xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision bf62221e9d0e1e4ba50ab2b331a0008c15de97be)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_de.h"
39 #include "display/intel_display_types.h"
40 #include "display/intel_fifo_underrun.h"
41 #include "display/intel_hotplug.h"
42 #include "display/intel_lpe_audio.h"
43 #include "display/intel_psr.h"
44 
45 #include "gt/intel_breadcrumbs.h"
46 #include "gt/intel_gt.h"
47 #include "gt/intel_gt_irq.h"
48 #include "gt/intel_gt_pm_irq.h"
49 #include "gt/intel_rps.h"
50 
51 #include "i915_drv.h"
52 #include "i915_irq.h"
53 #include "i915_trace.h"
54 #include "intel_pm.h"
55 
56 /**
57  * DOC: interrupt handling
58  *
59  * These functions provide the basic support for enabling and disabling the
60  * interrupt handling support. There's a lot more functionality in i915_irq.c
61  * and related files, but that will be described in separate chapters.
62  */
63 
64 /*
65  * Interrupt statistic for PMU. Increments the counter only if the
66  * interrupt originated from the the GPU so interrupts from a device which
67  * shares the interrupt line are not accounted.
68  */
69 static inline void pmu_irq_stats(struct drm_i915_private *i915,
70 				 irqreturn_t res)
71 {
72 	if (unlikely(res != IRQ_HANDLED))
73 		return;
74 
75 	/*
76 	 * A clever compiler translates that into INC. A not so clever one
77 	 * should at least prevent store tearing.
78 	 */
79 	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
80 }
81 
82 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
83 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
84 				    enum hpd_pin pin);
85 
86 static const u32 hpd_ilk[HPD_NUM_PINS] = {
87 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
88 };
89 
90 static const u32 hpd_ivb[HPD_NUM_PINS] = {
91 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
92 };
93 
94 static const u32 hpd_bdw[HPD_NUM_PINS] = {
95 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
96 };
97 
98 static const u32 hpd_ibx[HPD_NUM_PINS] = {
99 	[HPD_CRT] = SDE_CRT_HOTPLUG,
100 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
101 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
102 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
103 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
104 };
105 
106 static const u32 hpd_cpt[HPD_NUM_PINS] = {
107 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
108 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
109 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
110 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
111 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
112 };
113 
114 static const u32 hpd_spt[HPD_NUM_PINS] = {
115 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
116 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
117 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
118 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
119 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
120 };
121 
122 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
123 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
124 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
125 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
126 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
127 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
128 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
129 };
130 
131 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
132 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
133 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
134 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
135 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
136 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
137 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
138 };
139 
140 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
141 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
142 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
143 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
144 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
145 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
146 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
147 };
148 
149 static const u32 hpd_bxt[HPD_NUM_PINS] = {
150 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
151 	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
152 	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
153 };
154 
155 static const u32 hpd_gen11[HPD_NUM_PINS] = {
156 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
157 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
158 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
159 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
160 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
161 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
162 };
163 
164 static const u32 hpd_icp[HPD_NUM_PINS] = {
165 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
166 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
167 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
168 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
169 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
170 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
171 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
172 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
173 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
174 };
175 
176 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
177 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
178 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
179 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
180 	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
181 };
182 
183 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
184 {
185 	struct i915_hotplug *hpd = &dev_priv->hotplug;
186 
187 	if (HAS_GMCH(dev_priv)) {
188 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
189 		    IS_CHERRYVIEW(dev_priv))
190 			hpd->hpd = hpd_status_g4x;
191 		else
192 			hpd->hpd = hpd_status_i915;
193 		return;
194 	}
195 
196 	if (DISPLAY_VER(dev_priv) >= 11)
197 		hpd->hpd = hpd_gen11;
198 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
199 		hpd->hpd = hpd_bxt;
200 	else if (DISPLAY_VER(dev_priv) >= 8)
201 		hpd->hpd = hpd_bdw;
202 	else if (DISPLAY_VER(dev_priv) >= 7)
203 		hpd->hpd = hpd_ivb;
204 	else
205 		hpd->hpd = hpd_ilk;
206 
207 	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
208 	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
209 		return;
210 
211 	if (HAS_PCH_DG1(dev_priv))
212 		hpd->pch_hpd = hpd_sde_dg1;
213 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
214 		hpd->pch_hpd = hpd_icp;
215 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
216 		hpd->pch_hpd = hpd_spt;
217 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
218 		hpd->pch_hpd = hpd_cpt;
219 	else if (HAS_PCH_IBX(dev_priv))
220 		hpd->pch_hpd = hpd_ibx;
221 	else
222 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
223 }
224 
225 static void
226 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
227 {
228 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
229 
230 	drm_crtc_handle_vblank(&crtc->base);
231 }
232 
233 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
234 		    i915_reg_t iir, i915_reg_t ier)
235 {
236 	intel_uncore_write(uncore, imr, 0xffffffff);
237 	intel_uncore_posting_read(uncore, imr);
238 
239 	intel_uncore_write(uncore, ier, 0);
240 
241 	/* IIR can theoretically queue up two events. Be paranoid. */
242 	intel_uncore_write(uncore, iir, 0xffffffff);
243 	intel_uncore_posting_read(uncore, iir);
244 	intel_uncore_write(uncore, iir, 0xffffffff);
245 	intel_uncore_posting_read(uncore, iir);
246 }
247 
248 void gen2_irq_reset(struct intel_uncore *uncore)
249 {
250 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
251 	intel_uncore_posting_read16(uncore, GEN2_IMR);
252 
253 	intel_uncore_write16(uncore, GEN2_IER, 0);
254 
255 	/* IIR can theoretically queue up two events. Be paranoid. */
256 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
257 	intel_uncore_posting_read16(uncore, GEN2_IIR);
258 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
259 	intel_uncore_posting_read16(uncore, GEN2_IIR);
260 }
261 
262 /*
263  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
264  */
265 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
266 {
267 	u32 val = intel_uncore_read(uncore, reg);
268 
269 	if (val == 0)
270 		return;
271 
272 	drm_WARN(&uncore->i915->drm, 1,
273 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
274 		 i915_mmio_reg_offset(reg), val);
275 	intel_uncore_write(uncore, reg, 0xffffffff);
276 	intel_uncore_posting_read(uncore, reg);
277 	intel_uncore_write(uncore, reg, 0xffffffff);
278 	intel_uncore_posting_read(uncore, reg);
279 }
280 
281 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
282 {
283 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
284 
285 	if (val == 0)
286 		return;
287 
288 	drm_WARN(&uncore->i915->drm, 1,
289 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
290 		 i915_mmio_reg_offset(GEN2_IIR), val);
291 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
292 	intel_uncore_posting_read16(uncore, GEN2_IIR);
293 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
294 	intel_uncore_posting_read16(uncore, GEN2_IIR);
295 }
296 
297 void gen3_irq_init(struct intel_uncore *uncore,
298 		   i915_reg_t imr, u32 imr_val,
299 		   i915_reg_t ier, u32 ier_val,
300 		   i915_reg_t iir)
301 {
302 	gen3_assert_iir_is_zero(uncore, iir);
303 
304 	intel_uncore_write(uncore, ier, ier_val);
305 	intel_uncore_write(uncore, imr, imr_val);
306 	intel_uncore_posting_read(uncore, imr);
307 }
308 
309 void gen2_irq_init(struct intel_uncore *uncore,
310 		   u32 imr_val, u32 ier_val)
311 {
312 	gen2_assert_iir_is_zero(uncore);
313 
314 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
315 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
316 	intel_uncore_posting_read16(uncore, GEN2_IMR);
317 }
318 
319 /* For display hotplug interrupt */
320 static inline void
321 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
322 				     u32 mask,
323 				     u32 bits)
324 {
325 	u32 val;
326 
327 	lockdep_assert_held(&dev_priv->irq_lock);
328 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
329 
330 	val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
331 	val &= ~mask;
332 	val |= bits;
333 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
334 }
335 
336 /**
337  * i915_hotplug_interrupt_update - update hotplug interrupt enable
338  * @dev_priv: driver private
339  * @mask: bits to update
340  * @bits: bits to enable
341  * NOTE: the HPD enable bits are modified both inside and outside
342  * of an interrupt context. To avoid that read-modify-write cycles
343  * interfer, these bits are protected by a spinlock. Since this
344  * function is usually not called from a context where the lock is
345  * held already, this function acquires the lock itself. A non-locking
346  * version is also available.
347  */
348 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
349 				   u32 mask,
350 				   u32 bits)
351 {
352 	spin_lock_irq(&dev_priv->irq_lock);
353 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
354 	spin_unlock_irq(&dev_priv->irq_lock);
355 }
356 
357 /**
358  * ilk_update_display_irq - update DEIMR
359  * @dev_priv: driver private
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
363 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
364 			    u32 interrupt_mask,
365 			    u32 enabled_irq_mask)
366 {
367 	u32 new_val;
368 
369 	lockdep_assert_held(&dev_priv->irq_lock);
370 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
371 
372 	new_val = dev_priv->irq_mask;
373 	new_val &= ~interrupt_mask;
374 	new_val |= (~enabled_irq_mask & interrupt_mask);
375 
376 	if (new_val != dev_priv->irq_mask &&
377 	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
378 		dev_priv->irq_mask = new_val;
379 		intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
380 		intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
381 	}
382 }
383 
384 /**
385  * bdw_update_port_irq - update DE port interrupt
386  * @dev_priv: driver private
387  * @interrupt_mask: mask of interrupt bits to update
388  * @enabled_irq_mask: mask of interrupt bits to enable
389  */
390 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
391 				u32 interrupt_mask,
392 				u32 enabled_irq_mask)
393 {
394 	u32 new_val;
395 	u32 old_val;
396 
397 	lockdep_assert_held(&dev_priv->irq_lock);
398 
399 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
400 
401 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
402 		return;
403 
404 	old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
405 
406 	new_val = old_val;
407 	new_val &= ~interrupt_mask;
408 	new_val |= (~enabled_irq_mask & interrupt_mask);
409 
410 	if (new_val != old_val) {
411 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
412 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
413 	}
414 }
415 
416 /**
417  * bdw_update_pipe_irq - update DE pipe interrupt
418  * @dev_priv: driver private
419  * @pipe: pipe whose interrupt to update
420  * @interrupt_mask: mask of interrupt bits to update
421  * @enabled_irq_mask: mask of interrupt bits to enable
422  */
423 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
424 			 enum pipe pipe,
425 			 u32 interrupt_mask,
426 			 u32 enabled_irq_mask)
427 {
428 	u32 new_val;
429 
430 	lockdep_assert_held(&dev_priv->irq_lock);
431 
432 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
433 
434 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
435 		return;
436 
437 	new_val = dev_priv->de_irq_mask[pipe];
438 	new_val &= ~interrupt_mask;
439 	new_val |= (~enabled_irq_mask & interrupt_mask);
440 
441 	if (new_val != dev_priv->de_irq_mask[pipe]) {
442 		dev_priv->de_irq_mask[pipe] = new_val;
443 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
444 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
445 	}
446 }
447 
448 /**
449  * ibx_display_interrupt_update - update SDEIMR
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
455 				  u32 interrupt_mask,
456 				  u32 enabled_irq_mask)
457 {
458 	u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
459 	sdeimr &= ~interrupt_mask;
460 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
461 
462 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
463 
464 	lockdep_assert_held(&dev_priv->irq_lock);
465 
466 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
467 		return;
468 
469 	intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
470 	intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
471 }
472 
473 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
474 			      enum pipe pipe)
475 {
476 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
477 	u32 enable_mask = status_mask << 16;
478 
479 	lockdep_assert_held(&dev_priv->irq_lock);
480 
481 	if (DISPLAY_VER(dev_priv) < 5)
482 		goto out;
483 
484 	/*
485 	 * On pipe A we don't support the PSR interrupt yet,
486 	 * on pipe B and C the same bit MBZ.
487 	 */
488 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
489 			     status_mask & PIPE_A_PSR_STATUS_VLV))
490 		return 0;
491 	/*
492 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
493 	 * A the same bit is for perf counters which we don't use either.
494 	 */
495 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
496 			     status_mask & PIPE_B_PSR_STATUS_VLV))
497 		return 0;
498 
499 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
500 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
501 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
502 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
503 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
504 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
505 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
506 
507 out:
508 	drm_WARN_ONCE(&dev_priv->drm,
509 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
510 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
511 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
512 		      pipe_name(pipe), enable_mask, status_mask);
513 
514 	return enable_mask;
515 }
516 
517 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
518 			  enum pipe pipe, u32 status_mask)
519 {
520 	i915_reg_t reg = PIPESTAT(pipe);
521 	u32 enable_mask;
522 
523 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
524 		      "pipe %c: status_mask=0x%x\n",
525 		      pipe_name(pipe), status_mask);
526 
527 	lockdep_assert_held(&dev_priv->irq_lock);
528 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
529 
530 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
531 		return;
532 
533 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
534 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
535 
536 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
537 	intel_uncore_posting_read(&dev_priv->uncore, reg);
538 }
539 
540 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
541 			   enum pipe pipe, u32 status_mask)
542 {
543 	i915_reg_t reg = PIPESTAT(pipe);
544 	u32 enable_mask;
545 
546 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
547 		      "pipe %c: status_mask=0x%x\n",
548 		      pipe_name(pipe), status_mask);
549 
550 	lockdep_assert_held(&dev_priv->irq_lock);
551 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
552 
553 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
557 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
558 
559 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
560 	intel_uncore_posting_read(&dev_priv->uncore, reg);
561 }
562 
563 static bool i915_has_asle(struct drm_i915_private *dev_priv)
564 {
565 	if (!dev_priv->opregion.asle)
566 		return false;
567 
568 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
569 }
570 
571 /**
572  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
573  * @dev_priv: i915 device private
574  */
575 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
576 {
577 	if (!i915_has_asle(dev_priv))
578 		return;
579 
580 	spin_lock_irq(&dev_priv->irq_lock);
581 
582 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
583 	if (DISPLAY_VER(dev_priv) >= 4)
584 		i915_enable_pipestat(dev_priv, PIPE_A,
585 				     PIPE_LEGACY_BLC_EVENT_STATUS);
586 
587 	spin_unlock_irq(&dev_priv->irq_lock);
588 }
589 
590 /*
591  * This timing diagram depicts the video signal in and
592  * around the vertical blanking period.
593  *
594  * Assumptions about the fictitious mode used in this example:
595  *  vblank_start >= 3
596  *  vsync_start = vblank_start + 1
597  *  vsync_end = vblank_start + 2
598  *  vtotal = vblank_start + 3
599  *
600  *           start of vblank:
601  *           latch double buffered registers
602  *           increment frame counter (ctg+)
603  *           generate start of vblank interrupt (gen4+)
604  *           |
605  *           |          frame start:
606  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
607  *           |          may be shifted forward 1-3 extra lines via PIPECONF
608  *           |          |
609  *           |          |  start of vsync:
610  *           |          |  generate vsync interrupt
611  *           |          |  |
612  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
613  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
614  * ----va---> <-----------------vb--------------------> <--------va-------------
615  *       |          |       <----vs----->                     |
616  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
617  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
618  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
619  *       |          |                                         |
620  *       last visible pixel                                   first visible pixel
621  *                  |                                         increment frame counter (gen3/4)
622  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
623  *
624  * x  = horizontal active
625  * _  = horizontal blanking
626  * hs = horizontal sync
627  * va = vertical active
628  * vb = vertical blanking
629  * vs = vertical sync
630  * vbs = vblank_start (number)
631  *
632  * Summary:
633  * - most events happen at the start of horizontal sync
634  * - frame start happens at the start of horizontal blank, 1-4 lines
635  *   (depending on PIPECONF settings) after the start of vblank
636  * - gen3/4 pixel and frame counter are synchronized with the start
637  *   of horizontal active on the first line of vertical active
638  */
639 
640 /* Called from drm generic code, passed a 'crtc', which
641  * we use as a pipe index
642  */
643 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
644 {
645 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
646 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
647 	const struct drm_display_mode *mode = &vblank->hwmode;
648 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
649 	i915_reg_t high_frame, low_frame;
650 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
651 	unsigned long irqflags;
652 
653 	/*
654 	 * On i965gm TV output the frame counter only works up to
655 	 * the point when we enable the TV encoder. After that the
656 	 * frame counter ceases to work and reads zero. We need a
657 	 * vblank wait before enabling the TV encoder and so we
658 	 * have to enable vblank interrupts while the frame counter
659 	 * is still in a working state. However the core vblank code
660 	 * does not like us returning non-zero frame counter values
661 	 * when we've told it that we don't have a working frame
662 	 * counter. Thus we must stop non-zero values leaking out.
663 	 */
664 	if (!vblank->max_vblank_count)
665 		return 0;
666 
667 	htotal = mode->crtc_htotal;
668 	hsync_start = mode->crtc_hsync_start;
669 	vbl_start = mode->crtc_vblank_start;
670 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
671 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
672 
673 	/* Convert to pixel count */
674 	vbl_start *= htotal;
675 
676 	/* Start of vblank event occurs at start of hsync */
677 	vbl_start -= htotal - hsync_start;
678 
679 	high_frame = PIPEFRAME(pipe);
680 	low_frame = PIPEFRAMEPIXEL(pipe);
681 
682 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683 
684 	/*
685 	 * High & low register fields aren't synchronized, so make sure
686 	 * we get a low value that's stable across two reads of the high
687 	 * register.
688 	 */
689 	do {
690 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
691 		low   = intel_de_read_fw(dev_priv, low_frame);
692 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
693 	} while (high1 != high2);
694 
695 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
696 
697 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
698 	pixel = low & PIPE_PIXEL_MASK;
699 	low >>= PIPE_FRAME_LOW_SHIFT;
700 
701 	/*
702 	 * The frame counter increments at beginning of active.
703 	 * Cook up a vblank counter by also checking the pixel
704 	 * counter against vblank start.
705 	 */
706 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708 
709 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
710 {
711 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
712 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
713 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
714 
715 	if (!vblank->max_vblank_count)
716 		return 0;
717 
718 	return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
719 }
720 
721 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
722 {
723 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
724 	struct drm_vblank_crtc *vblank =
725 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
726 	const struct drm_display_mode *mode = &vblank->hwmode;
727 	u32 htotal = mode->crtc_htotal;
728 	u32 clock = mode->crtc_clock;
729 	u32 scan_prev_time, scan_curr_time, scan_post_time;
730 
731 	/*
732 	 * To avoid the race condition where we might cross into the
733 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
734 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
735 	 * during the same frame.
736 	 */
737 	do {
738 		/*
739 		 * This field provides read back of the display
740 		 * pipe frame time stamp. The time stamp value
741 		 * is sampled at every start of vertical blank.
742 		 */
743 		scan_prev_time = intel_de_read_fw(dev_priv,
744 						  PIPE_FRMTMSTMP(crtc->pipe));
745 
746 		/*
747 		 * The TIMESTAMP_CTR register has the current
748 		 * time stamp value.
749 		 */
750 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
751 
752 		scan_post_time = intel_de_read_fw(dev_priv,
753 						  PIPE_FRMTMSTMP(crtc->pipe));
754 	} while (scan_post_time != scan_prev_time);
755 
756 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
757 				   clock), 1000 * htotal);
758 }
759 
760 /*
761  * On certain encoders on certain platforms, pipe
762  * scanline register will not work to get the scanline,
763  * since the timings are driven from the PORT or issues
764  * with scanline register updates.
765  * This function will use Framestamp and current
766  * timestamp registers to calculate the scanline.
767  */
768 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
769 {
770 	struct drm_vblank_crtc *vblank =
771 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
772 	const struct drm_display_mode *mode = &vblank->hwmode;
773 	u32 vblank_start = mode->crtc_vblank_start;
774 	u32 vtotal = mode->crtc_vtotal;
775 	u32 scanline;
776 
777 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
778 	scanline = min(scanline, vtotal - 1);
779 	scanline = (scanline + vblank_start) % vtotal;
780 
781 	return scanline;
782 }
783 
784 /*
785  * intel_de_read_fw(), only for fast reads of display block, no need for
786  * forcewake etc.
787  */
788 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
789 {
790 	struct drm_device *dev = crtc->base.dev;
791 	struct drm_i915_private *dev_priv = to_i915(dev);
792 	const struct drm_display_mode *mode;
793 	struct drm_vblank_crtc *vblank;
794 	enum pipe pipe = crtc->pipe;
795 	int position, vtotal;
796 
797 	if (!crtc->active)
798 		return 0;
799 
800 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
801 	mode = &vblank->hwmode;
802 
803 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
804 		return __intel_get_crtc_scanline_from_timestamp(crtc);
805 
806 	vtotal = mode->crtc_vtotal;
807 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
808 		vtotal /= 2;
809 
810 	if (DISPLAY_VER(dev_priv) == 2)
811 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
812 	else
813 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
814 
815 	/*
816 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
817 	 * read it just before the start of vblank.  So try it again
818 	 * so we don't accidentally end up spanning a vblank frame
819 	 * increment, causing the pipe_update_end() code to squak at us.
820 	 *
821 	 * The nature of this problem means we can't simply check the ISR
822 	 * bit and return the vblank start value; nor can we use the scanline
823 	 * debug register in the transcoder as it appears to have the same
824 	 * problem.  We may need to extend this to include other platforms,
825 	 * but so far testing only shows the problem on HSW.
826 	 */
827 	if (HAS_DDI(dev_priv) && !position) {
828 		int i, temp;
829 
830 		for (i = 0; i < 100; i++) {
831 			udelay(1);
832 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
833 			if (temp != position) {
834 				position = temp;
835 				break;
836 			}
837 		}
838 	}
839 
840 	/*
841 	 * See update_scanline_offset() for the details on the
842 	 * scanline_offset adjustment.
843 	 */
844 	return (position + crtc->scanline_offset) % vtotal;
845 }
846 
847 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
848 				     bool in_vblank_irq,
849 				     int *vpos, int *hpos,
850 				     ktime_t *stime, ktime_t *etime,
851 				     const struct drm_display_mode *mode)
852 {
853 	struct drm_device *dev = _crtc->dev;
854 	struct drm_i915_private *dev_priv = to_i915(dev);
855 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
856 	enum pipe pipe = crtc->pipe;
857 	int position;
858 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
859 	unsigned long irqflags;
860 	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
861 		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
862 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
863 
864 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
865 		drm_dbg(&dev_priv->drm,
866 			"trying to get scanoutpos for disabled "
867 			"pipe %c\n", pipe_name(pipe));
868 		return false;
869 	}
870 
871 	htotal = mode->crtc_htotal;
872 	hsync_start = mode->crtc_hsync_start;
873 	vtotal = mode->crtc_vtotal;
874 	vbl_start = mode->crtc_vblank_start;
875 	vbl_end = mode->crtc_vblank_end;
876 
877 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
878 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
879 		vbl_end /= 2;
880 		vtotal /= 2;
881 	}
882 
883 	/*
884 	 * Lock uncore.lock, as we will do multiple timing critical raw
885 	 * register reads, potentially with preemption disabled, so the
886 	 * following code must not block on uncore.lock.
887 	 */
888 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
889 
890 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
891 
892 	/* Get optional system timestamp before query. */
893 	if (stime)
894 		*stime = ktime_get();
895 
896 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
897 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
898 
899 		position = __intel_get_crtc_scanline(crtc);
900 
901 		/*
902 		 * Already exiting vblank? If so, shift our position
903 		 * so it looks like we're already apporaching the full
904 		 * vblank end. This should make the generated timestamp
905 		 * more or less match when the active portion will start.
906 		 */
907 		if (position >= vbl_start && scanlines < position)
908 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
909 	} else if (use_scanline_counter) {
910 		/* No obvious pixelcount register. Only query vertical
911 		 * scanout position from Display scan line register.
912 		 */
913 		position = __intel_get_crtc_scanline(crtc);
914 	} else {
915 		/* Have access to pixelcount since start of frame.
916 		 * We can split this into vertical and horizontal
917 		 * scanout position.
918 		 */
919 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
920 
921 		/* convert to pixel counts */
922 		vbl_start *= htotal;
923 		vbl_end *= htotal;
924 		vtotal *= htotal;
925 
926 		/*
927 		 * In interlaced modes, the pixel counter counts all pixels,
928 		 * so one field will have htotal more pixels. In order to avoid
929 		 * the reported position from jumping backwards when the pixel
930 		 * counter is beyond the length of the shorter field, just
931 		 * clamp the position the length of the shorter field. This
932 		 * matches how the scanline counter based position works since
933 		 * the scanline counter doesn't count the two half lines.
934 		 */
935 		if (position >= vtotal)
936 			position = vtotal - 1;
937 
938 		/*
939 		 * Start of vblank interrupt is triggered at start of hsync,
940 		 * just prior to the first active line of vblank. However we
941 		 * consider lines to start at the leading edge of horizontal
942 		 * active. So, should we get here before we've crossed into
943 		 * the horizontal active of the first line in vblank, we would
944 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
945 		 * always add htotal-hsync_start to the current pixel position.
946 		 */
947 		position = (position + htotal - hsync_start) % vtotal;
948 	}
949 
950 	/* Get optional system timestamp after query. */
951 	if (etime)
952 		*etime = ktime_get();
953 
954 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
955 
956 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
957 
958 	/*
959 	 * While in vblank, position will be negative
960 	 * counting up towards 0 at vbl_end. And outside
961 	 * vblank, position will be positive counting
962 	 * up since vbl_end.
963 	 */
964 	if (position >= vbl_start)
965 		position -= vbl_end;
966 	else
967 		position += vtotal - vbl_end;
968 
969 	if (use_scanline_counter) {
970 		*vpos = position;
971 		*hpos = 0;
972 	} else {
973 		*vpos = position / htotal;
974 		*hpos = position - (*vpos * htotal);
975 	}
976 
977 	return true;
978 }
979 
980 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
981 				     ktime_t *vblank_time, bool in_vblank_irq)
982 {
983 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
984 		crtc, max_error, vblank_time, in_vblank_irq,
985 		i915_get_crtc_scanoutpos);
986 }
987 
988 int intel_get_crtc_scanline(struct intel_crtc *crtc)
989 {
990 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
991 	unsigned long irqflags;
992 	int position;
993 
994 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
995 	position = __intel_get_crtc_scanline(crtc);
996 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
997 
998 	return position;
999 }
1000 
1001 /**
1002  * ivb_parity_work - Workqueue called when a parity error interrupt
1003  * occurred.
1004  * @work: workqueue struct
1005  *
1006  * Doesn't actually do anything except notify userspace. As a consequence of
1007  * this event, userspace should try to remap the bad rows since statistically
1008  * it is likely the same row is more likely to go bad again.
1009  */
1010 static void ivb_parity_work(struct work_struct *work)
1011 {
1012 	struct drm_i915_private *dev_priv =
1013 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1014 	struct intel_gt *gt = &dev_priv->gt;
1015 	u32 error_status, row, bank, subbank;
1016 	char *parity_event[6];
1017 	u32 misccpctl;
1018 	u8 slice = 0;
1019 
1020 	/* We must turn off DOP level clock gating to access the L3 registers.
1021 	 * In order to prevent a get/put style interface, acquire struct mutex
1022 	 * any time we access those registers.
1023 	 */
1024 	mutex_lock(&dev_priv->drm.struct_mutex);
1025 
1026 	/* If we've screwed up tracking, just let the interrupt fire again */
1027 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1028 		goto out;
1029 
1030 	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1031 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1032 	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1033 
1034 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1035 		i915_reg_t reg;
1036 
1037 		slice--;
1038 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1039 				     slice >= NUM_L3_SLICES(dev_priv)))
1040 			break;
1041 
1042 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1043 
1044 		reg = GEN7_L3CDERRST1(slice);
1045 
1046 		error_status = intel_uncore_read(&dev_priv->uncore, reg);
1047 		row = GEN7_PARITY_ERROR_ROW(error_status);
1048 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1049 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1050 
1051 		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1052 		intel_uncore_posting_read(&dev_priv->uncore, reg);
1053 
1054 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1055 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1056 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1057 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1058 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1059 		parity_event[5] = NULL;
1060 
1061 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1062 				   KOBJ_CHANGE, parity_event);
1063 
1064 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1065 			  slice, row, bank, subbank);
1066 
1067 		kfree(parity_event[4]);
1068 		kfree(parity_event[3]);
1069 		kfree(parity_event[2]);
1070 		kfree(parity_event[1]);
1071 	}
1072 
1073 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1074 
1075 out:
1076 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1077 	spin_lock_irq(&gt->irq_lock);
1078 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1079 	spin_unlock_irq(&gt->irq_lock);
1080 
1081 	mutex_unlock(&dev_priv->drm.struct_mutex);
1082 }
1083 
1084 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086 	switch (pin) {
1087 	case HPD_PORT_TC1:
1088 	case HPD_PORT_TC2:
1089 	case HPD_PORT_TC3:
1090 	case HPD_PORT_TC4:
1091 	case HPD_PORT_TC5:
1092 	case HPD_PORT_TC6:
1093 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1094 	default:
1095 		return false;
1096 	}
1097 }
1098 
1099 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1100 {
1101 	switch (pin) {
1102 	case HPD_PORT_A:
1103 		return val & PORTA_HOTPLUG_LONG_DETECT;
1104 	case HPD_PORT_B:
1105 		return val & PORTB_HOTPLUG_LONG_DETECT;
1106 	case HPD_PORT_C:
1107 		return val & PORTC_HOTPLUG_LONG_DETECT;
1108 	default:
1109 		return false;
1110 	}
1111 }
1112 
1113 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115 	switch (pin) {
1116 	case HPD_PORT_A:
1117 	case HPD_PORT_B:
1118 	case HPD_PORT_C:
1119 	case HPD_PORT_D:
1120 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1121 	default:
1122 		return false;
1123 	}
1124 }
1125 
1126 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1127 {
1128 	switch (pin) {
1129 	case HPD_PORT_TC1:
1130 	case HPD_PORT_TC2:
1131 	case HPD_PORT_TC3:
1132 	case HPD_PORT_TC4:
1133 	case HPD_PORT_TC5:
1134 	case HPD_PORT_TC6:
1135 		return val & ICP_TC_HPD_LONG_DETECT(pin);
1136 	default:
1137 		return false;
1138 	}
1139 }
1140 
1141 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1142 {
1143 	switch (pin) {
1144 	case HPD_PORT_E:
1145 		return val & PORTE_HOTPLUG_LONG_DETECT;
1146 	default:
1147 		return false;
1148 	}
1149 }
1150 
1151 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1152 {
1153 	switch (pin) {
1154 	case HPD_PORT_A:
1155 		return val & PORTA_HOTPLUG_LONG_DETECT;
1156 	case HPD_PORT_B:
1157 		return val & PORTB_HOTPLUG_LONG_DETECT;
1158 	case HPD_PORT_C:
1159 		return val & PORTC_HOTPLUG_LONG_DETECT;
1160 	case HPD_PORT_D:
1161 		return val & PORTD_HOTPLUG_LONG_DETECT;
1162 	default:
1163 		return false;
1164 	}
1165 }
1166 
1167 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1168 {
1169 	switch (pin) {
1170 	case HPD_PORT_A:
1171 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1172 	default:
1173 		return false;
1174 	}
1175 }
1176 
1177 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1178 {
1179 	switch (pin) {
1180 	case HPD_PORT_B:
1181 		return val & PORTB_HOTPLUG_LONG_DETECT;
1182 	case HPD_PORT_C:
1183 		return val & PORTC_HOTPLUG_LONG_DETECT;
1184 	case HPD_PORT_D:
1185 		return val & PORTD_HOTPLUG_LONG_DETECT;
1186 	default:
1187 		return false;
1188 	}
1189 }
1190 
1191 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1192 {
1193 	switch (pin) {
1194 	case HPD_PORT_B:
1195 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1196 	case HPD_PORT_C:
1197 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1198 	case HPD_PORT_D:
1199 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1200 	default:
1201 		return false;
1202 	}
1203 }
1204 
1205 /*
1206  * Get a bit mask of pins that have triggered, and which ones may be long.
1207  * This can be called multiple times with the same masks to accumulate
1208  * hotplug detection results from several registers.
1209  *
1210  * Note that the caller is expected to zero out the masks initially.
1211  */
1212 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1213 			       u32 *pin_mask, u32 *long_mask,
1214 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1215 			       const u32 hpd[HPD_NUM_PINS],
1216 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1217 {
1218 	enum hpd_pin pin;
1219 
1220 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1221 
1222 	for_each_hpd_pin(pin) {
1223 		if ((hpd[pin] & hotplug_trigger) == 0)
1224 			continue;
1225 
1226 		*pin_mask |= BIT(pin);
1227 
1228 		if (long_pulse_detect(pin, dig_hotplug_reg))
1229 			*long_mask |= BIT(pin);
1230 	}
1231 
1232 	drm_dbg(&dev_priv->drm,
1233 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1234 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1235 
1236 }
1237 
1238 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1239 				  const u32 hpd[HPD_NUM_PINS])
1240 {
1241 	struct intel_encoder *encoder;
1242 	u32 enabled_irqs = 0;
1243 
1244 	for_each_intel_encoder(&dev_priv->drm, encoder)
1245 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1246 			enabled_irqs |= hpd[encoder->hpd_pin];
1247 
1248 	return enabled_irqs;
1249 }
1250 
1251 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1252 				  const u32 hpd[HPD_NUM_PINS])
1253 {
1254 	struct intel_encoder *encoder;
1255 	u32 hotplug_irqs = 0;
1256 
1257 	for_each_intel_encoder(&dev_priv->drm, encoder)
1258 		hotplug_irqs |= hpd[encoder->hpd_pin];
1259 
1260 	return hotplug_irqs;
1261 }
1262 
1263 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1264 				     hotplug_enables_func hotplug_enables)
1265 {
1266 	struct intel_encoder *encoder;
1267 	u32 hotplug = 0;
1268 
1269 	for_each_intel_encoder(&i915->drm, encoder)
1270 		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1271 
1272 	return hotplug;
1273 }
1274 
1275 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1276 {
1277 	wake_up_all(&dev_priv->gmbus_wait_queue);
1278 }
1279 
1280 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1281 {
1282 	wake_up_all(&dev_priv->gmbus_wait_queue);
1283 }
1284 
1285 #if defined(CONFIG_DEBUG_FS)
1286 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1287 					 enum pipe pipe,
1288 					 u32 crc0, u32 crc1,
1289 					 u32 crc2, u32 crc3,
1290 					 u32 crc4)
1291 {
1292 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1293 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1294 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1295 
1296 	trace_intel_pipe_crc(crtc, crcs);
1297 
1298 	spin_lock(&pipe_crc->lock);
1299 	/*
1300 	 * For some not yet identified reason, the first CRC is
1301 	 * bonkers. So let's just wait for the next vblank and read
1302 	 * out the buggy result.
1303 	 *
1304 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1305 	 * don't trust that one either.
1306 	 */
1307 	if (pipe_crc->skipped <= 0 ||
1308 	    (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1309 		pipe_crc->skipped++;
1310 		spin_unlock(&pipe_crc->lock);
1311 		return;
1312 	}
1313 	spin_unlock(&pipe_crc->lock);
1314 
1315 	drm_crtc_add_crc_entry(&crtc->base, true,
1316 				drm_crtc_accurate_vblank_count(&crtc->base),
1317 				crcs);
1318 }
1319 #else
1320 static inline void
1321 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1322 			     enum pipe pipe,
1323 			     u32 crc0, u32 crc1,
1324 			     u32 crc2, u32 crc3,
1325 			     u32 crc4) {}
1326 #endif
1327 
1328 static void flip_done_handler(struct drm_i915_private *i915,
1329 			      enum pipe pipe)
1330 {
1331 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1332 	struct drm_crtc_state *crtc_state = crtc->base.state;
1333 	struct drm_pending_vblank_event *e = crtc_state->event;
1334 	struct drm_device *dev = &i915->drm;
1335 	unsigned long irqflags;
1336 
1337 	spin_lock_irqsave(&dev->event_lock, irqflags);
1338 
1339 	crtc_state->event = NULL;
1340 
1341 	drm_crtc_send_vblank_event(&crtc->base, e);
1342 
1343 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1344 }
1345 
1346 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1347 				     enum pipe pipe)
1348 {
1349 	display_pipe_crc_irq_handler(dev_priv, pipe,
1350 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1351 				     0, 0, 0, 0);
1352 }
1353 
1354 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1355 				     enum pipe pipe)
1356 {
1357 	display_pipe_crc_irq_handler(dev_priv, pipe,
1358 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1359 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1360 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1361 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1362 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1363 }
1364 
1365 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1366 				      enum pipe pipe)
1367 {
1368 	u32 res1, res2;
1369 
1370 	if (DISPLAY_VER(dev_priv) >= 3)
1371 		res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1372 	else
1373 		res1 = 0;
1374 
1375 	if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
1376 		res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1377 	else
1378 		res2 = 0;
1379 
1380 	display_pipe_crc_irq_handler(dev_priv, pipe,
1381 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1382 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1383 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1384 				     res1, res2);
1385 }
1386 
1387 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1388 {
1389 	enum pipe pipe;
1390 
1391 	for_each_pipe(dev_priv, pipe) {
1392 		intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1393 			   PIPESTAT_INT_STATUS_MASK |
1394 			   PIPE_FIFO_UNDERRUN_STATUS);
1395 
1396 		dev_priv->pipestat_irq_mask[pipe] = 0;
1397 	}
1398 }
1399 
1400 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1401 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1402 {
1403 	enum pipe pipe;
1404 
1405 	spin_lock(&dev_priv->irq_lock);
1406 
1407 	if (!dev_priv->display_irqs_enabled) {
1408 		spin_unlock(&dev_priv->irq_lock);
1409 		return;
1410 	}
1411 
1412 	for_each_pipe(dev_priv, pipe) {
1413 		i915_reg_t reg;
1414 		u32 status_mask, enable_mask, iir_bit = 0;
1415 
1416 		/*
1417 		 * PIPESTAT bits get signalled even when the interrupt is
1418 		 * disabled with the mask bits, and some of the status bits do
1419 		 * not generate interrupts at all (like the underrun bit). Hence
1420 		 * we need to be careful that we only handle what we want to
1421 		 * handle.
1422 		 */
1423 
1424 		/* fifo underruns are filterered in the underrun handler. */
1425 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1426 
1427 		switch (pipe) {
1428 		default:
1429 		case PIPE_A:
1430 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1431 			break;
1432 		case PIPE_B:
1433 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1434 			break;
1435 		case PIPE_C:
1436 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1437 			break;
1438 		}
1439 		if (iir & iir_bit)
1440 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1441 
1442 		if (!status_mask)
1443 			continue;
1444 
1445 		reg = PIPESTAT(pipe);
1446 		pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1447 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1448 
1449 		/*
1450 		 * Clear the PIPE*STAT regs before the IIR
1451 		 *
1452 		 * Toggle the enable bits to make sure we get an
1453 		 * edge in the ISR pipe event bit if we don't clear
1454 		 * all the enabled status bits. Otherwise the edge
1455 		 * triggered IIR on i965/g4x wouldn't notice that
1456 		 * an interrupt is still pending.
1457 		 */
1458 		if (pipe_stats[pipe]) {
1459 			intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1460 			intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1461 		}
1462 	}
1463 	spin_unlock(&dev_priv->irq_lock);
1464 }
1465 
1466 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1467 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1468 {
1469 	enum pipe pipe;
1470 
1471 	for_each_pipe(dev_priv, pipe) {
1472 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1473 			intel_handle_vblank(dev_priv, pipe);
1474 
1475 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1476 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1477 
1478 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1479 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1480 	}
1481 }
1482 
1483 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1484 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1485 {
1486 	bool blc_event = false;
1487 	enum pipe pipe;
1488 
1489 	for_each_pipe(dev_priv, pipe) {
1490 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1491 			intel_handle_vblank(dev_priv, pipe);
1492 
1493 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1494 			blc_event = true;
1495 
1496 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498 
1499 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501 	}
1502 
1503 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1504 		intel_opregion_asle_intr(dev_priv);
1505 }
1506 
1507 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1508 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1509 {
1510 	bool blc_event = false;
1511 	enum pipe pipe;
1512 
1513 	for_each_pipe(dev_priv, pipe) {
1514 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1515 			intel_handle_vblank(dev_priv, pipe);
1516 
1517 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1518 			blc_event = true;
1519 
1520 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1522 
1523 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525 	}
1526 
1527 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1528 		intel_opregion_asle_intr(dev_priv);
1529 
1530 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1531 		gmbus_irq_handler(dev_priv);
1532 }
1533 
1534 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1535 					    u32 pipe_stats[I915_MAX_PIPES])
1536 {
1537 	enum pipe pipe;
1538 
1539 	for_each_pipe(dev_priv, pipe) {
1540 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1541 			intel_handle_vblank(dev_priv, pipe);
1542 
1543 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1544 			flip_done_handler(dev_priv, pipe);
1545 
1546 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1547 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1548 
1549 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1550 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1551 	}
1552 
1553 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1554 		gmbus_irq_handler(dev_priv);
1555 }
1556 
1557 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1558 {
1559 	u32 hotplug_status = 0, hotplug_status_mask;
1560 	int i;
1561 
1562 	if (IS_G4X(dev_priv) ||
1563 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1564 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1565 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1566 	else
1567 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1568 
1569 	/*
1570 	 * We absolutely have to clear all the pending interrupt
1571 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1572 	 * interrupt bit won't have an edge, and the i965/g4x
1573 	 * edge triggered IIR will not notice that an interrupt
1574 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1575 	 * guarantee the edge as the act of toggling the enable
1576 	 * bits can itself generate a new hotplug interrupt :(
1577 	 */
1578 	for (i = 0; i < 10; i++) {
1579 		u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1580 
1581 		if (tmp == 0)
1582 			return hotplug_status;
1583 
1584 		hotplug_status |= tmp;
1585 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1586 	}
1587 
1588 	drm_WARN_ONCE(&dev_priv->drm, 1,
1589 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1590 		      intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1591 
1592 	return hotplug_status;
1593 }
1594 
1595 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1596 				 u32 hotplug_status)
1597 {
1598 	u32 pin_mask = 0, long_mask = 0;
1599 	u32 hotplug_trigger;
1600 
1601 	if (IS_G4X(dev_priv) ||
1602 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1603 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1604 	else
1605 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1606 
1607 	if (hotplug_trigger) {
1608 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1609 				   hotplug_trigger, hotplug_trigger,
1610 				   dev_priv->hotplug.hpd,
1611 				   i9xx_port_hotplug_long_detect);
1612 
1613 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1614 	}
1615 
1616 	if ((IS_G4X(dev_priv) ||
1617 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1618 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1619 		dp_aux_irq_handler(dev_priv);
1620 }
1621 
1622 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623 {
1624 	struct drm_i915_private *dev_priv = arg;
1625 	irqreturn_t ret = IRQ_NONE;
1626 
1627 	if (!intel_irqs_enabled(dev_priv))
1628 		return IRQ_NONE;
1629 
1630 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1631 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1632 
1633 	do {
1634 		u32 iir, gt_iir, pm_iir;
1635 		u32 pipe_stats[I915_MAX_PIPES] = {};
1636 		u32 hotplug_status = 0;
1637 		u32 ier = 0;
1638 
1639 		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1640 		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1641 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1642 
1643 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1644 			break;
1645 
1646 		ret = IRQ_HANDLED;
1647 
1648 		/*
1649 		 * Theory on interrupt generation, based on empirical evidence:
1650 		 *
1651 		 * x = ((VLV_IIR & VLV_IER) ||
1652 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1653 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1654 		 *
1655 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1656 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1657 		 * guarantee the CPU interrupt will be raised again even if we
1658 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1659 		 * bits this time around.
1660 		 */
1661 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1662 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1663 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1664 
1665 		if (gt_iir)
1666 			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1667 		if (pm_iir)
1668 			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1669 
1670 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1671 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1672 
1673 		/* Call regardless, as some status bits might not be
1674 		 * signalled in iir */
1675 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1676 
1677 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1678 			   I915_LPE_PIPE_B_INTERRUPT))
1679 			intel_lpe_audio_irq_handler(dev_priv);
1680 
1681 		/*
1682 		 * VLV_IIR is single buffered, and reflects the level
1683 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1684 		 */
1685 		if (iir)
1686 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1687 
1688 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1689 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1690 
1691 		if (gt_iir)
1692 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1693 		if (pm_iir)
1694 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1695 
1696 		if (hotplug_status)
1697 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1698 
1699 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1700 	} while (0);
1701 
1702 	pmu_irq_stats(dev_priv, ret);
1703 
1704 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1705 
1706 	return ret;
1707 }
1708 
1709 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1710 {
1711 	struct drm_i915_private *dev_priv = arg;
1712 	irqreturn_t ret = IRQ_NONE;
1713 
1714 	if (!intel_irqs_enabled(dev_priv))
1715 		return IRQ_NONE;
1716 
1717 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1718 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1719 
1720 	do {
1721 		u32 master_ctl, iir;
1722 		u32 pipe_stats[I915_MAX_PIPES] = {};
1723 		u32 hotplug_status = 0;
1724 		u32 ier = 0;
1725 
1726 		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1727 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1728 
1729 		if (master_ctl == 0 && iir == 0)
1730 			break;
1731 
1732 		ret = IRQ_HANDLED;
1733 
1734 		/*
1735 		 * Theory on interrupt generation, based on empirical evidence:
1736 		 *
1737 		 * x = ((VLV_IIR & VLV_IER) ||
1738 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1739 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1740 		 *
1741 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1742 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1743 		 * guarantee the CPU interrupt will be raised again even if we
1744 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1745 		 * bits this time around.
1746 		 */
1747 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1748 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1749 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1750 
1751 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1752 
1753 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1754 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1755 
1756 		/* Call regardless, as some status bits might not be
1757 		 * signalled in iir */
1758 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1759 
1760 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1761 			   I915_LPE_PIPE_B_INTERRUPT |
1762 			   I915_LPE_PIPE_C_INTERRUPT))
1763 			intel_lpe_audio_irq_handler(dev_priv);
1764 
1765 		/*
1766 		 * VLV_IIR is single buffered, and reflects the level
1767 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1768 		 */
1769 		if (iir)
1770 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1771 
1772 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1773 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1774 
1775 		if (hotplug_status)
1776 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1777 
1778 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1779 	} while (0);
1780 
1781 	pmu_irq_stats(dev_priv, ret);
1782 
1783 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1784 
1785 	return ret;
1786 }
1787 
1788 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1789 				u32 hotplug_trigger)
1790 {
1791 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1792 
1793 	/*
1794 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1795 	 * unless we touch the hotplug register, even if hotplug_trigger is
1796 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1797 	 * errors.
1798 	 */
1799 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1800 	if (!hotplug_trigger) {
1801 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1802 			PORTD_HOTPLUG_STATUS_MASK |
1803 			PORTC_HOTPLUG_STATUS_MASK |
1804 			PORTB_HOTPLUG_STATUS_MASK;
1805 		dig_hotplug_reg &= ~mask;
1806 	}
1807 
1808 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1809 	if (!hotplug_trigger)
1810 		return;
1811 
1812 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1813 			   hotplug_trigger, dig_hotplug_reg,
1814 			   dev_priv->hotplug.pch_hpd,
1815 			   pch_port_hotplug_long_detect);
1816 
1817 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1818 }
1819 
1820 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1821 {
1822 	enum pipe pipe;
1823 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1824 
1825 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1826 
1827 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1828 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1829 			       SDE_AUDIO_POWER_SHIFT);
1830 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1831 			port_name(port));
1832 	}
1833 
1834 	if (pch_iir & SDE_AUX_MASK)
1835 		dp_aux_irq_handler(dev_priv);
1836 
1837 	if (pch_iir & SDE_GMBUS)
1838 		gmbus_irq_handler(dev_priv);
1839 
1840 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1841 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1842 
1843 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1844 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1845 
1846 	if (pch_iir & SDE_POISON)
1847 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1848 
1849 	if (pch_iir & SDE_FDI_MASK) {
1850 		for_each_pipe(dev_priv, pipe)
1851 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1852 				pipe_name(pipe),
1853 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1854 	}
1855 
1856 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1857 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1858 
1859 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1860 		drm_dbg(&dev_priv->drm,
1861 			"PCH transcoder CRC error interrupt\n");
1862 
1863 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1864 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1865 
1866 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1867 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1868 }
1869 
1870 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1871 {
1872 	u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1873 	enum pipe pipe;
1874 
1875 	if (err_int & ERR_INT_POISON)
1876 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1877 
1878 	for_each_pipe(dev_priv, pipe) {
1879 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1880 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1881 
1882 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1883 			if (IS_IVYBRIDGE(dev_priv))
1884 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1885 			else
1886 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1887 		}
1888 	}
1889 
1890 	intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1891 }
1892 
1893 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1894 {
1895 	u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1896 	enum pipe pipe;
1897 
1898 	if (serr_int & SERR_INT_POISON)
1899 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1900 
1901 	for_each_pipe(dev_priv, pipe)
1902 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1903 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1904 
1905 	intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1906 }
1907 
1908 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1909 {
1910 	enum pipe pipe;
1911 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1912 
1913 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1914 
1915 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1916 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1917 			       SDE_AUDIO_POWER_SHIFT_CPT);
1918 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1919 			port_name(port));
1920 	}
1921 
1922 	if (pch_iir & SDE_AUX_MASK_CPT)
1923 		dp_aux_irq_handler(dev_priv);
1924 
1925 	if (pch_iir & SDE_GMBUS_CPT)
1926 		gmbus_irq_handler(dev_priv);
1927 
1928 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1929 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1930 
1931 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1932 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1933 
1934 	if (pch_iir & SDE_FDI_MASK_CPT) {
1935 		for_each_pipe(dev_priv, pipe)
1936 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1937 				pipe_name(pipe),
1938 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1939 	}
1940 
1941 	if (pch_iir & SDE_ERROR_CPT)
1942 		cpt_serr_int_handler(dev_priv);
1943 }
1944 
1945 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1946 {
1947 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1948 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1949 	u32 pin_mask = 0, long_mask = 0;
1950 
1951 	if (ddi_hotplug_trigger) {
1952 		u32 dig_hotplug_reg;
1953 
1954 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
1955 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1956 
1957 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1958 				   ddi_hotplug_trigger, dig_hotplug_reg,
1959 				   dev_priv->hotplug.pch_hpd,
1960 				   icp_ddi_port_hotplug_long_detect);
1961 	}
1962 
1963 	if (tc_hotplug_trigger) {
1964 		u32 dig_hotplug_reg;
1965 
1966 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
1967 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
1968 
1969 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1970 				   tc_hotplug_trigger, dig_hotplug_reg,
1971 				   dev_priv->hotplug.pch_hpd,
1972 				   icp_tc_port_hotplug_long_detect);
1973 	}
1974 
1975 	if (pin_mask)
1976 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1977 
1978 	if (pch_iir & SDE_GMBUS_ICP)
1979 		gmbus_irq_handler(dev_priv);
1980 }
1981 
1982 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1983 {
1984 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1985 		~SDE_PORTE_HOTPLUG_SPT;
1986 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1987 	u32 pin_mask = 0, long_mask = 0;
1988 
1989 	if (hotplug_trigger) {
1990 		u32 dig_hotplug_reg;
1991 
1992 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1993 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1994 
1995 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996 				   hotplug_trigger, dig_hotplug_reg,
1997 				   dev_priv->hotplug.pch_hpd,
1998 				   spt_port_hotplug_long_detect);
1999 	}
2000 
2001 	if (hotplug2_trigger) {
2002 		u32 dig_hotplug_reg;
2003 
2004 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
2005 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2006 
2007 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2008 				   hotplug2_trigger, dig_hotplug_reg,
2009 				   dev_priv->hotplug.pch_hpd,
2010 				   spt_port_hotplug2_long_detect);
2011 	}
2012 
2013 	if (pin_mask)
2014 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2015 
2016 	if (pch_iir & SDE_GMBUS_CPT)
2017 		gmbus_irq_handler(dev_priv);
2018 }
2019 
2020 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2021 				u32 hotplug_trigger)
2022 {
2023 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2024 
2025 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
2026 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2027 
2028 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2029 			   hotplug_trigger, dig_hotplug_reg,
2030 			   dev_priv->hotplug.hpd,
2031 			   ilk_port_hotplug_long_detect);
2032 
2033 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2034 }
2035 
2036 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2037 				    u32 de_iir)
2038 {
2039 	enum pipe pipe;
2040 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2041 
2042 	if (hotplug_trigger)
2043 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2044 
2045 	if (de_iir & DE_AUX_CHANNEL_A)
2046 		dp_aux_irq_handler(dev_priv);
2047 
2048 	if (de_iir & DE_GSE)
2049 		intel_opregion_asle_intr(dev_priv);
2050 
2051 	if (de_iir & DE_POISON)
2052 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2053 
2054 	for_each_pipe(dev_priv, pipe) {
2055 		if (de_iir & DE_PIPE_VBLANK(pipe))
2056 			intel_handle_vblank(dev_priv, pipe);
2057 
2058 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2059 			flip_done_handler(dev_priv, pipe);
2060 
2061 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2062 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2063 
2064 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2065 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2066 	}
2067 
2068 	/* check event from PCH */
2069 	if (de_iir & DE_PCH_EVENT) {
2070 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2071 
2072 		if (HAS_PCH_CPT(dev_priv))
2073 			cpt_irq_handler(dev_priv, pch_iir);
2074 		else
2075 			ibx_irq_handler(dev_priv, pch_iir);
2076 
2077 		/* should clear PCH hotplug event before clear CPU irq */
2078 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2079 	}
2080 
2081 	if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT)
2082 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2083 }
2084 
2085 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2086 				    u32 de_iir)
2087 {
2088 	enum pipe pipe;
2089 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2090 
2091 	if (hotplug_trigger)
2092 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2093 
2094 	if (de_iir & DE_ERR_INT_IVB)
2095 		ivb_err_int_handler(dev_priv);
2096 
2097 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2098 		struct intel_encoder *encoder;
2099 
2100 		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2101 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2102 
2103 			u32 psr_iir = intel_uncore_read(&dev_priv->uncore,
2104 							EDP_PSR_IIR);
2105 
2106 			intel_psr_irq_handler(intel_dp, psr_iir);
2107 			intel_uncore_write(&dev_priv->uncore,
2108 					   EDP_PSR_IIR, psr_iir);
2109 			break;
2110 		}
2111 	}
2112 
2113 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2114 		dp_aux_irq_handler(dev_priv);
2115 
2116 	if (de_iir & DE_GSE_IVB)
2117 		intel_opregion_asle_intr(dev_priv);
2118 
2119 	for_each_pipe(dev_priv, pipe) {
2120 		if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2121 			intel_handle_vblank(dev_priv, pipe);
2122 
2123 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2124 			flip_done_handler(dev_priv, pipe);
2125 	}
2126 
2127 	/* check event from PCH */
2128 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2129 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2130 
2131 		cpt_irq_handler(dev_priv, pch_iir);
2132 
2133 		/* clear PCH hotplug event before clear CPU irq */
2134 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2135 	}
2136 }
2137 
2138 /*
2139  * To handle irqs with the minimum potential races with fresh interrupts, we:
2140  * 1 - Disable Master Interrupt Control.
2141  * 2 - Find the source(s) of the interrupt.
2142  * 3 - Clear the Interrupt Identity bits (IIR).
2143  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2144  * 5 - Re-enable Master Interrupt Control.
2145  */
2146 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2147 {
2148 	struct drm_i915_private *i915 = arg;
2149 	void __iomem * const regs = i915->uncore.regs;
2150 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2151 	irqreturn_t ret = IRQ_NONE;
2152 
2153 	if (unlikely(!intel_irqs_enabled(i915)))
2154 		return IRQ_NONE;
2155 
2156 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2157 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2158 
2159 	/* disable master interrupt before clearing iir  */
2160 	de_ier = raw_reg_read(regs, DEIER);
2161 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2162 
2163 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2164 	 * interrupts will will be stored on its back queue, and then we'll be
2165 	 * able to process them after we restore SDEIER (as soon as we restore
2166 	 * it, we'll get an interrupt if SDEIIR still has something to process
2167 	 * due to its back queue). */
2168 	if (!HAS_PCH_NOP(i915)) {
2169 		sde_ier = raw_reg_read(regs, SDEIER);
2170 		raw_reg_write(regs, SDEIER, 0);
2171 	}
2172 
2173 	/* Find, clear, then process each source of interrupt */
2174 
2175 	gt_iir = raw_reg_read(regs, GTIIR);
2176 	if (gt_iir) {
2177 		raw_reg_write(regs, GTIIR, gt_iir);
2178 		if (INTEL_GEN(i915) >= 6)
2179 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2180 		else
2181 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2182 		ret = IRQ_HANDLED;
2183 	}
2184 
2185 	de_iir = raw_reg_read(regs, DEIIR);
2186 	if (de_iir) {
2187 		raw_reg_write(regs, DEIIR, de_iir);
2188 		if (DISPLAY_VER(i915) >= 7)
2189 			ivb_display_irq_handler(i915, de_iir);
2190 		else
2191 			ilk_display_irq_handler(i915, de_iir);
2192 		ret = IRQ_HANDLED;
2193 	}
2194 
2195 	if (INTEL_GEN(i915) >= 6) {
2196 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2197 		if (pm_iir) {
2198 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2199 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2200 			ret = IRQ_HANDLED;
2201 		}
2202 	}
2203 
2204 	raw_reg_write(regs, DEIER, de_ier);
2205 	if (sde_ier)
2206 		raw_reg_write(regs, SDEIER, sde_ier);
2207 
2208 	pmu_irq_stats(i915, ret);
2209 
2210 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2211 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2212 
2213 	return ret;
2214 }
2215 
2216 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2217 				u32 hotplug_trigger)
2218 {
2219 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2220 
2221 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
2222 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
2223 
2224 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2225 			   hotplug_trigger, dig_hotplug_reg,
2226 			   dev_priv->hotplug.hpd,
2227 			   bxt_port_hotplug_long_detect);
2228 
2229 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2230 }
2231 
2232 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2233 {
2234 	u32 pin_mask = 0, long_mask = 0;
2235 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2236 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2237 
2238 	if (trigger_tc) {
2239 		u32 dig_hotplug_reg;
2240 
2241 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
2242 		intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2243 
2244 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2245 				   trigger_tc, dig_hotplug_reg,
2246 				   dev_priv->hotplug.hpd,
2247 				   gen11_port_hotplug_long_detect);
2248 	}
2249 
2250 	if (trigger_tbt) {
2251 		u32 dig_hotplug_reg;
2252 
2253 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
2254 		intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2255 
2256 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2257 				   trigger_tbt, dig_hotplug_reg,
2258 				   dev_priv->hotplug.hpd,
2259 				   gen11_port_hotplug_long_detect);
2260 	}
2261 
2262 	if (pin_mask)
2263 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2264 	else
2265 		drm_err(&dev_priv->drm,
2266 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2267 }
2268 
2269 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2270 {
2271 	u32 mask;
2272 
2273 	if (DISPLAY_VER(dev_priv) >= 13)
2274 		return TGL_DE_PORT_AUX_DDIA |
2275 			TGL_DE_PORT_AUX_DDIB |
2276 			TGL_DE_PORT_AUX_DDIC |
2277 			XELPD_DE_PORT_AUX_DDID |
2278 			XELPD_DE_PORT_AUX_DDIE |
2279 			TGL_DE_PORT_AUX_USBC1 |
2280 			TGL_DE_PORT_AUX_USBC2 |
2281 			TGL_DE_PORT_AUX_USBC3 |
2282 			TGL_DE_PORT_AUX_USBC4;
2283 	else if (DISPLAY_VER(dev_priv) >= 12)
2284 		return TGL_DE_PORT_AUX_DDIA |
2285 			TGL_DE_PORT_AUX_DDIB |
2286 			TGL_DE_PORT_AUX_DDIC |
2287 			TGL_DE_PORT_AUX_USBC1 |
2288 			TGL_DE_PORT_AUX_USBC2 |
2289 			TGL_DE_PORT_AUX_USBC3 |
2290 			TGL_DE_PORT_AUX_USBC4 |
2291 			TGL_DE_PORT_AUX_USBC5 |
2292 			TGL_DE_PORT_AUX_USBC6;
2293 
2294 
2295 	mask = GEN8_AUX_CHANNEL_A;
2296 	if (DISPLAY_VER(dev_priv) >= 9)
2297 		mask |= GEN9_AUX_CHANNEL_B |
2298 			GEN9_AUX_CHANNEL_C |
2299 			GEN9_AUX_CHANNEL_D;
2300 
2301 	if (IS_CNL_WITH_PORT_F(dev_priv) || DISPLAY_VER(dev_priv) == 11)
2302 		mask |= CNL_AUX_CHANNEL_F;
2303 
2304 	if (DISPLAY_VER(dev_priv) == 11)
2305 		mask |= ICL_AUX_CHANNEL_E;
2306 
2307 	return mask;
2308 }
2309 
2310 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2311 {
2312 	if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv))
2313 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2314 	else if (DISPLAY_VER(dev_priv) >= 11)
2315 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2316 	else if (DISPLAY_VER(dev_priv) >= 9)
2317 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2318 	else
2319 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2320 }
2321 
2322 static void
2323 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2324 {
2325 	bool found = false;
2326 
2327 	if (iir & GEN8_DE_MISC_GSE) {
2328 		intel_opregion_asle_intr(dev_priv);
2329 		found = true;
2330 	}
2331 
2332 	if (iir & GEN8_DE_EDP_PSR) {
2333 		struct intel_encoder *encoder;
2334 		u32 psr_iir;
2335 		i915_reg_t iir_reg;
2336 
2337 		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2338 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2339 
2340 			if (DISPLAY_VER(dev_priv) >= 12)
2341 				iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
2342 			else
2343 				iir_reg = EDP_PSR_IIR;
2344 
2345 			psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
2346 			intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
2347 
2348 			if (psr_iir)
2349 				found = true;
2350 
2351 			intel_psr_irq_handler(intel_dp, psr_iir);
2352 
2353 			/* prior GEN12 only have one EDP PSR */
2354 			if (DISPLAY_VER(dev_priv) < 12)
2355 				break;
2356 		}
2357 	}
2358 
2359 	if (!found)
2360 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2361 }
2362 
2363 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2364 					   u32 te_trigger)
2365 {
2366 	enum pipe pipe = INVALID_PIPE;
2367 	enum transcoder dsi_trans;
2368 	enum port port;
2369 	u32 val, tmp;
2370 
2371 	/*
2372 	 * Incase of dual link, TE comes from DSI_1
2373 	 * this is to check if dual link is enabled
2374 	 */
2375 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2376 	val &= PORT_SYNC_MODE_ENABLE;
2377 
2378 	/*
2379 	 * if dual link is enabled, then read DSI_0
2380 	 * transcoder registers
2381 	 */
2382 	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2383 						  PORT_A : PORT_B;
2384 	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2385 
2386 	/* Check if DSI configured in command mode */
2387 	val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2388 	val = val & OP_MODE_MASK;
2389 
2390 	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2391 		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2392 		return;
2393 	}
2394 
2395 	/* Get PIPE for handling VBLANK event */
2396 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2397 	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2398 	case TRANS_DDI_EDP_INPUT_A_ON:
2399 		pipe = PIPE_A;
2400 		break;
2401 	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2402 		pipe = PIPE_B;
2403 		break;
2404 	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2405 		pipe = PIPE_C;
2406 		break;
2407 	default:
2408 		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2409 		return;
2410 	}
2411 
2412 	intel_handle_vblank(dev_priv, pipe);
2413 
2414 	/* clear TE in dsi IIR */
2415 	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2416 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2417 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2418 }
2419 
2420 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2421 {
2422 	if (DISPLAY_VER(i915) >= 9)
2423 		return GEN9_PIPE_PLANE1_FLIP_DONE;
2424 	else
2425 		return GEN8_PIPE_PRIMARY_FLIP_DONE;
2426 }
2427 
2428 static irqreturn_t
2429 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2430 {
2431 	irqreturn_t ret = IRQ_NONE;
2432 	u32 iir;
2433 	enum pipe pipe;
2434 
2435 	drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv));
2436 
2437 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2438 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2439 		if (iir) {
2440 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2441 			ret = IRQ_HANDLED;
2442 			gen8_de_misc_irq_handler(dev_priv, iir);
2443 		} else {
2444 			drm_err(&dev_priv->drm,
2445 				"The master control interrupt lied (DE MISC)!\n");
2446 		}
2447 	}
2448 
2449 	if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2450 		iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2451 		if (iir) {
2452 			intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2453 			ret = IRQ_HANDLED;
2454 			gen11_hpd_irq_handler(dev_priv, iir);
2455 		} else {
2456 			drm_err(&dev_priv->drm,
2457 				"The master control interrupt lied, (DE HPD)!\n");
2458 		}
2459 	}
2460 
2461 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2462 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2463 		if (iir) {
2464 			bool found = false;
2465 
2466 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2467 			ret = IRQ_HANDLED;
2468 
2469 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2470 				dp_aux_irq_handler(dev_priv);
2471 				found = true;
2472 			}
2473 
2474 			if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
2475 				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2476 
2477 				if (hotplug_trigger) {
2478 					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2479 					found = true;
2480 				}
2481 			} else if (IS_BROADWELL(dev_priv)) {
2482 				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2483 
2484 				if (hotplug_trigger) {
2485 					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2486 					found = true;
2487 				}
2488 			}
2489 
2490 			if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2491 			    (iir & BXT_DE_PORT_GMBUS)) {
2492 				gmbus_irq_handler(dev_priv);
2493 				found = true;
2494 			}
2495 
2496 			if (DISPLAY_VER(dev_priv) >= 11) {
2497 				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2498 
2499 				if (te_trigger) {
2500 					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2501 					found = true;
2502 				}
2503 			}
2504 
2505 			if (!found)
2506 				drm_err(&dev_priv->drm,
2507 					"Unexpected DE Port interrupt\n");
2508 		}
2509 		else
2510 			drm_err(&dev_priv->drm,
2511 				"The master control interrupt lied (DE PORT)!\n");
2512 	}
2513 
2514 	for_each_pipe(dev_priv, pipe) {
2515 		u32 fault_errors;
2516 
2517 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2518 			continue;
2519 
2520 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2521 		if (!iir) {
2522 			drm_err(&dev_priv->drm,
2523 				"The master control interrupt lied (DE PIPE)!\n");
2524 			continue;
2525 		}
2526 
2527 		ret = IRQ_HANDLED;
2528 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2529 
2530 		if (iir & GEN8_PIPE_VBLANK)
2531 			intel_handle_vblank(dev_priv, pipe);
2532 
2533 		if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2534 			flip_done_handler(dev_priv, pipe);
2535 
2536 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2537 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2538 
2539 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2540 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2541 
2542 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2543 		if (fault_errors)
2544 			drm_err(&dev_priv->drm,
2545 				"Fault errors on pipe %c: 0x%08x\n",
2546 				pipe_name(pipe),
2547 				fault_errors);
2548 	}
2549 
2550 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2551 	    master_ctl & GEN8_DE_PCH_IRQ) {
2552 		/*
2553 		 * FIXME(BDW): Assume for now that the new interrupt handling
2554 		 * scheme also closed the SDE interrupt handling race we've seen
2555 		 * on older pch-split platforms. But this needs testing.
2556 		 */
2557 		iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2558 		if (iir) {
2559 			intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2560 			ret = IRQ_HANDLED;
2561 
2562 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2563 				icp_irq_handler(dev_priv, iir);
2564 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2565 				spt_irq_handler(dev_priv, iir);
2566 			else
2567 				cpt_irq_handler(dev_priv, iir);
2568 		} else {
2569 			/*
2570 			 * Like on previous PCH there seems to be something
2571 			 * fishy going on with forwarding PCH interrupts.
2572 			 */
2573 			drm_dbg(&dev_priv->drm,
2574 				"The master control interrupt lied (SDE)!\n");
2575 		}
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2582 {
2583 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2584 
2585 	/*
2586 	 * Now with master disabled, get a sample of level indications
2587 	 * for this interrupt. Indications will be cleared on related acks.
2588 	 * New indications can and will light up during processing,
2589 	 * and will generate new interrupt after enabling master.
2590 	 */
2591 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2592 }
2593 
2594 static inline void gen8_master_intr_enable(void __iomem * const regs)
2595 {
2596 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2597 }
2598 
2599 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2600 {
2601 	struct drm_i915_private *dev_priv = arg;
2602 	void __iomem * const regs = dev_priv->uncore.regs;
2603 	u32 master_ctl;
2604 
2605 	if (!intel_irqs_enabled(dev_priv))
2606 		return IRQ_NONE;
2607 
2608 	master_ctl = gen8_master_intr_disable(regs);
2609 	if (!master_ctl) {
2610 		gen8_master_intr_enable(regs);
2611 		return IRQ_NONE;
2612 	}
2613 
2614 	/* Find, queue (onto bottom-halves), then clear each source */
2615 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2616 
2617 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2618 	if (master_ctl & ~GEN8_GT_IRQS) {
2619 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2620 		gen8_de_irq_handler(dev_priv, master_ctl);
2621 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2622 	}
2623 
2624 	gen8_master_intr_enable(regs);
2625 
2626 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2627 
2628 	return IRQ_HANDLED;
2629 }
2630 
2631 static u32
2632 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2633 {
2634 	void __iomem * const regs = gt->uncore->regs;
2635 	u32 iir;
2636 
2637 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2638 		return 0;
2639 
2640 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2641 	if (likely(iir))
2642 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2643 
2644 	return iir;
2645 }
2646 
2647 static void
2648 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2649 {
2650 	if (iir & GEN11_GU_MISC_GSE)
2651 		intel_opregion_asle_intr(gt->i915);
2652 }
2653 
2654 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2655 {
2656 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2657 
2658 	/*
2659 	 * Now with master disabled, get a sample of level indications
2660 	 * for this interrupt. Indications will be cleared on related acks.
2661 	 * New indications can and will light up during processing,
2662 	 * and will generate new interrupt after enabling master.
2663 	 */
2664 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2665 }
2666 
2667 static inline void gen11_master_intr_enable(void __iomem * const regs)
2668 {
2669 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2670 }
2671 
2672 static void
2673 gen11_display_irq_handler(struct drm_i915_private *i915)
2674 {
2675 	void __iomem * const regs = i915->uncore.regs;
2676 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2677 
2678 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2679 	/*
2680 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2681 	 * for the display related bits.
2682 	 */
2683 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2684 	gen8_de_irq_handler(i915, disp_ctl);
2685 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2686 		      GEN11_DISPLAY_IRQ_ENABLE);
2687 
2688 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2689 }
2690 
2691 static __always_inline irqreturn_t
2692 __gen11_irq_handler(struct drm_i915_private * const i915,
2693 		    u32 (*intr_disable)(void __iomem * const regs),
2694 		    void (*intr_enable)(void __iomem * const regs))
2695 {
2696 	void __iomem * const regs = i915->uncore.regs;
2697 	struct intel_gt *gt = &i915->gt;
2698 	u32 master_ctl;
2699 	u32 gu_misc_iir;
2700 
2701 	if (!intel_irqs_enabled(i915))
2702 		return IRQ_NONE;
2703 
2704 	master_ctl = intr_disable(regs);
2705 	if (!master_ctl) {
2706 		intr_enable(regs);
2707 		return IRQ_NONE;
2708 	}
2709 
2710 	/* Find, queue (onto bottom-halves), then clear each source */
2711 	gen11_gt_irq_handler(gt, master_ctl);
2712 
2713 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2714 	if (master_ctl & GEN11_DISPLAY_IRQ)
2715 		gen11_display_irq_handler(i915);
2716 
2717 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2718 
2719 	intr_enable(regs);
2720 
2721 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2722 
2723 	pmu_irq_stats(i915, IRQ_HANDLED);
2724 
2725 	return IRQ_HANDLED;
2726 }
2727 
2728 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2729 {
2730 	return __gen11_irq_handler(arg,
2731 				   gen11_master_intr_disable,
2732 				   gen11_master_intr_enable);
2733 }
2734 
2735 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2736 {
2737 	u32 val;
2738 
2739 	/* First disable interrupts */
2740 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2741 
2742 	/* Get the indication levels and ack the master unit */
2743 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2744 	if (unlikely(!val))
2745 		return 0;
2746 
2747 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2748 
2749 	/*
2750 	 * Now with master disabled, get a sample of level indications
2751 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2752 	 * out as this bit doesn't exist anymore for DG1
2753 	 */
2754 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2755 	if (unlikely(!val))
2756 		return 0;
2757 
2758 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2759 
2760 	return val;
2761 }
2762 
2763 static inline void dg1_master_intr_enable(void __iomem * const regs)
2764 {
2765 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2766 }
2767 
2768 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2769 {
2770 	return __gen11_irq_handler(arg,
2771 				   dg1_master_intr_disable_and_ack,
2772 				   dg1_master_intr_enable);
2773 }
2774 
2775 /* Called from drm generic code, passed 'crtc' which
2776  * we use as a pipe index
2777  */
2778 int i8xx_enable_vblank(struct drm_crtc *crtc)
2779 {
2780 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2781 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2782 	unsigned long irqflags;
2783 
2784 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2786 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787 
2788 	return 0;
2789 }
2790 
2791 int i915gm_enable_vblank(struct drm_crtc *crtc)
2792 {
2793 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2794 
2795 	/*
2796 	 * Vblank interrupts fail to wake the device up from C2+.
2797 	 * Disabling render clock gating during C-states avoids
2798 	 * the problem. There is a small power cost so we do this
2799 	 * only when vblank interrupts are actually enabled.
2800 	 */
2801 	if (dev_priv->vblank_enabled++ == 0)
2802 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2803 
2804 	return i8xx_enable_vblank(crtc);
2805 }
2806 
2807 int i965_enable_vblank(struct drm_crtc *crtc)
2808 {
2809 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2810 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2811 	unsigned long irqflags;
2812 
2813 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2814 	i915_enable_pipestat(dev_priv, pipe,
2815 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2816 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2817 
2818 	return 0;
2819 }
2820 
2821 int ilk_enable_vblank(struct drm_crtc *crtc)
2822 {
2823 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2824 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2825 	unsigned long irqflags;
2826 	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2827 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2828 
2829 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 	ilk_enable_display_irq(dev_priv, bit);
2831 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832 
2833 	/* Even though there is no DMC, frame counter can get stuck when
2834 	 * PSR is active as no frames are generated.
2835 	 */
2836 	if (HAS_PSR(dev_priv))
2837 		drm_crtc_vblank_restore(crtc);
2838 
2839 	return 0;
2840 }
2841 
2842 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2843 				   bool enable)
2844 {
2845 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2846 	enum port port;
2847 	u32 tmp;
2848 
2849 	if (!(intel_crtc->mode_flags &
2850 	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2851 		return false;
2852 
2853 	/* for dual link cases we consider TE from slave */
2854 	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2855 		port = PORT_B;
2856 	else
2857 		port = PORT_A;
2858 
2859 	tmp =  intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
2860 	if (enable)
2861 		tmp &= ~DSI_TE_EVENT;
2862 	else
2863 		tmp |= DSI_TE_EVENT;
2864 
2865 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
2866 
2867 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2868 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2869 
2870 	return true;
2871 }
2872 
2873 int bdw_enable_vblank(struct drm_crtc *crtc)
2874 {
2875 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2876 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2877 	enum pipe pipe = intel_crtc->pipe;
2878 	unsigned long irqflags;
2879 
2880 	if (gen11_dsi_configure_te(intel_crtc, true))
2881 		return 0;
2882 
2883 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2884 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2885 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2886 
2887 	/* Even if there is no DMC, frame counter can get stuck when
2888 	 * PSR is active as no frames are generated, so check only for PSR.
2889 	 */
2890 	if (HAS_PSR(dev_priv))
2891 		drm_crtc_vblank_restore(crtc);
2892 
2893 	return 0;
2894 }
2895 
2896 /* Called from drm generic code, passed 'crtc' which
2897  * we use as a pipe index
2898  */
2899 void i8xx_disable_vblank(struct drm_crtc *crtc)
2900 {
2901 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2902 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2903 	unsigned long irqflags;
2904 
2905 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2906 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2907 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2908 }
2909 
2910 void i915gm_disable_vblank(struct drm_crtc *crtc)
2911 {
2912 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2913 
2914 	i8xx_disable_vblank(crtc);
2915 
2916 	if (--dev_priv->vblank_enabled == 0)
2917 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2918 }
2919 
2920 void i965_disable_vblank(struct drm_crtc *crtc)
2921 {
2922 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2923 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2924 	unsigned long irqflags;
2925 
2926 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2927 	i915_disable_pipestat(dev_priv, pipe,
2928 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2929 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2930 }
2931 
2932 void ilk_disable_vblank(struct drm_crtc *crtc)
2933 {
2934 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2935 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2936 	unsigned long irqflags;
2937 	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2938 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2939 
2940 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2941 	ilk_disable_display_irq(dev_priv, bit);
2942 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2943 }
2944 
2945 void bdw_disable_vblank(struct drm_crtc *crtc)
2946 {
2947 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2948 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949 	enum pipe pipe = intel_crtc->pipe;
2950 	unsigned long irqflags;
2951 
2952 	if (gen11_dsi_configure_te(intel_crtc, false))
2953 		return;
2954 
2955 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2956 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2957 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2958 }
2959 
2960 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2961 {
2962 	struct intel_uncore *uncore = &dev_priv->uncore;
2963 
2964 	if (HAS_PCH_NOP(dev_priv))
2965 		return;
2966 
2967 	GEN3_IRQ_RESET(uncore, SDE);
2968 
2969 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2970 		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2971 }
2972 
2973 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2974 {
2975 	struct intel_uncore *uncore = &dev_priv->uncore;
2976 
2977 	if (IS_CHERRYVIEW(dev_priv))
2978 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2979 	else
2980 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2981 
2982 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2983 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
2984 
2985 	i9xx_pipestat_irq_reset(dev_priv);
2986 
2987 	GEN3_IRQ_RESET(uncore, VLV_);
2988 	dev_priv->irq_mask = ~0u;
2989 }
2990 
2991 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2992 {
2993 	struct intel_uncore *uncore = &dev_priv->uncore;
2994 
2995 	u32 pipestat_mask;
2996 	u32 enable_mask;
2997 	enum pipe pipe;
2998 
2999 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3000 
3001 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3002 	for_each_pipe(dev_priv, pipe)
3003 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3004 
3005 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3006 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3007 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3008 		I915_LPE_PIPE_A_INTERRUPT |
3009 		I915_LPE_PIPE_B_INTERRUPT;
3010 
3011 	if (IS_CHERRYVIEW(dev_priv))
3012 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3013 			I915_LPE_PIPE_C_INTERRUPT;
3014 
3015 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
3016 
3017 	dev_priv->irq_mask = ~enable_mask;
3018 
3019 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3020 }
3021 
3022 /* drm_dma.h hooks
3023 */
3024 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
3025 {
3026 	struct intel_uncore *uncore = &dev_priv->uncore;
3027 
3028 	GEN3_IRQ_RESET(uncore, DE);
3029 	dev_priv->irq_mask = ~0u;
3030 
3031 	if (IS_GEN(dev_priv, 7))
3032 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3033 
3034 	if (IS_HASWELL(dev_priv)) {
3035 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3036 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3037 	}
3038 
3039 	gen5_gt_irq_reset(&dev_priv->gt);
3040 
3041 	ibx_irq_reset(dev_priv);
3042 }
3043 
3044 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3045 {
3046 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3047 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3048 
3049 	gen5_gt_irq_reset(&dev_priv->gt);
3050 
3051 	spin_lock_irq(&dev_priv->irq_lock);
3052 	if (dev_priv->display_irqs_enabled)
3053 		vlv_display_irq_reset(dev_priv);
3054 	spin_unlock_irq(&dev_priv->irq_lock);
3055 }
3056 
3057 static void cnp_display_clock_wa(struct drm_i915_private *dev_priv)
3058 {
3059 	struct intel_uncore *uncore = &dev_priv->uncore;
3060 
3061 	/*
3062 	 * Wa_14010685332:cnp/cmp,tgp,adp
3063 	 * TODO: Clarify which platforms this applies to
3064 	 * TODO: Figure out if this workaround can be applied in the s0ix suspend/resume handlers as
3065 	 * on earlier platforms and whether the workaround is also needed for runtime suspend/resume
3066 	 */
3067 	if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3068 	    (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3069 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS,
3070 				 SBCLK_RUN_REFCLK_DIS);
3071 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
3072 	}
3073 }
3074 
3075 static void gen8_display_irq_reset(struct drm_i915_private *dev_priv)
3076 {
3077 	struct intel_uncore *uncore = &dev_priv->uncore;
3078 	enum pipe pipe;
3079 
3080 	if (!HAS_DISPLAY(dev_priv))
3081 		return;
3082 
3083 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3084 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3085 
3086 	for_each_pipe(dev_priv, pipe)
3087 		if (intel_display_power_is_enabled(dev_priv,
3088 						   POWER_DOMAIN_PIPE(pipe)))
3089 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3090 
3091 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3092 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3093 }
3094 
3095 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3096 {
3097 	struct intel_uncore *uncore = &dev_priv->uncore;
3098 
3099 	gen8_master_intr_disable(dev_priv->uncore.regs);
3100 
3101 	gen8_gt_irq_reset(&dev_priv->gt);
3102 	gen8_display_irq_reset(dev_priv);
3103 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3104 
3105 	if (HAS_PCH_SPLIT(dev_priv))
3106 		ibx_irq_reset(dev_priv);
3107 
3108 	cnp_display_clock_wa(dev_priv);
3109 }
3110 
3111 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3112 {
3113 	struct intel_uncore *uncore = &dev_priv->uncore;
3114 	enum pipe pipe;
3115 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3116 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3117 
3118 	if (!HAS_DISPLAY(dev_priv))
3119 		return;
3120 
3121 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3122 
3123 	if (DISPLAY_VER(dev_priv) >= 12) {
3124 		enum transcoder trans;
3125 
3126 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3127 			enum intel_display_power_domain domain;
3128 
3129 			domain = POWER_DOMAIN_TRANSCODER(trans);
3130 			if (!intel_display_power_is_enabled(dev_priv, domain))
3131 				continue;
3132 
3133 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3134 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3135 		}
3136 	} else {
3137 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3138 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3139 	}
3140 
3141 	for_each_pipe(dev_priv, pipe)
3142 		if (intel_display_power_is_enabled(dev_priv,
3143 						   POWER_DOMAIN_PIPE(pipe)))
3144 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3145 
3146 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3147 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3148 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3149 
3150 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3151 		GEN3_IRQ_RESET(uncore, SDE);
3152 
3153 	cnp_display_clock_wa(dev_priv);
3154 }
3155 
3156 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3157 {
3158 	struct intel_uncore *uncore = &dev_priv->uncore;
3159 
3160 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3161 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3162 	else
3163 		gen11_master_intr_disable(dev_priv->uncore.regs);
3164 
3165 	gen11_gt_irq_reset(&dev_priv->gt);
3166 	gen11_display_irq_reset(dev_priv);
3167 
3168 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3169 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3170 }
3171 
3172 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3173 				     u8 pipe_mask)
3174 {
3175 	struct intel_uncore *uncore = &dev_priv->uncore;
3176 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3177 		gen8_de_pipe_flip_done_mask(dev_priv);
3178 	enum pipe pipe;
3179 
3180 	spin_lock_irq(&dev_priv->irq_lock);
3181 
3182 	if (!intel_irqs_enabled(dev_priv)) {
3183 		spin_unlock_irq(&dev_priv->irq_lock);
3184 		return;
3185 	}
3186 
3187 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3188 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3189 				  dev_priv->de_irq_mask[pipe],
3190 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3191 
3192 	spin_unlock_irq(&dev_priv->irq_lock);
3193 }
3194 
3195 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3196 				     u8 pipe_mask)
3197 {
3198 	struct intel_uncore *uncore = &dev_priv->uncore;
3199 	enum pipe pipe;
3200 
3201 	spin_lock_irq(&dev_priv->irq_lock);
3202 
3203 	if (!intel_irqs_enabled(dev_priv)) {
3204 		spin_unlock_irq(&dev_priv->irq_lock);
3205 		return;
3206 	}
3207 
3208 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3209 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3210 
3211 	spin_unlock_irq(&dev_priv->irq_lock);
3212 
3213 	/* make sure we're done processing display irqs */
3214 	intel_synchronize_irq(dev_priv);
3215 }
3216 
3217 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3218 {
3219 	struct intel_uncore *uncore = &dev_priv->uncore;
3220 
3221 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
3222 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3223 
3224 	gen8_gt_irq_reset(&dev_priv->gt);
3225 
3226 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3227 
3228 	spin_lock_irq(&dev_priv->irq_lock);
3229 	if (dev_priv->display_irqs_enabled)
3230 		vlv_display_irq_reset(dev_priv);
3231 	spin_unlock_irq(&dev_priv->irq_lock);
3232 }
3233 
3234 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3235 			       enum hpd_pin pin)
3236 {
3237 	switch (pin) {
3238 	case HPD_PORT_A:
3239 		/*
3240 		 * When CPU and PCH are on the same package, port A
3241 		 * HPD must be enabled in both north and south.
3242 		 */
3243 		return HAS_PCH_LPT_LP(i915) ?
3244 			PORTA_HOTPLUG_ENABLE : 0;
3245 	case HPD_PORT_B:
3246 		return PORTB_HOTPLUG_ENABLE |
3247 			PORTB_PULSE_DURATION_2ms;
3248 	case HPD_PORT_C:
3249 		return PORTC_HOTPLUG_ENABLE |
3250 			PORTC_PULSE_DURATION_2ms;
3251 	case HPD_PORT_D:
3252 		return PORTD_HOTPLUG_ENABLE |
3253 			PORTD_PULSE_DURATION_2ms;
3254 	default:
3255 		return 0;
3256 	}
3257 }
3258 
3259 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3260 {
3261 	u32 hotplug;
3262 
3263 	/*
3264 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3265 	 * duration to 2ms (which is the minimum in the Display Port spec).
3266 	 * The pulse duration bits are reserved on LPT+.
3267 	 */
3268 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3269 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3270 		     PORTB_HOTPLUG_ENABLE |
3271 		     PORTC_HOTPLUG_ENABLE |
3272 		     PORTD_HOTPLUG_ENABLE |
3273 		     PORTB_PULSE_DURATION_MASK |
3274 		     PORTC_PULSE_DURATION_MASK |
3275 		     PORTD_PULSE_DURATION_MASK);
3276 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3277 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3278 }
3279 
3280 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3281 {
3282 	u32 hotplug_irqs, enabled_irqs;
3283 
3284 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3285 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3286 
3287 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3288 
3289 	ibx_hpd_detection_setup(dev_priv);
3290 }
3291 
3292 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3293 				   enum hpd_pin pin)
3294 {
3295 	switch (pin) {
3296 	case HPD_PORT_A:
3297 	case HPD_PORT_B:
3298 	case HPD_PORT_C:
3299 	case HPD_PORT_D:
3300 		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3301 	default:
3302 		return 0;
3303 	}
3304 }
3305 
3306 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3307 				  enum hpd_pin pin)
3308 {
3309 	switch (pin) {
3310 	case HPD_PORT_TC1:
3311 	case HPD_PORT_TC2:
3312 	case HPD_PORT_TC3:
3313 	case HPD_PORT_TC4:
3314 	case HPD_PORT_TC5:
3315 	case HPD_PORT_TC6:
3316 		return ICP_TC_HPD_ENABLE(pin);
3317 	default:
3318 		return 0;
3319 	}
3320 }
3321 
3322 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3323 {
3324 	u32 hotplug;
3325 
3326 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
3327 	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3328 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3329 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3330 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3331 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3332 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
3333 }
3334 
3335 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3336 {
3337 	u32 hotplug;
3338 
3339 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
3340 	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3341 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3342 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3343 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3344 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3345 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3346 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3347 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
3348 }
3349 
3350 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3351 {
3352 	u32 hotplug_irqs, enabled_irqs;
3353 
3354 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3355 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3356 
3357 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3358 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3359 
3360 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3361 
3362 	icp_ddi_hpd_detection_setup(dev_priv);
3363 	icp_tc_hpd_detection_setup(dev_priv);
3364 }
3365 
3366 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3367 				 enum hpd_pin pin)
3368 {
3369 	switch (pin) {
3370 	case HPD_PORT_TC1:
3371 	case HPD_PORT_TC2:
3372 	case HPD_PORT_TC3:
3373 	case HPD_PORT_TC4:
3374 	case HPD_PORT_TC5:
3375 	case HPD_PORT_TC6:
3376 		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3377 	default:
3378 		return 0;
3379 	}
3380 }
3381 
3382 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3383 {
3384 	u32 val;
3385 
3386 	val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3387 	val |= (INVERT_DDIA_HPD |
3388 		INVERT_DDIB_HPD |
3389 		INVERT_DDIC_HPD |
3390 		INVERT_DDID_HPD);
3391 	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3392 
3393 	icp_hpd_irq_setup(dev_priv);
3394 }
3395 
3396 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3397 {
3398 	u32 hotplug;
3399 
3400 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
3401 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3402 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3403 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3404 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3405 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3406 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3407 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3408 	intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
3409 }
3410 
3411 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3412 {
3413 	u32 hotplug;
3414 
3415 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
3416 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3417 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3418 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3419 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3420 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3421 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3422 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3423 	intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
3424 }
3425 
3426 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3427 {
3428 	u32 hotplug_irqs, enabled_irqs;
3429 	u32 val;
3430 
3431 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3432 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3433 
3434 	val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3435 	val &= ~hotplug_irqs;
3436 	val |= ~enabled_irqs & hotplug_irqs;
3437 	intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
3438 	intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3439 
3440 	gen11_tc_hpd_detection_setup(dev_priv);
3441 	gen11_tbt_hpd_detection_setup(dev_priv);
3442 
3443 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3444 		icp_hpd_irq_setup(dev_priv);
3445 }
3446 
3447 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3448 			       enum hpd_pin pin)
3449 {
3450 	switch (pin) {
3451 	case HPD_PORT_A:
3452 		return PORTA_HOTPLUG_ENABLE;
3453 	case HPD_PORT_B:
3454 		return PORTB_HOTPLUG_ENABLE;
3455 	case HPD_PORT_C:
3456 		return PORTC_HOTPLUG_ENABLE;
3457 	case HPD_PORT_D:
3458 		return PORTD_HOTPLUG_ENABLE;
3459 	default:
3460 		return 0;
3461 	}
3462 }
3463 
3464 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3465 				enum hpd_pin pin)
3466 {
3467 	switch (pin) {
3468 	case HPD_PORT_E:
3469 		return PORTE_HOTPLUG_ENABLE;
3470 	default:
3471 		return 0;
3472 	}
3473 }
3474 
3475 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3476 {
3477 	u32 val, hotplug;
3478 
3479 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3480 	if (HAS_PCH_CNP(dev_priv)) {
3481 		val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3482 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3483 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3484 		intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3485 	}
3486 
3487 	/* Enable digital hotplug on the PCH */
3488 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3489 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3490 		     PORTB_HOTPLUG_ENABLE |
3491 		     PORTC_HOTPLUG_ENABLE |
3492 		     PORTD_HOTPLUG_ENABLE);
3493 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3494 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3495 
3496 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
3497 	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3498 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3499 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
3500 }
3501 
3502 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3503 {
3504 	u32 hotplug_irqs, enabled_irqs;
3505 
3506 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3507 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3508 
3509 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3510 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3511 
3512 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3513 
3514 	spt_hpd_detection_setup(dev_priv);
3515 }
3516 
3517 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3518 			       enum hpd_pin pin)
3519 {
3520 	switch (pin) {
3521 	case HPD_PORT_A:
3522 		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3523 			DIGITAL_PORTA_PULSE_DURATION_2ms;
3524 	default:
3525 		return 0;
3526 	}
3527 }
3528 
3529 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3530 {
3531 	u32 hotplug;
3532 
3533 	/*
3534 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3535 	 * duration to 2ms (which is the minimum in the Display Port spec)
3536 	 * The pulse duration bits are reserved on HSW+.
3537 	 */
3538 	hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
3539 	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3540 		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3541 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3542 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3543 }
3544 
3545 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3546 {
3547 	u32 hotplug_irqs, enabled_irqs;
3548 
3549 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3550 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3551 
3552 	if (DISPLAY_VER(dev_priv) >= 8)
3553 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3554 	else
3555 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3556 
3557 	ilk_hpd_detection_setup(dev_priv);
3558 
3559 	ibx_hpd_irq_setup(dev_priv);
3560 }
3561 
3562 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3563 			       enum hpd_pin pin)
3564 {
3565 	u32 hotplug;
3566 
3567 	switch (pin) {
3568 	case HPD_PORT_A:
3569 		hotplug = PORTA_HOTPLUG_ENABLE;
3570 		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3571 			hotplug |= BXT_DDIA_HPD_INVERT;
3572 		return hotplug;
3573 	case HPD_PORT_B:
3574 		hotplug = PORTB_HOTPLUG_ENABLE;
3575 		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3576 			hotplug |= BXT_DDIB_HPD_INVERT;
3577 		return hotplug;
3578 	case HPD_PORT_C:
3579 		hotplug = PORTC_HOTPLUG_ENABLE;
3580 		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3581 			hotplug |= BXT_DDIC_HPD_INVERT;
3582 		return hotplug;
3583 	default:
3584 		return 0;
3585 	}
3586 }
3587 
3588 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3589 {
3590 	u32 hotplug;
3591 
3592 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3593 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3594 		     PORTB_HOTPLUG_ENABLE |
3595 		     PORTC_HOTPLUG_ENABLE |
3596 		     BXT_DDIA_HPD_INVERT |
3597 		     BXT_DDIB_HPD_INVERT |
3598 		     BXT_DDIC_HPD_INVERT);
3599 	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3600 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3601 }
3602 
3603 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3604 {
3605 	u32 hotplug_irqs, enabled_irqs;
3606 
3607 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3608 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3609 
3610 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3611 
3612 	bxt_hpd_detection_setup(dev_priv);
3613 }
3614 
3615 /*
3616  * SDEIER is also touched by the interrupt handler to work around missed PCH
3617  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3618  * instead we unconditionally enable all PCH interrupt sources here, but then
3619  * only unmask them as needed with SDEIMR.
3620  *
3621  * Note that we currently do this after installing the interrupt handler,
3622  * but before we enable the master interrupt. That should be sufficient
3623  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3624  * interrupts could still race.
3625  */
3626 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3627 {
3628 	struct intel_uncore *uncore = &dev_priv->uncore;
3629 	u32 mask;
3630 
3631 	if (HAS_PCH_NOP(dev_priv))
3632 		return;
3633 
3634 	if (HAS_PCH_IBX(dev_priv))
3635 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3636 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3637 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3638 	else
3639 		mask = SDE_GMBUS_CPT;
3640 
3641 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3642 }
3643 
3644 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3645 {
3646 	struct intel_uncore *uncore = &dev_priv->uncore;
3647 	u32 display_mask, extra_mask;
3648 
3649 	if (INTEL_GEN(dev_priv) >= 7) {
3650 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3651 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3652 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3653 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3654 			      DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3655 			      DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3656 			      DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3657 			      DE_DP_A_HOTPLUG_IVB);
3658 	} else {
3659 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3660 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3661 				DE_PIPEA_CRC_DONE | DE_POISON);
3662 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3663 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3664 			      DE_PLANE_FLIP_DONE(PLANE_A) |
3665 			      DE_PLANE_FLIP_DONE(PLANE_B) |
3666 			      DE_DP_A_HOTPLUG);
3667 	}
3668 
3669 	if (IS_HASWELL(dev_priv)) {
3670 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3671 		display_mask |= DE_EDP_PSR_INT_HSW;
3672 	}
3673 
3674 	if (IS_IRONLAKE_M(dev_priv))
3675 		extra_mask |= DE_PCU_EVENT;
3676 
3677 	dev_priv->irq_mask = ~display_mask;
3678 
3679 	ibx_irq_postinstall(dev_priv);
3680 
3681 	gen5_gt_irq_postinstall(&dev_priv->gt);
3682 
3683 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3684 		      display_mask | extra_mask);
3685 }
3686 
3687 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3688 {
3689 	lockdep_assert_held(&dev_priv->irq_lock);
3690 
3691 	if (dev_priv->display_irqs_enabled)
3692 		return;
3693 
3694 	dev_priv->display_irqs_enabled = true;
3695 
3696 	if (intel_irqs_enabled(dev_priv)) {
3697 		vlv_display_irq_reset(dev_priv);
3698 		vlv_display_irq_postinstall(dev_priv);
3699 	}
3700 }
3701 
3702 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3703 {
3704 	lockdep_assert_held(&dev_priv->irq_lock);
3705 
3706 	if (!dev_priv->display_irqs_enabled)
3707 		return;
3708 
3709 	dev_priv->display_irqs_enabled = false;
3710 
3711 	if (intel_irqs_enabled(dev_priv))
3712 		vlv_display_irq_reset(dev_priv);
3713 }
3714 
3715 
3716 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3717 {
3718 	gen5_gt_irq_postinstall(&dev_priv->gt);
3719 
3720 	spin_lock_irq(&dev_priv->irq_lock);
3721 	if (dev_priv->display_irqs_enabled)
3722 		vlv_display_irq_postinstall(dev_priv);
3723 	spin_unlock_irq(&dev_priv->irq_lock);
3724 
3725 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3726 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3727 }
3728 
3729 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3730 {
3731 	struct intel_uncore *uncore = &dev_priv->uncore;
3732 
3733 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3734 		GEN8_PIPE_CDCLK_CRC_DONE;
3735 	u32 de_pipe_enables;
3736 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3737 	u32 de_port_enables;
3738 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3739 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3740 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3741 	enum pipe pipe;
3742 
3743 	if (!HAS_DISPLAY(dev_priv))
3744 		return;
3745 
3746 	if (DISPLAY_VER(dev_priv) <= 10)
3747 		de_misc_masked |= GEN8_DE_MISC_GSE;
3748 
3749 	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3750 		de_port_masked |= BXT_DE_PORT_GMBUS;
3751 
3752 	if (DISPLAY_VER(dev_priv) >= 11) {
3753 		enum port port;
3754 
3755 		if (intel_bios_is_dsi_present(dev_priv, &port))
3756 			de_port_masked |= DSI0_TE | DSI1_TE;
3757 	}
3758 
3759 	de_pipe_enables = de_pipe_masked |
3760 		GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3761 		gen8_de_pipe_flip_done_mask(dev_priv);
3762 
3763 	de_port_enables = de_port_masked;
3764 	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3765 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3766 	else if (IS_BROADWELL(dev_priv))
3767 		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3768 
3769 	if (DISPLAY_VER(dev_priv) >= 12) {
3770 		enum transcoder trans;
3771 
3772 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3773 			enum intel_display_power_domain domain;
3774 
3775 			domain = POWER_DOMAIN_TRANSCODER(trans);
3776 			if (!intel_display_power_is_enabled(dev_priv, domain))
3777 				continue;
3778 
3779 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3780 		}
3781 	} else {
3782 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3783 	}
3784 
3785 	for_each_pipe(dev_priv, pipe) {
3786 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3787 
3788 		if (intel_display_power_is_enabled(dev_priv,
3789 				POWER_DOMAIN_PIPE(pipe)))
3790 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3791 					  dev_priv->de_irq_mask[pipe],
3792 					  de_pipe_enables);
3793 	}
3794 
3795 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3796 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3797 
3798 	if (DISPLAY_VER(dev_priv) >= 11) {
3799 		u32 de_hpd_masked = 0;
3800 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3801 				     GEN11_DE_TBT_HOTPLUG_MASK;
3802 
3803 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3804 			      de_hpd_enables);
3805 	}
3806 }
3807 
3808 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3809 {
3810 	struct intel_uncore *uncore = &dev_priv->uncore;
3811 	u32 mask = SDE_GMBUS_ICP;
3812 
3813 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3814 }
3815 
3816 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3817 {
3818 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3819 		icp_irq_postinstall(dev_priv);
3820 	else if (HAS_PCH_SPLIT(dev_priv))
3821 		ibx_irq_postinstall(dev_priv);
3822 
3823 	gen8_gt_irq_postinstall(&dev_priv->gt);
3824 	gen8_de_irq_postinstall(dev_priv);
3825 
3826 	gen8_master_intr_enable(dev_priv->uncore.regs);
3827 }
3828 
3829 static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv)
3830 {
3831 	if (!HAS_DISPLAY(dev_priv))
3832 		return;
3833 
3834 	gen8_de_irq_postinstall(dev_priv);
3835 
3836 	intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3837 			   GEN11_DISPLAY_IRQ_ENABLE);
3838 }
3839 
3840 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3841 {
3842 	struct intel_uncore *uncore = &dev_priv->uncore;
3843 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3844 
3845 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3846 		icp_irq_postinstall(dev_priv);
3847 
3848 	gen11_gt_irq_postinstall(&dev_priv->gt);
3849 	gen11_de_irq_postinstall(dev_priv);
3850 
3851 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3852 
3853 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3854 		dg1_master_intr_enable(uncore->regs);
3855 		intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
3856 	} else {
3857 		gen11_master_intr_enable(uncore->regs);
3858 		intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3859 	}
3860 }
3861 
3862 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3863 {
3864 	gen8_gt_irq_postinstall(&dev_priv->gt);
3865 
3866 	spin_lock_irq(&dev_priv->irq_lock);
3867 	if (dev_priv->display_irqs_enabled)
3868 		vlv_display_irq_postinstall(dev_priv);
3869 	spin_unlock_irq(&dev_priv->irq_lock);
3870 
3871 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3872 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3873 }
3874 
3875 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3876 {
3877 	struct intel_uncore *uncore = &dev_priv->uncore;
3878 
3879 	i9xx_pipestat_irq_reset(dev_priv);
3880 
3881 	GEN2_IRQ_RESET(uncore);
3882 	dev_priv->irq_mask = ~0u;
3883 }
3884 
3885 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3886 {
3887 	struct intel_uncore *uncore = &dev_priv->uncore;
3888 	u16 enable_mask;
3889 
3890 	intel_uncore_write16(uncore,
3891 			     EMR,
3892 			     ~(I915_ERROR_PAGE_TABLE |
3893 			       I915_ERROR_MEMORY_REFRESH));
3894 
3895 	/* Unmask the interrupts that we always want on. */
3896 	dev_priv->irq_mask =
3897 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3898 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3899 		  I915_MASTER_ERROR_INTERRUPT);
3900 
3901 	enable_mask =
3902 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904 		I915_MASTER_ERROR_INTERRUPT |
3905 		I915_USER_INTERRUPT;
3906 
3907 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3908 
3909 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3910 	 * just to make the assert_spin_locked check happy. */
3911 	spin_lock_irq(&dev_priv->irq_lock);
3912 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3913 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3914 	spin_unlock_irq(&dev_priv->irq_lock);
3915 }
3916 
3917 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3918 			       u16 *eir, u16 *eir_stuck)
3919 {
3920 	struct intel_uncore *uncore = &i915->uncore;
3921 	u16 emr;
3922 
3923 	*eir = intel_uncore_read16(uncore, EIR);
3924 
3925 	if (*eir)
3926 		intel_uncore_write16(uncore, EIR, *eir);
3927 
3928 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3929 	if (*eir_stuck == 0)
3930 		return;
3931 
3932 	/*
3933 	 * Toggle all EMR bits to make sure we get an edge
3934 	 * in the ISR master error bit if we don't clear
3935 	 * all the EIR bits. Otherwise the edge triggered
3936 	 * IIR on i965/g4x wouldn't notice that an interrupt
3937 	 * is still pending. Also some EIR bits can't be
3938 	 * cleared except by handling the underlying error
3939 	 * (or by a GPU reset) so we mask any bit that
3940 	 * remains set.
3941 	 */
3942 	emr = intel_uncore_read16(uncore, EMR);
3943 	intel_uncore_write16(uncore, EMR, 0xffff);
3944 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3945 }
3946 
3947 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3948 				   u16 eir, u16 eir_stuck)
3949 {
3950 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3951 
3952 	if (eir_stuck)
3953 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3954 			eir_stuck);
3955 }
3956 
3957 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3958 			       u32 *eir, u32 *eir_stuck)
3959 {
3960 	u32 emr;
3961 
3962 	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
3963 
3964 	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
3965 
3966 	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3967 	if (*eir_stuck == 0)
3968 		return;
3969 
3970 	/*
3971 	 * Toggle all EMR bits to make sure we get an edge
3972 	 * in the ISR master error bit if we don't clear
3973 	 * all the EIR bits. Otherwise the edge triggered
3974 	 * IIR on i965/g4x wouldn't notice that an interrupt
3975 	 * is still pending. Also some EIR bits can't be
3976 	 * cleared except by handling the underlying error
3977 	 * (or by a GPU reset) so we mask any bit that
3978 	 * remains set.
3979 	 */
3980 	emr = intel_uncore_read(&dev_priv->uncore, EMR);
3981 	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
3982 	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3983 }
3984 
3985 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3986 				   u32 eir, u32 eir_stuck)
3987 {
3988 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3989 
3990 	if (eir_stuck)
3991 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3992 			eir_stuck);
3993 }
3994 
3995 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3996 {
3997 	struct drm_i915_private *dev_priv = arg;
3998 	irqreturn_t ret = IRQ_NONE;
3999 
4000 	if (!intel_irqs_enabled(dev_priv))
4001 		return IRQ_NONE;
4002 
4003 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4004 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4005 
4006 	do {
4007 		u32 pipe_stats[I915_MAX_PIPES] = {};
4008 		u16 eir = 0, eir_stuck = 0;
4009 		u16 iir;
4010 
4011 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4012 		if (iir == 0)
4013 			break;
4014 
4015 		ret = IRQ_HANDLED;
4016 
4017 		/* Call regardless, as some status bits might not be
4018 		 * signalled in iir */
4019 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4020 
4021 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4022 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4023 
4024 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4025 
4026 		if (iir & I915_USER_INTERRUPT)
4027 			intel_engine_cs_irq(dev_priv->gt.engine[RCS0], iir);
4028 
4029 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4030 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4031 
4032 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4033 	} while (0);
4034 
4035 	pmu_irq_stats(dev_priv, ret);
4036 
4037 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4038 
4039 	return ret;
4040 }
4041 
4042 static void i915_irq_reset(struct drm_i915_private *dev_priv)
4043 {
4044 	struct intel_uncore *uncore = &dev_priv->uncore;
4045 
4046 	if (I915_HAS_HOTPLUG(dev_priv)) {
4047 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4048 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4049 	}
4050 
4051 	i9xx_pipestat_irq_reset(dev_priv);
4052 
4053 	GEN3_IRQ_RESET(uncore, GEN2_);
4054 	dev_priv->irq_mask = ~0u;
4055 }
4056 
4057 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4058 {
4059 	struct intel_uncore *uncore = &dev_priv->uncore;
4060 	u32 enable_mask;
4061 
4062 	intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
4063 			  I915_ERROR_MEMORY_REFRESH));
4064 
4065 	/* Unmask the interrupts that we always want on. */
4066 	dev_priv->irq_mask =
4067 		~(I915_ASLE_INTERRUPT |
4068 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4069 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4070 		  I915_MASTER_ERROR_INTERRUPT);
4071 
4072 	enable_mask =
4073 		I915_ASLE_INTERRUPT |
4074 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4075 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4076 		I915_MASTER_ERROR_INTERRUPT |
4077 		I915_USER_INTERRUPT;
4078 
4079 	if (I915_HAS_HOTPLUG(dev_priv)) {
4080 		/* Enable in IER... */
4081 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4082 		/* and unmask in IMR */
4083 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4084 	}
4085 
4086 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4087 
4088 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4089 	 * just to make the assert_spin_locked check happy. */
4090 	spin_lock_irq(&dev_priv->irq_lock);
4091 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4092 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4093 	spin_unlock_irq(&dev_priv->irq_lock);
4094 
4095 	i915_enable_asle_pipestat(dev_priv);
4096 }
4097 
4098 static irqreturn_t i915_irq_handler(int irq, void *arg)
4099 {
4100 	struct drm_i915_private *dev_priv = arg;
4101 	irqreturn_t ret = IRQ_NONE;
4102 
4103 	if (!intel_irqs_enabled(dev_priv))
4104 		return IRQ_NONE;
4105 
4106 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4107 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4108 
4109 	do {
4110 		u32 pipe_stats[I915_MAX_PIPES] = {};
4111 		u32 eir = 0, eir_stuck = 0;
4112 		u32 hotplug_status = 0;
4113 		u32 iir;
4114 
4115 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4116 		if (iir == 0)
4117 			break;
4118 
4119 		ret = IRQ_HANDLED;
4120 
4121 		if (I915_HAS_HOTPLUG(dev_priv) &&
4122 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4123 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4124 
4125 		/* Call regardless, as some status bits might not be
4126 		 * signalled in iir */
4127 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4128 
4129 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4130 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4131 
4132 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4133 
4134 		if (iir & I915_USER_INTERRUPT)
4135 			intel_engine_cs_irq(dev_priv->gt.engine[RCS0], iir);
4136 
4137 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4138 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4139 
4140 		if (hotplug_status)
4141 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4142 
4143 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4144 	} while (0);
4145 
4146 	pmu_irq_stats(dev_priv, ret);
4147 
4148 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4149 
4150 	return ret;
4151 }
4152 
4153 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4154 {
4155 	struct intel_uncore *uncore = &dev_priv->uncore;
4156 
4157 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4158 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4159 
4160 	i9xx_pipestat_irq_reset(dev_priv);
4161 
4162 	GEN3_IRQ_RESET(uncore, GEN2_);
4163 	dev_priv->irq_mask = ~0u;
4164 }
4165 
4166 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4167 {
4168 	struct intel_uncore *uncore = &dev_priv->uncore;
4169 	u32 enable_mask;
4170 	u32 error_mask;
4171 
4172 	/*
4173 	 * Enable some error detection, note the instruction error mask
4174 	 * bit is reserved, so we leave it masked.
4175 	 */
4176 	if (IS_G4X(dev_priv)) {
4177 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4178 			       GM45_ERROR_MEM_PRIV |
4179 			       GM45_ERROR_CP_PRIV |
4180 			       I915_ERROR_MEMORY_REFRESH);
4181 	} else {
4182 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4183 			       I915_ERROR_MEMORY_REFRESH);
4184 	}
4185 	intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
4186 
4187 	/* Unmask the interrupts that we always want on. */
4188 	dev_priv->irq_mask =
4189 		~(I915_ASLE_INTERRUPT |
4190 		  I915_DISPLAY_PORT_INTERRUPT |
4191 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4192 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4193 		  I915_MASTER_ERROR_INTERRUPT);
4194 
4195 	enable_mask =
4196 		I915_ASLE_INTERRUPT |
4197 		I915_DISPLAY_PORT_INTERRUPT |
4198 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4199 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4200 		I915_MASTER_ERROR_INTERRUPT |
4201 		I915_USER_INTERRUPT;
4202 
4203 	if (IS_G4X(dev_priv))
4204 		enable_mask |= I915_BSD_USER_INTERRUPT;
4205 
4206 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4207 
4208 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4209 	 * just to make the assert_spin_locked check happy. */
4210 	spin_lock_irq(&dev_priv->irq_lock);
4211 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4212 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4213 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4214 	spin_unlock_irq(&dev_priv->irq_lock);
4215 
4216 	i915_enable_asle_pipestat(dev_priv);
4217 }
4218 
4219 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4220 {
4221 	u32 hotplug_en;
4222 
4223 	lockdep_assert_held(&dev_priv->irq_lock);
4224 
4225 	/* Note HDMI and DP share hotplug bits */
4226 	/* enable bits are the same for all generations */
4227 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4228 	/* Programming the CRT detection parameters tends
4229 	   to generate a spurious hotplug event about three
4230 	   seconds later.  So just do it once.
4231 	*/
4232 	if (IS_G4X(dev_priv))
4233 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4234 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4235 
4236 	/* Ignore TV since it's buggy */
4237 	i915_hotplug_interrupt_update_locked(dev_priv,
4238 					     HOTPLUG_INT_EN_MASK |
4239 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4240 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4241 					     hotplug_en);
4242 }
4243 
4244 static irqreturn_t i965_irq_handler(int irq, void *arg)
4245 {
4246 	struct drm_i915_private *dev_priv = arg;
4247 	irqreturn_t ret = IRQ_NONE;
4248 
4249 	if (!intel_irqs_enabled(dev_priv))
4250 		return IRQ_NONE;
4251 
4252 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4253 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4254 
4255 	do {
4256 		u32 pipe_stats[I915_MAX_PIPES] = {};
4257 		u32 eir = 0, eir_stuck = 0;
4258 		u32 hotplug_status = 0;
4259 		u32 iir;
4260 
4261 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4262 		if (iir == 0)
4263 			break;
4264 
4265 		ret = IRQ_HANDLED;
4266 
4267 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4268 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4269 
4270 		/* Call regardless, as some status bits might not be
4271 		 * signalled in iir */
4272 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4273 
4274 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4275 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4276 
4277 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4278 
4279 		if (iir & I915_USER_INTERRUPT)
4280 			intel_engine_cs_irq(dev_priv->gt.engine[RCS0],
4281 					    iir);
4282 
4283 		if (iir & I915_BSD_USER_INTERRUPT)
4284 			intel_engine_cs_irq(dev_priv->gt.engine[VCS0],
4285 					    iir >> 25);
4286 
4287 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4288 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4289 
4290 		if (hotplug_status)
4291 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4292 
4293 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4294 	} while (0);
4295 
4296 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
4297 
4298 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4299 
4300 	return ret;
4301 }
4302 
4303 /**
4304  * intel_irq_init - initializes irq support
4305  * @dev_priv: i915 device instance
4306  *
4307  * This function initializes all the irq support including work items, timers
4308  * and all the vtables. It does not setup the interrupt itself though.
4309  */
4310 void intel_irq_init(struct drm_i915_private *dev_priv)
4311 {
4312 	struct drm_device *dev = &dev_priv->drm;
4313 	int i;
4314 
4315 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4316 	for (i = 0; i < MAX_L3_SLICES; ++i)
4317 		dev_priv->l3_parity.remap_info[i] = NULL;
4318 
4319 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4320 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4321 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4322 
4323 	if (!HAS_DISPLAY(dev_priv))
4324 		return;
4325 
4326 	intel_hpd_init_pins(dev_priv);
4327 
4328 	intel_hpd_init_work(dev_priv);
4329 
4330 	dev->vblank_disable_immediate = true;
4331 
4332 	/* Most platforms treat the display irq block as an always-on
4333 	 * power domain. vlv/chv can disable it at runtime and need
4334 	 * special care to avoid writing any of the display block registers
4335 	 * outside of the power domain. We defer setting up the display irqs
4336 	 * in this case to the runtime pm.
4337 	 */
4338 	dev_priv->display_irqs_enabled = true;
4339 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4340 		dev_priv->display_irqs_enabled = false;
4341 
4342 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4343 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4344 	 * detection, as short HPD storms will occur as a natural part of
4345 	 * sideband messaging with MST.
4346 	 * On older platforms however, IRQ storms can occur with both long and
4347 	 * short pulses, as seen on some G4x systems.
4348 	 */
4349 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4350 
4351 	if (HAS_GMCH(dev_priv)) {
4352 		if (I915_HAS_HOTPLUG(dev_priv))
4353 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4354 	} else {
4355 		if (HAS_PCH_DG1(dev_priv))
4356 			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4357 		else if (DISPLAY_VER(dev_priv) >= 11)
4358 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4359 		else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
4360 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4361 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4362 			dev_priv->display.hpd_irq_setup = icp_hpd_irq_setup;
4363 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4364 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4365 		else
4366 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4367 	}
4368 }
4369 
4370 /**
4371  * intel_irq_fini - deinitializes IRQ support
4372  * @i915: i915 device instance
4373  *
4374  * This function deinitializes all the IRQ support.
4375  */
4376 void intel_irq_fini(struct drm_i915_private *i915)
4377 {
4378 	int i;
4379 
4380 	for (i = 0; i < MAX_L3_SLICES; ++i)
4381 		kfree(i915->l3_parity.remap_info[i]);
4382 }
4383 
4384 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4385 {
4386 	if (HAS_GMCH(dev_priv)) {
4387 		if (IS_CHERRYVIEW(dev_priv))
4388 			return cherryview_irq_handler;
4389 		else if (IS_VALLEYVIEW(dev_priv))
4390 			return valleyview_irq_handler;
4391 		else if (IS_GEN(dev_priv, 4))
4392 			return i965_irq_handler;
4393 		else if (IS_GEN(dev_priv, 3))
4394 			return i915_irq_handler;
4395 		else
4396 			return i8xx_irq_handler;
4397 	} else {
4398 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4399 			return dg1_irq_handler;
4400 		if (INTEL_GEN(dev_priv) >= 11)
4401 			return gen11_irq_handler;
4402 		else if (INTEL_GEN(dev_priv) >= 8)
4403 			return gen8_irq_handler;
4404 		else
4405 			return ilk_irq_handler;
4406 	}
4407 }
4408 
4409 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4410 {
4411 	if (HAS_GMCH(dev_priv)) {
4412 		if (IS_CHERRYVIEW(dev_priv))
4413 			cherryview_irq_reset(dev_priv);
4414 		else if (IS_VALLEYVIEW(dev_priv))
4415 			valleyview_irq_reset(dev_priv);
4416 		else if (IS_GEN(dev_priv, 4))
4417 			i965_irq_reset(dev_priv);
4418 		else if (IS_GEN(dev_priv, 3))
4419 			i915_irq_reset(dev_priv);
4420 		else
4421 			i8xx_irq_reset(dev_priv);
4422 	} else {
4423 		if (INTEL_GEN(dev_priv) >= 11)
4424 			gen11_irq_reset(dev_priv);
4425 		else if (INTEL_GEN(dev_priv) >= 8)
4426 			gen8_irq_reset(dev_priv);
4427 		else
4428 			ilk_irq_reset(dev_priv);
4429 	}
4430 }
4431 
4432 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4433 {
4434 	if (HAS_GMCH(dev_priv)) {
4435 		if (IS_CHERRYVIEW(dev_priv))
4436 			cherryview_irq_postinstall(dev_priv);
4437 		else if (IS_VALLEYVIEW(dev_priv))
4438 			valleyview_irq_postinstall(dev_priv);
4439 		else if (IS_GEN(dev_priv, 4))
4440 			i965_irq_postinstall(dev_priv);
4441 		else if (IS_GEN(dev_priv, 3))
4442 			i915_irq_postinstall(dev_priv);
4443 		else
4444 			i8xx_irq_postinstall(dev_priv);
4445 	} else {
4446 		if (INTEL_GEN(dev_priv) >= 11)
4447 			gen11_irq_postinstall(dev_priv);
4448 		else if (INTEL_GEN(dev_priv) >= 8)
4449 			gen8_irq_postinstall(dev_priv);
4450 		else
4451 			ilk_irq_postinstall(dev_priv);
4452 	}
4453 }
4454 
4455 /**
4456  * intel_irq_install - enables the hardware interrupt
4457  * @dev_priv: i915 device instance
4458  *
4459  * This function enables the hardware interrupt handling, but leaves the hotplug
4460  * handling still disabled. It is called after intel_irq_init().
4461  *
4462  * In the driver load and resume code we need working interrupts in a few places
4463  * but don't want to deal with the hassle of concurrent probe and hotplug
4464  * workers. Hence the split into this two-stage approach.
4465  */
4466 int intel_irq_install(struct drm_i915_private *dev_priv)
4467 {
4468 	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4469 	int ret;
4470 
4471 	/*
4472 	 * We enable some interrupt sources in our postinstall hooks, so mark
4473 	 * interrupts as enabled _before_ actually enabling them to avoid
4474 	 * special cases in our ordering checks.
4475 	 */
4476 	dev_priv->runtime_pm.irqs_enabled = true;
4477 
4478 	dev_priv->drm.irq_enabled = true;
4479 
4480 	intel_irq_reset(dev_priv);
4481 
4482 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4483 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4484 	if (ret < 0) {
4485 		dev_priv->drm.irq_enabled = false;
4486 		return ret;
4487 	}
4488 
4489 	intel_irq_postinstall(dev_priv);
4490 
4491 	return ret;
4492 }
4493 
4494 /**
4495  * intel_irq_uninstall - finilizes all irq handling
4496  * @dev_priv: i915 device instance
4497  *
4498  * This stops interrupt and hotplug handling and unregisters and frees all
4499  * resources acquired in the init functions.
4500  */
4501 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4502 {
4503 	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4504 
4505 	/*
4506 	 * FIXME we can get called twice during driver probe
4507 	 * error handling as well as during driver remove due to
4508 	 * intel_modeset_driver_remove() calling us out of sequence.
4509 	 * Would be nice if it didn't do that...
4510 	 */
4511 	if (!dev_priv->drm.irq_enabled)
4512 		return;
4513 
4514 	dev_priv->drm.irq_enabled = false;
4515 
4516 	intel_irq_reset(dev_priv);
4517 
4518 	free_irq(irq, dev_priv);
4519 
4520 	intel_hpd_cancel_work(dev_priv);
4521 	dev_priv->runtime_pm.irqs_enabled = false;
4522 }
4523 
4524 /**
4525  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4526  * @dev_priv: i915 device instance
4527  *
4528  * This function is used to disable interrupts at runtime, both in the runtime
4529  * pm and the system suspend/resume code.
4530  */
4531 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4532 {
4533 	intel_irq_reset(dev_priv);
4534 	dev_priv->runtime_pm.irqs_enabled = false;
4535 	intel_synchronize_irq(dev_priv);
4536 }
4537 
4538 /**
4539  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4540  * @dev_priv: i915 device instance
4541  *
4542  * This function is used to enable interrupts at runtime, both in the runtime
4543  * pm and the system suspend/resume code.
4544  */
4545 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4546 {
4547 	dev_priv->runtime_pm.irqs_enabled = true;
4548 	intel_irq_reset(dev_priv);
4549 	intel_irq_postinstall(dev_priv);
4550 }
4551 
4552 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4553 {
4554 	/*
4555 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4556 	 * this is the only thing we need to check.
4557 	 */
4558 	return dev_priv->runtime_pm.irqs_enabled;
4559 }
4560 
4561 void intel_synchronize_irq(struct drm_i915_private *i915)
4562 {
4563 	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
4564 }
4565