xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49 
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54 
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62 
63 /*
64  * Interrupt statistic for PMU. Increments the counter only if the
65  * interrupt originated from the the GPU so interrupts from a device which
66  * shares the interrupt line are not accounted.
67  */
68 static inline void pmu_irq_stats(struct drm_i915_private *i915,
69 				 irqreturn_t res)
70 {
71 	if (unlikely(res != IRQ_HANDLED))
72 		return;
73 
74 	/*
75 	 * A clever compiler translates that into INC. A not so clever one
76 	 * should at least prevent store tearing.
77 	 */
78 	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
79 }
80 
81 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
82 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
83 				    enum hpd_pin pin);
84 
85 static const u32 hpd_ilk[HPD_NUM_PINS] = {
86 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
87 };
88 
89 static const u32 hpd_ivb[HPD_NUM_PINS] = {
90 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
91 };
92 
93 static const u32 hpd_bdw[HPD_NUM_PINS] = {
94 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
95 };
96 
97 static const u32 hpd_ibx[HPD_NUM_PINS] = {
98 	[HPD_CRT] = SDE_CRT_HOTPLUG,
99 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
100 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
101 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
102 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
103 };
104 
105 static const u32 hpd_cpt[HPD_NUM_PINS] = {
106 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
107 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
108 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
109 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
110 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
111 };
112 
113 static const u32 hpd_spt[HPD_NUM_PINS] = {
114 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
115 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
116 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
117 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
118 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
119 };
120 
121 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
122 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
123 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
124 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
125 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
126 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
127 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
128 };
129 
130 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
131 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
132 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
133 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
134 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
135 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
136 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
137 };
138 
139 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
140 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
141 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
142 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
143 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
144 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
145 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
146 };
147 
148 static const u32 hpd_bxt[HPD_NUM_PINS] = {
149 	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
150 	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
151 	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
152 };
153 
154 static const u32 hpd_gen11[HPD_NUM_PINS] = {
155 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
156 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
157 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
158 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
159 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
160 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
161 };
162 
163 static const u32 hpd_icp[HPD_NUM_PINS] = {
164 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
165 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
166 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
167 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
168 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
169 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
170 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
171 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
172 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
173 };
174 
175 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
176 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
177 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
178 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
179 	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
180 };
181 
182 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
183 {
184 	struct i915_hotplug *hpd = &dev_priv->hotplug;
185 
186 	if (HAS_GMCH(dev_priv)) {
187 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
188 		    IS_CHERRYVIEW(dev_priv))
189 			hpd->hpd = hpd_status_g4x;
190 		else
191 			hpd->hpd = hpd_status_i915;
192 		return;
193 	}
194 
195 	if (INTEL_GEN(dev_priv) >= 11)
196 		hpd->hpd = hpd_gen11;
197 	else if (IS_GEN9_LP(dev_priv))
198 		hpd->hpd = hpd_bxt;
199 	else if (INTEL_GEN(dev_priv) >= 8)
200 		hpd->hpd = hpd_bdw;
201 	else if (INTEL_GEN(dev_priv) >= 7)
202 		hpd->hpd = hpd_ivb;
203 	else
204 		hpd->hpd = hpd_ilk;
205 
206 	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
207 	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
208 		return;
209 
210 	if (HAS_PCH_DG1(dev_priv))
211 		hpd->pch_hpd = hpd_sde_dg1;
212 	else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
213 		 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
214 		hpd->pch_hpd = hpd_icp;
215 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
216 		hpd->pch_hpd = hpd_spt;
217 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
218 		hpd->pch_hpd = hpd_cpt;
219 	else if (HAS_PCH_IBX(dev_priv))
220 		hpd->pch_hpd = hpd_ibx;
221 	else
222 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
223 }
224 
225 static void
226 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
227 {
228 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
229 
230 	drm_crtc_handle_vblank(&crtc->base);
231 }
232 
233 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
234 		    i915_reg_t iir, i915_reg_t ier)
235 {
236 	intel_uncore_write(uncore, imr, 0xffffffff);
237 	intel_uncore_posting_read(uncore, imr);
238 
239 	intel_uncore_write(uncore, ier, 0);
240 
241 	/* IIR can theoretically queue up two events. Be paranoid. */
242 	intel_uncore_write(uncore, iir, 0xffffffff);
243 	intel_uncore_posting_read(uncore, iir);
244 	intel_uncore_write(uncore, iir, 0xffffffff);
245 	intel_uncore_posting_read(uncore, iir);
246 }
247 
248 void gen2_irq_reset(struct intel_uncore *uncore)
249 {
250 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
251 	intel_uncore_posting_read16(uncore, GEN2_IMR);
252 
253 	intel_uncore_write16(uncore, GEN2_IER, 0);
254 
255 	/* IIR can theoretically queue up two events. Be paranoid. */
256 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
257 	intel_uncore_posting_read16(uncore, GEN2_IIR);
258 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
259 	intel_uncore_posting_read16(uncore, GEN2_IIR);
260 }
261 
262 /*
263  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
264  */
265 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
266 {
267 	u32 val = intel_uncore_read(uncore, reg);
268 
269 	if (val == 0)
270 		return;
271 
272 	drm_WARN(&uncore->i915->drm, 1,
273 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
274 		 i915_mmio_reg_offset(reg), val);
275 	intel_uncore_write(uncore, reg, 0xffffffff);
276 	intel_uncore_posting_read(uncore, reg);
277 	intel_uncore_write(uncore, reg, 0xffffffff);
278 	intel_uncore_posting_read(uncore, reg);
279 }
280 
281 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
282 {
283 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
284 
285 	if (val == 0)
286 		return;
287 
288 	drm_WARN(&uncore->i915->drm, 1,
289 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
290 		 i915_mmio_reg_offset(GEN2_IIR), val);
291 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
292 	intel_uncore_posting_read16(uncore, GEN2_IIR);
293 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
294 	intel_uncore_posting_read16(uncore, GEN2_IIR);
295 }
296 
297 void gen3_irq_init(struct intel_uncore *uncore,
298 		   i915_reg_t imr, u32 imr_val,
299 		   i915_reg_t ier, u32 ier_val,
300 		   i915_reg_t iir)
301 {
302 	gen3_assert_iir_is_zero(uncore, iir);
303 
304 	intel_uncore_write(uncore, ier, ier_val);
305 	intel_uncore_write(uncore, imr, imr_val);
306 	intel_uncore_posting_read(uncore, imr);
307 }
308 
309 void gen2_irq_init(struct intel_uncore *uncore,
310 		   u32 imr_val, u32 ier_val)
311 {
312 	gen2_assert_iir_is_zero(uncore);
313 
314 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
315 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
316 	intel_uncore_posting_read16(uncore, GEN2_IMR);
317 }
318 
319 /* For display hotplug interrupt */
320 static inline void
321 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
322 				     u32 mask,
323 				     u32 bits)
324 {
325 	u32 val;
326 
327 	lockdep_assert_held(&dev_priv->irq_lock);
328 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
329 
330 	val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
331 	val &= ~mask;
332 	val |= bits;
333 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
334 }
335 
336 /**
337  * i915_hotplug_interrupt_update - update hotplug interrupt enable
338  * @dev_priv: driver private
339  * @mask: bits to update
340  * @bits: bits to enable
341  * NOTE: the HPD enable bits are modified both inside and outside
342  * of an interrupt context. To avoid that read-modify-write cycles
343  * interfer, these bits are protected by a spinlock. Since this
344  * function is usually not called from a context where the lock is
345  * held already, this function acquires the lock itself. A non-locking
346  * version is also available.
347  */
348 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
349 				   u32 mask,
350 				   u32 bits)
351 {
352 	spin_lock_irq(&dev_priv->irq_lock);
353 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
354 	spin_unlock_irq(&dev_priv->irq_lock);
355 }
356 
357 /**
358  * ilk_update_display_irq - update DEIMR
359  * @dev_priv: driver private
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
363 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
364 			    u32 interrupt_mask,
365 			    u32 enabled_irq_mask)
366 {
367 	u32 new_val;
368 
369 	lockdep_assert_held(&dev_priv->irq_lock);
370 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
371 
372 	new_val = dev_priv->irq_mask;
373 	new_val &= ~interrupt_mask;
374 	new_val |= (~enabled_irq_mask & interrupt_mask);
375 
376 	if (new_val != dev_priv->irq_mask &&
377 	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
378 		dev_priv->irq_mask = new_val;
379 		intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
380 		intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
381 	}
382 }
383 
384 /**
385  * bdw_update_port_irq - update DE port interrupt
386  * @dev_priv: driver private
387  * @interrupt_mask: mask of interrupt bits to update
388  * @enabled_irq_mask: mask of interrupt bits to enable
389  */
390 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
391 				u32 interrupt_mask,
392 				u32 enabled_irq_mask)
393 {
394 	u32 new_val;
395 	u32 old_val;
396 
397 	lockdep_assert_held(&dev_priv->irq_lock);
398 
399 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
400 
401 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
402 		return;
403 
404 	old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
405 
406 	new_val = old_val;
407 	new_val &= ~interrupt_mask;
408 	new_val |= (~enabled_irq_mask & interrupt_mask);
409 
410 	if (new_val != old_val) {
411 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
412 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
413 	}
414 }
415 
416 /**
417  * bdw_update_pipe_irq - update DE pipe interrupt
418  * @dev_priv: driver private
419  * @pipe: pipe whose interrupt to update
420  * @interrupt_mask: mask of interrupt bits to update
421  * @enabled_irq_mask: mask of interrupt bits to enable
422  */
423 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
424 			 enum pipe pipe,
425 			 u32 interrupt_mask,
426 			 u32 enabled_irq_mask)
427 {
428 	u32 new_val;
429 
430 	lockdep_assert_held(&dev_priv->irq_lock);
431 
432 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
433 
434 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
435 		return;
436 
437 	new_val = dev_priv->de_irq_mask[pipe];
438 	new_val &= ~interrupt_mask;
439 	new_val |= (~enabled_irq_mask & interrupt_mask);
440 
441 	if (new_val != dev_priv->de_irq_mask[pipe]) {
442 		dev_priv->de_irq_mask[pipe] = new_val;
443 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
444 		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
445 	}
446 }
447 
448 /**
449  * ibx_display_interrupt_update - update SDEIMR
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
455 				  u32 interrupt_mask,
456 				  u32 enabled_irq_mask)
457 {
458 	u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
459 	sdeimr &= ~interrupt_mask;
460 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
461 
462 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
463 
464 	lockdep_assert_held(&dev_priv->irq_lock);
465 
466 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
467 		return;
468 
469 	intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
470 	intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
471 }
472 
473 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
474 			      enum pipe pipe)
475 {
476 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
477 	u32 enable_mask = status_mask << 16;
478 
479 	lockdep_assert_held(&dev_priv->irq_lock);
480 
481 	if (INTEL_GEN(dev_priv) < 5)
482 		goto out;
483 
484 	/*
485 	 * On pipe A we don't support the PSR interrupt yet,
486 	 * on pipe B and C the same bit MBZ.
487 	 */
488 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
489 			     status_mask & PIPE_A_PSR_STATUS_VLV))
490 		return 0;
491 	/*
492 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
493 	 * A the same bit is for perf counters which we don't use either.
494 	 */
495 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
496 			     status_mask & PIPE_B_PSR_STATUS_VLV))
497 		return 0;
498 
499 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
500 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
501 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
502 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
503 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
504 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
505 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
506 
507 out:
508 	drm_WARN_ONCE(&dev_priv->drm,
509 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
510 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
511 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
512 		      pipe_name(pipe), enable_mask, status_mask);
513 
514 	return enable_mask;
515 }
516 
517 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
518 			  enum pipe pipe, u32 status_mask)
519 {
520 	i915_reg_t reg = PIPESTAT(pipe);
521 	u32 enable_mask;
522 
523 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
524 		      "pipe %c: status_mask=0x%x\n",
525 		      pipe_name(pipe), status_mask);
526 
527 	lockdep_assert_held(&dev_priv->irq_lock);
528 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
529 
530 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
531 		return;
532 
533 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
534 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
535 
536 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
537 	intel_uncore_posting_read(&dev_priv->uncore, reg);
538 }
539 
540 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
541 			   enum pipe pipe, u32 status_mask)
542 {
543 	i915_reg_t reg = PIPESTAT(pipe);
544 	u32 enable_mask;
545 
546 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
547 		      "pipe %c: status_mask=0x%x\n",
548 		      pipe_name(pipe), status_mask);
549 
550 	lockdep_assert_held(&dev_priv->irq_lock);
551 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
552 
553 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
554 		return;
555 
556 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
557 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
558 
559 	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
560 	intel_uncore_posting_read(&dev_priv->uncore, reg);
561 }
562 
563 static bool i915_has_asle(struct drm_i915_private *dev_priv)
564 {
565 	if (!dev_priv->opregion.asle)
566 		return false;
567 
568 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
569 }
570 
571 /**
572  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
573  * @dev_priv: i915 device private
574  */
575 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
576 {
577 	if (!i915_has_asle(dev_priv))
578 		return;
579 
580 	spin_lock_irq(&dev_priv->irq_lock);
581 
582 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
583 	if (INTEL_GEN(dev_priv) >= 4)
584 		i915_enable_pipestat(dev_priv, PIPE_A,
585 				     PIPE_LEGACY_BLC_EVENT_STATUS);
586 
587 	spin_unlock_irq(&dev_priv->irq_lock);
588 }
589 
590 /*
591  * This timing diagram depicts the video signal in and
592  * around the vertical blanking period.
593  *
594  * Assumptions about the fictitious mode used in this example:
595  *  vblank_start >= 3
596  *  vsync_start = vblank_start + 1
597  *  vsync_end = vblank_start + 2
598  *  vtotal = vblank_start + 3
599  *
600  *           start of vblank:
601  *           latch double buffered registers
602  *           increment frame counter (ctg+)
603  *           generate start of vblank interrupt (gen4+)
604  *           |
605  *           |          frame start:
606  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
607  *           |          may be shifted forward 1-3 extra lines via PIPECONF
608  *           |          |
609  *           |          |  start of vsync:
610  *           |          |  generate vsync interrupt
611  *           |          |  |
612  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
613  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
614  * ----va---> <-----------------vb--------------------> <--------va-------------
615  *       |          |       <----vs----->                     |
616  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
617  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
618  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
619  *       |          |                                         |
620  *       last visible pixel                                   first visible pixel
621  *                  |                                         increment frame counter (gen3/4)
622  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
623  *
624  * x  = horizontal active
625  * _  = horizontal blanking
626  * hs = horizontal sync
627  * va = vertical active
628  * vb = vertical blanking
629  * vs = vertical sync
630  * vbs = vblank_start (number)
631  *
632  * Summary:
633  * - most events happen at the start of horizontal sync
634  * - frame start happens at the start of horizontal blank, 1-4 lines
635  *   (depending on PIPECONF settings) after the start of vblank
636  * - gen3/4 pixel and frame counter are synchronized with the start
637  *   of horizontal active on the first line of vertical active
638  */
639 
640 /* Called from drm generic code, passed a 'crtc', which
641  * we use as a pipe index
642  */
643 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
644 {
645 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
646 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
647 	const struct drm_display_mode *mode = &vblank->hwmode;
648 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
649 	i915_reg_t high_frame, low_frame;
650 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
651 	unsigned long irqflags;
652 
653 	/*
654 	 * On i965gm TV output the frame counter only works up to
655 	 * the point when we enable the TV encoder. After that the
656 	 * frame counter ceases to work and reads zero. We need a
657 	 * vblank wait before enabling the TV encoder and so we
658 	 * have to enable vblank interrupts while the frame counter
659 	 * is still in a working state. However the core vblank code
660 	 * does not like us returning non-zero frame counter values
661 	 * when we've told it that we don't have a working frame
662 	 * counter. Thus we must stop non-zero values leaking out.
663 	 */
664 	if (!vblank->max_vblank_count)
665 		return 0;
666 
667 	htotal = mode->crtc_htotal;
668 	hsync_start = mode->crtc_hsync_start;
669 	vbl_start = mode->crtc_vblank_start;
670 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
671 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
672 
673 	/* Convert to pixel count */
674 	vbl_start *= htotal;
675 
676 	/* Start of vblank event occurs at start of hsync */
677 	vbl_start -= htotal - hsync_start;
678 
679 	high_frame = PIPEFRAME(pipe);
680 	low_frame = PIPEFRAMEPIXEL(pipe);
681 
682 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683 
684 	/*
685 	 * High & low register fields aren't synchronized, so make sure
686 	 * we get a low value that's stable across two reads of the high
687 	 * register.
688 	 */
689 	do {
690 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
691 		low   = intel_de_read_fw(dev_priv, low_frame);
692 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
693 	} while (high1 != high2);
694 
695 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
696 
697 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
698 	pixel = low & PIPE_PIXEL_MASK;
699 	low >>= PIPE_FRAME_LOW_SHIFT;
700 
701 	/*
702 	 * The frame counter increments at beginning of active.
703 	 * Cook up a vblank counter by also checking the pixel
704 	 * counter against vblank start.
705 	 */
706 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708 
709 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
710 {
711 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
712 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
713 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
714 
715 	if (!vblank->max_vblank_count)
716 		return 0;
717 
718 	return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
719 }
720 
721 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
722 {
723 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
724 	struct drm_vblank_crtc *vblank =
725 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
726 	const struct drm_display_mode *mode = &vblank->hwmode;
727 	u32 htotal = mode->crtc_htotal;
728 	u32 clock = mode->crtc_clock;
729 	u32 scan_prev_time, scan_curr_time, scan_post_time;
730 
731 	/*
732 	 * To avoid the race condition where we might cross into the
733 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
734 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
735 	 * during the same frame.
736 	 */
737 	do {
738 		/*
739 		 * This field provides read back of the display
740 		 * pipe frame time stamp. The time stamp value
741 		 * is sampled at every start of vertical blank.
742 		 */
743 		scan_prev_time = intel_de_read_fw(dev_priv,
744 						  PIPE_FRMTMSTMP(crtc->pipe));
745 
746 		/*
747 		 * The TIMESTAMP_CTR register has the current
748 		 * time stamp value.
749 		 */
750 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
751 
752 		scan_post_time = intel_de_read_fw(dev_priv,
753 						  PIPE_FRMTMSTMP(crtc->pipe));
754 	} while (scan_post_time != scan_prev_time);
755 
756 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
757 				   clock), 1000 * htotal);
758 }
759 
760 /*
761  * On certain encoders on certain platforms, pipe
762  * scanline register will not work to get the scanline,
763  * since the timings are driven from the PORT or issues
764  * with scanline register updates.
765  * This function will use Framestamp and current
766  * timestamp registers to calculate the scanline.
767  */
768 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
769 {
770 	struct drm_vblank_crtc *vblank =
771 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
772 	const struct drm_display_mode *mode = &vblank->hwmode;
773 	u32 vblank_start = mode->crtc_vblank_start;
774 	u32 vtotal = mode->crtc_vtotal;
775 	u32 scanline;
776 
777 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
778 	scanline = min(scanline, vtotal - 1);
779 	scanline = (scanline + vblank_start) % vtotal;
780 
781 	return scanline;
782 }
783 
784 /*
785  * intel_de_read_fw(), only for fast reads of display block, no need for
786  * forcewake etc.
787  */
788 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
789 {
790 	struct drm_device *dev = crtc->base.dev;
791 	struct drm_i915_private *dev_priv = to_i915(dev);
792 	const struct drm_display_mode *mode;
793 	struct drm_vblank_crtc *vblank;
794 	enum pipe pipe = crtc->pipe;
795 	int position, vtotal;
796 
797 	if (!crtc->active)
798 		return -1;
799 
800 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
801 	mode = &vblank->hwmode;
802 
803 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
804 		return __intel_get_crtc_scanline_from_timestamp(crtc);
805 
806 	vtotal = mode->crtc_vtotal;
807 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
808 		vtotal /= 2;
809 
810 	if (IS_GEN(dev_priv, 2))
811 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
812 	else
813 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
814 
815 	/*
816 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
817 	 * read it just before the start of vblank.  So try it again
818 	 * so we don't accidentally end up spanning a vblank frame
819 	 * increment, causing the pipe_update_end() code to squak at us.
820 	 *
821 	 * The nature of this problem means we can't simply check the ISR
822 	 * bit and return the vblank start value; nor can we use the scanline
823 	 * debug register in the transcoder as it appears to have the same
824 	 * problem.  We may need to extend this to include other platforms,
825 	 * but so far testing only shows the problem on HSW.
826 	 */
827 	if (HAS_DDI(dev_priv) && !position) {
828 		int i, temp;
829 
830 		for (i = 0; i < 100; i++) {
831 			udelay(1);
832 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
833 			if (temp != position) {
834 				position = temp;
835 				break;
836 			}
837 		}
838 	}
839 
840 	/*
841 	 * See update_scanline_offset() for the details on the
842 	 * scanline_offset adjustment.
843 	 */
844 	return (position + crtc->scanline_offset) % vtotal;
845 }
846 
847 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
848 				     bool in_vblank_irq,
849 				     int *vpos, int *hpos,
850 				     ktime_t *stime, ktime_t *etime,
851 				     const struct drm_display_mode *mode)
852 {
853 	struct drm_device *dev = _crtc->dev;
854 	struct drm_i915_private *dev_priv = to_i915(dev);
855 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
856 	enum pipe pipe = crtc->pipe;
857 	int position;
858 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
859 	unsigned long irqflags;
860 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
861 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
862 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
863 
864 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
865 		drm_dbg(&dev_priv->drm,
866 			"trying to get scanoutpos for disabled "
867 			"pipe %c\n", pipe_name(pipe));
868 		return false;
869 	}
870 
871 	htotal = mode->crtc_htotal;
872 	hsync_start = mode->crtc_hsync_start;
873 	vtotal = mode->crtc_vtotal;
874 	vbl_start = mode->crtc_vblank_start;
875 	vbl_end = mode->crtc_vblank_end;
876 
877 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
878 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
879 		vbl_end /= 2;
880 		vtotal /= 2;
881 	}
882 
883 	/*
884 	 * Lock uncore.lock, as we will do multiple timing critical raw
885 	 * register reads, potentially with preemption disabled, so the
886 	 * following code must not block on uncore.lock.
887 	 */
888 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
889 
890 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
891 
892 	/* Get optional system timestamp before query. */
893 	if (stime)
894 		*stime = ktime_get();
895 
896 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
897 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
898 
899 		position = __intel_get_crtc_scanline(crtc);
900 
901 		/*
902 		 * Already exiting vblank? If so, shift our position
903 		 * so it looks like we're already apporaching the full
904 		 * vblank end. This should make the generated timestamp
905 		 * more or less match when the active portion will start.
906 		 */
907 		if (position >= vbl_start && scanlines < position)
908 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
909 	} else if (use_scanline_counter) {
910 		/* No obvious pixelcount register. Only query vertical
911 		 * scanout position from Display scan line register.
912 		 */
913 		position = __intel_get_crtc_scanline(crtc);
914 	} else {
915 		/* Have access to pixelcount since start of frame.
916 		 * We can split this into vertical and horizontal
917 		 * scanout position.
918 		 */
919 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
920 
921 		/* convert to pixel counts */
922 		vbl_start *= htotal;
923 		vbl_end *= htotal;
924 		vtotal *= htotal;
925 
926 		/*
927 		 * In interlaced modes, the pixel counter counts all pixels,
928 		 * so one field will have htotal more pixels. In order to avoid
929 		 * the reported position from jumping backwards when the pixel
930 		 * counter is beyond the length of the shorter field, just
931 		 * clamp the position the length of the shorter field. This
932 		 * matches how the scanline counter based position works since
933 		 * the scanline counter doesn't count the two half lines.
934 		 */
935 		if (position >= vtotal)
936 			position = vtotal - 1;
937 
938 		/*
939 		 * Start of vblank interrupt is triggered at start of hsync,
940 		 * just prior to the first active line of vblank. However we
941 		 * consider lines to start at the leading edge of horizontal
942 		 * active. So, should we get here before we've crossed into
943 		 * the horizontal active of the first line in vblank, we would
944 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
945 		 * always add htotal-hsync_start to the current pixel position.
946 		 */
947 		position = (position + htotal - hsync_start) % vtotal;
948 	}
949 
950 	/* Get optional system timestamp after query. */
951 	if (etime)
952 		*etime = ktime_get();
953 
954 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
955 
956 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
957 
958 	/*
959 	 * While in vblank, position will be negative
960 	 * counting up towards 0 at vbl_end. And outside
961 	 * vblank, position will be positive counting
962 	 * up since vbl_end.
963 	 */
964 	if (position >= vbl_start)
965 		position -= vbl_end;
966 	else
967 		position += vtotal - vbl_end;
968 
969 	if (use_scanline_counter) {
970 		*vpos = position;
971 		*hpos = 0;
972 	} else {
973 		*vpos = position / htotal;
974 		*hpos = position - (*vpos * htotal);
975 	}
976 
977 	return true;
978 }
979 
980 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
981 				     ktime_t *vblank_time, bool in_vblank_irq)
982 {
983 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
984 		crtc, max_error, vblank_time, in_vblank_irq,
985 		i915_get_crtc_scanoutpos);
986 }
987 
988 int intel_get_crtc_scanline(struct intel_crtc *crtc)
989 {
990 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
991 	unsigned long irqflags;
992 	int position;
993 
994 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
995 	position = __intel_get_crtc_scanline(crtc);
996 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
997 
998 	return position;
999 }
1000 
1001 /**
1002  * ivb_parity_work - Workqueue called when a parity error interrupt
1003  * occurred.
1004  * @work: workqueue struct
1005  *
1006  * Doesn't actually do anything except notify userspace. As a consequence of
1007  * this event, userspace should try to remap the bad rows since statistically
1008  * it is likely the same row is more likely to go bad again.
1009  */
1010 static void ivb_parity_work(struct work_struct *work)
1011 {
1012 	struct drm_i915_private *dev_priv =
1013 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1014 	struct intel_gt *gt = &dev_priv->gt;
1015 	u32 error_status, row, bank, subbank;
1016 	char *parity_event[6];
1017 	u32 misccpctl;
1018 	u8 slice = 0;
1019 
1020 	/* We must turn off DOP level clock gating to access the L3 registers.
1021 	 * In order to prevent a get/put style interface, acquire struct mutex
1022 	 * any time we access those registers.
1023 	 */
1024 	mutex_lock(&dev_priv->drm.struct_mutex);
1025 
1026 	/* If we've screwed up tracking, just let the interrupt fire again */
1027 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1028 		goto out;
1029 
1030 	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1031 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1032 	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1033 
1034 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1035 		i915_reg_t reg;
1036 
1037 		slice--;
1038 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1039 				     slice >= NUM_L3_SLICES(dev_priv)))
1040 			break;
1041 
1042 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1043 
1044 		reg = GEN7_L3CDERRST1(slice);
1045 
1046 		error_status = intel_uncore_read(&dev_priv->uncore, reg);
1047 		row = GEN7_PARITY_ERROR_ROW(error_status);
1048 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1049 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1050 
1051 		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1052 		intel_uncore_posting_read(&dev_priv->uncore, reg);
1053 
1054 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1055 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1056 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1057 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1058 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1059 		parity_event[5] = NULL;
1060 
1061 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1062 				   KOBJ_CHANGE, parity_event);
1063 
1064 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1065 			  slice, row, bank, subbank);
1066 
1067 		kfree(parity_event[4]);
1068 		kfree(parity_event[3]);
1069 		kfree(parity_event[2]);
1070 		kfree(parity_event[1]);
1071 	}
1072 
1073 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1074 
1075 out:
1076 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1077 	spin_lock_irq(&gt->irq_lock);
1078 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1079 	spin_unlock_irq(&gt->irq_lock);
1080 
1081 	mutex_unlock(&dev_priv->drm.struct_mutex);
1082 }
1083 
1084 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086 	switch (pin) {
1087 	case HPD_PORT_TC1:
1088 	case HPD_PORT_TC2:
1089 	case HPD_PORT_TC3:
1090 	case HPD_PORT_TC4:
1091 	case HPD_PORT_TC5:
1092 	case HPD_PORT_TC6:
1093 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1094 	default:
1095 		return false;
1096 	}
1097 }
1098 
1099 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1100 {
1101 	switch (pin) {
1102 	case HPD_PORT_A:
1103 		return val & PORTA_HOTPLUG_LONG_DETECT;
1104 	case HPD_PORT_B:
1105 		return val & PORTB_HOTPLUG_LONG_DETECT;
1106 	case HPD_PORT_C:
1107 		return val & PORTC_HOTPLUG_LONG_DETECT;
1108 	default:
1109 		return false;
1110 	}
1111 }
1112 
1113 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115 	switch (pin) {
1116 	case HPD_PORT_A:
1117 	case HPD_PORT_B:
1118 	case HPD_PORT_C:
1119 	case HPD_PORT_D:
1120 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1121 	default:
1122 		return false;
1123 	}
1124 }
1125 
1126 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1127 {
1128 	switch (pin) {
1129 	case HPD_PORT_TC1:
1130 	case HPD_PORT_TC2:
1131 	case HPD_PORT_TC3:
1132 	case HPD_PORT_TC4:
1133 	case HPD_PORT_TC5:
1134 	case HPD_PORT_TC6:
1135 		return val & ICP_TC_HPD_LONG_DETECT(pin);
1136 	default:
1137 		return false;
1138 	}
1139 }
1140 
1141 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1142 {
1143 	switch (pin) {
1144 	case HPD_PORT_E:
1145 		return val & PORTE_HOTPLUG_LONG_DETECT;
1146 	default:
1147 		return false;
1148 	}
1149 }
1150 
1151 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1152 {
1153 	switch (pin) {
1154 	case HPD_PORT_A:
1155 		return val & PORTA_HOTPLUG_LONG_DETECT;
1156 	case HPD_PORT_B:
1157 		return val & PORTB_HOTPLUG_LONG_DETECT;
1158 	case HPD_PORT_C:
1159 		return val & PORTC_HOTPLUG_LONG_DETECT;
1160 	case HPD_PORT_D:
1161 		return val & PORTD_HOTPLUG_LONG_DETECT;
1162 	default:
1163 		return false;
1164 	}
1165 }
1166 
1167 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1168 {
1169 	switch (pin) {
1170 	case HPD_PORT_A:
1171 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1172 	default:
1173 		return false;
1174 	}
1175 }
1176 
1177 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1178 {
1179 	switch (pin) {
1180 	case HPD_PORT_B:
1181 		return val & PORTB_HOTPLUG_LONG_DETECT;
1182 	case HPD_PORT_C:
1183 		return val & PORTC_HOTPLUG_LONG_DETECT;
1184 	case HPD_PORT_D:
1185 		return val & PORTD_HOTPLUG_LONG_DETECT;
1186 	default:
1187 		return false;
1188 	}
1189 }
1190 
1191 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1192 {
1193 	switch (pin) {
1194 	case HPD_PORT_B:
1195 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1196 	case HPD_PORT_C:
1197 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1198 	case HPD_PORT_D:
1199 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1200 	default:
1201 		return false;
1202 	}
1203 }
1204 
1205 /*
1206  * Get a bit mask of pins that have triggered, and which ones may be long.
1207  * This can be called multiple times with the same masks to accumulate
1208  * hotplug detection results from several registers.
1209  *
1210  * Note that the caller is expected to zero out the masks initially.
1211  */
1212 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1213 			       u32 *pin_mask, u32 *long_mask,
1214 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1215 			       const u32 hpd[HPD_NUM_PINS],
1216 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1217 {
1218 	enum hpd_pin pin;
1219 
1220 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1221 
1222 	for_each_hpd_pin(pin) {
1223 		if ((hpd[pin] & hotplug_trigger) == 0)
1224 			continue;
1225 
1226 		*pin_mask |= BIT(pin);
1227 
1228 		if (long_pulse_detect(pin, dig_hotplug_reg))
1229 			*long_mask |= BIT(pin);
1230 	}
1231 
1232 	drm_dbg(&dev_priv->drm,
1233 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1234 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1235 
1236 }
1237 
1238 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1239 				  const u32 hpd[HPD_NUM_PINS])
1240 {
1241 	struct intel_encoder *encoder;
1242 	u32 enabled_irqs = 0;
1243 
1244 	for_each_intel_encoder(&dev_priv->drm, encoder)
1245 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1246 			enabled_irqs |= hpd[encoder->hpd_pin];
1247 
1248 	return enabled_irqs;
1249 }
1250 
1251 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1252 				  const u32 hpd[HPD_NUM_PINS])
1253 {
1254 	struct intel_encoder *encoder;
1255 	u32 hotplug_irqs = 0;
1256 
1257 	for_each_intel_encoder(&dev_priv->drm, encoder)
1258 		hotplug_irqs |= hpd[encoder->hpd_pin];
1259 
1260 	return hotplug_irqs;
1261 }
1262 
1263 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1264 				     hotplug_enables_func hotplug_enables)
1265 {
1266 	struct intel_encoder *encoder;
1267 	u32 hotplug = 0;
1268 
1269 	for_each_intel_encoder(&i915->drm, encoder)
1270 		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1271 
1272 	return hotplug;
1273 }
1274 
1275 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1276 {
1277 	wake_up_all(&dev_priv->gmbus_wait_queue);
1278 }
1279 
1280 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1281 {
1282 	wake_up_all(&dev_priv->gmbus_wait_queue);
1283 }
1284 
1285 #if defined(CONFIG_DEBUG_FS)
1286 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1287 					 enum pipe pipe,
1288 					 u32 crc0, u32 crc1,
1289 					 u32 crc2, u32 crc3,
1290 					 u32 crc4)
1291 {
1292 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1293 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1294 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1295 
1296 	trace_intel_pipe_crc(crtc, crcs);
1297 
1298 	spin_lock(&pipe_crc->lock);
1299 	/*
1300 	 * For some not yet identified reason, the first CRC is
1301 	 * bonkers. So let's just wait for the next vblank and read
1302 	 * out the buggy result.
1303 	 *
1304 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1305 	 * don't trust that one either.
1306 	 */
1307 	if (pipe_crc->skipped <= 0 ||
1308 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1309 		pipe_crc->skipped++;
1310 		spin_unlock(&pipe_crc->lock);
1311 		return;
1312 	}
1313 	spin_unlock(&pipe_crc->lock);
1314 
1315 	drm_crtc_add_crc_entry(&crtc->base, true,
1316 				drm_crtc_accurate_vblank_count(&crtc->base),
1317 				crcs);
1318 }
1319 #else
1320 static inline void
1321 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1322 			     enum pipe pipe,
1323 			     u32 crc0, u32 crc1,
1324 			     u32 crc2, u32 crc3,
1325 			     u32 crc4) {}
1326 #endif
1327 
1328 static void flip_done_handler(struct drm_i915_private *i915,
1329 			      enum pipe pipe)
1330 {
1331 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1332 	struct drm_crtc_state *crtc_state = crtc->base.state;
1333 	struct drm_pending_vblank_event *e = crtc_state->event;
1334 	struct drm_device *dev = &i915->drm;
1335 	unsigned long irqflags;
1336 
1337 	spin_lock_irqsave(&dev->event_lock, irqflags);
1338 
1339 	crtc_state->event = NULL;
1340 
1341 	drm_crtc_send_vblank_event(&crtc->base, e);
1342 
1343 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1344 }
1345 
1346 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1347 				     enum pipe pipe)
1348 {
1349 	display_pipe_crc_irq_handler(dev_priv, pipe,
1350 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1351 				     0, 0, 0, 0);
1352 }
1353 
1354 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1355 				     enum pipe pipe)
1356 {
1357 	display_pipe_crc_irq_handler(dev_priv, pipe,
1358 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1359 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1360 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1361 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1362 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1363 }
1364 
1365 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1366 				      enum pipe pipe)
1367 {
1368 	u32 res1, res2;
1369 
1370 	if (INTEL_GEN(dev_priv) >= 3)
1371 		res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1372 	else
1373 		res1 = 0;
1374 
1375 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1376 		res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1377 	else
1378 		res2 = 0;
1379 
1380 	display_pipe_crc_irq_handler(dev_priv, pipe,
1381 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1382 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1383 				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1384 				     res1, res2);
1385 }
1386 
1387 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1388 {
1389 	enum pipe pipe;
1390 
1391 	for_each_pipe(dev_priv, pipe) {
1392 		intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1393 			   PIPESTAT_INT_STATUS_MASK |
1394 			   PIPE_FIFO_UNDERRUN_STATUS);
1395 
1396 		dev_priv->pipestat_irq_mask[pipe] = 0;
1397 	}
1398 }
1399 
1400 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1401 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1402 {
1403 	enum pipe pipe;
1404 
1405 	spin_lock(&dev_priv->irq_lock);
1406 
1407 	if (!dev_priv->display_irqs_enabled) {
1408 		spin_unlock(&dev_priv->irq_lock);
1409 		return;
1410 	}
1411 
1412 	for_each_pipe(dev_priv, pipe) {
1413 		i915_reg_t reg;
1414 		u32 status_mask, enable_mask, iir_bit = 0;
1415 
1416 		/*
1417 		 * PIPESTAT bits get signalled even when the interrupt is
1418 		 * disabled with the mask bits, and some of the status bits do
1419 		 * not generate interrupts at all (like the underrun bit). Hence
1420 		 * we need to be careful that we only handle what we want to
1421 		 * handle.
1422 		 */
1423 
1424 		/* fifo underruns are filterered in the underrun handler. */
1425 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1426 
1427 		switch (pipe) {
1428 		default:
1429 		case PIPE_A:
1430 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1431 			break;
1432 		case PIPE_B:
1433 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1434 			break;
1435 		case PIPE_C:
1436 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1437 			break;
1438 		}
1439 		if (iir & iir_bit)
1440 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1441 
1442 		if (!status_mask)
1443 			continue;
1444 
1445 		reg = PIPESTAT(pipe);
1446 		pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1447 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1448 
1449 		/*
1450 		 * Clear the PIPE*STAT regs before the IIR
1451 		 *
1452 		 * Toggle the enable bits to make sure we get an
1453 		 * edge in the ISR pipe event bit if we don't clear
1454 		 * all the enabled status bits. Otherwise the edge
1455 		 * triggered IIR on i965/g4x wouldn't notice that
1456 		 * an interrupt is still pending.
1457 		 */
1458 		if (pipe_stats[pipe]) {
1459 			intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1460 			intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1461 		}
1462 	}
1463 	spin_unlock(&dev_priv->irq_lock);
1464 }
1465 
1466 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1467 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1468 {
1469 	enum pipe pipe;
1470 
1471 	for_each_pipe(dev_priv, pipe) {
1472 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1473 			intel_handle_vblank(dev_priv, pipe);
1474 
1475 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1476 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1477 
1478 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1479 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1480 	}
1481 }
1482 
1483 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1484 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1485 {
1486 	bool blc_event = false;
1487 	enum pipe pipe;
1488 
1489 	for_each_pipe(dev_priv, pipe) {
1490 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1491 			intel_handle_vblank(dev_priv, pipe);
1492 
1493 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1494 			blc_event = true;
1495 
1496 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498 
1499 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501 	}
1502 
1503 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1504 		intel_opregion_asle_intr(dev_priv);
1505 }
1506 
1507 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1508 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1509 {
1510 	bool blc_event = false;
1511 	enum pipe pipe;
1512 
1513 	for_each_pipe(dev_priv, pipe) {
1514 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1515 			intel_handle_vblank(dev_priv, pipe);
1516 
1517 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1518 			blc_event = true;
1519 
1520 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1522 
1523 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525 	}
1526 
1527 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1528 		intel_opregion_asle_intr(dev_priv);
1529 
1530 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1531 		gmbus_irq_handler(dev_priv);
1532 }
1533 
1534 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1535 					    u32 pipe_stats[I915_MAX_PIPES])
1536 {
1537 	enum pipe pipe;
1538 
1539 	for_each_pipe(dev_priv, pipe) {
1540 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1541 			intel_handle_vblank(dev_priv, pipe);
1542 
1543 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1544 			flip_done_handler(dev_priv, pipe);
1545 
1546 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1547 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1548 
1549 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1550 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1551 	}
1552 
1553 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1554 		gmbus_irq_handler(dev_priv);
1555 }
1556 
1557 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1558 {
1559 	u32 hotplug_status = 0, hotplug_status_mask;
1560 	int i;
1561 
1562 	if (IS_G4X(dev_priv) ||
1563 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1564 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1565 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1566 	else
1567 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1568 
1569 	/*
1570 	 * We absolutely have to clear all the pending interrupt
1571 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1572 	 * interrupt bit won't have an edge, and the i965/g4x
1573 	 * edge triggered IIR will not notice that an interrupt
1574 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1575 	 * guarantee the edge as the act of toggling the enable
1576 	 * bits can itself generate a new hotplug interrupt :(
1577 	 */
1578 	for (i = 0; i < 10; i++) {
1579 		u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1580 
1581 		if (tmp == 0)
1582 			return hotplug_status;
1583 
1584 		hotplug_status |= tmp;
1585 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1586 	}
1587 
1588 	drm_WARN_ONCE(&dev_priv->drm, 1,
1589 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1590 		      intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1591 
1592 	return hotplug_status;
1593 }
1594 
1595 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1596 				 u32 hotplug_status)
1597 {
1598 	u32 pin_mask = 0, long_mask = 0;
1599 	u32 hotplug_trigger;
1600 
1601 	if (IS_G4X(dev_priv) ||
1602 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1603 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1604 	else
1605 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1606 
1607 	if (hotplug_trigger) {
1608 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1609 				   hotplug_trigger, hotplug_trigger,
1610 				   dev_priv->hotplug.hpd,
1611 				   i9xx_port_hotplug_long_detect);
1612 
1613 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1614 	}
1615 
1616 	if ((IS_G4X(dev_priv) ||
1617 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1618 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1619 		dp_aux_irq_handler(dev_priv);
1620 }
1621 
1622 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623 {
1624 	struct drm_i915_private *dev_priv = arg;
1625 	irqreturn_t ret = IRQ_NONE;
1626 
1627 	if (!intel_irqs_enabled(dev_priv))
1628 		return IRQ_NONE;
1629 
1630 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1631 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1632 
1633 	do {
1634 		u32 iir, gt_iir, pm_iir;
1635 		u32 pipe_stats[I915_MAX_PIPES] = {};
1636 		u32 hotplug_status = 0;
1637 		u32 ier = 0;
1638 
1639 		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1640 		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1641 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1642 
1643 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1644 			break;
1645 
1646 		ret = IRQ_HANDLED;
1647 
1648 		/*
1649 		 * Theory on interrupt generation, based on empirical evidence:
1650 		 *
1651 		 * x = ((VLV_IIR & VLV_IER) ||
1652 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1653 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1654 		 *
1655 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1656 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1657 		 * guarantee the CPU interrupt will be raised again even if we
1658 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1659 		 * bits this time around.
1660 		 */
1661 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1662 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1663 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1664 
1665 		if (gt_iir)
1666 			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1667 		if (pm_iir)
1668 			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1669 
1670 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1671 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1672 
1673 		/* Call regardless, as some status bits might not be
1674 		 * signalled in iir */
1675 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1676 
1677 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1678 			   I915_LPE_PIPE_B_INTERRUPT))
1679 			intel_lpe_audio_irq_handler(dev_priv);
1680 
1681 		/*
1682 		 * VLV_IIR is single buffered, and reflects the level
1683 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1684 		 */
1685 		if (iir)
1686 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1687 
1688 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1689 		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1690 
1691 		if (gt_iir)
1692 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1693 		if (pm_iir)
1694 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1695 
1696 		if (hotplug_status)
1697 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1698 
1699 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1700 	} while (0);
1701 
1702 	pmu_irq_stats(dev_priv, ret);
1703 
1704 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1705 
1706 	return ret;
1707 }
1708 
1709 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1710 {
1711 	struct drm_i915_private *dev_priv = arg;
1712 	irqreturn_t ret = IRQ_NONE;
1713 
1714 	if (!intel_irqs_enabled(dev_priv))
1715 		return IRQ_NONE;
1716 
1717 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1718 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1719 
1720 	do {
1721 		u32 master_ctl, iir;
1722 		u32 pipe_stats[I915_MAX_PIPES] = {};
1723 		u32 hotplug_status = 0;
1724 		u32 ier = 0;
1725 
1726 		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1727 		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1728 
1729 		if (master_ctl == 0 && iir == 0)
1730 			break;
1731 
1732 		ret = IRQ_HANDLED;
1733 
1734 		/*
1735 		 * Theory on interrupt generation, based on empirical evidence:
1736 		 *
1737 		 * x = ((VLV_IIR & VLV_IER) ||
1738 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1739 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1740 		 *
1741 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1742 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1743 		 * guarantee the CPU interrupt will be raised again even if we
1744 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1745 		 * bits this time around.
1746 		 */
1747 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1748 		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1749 		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1750 
1751 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1752 
1753 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1754 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1755 
1756 		/* Call regardless, as some status bits might not be
1757 		 * signalled in iir */
1758 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1759 
1760 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1761 			   I915_LPE_PIPE_B_INTERRUPT |
1762 			   I915_LPE_PIPE_C_INTERRUPT))
1763 			intel_lpe_audio_irq_handler(dev_priv);
1764 
1765 		/*
1766 		 * VLV_IIR is single buffered, and reflects the level
1767 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1768 		 */
1769 		if (iir)
1770 			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1771 
1772 		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1773 		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1774 
1775 		if (hotplug_status)
1776 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1777 
1778 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1779 	} while (0);
1780 
1781 	pmu_irq_stats(dev_priv, ret);
1782 
1783 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1784 
1785 	return ret;
1786 }
1787 
1788 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1789 				u32 hotplug_trigger)
1790 {
1791 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1792 
1793 	/*
1794 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1795 	 * unless we touch the hotplug register, even if hotplug_trigger is
1796 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1797 	 * errors.
1798 	 */
1799 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1800 	if (!hotplug_trigger) {
1801 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1802 			PORTD_HOTPLUG_STATUS_MASK |
1803 			PORTC_HOTPLUG_STATUS_MASK |
1804 			PORTB_HOTPLUG_STATUS_MASK;
1805 		dig_hotplug_reg &= ~mask;
1806 	}
1807 
1808 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1809 	if (!hotplug_trigger)
1810 		return;
1811 
1812 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1813 			   hotplug_trigger, dig_hotplug_reg,
1814 			   dev_priv->hotplug.pch_hpd,
1815 			   pch_port_hotplug_long_detect);
1816 
1817 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1818 }
1819 
1820 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1821 {
1822 	enum pipe pipe;
1823 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1824 
1825 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1826 
1827 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1828 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1829 			       SDE_AUDIO_POWER_SHIFT);
1830 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1831 			port_name(port));
1832 	}
1833 
1834 	if (pch_iir & SDE_AUX_MASK)
1835 		dp_aux_irq_handler(dev_priv);
1836 
1837 	if (pch_iir & SDE_GMBUS)
1838 		gmbus_irq_handler(dev_priv);
1839 
1840 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1841 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1842 
1843 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1844 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1845 
1846 	if (pch_iir & SDE_POISON)
1847 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1848 
1849 	if (pch_iir & SDE_FDI_MASK) {
1850 		for_each_pipe(dev_priv, pipe)
1851 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1852 				pipe_name(pipe),
1853 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1854 	}
1855 
1856 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1857 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1858 
1859 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1860 		drm_dbg(&dev_priv->drm,
1861 			"PCH transcoder CRC error interrupt\n");
1862 
1863 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1864 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1865 
1866 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1867 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1868 }
1869 
1870 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1871 {
1872 	u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1873 	enum pipe pipe;
1874 
1875 	if (err_int & ERR_INT_POISON)
1876 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1877 
1878 	for_each_pipe(dev_priv, pipe) {
1879 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1880 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1881 
1882 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1883 			if (IS_IVYBRIDGE(dev_priv))
1884 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1885 			else
1886 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1887 		}
1888 	}
1889 
1890 	intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1891 }
1892 
1893 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1894 {
1895 	u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1896 	enum pipe pipe;
1897 
1898 	if (serr_int & SERR_INT_POISON)
1899 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1900 
1901 	for_each_pipe(dev_priv, pipe)
1902 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1903 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1904 
1905 	intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1906 }
1907 
1908 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1909 {
1910 	enum pipe pipe;
1911 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1912 
1913 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1914 
1915 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1916 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1917 			       SDE_AUDIO_POWER_SHIFT_CPT);
1918 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1919 			port_name(port));
1920 	}
1921 
1922 	if (pch_iir & SDE_AUX_MASK_CPT)
1923 		dp_aux_irq_handler(dev_priv);
1924 
1925 	if (pch_iir & SDE_GMBUS_CPT)
1926 		gmbus_irq_handler(dev_priv);
1927 
1928 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1929 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1930 
1931 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1932 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1933 
1934 	if (pch_iir & SDE_FDI_MASK_CPT) {
1935 		for_each_pipe(dev_priv, pipe)
1936 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1937 				pipe_name(pipe),
1938 				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1939 	}
1940 
1941 	if (pch_iir & SDE_ERROR_CPT)
1942 		cpt_serr_int_handler(dev_priv);
1943 }
1944 
1945 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1946 {
1947 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1948 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1949 	u32 pin_mask = 0, long_mask = 0;
1950 
1951 	if (ddi_hotplug_trigger) {
1952 		u32 dig_hotplug_reg;
1953 
1954 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
1955 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1956 
1957 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1958 				   ddi_hotplug_trigger, dig_hotplug_reg,
1959 				   dev_priv->hotplug.pch_hpd,
1960 				   icp_ddi_port_hotplug_long_detect);
1961 	}
1962 
1963 	if (tc_hotplug_trigger) {
1964 		u32 dig_hotplug_reg;
1965 
1966 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
1967 		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
1968 
1969 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1970 				   tc_hotplug_trigger, dig_hotplug_reg,
1971 				   dev_priv->hotplug.pch_hpd,
1972 				   icp_tc_port_hotplug_long_detect);
1973 	}
1974 
1975 	if (pin_mask)
1976 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1977 
1978 	if (pch_iir & SDE_GMBUS_ICP)
1979 		gmbus_irq_handler(dev_priv);
1980 }
1981 
1982 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1983 {
1984 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1985 		~SDE_PORTE_HOTPLUG_SPT;
1986 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1987 	u32 pin_mask = 0, long_mask = 0;
1988 
1989 	if (hotplug_trigger) {
1990 		u32 dig_hotplug_reg;
1991 
1992 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1993 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1994 
1995 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996 				   hotplug_trigger, dig_hotplug_reg,
1997 				   dev_priv->hotplug.pch_hpd,
1998 				   spt_port_hotplug_long_detect);
1999 	}
2000 
2001 	if (hotplug2_trigger) {
2002 		u32 dig_hotplug_reg;
2003 
2004 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
2005 		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2006 
2007 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2008 				   hotplug2_trigger, dig_hotplug_reg,
2009 				   dev_priv->hotplug.pch_hpd,
2010 				   spt_port_hotplug2_long_detect);
2011 	}
2012 
2013 	if (pin_mask)
2014 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2015 
2016 	if (pch_iir & SDE_GMBUS_CPT)
2017 		gmbus_irq_handler(dev_priv);
2018 }
2019 
2020 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2021 				u32 hotplug_trigger)
2022 {
2023 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2024 
2025 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
2026 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2027 
2028 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2029 			   hotplug_trigger, dig_hotplug_reg,
2030 			   dev_priv->hotplug.hpd,
2031 			   ilk_port_hotplug_long_detect);
2032 
2033 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2034 }
2035 
2036 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2037 				    u32 de_iir)
2038 {
2039 	enum pipe pipe;
2040 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2041 
2042 	if (hotplug_trigger)
2043 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2044 
2045 	if (de_iir & DE_AUX_CHANNEL_A)
2046 		dp_aux_irq_handler(dev_priv);
2047 
2048 	if (de_iir & DE_GSE)
2049 		intel_opregion_asle_intr(dev_priv);
2050 
2051 	if (de_iir & DE_POISON)
2052 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2053 
2054 	for_each_pipe(dev_priv, pipe) {
2055 		if (de_iir & DE_PIPE_VBLANK(pipe))
2056 			intel_handle_vblank(dev_priv, pipe);
2057 
2058 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2059 			flip_done_handler(dev_priv, pipe);
2060 
2061 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2062 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2063 
2064 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2065 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2066 	}
2067 
2068 	/* check event from PCH */
2069 	if (de_iir & DE_PCH_EVENT) {
2070 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2071 
2072 		if (HAS_PCH_CPT(dev_priv))
2073 			cpt_irq_handler(dev_priv, pch_iir);
2074 		else
2075 			ibx_irq_handler(dev_priv, pch_iir);
2076 
2077 		/* should clear PCH hotplug event before clear CPU irq */
2078 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2079 	}
2080 
2081 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2082 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2083 }
2084 
2085 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2086 				    u32 de_iir)
2087 {
2088 	enum pipe pipe;
2089 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2090 
2091 	if (hotplug_trigger)
2092 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2093 
2094 	if (de_iir & DE_ERR_INT_IVB)
2095 		ivb_err_int_handler(dev_priv);
2096 
2097 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2098 		u32 psr_iir = intel_uncore_read(&dev_priv->uncore, EDP_PSR_IIR);
2099 
2100 		intel_psr_irq_handler(dev_priv, psr_iir);
2101 		intel_uncore_write(&dev_priv->uncore, EDP_PSR_IIR, psr_iir);
2102 	}
2103 
2104 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2105 		dp_aux_irq_handler(dev_priv);
2106 
2107 	if (de_iir & DE_GSE_IVB)
2108 		intel_opregion_asle_intr(dev_priv);
2109 
2110 	for_each_pipe(dev_priv, pipe) {
2111 		if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2112 			intel_handle_vblank(dev_priv, pipe);
2113 
2114 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2115 			flip_done_handler(dev_priv, pipe);
2116 	}
2117 
2118 	/* check event from PCH */
2119 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2120 		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2121 
2122 		cpt_irq_handler(dev_priv, pch_iir);
2123 
2124 		/* clear PCH hotplug event before clear CPU irq */
2125 		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2126 	}
2127 }
2128 
2129 /*
2130  * To handle irqs with the minimum potential races with fresh interrupts, we:
2131  * 1 - Disable Master Interrupt Control.
2132  * 2 - Find the source(s) of the interrupt.
2133  * 3 - Clear the Interrupt Identity bits (IIR).
2134  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2135  * 5 - Re-enable Master Interrupt Control.
2136  */
2137 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2138 {
2139 	struct drm_i915_private *i915 = arg;
2140 	void __iomem * const regs = i915->uncore.regs;
2141 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2142 	irqreturn_t ret = IRQ_NONE;
2143 
2144 	if (unlikely(!intel_irqs_enabled(i915)))
2145 		return IRQ_NONE;
2146 
2147 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2148 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2149 
2150 	/* disable master interrupt before clearing iir  */
2151 	de_ier = raw_reg_read(regs, DEIER);
2152 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2153 
2154 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2155 	 * interrupts will will be stored on its back queue, and then we'll be
2156 	 * able to process them after we restore SDEIER (as soon as we restore
2157 	 * it, we'll get an interrupt if SDEIIR still has something to process
2158 	 * due to its back queue). */
2159 	if (!HAS_PCH_NOP(i915)) {
2160 		sde_ier = raw_reg_read(regs, SDEIER);
2161 		raw_reg_write(regs, SDEIER, 0);
2162 	}
2163 
2164 	/* Find, clear, then process each source of interrupt */
2165 
2166 	gt_iir = raw_reg_read(regs, GTIIR);
2167 	if (gt_iir) {
2168 		raw_reg_write(regs, GTIIR, gt_iir);
2169 		if (INTEL_GEN(i915) >= 6)
2170 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2171 		else
2172 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2173 		ret = IRQ_HANDLED;
2174 	}
2175 
2176 	de_iir = raw_reg_read(regs, DEIIR);
2177 	if (de_iir) {
2178 		raw_reg_write(regs, DEIIR, de_iir);
2179 		if (INTEL_GEN(i915) >= 7)
2180 			ivb_display_irq_handler(i915, de_iir);
2181 		else
2182 			ilk_display_irq_handler(i915, de_iir);
2183 		ret = IRQ_HANDLED;
2184 	}
2185 
2186 	if (INTEL_GEN(i915) >= 6) {
2187 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2188 		if (pm_iir) {
2189 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2190 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2191 			ret = IRQ_HANDLED;
2192 		}
2193 	}
2194 
2195 	raw_reg_write(regs, DEIER, de_ier);
2196 	if (sde_ier)
2197 		raw_reg_write(regs, SDEIER, sde_ier);
2198 
2199 	pmu_irq_stats(i915, ret);
2200 
2201 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2202 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2203 
2204 	return ret;
2205 }
2206 
2207 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2208 				u32 hotplug_trigger)
2209 {
2210 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2211 
2212 	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
2213 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
2214 
2215 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2216 			   hotplug_trigger, dig_hotplug_reg,
2217 			   dev_priv->hotplug.hpd,
2218 			   bxt_port_hotplug_long_detect);
2219 
2220 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2221 }
2222 
2223 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2224 {
2225 	u32 pin_mask = 0, long_mask = 0;
2226 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2227 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2228 
2229 	if (trigger_tc) {
2230 		u32 dig_hotplug_reg;
2231 
2232 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
2233 		intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2234 
2235 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2236 				   trigger_tc, dig_hotplug_reg,
2237 				   dev_priv->hotplug.hpd,
2238 				   gen11_port_hotplug_long_detect);
2239 	}
2240 
2241 	if (trigger_tbt) {
2242 		u32 dig_hotplug_reg;
2243 
2244 		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
2245 		intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2246 
2247 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2248 				   trigger_tbt, dig_hotplug_reg,
2249 				   dev_priv->hotplug.hpd,
2250 				   gen11_port_hotplug_long_detect);
2251 	}
2252 
2253 	if (pin_mask)
2254 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2255 	else
2256 		drm_err(&dev_priv->drm,
2257 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2258 }
2259 
2260 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2261 {
2262 	u32 mask;
2263 
2264 	if (INTEL_GEN(dev_priv) >= 12)
2265 		return TGL_DE_PORT_AUX_DDIA |
2266 			TGL_DE_PORT_AUX_DDIB |
2267 			TGL_DE_PORT_AUX_DDIC |
2268 			TGL_DE_PORT_AUX_USBC1 |
2269 			TGL_DE_PORT_AUX_USBC2 |
2270 			TGL_DE_PORT_AUX_USBC3 |
2271 			TGL_DE_PORT_AUX_USBC4 |
2272 			TGL_DE_PORT_AUX_USBC5 |
2273 			TGL_DE_PORT_AUX_USBC6;
2274 
2275 
2276 	mask = GEN8_AUX_CHANNEL_A;
2277 	if (INTEL_GEN(dev_priv) >= 9)
2278 		mask |= GEN9_AUX_CHANNEL_B |
2279 			GEN9_AUX_CHANNEL_C |
2280 			GEN9_AUX_CHANNEL_D;
2281 
2282 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2283 		mask |= CNL_AUX_CHANNEL_F;
2284 
2285 	if (IS_GEN(dev_priv, 11))
2286 		mask |= ICL_AUX_CHANNEL_E;
2287 
2288 	return mask;
2289 }
2290 
2291 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2292 {
2293 	if (IS_ROCKETLAKE(dev_priv))
2294 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2295 	else if (INTEL_GEN(dev_priv) >= 11)
2296 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2297 	else if (INTEL_GEN(dev_priv) >= 9)
2298 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2299 	else
2300 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2301 }
2302 
2303 static void
2304 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2305 {
2306 	bool found = false;
2307 
2308 	if (iir & GEN8_DE_MISC_GSE) {
2309 		intel_opregion_asle_intr(dev_priv);
2310 		found = true;
2311 	}
2312 
2313 	if (iir & GEN8_DE_EDP_PSR) {
2314 		u32 psr_iir;
2315 		i915_reg_t iir_reg;
2316 
2317 		if (INTEL_GEN(dev_priv) >= 12)
2318 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2319 		else
2320 			iir_reg = EDP_PSR_IIR;
2321 
2322 		psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
2323 		intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
2324 
2325 		if (psr_iir)
2326 			found = true;
2327 
2328 		intel_psr_irq_handler(dev_priv, psr_iir);
2329 	}
2330 
2331 	if (!found)
2332 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2333 }
2334 
2335 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2336 					   u32 te_trigger)
2337 {
2338 	enum pipe pipe = INVALID_PIPE;
2339 	enum transcoder dsi_trans;
2340 	enum port port;
2341 	u32 val, tmp;
2342 
2343 	/*
2344 	 * Incase of dual link, TE comes from DSI_1
2345 	 * this is to check if dual link is enabled
2346 	 */
2347 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2348 	val &= PORT_SYNC_MODE_ENABLE;
2349 
2350 	/*
2351 	 * if dual link is enabled, then read DSI_0
2352 	 * transcoder registers
2353 	 */
2354 	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2355 						  PORT_A : PORT_B;
2356 	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2357 
2358 	/* Check if DSI configured in command mode */
2359 	val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2360 	val = val & OP_MODE_MASK;
2361 
2362 	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2363 		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2364 		return;
2365 	}
2366 
2367 	/* Get PIPE for handling VBLANK event */
2368 	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2369 	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2370 	case TRANS_DDI_EDP_INPUT_A_ON:
2371 		pipe = PIPE_A;
2372 		break;
2373 	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2374 		pipe = PIPE_B;
2375 		break;
2376 	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2377 		pipe = PIPE_C;
2378 		break;
2379 	default:
2380 		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2381 		return;
2382 	}
2383 
2384 	intel_handle_vblank(dev_priv, pipe);
2385 
2386 	/* clear TE in dsi IIR */
2387 	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2388 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2389 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2390 }
2391 
2392 static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2393 {
2394 	if (INTEL_GEN(i915) >= 9)
2395 		return GEN9_PIPE_PLANE1_FLIP_DONE;
2396 	else
2397 		return GEN8_PIPE_PRIMARY_FLIP_DONE;
2398 }
2399 
2400 static irqreturn_t
2401 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2402 {
2403 	irqreturn_t ret = IRQ_NONE;
2404 	u32 iir;
2405 	enum pipe pipe;
2406 
2407 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2408 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2409 		if (iir) {
2410 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2411 			ret = IRQ_HANDLED;
2412 			gen8_de_misc_irq_handler(dev_priv, iir);
2413 		} else {
2414 			drm_err(&dev_priv->drm,
2415 				"The master control interrupt lied (DE MISC)!\n");
2416 		}
2417 	}
2418 
2419 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2420 		iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2421 		if (iir) {
2422 			intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2423 			ret = IRQ_HANDLED;
2424 			gen11_hpd_irq_handler(dev_priv, iir);
2425 		} else {
2426 			drm_err(&dev_priv->drm,
2427 				"The master control interrupt lied, (DE HPD)!\n");
2428 		}
2429 	}
2430 
2431 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2432 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2433 		if (iir) {
2434 			bool found = false;
2435 
2436 			intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2437 			ret = IRQ_HANDLED;
2438 
2439 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2440 				dp_aux_irq_handler(dev_priv);
2441 				found = true;
2442 			}
2443 
2444 			if (IS_GEN9_LP(dev_priv)) {
2445 				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2446 
2447 				if (hotplug_trigger) {
2448 					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2449 					found = true;
2450 				}
2451 			} else if (IS_BROADWELL(dev_priv)) {
2452 				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2453 
2454 				if (hotplug_trigger) {
2455 					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2456 					found = true;
2457 				}
2458 			}
2459 
2460 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2461 				gmbus_irq_handler(dev_priv);
2462 				found = true;
2463 			}
2464 
2465 			if (INTEL_GEN(dev_priv) >= 11) {
2466 				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2467 
2468 				if (te_trigger) {
2469 					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2470 					found = true;
2471 				}
2472 			}
2473 
2474 			if (!found)
2475 				drm_err(&dev_priv->drm,
2476 					"Unexpected DE Port interrupt\n");
2477 		}
2478 		else
2479 			drm_err(&dev_priv->drm,
2480 				"The master control interrupt lied (DE PORT)!\n");
2481 	}
2482 
2483 	for_each_pipe(dev_priv, pipe) {
2484 		u32 fault_errors;
2485 
2486 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2487 			continue;
2488 
2489 		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2490 		if (!iir) {
2491 			drm_err(&dev_priv->drm,
2492 				"The master control interrupt lied (DE PIPE)!\n");
2493 			continue;
2494 		}
2495 
2496 		ret = IRQ_HANDLED;
2497 		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2498 
2499 		if (iir & GEN8_PIPE_VBLANK)
2500 			intel_handle_vblank(dev_priv, pipe);
2501 
2502 		if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2503 			flip_done_handler(dev_priv, pipe);
2504 
2505 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2506 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2507 
2508 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2509 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2510 
2511 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2512 		if (fault_errors)
2513 			drm_err(&dev_priv->drm,
2514 				"Fault errors on pipe %c: 0x%08x\n",
2515 				pipe_name(pipe),
2516 				fault_errors);
2517 	}
2518 
2519 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2520 	    master_ctl & GEN8_DE_PCH_IRQ) {
2521 		/*
2522 		 * FIXME(BDW): Assume for now that the new interrupt handling
2523 		 * scheme also closed the SDE interrupt handling race we've seen
2524 		 * on older pch-split platforms. But this needs testing.
2525 		 */
2526 		iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2527 		if (iir) {
2528 			intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2529 			ret = IRQ_HANDLED;
2530 
2531 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2532 				icp_irq_handler(dev_priv, iir);
2533 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2534 				spt_irq_handler(dev_priv, iir);
2535 			else
2536 				cpt_irq_handler(dev_priv, iir);
2537 		} else {
2538 			/*
2539 			 * Like on previous PCH there seems to be something
2540 			 * fishy going on with forwarding PCH interrupts.
2541 			 */
2542 			drm_dbg(&dev_priv->drm,
2543 				"The master control interrupt lied (SDE)!\n");
2544 		}
2545 	}
2546 
2547 	return ret;
2548 }
2549 
2550 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2551 {
2552 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2553 
2554 	/*
2555 	 * Now with master disabled, get a sample of level indications
2556 	 * for this interrupt. Indications will be cleared on related acks.
2557 	 * New indications can and will light up during processing,
2558 	 * and will generate new interrupt after enabling master.
2559 	 */
2560 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2561 }
2562 
2563 static inline void gen8_master_intr_enable(void __iomem * const regs)
2564 {
2565 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2566 }
2567 
2568 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2569 {
2570 	struct drm_i915_private *dev_priv = arg;
2571 	void __iomem * const regs = dev_priv->uncore.regs;
2572 	u32 master_ctl;
2573 
2574 	if (!intel_irqs_enabled(dev_priv))
2575 		return IRQ_NONE;
2576 
2577 	master_ctl = gen8_master_intr_disable(regs);
2578 	if (!master_ctl) {
2579 		gen8_master_intr_enable(regs);
2580 		return IRQ_NONE;
2581 	}
2582 
2583 	/* Find, queue (onto bottom-halves), then clear each source */
2584 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2585 
2586 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2587 	if (master_ctl & ~GEN8_GT_IRQS) {
2588 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2589 		gen8_de_irq_handler(dev_priv, master_ctl);
2590 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2591 	}
2592 
2593 	gen8_master_intr_enable(regs);
2594 
2595 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2596 
2597 	return IRQ_HANDLED;
2598 }
2599 
2600 static u32
2601 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2602 {
2603 	void __iomem * const regs = gt->uncore->regs;
2604 	u32 iir;
2605 
2606 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2607 		return 0;
2608 
2609 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2610 	if (likely(iir))
2611 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2612 
2613 	return iir;
2614 }
2615 
2616 static void
2617 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2618 {
2619 	if (iir & GEN11_GU_MISC_GSE)
2620 		intel_opregion_asle_intr(gt->i915);
2621 }
2622 
2623 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2624 {
2625 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2626 
2627 	/*
2628 	 * Now with master disabled, get a sample of level indications
2629 	 * for this interrupt. Indications will be cleared on related acks.
2630 	 * New indications can and will light up during processing,
2631 	 * and will generate new interrupt after enabling master.
2632 	 */
2633 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2634 }
2635 
2636 static inline void gen11_master_intr_enable(void __iomem * const regs)
2637 {
2638 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2639 }
2640 
2641 static void
2642 gen11_display_irq_handler(struct drm_i915_private *i915)
2643 {
2644 	void __iomem * const regs = i915->uncore.regs;
2645 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2646 
2647 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2648 	/*
2649 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2650 	 * for the display related bits.
2651 	 */
2652 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2653 	gen8_de_irq_handler(i915, disp_ctl);
2654 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2655 		      GEN11_DISPLAY_IRQ_ENABLE);
2656 
2657 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2658 }
2659 
2660 static __always_inline irqreturn_t
2661 __gen11_irq_handler(struct drm_i915_private * const i915,
2662 		    u32 (*intr_disable)(void __iomem * const regs),
2663 		    void (*intr_enable)(void __iomem * const regs))
2664 {
2665 	void __iomem * const regs = i915->uncore.regs;
2666 	struct intel_gt *gt = &i915->gt;
2667 	u32 master_ctl;
2668 	u32 gu_misc_iir;
2669 
2670 	if (!intel_irqs_enabled(i915))
2671 		return IRQ_NONE;
2672 
2673 	master_ctl = intr_disable(regs);
2674 	if (!master_ctl) {
2675 		intr_enable(regs);
2676 		return IRQ_NONE;
2677 	}
2678 
2679 	/* Find, queue (onto bottom-halves), then clear each source */
2680 	gen11_gt_irq_handler(gt, master_ctl);
2681 
2682 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2683 	if (master_ctl & GEN11_DISPLAY_IRQ)
2684 		gen11_display_irq_handler(i915);
2685 
2686 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2687 
2688 	intr_enable(regs);
2689 
2690 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2691 
2692 	pmu_irq_stats(i915, IRQ_HANDLED);
2693 
2694 	return IRQ_HANDLED;
2695 }
2696 
2697 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2698 {
2699 	return __gen11_irq_handler(arg,
2700 				   gen11_master_intr_disable,
2701 				   gen11_master_intr_enable);
2702 }
2703 
2704 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2705 {
2706 	u32 val;
2707 
2708 	/* First disable interrupts */
2709 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2710 
2711 	/* Get the indication levels and ack the master unit */
2712 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2713 	if (unlikely(!val))
2714 		return 0;
2715 
2716 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2717 
2718 	/*
2719 	 * Now with master disabled, get a sample of level indications
2720 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2721 	 * out as this bit doesn't exist anymore for DG1
2722 	 */
2723 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2724 	if (unlikely(!val))
2725 		return 0;
2726 
2727 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2728 
2729 	return val;
2730 }
2731 
2732 static inline void dg1_master_intr_enable(void __iomem * const regs)
2733 {
2734 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2735 }
2736 
2737 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2738 {
2739 	return __gen11_irq_handler(arg,
2740 				   dg1_master_intr_disable_and_ack,
2741 				   dg1_master_intr_enable);
2742 }
2743 
2744 /* Called from drm generic code, passed 'crtc' which
2745  * we use as a pipe index
2746  */
2747 int i8xx_enable_vblank(struct drm_crtc *crtc)
2748 {
2749 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2750 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2751 	unsigned long irqflags;
2752 
2753 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2754 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2755 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2756 
2757 	return 0;
2758 }
2759 
2760 int i915gm_enable_vblank(struct drm_crtc *crtc)
2761 {
2762 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2763 
2764 	/*
2765 	 * Vblank interrupts fail to wake the device up from C2+.
2766 	 * Disabling render clock gating during C-states avoids
2767 	 * the problem. There is a small power cost so we do this
2768 	 * only when vblank interrupts are actually enabled.
2769 	 */
2770 	if (dev_priv->vblank_enabled++ == 0)
2771 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2772 
2773 	return i8xx_enable_vblank(crtc);
2774 }
2775 
2776 int i965_enable_vblank(struct drm_crtc *crtc)
2777 {
2778 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2779 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2780 	unsigned long irqflags;
2781 
2782 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2783 	i915_enable_pipestat(dev_priv, pipe,
2784 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2785 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2786 
2787 	return 0;
2788 }
2789 
2790 int ilk_enable_vblank(struct drm_crtc *crtc)
2791 {
2792 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2793 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2794 	unsigned long irqflags;
2795 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2796 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2797 
2798 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799 	ilk_enable_display_irq(dev_priv, bit);
2800 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801 
2802 	/* Even though there is no DMC, frame counter can get stuck when
2803 	 * PSR is active as no frames are generated.
2804 	 */
2805 	if (HAS_PSR(dev_priv))
2806 		drm_crtc_vblank_restore(crtc);
2807 
2808 	return 0;
2809 }
2810 
2811 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2812 				   bool enable)
2813 {
2814 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2815 	enum port port;
2816 	u32 tmp;
2817 
2818 	if (!(intel_crtc->mode_flags &
2819 	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2820 		return false;
2821 
2822 	/* for dual link cases we consider TE from slave */
2823 	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2824 		port = PORT_B;
2825 	else
2826 		port = PORT_A;
2827 
2828 	tmp =  intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
2829 	if (enable)
2830 		tmp &= ~DSI_TE_EVENT;
2831 	else
2832 		tmp |= DSI_TE_EVENT;
2833 
2834 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
2835 
2836 	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2837 	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2838 
2839 	return true;
2840 }
2841 
2842 int bdw_enable_vblank(struct drm_crtc *crtc)
2843 {
2844 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2845 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2846 	enum pipe pipe = intel_crtc->pipe;
2847 	unsigned long irqflags;
2848 
2849 	if (gen11_dsi_configure_te(intel_crtc, true))
2850 		return 0;
2851 
2852 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2854 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 
2856 	/* Even if there is no DMC, frame counter can get stuck when
2857 	 * PSR is active as no frames are generated, so check only for PSR.
2858 	 */
2859 	if (HAS_PSR(dev_priv))
2860 		drm_crtc_vblank_restore(crtc);
2861 
2862 	return 0;
2863 }
2864 
2865 /* Called from drm generic code, passed 'crtc' which
2866  * we use as a pipe index
2867  */
2868 void i8xx_disable_vblank(struct drm_crtc *crtc)
2869 {
2870 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2871 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2872 	unsigned long irqflags;
2873 
2874 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2875 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2876 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2877 }
2878 
2879 void i915gm_disable_vblank(struct drm_crtc *crtc)
2880 {
2881 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2882 
2883 	i8xx_disable_vblank(crtc);
2884 
2885 	if (--dev_priv->vblank_enabled == 0)
2886 		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2887 }
2888 
2889 void i965_disable_vblank(struct drm_crtc *crtc)
2890 {
2891 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2892 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2893 	unsigned long irqflags;
2894 
2895 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2896 	i915_disable_pipestat(dev_priv, pipe,
2897 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2898 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2899 }
2900 
2901 void ilk_disable_vblank(struct drm_crtc *crtc)
2902 {
2903 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2904 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2905 	unsigned long irqflags;
2906 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2907 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2908 
2909 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2910 	ilk_disable_display_irq(dev_priv, bit);
2911 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2912 }
2913 
2914 void bdw_disable_vblank(struct drm_crtc *crtc)
2915 {
2916 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2917 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918 	enum pipe pipe = intel_crtc->pipe;
2919 	unsigned long irqflags;
2920 
2921 	if (gen11_dsi_configure_te(intel_crtc, false))
2922 		return;
2923 
2924 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2925 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2926 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927 }
2928 
2929 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2930 {
2931 	struct intel_uncore *uncore = &dev_priv->uncore;
2932 
2933 	if (HAS_PCH_NOP(dev_priv))
2934 		return;
2935 
2936 	GEN3_IRQ_RESET(uncore, SDE);
2937 
2938 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2939 		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2940 }
2941 
2942 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2943 {
2944 	struct intel_uncore *uncore = &dev_priv->uncore;
2945 
2946 	if (IS_CHERRYVIEW(dev_priv))
2947 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2948 	else
2949 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2950 
2951 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2952 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
2953 
2954 	i9xx_pipestat_irq_reset(dev_priv);
2955 
2956 	GEN3_IRQ_RESET(uncore, VLV_);
2957 	dev_priv->irq_mask = ~0u;
2958 }
2959 
2960 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2961 {
2962 	struct intel_uncore *uncore = &dev_priv->uncore;
2963 
2964 	u32 pipestat_mask;
2965 	u32 enable_mask;
2966 	enum pipe pipe;
2967 
2968 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2969 
2970 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2971 	for_each_pipe(dev_priv, pipe)
2972 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2973 
2974 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2975 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2976 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2977 		I915_LPE_PIPE_A_INTERRUPT |
2978 		I915_LPE_PIPE_B_INTERRUPT;
2979 
2980 	if (IS_CHERRYVIEW(dev_priv))
2981 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2982 			I915_LPE_PIPE_C_INTERRUPT;
2983 
2984 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2985 
2986 	dev_priv->irq_mask = ~enable_mask;
2987 
2988 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2989 }
2990 
2991 /* drm_dma.h hooks
2992 */
2993 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2994 {
2995 	struct intel_uncore *uncore = &dev_priv->uncore;
2996 
2997 	GEN3_IRQ_RESET(uncore, DE);
2998 	dev_priv->irq_mask = ~0u;
2999 
3000 	if (IS_GEN(dev_priv, 7))
3001 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3002 
3003 	if (IS_HASWELL(dev_priv)) {
3004 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3005 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3006 	}
3007 
3008 	gen5_gt_irq_reset(&dev_priv->gt);
3009 
3010 	ibx_irq_reset(dev_priv);
3011 }
3012 
3013 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3014 {
3015 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3016 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3017 
3018 	gen5_gt_irq_reset(&dev_priv->gt);
3019 
3020 	spin_lock_irq(&dev_priv->irq_lock);
3021 	if (dev_priv->display_irqs_enabled)
3022 		vlv_display_irq_reset(dev_priv);
3023 	spin_unlock_irq(&dev_priv->irq_lock);
3024 }
3025 
3026 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3027 {
3028 	struct intel_uncore *uncore = &dev_priv->uncore;
3029 	enum pipe pipe;
3030 
3031 	gen8_master_intr_disable(dev_priv->uncore.regs);
3032 
3033 	gen8_gt_irq_reset(&dev_priv->gt);
3034 
3035 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3036 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3037 
3038 	for_each_pipe(dev_priv, pipe)
3039 		if (intel_display_power_is_enabled(dev_priv,
3040 						   POWER_DOMAIN_PIPE(pipe)))
3041 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3042 
3043 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3044 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3045 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3046 
3047 	if (HAS_PCH_SPLIT(dev_priv))
3048 		ibx_irq_reset(dev_priv);
3049 }
3050 
3051 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3052 {
3053 	struct intel_uncore *uncore = &dev_priv->uncore;
3054 	enum pipe pipe;
3055 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3056 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3057 
3058 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3059 
3060 	if (INTEL_GEN(dev_priv) >= 12) {
3061 		enum transcoder trans;
3062 
3063 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3064 			enum intel_display_power_domain domain;
3065 
3066 			domain = POWER_DOMAIN_TRANSCODER(trans);
3067 			if (!intel_display_power_is_enabled(dev_priv, domain))
3068 				continue;
3069 
3070 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3071 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3072 		}
3073 	} else {
3074 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3075 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3076 	}
3077 
3078 	for_each_pipe(dev_priv, pipe)
3079 		if (intel_display_power_is_enabled(dev_priv,
3080 						   POWER_DOMAIN_PIPE(pipe)))
3081 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3082 
3083 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3084 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3085 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3086 
3087 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3088 		GEN3_IRQ_RESET(uncore, SDE);
3089 
3090 	/* Wa_14010685332:cnp/cmp,tgp,adp */
3091 	if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3092 	    (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
3093 	     INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3094 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3095 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3096 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3097 				 SBCLK_RUN_REFCLK_DIS, 0);
3098 	}
3099 }
3100 
3101 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3102 {
3103 	struct intel_uncore *uncore = &dev_priv->uncore;
3104 
3105 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3106 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3107 	else
3108 		gen11_master_intr_disable(dev_priv->uncore.regs);
3109 
3110 	gen11_gt_irq_reset(&dev_priv->gt);
3111 	gen11_display_irq_reset(dev_priv);
3112 
3113 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3114 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3115 }
3116 
3117 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3118 				     u8 pipe_mask)
3119 {
3120 	struct intel_uncore *uncore = &dev_priv->uncore;
3121 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3122 		gen8_de_pipe_flip_done_mask(dev_priv);
3123 	enum pipe pipe;
3124 
3125 	spin_lock_irq(&dev_priv->irq_lock);
3126 
3127 	if (!intel_irqs_enabled(dev_priv)) {
3128 		spin_unlock_irq(&dev_priv->irq_lock);
3129 		return;
3130 	}
3131 
3132 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3133 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3134 				  dev_priv->de_irq_mask[pipe],
3135 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3136 
3137 	spin_unlock_irq(&dev_priv->irq_lock);
3138 }
3139 
3140 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3141 				     u8 pipe_mask)
3142 {
3143 	struct intel_uncore *uncore = &dev_priv->uncore;
3144 	enum pipe pipe;
3145 
3146 	spin_lock_irq(&dev_priv->irq_lock);
3147 
3148 	if (!intel_irqs_enabled(dev_priv)) {
3149 		spin_unlock_irq(&dev_priv->irq_lock);
3150 		return;
3151 	}
3152 
3153 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3154 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3155 
3156 	spin_unlock_irq(&dev_priv->irq_lock);
3157 
3158 	/* make sure we're done processing display irqs */
3159 	intel_synchronize_irq(dev_priv);
3160 }
3161 
3162 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3163 {
3164 	struct intel_uncore *uncore = &dev_priv->uncore;
3165 
3166 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
3167 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3168 
3169 	gen8_gt_irq_reset(&dev_priv->gt);
3170 
3171 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3172 
3173 	spin_lock_irq(&dev_priv->irq_lock);
3174 	if (dev_priv->display_irqs_enabled)
3175 		vlv_display_irq_reset(dev_priv);
3176 	spin_unlock_irq(&dev_priv->irq_lock);
3177 }
3178 
3179 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3180 			       enum hpd_pin pin)
3181 {
3182 	switch (pin) {
3183 	case HPD_PORT_A:
3184 		/*
3185 		 * When CPU and PCH are on the same package, port A
3186 		 * HPD must be enabled in both north and south.
3187 		 */
3188 		return HAS_PCH_LPT_LP(i915) ?
3189 			PORTA_HOTPLUG_ENABLE : 0;
3190 	case HPD_PORT_B:
3191 		return PORTB_HOTPLUG_ENABLE |
3192 			PORTB_PULSE_DURATION_2ms;
3193 	case HPD_PORT_C:
3194 		return PORTC_HOTPLUG_ENABLE |
3195 			PORTC_PULSE_DURATION_2ms;
3196 	case HPD_PORT_D:
3197 		return PORTD_HOTPLUG_ENABLE |
3198 			PORTD_PULSE_DURATION_2ms;
3199 	default:
3200 		return 0;
3201 	}
3202 }
3203 
3204 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3205 {
3206 	u32 hotplug;
3207 
3208 	/*
3209 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3210 	 * duration to 2ms (which is the minimum in the Display Port spec).
3211 	 * The pulse duration bits are reserved on LPT+.
3212 	 */
3213 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3214 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3215 		     PORTB_HOTPLUG_ENABLE |
3216 		     PORTC_HOTPLUG_ENABLE |
3217 		     PORTD_HOTPLUG_ENABLE |
3218 		     PORTB_PULSE_DURATION_MASK |
3219 		     PORTC_PULSE_DURATION_MASK |
3220 		     PORTD_PULSE_DURATION_MASK);
3221 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3222 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3223 }
3224 
3225 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3226 {
3227 	u32 hotplug_irqs, enabled_irqs;
3228 
3229 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3230 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3231 
3232 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3233 
3234 	ibx_hpd_detection_setup(dev_priv);
3235 }
3236 
3237 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3238 				   enum hpd_pin pin)
3239 {
3240 	switch (pin) {
3241 	case HPD_PORT_A:
3242 	case HPD_PORT_B:
3243 	case HPD_PORT_C:
3244 	case HPD_PORT_D:
3245 		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3246 	default:
3247 		return 0;
3248 	}
3249 }
3250 
3251 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3252 				  enum hpd_pin pin)
3253 {
3254 	switch (pin) {
3255 	case HPD_PORT_TC1:
3256 	case HPD_PORT_TC2:
3257 	case HPD_PORT_TC3:
3258 	case HPD_PORT_TC4:
3259 	case HPD_PORT_TC5:
3260 	case HPD_PORT_TC6:
3261 		return ICP_TC_HPD_ENABLE(pin);
3262 	default:
3263 		return 0;
3264 	}
3265 }
3266 
3267 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3268 {
3269 	u32 hotplug;
3270 
3271 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
3272 	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3273 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3274 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3275 		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3276 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3277 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
3278 }
3279 
3280 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3281 {
3282 	u32 hotplug;
3283 
3284 	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
3285 	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3286 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3287 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3288 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3289 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3290 		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3291 	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3292 	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
3293 }
3294 
3295 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3296 {
3297 	u32 hotplug_irqs, enabled_irqs;
3298 
3299 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3300 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3301 
3302 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3303 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3304 
3305 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3306 
3307 	icp_ddi_hpd_detection_setup(dev_priv);
3308 	icp_tc_hpd_detection_setup(dev_priv);
3309 }
3310 
3311 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3312 				 enum hpd_pin pin)
3313 {
3314 	switch (pin) {
3315 	case HPD_PORT_TC1:
3316 	case HPD_PORT_TC2:
3317 	case HPD_PORT_TC3:
3318 	case HPD_PORT_TC4:
3319 	case HPD_PORT_TC5:
3320 	case HPD_PORT_TC6:
3321 		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3322 	default:
3323 		return 0;
3324 	}
3325 }
3326 
3327 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3328 {
3329 	u32 val;
3330 
3331 	val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3332 	val |= (INVERT_DDIA_HPD |
3333 		INVERT_DDIB_HPD |
3334 		INVERT_DDIC_HPD |
3335 		INVERT_DDID_HPD);
3336 	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3337 
3338 	icp_hpd_irq_setup(dev_priv);
3339 }
3340 
3341 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3342 {
3343 	u32 hotplug;
3344 
3345 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
3346 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3347 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3348 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3349 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3350 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3351 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3352 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3353 	intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
3354 }
3355 
3356 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3357 {
3358 	u32 hotplug;
3359 
3360 	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
3361 	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3362 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3363 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3364 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3365 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3366 		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3367 	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3368 	intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
3369 }
3370 
3371 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3372 {
3373 	u32 hotplug_irqs, enabled_irqs;
3374 	u32 val;
3375 
3376 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3377 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3378 
3379 	val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3380 	val &= ~hotplug_irqs;
3381 	val |= ~enabled_irqs & hotplug_irqs;
3382 	intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
3383 	intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3384 
3385 	gen11_tc_hpd_detection_setup(dev_priv);
3386 	gen11_tbt_hpd_detection_setup(dev_priv);
3387 
3388 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3389 		icp_hpd_irq_setup(dev_priv);
3390 }
3391 
3392 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3393 			       enum hpd_pin pin)
3394 {
3395 	switch (pin) {
3396 	case HPD_PORT_A:
3397 		return PORTA_HOTPLUG_ENABLE;
3398 	case HPD_PORT_B:
3399 		return PORTB_HOTPLUG_ENABLE;
3400 	case HPD_PORT_C:
3401 		return PORTC_HOTPLUG_ENABLE;
3402 	case HPD_PORT_D:
3403 		return PORTD_HOTPLUG_ENABLE;
3404 	default:
3405 		return 0;
3406 	}
3407 }
3408 
3409 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3410 				enum hpd_pin pin)
3411 {
3412 	switch (pin) {
3413 	case HPD_PORT_E:
3414 		return PORTE_HOTPLUG_ENABLE;
3415 	default:
3416 		return 0;
3417 	}
3418 }
3419 
3420 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3421 {
3422 	u32 val, hotplug;
3423 
3424 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3425 	if (HAS_PCH_CNP(dev_priv)) {
3426 		val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3427 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3428 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3429 		intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3430 	}
3431 
3432 	/* Enable digital hotplug on the PCH */
3433 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3434 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3435 		     PORTB_HOTPLUG_ENABLE |
3436 		     PORTC_HOTPLUG_ENABLE |
3437 		     PORTD_HOTPLUG_ENABLE);
3438 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3439 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3440 
3441 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
3442 	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3443 	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3444 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
3445 }
3446 
3447 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448 {
3449 	u32 hotplug_irqs, enabled_irqs;
3450 
3451 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3452 		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3453 
3454 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3455 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3456 
3457 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3458 
3459 	spt_hpd_detection_setup(dev_priv);
3460 }
3461 
3462 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3463 			       enum hpd_pin pin)
3464 {
3465 	switch (pin) {
3466 	case HPD_PORT_A:
3467 		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3468 			DIGITAL_PORTA_PULSE_DURATION_2ms;
3469 	default:
3470 		return 0;
3471 	}
3472 }
3473 
3474 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3475 {
3476 	u32 hotplug;
3477 
3478 	/*
3479 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3480 	 * duration to 2ms (which is the minimum in the Display Port spec)
3481 	 * The pulse duration bits are reserved on HSW+.
3482 	 */
3483 	hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
3484 	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3485 		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3486 	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3487 	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3488 }
3489 
3490 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3491 {
3492 	u32 hotplug_irqs, enabled_irqs;
3493 
3494 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3495 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3496 
3497 	if (INTEL_GEN(dev_priv) >= 8)
3498 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3499 	else
3500 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3501 
3502 	ilk_hpd_detection_setup(dev_priv);
3503 
3504 	ibx_hpd_irq_setup(dev_priv);
3505 }
3506 
3507 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3508 			       enum hpd_pin pin)
3509 {
3510 	u32 hotplug;
3511 
3512 	switch (pin) {
3513 	case HPD_PORT_A:
3514 		hotplug = PORTA_HOTPLUG_ENABLE;
3515 		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3516 			hotplug |= BXT_DDIA_HPD_INVERT;
3517 		return hotplug;
3518 	case HPD_PORT_B:
3519 		hotplug = PORTB_HOTPLUG_ENABLE;
3520 		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3521 			hotplug |= BXT_DDIB_HPD_INVERT;
3522 		return hotplug;
3523 	case HPD_PORT_C:
3524 		hotplug = PORTC_HOTPLUG_ENABLE;
3525 		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3526 			hotplug |= BXT_DDIC_HPD_INVERT;
3527 		return hotplug;
3528 	default:
3529 		return 0;
3530 	}
3531 }
3532 
3533 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3534 {
3535 	u32 hotplug;
3536 
3537 	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3538 	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3539 		     PORTB_HOTPLUG_ENABLE |
3540 		     PORTC_HOTPLUG_ENABLE |
3541 		     BXT_DDIA_HPD_INVERT |
3542 		     BXT_DDIB_HPD_INVERT |
3543 		     BXT_DDIC_HPD_INVERT);
3544 	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3545 	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3546 }
3547 
3548 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3549 {
3550 	u32 hotplug_irqs, enabled_irqs;
3551 
3552 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3553 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3554 
3555 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3556 
3557 	bxt_hpd_detection_setup(dev_priv);
3558 }
3559 
3560 /*
3561  * SDEIER is also touched by the interrupt handler to work around missed PCH
3562  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3563  * instead we unconditionally enable all PCH interrupt sources here, but then
3564  * only unmask them as needed with SDEIMR.
3565  *
3566  * Note that we currently do this after installing the interrupt handler,
3567  * but before we enable the master interrupt. That should be sufficient
3568  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3569  * interrupts could still race.
3570  */
3571 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3572 {
3573 	struct intel_uncore *uncore = &dev_priv->uncore;
3574 	u32 mask;
3575 
3576 	if (HAS_PCH_NOP(dev_priv))
3577 		return;
3578 
3579 	if (HAS_PCH_IBX(dev_priv))
3580 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3581 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3582 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3583 	else
3584 		mask = SDE_GMBUS_CPT;
3585 
3586 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3587 }
3588 
3589 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3590 {
3591 	struct intel_uncore *uncore = &dev_priv->uncore;
3592 	u32 display_mask, extra_mask;
3593 
3594 	if (INTEL_GEN(dev_priv) >= 7) {
3595 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3596 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3597 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3598 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3599 			      DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3600 			      DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3601 			      DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3602 			      DE_DP_A_HOTPLUG_IVB);
3603 	} else {
3604 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3605 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3606 				DE_PIPEA_CRC_DONE | DE_POISON);
3607 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3608 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3609 			      DE_PLANE_FLIP_DONE(PLANE_A) |
3610 			      DE_PLANE_FLIP_DONE(PLANE_B) |
3611 			      DE_DP_A_HOTPLUG);
3612 	}
3613 
3614 	if (IS_HASWELL(dev_priv)) {
3615 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3616 		display_mask |= DE_EDP_PSR_INT_HSW;
3617 	}
3618 
3619 	if (IS_IRONLAKE_M(dev_priv))
3620 		extra_mask |= DE_PCU_EVENT;
3621 
3622 	dev_priv->irq_mask = ~display_mask;
3623 
3624 	ibx_irq_postinstall(dev_priv);
3625 
3626 	gen5_gt_irq_postinstall(&dev_priv->gt);
3627 
3628 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3629 		      display_mask | extra_mask);
3630 }
3631 
3632 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3633 {
3634 	lockdep_assert_held(&dev_priv->irq_lock);
3635 
3636 	if (dev_priv->display_irqs_enabled)
3637 		return;
3638 
3639 	dev_priv->display_irqs_enabled = true;
3640 
3641 	if (intel_irqs_enabled(dev_priv)) {
3642 		vlv_display_irq_reset(dev_priv);
3643 		vlv_display_irq_postinstall(dev_priv);
3644 	}
3645 }
3646 
3647 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3648 {
3649 	lockdep_assert_held(&dev_priv->irq_lock);
3650 
3651 	if (!dev_priv->display_irqs_enabled)
3652 		return;
3653 
3654 	dev_priv->display_irqs_enabled = false;
3655 
3656 	if (intel_irqs_enabled(dev_priv))
3657 		vlv_display_irq_reset(dev_priv);
3658 }
3659 
3660 
3661 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3662 {
3663 	gen5_gt_irq_postinstall(&dev_priv->gt);
3664 
3665 	spin_lock_irq(&dev_priv->irq_lock);
3666 	if (dev_priv->display_irqs_enabled)
3667 		vlv_display_irq_postinstall(dev_priv);
3668 	spin_unlock_irq(&dev_priv->irq_lock);
3669 
3670 	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3671 	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3672 }
3673 
3674 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3675 {
3676 	struct intel_uncore *uncore = &dev_priv->uncore;
3677 
3678 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3679 		GEN8_PIPE_CDCLK_CRC_DONE;
3680 	u32 de_pipe_enables;
3681 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3682 	u32 de_port_enables;
3683 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3684 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3685 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3686 	enum pipe pipe;
3687 
3688 	if (INTEL_GEN(dev_priv) <= 10)
3689 		de_misc_masked |= GEN8_DE_MISC_GSE;
3690 
3691 	if (IS_GEN9_LP(dev_priv))
3692 		de_port_masked |= BXT_DE_PORT_GMBUS;
3693 
3694 	if (INTEL_GEN(dev_priv) >= 11) {
3695 		enum port port;
3696 
3697 		if (intel_bios_is_dsi_present(dev_priv, &port))
3698 			de_port_masked |= DSI0_TE | DSI1_TE;
3699 	}
3700 
3701 	de_pipe_enables = de_pipe_masked |
3702 		GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
3703 		gen8_de_pipe_flip_done_mask(dev_priv);
3704 
3705 	de_port_enables = de_port_masked;
3706 	if (IS_GEN9_LP(dev_priv))
3707 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3708 	else if (IS_BROADWELL(dev_priv))
3709 		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3710 
3711 	if (INTEL_GEN(dev_priv) >= 12) {
3712 		enum transcoder trans;
3713 
3714 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3715 			enum intel_display_power_domain domain;
3716 
3717 			domain = POWER_DOMAIN_TRANSCODER(trans);
3718 			if (!intel_display_power_is_enabled(dev_priv, domain))
3719 				continue;
3720 
3721 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3722 		}
3723 	} else {
3724 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3725 	}
3726 
3727 	for_each_pipe(dev_priv, pipe) {
3728 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3729 
3730 		if (intel_display_power_is_enabled(dev_priv,
3731 				POWER_DOMAIN_PIPE(pipe)))
3732 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3733 					  dev_priv->de_irq_mask[pipe],
3734 					  de_pipe_enables);
3735 	}
3736 
3737 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3738 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3739 
3740 	if (INTEL_GEN(dev_priv) >= 11) {
3741 		u32 de_hpd_masked = 0;
3742 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3743 				     GEN11_DE_TBT_HOTPLUG_MASK;
3744 
3745 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3746 			      de_hpd_enables);
3747 	}
3748 }
3749 
3750 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3751 {
3752 	if (HAS_PCH_SPLIT(dev_priv))
3753 		ibx_irq_postinstall(dev_priv);
3754 
3755 	gen8_gt_irq_postinstall(&dev_priv->gt);
3756 	gen8_de_irq_postinstall(dev_priv);
3757 
3758 	gen8_master_intr_enable(dev_priv->uncore.regs);
3759 }
3760 
3761 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3762 {
3763 	struct intel_uncore *uncore = &dev_priv->uncore;
3764 	u32 mask = SDE_GMBUS_ICP;
3765 
3766 	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3767 }
3768 
3769 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3770 {
3771 	struct intel_uncore *uncore = &dev_priv->uncore;
3772 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3773 
3774 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3775 		icp_irq_postinstall(dev_priv);
3776 
3777 	gen11_gt_irq_postinstall(&dev_priv->gt);
3778 	gen8_de_irq_postinstall(dev_priv);
3779 
3780 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3781 
3782 	intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3783 
3784 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3785 		dg1_master_intr_enable(uncore->regs);
3786 		intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
3787 	} else {
3788 		gen11_master_intr_enable(uncore->regs);
3789 		intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3790 	}
3791 }
3792 
3793 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795 	gen8_gt_irq_postinstall(&dev_priv->gt);
3796 
3797 	spin_lock_irq(&dev_priv->irq_lock);
3798 	if (dev_priv->display_irqs_enabled)
3799 		vlv_display_irq_postinstall(dev_priv);
3800 	spin_unlock_irq(&dev_priv->irq_lock);
3801 
3802 	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3803 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3804 }
3805 
3806 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3807 {
3808 	struct intel_uncore *uncore = &dev_priv->uncore;
3809 
3810 	i9xx_pipestat_irq_reset(dev_priv);
3811 
3812 	GEN2_IRQ_RESET(uncore);
3813 	dev_priv->irq_mask = ~0u;
3814 }
3815 
3816 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3817 {
3818 	struct intel_uncore *uncore = &dev_priv->uncore;
3819 	u16 enable_mask;
3820 
3821 	intel_uncore_write16(uncore,
3822 			     EMR,
3823 			     ~(I915_ERROR_PAGE_TABLE |
3824 			       I915_ERROR_MEMORY_REFRESH));
3825 
3826 	/* Unmask the interrupts that we always want on. */
3827 	dev_priv->irq_mask =
3828 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3829 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3830 		  I915_MASTER_ERROR_INTERRUPT);
3831 
3832 	enable_mask =
3833 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3834 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3835 		I915_MASTER_ERROR_INTERRUPT |
3836 		I915_USER_INTERRUPT;
3837 
3838 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3839 
3840 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3841 	 * just to make the assert_spin_locked check happy. */
3842 	spin_lock_irq(&dev_priv->irq_lock);
3843 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3844 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3845 	spin_unlock_irq(&dev_priv->irq_lock);
3846 }
3847 
3848 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3849 			       u16 *eir, u16 *eir_stuck)
3850 {
3851 	struct intel_uncore *uncore = &i915->uncore;
3852 	u16 emr;
3853 
3854 	*eir = intel_uncore_read16(uncore, EIR);
3855 
3856 	if (*eir)
3857 		intel_uncore_write16(uncore, EIR, *eir);
3858 
3859 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3860 	if (*eir_stuck == 0)
3861 		return;
3862 
3863 	/*
3864 	 * Toggle all EMR bits to make sure we get an edge
3865 	 * in the ISR master error bit if we don't clear
3866 	 * all the EIR bits. Otherwise the edge triggered
3867 	 * IIR on i965/g4x wouldn't notice that an interrupt
3868 	 * is still pending. Also some EIR bits can't be
3869 	 * cleared except by handling the underlying error
3870 	 * (or by a GPU reset) so we mask any bit that
3871 	 * remains set.
3872 	 */
3873 	emr = intel_uncore_read16(uncore, EMR);
3874 	intel_uncore_write16(uncore, EMR, 0xffff);
3875 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3876 }
3877 
3878 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3879 				   u16 eir, u16 eir_stuck)
3880 {
3881 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3882 
3883 	if (eir_stuck)
3884 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3885 			eir_stuck);
3886 }
3887 
3888 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3889 			       u32 *eir, u32 *eir_stuck)
3890 {
3891 	u32 emr;
3892 
3893 	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
3894 
3895 	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
3896 
3897 	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3898 	if (*eir_stuck == 0)
3899 		return;
3900 
3901 	/*
3902 	 * Toggle all EMR bits to make sure we get an edge
3903 	 * in the ISR master error bit if we don't clear
3904 	 * all the EIR bits. Otherwise the edge triggered
3905 	 * IIR on i965/g4x wouldn't notice that an interrupt
3906 	 * is still pending. Also some EIR bits can't be
3907 	 * cleared except by handling the underlying error
3908 	 * (or by a GPU reset) so we mask any bit that
3909 	 * remains set.
3910 	 */
3911 	emr = intel_uncore_read(&dev_priv->uncore, EMR);
3912 	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
3913 	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3914 }
3915 
3916 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3917 				   u32 eir, u32 eir_stuck)
3918 {
3919 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3920 
3921 	if (eir_stuck)
3922 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3923 			eir_stuck);
3924 }
3925 
3926 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3927 {
3928 	struct drm_i915_private *dev_priv = arg;
3929 	irqreturn_t ret = IRQ_NONE;
3930 
3931 	if (!intel_irqs_enabled(dev_priv))
3932 		return IRQ_NONE;
3933 
3934 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3935 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3936 
3937 	do {
3938 		u32 pipe_stats[I915_MAX_PIPES] = {};
3939 		u16 eir = 0, eir_stuck = 0;
3940 		u16 iir;
3941 
3942 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3943 		if (iir == 0)
3944 			break;
3945 
3946 		ret = IRQ_HANDLED;
3947 
3948 		/* Call regardless, as some status bits might not be
3949 		 * signalled in iir */
3950 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3951 
3952 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3953 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3954 
3955 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3956 
3957 		if (iir & I915_USER_INTERRUPT)
3958 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3959 
3960 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3961 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3962 
3963 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3964 	} while (0);
3965 
3966 	pmu_irq_stats(dev_priv, ret);
3967 
3968 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3969 
3970 	return ret;
3971 }
3972 
3973 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3974 {
3975 	struct intel_uncore *uncore = &dev_priv->uncore;
3976 
3977 	if (I915_HAS_HOTPLUG(dev_priv)) {
3978 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3979 		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
3980 	}
3981 
3982 	i9xx_pipestat_irq_reset(dev_priv);
3983 
3984 	GEN3_IRQ_RESET(uncore, GEN2_);
3985 	dev_priv->irq_mask = ~0u;
3986 }
3987 
3988 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3989 {
3990 	struct intel_uncore *uncore = &dev_priv->uncore;
3991 	u32 enable_mask;
3992 
3993 	intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
3994 			  I915_ERROR_MEMORY_REFRESH));
3995 
3996 	/* Unmask the interrupts that we always want on. */
3997 	dev_priv->irq_mask =
3998 		~(I915_ASLE_INTERRUPT |
3999 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4000 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4001 		  I915_MASTER_ERROR_INTERRUPT);
4002 
4003 	enable_mask =
4004 		I915_ASLE_INTERRUPT |
4005 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4006 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4007 		I915_MASTER_ERROR_INTERRUPT |
4008 		I915_USER_INTERRUPT;
4009 
4010 	if (I915_HAS_HOTPLUG(dev_priv)) {
4011 		/* Enable in IER... */
4012 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4013 		/* and unmask in IMR */
4014 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4015 	}
4016 
4017 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4018 
4019 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4020 	 * just to make the assert_spin_locked check happy. */
4021 	spin_lock_irq(&dev_priv->irq_lock);
4022 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4023 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4024 	spin_unlock_irq(&dev_priv->irq_lock);
4025 
4026 	i915_enable_asle_pipestat(dev_priv);
4027 }
4028 
4029 static irqreturn_t i915_irq_handler(int irq, void *arg)
4030 {
4031 	struct drm_i915_private *dev_priv = arg;
4032 	irqreturn_t ret = IRQ_NONE;
4033 
4034 	if (!intel_irqs_enabled(dev_priv))
4035 		return IRQ_NONE;
4036 
4037 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4038 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4039 
4040 	do {
4041 		u32 pipe_stats[I915_MAX_PIPES] = {};
4042 		u32 eir = 0, eir_stuck = 0;
4043 		u32 hotplug_status = 0;
4044 		u32 iir;
4045 
4046 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4047 		if (iir == 0)
4048 			break;
4049 
4050 		ret = IRQ_HANDLED;
4051 
4052 		if (I915_HAS_HOTPLUG(dev_priv) &&
4053 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4054 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4055 
4056 		/* Call regardless, as some status bits might not be
4057 		 * signalled in iir */
4058 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4059 
4060 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4061 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4062 
4063 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4064 
4065 		if (iir & I915_USER_INTERRUPT)
4066 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4067 
4068 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4069 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4070 
4071 		if (hotplug_status)
4072 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4073 
4074 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4075 	} while (0);
4076 
4077 	pmu_irq_stats(dev_priv, ret);
4078 
4079 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4080 
4081 	return ret;
4082 }
4083 
4084 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4085 {
4086 	struct intel_uncore *uncore = &dev_priv->uncore;
4087 
4088 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4089 	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4090 
4091 	i9xx_pipestat_irq_reset(dev_priv);
4092 
4093 	GEN3_IRQ_RESET(uncore, GEN2_);
4094 	dev_priv->irq_mask = ~0u;
4095 }
4096 
4097 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4098 {
4099 	struct intel_uncore *uncore = &dev_priv->uncore;
4100 	u32 enable_mask;
4101 	u32 error_mask;
4102 
4103 	/*
4104 	 * Enable some error detection, note the instruction error mask
4105 	 * bit is reserved, so we leave it masked.
4106 	 */
4107 	if (IS_G4X(dev_priv)) {
4108 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4109 			       GM45_ERROR_MEM_PRIV |
4110 			       GM45_ERROR_CP_PRIV |
4111 			       I915_ERROR_MEMORY_REFRESH);
4112 	} else {
4113 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4114 			       I915_ERROR_MEMORY_REFRESH);
4115 	}
4116 	intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
4117 
4118 	/* Unmask the interrupts that we always want on. */
4119 	dev_priv->irq_mask =
4120 		~(I915_ASLE_INTERRUPT |
4121 		  I915_DISPLAY_PORT_INTERRUPT |
4122 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4123 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4124 		  I915_MASTER_ERROR_INTERRUPT);
4125 
4126 	enable_mask =
4127 		I915_ASLE_INTERRUPT |
4128 		I915_DISPLAY_PORT_INTERRUPT |
4129 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4130 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4131 		I915_MASTER_ERROR_INTERRUPT |
4132 		I915_USER_INTERRUPT;
4133 
4134 	if (IS_G4X(dev_priv))
4135 		enable_mask |= I915_BSD_USER_INTERRUPT;
4136 
4137 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4138 
4139 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4140 	 * just to make the assert_spin_locked check happy. */
4141 	spin_lock_irq(&dev_priv->irq_lock);
4142 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4143 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4144 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4145 	spin_unlock_irq(&dev_priv->irq_lock);
4146 
4147 	i915_enable_asle_pipestat(dev_priv);
4148 }
4149 
4150 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4151 {
4152 	u32 hotplug_en;
4153 
4154 	lockdep_assert_held(&dev_priv->irq_lock);
4155 
4156 	/* Note HDMI and DP share hotplug bits */
4157 	/* enable bits are the same for all generations */
4158 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4159 	/* Programming the CRT detection parameters tends
4160 	   to generate a spurious hotplug event about three
4161 	   seconds later.  So just do it once.
4162 	*/
4163 	if (IS_G4X(dev_priv))
4164 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4165 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4166 
4167 	/* Ignore TV since it's buggy */
4168 	i915_hotplug_interrupt_update_locked(dev_priv,
4169 					     HOTPLUG_INT_EN_MASK |
4170 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4171 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4172 					     hotplug_en);
4173 }
4174 
4175 static irqreturn_t i965_irq_handler(int irq, void *arg)
4176 {
4177 	struct drm_i915_private *dev_priv = arg;
4178 	irqreturn_t ret = IRQ_NONE;
4179 
4180 	if (!intel_irqs_enabled(dev_priv))
4181 		return IRQ_NONE;
4182 
4183 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4184 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4185 
4186 	do {
4187 		u32 pipe_stats[I915_MAX_PIPES] = {};
4188 		u32 eir = 0, eir_stuck = 0;
4189 		u32 hotplug_status = 0;
4190 		u32 iir;
4191 
4192 		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4193 		if (iir == 0)
4194 			break;
4195 
4196 		ret = IRQ_HANDLED;
4197 
4198 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4199 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4200 
4201 		/* Call regardless, as some status bits might not be
4202 		 * signalled in iir */
4203 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4204 
4205 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4206 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4207 
4208 		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4209 
4210 		if (iir & I915_USER_INTERRUPT)
4211 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4212 
4213 		if (iir & I915_BSD_USER_INTERRUPT)
4214 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4215 
4216 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4217 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4218 
4219 		if (hotplug_status)
4220 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4221 
4222 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4223 	} while (0);
4224 
4225 	pmu_irq_stats(dev_priv, IRQ_HANDLED);
4226 
4227 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4228 
4229 	return ret;
4230 }
4231 
4232 /**
4233  * intel_irq_init - initializes irq support
4234  * @dev_priv: i915 device instance
4235  *
4236  * This function initializes all the irq support including work items, timers
4237  * and all the vtables. It does not setup the interrupt itself though.
4238  */
4239 void intel_irq_init(struct drm_i915_private *dev_priv)
4240 {
4241 	struct drm_device *dev = &dev_priv->drm;
4242 	int i;
4243 
4244 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4245 	for (i = 0; i < MAX_L3_SLICES; ++i)
4246 		dev_priv->l3_parity.remap_info[i] = NULL;
4247 
4248 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4249 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4250 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4251 
4252 	if (!HAS_DISPLAY(dev_priv))
4253 		return;
4254 
4255 	intel_hpd_init_pins(dev_priv);
4256 
4257 	intel_hpd_init_work(dev_priv);
4258 
4259 	dev->vblank_disable_immediate = true;
4260 
4261 	/* Most platforms treat the display irq block as an always-on
4262 	 * power domain. vlv/chv can disable it at runtime and need
4263 	 * special care to avoid writing any of the display block registers
4264 	 * outside of the power domain. We defer setting up the display irqs
4265 	 * in this case to the runtime pm.
4266 	 */
4267 	dev_priv->display_irqs_enabled = true;
4268 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4269 		dev_priv->display_irqs_enabled = false;
4270 
4271 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4272 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4273 	 * detection, as short HPD storms will occur as a natural part of
4274 	 * sideband messaging with MST.
4275 	 * On older platforms however, IRQ storms can occur with both long and
4276 	 * short pulses, as seen on some G4x systems.
4277 	 */
4278 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4279 
4280 	if (HAS_GMCH(dev_priv)) {
4281 		if (I915_HAS_HOTPLUG(dev_priv))
4282 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4283 	} else {
4284 		if (HAS_PCH_DG1(dev_priv))
4285 			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4286 		else if (INTEL_GEN(dev_priv) >= 11)
4287 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4288 		else if (IS_GEN9_LP(dev_priv))
4289 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4290 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4291 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4292 		else
4293 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4294 	}
4295 }
4296 
4297 /**
4298  * intel_irq_fini - deinitializes IRQ support
4299  * @i915: i915 device instance
4300  *
4301  * This function deinitializes all the IRQ support.
4302  */
4303 void intel_irq_fini(struct drm_i915_private *i915)
4304 {
4305 	int i;
4306 
4307 	for (i = 0; i < MAX_L3_SLICES; ++i)
4308 		kfree(i915->l3_parity.remap_info[i]);
4309 }
4310 
4311 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4312 {
4313 	if (HAS_GMCH(dev_priv)) {
4314 		if (IS_CHERRYVIEW(dev_priv))
4315 			return cherryview_irq_handler;
4316 		else if (IS_VALLEYVIEW(dev_priv))
4317 			return valleyview_irq_handler;
4318 		else if (IS_GEN(dev_priv, 4))
4319 			return i965_irq_handler;
4320 		else if (IS_GEN(dev_priv, 3))
4321 			return i915_irq_handler;
4322 		else
4323 			return i8xx_irq_handler;
4324 	} else {
4325 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4326 			return dg1_irq_handler;
4327 		if (INTEL_GEN(dev_priv) >= 11)
4328 			return gen11_irq_handler;
4329 		else if (INTEL_GEN(dev_priv) >= 8)
4330 			return gen8_irq_handler;
4331 		else
4332 			return ilk_irq_handler;
4333 	}
4334 }
4335 
4336 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4337 {
4338 	if (HAS_GMCH(dev_priv)) {
4339 		if (IS_CHERRYVIEW(dev_priv))
4340 			cherryview_irq_reset(dev_priv);
4341 		else if (IS_VALLEYVIEW(dev_priv))
4342 			valleyview_irq_reset(dev_priv);
4343 		else if (IS_GEN(dev_priv, 4))
4344 			i965_irq_reset(dev_priv);
4345 		else if (IS_GEN(dev_priv, 3))
4346 			i915_irq_reset(dev_priv);
4347 		else
4348 			i8xx_irq_reset(dev_priv);
4349 	} else {
4350 		if (INTEL_GEN(dev_priv) >= 11)
4351 			gen11_irq_reset(dev_priv);
4352 		else if (INTEL_GEN(dev_priv) >= 8)
4353 			gen8_irq_reset(dev_priv);
4354 		else
4355 			ilk_irq_reset(dev_priv);
4356 	}
4357 }
4358 
4359 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4360 {
4361 	if (HAS_GMCH(dev_priv)) {
4362 		if (IS_CHERRYVIEW(dev_priv))
4363 			cherryview_irq_postinstall(dev_priv);
4364 		else if (IS_VALLEYVIEW(dev_priv))
4365 			valleyview_irq_postinstall(dev_priv);
4366 		else if (IS_GEN(dev_priv, 4))
4367 			i965_irq_postinstall(dev_priv);
4368 		else if (IS_GEN(dev_priv, 3))
4369 			i915_irq_postinstall(dev_priv);
4370 		else
4371 			i8xx_irq_postinstall(dev_priv);
4372 	} else {
4373 		if (INTEL_GEN(dev_priv) >= 11)
4374 			gen11_irq_postinstall(dev_priv);
4375 		else if (INTEL_GEN(dev_priv) >= 8)
4376 			gen8_irq_postinstall(dev_priv);
4377 		else
4378 			ilk_irq_postinstall(dev_priv);
4379 	}
4380 }
4381 
4382 /**
4383  * intel_irq_install - enables the hardware interrupt
4384  * @dev_priv: i915 device instance
4385  *
4386  * This function enables the hardware interrupt handling, but leaves the hotplug
4387  * handling still disabled. It is called after intel_irq_init().
4388  *
4389  * In the driver load and resume code we need working interrupts in a few places
4390  * but don't want to deal with the hassle of concurrent probe and hotplug
4391  * workers. Hence the split into this two-stage approach.
4392  */
4393 int intel_irq_install(struct drm_i915_private *dev_priv)
4394 {
4395 	int irq = dev_priv->drm.pdev->irq;
4396 	int ret;
4397 
4398 	/*
4399 	 * We enable some interrupt sources in our postinstall hooks, so mark
4400 	 * interrupts as enabled _before_ actually enabling them to avoid
4401 	 * special cases in our ordering checks.
4402 	 */
4403 	dev_priv->runtime_pm.irqs_enabled = true;
4404 
4405 	dev_priv->drm.irq_enabled = true;
4406 
4407 	intel_irq_reset(dev_priv);
4408 
4409 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4410 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4411 	if (ret < 0) {
4412 		dev_priv->drm.irq_enabled = false;
4413 		return ret;
4414 	}
4415 
4416 	intel_irq_postinstall(dev_priv);
4417 
4418 	return ret;
4419 }
4420 
4421 /**
4422  * intel_irq_uninstall - finilizes all irq handling
4423  * @dev_priv: i915 device instance
4424  *
4425  * This stops interrupt and hotplug handling and unregisters and frees all
4426  * resources acquired in the init functions.
4427  */
4428 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4429 {
4430 	int irq = dev_priv->drm.pdev->irq;
4431 
4432 	/*
4433 	 * FIXME we can get called twice during driver probe
4434 	 * error handling as well as during driver remove due to
4435 	 * intel_modeset_driver_remove() calling us out of sequence.
4436 	 * Would be nice if it didn't do that...
4437 	 */
4438 	if (!dev_priv->drm.irq_enabled)
4439 		return;
4440 
4441 	dev_priv->drm.irq_enabled = false;
4442 
4443 	intel_irq_reset(dev_priv);
4444 
4445 	free_irq(irq, dev_priv);
4446 
4447 	intel_hpd_cancel_work(dev_priv);
4448 	dev_priv->runtime_pm.irqs_enabled = false;
4449 }
4450 
4451 /**
4452  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4453  * @dev_priv: i915 device instance
4454  *
4455  * This function is used to disable interrupts at runtime, both in the runtime
4456  * pm and the system suspend/resume code.
4457  */
4458 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4459 {
4460 	intel_irq_reset(dev_priv);
4461 	dev_priv->runtime_pm.irqs_enabled = false;
4462 	intel_synchronize_irq(dev_priv);
4463 }
4464 
4465 /**
4466  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4467  * @dev_priv: i915 device instance
4468  *
4469  * This function is used to enable interrupts at runtime, both in the runtime
4470  * pm and the system suspend/resume code.
4471  */
4472 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4473 {
4474 	dev_priv->runtime_pm.irqs_enabled = true;
4475 	intel_irq_reset(dev_priv);
4476 	intel_irq_postinstall(dev_priv);
4477 }
4478 
4479 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4480 {
4481 	/*
4482 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4483 	 * this is the only thing we need to check.
4484 	 */
4485 	return dev_priv->runtime_pm.irqs_enabled;
4486 }
4487 
4488 void intel_synchronize_irq(struct drm_i915_private *i915)
4489 {
4490 	synchronize_irq(i915->drm.pdev->irq);
4491 }
4492