xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision 5a7eeb8ba143d860050ecea924a8f074f02d8023)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_gt.h"
45 #include "gt/intel_gt_irq.h"
46 #include "gt/intel_gt_pm_irq.h"
47 #include "gt/intel_rps.h"
48 
49 #include "i915_drv.h"
50 #include "i915_irq.h"
51 #include "i915_trace.h"
52 #include "intel_pm.h"
53 
54 /**
55  * DOC: interrupt handling
56  *
57  * These functions provide the basic support for enabling and disabling the
58  * interrupt handling support. There's a lot more functionality in i915_irq.c
59  * and related files, but that will be described in separate chapters.
60  */
61 
62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63 
64 static const u32 hpd_ilk[HPD_NUM_PINS] = {
65 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
66 };
67 
68 static const u32 hpd_ivb[HPD_NUM_PINS] = {
69 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70 };
71 
72 static const u32 hpd_bdw[HPD_NUM_PINS] = {
73 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74 };
75 
76 static const u32 hpd_ibx[HPD_NUM_PINS] = {
77 	[HPD_CRT] = SDE_CRT_HOTPLUG,
78 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82 };
83 
84 static const u32 hpd_cpt[HPD_NUM_PINS] = {
85 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 };
91 
92 static const u32 hpd_spt[HPD_NUM_PINS] = {
93 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98 };
99 
100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
102 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107 };
108 
109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116 };
117 
118 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125 };
126 
127 static const u32 hpd_bxt[HPD_NUM_PINS] = {
128 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
129 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
130 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
131 };
132 
133 static const u32 hpd_gen11[HPD_NUM_PINS] = {
134 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
135 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
136 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
137 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
138 };
139 
140 static const u32 hpd_gen12[HPD_NUM_PINS] = {
141 	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
142 	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
143 	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
144 	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
145 	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
146 	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
147 };
148 
149 static const u32 hpd_icp[HPD_NUM_PINS] = {
150 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
151 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
152 	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
153 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
154 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
155 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
156 };
157 
158 static const u32 hpd_tgp[HPD_NUM_PINS] = {
159 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
160 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
161 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
162 	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
163 	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
164 	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
165 	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
166 	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
167 	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
168 };
169 
170 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
171 {
172 	struct i915_hotplug *hpd = &dev_priv->hotplug;
173 
174 	if (HAS_GMCH(dev_priv)) {
175 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
176 		    IS_CHERRYVIEW(dev_priv))
177 			hpd->hpd = hpd_status_g4x;
178 		else
179 			hpd->hpd = hpd_status_i915;
180 		return;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 12)
184 		hpd->hpd = hpd_gen12;
185 	else if (INTEL_GEN(dev_priv) >= 11)
186 		hpd->hpd = hpd_gen11;
187 	else if (IS_GEN9_LP(dev_priv))
188 		hpd->hpd = hpd_bxt;
189 	else if (INTEL_GEN(dev_priv) >= 8)
190 		hpd->hpd = hpd_bdw;
191 	else if (INTEL_GEN(dev_priv) >= 7)
192 		hpd->hpd = hpd_ivb;
193 	else
194 		hpd->hpd = hpd_ilk;
195 
196 	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
197 		return;
198 
199 	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
200 		hpd->pch_hpd = hpd_tgp;
201 	else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
202 		hpd->pch_hpd = hpd_icp;
203 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
204 		hpd->pch_hpd = hpd_spt;
205 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
206 		hpd->pch_hpd = hpd_cpt;
207 	else if (HAS_PCH_IBX(dev_priv))
208 		hpd->pch_hpd = hpd_ibx;
209 	else
210 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
211 }
212 
213 static void
214 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
215 {
216 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
217 
218 	drm_crtc_handle_vblank(&crtc->base);
219 }
220 
221 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
222 		    i915_reg_t iir, i915_reg_t ier)
223 {
224 	intel_uncore_write(uncore, imr, 0xffffffff);
225 	intel_uncore_posting_read(uncore, imr);
226 
227 	intel_uncore_write(uncore, ier, 0);
228 
229 	/* IIR can theoretically queue up two events. Be paranoid. */
230 	intel_uncore_write(uncore, iir, 0xffffffff);
231 	intel_uncore_posting_read(uncore, iir);
232 	intel_uncore_write(uncore, iir, 0xffffffff);
233 	intel_uncore_posting_read(uncore, iir);
234 }
235 
236 void gen2_irq_reset(struct intel_uncore *uncore)
237 {
238 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
239 	intel_uncore_posting_read16(uncore, GEN2_IMR);
240 
241 	intel_uncore_write16(uncore, GEN2_IER, 0);
242 
243 	/* IIR can theoretically queue up two events. Be paranoid. */
244 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
245 	intel_uncore_posting_read16(uncore, GEN2_IIR);
246 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
247 	intel_uncore_posting_read16(uncore, GEN2_IIR);
248 }
249 
250 /*
251  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
252  */
253 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
254 {
255 	u32 val = intel_uncore_read(uncore, reg);
256 
257 	if (val == 0)
258 		return;
259 
260 	drm_WARN(&uncore->i915->drm, 1,
261 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
262 		 i915_mmio_reg_offset(reg), val);
263 	intel_uncore_write(uncore, reg, 0xffffffff);
264 	intel_uncore_posting_read(uncore, reg);
265 	intel_uncore_write(uncore, reg, 0xffffffff);
266 	intel_uncore_posting_read(uncore, reg);
267 }
268 
269 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
270 {
271 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
272 
273 	if (val == 0)
274 		return;
275 
276 	drm_WARN(&uncore->i915->drm, 1,
277 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
278 		 i915_mmio_reg_offset(GEN2_IIR), val);
279 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
280 	intel_uncore_posting_read16(uncore, GEN2_IIR);
281 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
282 	intel_uncore_posting_read16(uncore, GEN2_IIR);
283 }
284 
285 void gen3_irq_init(struct intel_uncore *uncore,
286 		   i915_reg_t imr, u32 imr_val,
287 		   i915_reg_t ier, u32 ier_val,
288 		   i915_reg_t iir)
289 {
290 	gen3_assert_iir_is_zero(uncore, iir);
291 
292 	intel_uncore_write(uncore, ier, ier_val);
293 	intel_uncore_write(uncore, imr, imr_val);
294 	intel_uncore_posting_read(uncore, imr);
295 }
296 
297 void gen2_irq_init(struct intel_uncore *uncore,
298 		   u32 imr_val, u32 ier_val)
299 {
300 	gen2_assert_iir_is_zero(uncore);
301 
302 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
303 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
304 	intel_uncore_posting_read16(uncore, GEN2_IMR);
305 }
306 
307 /* For display hotplug interrupt */
308 static inline void
309 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
310 				     u32 mask,
311 				     u32 bits)
312 {
313 	u32 val;
314 
315 	lockdep_assert_held(&dev_priv->irq_lock);
316 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
317 
318 	val = I915_READ(PORT_HOTPLUG_EN);
319 	val &= ~mask;
320 	val |= bits;
321 	I915_WRITE(PORT_HOTPLUG_EN, val);
322 }
323 
324 /**
325  * i915_hotplug_interrupt_update - update hotplug interrupt enable
326  * @dev_priv: driver private
327  * @mask: bits to update
328  * @bits: bits to enable
329  * NOTE: the HPD enable bits are modified both inside and outside
330  * of an interrupt context. To avoid that read-modify-write cycles
331  * interfer, these bits are protected by a spinlock. Since this
332  * function is usually not called from a context where the lock is
333  * held already, this function acquires the lock itself. A non-locking
334  * version is also available.
335  */
336 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
337 				   u32 mask,
338 				   u32 bits)
339 {
340 	spin_lock_irq(&dev_priv->irq_lock);
341 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
342 	spin_unlock_irq(&dev_priv->irq_lock);
343 }
344 
345 /**
346  * ilk_update_display_irq - update DEIMR
347  * @dev_priv: driver private
348  * @interrupt_mask: mask of interrupt bits to update
349  * @enabled_irq_mask: mask of interrupt bits to enable
350  */
351 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
352 			    u32 interrupt_mask,
353 			    u32 enabled_irq_mask)
354 {
355 	u32 new_val;
356 
357 	lockdep_assert_held(&dev_priv->irq_lock);
358 
359 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
360 
361 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
362 		return;
363 
364 	new_val = dev_priv->irq_mask;
365 	new_val &= ~interrupt_mask;
366 	new_val |= (~enabled_irq_mask & interrupt_mask);
367 
368 	if (new_val != dev_priv->irq_mask) {
369 		dev_priv->irq_mask = new_val;
370 		I915_WRITE(DEIMR, dev_priv->irq_mask);
371 		POSTING_READ(DEIMR);
372 	}
373 }
374 
375 /**
376  * bdw_update_port_irq - update DE port interrupt
377  * @dev_priv: driver private
378  * @interrupt_mask: mask of interrupt bits to update
379  * @enabled_irq_mask: mask of interrupt bits to enable
380  */
381 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
382 				u32 interrupt_mask,
383 				u32 enabled_irq_mask)
384 {
385 	u32 new_val;
386 	u32 old_val;
387 
388 	lockdep_assert_held(&dev_priv->irq_lock);
389 
390 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
391 
392 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
393 		return;
394 
395 	old_val = I915_READ(GEN8_DE_PORT_IMR);
396 
397 	new_val = old_val;
398 	new_val &= ~interrupt_mask;
399 	new_val |= (~enabled_irq_mask & interrupt_mask);
400 
401 	if (new_val != old_val) {
402 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
403 		POSTING_READ(GEN8_DE_PORT_IMR);
404 	}
405 }
406 
407 /**
408  * bdw_update_pipe_irq - update DE pipe interrupt
409  * @dev_priv: driver private
410  * @pipe: pipe whose interrupt to update
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
415 			 enum pipe pipe,
416 			 u32 interrupt_mask,
417 			 u32 enabled_irq_mask)
418 {
419 	u32 new_val;
420 
421 	lockdep_assert_held(&dev_priv->irq_lock);
422 
423 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
424 
425 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
426 		return;
427 
428 	new_val = dev_priv->de_irq_mask[pipe];
429 	new_val &= ~interrupt_mask;
430 	new_val |= (~enabled_irq_mask & interrupt_mask);
431 
432 	if (new_val != dev_priv->de_irq_mask[pipe]) {
433 		dev_priv->de_irq_mask[pipe] = new_val;
434 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
435 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
436 	}
437 }
438 
439 /**
440  * ibx_display_interrupt_update - update SDEIMR
441  * @dev_priv: driver private
442  * @interrupt_mask: mask of interrupt bits to update
443  * @enabled_irq_mask: mask of interrupt bits to enable
444  */
445 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
446 				  u32 interrupt_mask,
447 				  u32 enabled_irq_mask)
448 {
449 	u32 sdeimr = I915_READ(SDEIMR);
450 	sdeimr &= ~interrupt_mask;
451 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
452 
453 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
454 
455 	lockdep_assert_held(&dev_priv->irq_lock);
456 
457 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
458 		return;
459 
460 	I915_WRITE(SDEIMR, sdeimr);
461 	POSTING_READ(SDEIMR);
462 }
463 
464 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
465 			      enum pipe pipe)
466 {
467 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
468 	u32 enable_mask = status_mask << 16;
469 
470 	lockdep_assert_held(&dev_priv->irq_lock);
471 
472 	if (INTEL_GEN(dev_priv) < 5)
473 		goto out;
474 
475 	/*
476 	 * On pipe A we don't support the PSR interrupt yet,
477 	 * on pipe B and C the same bit MBZ.
478 	 */
479 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
480 			     status_mask & PIPE_A_PSR_STATUS_VLV))
481 		return 0;
482 	/*
483 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
484 	 * A the same bit is for perf counters which we don't use either.
485 	 */
486 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
487 			     status_mask & PIPE_B_PSR_STATUS_VLV))
488 		return 0;
489 
490 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
491 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
492 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
493 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
494 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
495 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
496 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
497 
498 out:
499 	drm_WARN_ONCE(&dev_priv->drm,
500 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
501 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
502 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
503 		      pipe_name(pipe), enable_mask, status_mask);
504 
505 	return enable_mask;
506 }
507 
508 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
509 			  enum pipe pipe, u32 status_mask)
510 {
511 	i915_reg_t reg = PIPESTAT(pipe);
512 	u32 enable_mask;
513 
514 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 		      "pipe %c: status_mask=0x%x\n",
516 		      pipe_name(pipe), status_mask);
517 
518 	lockdep_assert_held(&dev_priv->irq_lock);
519 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
520 
521 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
522 		return;
523 
524 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
525 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
526 
527 	I915_WRITE(reg, enable_mask | status_mask);
528 	POSTING_READ(reg);
529 }
530 
531 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
532 			   enum pipe pipe, u32 status_mask)
533 {
534 	i915_reg_t reg = PIPESTAT(pipe);
535 	u32 enable_mask;
536 
537 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
538 		      "pipe %c: status_mask=0x%x\n",
539 		      pipe_name(pipe), status_mask);
540 
541 	lockdep_assert_held(&dev_priv->irq_lock);
542 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
543 
544 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
545 		return;
546 
547 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
548 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
549 
550 	I915_WRITE(reg, enable_mask | status_mask);
551 	POSTING_READ(reg);
552 }
553 
554 static bool i915_has_asle(struct drm_i915_private *dev_priv)
555 {
556 	if (!dev_priv->opregion.asle)
557 		return false;
558 
559 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
560 }
561 
562 /**
563  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
564  * @dev_priv: i915 device private
565  */
566 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
567 {
568 	if (!i915_has_asle(dev_priv))
569 		return;
570 
571 	spin_lock_irq(&dev_priv->irq_lock);
572 
573 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
574 	if (INTEL_GEN(dev_priv) >= 4)
575 		i915_enable_pipestat(dev_priv, PIPE_A,
576 				     PIPE_LEGACY_BLC_EVENT_STATUS);
577 
578 	spin_unlock_irq(&dev_priv->irq_lock);
579 }
580 
581 /*
582  * This timing diagram depicts the video signal in and
583  * around the vertical blanking period.
584  *
585  * Assumptions about the fictitious mode used in this example:
586  *  vblank_start >= 3
587  *  vsync_start = vblank_start + 1
588  *  vsync_end = vblank_start + 2
589  *  vtotal = vblank_start + 3
590  *
591  *           start of vblank:
592  *           latch double buffered registers
593  *           increment frame counter (ctg+)
594  *           generate start of vblank interrupt (gen4+)
595  *           |
596  *           |          frame start:
597  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
598  *           |          may be shifted forward 1-3 extra lines via PIPECONF
599  *           |          |
600  *           |          |  start of vsync:
601  *           |          |  generate vsync interrupt
602  *           |          |  |
603  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
604  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
605  * ----va---> <-----------------vb--------------------> <--------va-------------
606  *       |          |       <----vs----->                     |
607  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
608  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
609  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
610  *       |          |                                         |
611  *       last visible pixel                                   first visible pixel
612  *                  |                                         increment frame counter (gen3/4)
613  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
614  *
615  * x  = horizontal active
616  * _  = horizontal blanking
617  * hs = horizontal sync
618  * va = vertical active
619  * vb = vertical blanking
620  * vs = vertical sync
621  * vbs = vblank_start (number)
622  *
623  * Summary:
624  * - most events happen at the start of horizontal sync
625  * - frame start happens at the start of horizontal blank, 1-4 lines
626  *   (depending on PIPECONF settings) after the start of vblank
627  * - gen3/4 pixel and frame counter are synchronized with the start
628  *   of horizontal active on the first line of vertical active
629  */
630 
631 /* Called from drm generic code, passed a 'crtc', which
632  * we use as a pipe index
633  */
634 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
635 {
636 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
637 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
638 	const struct drm_display_mode *mode = &vblank->hwmode;
639 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
640 	i915_reg_t high_frame, low_frame;
641 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
642 	unsigned long irqflags;
643 
644 	/*
645 	 * On i965gm TV output the frame counter only works up to
646 	 * the point when we enable the TV encoder. After that the
647 	 * frame counter ceases to work and reads zero. We need a
648 	 * vblank wait before enabling the TV encoder and so we
649 	 * have to enable vblank interrupts while the frame counter
650 	 * is still in a working state. However the core vblank code
651 	 * does not like us returning non-zero frame counter values
652 	 * when we've told it that we don't have a working frame
653 	 * counter. Thus we must stop non-zero values leaking out.
654 	 */
655 	if (!vblank->max_vblank_count)
656 		return 0;
657 
658 	htotal = mode->crtc_htotal;
659 	hsync_start = mode->crtc_hsync_start;
660 	vbl_start = mode->crtc_vblank_start;
661 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
662 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
663 
664 	/* Convert to pixel count */
665 	vbl_start *= htotal;
666 
667 	/* Start of vblank event occurs at start of hsync */
668 	vbl_start -= htotal - hsync_start;
669 
670 	high_frame = PIPEFRAME(pipe);
671 	low_frame = PIPEFRAMEPIXEL(pipe);
672 
673 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
674 
675 	/*
676 	 * High & low register fields aren't synchronized, so make sure
677 	 * we get a low value that's stable across two reads of the high
678 	 * register.
679 	 */
680 	do {
681 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
682 		low   = intel_de_read_fw(dev_priv, low_frame);
683 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
684 	} while (high1 != high2);
685 
686 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
687 
688 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
689 	pixel = low & PIPE_PIXEL_MASK;
690 	low >>= PIPE_FRAME_LOW_SHIFT;
691 
692 	/*
693 	 * The frame counter increments at beginning of active.
694 	 * Cook up a vblank counter by also checking the pixel
695 	 * counter against vblank start.
696 	 */
697 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
698 }
699 
700 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
701 {
702 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
703 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
704 
705 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
706 }
707 
708 /*
709  * On certain encoders on certain platforms, pipe
710  * scanline register will not work to get the scanline,
711  * since the timings are driven from the PORT or issues
712  * with scanline register updates.
713  * This function will use Framestamp and current
714  * timestamp registers to calculate the scanline.
715  */
716 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
717 {
718 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
719 	struct drm_vblank_crtc *vblank =
720 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
721 	const struct drm_display_mode *mode = &vblank->hwmode;
722 	u32 vblank_start = mode->crtc_vblank_start;
723 	u32 vtotal = mode->crtc_vtotal;
724 	u32 htotal = mode->crtc_htotal;
725 	u32 clock = mode->crtc_clock;
726 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
727 
728 	/*
729 	 * To avoid the race condition where we might cross into the
730 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
731 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
732 	 * during the same frame.
733 	 */
734 	do {
735 		/*
736 		 * This field provides read back of the display
737 		 * pipe frame time stamp. The time stamp value
738 		 * is sampled at every start of vertical blank.
739 		 */
740 		scan_prev_time = intel_de_read_fw(dev_priv,
741 						  PIPE_FRMTMSTMP(crtc->pipe));
742 
743 		/*
744 		 * The TIMESTAMP_CTR register has the current
745 		 * time stamp value.
746 		 */
747 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
748 
749 		scan_post_time = intel_de_read_fw(dev_priv,
750 						  PIPE_FRMTMSTMP(crtc->pipe));
751 	} while (scan_post_time != scan_prev_time);
752 
753 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
754 					clock), 1000 * htotal);
755 	scanline = min(scanline, vtotal - 1);
756 	scanline = (scanline + vblank_start) % vtotal;
757 
758 	return scanline;
759 }
760 
761 /*
762  * intel_de_read_fw(), only for fast reads of display block, no need for
763  * forcewake etc.
764  */
765 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
766 {
767 	struct drm_device *dev = crtc->base.dev;
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	const struct drm_display_mode *mode;
770 	struct drm_vblank_crtc *vblank;
771 	enum pipe pipe = crtc->pipe;
772 	int position, vtotal;
773 
774 	if (!crtc->active)
775 		return -1;
776 
777 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
778 	mode = &vblank->hwmode;
779 
780 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
781 		return __intel_get_crtc_scanline_from_timestamp(crtc);
782 
783 	vtotal = mode->crtc_vtotal;
784 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
785 		vtotal /= 2;
786 
787 	if (IS_GEN(dev_priv, 2))
788 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
789 	else
790 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
791 
792 	/*
793 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
794 	 * read it just before the start of vblank.  So try it again
795 	 * so we don't accidentally end up spanning a vblank frame
796 	 * increment, causing the pipe_update_end() code to squak at us.
797 	 *
798 	 * The nature of this problem means we can't simply check the ISR
799 	 * bit and return the vblank start value; nor can we use the scanline
800 	 * debug register in the transcoder as it appears to have the same
801 	 * problem.  We may need to extend this to include other platforms,
802 	 * but so far testing only shows the problem on HSW.
803 	 */
804 	if (HAS_DDI(dev_priv) && !position) {
805 		int i, temp;
806 
807 		for (i = 0; i < 100; i++) {
808 			udelay(1);
809 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
810 			if (temp != position) {
811 				position = temp;
812 				break;
813 			}
814 		}
815 	}
816 
817 	/*
818 	 * See update_scanline_offset() for the details on the
819 	 * scanline_offset adjustment.
820 	 */
821 	return (position + crtc->scanline_offset) % vtotal;
822 }
823 
824 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
825 				     bool in_vblank_irq,
826 				     int *vpos, int *hpos,
827 				     ktime_t *stime, ktime_t *etime,
828 				     const struct drm_display_mode *mode)
829 {
830 	struct drm_device *dev = _crtc->dev;
831 	struct drm_i915_private *dev_priv = to_i915(dev);
832 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
833 	enum pipe pipe = crtc->pipe;
834 	int position;
835 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
836 	unsigned long irqflags;
837 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
838 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
839 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
840 
841 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
842 		drm_dbg(&dev_priv->drm,
843 			"trying to get scanoutpos for disabled "
844 			"pipe %c\n", pipe_name(pipe));
845 		return false;
846 	}
847 
848 	htotal = mode->crtc_htotal;
849 	hsync_start = mode->crtc_hsync_start;
850 	vtotal = mode->crtc_vtotal;
851 	vbl_start = mode->crtc_vblank_start;
852 	vbl_end = mode->crtc_vblank_end;
853 
854 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 		vbl_end /= 2;
857 		vtotal /= 2;
858 	}
859 
860 	/*
861 	 * Lock uncore.lock, as we will do multiple timing critical raw
862 	 * register reads, potentially with preemption disabled, so the
863 	 * following code must not block on uncore.lock.
864 	 */
865 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
866 
867 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
868 
869 	/* Get optional system timestamp before query. */
870 	if (stime)
871 		*stime = ktime_get();
872 
873 	if (use_scanline_counter) {
874 		/* No obvious pixelcount register. Only query vertical
875 		 * scanout position from Display scan line register.
876 		 */
877 		position = __intel_get_crtc_scanline(crtc);
878 	} else {
879 		/* Have access to pixelcount since start of frame.
880 		 * We can split this into vertical and horizontal
881 		 * scanout position.
882 		 */
883 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
884 
885 		/* convert to pixel counts */
886 		vbl_start *= htotal;
887 		vbl_end *= htotal;
888 		vtotal *= htotal;
889 
890 		/*
891 		 * In interlaced modes, the pixel counter counts all pixels,
892 		 * so one field will have htotal more pixels. In order to avoid
893 		 * the reported position from jumping backwards when the pixel
894 		 * counter is beyond the length of the shorter field, just
895 		 * clamp the position the length of the shorter field. This
896 		 * matches how the scanline counter based position works since
897 		 * the scanline counter doesn't count the two half lines.
898 		 */
899 		if (position >= vtotal)
900 			position = vtotal - 1;
901 
902 		/*
903 		 * Start of vblank interrupt is triggered at start of hsync,
904 		 * just prior to the first active line of vblank. However we
905 		 * consider lines to start at the leading edge of horizontal
906 		 * active. So, should we get here before we've crossed into
907 		 * the horizontal active of the first line in vblank, we would
908 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
909 		 * always add htotal-hsync_start to the current pixel position.
910 		 */
911 		position = (position + htotal - hsync_start) % vtotal;
912 	}
913 
914 	/* Get optional system timestamp after query. */
915 	if (etime)
916 		*etime = ktime_get();
917 
918 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
919 
920 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
921 
922 	/*
923 	 * While in vblank, position will be negative
924 	 * counting up towards 0 at vbl_end. And outside
925 	 * vblank, position will be positive counting
926 	 * up since vbl_end.
927 	 */
928 	if (position >= vbl_start)
929 		position -= vbl_end;
930 	else
931 		position += vtotal - vbl_end;
932 
933 	if (use_scanline_counter) {
934 		*vpos = position;
935 		*hpos = 0;
936 	} else {
937 		*vpos = position / htotal;
938 		*hpos = position - (*vpos * htotal);
939 	}
940 
941 	return true;
942 }
943 
944 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
945 				     ktime_t *vblank_time, bool in_vblank_irq)
946 {
947 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
948 		crtc, max_error, vblank_time, in_vblank_irq,
949 		i915_get_crtc_scanoutpos);
950 }
951 
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 	unsigned long irqflags;
956 	int position;
957 
958 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 	position = __intel_get_crtc_scanline(crtc);
960 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961 
962 	return position;
963 }
964 
965 /**
966  * ivb_parity_work - Workqueue called when a parity error interrupt
967  * occurred.
968  * @work: workqueue struct
969  *
970  * Doesn't actually do anything except notify userspace. As a consequence of
971  * this event, userspace should try to remap the bad rows since statistically
972  * it is likely the same row is more likely to go bad again.
973  */
974 static void ivb_parity_work(struct work_struct *work)
975 {
976 	struct drm_i915_private *dev_priv =
977 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
978 	struct intel_gt *gt = &dev_priv->gt;
979 	u32 error_status, row, bank, subbank;
980 	char *parity_event[6];
981 	u32 misccpctl;
982 	u8 slice = 0;
983 
984 	/* We must turn off DOP level clock gating to access the L3 registers.
985 	 * In order to prevent a get/put style interface, acquire struct mutex
986 	 * any time we access those registers.
987 	 */
988 	mutex_lock(&dev_priv->drm.struct_mutex);
989 
990 	/* If we've screwed up tracking, just let the interrupt fire again */
991 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
992 		goto out;
993 
994 	misccpctl = I915_READ(GEN7_MISCCPCTL);
995 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
996 	POSTING_READ(GEN7_MISCCPCTL);
997 
998 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
999 		i915_reg_t reg;
1000 
1001 		slice--;
1002 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003 				     slice >= NUM_L3_SLICES(dev_priv)))
1004 			break;
1005 
1006 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007 
1008 		reg = GEN7_L3CDERRST1(slice);
1009 
1010 		error_status = I915_READ(reg);
1011 		row = GEN7_PARITY_ERROR_ROW(error_status);
1012 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1013 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014 
1015 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016 		POSTING_READ(reg);
1017 
1018 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023 		parity_event[5] = NULL;
1024 
1025 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026 				   KOBJ_CHANGE, parity_event);
1027 
1028 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029 			  slice, row, bank, subbank);
1030 
1031 		kfree(parity_event[4]);
1032 		kfree(parity_event[3]);
1033 		kfree(parity_event[2]);
1034 		kfree(parity_event[1]);
1035 	}
1036 
1037 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038 
1039 out:
1040 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041 	spin_lock_irq(&gt->irq_lock);
1042 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043 	spin_unlock_irq(&gt->irq_lock);
1044 
1045 	mutex_unlock(&dev_priv->drm.struct_mutex);
1046 }
1047 
1048 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049 {
1050 	switch (pin) {
1051 	case HPD_PORT_C:
1052 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053 	case HPD_PORT_D:
1054 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055 	case HPD_PORT_E:
1056 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057 	case HPD_PORT_F:
1058 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
1064 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066 	switch (pin) {
1067 	case HPD_PORT_D:
1068 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069 	case HPD_PORT_E:
1070 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071 	case HPD_PORT_F:
1072 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073 	case HPD_PORT_G:
1074 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075 	case HPD_PORT_H:
1076 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077 	case HPD_PORT_I:
1078 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079 	default:
1080 		return false;
1081 	}
1082 }
1083 
1084 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086 	switch (pin) {
1087 	case HPD_PORT_A:
1088 		return val & PORTA_HOTPLUG_LONG_DETECT;
1089 	case HPD_PORT_B:
1090 		return val & PORTB_HOTPLUG_LONG_DETECT;
1091 	case HPD_PORT_C:
1092 		return val & PORTC_HOTPLUG_LONG_DETECT;
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
1098 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 	switch (pin) {
1101 	case HPD_PORT_A:
1102 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103 	case HPD_PORT_B:
1104 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105 	case HPD_PORT_C:
1106 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107 	default:
1108 		return false;
1109 	}
1110 }
1111 
1112 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113 {
1114 	switch (pin) {
1115 	case HPD_PORT_C:
1116 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117 	case HPD_PORT_D:
1118 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119 	case HPD_PORT_E:
1120 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121 	case HPD_PORT_F:
1122 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123 	default:
1124 		return false;
1125 	}
1126 }
1127 
1128 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129 {
1130 	switch (pin) {
1131 	case HPD_PORT_D:
1132 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133 	case HPD_PORT_E:
1134 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135 	case HPD_PORT_F:
1136 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137 	case HPD_PORT_G:
1138 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139 	case HPD_PORT_H:
1140 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141 	case HPD_PORT_I:
1142 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143 	default:
1144 		return false;
1145 	}
1146 }
1147 
1148 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150 	switch (pin) {
1151 	case HPD_PORT_E:
1152 		return val & PORTE_HOTPLUG_LONG_DETECT;
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159 {
1160 	switch (pin) {
1161 	case HPD_PORT_A:
1162 		return val & PORTA_HOTPLUG_LONG_DETECT;
1163 	case HPD_PORT_B:
1164 		return val & PORTB_HOTPLUG_LONG_DETECT;
1165 	case HPD_PORT_C:
1166 		return val & PORTC_HOTPLUG_LONG_DETECT;
1167 	case HPD_PORT_D:
1168 		return val & PORTD_HOTPLUG_LONG_DETECT;
1169 	default:
1170 		return false;
1171 	}
1172 }
1173 
1174 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175 {
1176 	switch (pin) {
1177 	case HPD_PORT_A:
1178 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179 	default:
1180 		return false;
1181 	}
1182 }
1183 
1184 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185 {
1186 	switch (pin) {
1187 	case HPD_PORT_B:
1188 		return val & PORTB_HOTPLUG_LONG_DETECT;
1189 	case HPD_PORT_C:
1190 		return val & PORTC_HOTPLUG_LONG_DETECT;
1191 	case HPD_PORT_D:
1192 		return val & PORTD_HOTPLUG_LONG_DETECT;
1193 	default:
1194 		return false;
1195 	}
1196 }
1197 
1198 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199 {
1200 	switch (pin) {
1201 	case HPD_PORT_B:
1202 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203 	case HPD_PORT_C:
1204 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205 	case HPD_PORT_D:
1206 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207 	default:
1208 		return false;
1209 	}
1210 }
1211 
1212 /*
1213  * Get a bit mask of pins that have triggered, and which ones may be long.
1214  * This can be called multiple times with the same masks to accumulate
1215  * hotplug detection results from several registers.
1216  *
1217  * Note that the caller is expected to zero out the masks initially.
1218  */
1219 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220 			       u32 *pin_mask, u32 *long_mask,
1221 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1222 			       const u32 hpd[HPD_NUM_PINS],
1223 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224 {
1225 	enum hpd_pin pin;
1226 
1227 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228 
1229 	for_each_hpd_pin(pin) {
1230 		if ((hpd[pin] & hotplug_trigger) == 0)
1231 			continue;
1232 
1233 		*pin_mask |= BIT(pin);
1234 
1235 		if (long_pulse_detect(pin, dig_hotplug_reg))
1236 			*long_mask |= BIT(pin);
1237 	}
1238 
1239 	drm_dbg(&dev_priv->drm,
1240 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242 
1243 }
1244 
1245 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246 {
1247 	wake_up_all(&dev_priv->gmbus_wait_queue);
1248 }
1249 
1250 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251 {
1252 	wake_up_all(&dev_priv->gmbus_wait_queue);
1253 }
1254 
1255 #if defined(CONFIG_DEBUG_FS)
1256 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257 					 enum pipe pipe,
1258 					 u32 crc0, u32 crc1,
1259 					 u32 crc2, u32 crc3,
1260 					 u32 crc4)
1261 {
1262 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265 
1266 	trace_intel_pipe_crc(crtc, crcs);
1267 
1268 	spin_lock(&pipe_crc->lock);
1269 	/*
1270 	 * For some not yet identified reason, the first CRC is
1271 	 * bonkers. So let's just wait for the next vblank and read
1272 	 * out the buggy result.
1273 	 *
1274 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1275 	 * don't trust that one either.
1276 	 */
1277 	if (pipe_crc->skipped <= 0 ||
1278 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279 		pipe_crc->skipped++;
1280 		spin_unlock(&pipe_crc->lock);
1281 		return;
1282 	}
1283 	spin_unlock(&pipe_crc->lock);
1284 
1285 	drm_crtc_add_crc_entry(&crtc->base, true,
1286 				drm_crtc_accurate_vblank_count(&crtc->base),
1287 				crcs);
1288 }
1289 #else
1290 static inline void
1291 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292 			     enum pipe pipe,
1293 			     u32 crc0, u32 crc1,
1294 			     u32 crc2, u32 crc3,
1295 			     u32 crc4) {}
1296 #endif
1297 
1298 
1299 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300 				     enum pipe pipe)
1301 {
1302 	display_pipe_crc_irq_handler(dev_priv, pipe,
1303 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304 				     0, 0, 0, 0);
1305 }
1306 
1307 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308 				     enum pipe pipe)
1309 {
1310 	display_pipe_crc_irq_handler(dev_priv, pipe,
1311 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316 }
1317 
1318 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319 				      enum pipe pipe)
1320 {
1321 	u32 res1, res2;
1322 
1323 	if (INTEL_GEN(dev_priv) >= 3)
1324 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325 	else
1326 		res1 = 0;
1327 
1328 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330 	else
1331 		res2 = 0;
1332 
1333 	display_pipe_crc_irq_handler(dev_priv, pipe,
1334 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1335 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337 				     res1, res2);
1338 }
1339 
1340 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341 {
1342 	enum pipe pipe;
1343 
1344 	for_each_pipe(dev_priv, pipe) {
1345 		I915_WRITE(PIPESTAT(pipe),
1346 			   PIPESTAT_INT_STATUS_MASK |
1347 			   PIPE_FIFO_UNDERRUN_STATUS);
1348 
1349 		dev_priv->pipestat_irq_mask[pipe] = 0;
1350 	}
1351 }
1352 
1353 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355 {
1356 	enum pipe pipe;
1357 
1358 	spin_lock(&dev_priv->irq_lock);
1359 
1360 	if (!dev_priv->display_irqs_enabled) {
1361 		spin_unlock(&dev_priv->irq_lock);
1362 		return;
1363 	}
1364 
1365 	for_each_pipe(dev_priv, pipe) {
1366 		i915_reg_t reg;
1367 		u32 status_mask, enable_mask, iir_bit = 0;
1368 
1369 		/*
1370 		 * PIPESTAT bits get signalled even when the interrupt is
1371 		 * disabled with the mask bits, and some of the status bits do
1372 		 * not generate interrupts at all (like the underrun bit). Hence
1373 		 * we need to be careful that we only handle what we want to
1374 		 * handle.
1375 		 */
1376 
1377 		/* fifo underruns are filterered in the underrun handler. */
1378 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379 
1380 		switch (pipe) {
1381 		default:
1382 		case PIPE_A:
1383 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384 			break;
1385 		case PIPE_B:
1386 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387 			break;
1388 		case PIPE_C:
1389 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390 			break;
1391 		}
1392 		if (iir & iir_bit)
1393 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394 
1395 		if (!status_mask)
1396 			continue;
1397 
1398 		reg = PIPESTAT(pipe);
1399 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401 
1402 		/*
1403 		 * Clear the PIPE*STAT regs before the IIR
1404 		 *
1405 		 * Toggle the enable bits to make sure we get an
1406 		 * edge in the ISR pipe event bit if we don't clear
1407 		 * all the enabled status bits. Otherwise the edge
1408 		 * triggered IIR on i965/g4x wouldn't notice that
1409 		 * an interrupt is still pending.
1410 		 */
1411 		if (pipe_stats[pipe]) {
1412 			I915_WRITE(reg, pipe_stats[pipe]);
1413 			I915_WRITE(reg, enable_mask);
1414 		}
1415 	}
1416 	spin_unlock(&dev_priv->irq_lock);
1417 }
1418 
1419 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421 {
1422 	enum pipe pipe;
1423 
1424 	for_each_pipe(dev_priv, pipe) {
1425 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426 			intel_handle_vblank(dev_priv, pipe);
1427 
1428 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430 
1431 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433 	}
1434 }
1435 
1436 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438 {
1439 	bool blc_event = false;
1440 	enum pipe pipe;
1441 
1442 	for_each_pipe(dev_priv, pipe) {
1443 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444 			intel_handle_vblank(dev_priv, pipe);
1445 
1446 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447 			blc_event = true;
1448 
1449 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451 
1452 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454 	}
1455 
1456 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457 		intel_opregion_asle_intr(dev_priv);
1458 }
1459 
1460 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462 {
1463 	bool blc_event = false;
1464 	enum pipe pipe;
1465 
1466 	for_each_pipe(dev_priv, pipe) {
1467 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468 			intel_handle_vblank(dev_priv, pipe);
1469 
1470 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471 			blc_event = true;
1472 
1473 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475 
1476 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478 	}
1479 
1480 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481 		intel_opregion_asle_intr(dev_priv);
1482 
1483 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484 		gmbus_irq_handler(dev_priv);
1485 }
1486 
1487 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488 					    u32 pipe_stats[I915_MAX_PIPES])
1489 {
1490 	enum pipe pipe;
1491 
1492 	for_each_pipe(dev_priv, pipe) {
1493 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494 			intel_handle_vblank(dev_priv, pipe);
1495 
1496 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498 
1499 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501 	}
1502 
1503 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504 		gmbus_irq_handler(dev_priv);
1505 }
1506 
1507 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508 {
1509 	u32 hotplug_status = 0, hotplug_status_mask;
1510 	int i;
1511 
1512 	if (IS_G4X(dev_priv) ||
1513 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516 	else
1517 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518 
1519 	/*
1520 	 * We absolutely have to clear all the pending interrupt
1521 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522 	 * interrupt bit won't have an edge, and the i965/g4x
1523 	 * edge triggered IIR will not notice that an interrupt
1524 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1525 	 * guarantee the edge as the act of toggling the enable
1526 	 * bits can itself generate a new hotplug interrupt :(
1527 	 */
1528 	for (i = 0; i < 10; i++) {
1529 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530 
1531 		if (tmp == 0)
1532 			return hotplug_status;
1533 
1534 		hotplug_status |= tmp;
1535 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536 	}
1537 
1538 	drm_WARN_ONCE(&dev_priv->drm, 1,
1539 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540 		      I915_READ(PORT_HOTPLUG_STAT));
1541 
1542 	return hotplug_status;
1543 }
1544 
1545 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546 				 u32 hotplug_status)
1547 {
1548 	u32 pin_mask = 0, long_mask = 0;
1549 	u32 hotplug_trigger;
1550 
1551 	if (IS_G4X(dev_priv) ||
1552 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554 	else
1555 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1556 
1557 	if (hotplug_trigger) {
1558 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559 				   hotplug_trigger, hotplug_trigger,
1560 				   dev_priv->hotplug.hpd,
1561 				   i9xx_port_hotplug_long_detect);
1562 
1563 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564 	}
1565 
1566 	if ((IS_G4X(dev_priv) ||
1567 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569 		dp_aux_irq_handler(dev_priv);
1570 }
1571 
1572 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573 {
1574 	struct drm_i915_private *dev_priv = arg;
1575 	irqreturn_t ret = IRQ_NONE;
1576 
1577 	if (!intel_irqs_enabled(dev_priv))
1578 		return IRQ_NONE;
1579 
1580 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582 
1583 	do {
1584 		u32 iir, gt_iir, pm_iir;
1585 		u32 pipe_stats[I915_MAX_PIPES] = {};
1586 		u32 hotplug_status = 0;
1587 		u32 ier = 0;
1588 
1589 		gt_iir = I915_READ(GTIIR);
1590 		pm_iir = I915_READ(GEN6_PMIIR);
1591 		iir = I915_READ(VLV_IIR);
1592 
1593 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594 			break;
1595 
1596 		ret = IRQ_HANDLED;
1597 
1598 		/*
1599 		 * Theory on interrupt generation, based on empirical evidence:
1600 		 *
1601 		 * x = ((VLV_IIR & VLV_IER) ||
1602 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604 		 *
1605 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607 		 * guarantee the CPU interrupt will be raised again even if we
1608 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609 		 * bits this time around.
1610 		 */
1611 		I915_WRITE(VLV_MASTER_IER, 0);
1612 		ier = I915_READ(VLV_IER);
1613 		I915_WRITE(VLV_IER, 0);
1614 
1615 		if (gt_iir)
1616 			I915_WRITE(GTIIR, gt_iir);
1617 		if (pm_iir)
1618 			I915_WRITE(GEN6_PMIIR, pm_iir);
1619 
1620 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622 
1623 		/* Call regardless, as some status bits might not be
1624 		 * signalled in iir */
1625 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626 
1627 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628 			   I915_LPE_PIPE_B_INTERRUPT))
1629 			intel_lpe_audio_irq_handler(dev_priv);
1630 
1631 		/*
1632 		 * VLV_IIR is single buffered, and reflects the level
1633 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634 		 */
1635 		if (iir)
1636 			I915_WRITE(VLV_IIR, iir);
1637 
1638 		I915_WRITE(VLV_IER, ier);
1639 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1640 
1641 		if (gt_iir)
1642 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643 		if (pm_iir)
1644 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645 
1646 		if (hotplug_status)
1647 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648 
1649 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650 	} while (0);
1651 
1652 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1653 
1654 	return ret;
1655 }
1656 
1657 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658 {
1659 	struct drm_i915_private *dev_priv = arg;
1660 	irqreturn_t ret = IRQ_NONE;
1661 
1662 	if (!intel_irqs_enabled(dev_priv))
1663 		return IRQ_NONE;
1664 
1665 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667 
1668 	do {
1669 		u32 master_ctl, iir;
1670 		u32 pipe_stats[I915_MAX_PIPES] = {};
1671 		u32 hotplug_status = 0;
1672 		u32 ier = 0;
1673 
1674 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675 		iir = I915_READ(VLV_IIR);
1676 
1677 		if (master_ctl == 0 && iir == 0)
1678 			break;
1679 
1680 		ret = IRQ_HANDLED;
1681 
1682 		/*
1683 		 * Theory on interrupt generation, based on empirical evidence:
1684 		 *
1685 		 * x = ((VLV_IIR & VLV_IER) ||
1686 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688 		 *
1689 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691 		 * guarantee the CPU interrupt will be raised again even if we
1692 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693 		 * bits this time around.
1694 		 */
1695 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1696 		ier = I915_READ(VLV_IER);
1697 		I915_WRITE(VLV_IER, 0);
1698 
1699 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700 
1701 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703 
1704 		/* Call regardless, as some status bits might not be
1705 		 * signalled in iir */
1706 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707 
1708 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709 			   I915_LPE_PIPE_B_INTERRUPT |
1710 			   I915_LPE_PIPE_C_INTERRUPT))
1711 			intel_lpe_audio_irq_handler(dev_priv);
1712 
1713 		/*
1714 		 * VLV_IIR is single buffered, and reflects the level
1715 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716 		 */
1717 		if (iir)
1718 			I915_WRITE(VLV_IIR, iir);
1719 
1720 		I915_WRITE(VLV_IER, ier);
1721 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722 
1723 		if (hotplug_status)
1724 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725 
1726 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727 	} while (0);
1728 
1729 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1730 
1731 	return ret;
1732 }
1733 
1734 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735 				u32 hotplug_trigger)
1736 {
1737 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738 
1739 	/*
1740 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741 	 * unless we touch the hotplug register, even if hotplug_trigger is
1742 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743 	 * errors.
1744 	 */
1745 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746 	if (!hotplug_trigger) {
1747 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748 			PORTD_HOTPLUG_STATUS_MASK |
1749 			PORTC_HOTPLUG_STATUS_MASK |
1750 			PORTB_HOTPLUG_STATUS_MASK;
1751 		dig_hotplug_reg &= ~mask;
1752 	}
1753 
1754 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755 	if (!hotplug_trigger)
1756 		return;
1757 
1758 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759 			   hotplug_trigger, dig_hotplug_reg,
1760 			   dev_priv->hotplug.pch_hpd,
1761 			   pch_port_hotplug_long_detect);
1762 
1763 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764 }
1765 
1766 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1767 {
1768 	enum pipe pipe;
1769 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1770 
1771 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1772 
1773 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775 			       SDE_AUDIO_POWER_SHIFT);
1776 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777 			port_name(port));
1778 	}
1779 
1780 	if (pch_iir & SDE_AUX_MASK)
1781 		dp_aux_irq_handler(dev_priv);
1782 
1783 	if (pch_iir & SDE_GMBUS)
1784 		gmbus_irq_handler(dev_priv);
1785 
1786 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1788 
1789 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1791 
1792 	if (pch_iir & SDE_POISON)
1793 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794 
1795 	if (pch_iir & SDE_FDI_MASK) {
1796 		for_each_pipe(dev_priv, pipe)
1797 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798 				pipe_name(pipe),
1799 				I915_READ(FDI_RX_IIR(pipe)));
1800 	}
1801 
1802 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804 
1805 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806 		drm_dbg(&dev_priv->drm,
1807 			"PCH transcoder CRC error interrupt\n");
1808 
1809 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811 
1812 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1814 }
1815 
1816 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1817 {
1818 	u32 err_int = I915_READ(GEN7_ERR_INT);
1819 	enum pipe pipe;
1820 
1821 	if (err_int & ERR_INT_POISON)
1822 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1823 
1824 	for_each_pipe(dev_priv, pipe) {
1825 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827 
1828 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829 			if (IS_IVYBRIDGE(dev_priv))
1830 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831 			else
1832 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833 		}
1834 	}
1835 
1836 	I915_WRITE(GEN7_ERR_INT, err_int);
1837 }
1838 
1839 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1840 {
1841 	u32 serr_int = I915_READ(SERR_INT);
1842 	enum pipe pipe;
1843 
1844 	if (serr_int & SERR_INT_POISON)
1845 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846 
1847 	for_each_pipe(dev_priv, pipe)
1848 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850 
1851 	I915_WRITE(SERR_INT, serr_int);
1852 }
1853 
1854 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855 {
1856 	enum pipe pipe;
1857 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1858 
1859 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860 
1861 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863 			       SDE_AUDIO_POWER_SHIFT_CPT);
1864 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865 			port_name(port));
1866 	}
1867 
1868 	if (pch_iir & SDE_AUX_MASK_CPT)
1869 		dp_aux_irq_handler(dev_priv);
1870 
1871 	if (pch_iir & SDE_GMBUS_CPT)
1872 		gmbus_irq_handler(dev_priv);
1873 
1874 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876 
1877 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879 
1880 	if (pch_iir & SDE_FDI_MASK_CPT) {
1881 		for_each_pipe(dev_priv, pipe)
1882 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883 				pipe_name(pipe),
1884 				I915_READ(FDI_RX_IIR(pipe)));
1885 	}
1886 
1887 	if (pch_iir & SDE_ERROR_CPT)
1888 		cpt_serr_int_handler(dev_priv);
1889 }
1890 
1891 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1892 {
1893 	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1894 	u32 pin_mask = 0, long_mask = 0;
1895 	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896 
1897 	if (HAS_PCH_TGP(dev_priv)) {
1898 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900 		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901 	} else if (HAS_PCH_JSP(dev_priv)) {
1902 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903 		tc_hotplug_trigger = 0;
1904 	} else if (HAS_PCH_MCC(dev_priv)) {
1905 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906 		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908 	} else {
1909 		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910 			 "Unrecognized PCH type 0x%x\n",
1911 			 INTEL_PCH_TYPE(dev_priv));
1912 
1913 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915 		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916 	}
1917 
1918 	if (ddi_hotplug_trigger) {
1919 		u32 dig_hotplug_reg;
1920 
1921 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923 
1924 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925 				   ddi_hotplug_trigger, dig_hotplug_reg,
1926 				   dev_priv->hotplug.pch_hpd,
1927 				   icp_ddi_port_hotplug_long_detect);
1928 	}
1929 
1930 	if (tc_hotplug_trigger) {
1931 		u32 dig_hotplug_reg;
1932 
1933 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935 
1936 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937 				   tc_hotplug_trigger, dig_hotplug_reg,
1938 				   dev_priv->hotplug.pch_hpd,
1939 				   tc_port_hotplug_long_detect);
1940 	}
1941 
1942 	if (pin_mask)
1943 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944 
1945 	if (pch_iir & SDE_GMBUS_ICP)
1946 		gmbus_irq_handler(dev_priv);
1947 }
1948 
1949 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950 {
1951 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952 		~SDE_PORTE_HOTPLUG_SPT;
1953 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954 	u32 pin_mask = 0, long_mask = 0;
1955 
1956 	if (hotplug_trigger) {
1957 		u32 dig_hotplug_reg;
1958 
1959 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961 
1962 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963 				   hotplug_trigger, dig_hotplug_reg,
1964 				   dev_priv->hotplug.pch_hpd,
1965 				   spt_port_hotplug_long_detect);
1966 	}
1967 
1968 	if (hotplug2_trigger) {
1969 		u32 dig_hotplug_reg;
1970 
1971 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973 
1974 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975 				   hotplug2_trigger, dig_hotplug_reg,
1976 				   dev_priv->hotplug.pch_hpd,
1977 				   spt_port_hotplug2_long_detect);
1978 	}
1979 
1980 	if (pin_mask)
1981 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982 
1983 	if (pch_iir & SDE_GMBUS_CPT)
1984 		gmbus_irq_handler(dev_priv);
1985 }
1986 
1987 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988 				u32 hotplug_trigger)
1989 {
1990 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991 
1992 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994 
1995 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996 			   hotplug_trigger, dig_hotplug_reg,
1997 			   dev_priv->hotplug.hpd,
1998 			   ilk_port_hotplug_long_detect);
1999 
2000 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001 }
2002 
2003 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004 				    u32 de_iir)
2005 {
2006 	enum pipe pipe;
2007 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008 
2009 	if (hotplug_trigger)
2010 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011 
2012 	if (de_iir & DE_AUX_CHANNEL_A)
2013 		dp_aux_irq_handler(dev_priv);
2014 
2015 	if (de_iir & DE_GSE)
2016 		intel_opregion_asle_intr(dev_priv);
2017 
2018 	if (de_iir & DE_POISON)
2019 		drm_err(&dev_priv->drm, "Poison interrupt\n");
2020 
2021 	for_each_pipe(dev_priv, pipe) {
2022 		if (de_iir & DE_PIPE_VBLANK(pipe))
2023 			intel_handle_vblank(dev_priv, pipe);
2024 
2025 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027 
2028 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030 	}
2031 
2032 	/* check event from PCH */
2033 	if (de_iir & DE_PCH_EVENT) {
2034 		u32 pch_iir = I915_READ(SDEIIR);
2035 
2036 		if (HAS_PCH_CPT(dev_priv))
2037 			cpt_irq_handler(dev_priv, pch_iir);
2038 		else
2039 			ibx_irq_handler(dev_priv, pch_iir);
2040 
2041 		/* should clear PCH hotplug event before clear CPU irq */
2042 		I915_WRITE(SDEIIR, pch_iir);
2043 	}
2044 
2045 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046 		gen5_rps_irq_handler(&dev_priv->gt.rps);
2047 }
2048 
2049 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050 				    u32 de_iir)
2051 {
2052 	enum pipe pipe;
2053 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054 
2055 	if (hotplug_trigger)
2056 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057 
2058 	if (de_iir & DE_ERR_INT_IVB)
2059 		ivb_err_int_handler(dev_priv);
2060 
2061 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2062 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063 
2064 		intel_psr_irq_handler(dev_priv, psr_iir);
2065 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2066 	}
2067 
2068 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069 		dp_aux_irq_handler(dev_priv);
2070 
2071 	if (de_iir & DE_GSE_IVB)
2072 		intel_opregion_asle_intr(dev_priv);
2073 
2074 	for_each_pipe(dev_priv, pipe) {
2075 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076 			intel_handle_vblank(dev_priv, pipe);
2077 	}
2078 
2079 	/* check event from PCH */
2080 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081 		u32 pch_iir = I915_READ(SDEIIR);
2082 
2083 		cpt_irq_handler(dev_priv, pch_iir);
2084 
2085 		/* clear PCH hotplug event before clear CPU irq */
2086 		I915_WRITE(SDEIIR, pch_iir);
2087 	}
2088 }
2089 
2090 /*
2091  * To handle irqs with the minimum potential races with fresh interrupts, we:
2092  * 1 - Disable Master Interrupt Control.
2093  * 2 - Find the source(s) of the interrupt.
2094  * 3 - Clear the Interrupt Identity bits (IIR).
2095  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096  * 5 - Re-enable Master Interrupt Control.
2097  */
2098 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099 {
2100 	struct drm_i915_private *i915 = arg;
2101 	void __iomem * const regs = i915->uncore.regs;
2102 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2103 	irqreturn_t ret = IRQ_NONE;
2104 
2105 	if (unlikely(!intel_irqs_enabled(i915)))
2106 		return IRQ_NONE;
2107 
2108 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2109 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2110 
2111 	/* disable master interrupt before clearing iir  */
2112 	de_ier = raw_reg_read(regs, DEIER);
2113 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2114 
2115 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2116 	 * interrupts will will be stored on its back queue, and then we'll be
2117 	 * able to process them after we restore SDEIER (as soon as we restore
2118 	 * it, we'll get an interrupt if SDEIIR still has something to process
2119 	 * due to its back queue). */
2120 	if (!HAS_PCH_NOP(i915)) {
2121 		sde_ier = raw_reg_read(regs, SDEIER);
2122 		raw_reg_write(regs, SDEIER, 0);
2123 	}
2124 
2125 	/* Find, clear, then process each source of interrupt */
2126 
2127 	gt_iir = raw_reg_read(regs, GTIIR);
2128 	if (gt_iir) {
2129 		raw_reg_write(regs, GTIIR, gt_iir);
2130 		if (INTEL_GEN(i915) >= 6)
2131 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2132 		else
2133 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2134 		ret = IRQ_HANDLED;
2135 	}
2136 
2137 	de_iir = raw_reg_read(regs, DEIIR);
2138 	if (de_iir) {
2139 		raw_reg_write(regs, DEIIR, de_iir);
2140 		if (INTEL_GEN(i915) >= 7)
2141 			ivb_display_irq_handler(i915, de_iir);
2142 		else
2143 			ilk_display_irq_handler(i915, de_iir);
2144 		ret = IRQ_HANDLED;
2145 	}
2146 
2147 	if (INTEL_GEN(i915) >= 6) {
2148 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2149 		if (pm_iir) {
2150 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2151 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2152 			ret = IRQ_HANDLED;
2153 		}
2154 	}
2155 
2156 	raw_reg_write(regs, DEIER, de_ier);
2157 	if (sde_ier)
2158 		raw_reg_write(regs, SDEIER, sde_ier);
2159 
2160 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2161 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2162 
2163 	return ret;
2164 }
2165 
2166 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2167 				u32 hotplug_trigger)
2168 {
2169 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2170 
2171 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2173 
2174 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2175 			   hotplug_trigger, dig_hotplug_reg,
2176 			   dev_priv->hotplug.hpd,
2177 			   bxt_port_hotplug_long_detect);
2178 
2179 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2180 }
2181 
2182 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2183 {
2184 	u32 pin_mask = 0, long_mask = 0;
2185 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2186 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2187 	long_pulse_detect_func long_pulse_detect;
2188 
2189 	if (INTEL_GEN(dev_priv) >= 12)
2190 		long_pulse_detect = gen12_port_hotplug_long_detect;
2191 	else
2192 		long_pulse_detect = gen11_port_hotplug_long_detect;
2193 
2194 	if (trigger_tc) {
2195 		u32 dig_hotplug_reg;
2196 
2197 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2198 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2199 
2200 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2201 				   trigger_tc, dig_hotplug_reg,
2202 				   dev_priv->hotplug.hpd,
2203 				   long_pulse_detect);
2204 	}
2205 
2206 	if (trigger_tbt) {
2207 		u32 dig_hotplug_reg;
2208 
2209 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2210 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2211 
2212 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2213 				   trigger_tbt, dig_hotplug_reg,
2214 				   dev_priv->hotplug.hpd,
2215 				   long_pulse_detect);
2216 	}
2217 
2218 	if (pin_mask)
2219 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2220 	else
2221 		drm_err(&dev_priv->drm,
2222 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2223 }
2224 
2225 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2226 {
2227 	u32 mask;
2228 
2229 	if (INTEL_GEN(dev_priv) >= 12)
2230 		return TGL_DE_PORT_AUX_DDIA |
2231 			TGL_DE_PORT_AUX_DDIB |
2232 			TGL_DE_PORT_AUX_DDIC |
2233 			TGL_DE_PORT_AUX_USBC1 |
2234 			TGL_DE_PORT_AUX_USBC2 |
2235 			TGL_DE_PORT_AUX_USBC3 |
2236 			TGL_DE_PORT_AUX_USBC4 |
2237 			TGL_DE_PORT_AUX_USBC5 |
2238 			TGL_DE_PORT_AUX_USBC6;
2239 
2240 
2241 	mask = GEN8_AUX_CHANNEL_A;
2242 	if (INTEL_GEN(dev_priv) >= 9)
2243 		mask |= GEN9_AUX_CHANNEL_B |
2244 			GEN9_AUX_CHANNEL_C |
2245 			GEN9_AUX_CHANNEL_D;
2246 
2247 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2248 		mask |= CNL_AUX_CHANNEL_F;
2249 
2250 	if (IS_GEN(dev_priv, 11))
2251 		mask |= ICL_AUX_CHANNEL_E;
2252 
2253 	return mask;
2254 }
2255 
2256 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2257 {
2258 	if (IS_ROCKETLAKE(dev_priv))
2259 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2260 	else if (INTEL_GEN(dev_priv) >= 11)
2261 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2262 	else if (INTEL_GEN(dev_priv) >= 9)
2263 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2264 	else
2265 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2266 }
2267 
2268 static void
2269 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2270 {
2271 	bool found = false;
2272 
2273 	if (iir & GEN8_DE_MISC_GSE) {
2274 		intel_opregion_asle_intr(dev_priv);
2275 		found = true;
2276 	}
2277 
2278 	if (iir & GEN8_DE_EDP_PSR) {
2279 		u32 psr_iir;
2280 		i915_reg_t iir_reg;
2281 
2282 		if (INTEL_GEN(dev_priv) >= 12)
2283 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2284 		else
2285 			iir_reg = EDP_PSR_IIR;
2286 
2287 		psr_iir = I915_READ(iir_reg);
2288 		I915_WRITE(iir_reg, psr_iir);
2289 
2290 		if (psr_iir)
2291 			found = true;
2292 
2293 		intel_psr_irq_handler(dev_priv, psr_iir);
2294 	}
2295 
2296 	if (!found)
2297 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2298 }
2299 
2300 static irqreturn_t
2301 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2302 {
2303 	irqreturn_t ret = IRQ_NONE;
2304 	u32 iir;
2305 	enum pipe pipe;
2306 
2307 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2308 		iir = I915_READ(GEN8_DE_MISC_IIR);
2309 		if (iir) {
2310 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2311 			ret = IRQ_HANDLED;
2312 			gen8_de_misc_irq_handler(dev_priv, iir);
2313 		} else {
2314 			drm_err(&dev_priv->drm,
2315 				"The master control interrupt lied (DE MISC)!\n");
2316 		}
2317 	}
2318 
2319 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2320 		iir = I915_READ(GEN11_DE_HPD_IIR);
2321 		if (iir) {
2322 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2323 			ret = IRQ_HANDLED;
2324 			gen11_hpd_irq_handler(dev_priv, iir);
2325 		} else {
2326 			drm_err(&dev_priv->drm,
2327 				"The master control interrupt lied, (DE HPD)!\n");
2328 		}
2329 	}
2330 
2331 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2332 		iir = I915_READ(GEN8_DE_PORT_IIR);
2333 		if (iir) {
2334 			u32 tmp_mask;
2335 			bool found = false;
2336 
2337 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2338 			ret = IRQ_HANDLED;
2339 
2340 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2341 				dp_aux_irq_handler(dev_priv);
2342 				found = true;
2343 			}
2344 
2345 			if (IS_GEN9_LP(dev_priv)) {
2346 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2347 				if (tmp_mask) {
2348 					bxt_hpd_irq_handler(dev_priv, tmp_mask);
2349 					found = true;
2350 				}
2351 			} else if (IS_BROADWELL(dev_priv)) {
2352 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2353 				if (tmp_mask) {
2354 					ilk_hpd_irq_handler(dev_priv, tmp_mask);
2355 					found = true;
2356 				}
2357 			}
2358 
2359 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2360 				gmbus_irq_handler(dev_priv);
2361 				found = true;
2362 			}
2363 
2364 			if (!found)
2365 				drm_err(&dev_priv->drm,
2366 					"Unexpected DE Port interrupt\n");
2367 		}
2368 		else
2369 			drm_err(&dev_priv->drm,
2370 				"The master control interrupt lied (DE PORT)!\n");
2371 	}
2372 
2373 	for_each_pipe(dev_priv, pipe) {
2374 		u32 fault_errors;
2375 
2376 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2377 			continue;
2378 
2379 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2380 		if (!iir) {
2381 			drm_err(&dev_priv->drm,
2382 				"The master control interrupt lied (DE PIPE)!\n");
2383 			continue;
2384 		}
2385 
2386 		ret = IRQ_HANDLED;
2387 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2388 
2389 		if (iir & GEN8_PIPE_VBLANK)
2390 			intel_handle_vblank(dev_priv, pipe);
2391 
2392 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2393 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2394 
2395 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2396 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2397 
2398 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2399 		if (fault_errors)
2400 			drm_err(&dev_priv->drm,
2401 				"Fault errors on pipe %c: 0x%08x\n",
2402 				pipe_name(pipe),
2403 				fault_errors);
2404 	}
2405 
2406 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2407 	    master_ctl & GEN8_DE_PCH_IRQ) {
2408 		/*
2409 		 * FIXME(BDW): Assume for now that the new interrupt handling
2410 		 * scheme also closed the SDE interrupt handling race we've seen
2411 		 * on older pch-split platforms. But this needs testing.
2412 		 */
2413 		iir = I915_READ(SDEIIR);
2414 		if (iir) {
2415 			I915_WRITE(SDEIIR, iir);
2416 			ret = IRQ_HANDLED;
2417 
2418 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2419 				icp_irq_handler(dev_priv, iir);
2420 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2421 				spt_irq_handler(dev_priv, iir);
2422 			else
2423 				cpt_irq_handler(dev_priv, iir);
2424 		} else {
2425 			/*
2426 			 * Like on previous PCH there seems to be something
2427 			 * fishy going on with forwarding PCH interrupts.
2428 			 */
2429 			drm_dbg(&dev_priv->drm,
2430 				"The master control interrupt lied (SDE)!\n");
2431 		}
2432 	}
2433 
2434 	return ret;
2435 }
2436 
2437 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2438 {
2439 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2440 
2441 	/*
2442 	 * Now with master disabled, get a sample of level indications
2443 	 * for this interrupt. Indications will be cleared on related acks.
2444 	 * New indications can and will light up during processing,
2445 	 * and will generate new interrupt after enabling master.
2446 	 */
2447 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2448 }
2449 
2450 static inline void gen8_master_intr_enable(void __iomem * const regs)
2451 {
2452 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2453 }
2454 
2455 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2456 {
2457 	struct drm_i915_private *dev_priv = arg;
2458 	void __iomem * const regs = dev_priv->uncore.regs;
2459 	u32 master_ctl;
2460 
2461 	if (!intel_irqs_enabled(dev_priv))
2462 		return IRQ_NONE;
2463 
2464 	master_ctl = gen8_master_intr_disable(regs);
2465 	if (!master_ctl) {
2466 		gen8_master_intr_enable(regs);
2467 		return IRQ_NONE;
2468 	}
2469 
2470 	/* Find, queue (onto bottom-halves), then clear each source */
2471 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2472 
2473 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2474 	if (master_ctl & ~GEN8_GT_IRQS) {
2475 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2476 		gen8_de_irq_handler(dev_priv, master_ctl);
2477 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2478 	}
2479 
2480 	gen8_master_intr_enable(regs);
2481 
2482 	return IRQ_HANDLED;
2483 }
2484 
2485 static u32
2486 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2487 {
2488 	void __iomem * const regs = gt->uncore->regs;
2489 	u32 iir;
2490 
2491 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2492 		return 0;
2493 
2494 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2495 	if (likely(iir))
2496 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2497 
2498 	return iir;
2499 }
2500 
2501 static void
2502 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2503 {
2504 	if (iir & GEN11_GU_MISC_GSE)
2505 		intel_opregion_asle_intr(gt->i915);
2506 }
2507 
2508 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2509 {
2510 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2511 
2512 	/*
2513 	 * Now with master disabled, get a sample of level indications
2514 	 * for this interrupt. Indications will be cleared on related acks.
2515 	 * New indications can and will light up during processing,
2516 	 * and will generate new interrupt after enabling master.
2517 	 */
2518 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2519 }
2520 
2521 static inline void gen11_master_intr_enable(void __iomem * const regs)
2522 {
2523 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2524 }
2525 
2526 static void
2527 gen11_display_irq_handler(struct drm_i915_private *i915)
2528 {
2529 	void __iomem * const regs = i915->uncore.regs;
2530 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2531 
2532 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2533 	/*
2534 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2535 	 * for the display related bits.
2536 	 */
2537 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2538 	gen8_de_irq_handler(i915, disp_ctl);
2539 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2540 		      GEN11_DISPLAY_IRQ_ENABLE);
2541 
2542 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2543 }
2544 
2545 static __always_inline irqreturn_t
2546 __gen11_irq_handler(struct drm_i915_private * const i915,
2547 		    u32 (*intr_disable)(void __iomem * const regs),
2548 		    void (*intr_enable)(void __iomem * const regs))
2549 {
2550 	void __iomem * const regs = i915->uncore.regs;
2551 	struct intel_gt *gt = &i915->gt;
2552 	u32 master_ctl;
2553 	u32 gu_misc_iir;
2554 
2555 	if (!intel_irqs_enabled(i915))
2556 		return IRQ_NONE;
2557 
2558 	master_ctl = intr_disable(regs);
2559 	if (!master_ctl) {
2560 		intr_enable(regs);
2561 		return IRQ_NONE;
2562 	}
2563 
2564 	/* Find, queue (onto bottom-halves), then clear each source */
2565 	gen11_gt_irq_handler(gt, master_ctl);
2566 
2567 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2568 	if (master_ctl & GEN11_DISPLAY_IRQ)
2569 		gen11_display_irq_handler(i915);
2570 
2571 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2572 
2573 	intr_enable(regs);
2574 
2575 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2576 
2577 	return IRQ_HANDLED;
2578 }
2579 
2580 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2581 {
2582 	return __gen11_irq_handler(arg,
2583 				   gen11_master_intr_disable,
2584 				   gen11_master_intr_enable);
2585 }
2586 
2587 /* Called from drm generic code, passed 'crtc' which
2588  * we use as a pipe index
2589  */
2590 int i8xx_enable_vblank(struct drm_crtc *crtc)
2591 {
2592 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2593 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2594 	unsigned long irqflags;
2595 
2596 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2597 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2598 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2599 
2600 	return 0;
2601 }
2602 
2603 int i915gm_enable_vblank(struct drm_crtc *crtc)
2604 {
2605 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2606 
2607 	/*
2608 	 * Vblank interrupts fail to wake the device up from C2+.
2609 	 * Disabling render clock gating during C-states avoids
2610 	 * the problem. There is a small power cost so we do this
2611 	 * only when vblank interrupts are actually enabled.
2612 	 */
2613 	if (dev_priv->vblank_enabled++ == 0)
2614 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2615 
2616 	return i8xx_enable_vblank(crtc);
2617 }
2618 
2619 int i965_enable_vblank(struct drm_crtc *crtc)
2620 {
2621 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2622 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2623 	unsigned long irqflags;
2624 
2625 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2626 	i915_enable_pipestat(dev_priv, pipe,
2627 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2628 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629 
2630 	return 0;
2631 }
2632 
2633 int ilk_enable_vblank(struct drm_crtc *crtc)
2634 {
2635 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2636 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2637 	unsigned long irqflags;
2638 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2639 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2640 
2641 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2642 	ilk_enable_display_irq(dev_priv, bit);
2643 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2644 
2645 	/* Even though there is no DMC, frame counter can get stuck when
2646 	 * PSR is active as no frames are generated.
2647 	 */
2648 	if (HAS_PSR(dev_priv))
2649 		drm_crtc_vblank_restore(crtc);
2650 
2651 	return 0;
2652 }
2653 
2654 int bdw_enable_vblank(struct drm_crtc *crtc)
2655 {
2656 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2657 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2658 	unsigned long irqflags;
2659 
2660 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2661 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2662 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663 
2664 	/* Even if there is no DMC, frame counter can get stuck when
2665 	 * PSR is active as no frames are generated, so check only for PSR.
2666 	 */
2667 	if (HAS_PSR(dev_priv))
2668 		drm_crtc_vblank_restore(crtc);
2669 
2670 	return 0;
2671 }
2672 
2673 /* Called from drm generic code, passed 'crtc' which
2674  * we use as a pipe index
2675  */
2676 void i8xx_disable_vblank(struct drm_crtc *crtc)
2677 {
2678 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2679 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2680 	unsigned long irqflags;
2681 
2682 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2683 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2684 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2685 }
2686 
2687 void i915gm_disable_vblank(struct drm_crtc *crtc)
2688 {
2689 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2690 
2691 	i8xx_disable_vblank(crtc);
2692 
2693 	if (--dev_priv->vblank_enabled == 0)
2694 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2695 }
2696 
2697 void i965_disable_vblank(struct drm_crtc *crtc)
2698 {
2699 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2700 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2701 	unsigned long irqflags;
2702 
2703 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2704 	i915_disable_pipestat(dev_priv, pipe,
2705 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2706 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2707 }
2708 
2709 void ilk_disable_vblank(struct drm_crtc *crtc)
2710 {
2711 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2712 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2713 	unsigned long irqflags;
2714 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2715 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2716 
2717 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 	ilk_disable_display_irq(dev_priv, bit);
2719 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2720 }
2721 
2722 void bdw_disable_vblank(struct drm_crtc *crtc)
2723 {
2724 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2725 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2726 	unsigned long irqflags;
2727 
2728 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2729 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2730 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731 }
2732 
2733 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2734 {
2735 	struct intel_uncore *uncore = &dev_priv->uncore;
2736 
2737 	if (HAS_PCH_NOP(dev_priv))
2738 		return;
2739 
2740 	GEN3_IRQ_RESET(uncore, SDE);
2741 
2742 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2743 		I915_WRITE(SERR_INT, 0xffffffff);
2744 }
2745 
2746 /*
2747  * SDEIER is also touched by the interrupt handler to work around missed PCH
2748  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2749  * instead we unconditionally enable all PCH interrupt sources here, but then
2750  * only unmask them as needed with SDEIMR.
2751  *
2752  * This function needs to be called before interrupts are enabled.
2753  */
2754 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2755 {
2756 	if (HAS_PCH_NOP(dev_priv))
2757 		return;
2758 
2759 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2760 	I915_WRITE(SDEIER, 0xffffffff);
2761 	POSTING_READ(SDEIER);
2762 }
2763 
2764 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2765 {
2766 	struct intel_uncore *uncore = &dev_priv->uncore;
2767 
2768 	if (IS_CHERRYVIEW(dev_priv))
2769 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2770 	else
2771 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2772 
2773 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2774 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2775 
2776 	i9xx_pipestat_irq_reset(dev_priv);
2777 
2778 	GEN3_IRQ_RESET(uncore, VLV_);
2779 	dev_priv->irq_mask = ~0u;
2780 }
2781 
2782 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2783 {
2784 	struct intel_uncore *uncore = &dev_priv->uncore;
2785 
2786 	u32 pipestat_mask;
2787 	u32 enable_mask;
2788 	enum pipe pipe;
2789 
2790 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2791 
2792 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2793 	for_each_pipe(dev_priv, pipe)
2794 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2795 
2796 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2797 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2798 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2799 		I915_LPE_PIPE_A_INTERRUPT |
2800 		I915_LPE_PIPE_B_INTERRUPT;
2801 
2802 	if (IS_CHERRYVIEW(dev_priv))
2803 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2804 			I915_LPE_PIPE_C_INTERRUPT;
2805 
2806 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2807 
2808 	dev_priv->irq_mask = ~enable_mask;
2809 
2810 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2811 }
2812 
2813 /* drm_dma.h hooks
2814 */
2815 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2816 {
2817 	struct intel_uncore *uncore = &dev_priv->uncore;
2818 
2819 	GEN3_IRQ_RESET(uncore, DE);
2820 	if (IS_GEN(dev_priv, 7))
2821 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2822 
2823 	if (IS_HASWELL(dev_priv)) {
2824 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2825 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2826 	}
2827 
2828 	gen5_gt_irq_reset(&dev_priv->gt);
2829 
2830 	ibx_irq_reset(dev_priv);
2831 }
2832 
2833 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2834 {
2835 	I915_WRITE(VLV_MASTER_IER, 0);
2836 	POSTING_READ(VLV_MASTER_IER);
2837 
2838 	gen5_gt_irq_reset(&dev_priv->gt);
2839 
2840 	spin_lock_irq(&dev_priv->irq_lock);
2841 	if (dev_priv->display_irqs_enabled)
2842 		vlv_display_irq_reset(dev_priv);
2843 	spin_unlock_irq(&dev_priv->irq_lock);
2844 }
2845 
2846 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2847 {
2848 	struct intel_uncore *uncore = &dev_priv->uncore;
2849 	enum pipe pipe;
2850 
2851 	gen8_master_intr_disable(dev_priv->uncore.regs);
2852 
2853 	gen8_gt_irq_reset(&dev_priv->gt);
2854 
2855 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2856 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2857 
2858 	for_each_pipe(dev_priv, pipe)
2859 		if (intel_display_power_is_enabled(dev_priv,
2860 						   POWER_DOMAIN_PIPE(pipe)))
2861 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2862 
2863 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2864 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2865 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2866 
2867 	if (HAS_PCH_SPLIT(dev_priv))
2868 		ibx_irq_reset(dev_priv);
2869 }
2870 
2871 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2872 {
2873 	struct intel_uncore *uncore = &dev_priv->uncore;
2874 	enum pipe pipe;
2875 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2876 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2877 
2878 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2879 
2880 	if (INTEL_GEN(dev_priv) >= 12) {
2881 		enum transcoder trans;
2882 
2883 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2884 			enum intel_display_power_domain domain;
2885 
2886 			domain = POWER_DOMAIN_TRANSCODER(trans);
2887 			if (!intel_display_power_is_enabled(dev_priv, domain))
2888 				continue;
2889 
2890 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2891 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2892 		}
2893 	} else {
2894 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2895 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2896 	}
2897 
2898 	for_each_pipe(dev_priv, pipe)
2899 		if (intel_display_power_is_enabled(dev_priv,
2900 						   POWER_DOMAIN_PIPE(pipe)))
2901 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2902 
2903 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2904 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2905 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2906 
2907 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2908 		GEN3_IRQ_RESET(uncore, SDE);
2909 
2910 	/* Wa_14010685332:icl,jsl,ehl */
2911 	if (INTEL_PCH_TYPE(dev_priv) == PCH_ICP ||
2912 	    INTEL_PCH_TYPE(dev_priv) == PCH_JSP ||
2913 	    INTEL_PCH_TYPE(dev_priv) == PCH_MCC) {
2914 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2915 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2916 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2917 				 SBCLK_RUN_REFCLK_DIS, 0);
2918 	}
2919 }
2920 
2921 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2922 {
2923 	struct intel_uncore *uncore = &dev_priv->uncore;
2924 
2925 	gen11_master_intr_disable(dev_priv->uncore.regs);
2926 
2927 	gen11_gt_irq_reset(&dev_priv->gt);
2928 	gen11_display_irq_reset(dev_priv);
2929 
2930 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2931 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2932 }
2933 
2934 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2935 				     u8 pipe_mask)
2936 {
2937 	struct intel_uncore *uncore = &dev_priv->uncore;
2938 
2939 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2940 	enum pipe pipe;
2941 
2942 	spin_lock_irq(&dev_priv->irq_lock);
2943 
2944 	if (!intel_irqs_enabled(dev_priv)) {
2945 		spin_unlock_irq(&dev_priv->irq_lock);
2946 		return;
2947 	}
2948 
2949 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2950 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2951 				  dev_priv->de_irq_mask[pipe],
2952 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2953 
2954 	spin_unlock_irq(&dev_priv->irq_lock);
2955 }
2956 
2957 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2958 				     u8 pipe_mask)
2959 {
2960 	struct intel_uncore *uncore = &dev_priv->uncore;
2961 	enum pipe pipe;
2962 
2963 	spin_lock_irq(&dev_priv->irq_lock);
2964 
2965 	if (!intel_irqs_enabled(dev_priv)) {
2966 		spin_unlock_irq(&dev_priv->irq_lock);
2967 		return;
2968 	}
2969 
2970 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2971 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2972 
2973 	spin_unlock_irq(&dev_priv->irq_lock);
2974 
2975 	/* make sure we're done processing display irqs */
2976 	intel_synchronize_irq(dev_priv);
2977 }
2978 
2979 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2980 {
2981 	struct intel_uncore *uncore = &dev_priv->uncore;
2982 
2983 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2984 	POSTING_READ(GEN8_MASTER_IRQ);
2985 
2986 	gen8_gt_irq_reset(&dev_priv->gt);
2987 
2988 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2989 
2990 	spin_lock_irq(&dev_priv->irq_lock);
2991 	if (dev_priv->display_irqs_enabled)
2992 		vlv_display_irq_reset(dev_priv);
2993 	spin_unlock_irq(&dev_priv->irq_lock);
2994 }
2995 
2996 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2997 				  const u32 hpd[HPD_NUM_PINS])
2998 {
2999 	struct intel_encoder *encoder;
3000 	u32 enabled_irqs = 0;
3001 
3002 	for_each_intel_encoder(&dev_priv->drm, encoder)
3003 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3004 			enabled_irqs |= hpd[encoder->hpd_pin];
3005 
3006 	return enabled_irqs;
3007 }
3008 
3009 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3010 {
3011 	u32 hotplug;
3012 
3013 	/*
3014 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3015 	 * duration to 2ms (which is the minimum in the Display Port spec).
3016 	 * The pulse duration bits are reserved on LPT+.
3017 	 */
3018 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3019 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3020 		     PORTC_PULSE_DURATION_MASK |
3021 		     PORTD_PULSE_DURATION_MASK);
3022 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3023 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3024 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3025 	/*
3026 	 * When CPU and PCH are on the same package, port A
3027 	 * HPD must be enabled in both north and south.
3028 	 */
3029 	if (HAS_PCH_LPT_LP(dev_priv))
3030 		hotplug |= PORTA_HOTPLUG_ENABLE;
3031 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3032 }
3033 
3034 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3035 {
3036 	u32 hotplug_irqs, enabled_irqs;
3037 
3038 	if (HAS_PCH_IBX(dev_priv))
3039 		hotplug_irqs = SDE_HOTPLUG_MASK;
3040 	else
3041 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3042 
3043 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3044 
3045 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3046 
3047 	ibx_hpd_detection_setup(dev_priv);
3048 }
3049 
3050 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3051 				    u32 ddi_hotplug_enable_mask,
3052 				    u32 tc_hotplug_enable_mask)
3053 {
3054 	u32 hotplug;
3055 
3056 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3057 	hotplug |= ddi_hotplug_enable_mask;
3058 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3059 
3060 	if (tc_hotplug_enable_mask) {
3061 		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3062 		hotplug |= tc_hotplug_enable_mask;
3063 		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3064 	}
3065 }
3066 
3067 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3068 			      u32 sde_ddi_mask, u32 sde_tc_mask,
3069 			      u32 ddi_enable_mask, u32 tc_enable_mask)
3070 {
3071 	u32 hotplug_irqs, enabled_irqs;
3072 
3073 	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3074 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3075 
3076 	I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3077 
3078 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3079 
3080 	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3081 }
3082 
3083 /*
3084  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3085  * equivalent of SDE.
3086  */
3087 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3088 {
3089 	icp_hpd_irq_setup(dev_priv,
3090 			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3091 			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3092 }
3093 
3094 /*
3095  * JSP behaves exactly the same as MCC above except that port C is mapped to
3096  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3097  * masks & tables rather than ICP's masks & tables.
3098  */
3099 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3100 {
3101 	icp_hpd_irq_setup(dev_priv,
3102 			  SDE_DDI_MASK_TGP, 0,
3103 			  TGP_DDI_HPD_ENABLE_MASK, 0);
3104 }
3105 
3106 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3107 {
3108 	u32 hotplug;
3109 
3110 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3111 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3112 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3113 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3114 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3115 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3116 
3117 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3118 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3119 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3120 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3121 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3122 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3123 }
3124 
3125 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3126 {
3127 	u32 hotplug_irqs, enabled_irqs;
3128 	u32 val;
3129 
3130 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3131 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3132 
3133 	val = I915_READ(GEN11_DE_HPD_IMR);
3134 	val &= ~hotplug_irqs;
3135 	val |= ~enabled_irqs & hotplug_irqs;
3136 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3137 	POSTING_READ(GEN11_DE_HPD_IMR);
3138 
3139 	gen11_hpd_detection_setup(dev_priv);
3140 
3141 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3142 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3143 				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3144 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3145 		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3146 				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3147 }
3148 
3149 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3150 {
3151 	u32 val, hotplug;
3152 
3153 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3154 	if (HAS_PCH_CNP(dev_priv)) {
3155 		val = I915_READ(SOUTH_CHICKEN1);
3156 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3157 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3158 		I915_WRITE(SOUTH_CHICKEN1, val);
3159 	}
3160 
3161 	/* Enable digital hotplug on the PCH */
3162 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3163 	hotplug |= PORTA_HOTPLUG_ENABLE |
3164 		   PORTB_HOTPLUG_ENABLE |
3165 		   PORTC_HOTPLUG_ENABLE |
3166 		   PORTD_HOTPLUG_ENABLE;
3167 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3168 
3169 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3170 	hotplug |= PORTE_HOTPLUG_ENABLE;
3171 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3172 }
3173 
3174 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3175 {
3176 	u32 hotplug_irqs, enabled_irqs;
3177 
3178 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3179 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3180 
3181 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3182 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3183 
3184 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3185 
3186 	spt_hpd_detection_setup(dev_priv);
3187 }
3188 
3189 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3190 {
3191 	u32 hotplug;
3192 
3193 	/*
3194 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3195 	 * duration to 2ms (which is the minimum in the Display Port spec)
3196 	 * The pulse duration bits are reserved on HSW+.
3197 	 */
3198 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3199 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3200 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3201 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3202 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3203 }
3204 
3205 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3206 {
3207 	u32 hotplug_irqs, enabled_irqs;
3208 
3209 	if (INTEL_GEN(dev_priv) >= 8) {
3210 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3211 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3212 
3213 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3214 	} else if (INTEL_GEN(dev_priv) >= 7) {
3215 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3216 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3217 
3218 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3219 	} else {
3220 		hotplug_irqs = DE_DP_A_HOTPLUG;
3221 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3222 
3223 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3224 	}
3225 
3226 	ilk_hpd_detection_setup(dev_priv);
3227 
3228 	ibx_hpd_irq_setup(dev_priv);
3229 }
3230 
3231 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3232 				      u32 enabled_irqs)
3233 {
3234 	u32 hotplug;
3235 
3236 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3237 	hotplug |= PORTA_HOTPLUG_ENABLE |
3238 		   PORTB_HOTPLUG_ENABLE |
3239 		   PORTC_HOTPLUG_ENABLE;
3240 
3241 	drm_dbg_kms(&dev_priv->drm,
3242 		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3243 		    hotplug, enabled_irqs);
3244 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3245 
3246 	/*
3247 	 * For BXT invert bit has to be set based on AOB design
3248 	 * for HPD detection logic, update it based on VBT fields.
3249 	 */
3250 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3251 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3252 		hotplug |= BXT_DDIA_HPD_INVERT;
3253 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3254 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3255 		hotplug |= BXT_DDIB_HPD_INVERT;
3256 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3257 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3258 		hotplug |= BXT_DDIC_HPD_INVERT;
3259 
3260 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3261 }
3262 
3263 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3264 {
3265 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3266 }
3267 
3268 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3269 {
3270 	u32 hotplug_irqs, enabled_irqs;
3271 
3272 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3273 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3274 
3275 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3276 
3277 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3278 }
3279 
3280 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3281 {
3282 	u32 mask;
3283 
3284 	if (HAS_PCH_NOP(dev_priv))
3285 		return;
3286 
3287 	if (HAS_PCH_IBX(dev_priv))
3288 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3289 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3290 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3291 	else
3292 		mask = SDE_GMBUS_CPT;
3293 
3294 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3295 	I915_WRITE(SDEIMR, ~mask);
3296 
3297 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3298 	    HAS_PCH_LPT(dev_priv))
3299 		ibx_hpd_detection_setup(dev_priv);
3300 	else
3301 		spt_hpd_detection_setup(dev_priv);
3302 }
3303 
3304 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3305 {
3306 	struct intel_uncore *uncore = &dev_priv->uncore;
3307 	u32 display_mask, extra_mask;
3308 
3309 	if (INTEL_GEN(dev_priv) >= 7) {
3310 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3311 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3312 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3313 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3314 			      DE_DP_A_HOTPLUG_IVB);
3315 	} else {
3316 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3317 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3318 				DE_PIPEA_CRC_DONE | DE_POISON);
3319 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3320 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3321 			      DE_DP_A_HOTPLUG);
3322 	}
3323 
3324 	if (IS_HASWELL(dev_priv)) {
3325 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3326 		display_mask |= DE_EDP_PSR_INT_HSW;
3327 	}
3328 
3329 	dev_priv->irq_mask = ~display_mask;
3330 
3331 	ibx_irq_pre_postinstall(dev_priv);
3332 
3333 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3334 		      display_mask | extra_mask);
3335 
3336 	gen5_gt_irq_postinstall(&dev_priv->gt);
3337 
3338 	ilk_hpd_detection_setup(dev_priv);
3339 
3340 	ibx_irq_postinstall(dev_priv);
3341 
3342 	if (IS_IRONLAKE_M(dev_priv)) {
3343 		/* Enable PCU event interrupts
3344 		 *
3345 		 * spinlocking not required here for correctness since interrupt
3346 		 * setup is guaranteed to run in single-threaded context. But we
3347 		 * need it to make the assert_spin_locked happy. */
3348 		spin_lock_irq(&dev_priv->irq_lock);
3349 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3350 		spin_unlock_irq(&dev_priv->irq_lock);
3351 	}
3352 }
3353 
3354 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3355 {
3356 	lockdep_assert_held(&dev_priv->irq_lock);
3357 
3358 	if (dev_priv->display_irqs_enabled)
3359 		return;
3360 
3361 	dev_priv->display_irqs_enabled = true;
3362 
3363 	if (intel_irqs_enabled(dev_priv)) {
3364 		vlv_display_irq_reset(dev_priv);
3365 		vlv_display_irq_postinstall(dev_priv);
3366 	}
3367 }
3368 
3369 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3370 {
3371 	lockdep_assert_held(&dev_priv->irq_lock);
3372 
3373 	if (!dev_priv->display_irqs_enabled)
3374 		return;
3375 
3376 	dev_priv->display_irqs_enabled = false;
3377 
3378 	if (intel_irqs_enabled(dev_priv))
3379 		vlv_display_irq_reset(dev_priv);
3380 }
3381 
3382 
3383 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3384 {
3385 	gen5_gt_irq_postinstall(&dev_priv->gt);
3386 
3387 	spin_lock_irq(&dev_priv->irq_lock);
3388 	if (dev_priv->display_irqs_enabled)
3389 		vlv_display_irq_postinstall(dev_priv);
3390 	spin_unlock_irq(&dev_priv->irq_lock);
3391 
3392 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3393 	POSTING_READ(VLV_MASTER_IER);
3394 }
3395 
3396 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3397 {
3398 	struct intel_uncore *uncore = &dev_priv->uncore;
3399 
3400 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3401 		GEN8_PIPE_CDCLK_CRC_DONE;
3402 	u32 de_pipe_enables;
3403 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3404 	u32 de_port_enables;
3405 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3406 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3407 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3408 	enum pipe pipe;
3409 
3410 	if (INTEL_GEN(dev_priv) <= 10)
3411 		de_misc_masked |= GEN8_DE_MISC_GSE;
3412 
3413 	if (IS_GEN9_LP(dev_priv))
3414 		de_port_masked |= BXT_DE_PORT_GMBUS;
3415 
3416 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3417 					   GEN8_PIPE_FIFO_UNDERRUN;
3418 
3419 	de_port_enables = de_port_masked;
3420 	if (IS_GEN9_LP(dev_priv))
3421 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3422 	else if (IS_BROADWELL(dev_priv))
3423 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3424 
3425 	if (INTEL_GEN(dev_priv) >= 12) {
3426 		enum transcoder trans;
3427 
3428 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3429 			enum intel_display_power_domain domain;
3430 
3431 			domain = POWER_DOMAIN_TRANSCODER(trans);
3432 			if (!intel_display_power_is_enabled(dev_priv, domain))
3433 				continue;
3434 
3435 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3436 		}
3437 	} else {
3438 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3439 	}
3440 
3441 	for_each_pipe(dev_priv, pipe) {
3442 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3443 
3444 		if (intel_display_power_is_enabled(dev_priv,
3445 				POWER_DOMAIN_PIPE(pipe)))
3446 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3447 					  dev_priv->de_irq_mask[pipe],
3448 					  de_pipe_enables);
3449 	}
3450 
3451 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3452 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3453 
3454 	if (INTEL_GEN(dev_priv) >= 11) {
3455 		u32 de_hpd_masked = 0;
3456 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3457 				     GEN11_DE_TBT_HOTPLUG_MASK;
3458 
3459 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3460 			      de_hpd_enables);
3461 		gen11_hpd_detection_setup(dev_priv);
3462 	} else if (IS_GEN9_LP(dev_priv)) {
3463 		bxt_hpd_detection_setup(dev_priv);
3464 	} else if (IS_BROADWELL(dev_priv)) {
3465 		ilk_hpd_detection_setup(dev_priv);
3466 	}
3467 }
3468 
3469 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3470 {
3471 	if (HAS_PCH_SPLIT(dev_priv))
3472 		ibx_irq_pre_postinstall(dev_priv);
3473 
3474 	gen8_gt_irq_postinstall(&dev_priv->gt);
3475 	gen8_de_irq_postinstall(dev_priv);
3476 
3477 	if (HAS_PCH_SPLIT(dev_priv))
3478 		ibx_irq_postinstall(dev_priv);
3479 
3480 	gen8_master_intr_enable(dev_priv->uncore.regs);
3481 }
3482 
3483 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3484 {
3485 	u32 mask = SDE_GMBUS_ICP;
3486 
3487 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3488 	I915_WRITE(SDEIER, 0xffffffff);
3489 	POSTING_READ(SDEIER);
3490 
3491 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3492 	I915_WRITE(SDEIMR, ~mask);
3493 
3494 	if (HAS_PCH_TGP(dev_priv))
3495 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3496 					TGP_TC_HPD_ENABLE_MASK);
3497 	else if (HAS_PCH_JSP(dev_priv))
3498 		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3499 	else if (HAS_PCH_MCC(dev_priv))
3500 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3501 					ICP_TC_HPD_ENABLE(PORT_TC1));
3502 	else
3503 		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3504 					ICP_TC_HPD_ENABLE_MASK);
3505 }
3506 
3507 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3508 {
3509 	struct intel_uncore *uncore = &dev_priv->uncore;
3510 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3511 
3512 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3513 		icp_irq_postinstall(dev_priv);
3514 
3515 	gen11_gt_irq_postinstall(&dev_priv->gt);
3516 	gen8_de_irq_postinstall(dev_priv);
3517 
3518 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3519 
3520 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3521 
3522 	gen11_master_intr_enable(uncore->regs);
3523 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3524 }
3525 
3526 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3527 {
3528 	gen8_gt_irq_postinstall(&dev_priv->gt);
3529 
3530 	spin_lock_irq(&dev_priv->irq_lock);
3531 	if (dev_priv->display_irqs_enabled)
3532 		vlv_display_irq_postinstall(dev_priv);
3533 	spin_unlock_irq(&dev_priv->irq_lock);
3534 
3535 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3536 	POSTING_READ(GEN8_MASTER_IRQ);
3537 }
3538 
3539 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3540 {
3541 	struct intel_uncore *uncore = &dev_priv->uncore;
3542 
3543 	i9xx_pipestat_irq_reset(dev_priv);
3544 
3545 	GEN2_IRQ_RESET(uncore);
3546 }
3547 
3548 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3549 {
3550 	struct intel_uncore *uncore = &dev_priv->uncore;
3551 	u16 enable_mask;
3552 
3553 	intel_uncore_write16(uncore,
3554 			     EMR,
3555 			     ~(I915_ERROR_PAGE_TABLE |
3556 			       I915_ERROR_MEMORY_REFRESH));
3557 
3558 	/* Unmask the interrupts that we always want on. */
3559 	dev_priv->irq_mask =
3560 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3561 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3562 		  I915_MASTER_ERROR_INTERRUPT);
3563 
3564 	enable_mask =
3565 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3566 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3567 		I915_MASTER_ERROR_INTERRUPT |
3568 		I915_USER_INTERRUPT;
3569 
3570 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3571 
3572 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3573 	 * just to make the assert_spin_locked check happy. */
3574 	spin_lock_irq(&dev_priv->irq_lock);
3575 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3576 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3577 	spin_unlock_irq(&dev_priv->irq_lock);
3578 }
3579 
3580 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3581 			       u16 *eir, u16 *eir_stuck)
3582 {
3583 	struct intel_uncore *uncore = &i915->uncore;
3584 	u16 emr;
3585 
3586 	*eir = intel_uncore_read16(uncore, EIR);
3587 
3588 	if (*eir)
3589 		intel_uncore_write16(uncore, EIR, *eir);
3590 
3591 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3592 	if (*eir_stuck == 0)
3593 		return;
3594 
3595 	/*
3596 	 * Toggle all EMR bits to make sure we get an edge
3597 	 * in the ISR master error bit if we don't clear
3598 	 * all the EIR bits. Otherwise the edge triggered
3599 	 * IIR on i965/g4x wouldn't notice that an interrupt
3600 	 * is still pending. Also some EIR bits can't be
3601 	 * cleared except by handling the underlying error
3602 	 * (or by a GPU reset) so we mask any bit that
3603 	 * remains set.
3604 	 */
3605 	emr = intel_uncore_read16(uncore, EMR);
3606 	intel_uncore_write16(uncore, EMR, 0xffff);
3607 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3608 }
3609 
3610 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3611 				   u16 eir, u16 eir_stuck)
3612 {
3613 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3614 
3615 	if (eir_stuck)
3616 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3617 			eir_stuck);
3618 }
3619 
3620 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3621 			       u32 *eir, u32 *eir_stuck)
3622 {
3623 	u32 emr;
3624 
3625 	*eir = I915_READ(EIR);
3626 
3627 	I915_WRITE(EIR, *eir);
3628 
3629 	*eir_stuck = I915_READ(EIR);
3630 	if (*eir_stuck == 0)
3631 		return;
3632 
3633 	/*
3634 	 * Toggle all EMR bits to make sure we get an edge
3635 	 * in the ISR master error bit if we don't clear
3636 	 * all the EIR bits. Otherwise the edge triggered
3637 	 * IIR on i965/g4x wouldn't notice that an interrupt
3638 	 * is still pending. Also some EIR bits can't be
3639 	 * cleared except by handling the underlying error
3640 	 * (or by a GPU reset) so we mask any bit that
3641 	 * remains set.
3642 	 */
3643 	emr = I915_READ(EMR);
3644 	I915_WRITE(EMR, 0xffffffff);
3645 	I915_WRITE(EMR, emr | *eir_stuck);
3646 }
3647 
3648 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3649 				   u32 eir, u32 eir_stuck)
3650 {
3651 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3652 
3653 	if (eir_stuck)
3654 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3655 			eir_stuck);
3656 }
3657 
3658 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3659 {
3660 	struct drm_i915_private *dev_priv = arg;
3661 	irqreturn_t ret = IRQ_NONE;
3662 
3663 	if (!intel_irqs_enabled(dev_priv))
3664 		return IRQ_NONE;
3665 
3666 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3667 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3668 
3669 	do {
3670 		u32 pipe_stats[I915_MAX_PIPES] = {};
3671 		u16 eir = 0, eir_stuck = 0;
3672 		u16 iir;
3673 
3674 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3675 		if (iir == 0)
3676 			break;
3677 
3678 		ret = IRQ_HANDLED;
3679 
3680 		/* Call regardless, as some status bits might not be
3681 		 * signalled in iir */
3682 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3683 
3684 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3685 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3686 
3687 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3688 
3689 		if (iir & I915_USER_INTERRUPT)
3690 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3691 
3692 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3693 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3694 
3695 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3696 	} while (0);
3697 
3698 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3699 
3700 	return ret;
3701 }
3702 
3703 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3704 {
3705 	struct intel_uncore *uncore = &dev_priv->uncore;
3706 
3707 	if (I915_HAS_HOTPLUG(dev_priv)) {
3708 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3709 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3710 	}
3711 
3712 	i9xx_pipestat_irq_reset(dev_priv);
3713 
3714 	GEN3_IRQ_RESET(uncore, GEN2_);
3715 }
3716 
3717 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3718 {
3719 	struct intel_uncore *uncore = &dev_priv->uncore;
3720 	u32 enable_mask;
3721 
3722 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3723 			  I915_ERROR_MEMORY_REFRESH));
3724 
3725 	/* Unmask the interrupts that we always want on. */
3726 	dev_priv->irq_mask =
3727 		~(I915_ASLE_INTERRUPT |
3728 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3729 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3730 		  I915_MASTER_ERROR_INTERRUPT);
3731 
3732 	enable_mask =
3733 		I915_ASLE_INTERRUPT |
3734 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3735 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3736 		I915_MASTER_ERROR_INTERRUPT |
3737 		I915_USER_INTERRUPT;
3738 
3739 	if (I915_HAS_HOTPLUG(dev_priv)) {
3740 		/* Enable in IER... */
3741 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3742 		/* and unmask in IMR */
3743 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3744 	}
3745 
3746 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3747 
3748 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3749 	 * just to make the assert_spin_locked check happy. */
3750 	spin_lock_irq(&dev_priv->irq_lock);
3751 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3752 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3753 	spin_unlock_irq(&dev_priv->irq_lock);
3754 
3755 	i915_enable_asle_pipestat(dev_priv);
3756 }
3757 
3758 static irqreturn_t i915_irq_handler(int irq, void *arg)
3759 {
3760 	struct drm_i915_private *dev_priv = arg;
3761 	irqreturn_t ret = IRQ_NONE;
3762 
3763 	if (!intel_irqs_enabled(dev_priv))
3764 		return IRQ_NONE;
3765 
3766 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3767 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3768 
3769 	do {
3770 		u32 pipe_stats[I915_MAX_PIPES] = {};
3771 		u32 eir = 0, eir_stuck = 0;
3772 		u32 hotplug_status = 0;
3773 		u32 iir;
3774 
3775 		iir = I915_READ(GEN2_IIR);
3776 		if (iir == 0)
3777 			break;
3778 
3779 		ret = IRQ_HANDLED;
3780 
3781 		if (I915_HAS_HOTPLUG(dev_priv) &&
3782 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3783 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3784 
3785 		/* Call regardless, as some status bits might not be
3786 		 * signalled in iir */
3787 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3788 
3789 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3790 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3791 
3792 		I915_WRITE(GEN2_IIR, iir);
3793 
3794 		if (iir & I915_USER_INTERRUPT)
3795 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3796 
3797 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3798 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3799 
3800 		if (hotplug_status)
3801 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3802 
3803 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3804 	} while (0);
3805 
3806 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3807 
3808 	return ret;
3809 }
3810 
3811 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3812 {
3813 	struct intel_uncore *uncore = &dev_priv->uncore;
3814 
3815 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3816 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3817 
3818 	i9xx_pipestat_irq_reset(dev_priv);
3819 
3820 	GEN3_IRQ_RESET(uncore, GEN2_);
3821 }
3822 
3823 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3824 {
3825 	struct intel_uncore *uncore = &dev_priv->uncore;
3826 	u32 enable_mask;
3827 	u32 error_mask;
3828 
3829 	/*
3830 	 * Enable some error detection, note the instruction error mask
3831 	 * bit is reserved, so we leave it masked.
3832 	 */
3833 	if (IS_G4X(dev_priv)) {
3834 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3835 			       GM45_ERROR_MEM_PRIV |
3836 			       GM45_ERROR_CP_PRIV |
3837 			       I915_ERROR_MEMORY_REFRESH);
3838 	} else {
3839 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3840 			       I915_ERROR_MEMORY_REFRESH);
3841 	}
3842 	I915_WRITE(EMR, error_mask);
3843 
3844 	/* Unmask the interrupts that we always want on. */
3845 	dev_priv->irq_mask =
3846 		~(I915_ASLE_INTERRUPT |
3847 		  I915_DISPLAY_PORT_INTERRUPT |
3848 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850 		  I915_MASTER_ERROR_INTERRUPT);
3851 
3852 	enable_mask =
3853 		I915_ASLE_INTERRUPT |
3854 		I915_DISPLAY_PORT_INTERRUPT |
3855 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3856 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3857 		I915_MASTER_ERROR_INTERRUPT |
3858 		I915_USER_INTERRUPT;
3859 
3860 	if (IS_G4X(dev_priv))
3861 		enable_mask |= I915_BSD_USER_INTERRUPT;
3862 
3863 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3864 
3865 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3866 	 * just to make the assert_spin_locked check happy. */
3867 	spin_lock_irq(&dev_priv->irq_lock);
3868 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3869 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3870 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3871 	spin_unlock_irq(&dev_priv->irq_lock);
3872 
3873 	i915_enable_asle_pipestat(dev_priv);
3874 }
3875 
3876 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3877 {
3878 	u32 hotplug_en;
3879 
3880 	lockdep_assert_held(&dev_priv->irq_lock);
3881 
3882 	/* Note HDMI and DP share hotplug bits */
3883 	/* enable bits are the same for all generations */
3884 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3885 	/* Programming the CRT detection parameters tends
3886 	   to generate a spurious hotplug event about three
3887 	   seconds later.  So just do it once.
3888 	*/
3889 	if (IS_G4X(dev_priv))
3890 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3891 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3892 
3893 	/* Ignore TV since it's buggy */
3894 	i915_hotplug_interrupt_update_locked(dev_priv,
3895 					     HOTPLUG_INT_EN_MASK |
3896 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3897 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3898 					     hotplug_en);
3899 }
3900 
3901 static irqreturn_t i965_irq_handler(int irq, void *arg)
3902 {
3903 	struct drm_i915_private *dev_priv = arg;
3904 	irqreturn_t ret = IRQ_NONE;
3905 
3906 	if (!intel_irqs_enabled(dev_priv))
3907 		return IRQ_NONE;
3908 
3909 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3910 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3911 
3912 	do {
3913 		u32 pipe_stats[I915_MAX_PIPES] = {};
3914 		u32 eir = 0, eir_stuck = 0;
3915 		u32 hotplug_status = 0;
3916 		u32 iir;
3917 
3918 		iir = I915_READ(GEN2_IIR);
3919 		if (iir == 0)
3920 			break;
3921 
3922 		ret = IRQ_HANDLED;
3923 
3924 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3925 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3926 
3927 		/* Call regardless, as some status bits might not be
3928 		 * signalled in iir */
3929 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3930 
3931 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3932 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3933 
3934 		I915_WRITE(GEN2_IIR, iir);
3935 
3936 		if (iir & I915_USER_INTERRUPT)
3937 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3938 
3939 		if (iir & I915_BSD_USER_INTERRUPT)
3940 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3941 
3942 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3943 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3944 
3945 		if (hotplug_status)
3946 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3947 
3948 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3949 	} while (0);
3950 
3951 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3952 
3953 	return ret;
3954 }
3955 
3956 /**
3957  * intel_irq_init - initializes irq support
3958  * @dev_priv: i915 device instance
3959  *
3960  * This function initializes all the irq support including work items, timers
3961  * and all the vtables. It does not setup the interrupt itself though.
3962  */
3963 void intel_irq_init(struct drm_i915_private *dev_priv)
3964 {
3965 	struct drm_device *dev = &dev_priv->drm;
3966 	int i;
3967 
3968 	intel_hpd_init_pins(dev_priv);
3969 
3970 	intel_hpd_init_work(dev_priv);
3971 
3972 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3973 	for (i = 0; i < MAX_L3_SLICES; ++i)
3974 		dev_priv->l3_parity.remap_info[i] = NULL;
3975 
3976 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3977 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3978 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3979 
3980 	dev->vblank_disable_immediate = true;
3981 
3982 	/* Most platforms treat the display irq block as an always-on
3983 	 * power domain. vlv/chv can disable it at runtime and need
3984 	 * special care to avoid writing any of the display block registers
3985 	 * outside of the power domain. We defer setting up the display irqs
3986 	 * in this case to the runtime pm.
3987 	 */
3988 	dev_priv->display_irqs_enabled = true;
3989 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3990 		dev_priv->display_irqs_enabled = false;
3991 
3992 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3993 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
3994 	 * detection, as short HPD storms will occur as a natural part of
3995 	 * sideband messaging with MST.
3996 	 * On older platforms however, IRQ storms can occur with both long and
3997 	 * short pulses, as seen on some G4x systems.
3998 	 */
3999 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4000 
4001 	if (HAS_GMCH(dev_priv)) {
4002 		if (I915_HAS_HOTPLUG(dev_priv))
4003 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4004 	} else {
4005 		if (HAS_PCH_JSP(dev_priv))
4006 			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4007 		else if (HAS_PCH_MCC(dev_priv))
4008 			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4009 		else if (INTEL_GEN(dev_priv) >= 11)
4010 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4011 		else if (IS_GEN9_LP(dev_priv))
4012 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4013 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4014 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4015 		else
4016 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4017 	}
4018 }
4019 
4020 /**
4021  * intel_irq_fini - deinitializes IRQ support
4022  * @i915: i915 device instance
4023  *
4024  * This function deinitializes all the IRQ support.
4025  */
4026 void intel_irq_fini(struct drm_i915_private *i915)
4027 {
4028 	int i;
4029 
4030 	for (i = 0; i < MAX_L3_SLICES; ++i)
4031 		kfree(i915->l3_parity.remap_info[i]);
4032 }
4033 
4034 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4035 {
4036 	if (HAS_GMCH(dev_priv)) {
4037 		if (IS_CHERRYVIEW(dev_priv))
4038 			return cherryview_irq_handler;
4039 		else if (IS_VALLEYVIEW(dev_priv))
4040 			return valleyview_irq_handler;
4041 		else if (IS_GEN(dev_priv, 4))
4042 			return i965_irq_handler;
4043 		else if (IS_GEN(dev_priv, 3))
4044 			return i915_irq_handler;
4045 		else
4046 			return i8xx_irq_handler;
4047 	} else {
4048 		if (INTEL_GEN(dev_priv) >= 11)
4049 			return gen11_irq_handler;
4050 		else if (INTEL_GEN(dev_priv) >= 8)
4051 			return gen8_irq_handler;
4052 		else
4053 			return ilk_irq_handler;
4054 	}
4055 }
4056 
4057 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4058 {
4059 	if (HAS_GMCH(dev_priv)) {
4060 		if (IS_CHERRYVIEW(dev_priv))
4061 			cherryview_irq_reset(dev_priv);
4062 		else if (IS_VALLEYVIEW(dev_priv))
4063 			valleyview_irq_reset(dev_priv);
4064 		else if (IS_GEN(dev_priv, 4))
4065 			i965_irq_reset(dev_priv);
4066 		else if (IS_GEN(dev_priv, 3))
4067 			i915_irq_reset(dev_priv);
4068 		else
4069 			i8xx_irq_reset(dev_priv);
4070 	} else {
4071 		if (INTEL_GEN(dev_priv) >= 11)
4072 			gen11_irq_reset(dev_priv);
4073 		else if (INTEL_GEN(dev_priv) >= 8)
4074 			gen8_irq_reset(dev_priv);
4075 		else
4076 			ilk_irq_reset(dev_priv);
4077 	}
4078 }
4079 
4080 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4081 {
4082 	if (HAS_GMCH(dev_priv)) {
4083 		if (IS_CHERRYVIEW(dev_priv))
4084 			cherryview_irq_postinstall(dev_priv);
4085 		else if (IS_VALLEYVIEW(dev_priv))
4086 			valleyview_irq_postinstall(dev_priv);
4087 		else if (IS_GEN(dev_priv, 4))
4088 			i965_irq_postinstall(dev_priv);
4089 		else if (IS_GEN(dev_priv, 3))
4090 			i915_irq_postinstall(dev_priv);
4091 		else
4092 			i8xx_irq_postinstall(dev_priv);
4093 	} else {
4094 		if (INTEL_GEN(dev_priv) >= 11)
4095 			gen11_irq_postinstall(dev_priv);
4096 		else if (INTEL_GEN(dev_priv) >= 8)
4097 			gen8_irq_postinstall(dev_priv);
4098 		else
4099 			ilk_irq_postinstall(dev_priv);
4100 	}
4101 }
4102 
4103 /**
4104  * intel_irq_install - enables the hardware interrupt
4105  * @dev_priv: i915 device instance
4106  *
4107  * This function enables the hardware interrupt handling, but leaves the hotplug
4108  * handling still disabled. It is called after intel_irq_init().
4109  *
4110  * In the driver load and resume code we need working interrupts in a few places
4111  * but don't want to deal with the hassle of concurrent probe and hotplug
4112  * workers. Hence the split into this two-stage approach.
4113  */
4114 int intel_irq_install(struct drm_i915_private *dev_priv)
4115 {
4116 	int irq = dev_priv->drm.pdev->irq;
4117 	int ret;
4118 
4119 	/*
4120 	 * We enable some interrupt sources in our postinstall hooks, so mark
4121 	 * interrupts as enabled _before_ actually enabling them to avoid
4122 	 * special cases in our ordering checks.
4123 	 */
4124 	dev_priv->runtime_pm.irqs_enabled = true;
4125 
4126 	dev_priv->drm.irq_enabled = true;
4127 
4128 	intel_irq_reset(dev_priv);
4129 
4130 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4131 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4132 	if (ret < 0) {
4133 		dev_priv->drm.irq_enabled = false;
4134 		return ret;
4135 	}
4136 
4137 	intel_irq_postinstall(dev_priv);
4138 
4139 	return ret;
4140 }
4141 
4142 /**
4143  * intel_irq_uninstall - finilizes all irq handling
4144  * @dev_priv: i915 device instance
4145  *
4146  * This stops interrupt and hotplug handling and unregisters and frees all
4147  * resources acquired in the init functions.
4148  */
4149 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4150 {
4151 	int irq = dev_priv->drm.pdev->irq;
4152 
4153 	/*
4154 	 * FIXME we can get called twice during driver probe
4155 	 * error handling as well as during driver remove due to
4156 	 * intel_modeset_driver_remove() calling us out of sequence.
4157 	 * Would be nice if it didn't do that...
4158 	 */
4159 	if (!dev_priv->drm.irq_enabled)
4160 		return;
4161 
4162 	dev_priv->drm.irq_enabled = false;
4163 
4164 	intel_irq_reset(dev_priv);
4165 
4166 	free_irq(irq, dev_priv);
4167 
4168 	intel_hpd_cancel_work(dev_priv);
4169 	dev_priv->runtime_pm.irqs_enabled = false;
4170 }
4171 
4172 /**
4173  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4174  * @dev_priv: i915 device instance
4175  *
4176  * This function is used to disable interrupts at runtime, both in the runtime
4177  * pm and the system suspend/resume code.
4178  */
4179 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4180 {
4181 	intel_irq_reset(dev_priv);
4182 	dev_priv->runtime_pm.irqs_enabled = false;
4183 	intel_synchronize_irq(dev_priv);
4184 }
4185 
4186 /**
4187  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4188  * @dev_priv: i915 device instance
4189  *
4190  * This function is used to enable interrupts at runtime, both in the runtime
4191  * pm and the system suspend/resume code.
4192  */
4193 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4194 {
4195 	dev_priv->runtime_pm.irqs_enabled = true;
4196 	intel_irq_reset(dev_priv);
4197 	intel_irq_postinstall(dev_priv);
4198 }
4199 
4200 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4201 {
4202 	/*
4203 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4204 	 * this is the only thing we need to check.
4205 	 */
4206 	return dev_priv->runtime_pm.irqs_enabled;
4207 }
4208 
4209 void intel_synchronize_irq(struct drm_i915_private *i915)
4210 {
4211 	synchronize_irq(i915->drm.pdev->irq);
4212 }
4213