
2414 		 * simulated reset via debugs, so get an RPM reference.
2415 		 */
2416 		intel_runtime_pm_get(dev_priv);
2417 
2418 		intel_prepare_reset(dev);
2419 
2420 		/*
2421 		 * All state reset _must_ be completed before we update the
2422 		 * reset counter, for otherwise waiters might miss the reset
2423 		 * pending state and not properly drop locks, resulting in
2424 		 * deadlocks with the reset work.
2425 		 */
2426 		ret = i915_reset(dev);
2427 
2428 		intel_finish_reset(dev);
2429 
2430 		intel_runtime_pm_put(dev_priv);
2431 
2432 		if (ret == 0) {
2433 			/*
2434 			 * After all the gem state is reset, increment the reset
2435 			 * counter and wake up everyone waiting for the reset to
2436 			 * complete.
2437 			 *
2438 			 * Since unlock operations are a one-sided barrier only,
2439 			 * we need to insert a barrier here to order any seqno
2440 			 * updates before
2441 			 * the counter increment.
2442 			 */
2443 			smp_mb__before_atomic();
2444 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2445 
2446 			kobject_uevent_env(&dev->primary->kdev->kobj,
2447 					   KOBJ_CHANGE, reset_done_event);
2448 		} else {
2449 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2450 		}
2451 
2452 		/*
2453 		 * Note: The wake_up also serves as a memory barrier so that
2454 		 * waiters see the update value of the reset counter atomic_t.
2455 		 */
2456 		i915_error_wake_up(dev_priv, true);
2457 	}
2458 }
2459 
2460 static void i915_report_and_clear_eir(struct drm_device *dev)
2461 {
2462 	struct drm_i915_private *dev_priv = dev->dev_private;
2463 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2464 	u32 eir = I915_READ(EIR);
2465 	int pipe, i;
2466 
2467 	if (!eir)
2468 		return;
2469 
2470 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2471 
2472 	i915_get_extra_instdone(dev, instdone);
2473 
2474 	if (IS_G4X(dev)) {
2475 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2476 			u32 ipeir = I915_READ(IPEIR_I965);
2477 
2478 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2479 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2480 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2481 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2482 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2483 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2484 			I915_WRITE(IPEIR_I965, ipeir);
2485 			POSTING_READ(IPEIR_I965);
2486 		}
2487 		if (eir & GM45_ERROR_PAGE_TABLE) {
2488 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2489 			pr_err("page table error\n");
2490 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2491 			I915_WRITE(PGTBL_ER, pgtbl_err);
2492 			POSTING_READ(PGTBL_ER);
2493 		}
2494 	}
2495 
2496 	if (!IS_GEN2(dev)) {
2497 		if (eir & I915_ERROR_PAGE_TABLE) {
2498 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2499 			pr_err("page table error\n");
2500 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2501 			I915_WRITE(PGTBL_ER, pgtbl_err);
2502 			POSTING_READ(PGTBL_ER);
2503 		}
2504 	}
2505 
2506 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2507 		pr_err("memory refresh error:\n");
2508 		for_each_pipe(dev_priv, pipe)
2509 			pr_err("pipe %c stat: 0x%08x\n",
2510 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2511 		/* pipestat has already been acked */
2512 	}
2513 	if (eir & I915_ERROR_INSTRUCTION) {
2514 		pr_err("instruction error\n");
2515 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2516 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2517 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2518 		if (INTEL_INFO(dev)->gen < 4) {
2519 			u32 ipeir = I915_READ(IPEIR);
2520 
2521 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2522 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2523 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2524 			I915_WRITE(IPEIR, ipeir);
2525 			POSTING_READ(IPEIR);
2526 		} else {
2527 			u32 ipeir = I915_READ(IPEIR_I965);
2528 
2529 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2530 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2531 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2532 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2533 			I915_WRITE(IPEIR_I965, ipeir);
2534 			POSTING_READ(IPEIR_I965);
2535 		}
2536 	}
2537 
2538 	I915_WRITE(EIR, eir);
2539 	POSTING_READ(EIR);
2540 	eir = I915_READ(EIR);
2541 	if (eir) {
2542 		/*
2543 		 * some errors might have become stuck,
2544 		 * mask them.
2545 		 */
2546 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2547 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2548 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2549 	}
2550 }
2551 
2552 /**
2553  * i915_handle_error - handle a gpu error
2554  * @dev: drm device
2555  *
2556  * Do some basic checking of regsiter state at error time and
2557  * dump it to the syslog.  Also call i915_capture_error_state() to make
2558  * sure we get a record and make it available in debugfs.  Fire a uevent
2559  * so userspace knows something bad happened (should trigger collection
2560  * of a ring dump etc.).
2561  */
2562 void i915_handle_error(struct drm_device *dev, bool wedged,
2563 		       const char *fmt, ...)
2564 {
2565 	struct drm_i915_private *dev_priv = dev->dev_private;
2566 	va_list args;
2567 	char error_msg[80];
2568 
2569 	va_start(args, fmt);
2570 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2571 	va_end(args);
2572 
2573 	i915_capture_error_state(dev, wedged, error_msg);
2574 	i915_report_and_clear_eir(dev);
2575 
2576 	if (wedged) {
2577 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2578 				&dev_priv->gpu_error.reset_counter);
2579 
2580 		/*
2581 		 * Wakeup waiting processes so that the reset function
2582 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2583 		 * various locks. By bumping the reset counter first, the woken
2584 		 * processes will see a reset in progress and back off,
2585 		 * releasing their locks and then wait for the reset completion.
2586 		 * We must do this for _all_ gpu waiters that might hold locks
2587 		 * that the reset work needs to acquire.
2588 		 *
2589 		 * Note: The wake_up serves as the required memory barrier to
2590 		 * ensure that the waiters see the updated value of the reset
2591 		 * counter atomic_t.
2592 		 */
2593 		i915_error_wake_up(dev_priv, false);
2594 	}
2595 
2596 	i915_reset_and_wakeup(dev);
2597 }
2598 
2599 /* Called from drm generic code, passed 'crtc' which
2600  * we use as a pipe index
2601  */
2602 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2603 {
2604 	struct drm_i915_private *dev_priv = dev->dev_private;
2605 	unsigned long irqflags;
2606 
2607 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2608 	if (INTEL_INFO(dev)->gen >= 4)
2609 		i915_enable_pipestat(dev_priv, pipe,
2610 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2611 	else
2612 		i915_enable_pipestat(dev_priv, pipe,
2613 				     PIPE_VBLANK_INTERRUPT_STATUS);
2614 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2615 
2616 	return 0;
2617 }
2618 
2619 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2620 {
2621 	struct drm_i915_private *dev_priv = dev->dev_private;
2622 	unsigned long irqflags;
2623 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2624 						     DE_PIPE_VBLANK(pipe);
2625 
2626 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627 	ironlake_enable_display_irq(dev_priv, bit);
2628 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629 
2630 	return 0;
2631 }
2632 
2633 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2634 {
2635 	struct drm_i915_private *dev_priv = dev->dev_private;
2636 	unsigned long irqflags;
2637 
2638 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639 	i915_enable_pipestat(dev_priv, pipe,
2640 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2641 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2642 
2643 	return 0;
2644 }
2645 
2646 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2647 {
2648 	struct drm_i915_private *dev_priv = dev->dev_private;
2649 	unsigned long irqflags;
2650 
2651 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2652 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2653 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2654 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2655 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2656 	return 0;
2657 }
2658 
2659 /* Called from drm generic code, passed 'crtc' which
2660  * we use as a pipe index
2661  */
2662 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2663 {
2664 	struct drm_i915_private *dev_priv = dev->dev_private;
2665 	unsigned long irqflags;
2666 
2667 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2668 	i915_disable_pipestat(dev_priv, pipe,
2669 			      PIPE_VBLANK_INTERRUPT_STATUS |
2670 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2671 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672 }
2673 
2674 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2675 {
2676 	struct drm_i915_private *dev_priv = dev->dev_private;
2677 	unsigned long irqflags;
2678 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2679 						     DE_PIPE_VBLANK(pipe);
2680 
2681 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682 	ironlake_disable_display_irq(dev_priv, bit);
2683 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684 }
2685 
2686 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2687 {
2688 	struct drm_i915_private *dev_priv = dev->dev_private;
2689 	unsigned long irqflags;
2690 
2691 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692 	i915_disable_pipestat(dev_priv, pipe,
2693 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2694 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2695 }
2696 
2697 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2698 {
2699 	struct drm_i915_private *dev_priv = dev->dev_private;
2700 	unsigned long irqflags;
2701 
2702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2704 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2705 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2706 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2707 }
2708 
2709 static bool
2710 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2711 {
2712 	return (list_empty(&ring->request_list) ||
2713 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2714 }
2715 
2716 static bool
2717 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2718 {
2719 	if (INTEL_INFO(dev)->gen >= 8) {
2720 		return (ipehr >> 23) == 0x1c;
2721 	} else {
2722 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2723 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2724 				 MI_SEMAPHORE_REGISTER);
2725 	}
2726 }
2727 
2728 static struct intel_engine_cs *
2729 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2730 {
2731 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2732 	struct intel_engine_cs *signaller;
2733 	int i;
2734 
2735 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2736 		for_each_ring(signaller, dev_priv, i) {
2737 			if (ring == signaller)
2738 				continue;
2739 
2740 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2741 				return signaller;
2742 		}
2743 	} else {
2744 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2745 
2746 		for_each_ring(signaller, dev_priv, i) {
2747 			if(ring == signaller)
2748 				continue;
2749 
2750 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2751 				return signaller;
2752 		}
2753 	}
2754 
2755 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2756 		  ring->id, ipehr, offset);
2757 
2758 	return NULL;
2759 }
2760 
2761 static struct intel_engine_cs *
2762 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2763 {
2764 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2765 	u32 cmd, ipehr, head;
2766 	u64 offset = 0;
2767 	int i, backwards;
2768 
2769 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2770 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2771 		return NULL;
2772 
2773 	/*
2774 	 * HEAD is likely pointing to the dword after the actual command,
2775 	 * so scan backwards until we find the MBOX. But limit it to just 3
2776 	 * or 4 dwords depending on the semaphore wait command size.
2777 	 * Note that we don't care about ACTHD here since that might
2778 	 * point at at batch, and semaphores are always emitted into the
2779 	 * ringbuffer itself.
2780 	 */
2781 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2782 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2783 
2784 	for (i = backwards; i; --i) {
2785 		/*
2786 		 * Be paranoid and presume the hw has gone off into the wild -
2787 		 * our ring is smaller than what the hardware (and hence
2788 		 * HEAD_ADDR) allows. Also handles wrap-around.
2789 		 */
2790 		head &= ring->buffer->size - 1;
2791 
2792 		/* This here seems to blow up */
2793 		cmd = ioread32(ring->buffer->virtual_start + head);
2794 		if (cmd == ipehr)
2795 			break;
2796 
2797 		head -= 4;
2798 	}
2799 
2800 	if (!i)
2801 		return NULL;
2802 
2803 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2804 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2805 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2806 		offset <<= 32;
2807 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2808 	}
2809 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2810 }
2811 
2812 static int semaphore_passed(struct intel_engine_cs *ring)
2813 {
2814 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2815 	struct intel_engine_cs *signaller;
2816 	u32 seqno;
2817 
2818 	ring->hangcheck.deadlock++;
2819 
2820 	signaller = semaphore_waits_for(ring, &seqno);
2821 	if (signaller == NULL)
2822 		return -1;
2823 
2824 	/* Prevent pathological recursion due to driver bugs */
2825 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2826 		return -1;
2827 
2828 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2829 		return 1;
2830 
2831 	/* cursory check for an unkickable deadlock */
2832 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2833 	    semaphore_passed(signaller) < 0)
2834 		return -1;
2835 
2836 	return 0;
2837 }
2838 
2839 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2840 {
2841 	struct intel_engine_cs *ring;
2842 	int i;
2843 
2844 	for_each_ring(ring, dev_priv, i)
2845 		ring->hangcheck.deadlock = 0;
2846 }
2847 
2848 static enum intel_ring_hangcheck_action
2849 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2850 {
2851 	struct drm_device *dev = ring->dev;
2852 	struct drm_i915_private *dev_priv = dev->dev_private;
2853 	u32 tmp;
2854 
2855 	if (acthd != ring->hangcheck.acthd) {
2856 		if (acthd > ring->hangcheck.max_acthd) {
2857 			ring->hangcheck.max_acthd = acthd;
2858 			return HANGCHECK_ACTIVE;
2859 		}
2860 
2861 		return HANGCHECK_ACTIVE_LOOP;
2862 	}
2863 
2864 	if (IS_GEN2(dev))
2865 		return HANGCHECK_HUNG;
2866 
2867 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2868 	 * If so we can simply poke the RB_WAIT bit
2869 	 * and break the hang. This should work on
2870 	 * all but the second generation chipsets.
2871 	 */
2872 	tmp = I915_READ_CTL(ring);
2873 	if (tmp & RING_WAIT) {
2874 		i915_handle_error(dev, false,
2875 				  "Kicking stuck wait on %s",
2876 				  ring->name);
2877 		I915_WRITE_CTL(ring, tmp);
2878 		return HANGCHECK_KICK;
2879 	}
2880 
2881 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2882 		switch (semaphore_passed(ring)) {
2883 		default:
2884 			return HANGCHECK_HUNG;
2885 		case 1:
2886 			i915_handle_error(dev, false,
2887 					  "Kicking stuck semaphore on %s",
2888 					  ring->name);
2889 			I915_WRITE_CTL(ring, tmp);
2890 			return HANGCHECK_KICK;
2891 		case 0:
2892 			return HANGCHECK_WAIT;
2893 		}
2894 	}
2895 
2896 	return HANGCHECK_HUNG;
2897 }
2898 
2899 /*
2900  * This is called when the chip hasn't reported back with completed
2901  * batchbuffers in a long time. We keep track per ring seqno progress and
2902  * if there are no progress, hangcheck score for that ring is increased.
2903  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2904  * we kick the ring. If we see no progress on three subsequent calls
2905  * we assume chip is wedged and try to fix it by resetting the chip.
2906  */
2907 static void i915_hangcheck_elapsed(struct work_struct *work)
2908 {
2909 	struct drm_i915_private *dev_priv =
2910 		container_of(work, typeof(*dev_priv),
2911 			     gpu_error.hangcheck_work.work);
2912 	struct drm_device *dev = dev_priv->dev;
2913 	struct intel_engine_cs *ring;
2914 	int i;
2915 	int busy_count = 0, rings_hung = 0;
2916 	bool stuck[I915_NUM_RINGS] = { 0 };
2917 #define BUSY 1
2918 #define KICK 5
2919 #define HUNG 20
2920 
2921 	if (!i915.enable_hangcheck)
2922 		return;
2923 
2924 	for_each_ring(ring, dev_priv, i) {
2925 		u64 acthd;
2926 		u32 seqno;
2927 		bool busy = true;
2928 
2929 		semaphore_clear_deadlocks(dev_priv);
2930 
2931 		seqno = ring->get_seqno(ring, false);
2932 		acthd = intel_ring_get_active_head(ring);
2933 
2934 		if (ring->hangcheck.seqno == seqno) {
2935 			if (ring_idle(ring, seqno)) {
2936 				ring->hangcheck.action = HANGCHECK_IDLE;
2937 
2938 				if (waitqueue_active(&ring->irq_queue)) {
2939 					/* Issue a wake-up to catch stuck h/w. */
2940 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2941 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2942 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2943 								  ring->name);
2944 						else
2945 							DRM_INFO("Fake missed irq on %s\n",
2946 								 ring->name);
2947 						wake_up_all(&ring->irq_queue);
2948 					}
2949 					/* Safeguard against driver failure */
2950 					ring->hangcheck.score += BUSY;
2951 				} else
2952 					busy = false;
2953 			} else {
2954 				/* We always increment the hangcheck score
2955 				 * if the ring is busy and still processing
2956 				 * the same request, so that no single request
2957 				 * can run indefinitely (such as a chain of
2958 				 * batches). The only time we do not increment
2959 				 * the hangcheck score on this ring, if this
2960 				 * ring is in a legitimate wait for another
2961 				 * ring. In that case the waiting ring is a
2962 				 * victim and we want to be sure we catch the
2963 				 * right culprit. Then every time we do kick
2964 				 * the ring, add a small increment to the
2965 				 * score so that we can catch a batch that is
2966 				 * being repeatedly kicked and so responsible
2967 				 * for stalling the machine.
2968 				 */
2969 				ring->hangcheck.action = ring_stuck(ring,
2970 								    acthd);
2971 
2972 				switch (ring->hangcheck.action) {
2973 				case HANGCHECK_IDLE:
2974 				case HANGCHECK_WAIT:
2975 				case HANGCHECK_ACTIVE:
2976 					break;
2977 				case HANGCHECK_ACTIVE_LOOP:
2978 					ring->hangcheck.score += BUSY;
2979 					break;
2980 				case HANGCHECK_KICK:
2981 					ring->hangcheck.score += KICK;
2982 					break;
2983 				case HANGCHECK_HUNG:
2984 					ring->hangcheck.score += HUNG;
2985 					stuck[i] = true;
2986 					break;
2987 				}
2988 			}
2989 		} else {
2990 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2991 
2992 			/* Gradually reduce the count so that we catch DoS
2993 			 * attempts across multiple batches.
2994 			 */
2995 			if (ring->hangcheck.score > 0)
2996 				ring->hangcheck.score--;
2997 
2998 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2999 		}
3000 
3001 		ring->hangcheck.seqno = seqno;
3002 		ring->hangcheck.acthd = acthd;
3003 		busy_count += busy;
3004 	}
3005 
3006 	for_each_ring(ring, dev_priv, i) {
3007 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3008 			DRM_INFO("%s on %s\n",
3009 				 stuck[i] ? "stuck" : "no progress",
3010 				 ring->name);
3011 			rings_hung++;
3012 		}
3013 	}
3014 
3015 	if (rings_hung)
3016 		return i915_handle_error(dev, true, "Ring hung");
3017 
3018 	if (busy_count)
3019 		/* Reset timer case chip hangs without another request
3020 		 * being added */
3021 		i915_queue_hangcheck(dev);
3022 }
3023 
3024 void i915_queue_hangcheck(struct drm_device *dev)
3025 {
3026 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3027 
3028 	if (!i915.enable_hangcheck)
3029 		return;
3030 
3031 	/* Don't continually defer the hangcheck so that it is always run at
3032 	 * least once after work has been scheduled on any ring. Otherwise,
3033 	 * we will ignore a hung ring if a second ring is kept busy.
3034 	 */
3035 
3036 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3037 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3038 }
3039 
3040 static void ibx_irq_reset(struct drm_device *dev)
3041 {
3042 	struct drm_i915_private *dev_priv = dev->dev_private;
3043 
3044 	if (HAS_PCH_NOP(dev))
3045 		return;
3046 
3047 	GEN5_IRQ_RESET(SDE);
3048 
3049 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3050 		I915_WRITE(SERR_INT, 0xffffffff);
3051 }
3052 
3053 /*
3054  * SDEIER is also touched by the interrupt handler to work around missed PCH
3055  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3056  * instead we unconditionally enable all PCH interrupt sources here, but then
3057  * only unmask them as needed with SDEIMR.
3058  *
3059  * This function needs to be called before interrupts are enabled.
3060  */
3061 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3062 {
3063 	struct drm_i915_private *dev_priv = dev->dev_private;
3064 
3065 	if (HAS_PCH_NOP(dev))
3066 		return;
3067 
3068 	WARN_ON(I915_READ(SDEIER) != 0);
3069 	I915_WRITE(SDEIER, 0xffffffff);
3070 	POSTING_READ(SDEIER);
3071 }
3072 
3073 static void gen5_gt_irq_reset(struct drm_device *dev)
3074 {
3075 	struct drm_i915_private *dev_priv = dev->dev_private;
3076 
3077 	GEN5_IRQ_RESET(GT);
3078 	if (INTEL_INFO(dev)->gen >= 6)
3079 		GEN5_IRQ_RESET(GEN6_PM);
3080 }
3081 
3082 /* drm_dma.h hooks
3083 */
3084 static void ironlake_irq_reset(struct drm_device *dev)
3085 {
3086 	struct drm_i915_private *dev_priv = dev->dev_private;
3087 
3088 	I915_WRITE(HWSTAM, 0xffffffff);
3089 
3090 	GEN5_IRQ_RESET(DE);
3091 	if (IS_GEN7(dev))
3092 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3093 
3094 	gen5_gt_irq_reset(dev);
3095 
3096 	ibx_irq_reset(dev);
3097 }
3098 
3099 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3100 {
3101 	enum pipe pipe;
3102 
3103 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3104 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3105 
3106 	for_each_pipe(dev_priv, pipe)
3107 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3108 
3109 	GEN5_IRQ_RESET(VLV_);
3110 }
3111 
3112 static void valleyview_irq_preinstall(struct drm_device *dev)
3113 {
3114 	struct drm_i915_private *dev_priv = dev->dev_private;
3115 
3116 	/* VLV magic */
3117 	I915_WRITE(VLV_IMR, 0);
3118 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3119 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3120 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3121 
3122 	gen5_gt_irq_reset(dev);
3123 
3124 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3125 
3126 	vlv_display_irq_reset(dev_priv);
3127 }
3128 
3129 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3130 {
3131 	GEN8_IRQ_RESET_NDX(GT, 0);
3132 	GEN8_IRQ_RESET_NDX(GT, 1);
3133 	GEN8_IRQ_RESET_NDX(GT, 2);
3134 	GEN8_IRQ_RESET_NDX(GT, 3);
3135 }
3136 
3137 static void gen8_irq_reset(struct drm_device *dev)
3138 {
3139 	struct drm_i915_private *dev_priv = dev->dev_private;
3140 	int pipe;
3141 
3142 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3143 	POSTING_READ(GEN8_MASTER_IRQ);
3144 
3145 	gen8_gt_irq_reset(dev_priv);
3146 
3147 	for_each_pipe(dev_priv, pipe)
3148 		if (intel_display_power_is_enabled(dev_priv,
3149 						   POWER_DOMAIN_PIPE(pipe)))
3150 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3151 
3152 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3153 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3154 	GEN5_IRQ_RESET(GEN8_PCU_);
3155 
3156 	if (HAS_PCH_SPLIT(dev))
3157 		ibx_irq_reset(dev);
3158 }
3159 
3160 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3161 				     unsigned int pipe_mask)
3162 {
3163 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3164 
3165 	spin_lock_irq(&dev_priv->irq_lock);
3166 	if (pipe_mask & 1 << PIPE_A)
3167 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3168 				  dev_priv->de_irq_mask[PIPE_A],
3169 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3170 	if (pipe_mask & 1 << PIPE_B)
3171 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3172 				  dev_priv->de_irq_mask[PIPE_B],
3173 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3174 	if (pipe_mask & 1 << PIPE_C)
3175 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3176 				  dev_priv->de_irq_mask[PIPE_C],
3177 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3178 	spin_unlock_irq(&dev_priv->irq_lock);
3179 }
3180 
3181 static void cherryview_irq_preinstall(struct drm_device *dev)
3182 {
3183 	struct drm_i915_private *dev_priv = dev->dev_private;
3184 
3185 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3186 	POSTING_READ(GEN8_MASTER_IRQ);
3187 
3188 	gen8_gt_irq_reset(dev_priv);
3189 
3190 	GEN5_IRQ_RESET(GEN8_PCU_);
3191 
3192 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3193 
3194 	vlv_display_irq_reset(dev_priv);
3195 }
3196 
3197 static void ibx_hpd_irq_setup(struct drm_device *dev)
3198 {
3199 	struct drm_i915_private *dev_priv = dev->dev_private;
3200 	struct intel_encoder *intel_encoder;
3201 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3202 
3203 	if (HAS_PCH_IBX(dev)) {
3204 		hotplug_irqs = SDE_HOTPLUG_MASK;
3205 		for_each_intel_encoder(dev, intel_encoder)
3206 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3207 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3208 	} else {
3209 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3210 		for_each_intel_encoder(dev, intel_encoder)
3211 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3212 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3213 	}
3214 
3215 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3216 
3217 	/*
3218 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3219 	 * duration to 2ms (which is the minimum in the Display Port spec)
3220 	 *
3221 	 * This register is the same on all known PCH chips.
3222 	 */
3223 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3224 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3225 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3226 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3227 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3228 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3229 }
3230 
3231 static void bxt_hpd_irq_setup(struct drm_device *dev)
3232 {
3233 	struct drm_i915_private *dev_priv = dev->dev_private;
3234 	struct intel_encoder *intel_encoder;
3235 	u32 hotplug_port = 0;
3236 	u32 hotplug_ctrl;
3237 
3238 	/* Now, enable HPD */
3239 	for_each_intel_encoder(dev, intel_encoder) {
3240 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark
3241 				== HPD_ENABLED)
3242 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3243 	}
3244 
3245 	/* Mask all HPD control bits */
3246 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3247 
3248 	/* Enable requested port in hotplug control */
3249 	/* TODO: implement (short) HPD support on port A */
3250 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3251 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3252 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3253 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3254 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3255 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3256 
3257 	/* Unmask DDI hotplug in IMR */
3258 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3259 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3260 
3261 	/* Enable DDI hotplug in IER */
3262 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3263 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3264 	POSTING_READ(GEN8_DE_PORT_IER);
3265 }
3266 
3267 static void ibx_irq_postinstall(struct drm_device *dev)
3268 {
3269 	struct drm_i915_private *dev_priv = dev->dev_private;
3270 	u32 mask;
3271 
3272 	if (HAS_PCH_NOP(dev))
3273 		return;
3274 
3275 	if (HAS_PCH_IBX(dev))
3276 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3277 	else
3278 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3279 
3280 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3281 	I915_WRITE(SDEIMR, ~mask);
3282 }
3283 
3284 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3285 {
3286 	struct drm_i915_private *dev_priv = dev->dev_private;
3287 	u32 pm_irqs, gt_irqs;
3288 
3289 	pm_irqs = gt_irqs = 0;
3290 
3291 	dev_priv->gt_irq_mask = ~0;
3292 	if (HAS_L3_DPF(dev)) {
3293 		/* L3 parity interrupt is always unmasked. */
3294 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3295 		gt_irqs |= GT_PARITY_ERROR(dev);
3296 	}
3297 
3298 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3299 	if (IS_GEN5(dev)) {
3300 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3301 			   ILK_BSD_USER_INTERRUPT;
3302 	} else {
3303 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3304 	}
3305 
3306 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3307 
3308 	if (INTEL_INFO(dev)->gen >= 6) {
3309 		/*
3310 		 * RPS interrupts will get enabled/disabled on demand when RPS
3311 		 * itself is enabled/disabled.
3312 		 */
3313 		if (HAS_VEBOX(dev))
3314 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3315 
3316 		dev_priv->pm_irq_mask = 0xffffffff;
3317 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3318 	}
3319 }
3320 
3321 static int ironlake_irq_postinstall(struct drm_device *dev)
3322 {
3323 	struct drm_i915_private *dev_priv = dev->dev_private;
3324 	u32 display_mask, extra_mask;
3325 
3326 	if (INTEL_INFO(dev)->gen >= 7) {
3327 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3328 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3329 				DE_PLANEB_FLIP_DONE_IVB |
3330 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3331 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3332 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3333 	} else {
3334 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3335 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3336 				DE_AUX_CHANNEL_A |
3337 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3338 				DE_POISON);
3339 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3340 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3341 	}
3342 
3343 	dev_priv->irq_mask = ~display_mask;
3344 
3345 	I915_WRITE(HWSTAM, 0xeffe);
3346 
3347 	ibx_irq_pre_postinstall(dev);
3348 
3349 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3350 
3351 	gen5_gt_irq_postinstall(dev);
3352 
3353 	ibx_irq_postinstall(dev);
3354 
3355 	if (IS_IRONLAKE_M(dev)) {
3356 		/* Enable PCU event interrupts
3357 		 *
3358 		 * spinlocking not required here for correctness since interrupt
3359 		 * setup is guaranteed to run in single-threaded context. But we
3360 		 * need it to make the assert_spin_locked happy. */
3361 		spin_lock_irq(&dev_priv->irq_lock);
3362 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3363 		spin_unlock_irq(&dev_priv->irq_lock);
3364 	}
3365 
3366 	return 0;
3367 }
3368 
3369 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3370 {
3371 	u32 pipestat_mask;
3372 	u32 iir_mask;
3373 	enum pipe pipe;
3374 
3375 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3376 			PIPE_FIFO_UNDERRUN_STATUS;
3377 
3378 	for_each_pipe(dev_priv, pipe)
3379 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3380 	POSTING_READ(PIPESTAT(PIPE_A));
3381 
3382 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3383 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3384 
3385 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3386 	for_each_pipe(dev_priv, pipe)
3387 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3388 
3389 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3390 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3391 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3392 	if (IS_CHERRYVIEW(dev_priv))
3393 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3394 	dev_priv->irq_mask &= ~iir_mask;
3395 
3396 	I915_WRITE(VLV_IIR, iir_mask);
3397 	I915_WRITE(VLV_IIR, iir_mask);
3398 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3399 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3400 	POSTING_READ(VLV_IMR);
3401 }
3402 
3403 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3404 {
3405 	u32 pipestat_mask;
3406 	u32 iir_mask;
3407 	enum pipe pipe;
3408 
3409 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3410 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3411 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3412 	if (IS_CHERRYVIEW(dev_priv))
3413 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3414 
3415 	dev_priv->irq_mask |= iir_mask;
3416 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3417 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3418 	I915_WRITE(VLV_IIR, iir_mask);
3419 	I915_WRITE(VLV_IIR, iir_mask);
3420 	POSTING_READ(VLV_IIR);
3421 
3422 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3423 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3424 
3425 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3426 	for_each_pipe(dev_priv, pipe)
3427 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3428 
3429 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3430 			PIPE_FIFO_UNDERRUN_STATUS;
3431 
3432 	for_each_pipe(dev_priv, pipe)
3433 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3434 	POSTING_READ(PIPESTAT(PIPE_A));
3435 }
3436 
3437 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3438 {
3439 	assert_spin_locked(&dev_priv->irq_lock);
3440 
3441 	if (dev_priv->display_irqs_enabled)
3442 		return;
3443 
3444 	dev_priv->display_irqs_enabled = true;
3445 
3446 	if (intel_irqs_enabled(dev_priv))
3447 		valleyview_display_irqs_install(dev_priv);
3448 }
3449 
3450 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3451 {
3452 	assert_spin_locked(&dev_priv->irq_lock);
3453 
3454 	if (!dev_priv->display_irqs_enabled)
3455 		return;
3456 
3457 	dev_priv->display_irqs_enabled = false;
3458 
3459 	if (intel_irqs_enabled(dev_priv))
3460 		valleyview_display_irqs_uninstall(dev_priv);
3461 }
3462 
3463 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3464 {
3465 	dev_priv->irq_mask = ~0;
3466 
3467 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3468 	POSTING_READ(PORT_HOTPLUG_EN);
3469 
3470 	I915_WRITE(VLV_IIR, 0xffffffff);
3471 	I915_WRITE(VLV_IIR, 0xffffffff);
3472 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3473 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3474 	POSTING_READ(VLV_IMR);
3475 
3476 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3477 	 * just to make the assert_spin_locked check happy. */
3478 	spin_lock_irq(&dev_priv->irq_lock);
3479 	if (dev_priv->display_irqs_enabled)
3480 		valleyview_display_irqs_install(dev_priv);
3481 	spin_unlock_irq(&dev_priv->irq_lock);
3482 }
3483 
3484 static int valleyview_irq_postinstall(struct drm_device *dev)
3485 {
3486 	struct drm_i915_private *dev_priv = dev->dev_private;
3487 
3488 	vlv_display_irq_postinstall(dev_priv);
3489 
3490 	gen5_gt_irq_postinstall(dev);
3491 
3492 	/* ack & enable invalid PTE error interrupts */
3493 #if 0 /* FIXME: add support to irq handler for checking these bits */
3494 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3495 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3496 #endif
3497 
3498 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3499 
3500 	return 0;
3501 }
3502 
3503 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3504 {
3505 	/* These are interrupts we'll toggle with the ring mask register */
3506 	uint32_t gt_interrupts[] = {
3507 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3508 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3509 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3510 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3511 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3512 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3513 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3514 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3515 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3516 		0,
3517 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3518 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3519 		};
3520 
3521 	dev_priv->pm_irq_mask = 0xffffffff;
3522 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3523 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3524 	/*
3525 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3526 	 * is enabled/disabled.
3527 	 */
3528 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3529 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3530 }
3531 
3532 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3533 {
3534 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3535 	uint32_t de_pipe_enables;
3536 	int pipe;
3537 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3538 
3539 	if (IS_GEN9(dev_priv)) {
3540 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3541 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3542 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3543 			GEN9_AUX_CHANNEL_D;
3544 
3545 		if (IS_BROXTON(dev_priv))
3546 			de_port_en |= BXT_DE_PORT_GMBUS;
3547 	} else
3548 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3549 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3550 
3551 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3552 					   GEN8_PIPE_FIFO_UNDERRUN;
3553 
3554 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3555 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3556 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3557 
3558 	for_each_pipe(dev_priv, pipe)
3559 		if (intel_display_power_is_enabled(dev_priv,
3560 				POWER_DOMAIN_PIPE(pipe)))
3561 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3562 					  dev_priv->de_irq_mask[pipe],
3563 					  de_pipe_enables);
3564 
3565 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3566 }
3567 
3568 static int gen8_irq_postinstall(struct drm_device *dev)
3569 {
3570 	struct drm_i915_private *dev_priv = dev->dev_private;
3571 
3572 	if (HAS_PCH_SPLIT(dev))
3573 		ibx_irq_pre_postinstall(dev);
3574 
3575 	gen8_gt_irq_postinstall(dev_priv);
3576 	gen8_de_irq_postinstall(dev_priv);
3577 
3578 	if (HAS_PCH_SPLIT(dev))
3579 		ibx_irq_postinstall(dev);
3580 
3581 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3582 	POSTING_READ(GEN8_MASTER_IRQ);
3583 
3584 	return 0;
3585 }
3586 
3587 static int cherryview_irq_postinstall(struct drm_device *dev)
3588 {
3589 	struct drm_i915_private *dev_priv = dev->dev_private;
3590 
3591 	vlv_display_irq_postinstall(dev_priv);
3592 
3593 	gen8_gt_irq_postinstall(dev_priv);
3594 
3595 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3596 	POSTING_READ(GEN8_MASTER_IRQ);
3597 
3598 	return 0;
3599 }
3600 
3601 static void gen8_irq_uninstall(struct drm_device *dev)
3602 {
3603 	struct drm_i915_private *dev_priv = dev->dev_private;
3604 
3605 	if (!dev_priv)
3606 		return;
3607 
3608 	gen8_irq_reset(dev);
3609 }
3610 
3611 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3612 {
3613 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3614 	 * just to make the assert_spin_locked check happy. */
3615 	spin_lock_irq(&dev_priv->irq_lock);
3616 	if (dev_priv->display_irqs_enabled)
3617 		valleyview_display_irqs_uninstall(dev_priv);
3618 	spin_unlock_irq(&dev_priv->irq_lock);
3619 
3620 	vlv_display_irq_reset(dev_priv);
3621 
3622 	dev_priv->irq_mask = ~0;
3623 }
3624 
3625 static void valleyview_irq_uninstall(struct drm_device *dev)
3626 {
3627 	struct drm_i915_private *dev_priv = dev->dev_private;
3628 
3629 	if (!dev_priv)
3630 		return;
3631 
3632 	I915_WRITE(VLV_MASTER_IER, 0);
3633 
3634 	gen5_gt_irq_reset(dev);
3635 
3636 	I915_WRITE(HWSTAM, 0xffffffff);
3637 
3638 	vlv_display_irq_uninstall(dev_priv);
3639 }
3640 
3641 static void cherryview_irq_uninstall(struct drm_device *dev)
3642 {
3643 	struct drm_i915_private *dev_priv = dev->dev_private;
3644 
3645 	if (!dev_priv)
3646 		return;
3647 
3648 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3649 	POSTING_READ(GEN8_MASTER_IRQ);
3650 
3651 	gen8_gt_irq_reset(dev_priv);
3652 
3653 	GEN5_IRQ_RESET(GEN8_PCU_);
3654 
3655 	vlv_display_irq_uninstall(dev_priv);
3656 }
3657 
3658 static void ironlake_irq_uninstall(struct drm_device *dev)
3659 {
3660 	struct drm_i915_private *dev_priv = dev->dev_private;
3661 
3662 	if (!dev_priv)
3663 		return;
3664 
3665 	ironlake_irq_reset(dev);
3666 }
3667 
3668 static void i8xx_irq_preinstall(struct drm_device * dev)
3669 {
3670 	struct drm_i915_private *dev_priv = dev->dev_private;
3671 	int pipe;
3672 
3673 	for_each_pipe(dev_priv, pipe)
3674 		I915_WRITE(PIPESTAT(pipe), 0);
3675 	I915_WRITE16(IMR, 0xffff);
3676 	I915_WRITE16(IER, 0x0);
3677 	POSTING_READ16(IER);
3678 }
3679 
3680 static int i8xx_irq_postinstall(struct drm_device *dev)
3681 {
3682 	struct drm_i915_private *dev_priv = dev->dev_private;
3683 
3684 	I915_WRITE16(EMR,
3685 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3686 
3687 	/* Unmask the interrupts that we always want on. */
3688 	dev_priv->irq_mask =
3689 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3690 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3691 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3692 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3693 	I915_WRITE16(IMR, dev_priv->irq_mask);
3694 
3695 	I915_WRITE16(IER,
3696 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3697 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3698 		     I915_USER_INTERRUPT);
3699 	POSTING_READ16(IER);
3700 
3701 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3702 	 * just to make the assert_spin_locked check happy. */
3703 	spin_lock_irq(&dev_priv->irq_lock);
3704 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3705 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706 	spin_unlock_irq(&dev_priv->irq_lock);
3707 
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Returns true when a page flip has completed.
3713  */
3714 static bool i8xx_handle_vblank(struct drm_device *dev,
3715 			       int plane, int pipe, u32 iir)
3716 {
3717 	struct drm_i915_private *dev_priv = dev->dev_private;
3718 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3719 
3720 	if (!intel_pipe_handle_vblank(dev, pipe))
3721 		return false;
3722 
3723 	if ((iir & flip_pending) == 0)
3724 		goto check_page_flip;
3725 
3726 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3727 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3728 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3729 	 * the flip is completed (no longer pending). Since this doesn't raise
3730 	 * an interrupt per se, we watch for the change at vblank.
3731 	 */
3732 	if (I915_READ16(ISR) & flip_pending)
3733 		goto check_page_flip;
3734 
3735 	intel_prepare_page_flip(dev, plane);
3736 	intel_finish_page_flip(dev, pipe);
3737 	return true;
3738 
3739 check_page_flip:
3740 	intel_check_page_flip(dev, pipe);
3741 	return false;
3742 }
3743 
3744 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3745 {
3746 	struct drm_device *dev = arg;
3747 	struct drm_i915_private *dev_priv = dev->dev_private;
3748 	u16 iir, new_iir;
3749 	u32 pipe_stats[2];
3750 	int pipe;
3751 	u16 flip_mask =
3752 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3753 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3754 
3755 	if (!intel_irqs_enabled(dev_priv))
3756 		return IRQ_NONE;
3757 
3758 	iir = I915_READ16(IIR);
3759 	if (iir == 0)
3760 		return IRQ_NONE;
3761 
3762 	while (iir & ~flip_mask) {
3763 		/* Can't rely on pipestat interrupt bit in iir as it might
3764 		 * have been cleared after the pipestat interrupt was received.
3765 		 * It doesn't set the bit in iir again, but it still produces
3766 		 * interrupts (for non-MSI).
3767 		 */
3768 		spin_lock(&dev_priv->irq_lock);
3769 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3770 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3771 
3772 		for_each_pipe(dev_priv, pipe) {
3773 			int reg = PIPESTAT(pipe);
3774 			pipe_stats[pipe] = I915_READ(reg);
3775 
3776 			/*
3777 			 * Clear the PIPE*STAT regs before the IIR
3778 			 */
3779 			if (pipe_stats[pipe] & 0x8000ffff)
3780 				I915_WRITE(reg, pipe_stats[pipe]);
3781 		}
3782 		spin_unlock(&dev_priv->irq_lock);
3783 
3784 		I915_WRITE16(IIR, iir & ~flip_mask);
3785 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3786 
3787 		if (iir & I915_USER_INTERRUPT)
3788 			notify_ring(&dev_priv->ring[RCS]);
3789 
3790 		for_each_pipe(dev_priv, pipe) {
3791 			int plane = pipe;
3792 			if (HAS_FBC(dev))
3793 				plane = !plane;
3794 
3795 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3796 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3797 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3798 
3799 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3800 				i9xx_pipe_crc_irq_handler(dev, pipe);
3801 
3802 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3803 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3804 								    pipe);
3805 		}
3806 
3807 		iir = new_iir;
3808 	}
3809 
3810 	return IRQ_HANDLED;
3811 }
3812 
3813 static void i8xx_irq_uninstall(struct drm_device * dev)
3814 {
3815 	struct drm_i915_private *dev_priv = dev->dev_private;
3816 	int pipe;
3817 
3818 	for_each_pipe(dev_priv, pipe) {
3819 		/* Clear enable bits; then clear status bits */
3820 		I915_WRITE(PIPESTAT(pipe), 0);
3821 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3822 	}
3823 	I915_WRITE16(IMR, 0xffff);
3824 	I915_WRITE16(IER, 0x0);
3825 	I915_WRITE16(IIR, I915_READ16(IIR));
3826 }
3827 
3828 static void i915_irq_preinstall(struct drm_device * dev)
3829 {
3830 	struct drm_i915_private *dev_priv = dev->dev_private;
3831 	int pipe;
3832 
3833 	if (I915_HAS_HOTPLUG(dev)) {
3834 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3835 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3836 	}
3837 
3838 	I915_WRITE16(HWSTAM, 0xeffe);
3839 	for_each_pipe(dev_priv, pipe)
3840 		I915_WRITE(PIPESTAT(pipe), 0);
3841 	I915_WRITE(IMR, 0xffffffff);
3842 	I915_WRITE(IER, 0x0);
3843 	POSTING_READ(IER);
3844 }
3845 
3846 static int i915_irq_postinstall(struct drm_device *dev)
3847 {
3848 	struct drm_i915_private *dev_priv = dev->dev_private;
3849 	u32 enable_mask;
3850 
3851 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3852 
3853 	/* Unmask the interrupts that we always want on. */
3854 	dev_priv->irq_mask =
3855 		~(I915_ASLE_INTERRUPT |
3856 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3857 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3858 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3859 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3860 
3861 	enable_mask =
3862 		I915_ASLE_INTERRUPT |
3863 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3864 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3865 		I915_USER_INTERRUPT;
3866 
3867 	if (I915_HAS_HOTPLUG(dev)) {
3868 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3869 		POSTING_READ(PORT_HOTPLUG_EN);
3870 
3871 		/* Enable in IER... */
3872 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3873 		/* and unmask in IMR */
3874 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3875 	}
3876 
3877 	I915_WRITE(IMR, dev_priv->irq_mask);
3878 	I915_WRITE(IER, enable_mask);
3879 	POSTING_READ(IER);
3880 
3881 	i915_enable_asle_pipestat(dev);
3882 
3883 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3884 	 * just to make the assert_spin_locked check happy. */
3885 	spin_lock_irq(&dev_priv->irq_lock);
3886 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3887 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3888 	spin_unlock_irq(&dev_priv->irq_lock);
3889 
3890 	return 0;
3891 }
3892 
3893 /*
3894  * Returns true when a page flip has completed.
3895  */
3896 static bool i915_handle_vblank(struct drm_device *dev,
3897 			       int plane, int pipe, u32 iir)
3898 {
3899 	struct drm_i915_private *dev_priv = dev->dev_private;
3900 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3901 
3902 	if (!intel_pipe_handle_vblank(dev, pipe))
3903 		return false;
3904 
3905 	if ((iir & flip_pending) == 0)
3906 		goto check_page_flip;
3907 
3908 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3909 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3910 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3911 	 * the flip is completed (no longer pending). Since this doesn't raise
3912 	 * an interrupt per se, we watch for the change at vblank.
3913 	 */
3914 	if (I915_READ(ISR) & flip_pending)
3915 		goto check_page_flip;
3916 
3917 	intel_prepare_page_flip(dev, plane);
3918 	intel_finish_page_flip(dev, pipe);
3919 	return true;
3920 
3921 check_page_flip:
3922 	intel_check_page_flip(dev, pipe);
3923 	return false;
3924 }
3925 
3926 static irqreturn_t i915_irq_handler(int irq, void *arg)
3927 {
3928 	struct drm_device *dev = arg;
3929 	struct drm_i915_private *dev_priv = dev->dev_private;
3930 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3931 	u32 flip_mask =
3932 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3933 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3934 	int pipe, ret = IRQ_NONE;
3935 
3936 	if (!intel_irqs_enabled(dev_priv))
3937 		return IRQ_NONE;
3938 
3939 	iir = I915_READ(IIR);
3940 	do {
3941 		bool irq_received = (iir & ~flip_mask) != 0;
3942 		bool blc_event = false;
3943 
3944 		/* Can't rely on pipestat interrupt bit in iir as it might
3945 		 * have been cleared after the pipestat interrupt was received.
3946 		 * It doesn't set the bit in iir again, but it still produces
3947 		 * interrupts (for non-MSI).
3948 		 */
3949 		spin_lock(&dev_priv->irq_lock);
3950 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3951 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3952 
3953 		for_each_pipe(dev_priv, pipe) {
3954 			int reg = PIPESTAT(pipe);
3955 			pipe_stats[pipe] = I915_READ(reg);
3956 
3957 			/* Clear the PIPE*STAT regs before the IIR */
3958 			if (pipe_stats[pipe] & 0x8000ffff) {
3959 				I915_WRITE(reg, pipe_stats[pipe]);
3960 				irq_received = true;
3961 			}
3962 		}
3963 		spin_unlock(&dev_priv->irq_lock);
3964 
3965 		if (!irq_received)
3966 			break;
3967 
3968 		/* Consume port.  Then clear IIR or we'll miss events */
3969 		if (I915_HAS_HOTPLUG(dev) &&
3970 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3971 			i9xx_hpd_irq_handler(dev);
3972 
3973 		I915_WRITE(IIR, iir & ~flip_mask);
3974 		new_iir = I915_READ(IIR); /* Flush posted writes */
3975 
3976 		if (iir & I915_USER_INTERRUPT)
3977 			notify_ring(&dev_priv->ring[RCS]);
3978 
3979 		for_each_pipe(dev_priv, pipe) {
3980 			int plane = pipe;
3981 			if (HAS_FBC(dev))
3982 				plane = !plane;
3983 
3984 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3985 			    i915_handle_vblank(dev, plane, pipe, iir))
3986 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3987 
3988 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3989 				blc_event = true;
3990 
3991 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3992 				i9xx_pipe_crc_irq_handler(dev, pipe);
3993 
3994 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3995 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3996 								    pipe);
3997 		}
3998 
3999 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4000 			intel_opregion_asle_intr(dev);
4001 
4002 		/* With MSI, interrupts are only generated when iir
4003 		 * transitions from zero to nonzero.  If another bit got
4004 		 * set while we were handling the existing iir bits, then
4005 		 * we would never get another interrupt.
4006 		 *
4007 		 * This is fine on non-MSI as well, as if we hit this path
4008 		 * we avoid exiting the interrupt handler only to generate
4009 		 * another one.
4010 		 *
4011 		 * Note that for MSI this could cause a stray interrupt report
4012 		 * if an interrupt landed in the time between writing IIR and
4013 		 * the posting read.  This should be rare enough to never
4014 		 * trigger the 99% of 100,000 interrupts test for disabling
4015 		 * stray interrupts.
4016 		 */
4017 		ret = IRQ_HANDLED;
4018 		iir = new_iir;
4019 	} while (iir & ~flip_mask);
4020 
4021 	return ret;
4022 }
4023 
4024 static void i915_irq_uninstall(struct drm_device * dev)
4025 {
4026 	struct drm_i915_private *dev_priv = dev->dev_private;
4027 	int pipe;
4028 
4029 	if (I915_HAS_HOTPLUG(dev)) {
4030 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4031 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4032 	}
4033 
4034 	I915_WRITE16(HWSTAM, 0xffff);
4035 	for_each_pipe(dev_priv, pipe) {
4036 		/* Clear enable bits; then clear status bits */
4037 		I915_WRITE(PIPESTAT(pipe), 0);
4038 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4039 	}
4040 	I915_WRITE(IMR, 0xffffffff);
4041 	I915_WRITE(IER, 0x0);
4042 
4043 	I915_WRITE(IIR, I915_READ(IIR));
4044 }
4045 
4046 static void i965_irq_preinstall(struct drm_device * dev)
4047 {
4048 	struct drm_i915_private *dev_priv = dev->dev_private;
4049 	int pipe;
4050 
4051 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4052 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4053 
4054 	I915_WRITE(HWSTAM, 0xeffe);
4055 	for_each_pipe(dev_priv, pipe)
4056 		I915_WRITE(PIPESTAT(pipe), 0);
4057 	I915_WRITE(IMR, 0xffffffff);
4058 	I915_WRITE(IER, 0x0);
4059 	POSTING_READ(IER);
4060 }
4061 
4062 static int i965_irq_postinstall(struct drm_device *dev)
4063 {
4064 	struct drm_i915_private *dev_priv = dev->dev_private;
4065 	u32 enable_mask;
4066 	u32 error_mask;
4067 
4068 	/* Unmask the interrupts that we always want on. */
4069 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4070 			       I915_DISPLAY_PORT_INTERRUPT |
4071 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4072 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4073 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4074 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4075 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4076 
4077 	enable_mask = ~dev_priv->irq_mask;
4078 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4079 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4080 	enable_mask |= I915_USER_INTERRUPT;
4081 
4082 	if (IS_G4X(dev))
4083 		enable_mask |= I915_BSD_USER_INTERRUPT;
4084 
4085 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4086 	 * just to make the assert_spin_locked check happy. */
4087 	spin_lock_irq(&dev_priv->irq_lock);
4088 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4089 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4090 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4091 	spin_unlock_irq(&dev_priv->irq_lock);
4092 
4093 	/*
4094 	 * Enable some error detection, note the instruction error mask
4095 	 * bit is reserved, so we leave it masked.
4096 	 */
4097 	if (IS_G4X(dev)) {
4098 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4099 			       GM45_ERROR_MEM_PRIV |
4100 			       GM45_ERROR_CP_PRIV |
4101 			       I915_ERROR_MEMORY_REFRESH);
4102 	} else {
4103 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4104 			       I915_ERROR_MEMORY_REFRESH);
4105 	}
4106 	I915_WRITE(EMR, error_mask);
4107 
4108 	I915_WRITE(IMR, dev_priv->irq_mask);
4109 	I915_WRITE(IER, enable_mask);
4110 	POSTING_READ(IER);
4111 
4112 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4113 	POSTING_READ(PORT_HOTPLUG_EN);
4114 
4115 	i915_enable_asle_pipestat(dev);
4116 
4117 	return 0;
4118 }
4119 
4120 static void i915_hpd_irq_setup(struct drm_device *dev)
4121 {
4122 	struct drm_i915_private *dev_priv = dev->dev_private;
4123 	struct intel_encoder *intel_encoder;
4124 	u32 hotplug_en;
4125 
4126 	assert_spin_locked(&dev_priv->irq_lock);
4127 
4128 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4129 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4130 	/* Note HDMI and DP share hotplug bits */
4131 	/* enable bits are the same for all generations */
4132 	for_each_intel_encoder(dev, intel_encoder)
4133 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4134 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4135 	/* Programming the CRT detection parameters tends
4136 	   to generate a spurious hotplug event about three
4137 	   seconds later.  So just do it once.
4138 	*/
4139 	if (IS_G4X(dev))
4140 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4141 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4142 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4143 
4144 	/* Ignore TV since it's buggy */
4145 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4146 }
4147 
4148 static irqreturn_t i965_irq_handler(int irq, void *arg)
4149 {
4150 	struct drm_device *dev = arg;
4151 	struct drm_i915_private *dev_priv = dev->dev_private;
4152 	u32 iir, new_iir;
4153 	u32 pipe_stats[I915_MAX_PIPES];
4154 	int ret = IRQ_NONE, pipe;
4155 	u32 flip_mask =
4156 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4157 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4158 
4159 	if (!intel_irqs_enabled(dev_priv))
4160 		return IRQ_NONE;
4161 
4162 	iir = I915_READ(IIR);
4163 
4164 	for (;;) {
4165 		bool irq_received = (iir & ~flip_mask) != 0;
4166 		bool blc_event = false;
4167 
4168 		/* Can't rely on pipestat interrupt bit in iir as it might
4169 		 * have been cleared after the pipestat interrupt was received.
4170 		 * It doesn't set the bit in iir again, but it still produces
4171 		 * interrupts (for non-MSI).
4172 		 */
4173 		spin_lock(&dev_priv->irq_lock);
4174 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4175 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4176 
4177 		for_each_pipe(dev_priv, pipe) {
4178 			int reg = PIPESTAT(pipe);
4179 			pipe_stats[pipe] = I915_READ(reg);
4180 
4181 			/*
4182 			 * Clear the PIPE*STAT regs before the IIR
4183 			 */
4184 			if (pipe_stats[pipe] & 0x8000ffff) {
4185 				I915_WRITE(reg, pipe_stats[pipe]);
4186 				irq_received = true;
4187 			}
4188 		}
4189 		spin_unlock(&dev_priv->irq_lock);
4190 
4191 		if (!irq_received)
4192 			break;
4193 
4194 		ret = IRQ_HANDLED;
4195 
4196 		/* Consume port.  Then clear IIR or we'll miss events */
4197 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4198 			i9xx_hpd_irq_handler(dev);
4199 
4200 		I915_WRITE(IIR, iir & ~flip_mask);
4201 		new_iir = I915_READ(IIR); /* Flush posted writes */
4202 
4203 		if (iir & I915_USER_INTERRUPT)
4204 			notify_ring(&dev_priv->ring[RCS]);
4205 		if (iir & I915_BSD_USER_INTERRUPT)
4206 			notify_ring(&dev_priv->ring[VCS]);
4207 
4208 		for_each_pipe(dev_priv, pipe) {
4209 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4210 			    i915_handle_vblank(dev, pipe, pipe, iir))
4211 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4212 
4213 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4214 				blc_event = true;
4215 
4216 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4217 				i9xx_pipe_crc_irq_handler(dev, pipe);
4218 
4219 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4220 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4221 		}
4222 
4223 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4224 			intel_opregion_asle_intr(dev);
4225 
4226 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4227 			gmbus_irq_handler(dev);
4228 
4229 		/* With MSI, interrupts are only generated when iir
4230 		 * transitions from zero to nonzero.  If another bit got
4231 		 * set while we were handling the existing iir bits, then
4232 		 * we would never get another interrupt.
4233 		 *
4234 		 * This is fine on non-MSI as well, as if we hit this path
4235 		 * we avoid exiting the interrupt handler only to generate
4236 		 * another one.
4237 		 *
4238 		 * Note that for MSI this could cause a stray interrupt report
4239 		 * if an interrupt landed in the time between writing IIR and
4240 		 * the posting read.  This should be rare enough to never
4241 		 * trigger the 99% of 100,000 interrupts test for disabling
4242 		 * stray interrupts.
4243 		 */
4244 		iir = new_iir;
4245 	}
4246 
4247 	return ret;
4248 }
4249 
4250 static void i965_irq_uninstall(struct drm_device * dev)
4251 {
4252 	struct drm_i915_private *dev_priv = dev->dev_private;
4253 	int pipe;
4254 
4255 	if (!dev_priv)
4256 		return;
4257 
4258 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4259 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4260 
4261 	I915_WRITE(HWSTAM, 0xffffffff);
4262 	for_each_pipe(dev_priv, pipe)
4263 		I915_WRITE(PIPESTAT(pipe), 0);
4264 	I915_WRITE(IMR, 0xffffffff);
4265 	I915_WRITE(IER, 0x0);
4266 
4267 	for_each_pipe(dev_priv, pipe)
4268 		I915_WRITE(PIPESTAT(pipe),
4269 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4270 	I915_WRITE(IIR, I915_READ(IIR));
4271 }
4272 
4273 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4274 {
4275 	struct drm_i915_private *dev_priv =
4276 		container_of(work, typeof(*dev_priv),
4277 			     hotplug_reenable_work.work);
4278 	struct drm_device *dev = dev_priv->dev;
4279 	struct drm_mode_config *mode_config = &dev->mode_config;
4280 	int i;
4281 
4282 	intel_runtime_pm_get(dev_priv);
4283 
4284 	spin_lock_irq(&dev_priv->irq_lock);
4285 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4286 		struct drm_connector *connector;
4287 
4288 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4289 			continue;
4290 
4291 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4292 
4293 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4294 			struct intel_connector *intel_connector = to_intel_connector(connector);
4295 
4296 			if (intel_connector->encoder->hpd_pin == i) {
4297 				if (connector->polled != intel_connector->polled)
4298 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4299 							 connector->name);
4300 				connector->polled = intel_connector->polled;
4301 				if (!connector->polled)
4302 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4303 			}
4304 		}
4305 	}
4306 	if (dev_priv->display.hpd_irq_setup)
4307 		dev_priv->display.hpd_irq_setup(dev);
4308 	spin_unlock_irq(&dev_priv->irq_lock);
4309 
4310 	intel_runtime_pm_put(dev_priv);
4311 }
4312 
4313 /**
4314  * intel_irq_init - initializes irq support
4315  * @dev_priv: i915 device instance
4316  *
4317  * This function initializes all the irq support including work items, timers
4318  * and all the vtables. It does not setup the interrupt itself though.
4319  */
4320 void intel_irq_init(struct drm_i915_private *dev_priv)
4321 {
4322 	struct drm_device *dev = dev_priv->dev;
4323 
4324 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4325 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4326 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4327 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4328 
4329 	/* Let's track the enabled rps events */
4330 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4331 		/* WaGsvRC0ResidencyMethod:vlv */
4332 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4333 	else
4334 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4335 
4336 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4337 			  i915_hangcheck_elapsed);
4338 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4339 			  intel_hpd_irq_reenable_work);
4340 
4341 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4342 
4343 	if (IS_GEN2(dev_priv)) {
4344 		dev->max_vblank_count = 0;
4345 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4346 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4347 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4348 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4349 	} else {
4350 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4351 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4352 	}
4353 
4354 	/*
4355 	 * Opt out of the vblank disable timer on everything except gen2.
4356 	 * Gen2 doesn't have a hardware frame counter and so depends on
4357 	 * vblank interrupts to produce sane vblank seuquence numbers.
4358 	 */
4359 	if (!IS_GEN2(dev_priv))
4360 		dev->vblank_disable_immediate = true;
4361 
4362 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4363 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4364 
4365 	if (IS_CHERRYVIEW(dev_priv)) {
4366 		dev->driver->irq_handler = cherryview_irq_handler;
4367 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4368 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4369 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4370 		dev->driver->enable_vblank = valleyview_enable_vblank;
4371 		dev->driver->disable_vblank = valleyview_disable_vblank;
4372 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4373 	} else if (IS_VALLEYVIEW(dev_priv)) {
4374 		dev->driver->irq_handler = valleyview_irq_handler;
4375 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4376 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4377 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4378 		dev->driver->enable_vblank = valleyview_enable_vblank;
4379 		dev->driver->disable_vblank = valleyview_disable_vblank;
4380 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4381 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4382 		dev->driver->irq_handler = gen8_irq_handler;
4383 		dev->driver->irq_preinstall = gen8_irq_reset;
4384 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4385 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4386 		dev->driver->enable_vblank = gen8_enable_vblank;
4387 		dev->driver->disable_vblank = gen8_disable_vblank;
4388 		if (HAS_PCH_SPLIT(dev))
4389 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390 		else
4391 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4392 	} else if (HAS_PCH_SPLIT(dev)) {
4393 		dev->driver->irq_handler = ironlake_irq_handler;
4394 		dev->driver->irq_preinstall = ironlake_irq_reset;
4395 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4396 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4397 		dev->driver->enable_vblank = ironlake_enable_vblank;
4398 		dev->driver->disable_vblank = ironlake_disable_vblank;
4399 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4400 	} else {
4401 		if (INTEL_INFO(dev_priv)->gen == 2) {
4402 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4403 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4404 			dev->driver->irq_handler = i8xx_irq_handler;
4405 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4406 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4407 			dev->driver->irq_preinstall = i915_irq_preinstall;
4408 			dev->driver->irq_postinstall = i915_irq_postinstall;
4409 			dev->driver->irq_uninstall = i915_irq_uninstall;
4410 			dev->driver->irq_handler = i915_irq_handler;
4411 		} else {
4412 			dev->driver->irq_preinstall = i965_irq_preinstall;
4413 			dev->driver->irq_postinstall = i965_irq_postinstall;
4414 			dev->driver->irq_uninstall = i965_irq_uninstall;
4415 			dev->driver->irq_handler = i965_irq_handler;
4416 		}
4417 		if (I915_HAS_HOTPLUG(dev_priv))
4418 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4419 		dev->driver->enable_vblank = i915_enable_vblank;
4420 		dev->driver->disable_vblank = i915_disable_vblank;
4421 	}
4422 }
4423 
4424 /**
4425  * intel_hpd_init - initializes and enables hpd support
4426  * @dev_priv: i915 device instance
4427  *
4428  * This function enables the hotplug support. It requires that interrupts have
4429  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4430  * poll request can run concurrently to other code, so locking rules must be
4431  * obeyed.
4432  *
4433  * This is a separate step from interrupt enabling to simplify the locking rules
4434  * in the driver load and resume code.
4435  */
4436 void intel_hpd_init(struct drm_i915_private *dev_priv)
4437 {
4438 	struct drm_device *dev = dev_priv->dev;
4439 	struct drm_mode_config *mode_config = &dev->mode_config;
4440 	struct drm_connector *connector;
4441 	int i;
4442 
4443 	for (i = 1; i < HPD_NUM_PINS; i++) {
4444 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4445 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4446 	}
4447 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4448 		struct intel_connector *intel_connector = to_intel_connector(connector);
4449 		connector->polled = intel_connector->polled;
4450 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4451 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4452 		if (intel_connector->mst_port)
4453 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4454 	}
4455 
4456 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4457 	 * just to make the assert_spin_locked checks happy. */
4458 	spin_lock_irq(&dev_priv->irq_lock);
4459 	if (dev_priv->display.hpd_irq_setup)
4460 		dev_priv->display.hpd_irq_setup(dev);
4461 	spin_unlock_irq(&dev_priv->irq_lock);
4462 }
4463 
4464 /**
4465  * intel_irq_install - enables the hardware interrupt
4466  * @dev_priv: i915 device instance
4467  *
4468  * This function enables the hardware interrupt handling, but leaves the hotplug
4469  * handling still disabled. It is called after intel_irq_init().
4470  *
4471  * In the driver load and resume code we need working interrupts in a few places
4472  * but don't want to deal with the hassle of concurrent probe and hotplug
4473  * workers. Hence the split into this two-stage approach.
4474  */
4475 int intel_irq_install(struct drm_i915_private *dev_priv)
4476 {
4477 	/*
4478 	 * We enable some interrupt sources in our postinstall hooks, so mark
4479 	 * interrupts as enabled _before_ actually enabling them to avoid
4480 	 * special cases in our ordering checks.
4481 	 */
4482 	dev_priv->pm.irqs_enabled = true;
4483 
4484 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4485 }
4486 
4487 /**
4488  * intel_irq_uninstall - finilizes all irq handling
4489  * @dev_priv: i915 device instance
4490  *
4491  * This stops interrupt and hotplug handling and unregisters and frees all
4492  * resources acquired in the init functions.
4493  */
4494 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4495 {
4496 	drm_irq_uninstall(dev_priv->dev);
4497 	intel_hpd_cancel_work(dev_priv);
4498 	dev_priv->pm.irqs_enabled = false;
4499 }
4500 
4501 /**
4502  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4503  * @dev_priv: i915 device instance
4504  *
4505  * This function is used to disable interrupts at runtime, both in the runtime
4506  * pm and the system suspend/resume code.
4507  */
4508 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4509 {
4510 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4511 	dev_priv->pm.irqs_enabled = false;
4512 	synchronize_irq(dev_priv->dev->irq);
4513 }
4514 
4515 /**
4516  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4517  * @dev_priv: i915 device instance
4518  *
4519  * This function is used to enable interrupts at runtime, both in the runtime
4520  * pm and the system suspend/resume code.
4521  */
4522 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4523 {
4524 	dev_priv->pm.irqs_enabled = true;
4525 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4526 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4527 }
4528