xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IMR(which)); \
87 	I915_WRITE(GEN8_##type##_IER(which), 0); \
88 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IIR(which)); \
90 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 	POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93 
94 #define GEN5_IRQ_RESET(type) do { \
95 	I915_WRITE(type##IMR, 0xffffffff); \
96 	POSTING_READ(type##IMR); \
97 	I915_WRITE(type##IER, 0); \
98 	I915_WRITE(type##IIR, 0xffffffff); \
99 	POSTING_READ(type##IIR); \
100 	I915_WRITE(type##IIR, 0xffffffff); \
101 	POSTING_READ(type##IIR); \
102 } while (0)
103 
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 	u32 val = I915_READ(reg); \
109 	if (val) { \
110 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 		     (reg), val); \
112 		I915_WRITE((reg), 0xffffffff); \
113 		POSTING_READ(reg); \
114 		I915_WRITE((reg), 0xffffffff); \
115 		POSTING_READ(reg); \
116 	} \
117 } while (0)
118 
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 	POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125 
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 	I915_WRITE(type##IMR, (imr_val)); \
129 	I915_WRITE(type##IER, (ier_val)); \
130 	POSTING_READ(type##IER); \
131 } while (0)
132 
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 	assert_spin_locked(&dev_priv->irq_lock);
138 
139 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 		return;
141 
142 	if ((dev_priv->irq_mask & mask) != 0) {
143 		dev_priv->irq_mask &= ~mask;
144 		I915_WRITE(DEIMR, dev_priv->irq_mask);
145 		POSTING_READ(DEIMR);
146 	}
147 }
148 
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 	assert_spin_locked(&dev_priv->irq_lock);
153 
154 	if (!intel_irqs_enabled(dev_priv))
155 		return;
156 
157 	if ((dev_priv->irq_mask & mask) != mask) {
158 		dev_priv->irq_mask |= mask;
159 		I915_WRITE(DEIMR, dev_priv->irq_mask);
160 		POSTING_READ(DEIMR);
161 	}
162 }
163 
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 			      uint32_t interrupt_mask,
172 			      uint32_t enabled_irq_mask)
173 {
174 	assert_spin_locked(&dev_priv->irq_lock);
175 
176 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 		return;
178 
179 	dev_priv->gt_irq_mask &= ~interrupt_mask;
180 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 	POSTING_READ(GTIMR);
183 }
184 
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189 
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 	ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194 
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 			      uint32_t interrupt_mask,
203 			      uint32_t enabled_irq_mask)
204 {
205 	uint32_t new_val;
206 
207 	assert_spin_locked(&dev_priv->irq_lock);
208 
209 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 		return;
211 
212 	new_val = dev_priv->pm_irq_mask;
213 	new_val &= ~interrupt_mask;
214 	new_val |= (~enabled_irq_mask & interrupt_mask);
215 
216 	if (new_val != dev_priv->pm_irq_mask) {
217 		dev_priv->pm_irq_mask = new_val;
218 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 		POSTING_READ(GEN6_PMIMR);
220 	}
221 }
222 
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, mask);
226 }
227 
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 	snb_update_pm_irq(dev_priv, mask, 0);
231 }
232 
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct intel_crtc *crtc;
237 	enum pipe pipe;
238 
239 	assert_spin_locked(&dev_priv->irq_lock);
240 
241 	for_each_pipe(pipe) {
242 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243 
244 		if (crtc->cpu_fifo_underrun_disabled)
245 			return false;
246 	}
247 
248 	return true;
249 }
250 
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	uint32_t new_val;
264 
265 	assert_spin_locked(&dev_priv->irq_lock);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	new_val = dev_priv->pm_irq_mask;
271 	new_val &= ~interrupt_mask;
272 	new_val |= (~enabled_irq_mask & interrupt_mask);
273 
274 	if (new_val != dev_priv->pm_irq_mask) {
275 		dev_priv->pm_irq_mask = new_val;
276 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 		POSTING_READ(GEN8_GT_IMR(2));
278 	}
279 }
280 
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285 
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 	bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290 
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 	struct drm_i915_private *dev_priv = dev->dev_private;
294 	enum pipe pipe;
295 	struct intel_crtc *crtc;
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	for_each_pipe(pipe) {
300 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301 
302 		if (crtc->pch_fifo_underrun_disabled)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 	struct intel_crtc *crtc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
316 
317 	for_each_intel_crtc(dev, crtc) {
318 		u32 reg = PIPESTAT(crtc->pipe);
319 		u32 pipestat;
320 
321 		if (crtc->cpu_fifo_underrun_disabled)
322 			continue;
323 
324 		pipestat = I915_READ(reg) & 0xffff0000;
325 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 			continue;
327 
328 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 		POSTING_READ(reg);
330 
331 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 	}
333 
334 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336 
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 					     enum pipe pipe,
339 					     bool enable, bool old)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	u32 reg = PIPESTAT(pipe);
343 	u32 pipestat = I915_READ(reg) & 0xffff0000;
344 
345 	assert_spin_locked(&dev_priv->irq_lock);
346 
347 	if (enable) {
348 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 		POSTING_READ(reg);
350 	} else {
351 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 	}
354 }
355 
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 						 enum pipe pipe, bool enable)
358 {
359 	struct drm_i915_private *dev_priv = dev->dev_private;
360 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 					  DE_PIPEB_FIFO_UNDERRUN;
362 
363 	if (enable)
364 		ironlake_enable_display_irq(dev_priv, bit);
365 	else
366 		ironlake_disable_display_irq(dev_priv, bit);
367 }
368 
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 						  enum pipe pipe,
371 						  bool enable, bool old)
372 {
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	if (enable) {
375 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376 
377 		if (!ivb_can_enable_err_int(dev))
378 			return;
379 
380 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 	} else {
382 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383 
384 		if (old &&
385 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 				  pipe_name(pipe));
388 		}
389 	}
390 }
391 
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 						  enum pipe pipe, bool enable)
394 {
395 	struct drm_i915_private *dev_priv = dev->dev_private;
396 
397 	assert_spin_locked(&dev_priv->irq_lock);
398 
399 	if (enable)
400 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 	else
402 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406 
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 					 uint32_t interrupt_mask,
415 					 uint32_t enabled_irq_mask)
416 {
417 	uint32_t sdeimr = I915_READ(SDEIMR);
418 	sdeimr &= ~interrupt_mask;
419 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 		return;
425 
426 	I915_WRITE(SDEIMR, sdeimr);
427 	POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 	ibx_display_interrupt_update((dev_priv), (bits), 0)
433 
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 					    enum transcoder pch_transcoder,
436 					    bool enable)
437 {
438 	struct drm_i915_private *dev_priv = dev->dev_private;
439 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441 
442 	if (enable)
443 		ibx_enable_display_interrupt(dev_priv, bit);
444 	else
445 		ibx_disable_display_interrupt(dev_priv, bit);
446 }
447 
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 					    enum transcoder pch_transcoder,
450 					    bool enable, bool old)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 
454 	if (enable) {
455 		I915_WRITE(SERR_INT,
456 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457 
458 		if (!cpt_can_enable_serr_int(dev))
459 			return;
460 
461 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 	} else {
463 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464 
465 		if (old && I915_READ(SERR_INT) &
466 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 				  transcoder_name(pch_transcoder));
469 		}
470 	}
471 }
472 
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 						    enum pipe pipe, bool enable)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 	bool old;
494 
495 	assert_spin_locked(&dev_priv->irq_lock);
496 
497 	old = !intel_crtc->cpu_fifo_underrun_disabled;
498 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
499 
500 	if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 	else if (IS_GEN5(dev) || IS_GEN6(dev))
503 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 	else if (IS_GEN7(dev))
505 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 	else if (IS_GEN8(dev))
507 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508 
509 	return old;
510 }
511 
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 					   enum pipe pipe, bool enable)
514 {
515 	struct drm_i915_private *dev_priv = dev->dev_private;
516 	unsigned long flags;
517 	bool ret;
518 
519 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522 
523 	return ret;
524 }
525 
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 						  enum pipe pipe)
528 {
529 	struct drm_i915_private *dev_priv = dev->dev_private;
530 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532 
533 	return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535 
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 					   enum transcoder pch_transcoder,
552 					   bool enable)
553 {
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 	unsigned long flags;
558 	bool old;
559 
560 	/*
561 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 	 * has only one pch transcoder A that all pipes can use. To avoid racy
563 	 * pch transcoder -> pipe lookups from interrupt code simply store the
564 	 * underrun statistics in crtc A. Since we never expose this anywhere
565 	 * nor use it outside of the fifo underrun code here using the "wrong"
566 	 * crtc on LPT won't cause issues.
567 	 */
568 
569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
570 
571 	old = !intel_crtc->pch_fifo_underrun_disabled;
572 	intel_crtc->pch_fifo_underrun_disabled = !enable;
573 
574 	if (HAS_PCH_IBX(dev))
575 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 	else
577 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578 
579 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 	return old;
581 }
582 
583 
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 		       u32 enable_mask, u32 status_mask)
587 {
588 	u32 reg = PIPESTAT(pipe);
589 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590 
591 	assert_spin_locked(&dev_priv->irq_lock);
592 
593 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 		      pipe_name(pipe), enable_mask, status_mask))
597 		return;
598 
599 	if ((pipestat & enable_mask) == enable_mask)
600 		return;
601 
602 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603 
604 	/* Enable the interrupt, clear any pending status */
605 	pipestat |= enable_mask | status_mask;
606 	I915_WRITE(reg, pipestat);
607 	POSTING_READ(reg);
608 }
609 
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 		        u32 enable_mask, u32 status_mask)
613 {
614 	u32 reg = PIPESTAT(pipe);
615 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616 
617 	assert_spin_locked(&dev_priv->irq_lock);
618 
619 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 		      pipe_name(pipe), enable_mask, status_mask))
623 		return;
624 
625 	if ((pipestat & enable_mask) == 0)
626 		return;
627 
628 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629 
630 	pipestat &= ~enable_mask;
631 	I915_WRITE(reg, pipestat);
632 	POSTING_READ(reg);
633 }
634 
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 	u32 enable_mask = status_mask << 16;
638 
639 	/*
640 	 * On pipe A we don't support the PSR interrupt yet,
641 	 * on pipe B and C the same bit MBZ.
642 	 */
643 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 		return 0;
645 	/*
646 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 	 * A the same bit is for perf counters which we don't use either.
648 	 */
649 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 		return 0;
651 
652 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659 
660 	return enable_mask;
661 }
662 
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 		     u32 status_mask)
666 {
667 	u32 enable_mask;
668 
669 	if (IS_VALLEYVIEW(dev_priv->dev))
670 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 							   status_mask);
672 	else
673 		enable_mask = status_mask << 16;
674 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676 
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 		      u32 status_mask)
680 {
681 	u32 enable_mask;
682 
683 	if (IS_VALLEYVIEW(dev_priv->dev))
684 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 							   status_mask);
686 	else
687 		enable_mask = status_mask << 16;
688 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690 
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 	struct drm_i915_private *dev_priv = dev->dev_private;
697 	unsigned long irqflags;
698 
699 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 		return;
701 
702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703 
704 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 	if (INTEL_INFO(dev)->gen >= 4)
706 		i915_enable_pipestat(dev_priv, PIPE_A,
707 				     PIPE_LEGACY_BLC_EVENT_STATUS);
708 
709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711 
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 
726 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 		/* Locking is horribly broken here, but whatever. */
728 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730 
731 		return intel_crtc->active;
732 	} else {
733 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 	}
735 }
736 
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786 
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 	/* Gen2 doesn't have a hardware frame counter */
790 	return 0;
791 }
792 
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	unsigned long high_frame;
800 	unsigned long low_frame;
801 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802 
803 	if (!i915_pipe_enabled(dev, pipe)) {
804 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 				"pipe %c\n", pipe_name(pipe));
806 		return 0;
807 	}
808 
809 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 		struct intel_crtc *intel_crtc =
811 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 		const struct drm_display_mode *mode =
813 			&intel_crtc->config.adjusted_mode;
814 
815 		htotal = mode->crtc_htotal;
816 		hsync_start = mode->crtc_hsync_start;
817 		vbl_start = mode->crtc_vblank_start;
818 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 	} else {
821 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
822 
823 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 	}
830 
831 	/* Convert to pixel count */
832 	vbl_start *= htotal;
833 
834 	/* Start of vblank event occurs at start of hsync */
835 	vbl_start -= htotal - hsync_start;
836 
837 	high_frame = PIPEFRAME(pipe);
838 	low_frame = PIPEFRAMEPIXEL(pipe);
839 
840 	/*
841 	 * High & low register fields aren't synchronized, so make sure
842 	 * we get a low value that's stable across two reads of the high
843 	 * register.
844 	 */
845 	do {
846 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 		low   = I915_READ(low_frame);
848 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 	} while (high1 != high2);
850 
851 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 	pixel = low & PIPE_PIXEL_MASK;
853 	low >>= PIPE_FRAME_LOW_SHIFT;
854 
855 	/*
856 	 * The frame counter increments at beginning of active.
857 	 * Cook up a vblank counter by also checking the pixel
858 	 * counter against vblank start.
859 	 */
860 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862 
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 	struct drm_i915_private *dev_priv = dev->dev_private;
866 	int reg = PIPE_FRMCOUNT_GM45(pipe);
867 
868 	if (!i915_pipe_enabled(dev, pipe)) {
869 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 				 "pipe %c\n", pipe_name(pipe));
871 		return 0;
872 	}
873 
874 	return I915_READ(reg);
875 }
876 
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879 
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 	struct drm_device *dev = crtc->base.dev;
883 	struct drm_i915_private *dev_priv = dev->dev_private;
884 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 	enum pipe pipe = crtc->pipe;
886 	int position, vtotal;
887 
888 	vtotal = mode->crtc_vtotal;
889 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 		vtotal /= 2;
891 
892 	if (IS_GEN2(dev))
893 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 	else
895 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896 
897 	/*
898 	 * See update_scanline_offset() for the details on the
899 	 * scanline_offset adjustment.
900 	 */
901 	return (position + crtc->scanline_offset) % vtotal;
902 }
903 
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 				    unsigned int flags, int *vpos, int *hpos,
906 				    ktime_t *stime, ktime_t *etime)
907 {
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 	int position;
913 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 	bool in_vbl = true;
915 	int ret = 0;
916 	unsigned long irqflags;
917 
918 	if (!intel_crtc->active) {
919 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 				 "pipe %c\n", pipe_name(pipe));
921 		return 0;
922 	}
923 
924 	htotal = mode->crtc_htotal;
925 	hsync_start = mode->crtc_hsync_start;
926 	vtotal = mode->crtc_vtotal;
927 	vbl_start = mode->crtc_vblank_start;
928 	vbl_end = mode->crtc_vblank_end;
929 
930 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 		vbl_end /= 2;
933 		vtotal /= 2;
934 	}
935 
936 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937 
938 	/*
939 	 * Lock uncore.lock, as we will do multiple timing critical raw
940 	 * register reads, potentially with preemption disabled, so the
941 	 * following code must not block on uncore.lock.
942 	 */
943 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944 
945 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946 
947 	/* Get optional system timestamp before query. */
948 	if (stime)
949 		*stime = ktime_get();
950 
951 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 		/* No obvious pixelcount register. Only query vertical
953 		 * scanout position from Display scan line register.
954 		 */
955 		position = __intel_get_crtc_scanline(intel_crtc);
956 	} else {
957 		/* Have access to pixelcount since start of frame.
958 		 * We can split this into vertical and horizontal
959 		 * scanout position.
960 		 */
961 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962 
963 		/* convert to pixel counts */
964 		vbl_start *= htotal;
965 		vbl_end *= htotal;
966 		vtotal *= htotal;
967 
968 		/*
969 		 * In interlaced modes, the pixel counter counts all pixels,
970 		 * so one field will have htotal more pixels. In order to avoid
971 		 * the reported position from jumping backwards when the pixel
972 		 * counter is beyond the length of the shorter field, just
973 		 * clamp the position the length of the shorter field. This
974 		 * matches how the scanline counter based position works since
975 		 * the scanline counter doesn't count the two half lines.
976 		 */
977 		if (position >= vtotal)
978 			position = vtotal - 1;
979 
980 		/*
981 		 * Start of vblank interrupt is triggered at start of hsync,
982 		 * just prior to the first active line of vblank. However we
983 		 * consider lines to start at the leading edge of horizontal
984 		 * active. So, should we get here before we've crossed into
985 		 * the horizontal active of the first line in vblank, we would
986 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 		 * always add htotal-hsync_start to the current pixel position.
988 		 */
989 		position = (position + htotal - hsync_start) % vtotal;
990 	}
991 
992 	/* Get optional system timestamp after query. */
993 	if (etime)
994 		*etime = ktime_get();
995 
996 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997 
998 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999 
1000 	in_vbl = position >= vbl_start && position < vbl_end;
1001 
1002 	/*
1003 	 * While in vblank, position will be negative
1004 	 * counting up towards 0 at vbl_end. And outside
1005 	 * vblank, position will be positive counting
1006 	 * up since vbl_end.
1007 	 */
1008 	if (position >= vbl_start)
1009 		position -= vbl_end;
1010 	else
1011 		position += vtotal - vbl_end;
1012 
1013 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 		*vpos = position;
1015 		*hpos = 0;
1016 	} else {
1017 		*vpos = position / htotal;
1018 		*hpos = position - (*vpos * htotal);
1019 	}
1020 
1021 	/* In vblank? */
1022 	if (in_vbl)
1023 		ret |= DRM_SCANOUTPOS_INVBL;
1024 
1025 	return ret;
1026 }
1027 
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 	unsigned long irqflags;
1032 	int position;
1033 
1034 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 	position = __intel_get_crtc_scanline(crtc);
1036 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037 
1038 	return position;
1039 }
1040 
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 			      int *max_error,
1043 			      struct timeval *vblank_time,
1044 			      unsigned flags)
1045 {
1046 	struct drm_crtc *crtc;
1047 
1048 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 		DRM_ERROR("Invalid crtc %d\n", pipe);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Get drm_crtc to timestamp: */
1054 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 	if (crtc == NULL) {
1056 		DRM_ERROR("Invalid crtc %d\n", pipe);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!crtc->enabled) {
1061 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 		return -EBUSY;
1063 	}
1064 
1065 	/* Helper routine in DRM core does all the work: */
1066 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 						     vblank_time, flags,
1068 						     crtc,
1069 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071 
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 				struct drm_connector *connector)
1074 {
1075 	enum drm_connector_status old_status;
1076 
1077 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 	old_status = connector->status;
1079 
1080 	connector->status = connector->funcs->detect(connector, false);
1081 	if (old_status == connector->status)
1082 		return false;
1083 
1084 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 		      connector->base.id,
1086 		      connector->name,
1087 		      drm_get_connector_status_name(old_status),
1088 		      drm_get_connector_status_name(connector->status));
1089 
1090 	return true;
1091 }
1092 
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 	struct drm_i915_private *dev_priv =
1096 		container_of(work, struct drm_i915_private, dig_port_work);
1097 	unsigned long irqflags;
1098 	u32 long_port_mask, short_port_mask;
1099 	struct intel_digital_port *intel_dig_port;
1100 	int i, ret;
1101 	u32 old_bits = 0;
1102 
1103 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 	long_port_mask = dev_priv->long_hpd_port_mask;
1105 	dev_priv->long_hpd_port_mask = 0;
1106 	short_port_mask = dev_priv->short_hpd_port_mask;
1107 	dev_priv->short_hpd_port_mask = 0;
1108 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109 
1110 	for (i = 0; i < I915_MAX_PORTS; i++) {
1111 		bool valid = false;
1112 		bool long_hpd = false;
1113 		intel_dig_port = dev_priv->hpd_irq_port[i];
1114 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 			continue;
1116 
1117 		if (long_port_mask & (1 << i))  {
1118 			valid = true;
1119 			long_hpd = true;
1120 		} else if (short_port_mask & (1 << i))
1121 			valid = true;
1122 
1123 		if (valid) {
1124 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 			if (ret == true) {
1126 				/* if we get true fallback to old school hpd */
1127 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 			}
1129 		}
1130 	}
1131 
1132 	if (old_bits) {
1133 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 		dev_priv->hpd_event_bits |= old_bits;
1135 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 		schedule_work(&dev_priv->hotplug_work);
1137 	}
1138 }
1139 
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144 
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 	struct drm_i915_private *dev_priv =
1148 		container_of(work, struct drm_i915_private, hotplug_work);
1149 	struct drm_device *dev = dev_priv->dev;
1150 	struct drm_mode_config *mode_config = &dev->mode_config;
1151 	struct intel_connector *intel_connector;
1152 	struct intel_encoder *intel_encoder;
1153 	struct drm_connector *connector;
1154 	unsigned long irqflags;
1155 	bool hpd_disabled = false;
1156 	bool changed = false;
1157 	u32 hpd_event_bits;
1158 
1159 	mutex_lock(&mode_config->mutex);
1160 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161 
1162 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163 
1164 	hpd_event_bits = dev_priv->hpd_event_bits;
1165 	dev_priv->hpd_event_bits = 0;
1166 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 		intel_connector = to_intel_connector(connector);
1168 		if (!intel_connector->encoder)
1169 			continue;
1170 		intel_encoder = intel_connector->encoder;
1171 		if (intel_encoder->hpd_pin > HPD_NONE &&
1172 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 				 "switching from hotplug detection to polling\n",
1176 				connector->name);
1177 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 				| DRM_CONNECTOR_POLL_DISCONNECT;
1180 			hpd_disabled = true;
1181 		}
1182 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 				      connector->name, intel_encoder->hpd_pin);
1185 		}
1186 	}
1187 	 /* if there were no outputs to poll, poll was disabled,
1188 	  * therefore make sure it's enabled when disabling HPD on
1189 	  * some connectors */
1190 	if (hpd_disabled) {
1191 		drm_kms_helper_poll_enable(dev);
1192 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 	}
1195 
1196 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197 
1198 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 		intel_connector = to_intel_connector(connector);
1200 		if (!intel_connector->encoder)
1201 			continue;
1202 		intel_encoder = intel_connector->encoder;
1203 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 			if (intel_encoder->hot_plug)
1205 				intel_encoder->hot_plug(intel_encoder);
1206 			if (intel_hpd_irq_event(dev, connector))
1207 				changed = true;
1208 		}
1209 	}
1210 	mutex_unlock(&mode_config->mutex);
1211 
1212 	if (changed)
1213 		drm_kms_helper_hotplug_event(dev);
1214 }
1215 
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 	struct drm_i915_private *dev_priv = dev->dev_private;
1219 	u32 busy_up, busy_down, max_avg, min_avg;
1220 	u8 new_delay;
1221 
1222 	spin_lock(&mchdev_lock);
1223 
1224 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225 
1226 	new_delay = dev_priv->ips.cur_delay;
1227 
1228 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 	max_avg = I915_READ(RCBMAXAVG);
1232 	min_avg = I915_READ(RCBMINAVG);
1233 
1234 	/* Handle RCS change request from hw */
1235 	if (busy_up > max_avg) {
1236 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 			new_delay = dev_priv->ips.cur_delay - 1;
1238 		if (new_delay < dev_priv->ips.max_delay)
1239 			new_delay = dev_priv->ips.max_delay;
1240 	} else if (busy_down < min_avg) {
1241 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 			new_delay = dev_priv->ips.cur_delay + 1;
1243 		if (new_delay > dev_priv->ips.min_delay)
1244 			new_delay = dev_priv->ips.min_delay;
1245 	}
1246 
1247 	if (ironlake_set_drps(dev, new_delay))
1248 		dev_priv->ips.cur_delay = new_delay;
1249 
1250 	spin_unlock(&mchdev_lock);
1251 
1252 	return;
1253 }
1254 
1255 static void notify_ring(struct drm_device *dev,
1256 			struct intel_engine_cs *ring)
1257 {
1258 	if (!intel_ring_initialized(ring))
1259 		return;
1260 
1261 	trace_i915_gem_request_complete(ring);
1262 
1263 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 		intel_notify_mmio_flip(ring);
1265 
1266 	wake_up_all(&ring->irq_queue);
1267 	i915_queue_hangcheck(dev);
1268 }
1269 
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 			    struct intel_rps_ei *rps_ei)
1272 {
1273 	u32 cz_ts, cz_freq_khz;
1274 	u32 render_count, media_count;
1275 	u32 elapsed_render, elapsed_media, elapsed_time;
1276 	u32 residency = 0;
1277 
1278 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280 
1281 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283 
1284 	if (rps_ei->cz_clock == 0) {
1285 		rps_ei->cz_clock = cz_ts;
1286 		rps_ei->render_c0 = render_count;
1287 		rps_ei->media_c0 = media_count;
1288 
1289 		return dev_priv->rps.cur_freq;
1290 	}
1291 
1292 	elapsed_time = cz_ts - rps_ei->cz_clock;
1293 	rps_ei->cz_clock = cz_ts;
1294 
1295 	elapsed_render = render_count - rps_ei->render_c0;
1296 	rps_ei->render_c0 = render_count;
1297 
1298 	elapsed_media = media_count - rps_ei->media_c0;
1299 	rps_ei->media_c0 = media_count;
1300 
1301 	/* Convert all the counters into common unit of milli sec */
1302 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 	elapsed_render /=  cz_freq_khz;
1304 	elapsed_media /= cz_freq_khz;
1305 
1306 	/*
1307 	 * Calculate overall C0 residency percentage
1308 	 * only if elapsed time is non zero
1309 	 */
1310 	if (elapsed_time) {
1311 		residency =
1312 			((max(elapsed_render, elapsed_media) * 100)
1313 				/ elapsed_time);
1314 	}
1315 
1316 	return residency;
1317 }
1318 
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
1325 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 	u32 residency_C0_up = 0, residency_C0_down = 0;
1328 	u8 new_delay, adj;
1329 
1330 	dev_priv->rps.ei_interrupt_count++;
1331 
1332 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333 
1334 
1335 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 		return dev_priv->rps.cur_freq;
1339 	}
1340 
1341 
1342 	/*
1343 	 * To down throttle, C0 residency should be less than down threshold
1344 	 * for continous EI intervals. So calculate down EI counters
1345 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 	 */
1347 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348 
1349 		dev_priv->rps.ei_interrupt_count = 0;
1350 
1351 		residency_C0_down = vlv_c0_residency(dev_priv,
1352 						     &dev_priv->rps.down_ei);
1353 	} else {
1354 		residency_C0_up = vlv_c0_residency(dev_priv,
1355 						   &dev_priv->rps.up_ei);
1356 	}
1357 
1358 	new_delay = dev_priv->rps.cur_freq;
1359 
1360 	adj = dev_priv->rps.last_adj;
1361 	/* C0 residency is greater than UP threshold. Increase Frequency */
1362 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 		if (adj > 0)
1364 			adj *= 2;
1365 		else
1366 			adj = 1;
1367 
1368 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 			new_delay = dev_priv->rps.cur_freq + adj;
1370 
1371 		/*
1372 		 * For better performance, jump directly
1373 		 * to RPe if we're below it.
1374 		 */
1375 		if (new_delay < dev_priv->rps.efficient_freq)
1376 			new_delay = dev_priv->rps.efficient_freq;
1377 
1378 	} else if (!dev_priv->rps.ei_interrupt_count &&
1379 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 		if (adj < 0)
1381 			adj *= 2;
1382 		else
1383 			adj = -1;
1384 		/*
1385 		 * This means, C0 residency is less than down threshold over
1386 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 		 */
1388 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 			new_delay = dev_priv->rps.cur_freq + adj;
1390 	}
1391 
1392 	return new_delay;
1393 }
1394 
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 	struct drm_i915_private *dev_priv =
1398 		container_of(work, struct drm_i915_private, rps.work);
1399 	u32 pm_iir;
1400 	int new_delay, adj;
1401 
1402 	spin_lock_irq(&dev_priv->irq_lock);
1403 	pm_iir = dev_priv->rps.pm_iir;
1404 	dev_priv->rps.pm_iir = 0;
1405 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 	else {
1408 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 	}
1411 	spin_unlock_irq(&dev_priv->irq_lock);
1412 
1413 	/* Make sure we didn't queue anything we're not going to process. */
1414 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415 
1416 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 		return;
1418 
1419 	mutex_lock(&dev_priv->rps.hw_lock);
1420 
1421 	adj = dev_priv->rps.last_adj;
1422 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 		if (adj > 0)
1424 			adj *= 2;
1425 		else {
1426 			/* CHV needs even encode values */
1427 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 		}
1429 		new_delay = dev_priv->rps.cur_freq + adj;
1430 
1431 		/*
1432 		 * For better performance, jump directly
1433 		 * to RPe if we're below it.
1434 		 */
1435 		if (new_delay < dev_priv->rps.efficient_freq)
1436 			new_delay = dev_priv->rps.efficient_freq;
1437 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 			new_delay = dev_priv->rps.efficient_freq;
1440 		else
1441 			new_delay = dev_priv->rps.min_freq_softlimit;
1442 		adj = 0;
1443 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 		if (adj < 0)
1447 			adj *= 2;
1448 		else {
1449 			/* CHV needs even encode values */
1450 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 		}
1452 		new_delay = dev_priv->rps.cur_freq + adj;
1453 	} else { /* unknown event */
1454 		new_delay = dev_priv->rps.cur_freq;
1455 	}
1456 
1457 	/* sysfs frequency interfaces may have snuck in while servicing the
1458 	 * interrupt
1459 	 */
1460 	new_delay = clamp_t(int, new_delay,
1461 			    dev_priv->rps.min_freq_softlimit,
1462 			    dev_priv->rps.max_freq_softlimit);
1463 
1464 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465 
1466 	if (IS_VALLEYVIEW(dev_priv->dev))
1467 		valleyview_set_rps(dev_priv->dev, new_delay);
1468 	else
1469 		gen6_set_rps(dev_priv->dev, new_delay);
1470 
1471 	mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473 
1474 
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 	struct drm_i915_private *dev_priv =
1487 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 	u32 error_status, row, bank, subbank;
1489 	char *parity_event[6];
1490 	uint32_t misccpctl;
1491 	unsigned long flags;
1492 	uint8_t slice = 0;
1493 
1494 	/* We must turn off DOP level clock gating to access the L3 registers.
1495 	 * In order to prevent a get/put style interface, acquire struct mutex
1496 	 * any time we access those registers.
1497 	 */
1498 	mutex_lock(&dev_priv->dev->struct_mutex);
1499 
1500 	/* If we've screwed up tracking, just let the interrupt fire again */
1501 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 		goto out;
1503 
1504 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 	POSTING_READ(GEN7_MISCCPCTL);
1507 
1508 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 		u32 reg;
1510 
1511 		slice--;
1512 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 			break;
1514 
1515 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516 
1517 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518 
1519 		error_status = I915_READ(reg);
1520 		row = GEN7_PARITY_ERROR_ROW(error_status);
1521 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523 
1524 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 		POSTING_READ(reg);
1526 
1527 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 		parity_event[5] = NULL;
1533 
1534 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 				   KOBJ_CHANGE, parity_event);
1536 
1537 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 			  slice, row, bank, subbank);
1539 
1540 		kfree(parity_event[4]);
1541 		kfree(parity_event[3]);
1542 		kfree(parity_event[2]);
1543 		kfree(parity_event[1]);
1544 	}
1545 
1546 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547 
1548 out:
1549 	WARN_ON(dev_priv->l3_parity.which_slice);
1550 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553 
1554 	mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556 
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 	struct drm_i915_private *dev_priv = dev->dev_private;
1560 
1561 	if (!HAS_L3_DPF(dev))
1562 		return;
1563 
1564 	spin_lock(&dev_priv->irq_lock);
1565 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 	spin_unlock(&dev_priv->irq_lock);
1567 
1568 	iir &= GT_PARITY_ERROR(dev);
1569 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 		dev_priv->l3_parity.which_slice |= 1 << 1;
1571 
1572 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 		dev_priv->l3_parity.which_slice |= 1 << 0;
1574 
1575 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577 
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 			       struct drm_i915_private *dev_priv,
1580 			       u32 gt_iir)
1581 {
1582 	if (gt_iir &
1583 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 		notify_ring(dev, &dev_priv->ring[RCS]);
1585 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 		notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588 
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 			       struct drm_i915_private *dev_priv,
1591 			       u32 gt_iir)
1592 {
1593 
1594 	if (gt_iir &
1595 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 		notify_ring(dev, &dev_priv->ring[RCS]);
1597 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 		notify_ring(dev, &dev_priv->ring[VCS]);
1599 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 		notify_ring(dev, &dev_priv->ring[BCS]);
1601 
1602 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 		      GT_BSD_CS_ERROR_INTERRUPT |
1604 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 				  gt_iir);
1607 	}
1608 
1609 	if (gt_iir & GT_PARITY_ERROR(dev))
1610 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612 
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 		return;
1617 
1618 	spin_lock(&dev_priv->irq_lock);
1619 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 	spin_unlock(&dev_priv->irq_lock);
1622 
1623 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625 
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 				       struct drm_i915_private *dev_priv,
1628 				       u32 master_ctl)
1629 {
1630 	u32 rcs, bcs, vcs;
1631 	uint32_t tmp = 0;
1632 	irqreturn_t ret = IRQ_NONE;
1633 
1634 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1635 		tmp = I915_READ(GEN8_GT_IIR(0));
1636 		if (tmp) {
1637 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1638 			ret = IRQ_HANDLED;
1639 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1640 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1641 			if (rcs & GT_RENDER_USER_INTERRUPT)
1642 				notify_ring(dev, &dev_priv->ring[RCS]);
1643 			if (bcs & GT_RENDER_USER_INTERRUPT)
1644 				notify_ring(dev, &dev_priv->ring[BCS]);
1645 		} else
1646 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1647 	}
1648 
1649 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1650 		tmp = I915_READ(GEN8_GT_IIR(1));
1651 		if (tmp) {
1652 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1653 			ret = IRQ_HANDLED;
1654 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1655 			if (vcs & GT_RENDER_USER_INTERRUPT)
1656 				notify_ring(dev, &dev_priv->ring[VCS]);
1657 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1658 			if (vcs & GT_RENDER_USER_INTERRUPT)
1659 				notify_ring(dev, &dev_priv->ring[VCS2]);
1660 		} else
1661 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1662 	}
1663 
1664 	if (master_ctl & GEN8_GT_PM_IRQ) {
1665 		tmp = I915_READ(GEN8_GT_IIR(2));
1666 		if (tmp & dev_priv->pm_rps_events) {
1667 			I915_WRITE(GEN8_GT_IIR(2),
1668 				   tmp & dev_priv->pm_rps_events);
1669 			ret = IRQ_HANDLED;
1670 			gen8_rps_irq_handler(dev_priv, tmp);
1671 		} else
1672 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1673 	}
1674 
1675 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1676 		tmp = I915_READ(GEN8_GT_IIR(3));
1677 		if (tmp) {
1678 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1679 			ret = IRQ_HANDLED;
1680 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1681 			if (vcs & GT_RENDER_USER_INTERRUPT)
1682 				notify_ring(dev, &dev_priv->ring[VECS]);
1683 		} else
1684 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1685 	}
1686 
1687 	return ret;
1688 }
1689 
1690 #define HPD_STORM_DETECT_PERIOD 1000
1691 #define HPD_STORM_THRESHOLD 5
1692 
1693 static int ilk_port_to_hotplug_shift(enum port port)
1694 {
1695 	switch (port) {
1696 	case PORT_A:
1697 	case PORT_E:
1698 	default:
1699 		return -1;
1700 	case PORT_B:
1701 		return 0;
1702 	case PORT_C:
1703 		return 8;
1704 	case PORT_D:
1705 		return 16;
1706 	}
1707 }
1708 
1709 static int g4x_port_to_hotplug_shift(enum port port)
1710 {
1711 	switch (port) {
1712 	case PORT_A:
1713 	case PORT_E:
1714 	default:
1715 		return -1;
1716 	case PORT_B:
1717 		return 17;
1718 	case PORT_C:
1719 		return 19;
1720 	case PORT_D:
1721 		return 21;
1722 	}
1723 }
1724 
1725 static inline enum port get_port_from_pin(enum hpd_pin pin)
1726 {
1727 	switch (pin) {
1728 	case HPD_PORT_B:
1729 		return PORT_B;
1730 	case HPD_PORT_C:
1731 		return PORT_C;
1732 	case HPD_PORT_D:
1733 		return PORT_D;
1734 	default:
1735 		return PORT_A; /* no hpd */
1736 	}
1737 }
1738 
1739 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1740 					 u32 hotplug_trigger,
1741 					 u32 dig_hotplug_reg,
1742 					 const u32 *hpd)
1743 {
1744 	struct drm_i915_private *dev_priv = dev->dev_private;
1745 	int i;
1746 	enum port port;
1747 	bool storm_detected = false;
1748 	bool queue_dig = false, queue_hp = false;
1749 	u32 dig_shift;
1750 	u32 dig_port_mask = 0;
1751 
1752 	if (!hotplug_trigger)
1753 		return;
1754 
1755 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1756 			 hotplug_trigger, dig_hotplug_reg);
1757 
1758 	spin_lock(&dev_priv->irq_lock);
1759 	for (i = 1; i < HPD_NUM_PINS; i++) {
1760 		if (!(hpd[i] & hotplug_trigger))
1761 			continue;
1762 
1763 		port = get_port_from_pin(i);
1764 		if (port && dev_priv->hpd_irq_port[port]) {
1765 			bool long_hpd;
1766 
1767 			if (IS_G4X(dev)) {
1768 				dig_shift = g4x_port_to_hotplug_shift(port);
1769 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1770 			} else {
1771 				dig_shift = ilk_port_to_hotplug_shift(port);
1772 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1773 			}
1774 
1775 			DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1776 			/* for long HPD pulses we want to have the digital queue happen,
1777 			   but we still want HPD storm detection to function. */
1778 			if (long_hpd) {
1779 				dev_priv->long_hpd_port_mask |= (1 << port);
1780 				dig_port_mask |= hpd[i];
1781 			} else {
1782 				/* for short HPD just trigger the digital queue */
1783 				dev_priv->short_hpd_port_mask |= (1 << port);
1784 				hotplug_trigger &= ~hpd[i];
1785 			}
1786 			queue_dig = true;
1787 		}
1788 	}
1789 
1790 	for (i = 1; i < HPD_NUM_PINS; i++) {
1791 		if (hpd[i] & hotplug_trigger &&
1792 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1793 			/*
1794 			 * On GMCH platforms the interrupt mask bits only
1795 			 * prevent irq generation, not the setting of the
1796 			 * hotplug bits itself. So only WARN about unexpected
1797 			 * interrupts on saner platforms.
1798 			 */
1799 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1800 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1801 				  hotplug_trigger, i, hpd[i]);
1802 
1803 			continue;
1804 		}
1805 
1806 		if (!(hpd[i] & hotplug_trigger) ||
1807 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1808 			continue;
1809 
1810 		if (!(dig_port_mask & hpd[i])) {
1811 			dev_priv->hpd_event_bits |= (1 << i);
1812 			queue_hp = true;
1813 		}
1814 
1815 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1816 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1817 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1818 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1819 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1820 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1821 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1822 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1823 			dev_priv->hpd_event_bits &= ~(1 << i);
1824 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1825 			storm_detected = true;
1826 		} else {
1827 			dev_priv->hpd_stats[i].hpd_cnt++;
1828 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1829 				      dev_priv->hpd_stats[i].hpd_cnt);
1830 		}
1831 	}
1832 
1833 	if (storm_detected)
1834 		dev_priv->display.hpd_irq_setup(dev);
1835 	spin_unlock(&dev_priv->irq_lock);
1836 
1837 	/*
1838 	 * Our hotplug handler can grab modeset locks (by calling down into the
1839 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1840 	 * queue for otherwise the flush_work in the pageflip code will
1841 	 * deadlock.
1842 	 */
1843 	if (queue_dig)
1844 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1845 	if (queue_hp)
1846 		schedule_work(&dev_priv->hotplug_work);
1847 }
1848 
1849 static void gmbus_irq_handler(struct drm_device *dev)
1850 {
1851 	struct drm_i915_private *dev_priv = dev->dev_private;
1852 
1853 	wake_up_all(&dev_priv->gmbus_wait_queue);
1854 }
1855 
1856 static void dp_aux_irq_handler(struct drm_device *dev)
1857 {
1858 	struct drm_i915_private *dev_priv = dev->dev_private;
1859 
1860 	wake_up_all(&dev_priv->gmbus_wait_queue);
1861 }
1862 
1863 #if defined(CONFIG_DEBUG_FS)
1864 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1865 					 uint32_t crc0, uint32_t crc1,
1866 					 uint32_t crc2, uint32_t crc3,
1867 					 uint32_t crc4)
1868 {
1869 	struct drm_i915_private *dev_priv = dev->dev_private;
1870 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1871 	struct intel_pipe_crc_entry *entry;
1872 	int head, tail;
1873 
1874 	spin_lock(&pipe_crc->lock);
1875 
1876 	if (!pipe_crc->entries) {
1877 		spin_unlock(&pipe_crc->lock);
1878 		DRM_ERROR("spurious interrupt\n");
1879 		return;
1880 	}
1881 
1882 	head = pipe_crc->head;
1883 	tail = pipe_crc->tail;
1884 
1885 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1886 		spin_unlock(&pipe_crc->lock);
1887 		DRM_ERROR("CRC buffer overflowing\n");
1888 		return;
1889 	}
1890 
1891 	entry = &pipe_crc->entries[head];
1892 
1893 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1894 	entry->crc[0] = crc0;
1895 	entry->crc[1] = crc1;
1896 	entry->crc[2] = crc2;
1897 	entry->crc[3] = crc3;
1898 	entry->crc[4] = crc4;
1899 
1900 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1901 	pipe_crc->head = head;
1902 
1903 	spin_unlock(&pipe_crc->lock);
1904 
1905 	wake_up_interruptible(&pipe_crc->wq);
1906 }
1907 #else
1908 static inline void
1909 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1910 			     uint32_t crc0, uint32_t crc1,
1911 			     uint32_t crc2, uint32_t crc3,
1912 			     uint32_t crc4) {}
1913 #endif
1914 
1915 
1916 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1917 {
1918 	struct drm_i915_private *dev_priv = dev->dev_private;
1919 
1920 	display_pipe_crc_irq_handler(dev, pipe,
1921 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1922 				     0, 0, 0, 0);
1923 }
1924 
1925 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1926 {
1927 	struct drm_i915_private *dev_priv = dev->dev_private;
1928 
1929 	display_pipe_crc_irq_handler(dev, pipe,
1930 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1931 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1932 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1933 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1934 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1935 }
1936 
1937 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1938 {
1939 	struct drm_i915_private *dev_priv = dev->dev_private;
1940 	uint32_t res1, res2;
1941 
1942 	if (INTEL_INFO(dev)->gen >= 3)
1943 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1944 	else
1945 		res1 = 0;
1946 
1947 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1948 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1949 	else
1950 		res2 = 0;
1951 
1952 	display_pipe_crc_irq_handler(dev, pipe,
1953 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1954 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1955 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1956 				     res1, res2);
1957 }
1958 
1959 /* The RPS events need forcewake, so we add them to a work queue and mask their
1960  * IMR bits until the work is done. Other interrupts can be processed without
1961  * the work queue. */
1962 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1963 {
1964 	if (pm_iir & dev_priv->pm_rps_events) {
1965 		spin_lock(&dev_priv->irq_lock);
1966 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1967 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1968 		spin_unlock(&dev_priv->irq_lock);
1969 
1970 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1971 	}
1972 
1973 	if (HAS_VEBOX(dev_priv->dev)) {
1974 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1975 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1976 
1977 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1978 			i915_handle_error(dev_priv->dev, false,
1979 					  "VEBOX CS error interrupt 0x%08x",
1980 					  pm_iir);
1981 		}
1982 	}
1983 }
1984 
1985 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1986 {
1987 	struct intel_crtc *crtc;
1988 
1989 	if (!drm_handle_vblank(dev, pipe))
1990 		return false;
1991 
1992 	crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1993 	wake_up(&crtc->vbl_wait);
1994 
1995 	return true;
1996 }
1997 
1998 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1999 {
2000 	struct drm_i915_private *dev_priv = dev->dev_private;
2001 	u32 pipe_stats[I915_MAX_PIPES] = { };
2002 	int pipe;
2003 
2004 	spin_lock(&dev_priv->irq_lock);
2005 	for_each_pipe(pipe) {
2006 		int reg;
2007 		u32 mask, iir_bit = 0;
2008 
2009 		/*
2010 		 * PIPESTAT bits get signalled even when the interrupt is
2011 		 * disabled with the mask bits, and some of the status bits do
2012 		 * not generate interrupts at all (like the underrun bit). Hence
2013 		 * we need to be careful that we only handle what we want to
2014 		 * handle.
2015 		 */
2016 		mask = 0;
2017 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2018 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2019 
2020 		switch (pipe) {
2021 		case PIPE_A:
2022 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2023 			break;
2024 		case PIPE_B:
2025 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2026 			break;
2027 		case PIPE_C:
2028 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2029 			break;
2030 		}
2031 		if (iir & iir_bit)
2032 			mask |= dev_priv->pipestat_irq_mask[pipe];
2033 
2034 		if (!mask)
2035 			continue;
2036 
2037 		reg = PIPESTAT(pipe);
2038 		mask |= PIPESTAT_INT_ENABLE_MASK;
2039 		pipe_stats[pipe] = I915_READ(reg) & mask;
2040 
2041 		/*
2042 		 * Clear the PIPE*STAT regs before the IIR
2043 		 */
2044 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2045 					PIPESTAT_INT_STATUS_MASK))
2046 			I915_WRITE(reg, pipe_stats[pipe]);
2047 	}
2048 	spin_unlock(&dev_priv->irq_lock);
2049 
2050 	for_each_pipe(pipe) {
2051 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2052 			intel_pipe_handle_vblank(dev, pipe);
2053 
2054 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2055 			intel_prepare_page_flip(dev, pipe);
2056 			intel_finish_page_flip(dev, pipe);
2057 		}
2058 
2059 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2060 			i9xx_pipe_crc_irq_handler(dev, pipe);
2061 
2062 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2063 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2064 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2065 	}
2066 
2067 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2068 		gmbus_irq_handler(dev);
2069 }
2070 
2071 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2072 {
2073 	struct drm_i915_private *dev_priv = dev->dev_private;
2074 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2075 
2076 	if (hotplug_status) {
2077 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2078 		/*
2079 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2080 		 * may miss hotplug events.
2081 		 */
2082 		POSTING_READ(PORT_HOTPLUG_STAT);
2083 
2084 		if (IS_G4X(dev)) {
2085 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2086 
2087 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2088 		} else {
2089 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090 
2091 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2092 		}
2093 
2094 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2095 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2096 			dp_aux_irq_handler(dev);
2097 	}
2098 }
2099 
2100 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2101 {
2102 	struct drm_device *dev = arg;
2103 	struct drm_i915_private *dev_priv = dev->dev_private;
2104 	u32 iir, gt_iir, pm_iir;
2105 	irqreturn_t ret = IRQ_NONE;
2106 
2107 	while (true) {
2108 		/* Find, clear, then process each source of interrupt */
2109 
2110 		gt_iir = I915_READ(GTIIR);
2111 		if (gt_iir)
2112 			I915_WRITE(GTIIR, gt_iir);
2113 
2114 		pm_iir = I915_READ(GEN6_PMIIR);
2115 		if (pm_iir)
2116 			I915_WRITE(GEN6_PMIIR, pm_iir);
2117 
2118 		iir = I915_READ(VLV_IIR);
2119 		if (iir) {
2120 			/* Consume port before clearing IIR or we'll miss events */
2121 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2122 				i9xx_hpd_irq_handler(dev);
2123 			I915_WRITE(VLV_IIR, iir);
2124 		}
2125 
2126 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2127 			goto out;
2128 
2129 		ret = IRQ_HANDLED;
2130 
2131 		if (gt_iir)
2132 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2133 		if (pm_iir)
2134 			gen6_rps_irq_handler(dev_priv, pm_iir);
2135 		/* Call regardless, as some status bits might not be
2136 		 * signalled in iir */
2137 		valleyview_pipestat_irq_handler(dev, iir);
2138 	}
2139 
2140 out:
2141 	return ret;
2142 }
2143 
2144 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2145 {
2146 	struct drm_device *dev = arg;
2147 	struct drm_i915_private *dev_priv = dev->dev_private;
2148 	u32 master_ctl, iir;
2149 	irqreturn_t ret = IRQ_NONE;
2150 
2151 	for (;;) {
2152 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2153 		iir = I915_READ(VLV_IIR);
2154 
2155 		if (master_ctl == 0 && iir == 0)
2156 			break;
2157 
2158 		ret = IRQ_HANDLED;
2159 
2160 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2161 
2162 		/* Find, clear, then process each source of interrupt */
2163 
2164 		if (iir) {
2165 			/* Consume port before clearing IIR or we'll miss events */
2166 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2167 				i9xx_hpd_irq_handler(dev);
2168 			I915_WRITE(VLV_IIR, iir);
2169 		}
2170 
2171 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2172 
2173 		/* Call regardless, as some status bits might not be
2174 		 * signalled in iir */
2175 		valleyview_pipestat_irq_handler(dev, iir);
2176 
2177 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2178 		POSTING_READ(GEN8_MASTER_IRQ);
2179 	}
2180 
2181 	return ret;
2182 }
2183 
2184 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2185 {
2186 	struct drm_i915_private *dev_priv = dev->dev_private;
2187 	int pipe;
2188 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2189 	u32 dig_hotplug_reg;
2190 
2191 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2192 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2193 
2194 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2195 
2196 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2197 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2198 			       SDE_AUDIO_POWER_SHIFT);
2199 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2200 				 port_name(port));
2201 	}
2202 
2203 	if (pch_iir & SDE_AUX_MASK)
2204 		dp_aux_irq_handler(dev);
2205 
2206 	if (pch_iir & SDE_GMBUS)
2207 		gmbus_irq_handler(dev);
2208 
2209 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2210 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2211 
2212 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2213 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2214 
2215 	if (pch_iir & SDE_POISON)
2216 		DRM_ERROR("PCH poison interrupt\n");
2217 
2218 	if (pch_iir & SDE_FDI_MASK)
2219 		for_each_pipe(pipe)
2220 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2221 					 pipe_name(pipe),
2222 					 I915_READ(FDI_RX_IIR(pipe)));
2223 
2224 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2225 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2226 
2227 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2228 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2229 
2230 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2231 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2232 							  false))
2233 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2234 
2235 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2236 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2237 							  false))
2238 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2239 }
2240 
2241 static void ivb_err_int_handler(struct drm_device *dev)
2242 {
2243 	struct drm_i915_private *dev_priv = dev->dev_private;
2244 	u32 err_int = I915_READ(GEN7_ERR_INT);
2245 	enum pipe pipe;
2246 
2247 	if (err_int & ERR_INT_POISON)
2248 		DRM_ERROR("Poison interrupt\n");
2249 
2250 	for_each_pipe(pipe) {
2251 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2252 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2253 								  false))
2254 				DRM_ERROR("Pipe %c FIFO underrun\n",
2255 					  pipe_name(pipe));
2256 		}
2257 
2258 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2259 			if (IS_IVYBRIDGE(dev))
2260 				ivb_pipe_crc_irq_handler(dev, pipe);
2261 			else
2262 				hsw_pipe_crc_irq_handler(dev, pipe);
2263 		}
2264 	}
2265 
2266 	I915_WRITE(GEN7_ERR_INT, err_int);
2267 }
2268 
2269 static void cpt_serr_int_handler(struct drm_device *dev)
2270 {
2271 	struct drm_i915_private *dev_priv = dev->dev_private;
2272 	u32 serr_int = I915_READ(SERR_INT);
2273 
2274 	if (serr_int & SERR_INT_POISON)
2275 		DRM_ERROR("PCH poison interrupt\n");
2276 
2277 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2278 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2279 							  false))
2280 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2281 
2282 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2283 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2284 							  false))
2285 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2286 
2287 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2288 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2289 							  false))
2290 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2291 
2292 	I915_WRITE(SERR_INT, serr_int);
2293 }
2294 
2295 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2296 {
2297 	struct drm_i915_private *dev_priv = dev->dev_private;
2298 	int pipe;
2299 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2300 	u32 dig_hotplug_reg;
2301 
2302 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2303 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2304 
2305 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2306 
2307 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2308 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2309 			       SDE_AUDIO_POWER_SHIFT_CPT);
2310 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2311 				 port_name(port));
2312 	}
2313 
2314 	if (pch_iir & SDE_AUX_MASK_CPT)
2315 		dp_aux_irq_handler(dev);
2316 
2317 	if (pch_iir & SDE_GMBUS_CPT)
2318 		gmbus_irq_handler(dev);
2319 
2320 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2321 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2322 
2323 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2324 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2325 
2326 	if (pch_iir & SDE_FDI_MASK_CPT)
2327 		for_each_pipe(pipe)
2328 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2329 					 pipe_name(pipe),
2330 					 I915_READ(FDI_RX_IIR(pipe)));
2331 
2332 	if (pch_iir & SDE_ERROR_CPT)
2333 		cpt_serr_int_handler(dev);
2334 }
2335 
2336 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2337 {
2338 	struct drm_i915_private *dev_priv = dev->dev_private;
2339 	enum pipe pipe;
2340 
2341 	if (de_iir & DE_AUX_CHANNEL_A)
2342 		dp_aux_irq_handler(dev);
2343 
2344 	if (de_iir & DE_GSE)
2345 		intel_opregion_asle_intr(dev);
2346 
2347 	if (de_iir & DE_POISON)
2348 		DRM_ERROR("Poison interrupt\n");
2349 
2350 	for_each_pipe(pipe) {
2351 		if (de_iir & DE_PIPE_VBLANK(pipe))
2352 			intel_pipe_handle_vblank(dev, pipe);
2353 
2354 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2355 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2356 				DRM_ERROR("Pipe %c FIFO underrun\n",
2357 					  pipe_name(pipe));
2358 
2359 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2360 			i9xx_pipe_crc_irq_handler(dev, pipe);
2361 
2362 		/* plane/pipes map 1:1 on ilk+ */
2363 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2364 			intel_prepare_page_flip(dev, pipe);
2365 			intel_finish_page_flip_plane(dev, pipe);
2366 		}
2367 	}
2368 
2369 	/* check event from PCH */
2370 	if (de_iir & DE_PCH_EVENT) {
2371 		u32 pch_iir = I915_READ(SDEIIR);
2372 
2373 		if (HAS_PCH_CPT(dev))
2374 			cpt_irq_handler(dev, pch_iir);
2375 		else
2376 			ibx_irq_handler(dev, pch_iir);
2377 
2378 		/* should clear PCH hotplug event before clear CPU irq */
2379 		I915_WRITE(SDEIIR, pch_iir);
2380 	}
2381 
2382 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2383 		ironlake_rps_change_irq_handler(dev);
2384 }
2385 
2386 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2387 {
2388 	struct drm_i915_private *dev_priv = dev->dev_private;
2389 	enum pipe pipe;
2390 
2391 	if (de_iir & DE_ERR_INT_IVB)
2392 		ivb_err_int_handler(dev);
2393 
2394 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2395 		dp_aux_irq_handler(dev);
2396 
2397 	if (de_iir & DE_GSE_IVB)
2398 		intel_opregion_asle_intr(dev);
2399 
2400 	for_each_pipe(pipe) {
2401 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2402 			intel_pipe_handle_vblank(dev, pipe);
2403 
2404 		/* plane/pipes map 1:1 on ilk+ */
2405 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2406 			intel_prepare_page_flip(dev, pipe);
2407 			intel_finish_page_flip_plane(dev, pipe);
2408 		}
2409 	}
2410 
2411 	/* check event from PCH */
2412 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2413 		u32 pch_iir = I915_READ(SDEIIR);
2414 
2415 		cpt_irq_handler(dev, pch_iir);
2416 
2417 		/* clear PCH hotplug event before clear CPU irq */
2418 		I915_WRITE(SDEIIR, pch_iir);
2419 	}
2420 }
2421 
2422 /*
2423  * To handle irqs with the minimum potential races with fresh interrupts, we:
2424  * 1 - Disable Master Interrupt Control.
2425  * 2 - Find the source(s) of the interrupt.
2426  * 3 - Clear the Interrupt Identity bits (IIR).
2427  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2428  * 5 - Re-enable Master Interrupt Control.
2429  */
2430 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2431 {
2432 	struct drm_device *dev = arg;
2433 	struct drm_i915_private *dev_priv = dev->dev_private;
2434 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2435 	irqreturn_t ret = IRQ_NONE;
2436 
2437 	/* We get interrupts on unclaimed registers, so check for this before we
2438 	 * do any I915_{READ,WRITE}. */
2439 	intel_uncore_check_errors(dev);
2440 
2441 	/* disable master interrupt before clearing iir  */
2442 	de_ier = I915_READ(DEIER);
2443 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2444 	POSTING_READ(DEIER);
2445 
2446 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2447 	 * interrupts will will be stored on its back queue, and then we'll be
2448 	 * able to process them after we restore SDEIER (as soon as we restore
2449 	 * it, we'll get an interrupt if SDEIIR still has something to process
2450 	 * due to its back queue). */
2451 	if (!HAS_PCH_NOP(dev)) {
2452 		sde_ier = I915_READ(SDEIER);
2453 		I915_WRITE(SDEIER, 0);
2454 		POSTING_READ(SDEIER);
2455 	}
2456 
2457 	/* Find, clear, then process each source of interrupt */
2458 
2459 	gt_iir = I915_READ(GTIIR);
2460 	if (gt_iir) {
2461 		I915_WRITE(GTIIR, gt_iir);
2462 		ret = IRQ_HANDLED;
2463 		if (INTEL_INFO(dev)->gen >= 6)
2464 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2465 		else
2466 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2467 	}
2468 
2469 	de_iir = I915_READ(DEIIR);
2470 	if (de_iir) {
2471 		I915_WRITE(DEIIR, de_iir);
2472 		ret = IRQ_HANDLED;
2473 		if (INTEL_INFO(dev)->gen >= 7)
2474 			ivb_display_irq_handler(dev, de_iir);
2475 		else
2476 			ilk_display_irq_handler(dev, de_iir);
2477 	}
2478 
2479 	if (INTEL_INFO(dev)->gen >= 6) {
2480 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2481 		if (pm_iir) {
2482 			I915_WRITE(GEN6_PMIIR, pm_iir);
2483 			ret = IRQ_HANDLED;
2484 			gen6_rps_irq_handler(dev_priv, pm_iir);
2485 		}
2486 	}
2487 
2488 	I915_WRITE(DEIER, de_ier);
2489 	POSTING_READ(DEIER);
2490 	if (!HAS_PCH_NOP(dev)) {
2491 		I915_WRITE(SDEIER, sde_ier);
2492 		POSTING_READ(SDEIER);
2493 	}
2494 
2495 	return ret;
2496 }
2497 
2498 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2499 {
2500 	struct drm_device *dev = arg;
2501 	struct drm_i915_private *dev_priv = dev->dev_private;
2502 	u32 master_ctl;
2503 	irqreturn_t ret = IRQ_NONE;
2504 	uint32_t tmp = 0;
2505 	enum pipe pipe;
2506 
2507 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2508 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2509 	if (!master_ctl)
2510 		return IRQ_NONE;
2511 
2512 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2513 	POSTING_READ(GEN8_MASTER_IRQ);
2514 
2515 	/* Find, clear, then process each source of interrupt */
2516 
2517 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2518 
2519 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2520 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2521 		if (tmp) {
2522 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2523 			ret = IRQ_HANDLED;
2524 			if (tmp & GEN8_DE_MISC_GSE)
2525 				intel_opregion_asle_intr(dev);
2526 			else
2527 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2528 		}
2529 		else
2530 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2531 	}
2532 
2533 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2534 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2535 		if (tmp) {
2536 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2537 			ret = IRQ_HANDLED;
2538 			if (tmp & GEN8_AUX_CHANNEL_A)
2539 				dp_aux_irq_handler(dev);
2540 			else
2541 				DRM_ERROR("Unexpected DE Port interrupt\n");
2542 		}
2543 		else
2544 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2545 	}
2546 
2547 	for_each_pipe(pipe) {
2548 		uint32_t pipe_iir;
2549 
2550 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2551 			continue;
2552 
2553 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2554 		if (pipe_iir) {
2555 			ret = IRQ_HANDLED;
2556 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2557 			if (pipe_iir & GEN8_PIPE_VBLANK)
2558 				intel_pipe_handle_vblank(dev, pipe);
2559 
2560 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2561 				intel_prepare_page_flip(dev, pipe);
2562 				intel_finish_page_flip_plane(dev, pipe);
2563 			}
2564 
2565 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2566 				hsw_pipe_crc_irq_handler(dev, pipe);
2567 
2568 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2569 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2570 									  false))
2571 					DRM_ERROR("Pipe %c FIFO underrun\n",
2572 						  pipe_name(pipe));
2573 			}
2574 
2575 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2576 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2577 					  pipe_name(pipe),
2578 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2579 			}
2580 		} else
2581 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2582 	}
2583 
2584 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2585 		/*
2586 		 * FIXME(BDW): Assume for now that the new interrupt handling
2587 		 * scheme also closed the SDE interrupt handling race we've seen
2588 		 * on older pch-split platforms. But this needs testing.
2589 		 */
2590 		u32 pch_iir = I915_READ(SDEIIR);
2591 		if (pch_iir) {
2592 			I915_WRITE(SDEIIR, pch_iir);
2593 			ret = IRQ_HANDLED;
2594 			cpt_irq_handler(dev, pch_iir);
2595 		} else
2596 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2597 
2598 	}
2599 
2600 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2601 	POSTING_READ(GEN8_MASTER_IRQ);
2602 
2603 	return ret;
2604 }
2605 
2606 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2607 			       bool reset_completed)
2608 {
2609 	struct intel_engine_cs *ring;
2610 	int i;
2611 
2612 	/*
2613 	 * Notify all waiters for GPU completion events that reset state has
2614 	 * been changed, and that they need to restart their wait after
2615 	 * checking for potential errors (and bail out to drop locks if there is
2616 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2617 	 */
2618 
2619 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2620 	for_each_ring(ring, dev_priv, i)
2621 		wake_up_all(&ring->irq_queue);
2622 
2623 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2624 	wake_up_all(&dev_priv->pending_flip_queue);
2625 
2626 	/*
2627 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2628 	 * reset state is cleared.
2629 	 */
2630 	if (reset_completed)
2631 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2632 }
2633 
2634 /**
2635  * i915_error_work_func - do process context error handling work
2636  * @work: work struct
2637  *
2638  * Fire an error uevent so userspace can see that a hang or error
2639  * was detected.
2640  */
2641 static void i915_error_work_func(struct work_struct *work)
2642 {
2643 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2644 						    work);
2645 	struct drm_i915_private *dev_priv =
2646 		container_of(error, struct drm_i915_private, gpu_error);
2647 	struct drm_device *dev = dev_priv->dev;
2648 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2649 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2650 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2651 	int ret;
2652 
2653 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2654 
2655 	/*
2656 	 * Note that there's only one work item which does gpu resets, so we
2657 	 * need not worry about concurrent gpu resets potentially incrementing
2658 	 * error->reset_counter twice. We only need to take care of another
2659 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2660 	 * quick check for that is good enough: schedule_work ensures the
2661 	 * correct ordering between hang detection and this work item, and since
2662 	 * the reset in-progress bit is only ever set by code outside of this
2663 	 * work we don't need to worry about any other races.
2664 	 */
2665 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2666 		DRM_DEBUG_DRIVER("resetting chip\n");
2667 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2668 				   reset_event);
2669 
2670 		/*
2671 		 * In most cases it's guaranteed that we get here with an RPM
2672 		 * reference held, for example because there is a pending GPU
2673 		 * request that won't finish until the reset is done. This
2674 		 * isn't the case at least when we get here by doing a
2675 		 * simulated reset via debugs, so get an RPM reference.
2676 		 */
2677 		intel_runtime_pm_get(dev_priv);
2678 		/*
2679 		 * All state reset _must_ be completed before we update the
2680 		 * reset counter, for otherwise waiters might miss the reset
2681 		 * pending state and not properly drop locks, resulting in
2682 		 * deadlocks with the reset work.
2683 		 */
2684 		ret = i915_reset(dev);
2685 
2686 		intel_display_handle_reset(dev);
2687 
2688 		intel_runtime_pm_put(dev_priv);
2689 
2690 		if (ret == 0) {
2691 			/*
2692 			 * After all the gem state is reset, increment the reset
2693 			 * counter and wake up everyone waiting for the reset to
2694 			 * complete.
2695 			 *
2696 			 * Since unlock operations are a one-sided barrier only,
2697 			 * we need to insert a barrier here to order any seqno
2698 			 * updates before
2699 			 * the counter increment.
2700 			 */
2701 			smp_mb__before_atomic();
2702 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2703 
2704 			kobject_uevent_env(&dev->primary->kdev->kobj,
2705 					   KOBJ_CHANGE, reset_done_event);
2706 		} else {
2707 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2708 		}
2709 
2710 		/*
2711 		 * Note: The wake_up also serves as a memory barrier so that
2712 		 * waiters see the update value of the reset counter atomic_t.
2713 		 */
2714 		i915_error_wake_up(dev_priv, true);
2715 	}
2716 }
2717 
2718 static void i915_report_and_clear_eir(struct drm_device *dev)
2719 {
2720 	struct drm_i915_private *dev_priv = dev->dev_private;
2721 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2722 	u32 eir = I915_READ(EIR);
2723 	int pipe, i;
2724 
2725 	if (!eir)
2726 		return;
2727 
2728 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2729 
2730 	i915_get_extra_instdone(dev, instdone);
2731 
2732 	if (IS_G4X(dev)) {
2733 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2734 			u32 ipeir = I915_READ(IPEIR_I965);
2735 
2736 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2737 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2738 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2739 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2740 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2741 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2742 			I915_WRITE(IPEIR_I965, ipeir);
2743 			POSTING_READ(IPEIR_I965);
2744 		}
2745 		if (eir & GM45_ERROR_PAGE_TABLE) {
2746 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2747 			pr_err("page table error\n");
2748 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2749 			I915_WRITE(PGTBL_ER, pgtbl_err);
2750 			POSTING_READ(PGTBL_ER);
2751 		}
2752 	}
2753 
2754 	if (!IS_GEN2(dev)) {
2755 		if (eir & I915_ERROR_PAGE_TABLE) {
2756 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2757 			pr_err("page table error\n");
2758 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2759 			I915_WRITE(PGTBL_ER, pgtbl_err);
2760 			POSTING_READ(PGTBL_ER);
2761 		}
2762 	}
2763 
2764 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2765 		pr_err("memory refresh error:\n");
2766 		for_each_pipe(pipe)
2767 			pr_err("pipe %c stat: 0x%08x\n",
2768 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2769 		/* pipestat has already been acked */
2770 	}
2771 	if (eir & I915_ERROR_INSTRUCTION) {
2772 		pr_err("instruction error\n");
2773 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2774 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2775 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2776 		if (INTEL_INFO(dev)->gen < 4) {
2777 			u32 ipeir = I915_READ(IPEIR);
2778 
2779 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2780 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2781 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2782 			I915_WRITE(IPEIR, ipeir);
2783 			POSTING_READ(IPEIR);
2784 		} else {
2785 			u32 ipeir = I915_READ(IPEIR_I965);
2786 
2787 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2788 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2789 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2790 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2791 			I915_WRITE(IPEIR_I965, ipeir);
2792 			POSTING_READ(IPEIR_I965);
2793 		}
2794 	}
2795 
2796 	I915_WRITE(EIR, eir);
2797 	POSTING_READ(EIR);
2798 	eir = I915_READ(EIR);
2799 	if (eir) {
2800 		/*
2801 		 * some errors might have become stuck,
2802 		 * mask them.
2803 		 */
2804 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2805 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2806 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2807 	}
2808 }
2809 
2810 /**
2811  * i915_handle_error - handle an error interrupt
2812  * @dev: drm device
2813  *
2814  * Do some basic checking of regsiter state at error interrupt time and
2815  * dump it to the syslog.  Also call i915_capture_error_state() to make
2816  * sure we get a record and make it available in debugfs.  Fire a uevent
2817  * so userspace knows something bad happened (should trigger collection
2818  * of a ring dump etc.).
2819  */
2820 void i915_handle_error(struct drm_device *dev, bool wedged,
2821 		       const char *fmt, ...)
2822 {
2823 	struct drm_i915_private *dev_priv = dev->dev_private;
2824 	va_list args;
2825 	char error_msg[80];
2826 
2827 	va_start(args, fmt);
2828 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2829 	va_end(args);
2830 
2831 	i915_capture_error_state(dev, wedged, error_msg);
2832 	i915_report_and_clear_eir(dev);
2833 
2834 	if (wedged) {
2835 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2836 				&dev_priv->gpu_error.reset_counter);
2837 
2838 		/*
2839 		 * Wakeup waiting processes so that the reset work function
2840 		 * i915_error_work_func doesn't deadlock trying to grab various
2841 		 * locks. By bumping the reset counter first, the woken
2842 		 * processes will see a reset in progress and back off,
2843 		 * releasing their locks and then wait for the reset completion.
2844 		 * We must do this for _all_ gpu waiters that might hold locks
2845 		 * that the reset work needs to acquire.
2846 		 *
2847 		 * Note: The wake_up serves as the required memory barrier to
2848 		 * ensure that the waiters see the updated value of the reset
2849 		 * counter atomic_t.
2850 		 */
2851 		i915_error_wake_up(dev_priv, false);
2852 	}
2853 
2854 	/*
2855 	 * Our reset work can grab modeset locks (since it needs to reset the
2856 	 * state of outstanding pagelips). Hence it must not be run on our own
2857 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2858 	 * code will deadlock.
2859 	 */
2860 	schedule_work(&dev_priv->gpu_error.work);
2861 }
2862 
2863 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2864 {
2865 	struct drm_i915_private *dev_priv = dev->dev_private;
2866 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2867 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2868 	struct drm_i915_gem_object *obj;
2869 	struct intel_unpin_work *work;
2870 	unsigned long flags;
2871 	bool stall_detected;
2872 
2873 	/* Ignore early vblank irqs */
2874 	if (intel_crtc == NULL)
2875 		return;
2876 
2877 	spin_lock_irqsave(&dev->event_lock, flags);
2878 	work = intel_crtc->unpin_work;
2879 
2880 	if (work == NULL ||
2881 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2882 	    !work->enable_stall_check) {
2883 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2884 		spin_unlock_irqrestore(&dev->event_lock, flags);
2885 		return;
2886 	}
2887 
2888 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2889 	obj = work->pending_flip_obj;
2890 	if (INTEL_INFO(dev)->gen >= 4) {
2891 		int dspsurf = DSPSURF(intel_crtc->plane);
2892 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2893 					i915_gem_obj_ggtt_offset(obj);
2894 	} else {
2895 		int dspaddr = DSPADDR(intel_crtc->plane);
2896 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2897 							crtc->y * crtc->primary->fb->pitches[0] +
2898 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2899 	}
2900 
2901 	spin_unlock_irqrestore(&dev->event_lock, flags);
2902 
2903 	if (stall_detected) {
2904 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2905 		intel_prepare_page_flip(dev, intel_crtc->plane);
2906 	}
2907 }
2908 
2909 /* Called from drm generic code, passed 'crtc' which
2910  * we use as a pipe index
2911  */
2912 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2913 {
2914 	struct drm_i915_private *dev_priv = dev->dev_private;
2915 	unsigned long irqflags;
2916 
2917 	if (!i915_pipe_enabled(dev, pipe))
2918 		return -EINVAL;
2919 
2920 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2921 	if (INTEL_INFO(dev)->gen >= 4)
2922 		i915_enable_pipestat(dev_priv, pipe,
2923 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2924 	else
2925 		i915_enable_pipestat(dev_priv, pipe,
2926 				     PIPE_VBLANK_INTERRUPT_STATUS);
2927 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2928 
2929 	return 0;
2930 }
2931 
2932 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2933 {
2934 	struct drm_i915_private *dev_priv = dev->dev_private;
2935 	unsigned long irqflags;
2936 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2937 						     DE_PIPE_VBLANK(pipe);
2938 
2939 	if (!i915_pipe_enabled(dev, pipe))
2940 		return -EINVAL;
2941 
2942 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2943 	ironlake_enable_display_irq(dev_priv, bit);
2944 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2945 
2946 	return 0;
2947 }
2948 
2949 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2950 {
2951 	struct drm_i915_private *dev_priv = dev->dev_private;
2952 	unsigned long irqflags;
2953 
2954 	if (!i915_pipe_enabled(dev, pipe))
2955 		return -EINVAL;
2956 
2957 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2958 	i915_enable_pipestat(dev_priv, pipe,
2959 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2960 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2961 
2962 	return 0;
2963 }
2964 
2965 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2966 {
2967 	struct drm_i915_private *dev_priv = dev->dev_private;
2968 	unsigned long irqflags;
2969 
2970 	if (!i915_pipe_enabled(dev, pipe))
2971 		return -EINVAL;
2972 
2973 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2974 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2975 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2976 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2977 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978 	return 0;
2979 }
2980 
2981 /* Called from drm generic code, passed 'crtc' which
2982  * we use as a pipe index
2983  */
2984 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 	struct drm_i915_private *dev_priv = dev->dev_private;
2987 	unsigned long irqflags;
2988 
2989 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990 	i915_disable_pipestat(dev_priv, pipe,
2991 			      PIPE_VBLANK_INTERRUPT_STATUS |
2992 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2993 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2994 }
2995 
2996 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2997 {
2998 	struct drm_i915_private *dev_priv = dev->dev_private;
2999 	unsigned long irqflags;
3000 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3001 						     DE_PIPE_VBLANK(pipe);
3002 
3003 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004 	ironlake_disable_display_irq(dev_priv, bit);
3005 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3006 }
3007 
3008 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3009 {
3010 	struct drm_i915_private *dev_priv = dev->dev_private;
3011 	unsigned long irqflags;
3012 
3013 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3014 	i915_disable_pipestat(dev_priv, pipe,
3015 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3016 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3017 }
3018 
3019 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3020 {
3021 	struct drm_i915_private *dev_priv = dev->dev_private;
3022 	unsigned long irqflags;
3023 
3024 	if (!i915_pipe_enabled(dev, pipe))
3025 		return;
3026 
3027 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3028 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3029 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3030 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3031 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3032 }
3033 
3034 static u32
3035 ring_last_seqno(struct intel_engine_cs *ring)
3036 {
3037 	return list_entry(ring->request_list.prev,
3038 			  struct drm_i915_gem_request, list)->seqno;
3039 }
3040 
3041 static bool
3042 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3043 {
3044 	return (list_empty(&ring->request_list) ||
3045 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
3046 }
3047 
3048 static bool
3049 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3050 {
3051 	if (INTEL_INFO(dev)->gen >= 8) {
3052 		return (ipehr >> 23) == 0x1c;
3053 	} else {
3054 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3055 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3056 				 MI_SEMAPHORE_REGISTER);
3057 	}
3058 }
3059 
3060 static struct intel_engine_cs *
3061 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3062 {
3063 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3064 	struct intel_engine_cs *signaller;
3065 	int i;
3066 
3067 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3068 		for_each_ring(signaller, dev_priv, i) {
3069 			if (ring == signaller)
3070 				continue;
3071 
3072 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3073 				return signaller;
3074 		}
3075 	} else {
3076 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3077 
3078 		for_each_ring(signaller, dev_priv, i) {
3079 			if(ring == signaller)
3080 				continue;
3081 
3082 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3083 				return signaller;
3084 		}
3085 	}
3086 
3087 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3088 		  ring->id, ipehr, offset);
3089 
3090 	return NULL;
3091 }
3092 
3093 static struct intel_engine_cs *
3094 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3095 {
3096 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3097 	u32 cmd, ipehr, head;
3098 	u64 offset = 0;
3099 	int i, backwards;
3100 
3101 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3102 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3103 		return NULL;
3104 
3105 	/*
3106 	 * HEAD is likely pointing to the dword after the actual command,
3107 	 * so scan backwards until we find the MBOX. But limit it to just 3
3108 	 * or 4 dwords depending on the semaphore wait command size.
3109 	 * Note that we don't care about ACTHD here since that might
3110 	 * point at at batch, and semaphores are always emitted into the
3111 	 * ringbuffer itself.
3112 	 */
3113 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3114 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3115 
3116 	for (i = backwards; i; --i) {
3117 		/*
3118 		 * Be paranoid and presume the hw has gone off into the wild -
3119 		 * our ring is smaller than what the hardware (and hence
3120 		 * HEAD_ADDR) allows. Also handles wrap-around.
3121 		 */
3122 		head &= ring->buffer->size - 1;
3123 
3124 		/* This here seems to blow up */
3125 		cmd = ioread32(ring->buffer->virtual_start + head);
3126 		if (cmd == ipehr)
3127 			break;
3128 
3129 		head -= 4;
3130 	}
3131 
3132 	if (!i)
3133 		return NULL;
3134 
3135 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3136 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3137 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3138 		offset <<= 32;
3139 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3140 	}
3141 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3142 }
3143 
3144 static int semaphore_passed(struct intel_engine_cs *ring)
3145 {
3146 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3147 	struct intel_engine_cs *signaller;
3148 	u32 seqno;
3149 
3150 	ring->hangcheck.deadlock++;
3151 
3152 	signaller = semaphore_waits_for(ring, &seqno);
3153 	if (signaller == NULL)
3154 		return -1;
3155 
3156 	/* Prevent pathological recursion due to driver bugs */
3157 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3158 		return -1;
3159 
3160 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3161 		return 1;
3162 
3163 	/* cursory check for an unkickable deadlock */
3164 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3165 	    semaphore_passed(signaller) < 0)
3166 		return -1;
3167 
3168 	return 0;
3169 }
3170 
3171 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3172 {
3173 	struct intel_engine_cs *ring;
3174 	int i;
3175 
3176 	for_each_ring(ring, dev_priv, i)
3177 		ring->hangcheck.deadlock = 0;
3178 }
3179 
3180 static enum intel_ring_hangcheck_action
3181 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3182 {
3183 	struct drm_device *dev = ring->dev;
3184 	struct drm_i915_private *dev_priv = dev->dev_private;
3185 	u32 tmp;
3186 
3187 	if (acthd != ring->hangcheck.acthd) {
3188 		if (acthd > ring->hangcheck.max_acthd) {
3189 			ring->hangcheck.max_acthd = acthd;
3190 			return HANGCHECK_ACTIVE;
3191 		}
3192 
3193 		return HANGCHECK_ACTIVE_LOOP;
3194 	}
3195 
3196 	if (IS_GEN2(dev))
3197 		return HANGCHECK_HUNG;
3198 
3199 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3200 	 * If so we can simply poke the RB_WAIT bit
3201 	 * and break the hang. This should work on
3202 	 * all but the second generation chipsets.
3203 	 */
3204 	tmp = I915_READ_CTL(ring);
3205 	if (tmp & RING_WAIT) {
3206 		i915_handle_error(dev, false,
3207 				  "Kicking stuck wait on %s",
3208 				  ring->name);
3209 		I915_WRITE_CTL(ring, tmp);
3210 		return HANGCHECK_KICK;
3211 	}
3212 
3213 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3214 		switch (semaphore_passed(ring)) {
3215 		default:
3216 			return HANGCHECK_HUNG;
3217 		case 1:
3218 			i915_handle_error(dev, false,
3219 					  "Kicking stuck semaphore on %s",
3220 					  ring->name);
3221 			I915_WRITE_CTL(ring, tmp);
3222 			return HANGCHECK_KICK;
3223 		case 0:
3224 			return HANGCHECK_WAIT;
3225 		}
3226 	}
3227 
3228 	return HANGCHECK_HUNG;
3229 }
3230 
3231 /**
3232  * This is called when the chip hasn't reported back with completed
3233  * batchbuffers in a long time. We keep track per ring seqno progress and
3234  * if there are no progress, hangcheck score for that ring is increased.
3235  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3236  * we kick the ring. If we see no progress on three subsequent calls
3237  * we assume chip is wedged and try to fix it by resetting the chip.
3238  */
3239 static void i915_hangcheck_elapsed(unsigned long data)
3240 {
3241 	struct drm_device *dev = (struct drm_device *)data;
3242 	struct drm_i915_private *dev_priv = dev->dev_private;
3243 	struct intel_engine_cs *ring;
3244 	int i;
3245 	int busy_count = 0, rings_hung = 0;
3246 	bool stuck[I915_NUM_RINGS] = { 0 };
3247 #define BUSY 1
3248 #define KICK 5
3249 #define HUNG 20
3250 
3251 	if (!i915.enable_hangcheck)
3252 		return;
3253 
3254 	for_each_ring(ring, dev_priv, i) {
3255 		u64 acthd;
3256 		u32 seqno;
3257 		bool busy = true;
3258 
3259 		semaphore_clear_deadlocks(dev_priv);
3260 
3261 		seqno = ring->get_seqno(ring, false);
3262 		acthd = intel_ring_get_active_head(ring);
3263 
3264 		if (ring->hangcheck.seqno == seqno) {
3265 			if (ring_idle(ring, seqno)) {
3266 				ring->hangcheck.action = HANGCHECK_IDLE;
3267 
3268 				if (waitqueue_active(&ring->irq_queue)) {
3269 					/* Issue a wake-up to catch stuck h/w. */
3270 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3271 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3272 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3273 								  ring->name);
3274 						else
3275 							DRM_INFO("Fake missed irq on %s\n",
3276 								 ring->name);
3277 						wake_up_all(&ring->irq_queue);
3278 					}
3279 					/* Safeguard against driver failure */
3280 					ring->hangcheck.score += BUSY;
3281 				} else
3282 					busy = false;
3283 			} else {
3284 				/* We always increment the hangcheck score
3285 				 * if the ring is busy and still processing
3286 				 * the same request, so that no single request
3287 				 * can run indefinitely (such as a chain of
3288 				 * batches). The only time we do not increment
3289 				 * the hangcheck score on this ring, if this
3290 				 * ring is in a legitimate wait for another
3291 				 * ring. In that case the waiting ring is a
3292 				 * victim and we want to be sure we catch the
3293 				 * right culprit. Then every time we do kick
3294 				 * the ring, add a small increment to the
3295 				 * score so that we can catch a batch that is
3296 				 * being repeatedly kicked and so responsible
3297 				 * for stalling the machine.
3298 				 */
3299 				ring->hangcheck.action = ring_stuck(ring,
3300 								    acthd);
3301 
3302 				switch (ring->hangcheck.action) {
3303 				case HANGCHECK_IDLE:
3304 				case HANGCHECK_WAIT:
3305 				case HANGCHECK_ACTIVE:
3306 					break;
3307 				case HANGCHECK_ACTIVE_LOOP:
3308 					ring->hangcheck.score += BUSY;
3309 					break;
3310 				case HANGCHECK_KICK:
3311 					ring->hangcheck.score += KICK;
3312 					break;
3313 				case HANGCHECK_HUNG:
3314 					ring->hangcheck.score += HUNG;
3315 					stuck[i] = true;
3316 					break;
3317 				}
3318 			}
3319 		} else {
3320 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3321 
3322 			/* Gradually reduce the count so that we catch DoS
3323 			 * attempts across multiple batches.
3324 			 */
3325 			if (ring->hangcheck.score > 0)
3326 				ring->hangcheck.score--;
3327 
3328 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3329 		}
3330 
3331 		ring->hangcheck.seqno = seqno;
3332 		ring->hangcheck.acthd = acthd;
3333 		busy_count += busy;
3334 	}
3335 
3336 	for_each_ring(ring, dev_priv, i) {
3337 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3338 			DRM_INFO("%s on %s\n",
3339 				 stuck[i] ? "stuck" : "no progress",
3340 				 ring->name);
3341 			rings_hung++;
3342 		}
3343 	}
3344 
3345 	if (rings_hung)
3346 		return i915_handle_error(dev, true, "Ring hung");
3347 
3348 	if (busy_count)
3349 		/* Reset timer case chip hangs without another request
3350 		 * being added */
3351 		i915_queue_hangcheck(dev);
3352 }
3353 
3354 void i915_queue_hangcheck(struct drm_device *dev)
3355 {
3356 	struct drm_i915_private *dev_priv = dev->dev_private;
3357 	if (!i915.enable_hangcheck)
3358 		return;
3359 
3360 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3361 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3362 }
3363 
3364 static void ibx_irq_reset(struct drm_device *dev)
3365 {
3366 	struct drm_i915_private *dev_priv = dev->dev_private;
3367 
3368 	if (HAS_PCH_NOP(dev))
3369 		return;
3370 
3371 	GEN5_IRQ_RESET(SDE);
3372 
3373 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3374 		I915_WRITE(SERR_INT, 0xffffffff);
3375 }
3376 
3377 /*
3378  * SDEIER is also touched by the interrupt handler to work around missed PCH
3379  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3380  * instead we unconditionally enable all PCH interrupt sources here, but then
3381  * only unmask them as needed with SDEIMR.
3382  *
3383  * This function needs to be called before interrupts are enabled.
3384  */
3385 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3386 {
3387 	struct drm_i915_private *dev_priv = dev->dev_private;
3388 
3389 	if (HAS_PCH_NOP(dev))
3390 		return;
3391 
3392 	WARN_ON(I915_READ(SDEIER) != 0);
3393 	I915_WRITE(SDEIER, 0xffffffff);
3394 	POSTING_READ(SDEIER);
3395 }
3396 
3397 static void gen5_gt_irq_reset(struct drm_device *dev)
3398 {
3399 	struct drm_i915_private *dev_priv = dev->dev_private;
3400 
3401 	GEN5_IRQ_RESET(GT);
3402 	if (INTEL_INFO(dev)->gen >= 6)
3403 		GEN5_IRQ_RESET(GEN6_PM);
3404 }
3405 
3406 /* drm_dma.h hooks
3407 */
3408 static void ironlake_irq_reset(struct drm_device *dev)
3409 {
3410 	struct drm_i915_private *dev_priv = dev->dev_private;
3411 
3412 	I915_WRITE(HWSTAM, 0xffffffff);
3413 
3414 	GEN5_IRQ_RESET(DE);
3415 	if (IS_GEN7(dev))
3416 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3417 
3418 	gen5_gt_irq_reset(dev);
3419 
3420 	ibx_irq_reset(dev);
3421 }
3422 
3423 static void valleyview_irq_preinstall(struct drm_device *dev)
3424 {
3425 	struct drm_i915_private *dev_priv = dev->dev_private;
3426 	int pipe;
3427 
3428 	/* VLV magic */
3429 	I915_WRITE(VLV_IMR, 0);
3430 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3431 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3432 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3433 
3434 	/* and GT */
3435 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3436 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3437 
3438 	gen5_gt_irq_reset(dev);
3439 
3440 	I915_WRITE(DPINVGTT, 0xff);
3441 
3442 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3443 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3444 	for_each_pipe(pipe)
3445 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3446 	I915_WRITE(VLV_IIR, 0xffffffff);
3447 	I915_WRITE(VLV_IMR, 0xffffffff);
3448 	I915_WRITE(VLV_IER, 0x0);
3449 	POSTING_READ(VLV_IER);
3450 }
3451 
3452 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3453 {
3454 	GEN8_IRQ_RESET_NDX(GT, 0);
3455 	GEN8_IRQ_RESET_NDX(GT, 1);
3456 	GEN8_IRQ_RESET_NDX(GT, 2);
3457 	GEN8_IRQ_RESET_NDX(GT, 3);
3458 }
3459 
3460 static void gen8_irq_reset(struct drm_device *dev)
3461 {
3462 	struct drm_i915_private *dev_priv = dev->dev_private;
3463 	int pipe;
3464 
3465 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3466 	POSTING_READ(GEN8_MASTER_IRQ);
3467 
3468 	gen8_gt_irq_reset(dev_priv);
3469 
3470 	for_each_pipe(pipe)
3471 		if (intel_display_power_enabled(dev_priv,
3472 						POWER_DOMAIN_PIPE(pipe)))
3473 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3474 
3475 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3476 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3477 	GEN5_IRQ_RESET(GEN8_PCU_);
3478 
3479 	ibx_irq_reset(dev);
3480 }
3481 
3482 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3483 {
3484 	unsigned long irqflags;
3485 
3486 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3487 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3488 			  ~dev_priv->de_irq_mask[PIPE_B]);
3489 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3490 			  ~dev_priv->de_irq_mask[PIPE_C]);
3491 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3492 }
3493 
3494 static void cherryview_irq_preinstall(struct drm_device *dev)
3495 {
3496 	struct drm_i915_private *dev_priv = dev->dev_private;
3497 	int pipe;
3498 
3499 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3500 	POSTING_READ(GEN8_MASTER_IRQ);
3501 
3502 	gen8_gt_irq_reset(dev_priv);
3503 
3504 	GEN5_IRQ_RESET(GEN8_PCU_);
3505 
3506 	POSTING_READ(GEN8_PCU_IIR);
3507 
3508 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3509 
3510 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3511 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3512 
3513 	for_each_pipe(pipe)
3514 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3515 
3516 	I915_WRITE(VLV_IMR, 0xffffffff);
3517 	I915_WRITE(VLV_IER, 0x0);
3518 	I915_WRITE(VLV_IIR, 0xffffffff);
3519 	POSTING_READ(VLV_IIR);
3520 }
3521 
3522 static void ibx_hpd_irq_setup(struct drm_device *dev)
3523 {
3524 	struct drm_i915_private *dev_priv = dev->dev_private;
3525 	struct drm_mode_config *mode_config = &dev->mode_config;
3526 	struct intel_encoder *intel_encoder;
3527 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3528 
3529 	if (HAS_PCH_IBX(dev)) {
3530 		hotplug_irqs = SDE_HOTPLUG_MASK;
3531 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3532 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3533 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3534 	} else {
3535 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3536 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3537 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3538 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3539 	}
3540 
3541 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3542 
3543 	/*
3544 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3545 	 * duration to 2ms (which is the minimum in the Display Port spec)
3546 	 *
3547 	 * This register is the same on all known PCH chips.
3548 	 */
3549 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3550 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3551 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3552 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3553 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3554 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3555 }
3556 
3557 static void ibx_irq_postinstall(struct drm_device *dev)
3558 {
3559 	struct drm_i915_private *dev_priv = dev->dev_private;
3560 	u32 mask;
3561 
3562 	if (HAS_PCH_NOP(dev))
3563 		return;
3564 
3565 	if (HAS_PCH_IBX(dev))
3566 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3567 	else
3568 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3569 
3570 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3571 	I915_WRITE(SDEIMR, ~mask);
3572 }
3573 
3574 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3575 {
3576 	struct drm_i915_private *dev_priv = dev->dev_private;
3577 	u32 pm_irqs, gt_irqs;
3578 
3579 	pm_irqs = gt_irqs = 0;
3580 
3581 	dev_priv->gt_irq_mask = ~0;
3582 	if (HAS_L3_DPF(dev)) {
3583 		/* L3 parity interrupt is always unmasked. */
3584 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3585 		gt_irqs |= GT_PARITY_ERROR(dev);
3586 	}
3587 
3588 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3589 	if (IS_GEN5(dev)) {
3590 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3591 			   ILK_BSD_USER_INTERRUPT;
3592 	} else {
3593 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3594 	}
3595 
3596 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3597 
3598 	if (INTEL_INFO(dev)->gen >= 6) {
3599 		pm_irqs |= dev_priv->pm_rps_events;
3600 
3601 		if (HAS_VEBOX(dev))
3602 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3603 
3604 		dev_priv->pm_irq_mask = 0xffffffff;
3605 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3606 	}
3607 }
3608 
3609 static int ironlake_irq_postinstall(struct drm_device *dev)
3610 {
3611 	unsigned long irqflags;
3612 	struct drm_i915_private *dev_priv = dev->dev_private;
3613 	u32 display_mask, extra_mask;
3614 
3615 	if (INTEL_INFO(dev)->gen >= 7) {
3616 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3617 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3618 				DE_PLANEB_FLIP_DONE_IVB |
3619 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3620 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3621 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3622 	} else {
3623 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3624 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3625 				DE_AUX_CHANNEL_A |
3626 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3627 				DE_POISON);
3628 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3629 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3630 	}
3631 
3632 	dev_priv->irq_mask = ~display_mask;
3633 
3634 	I915_WRITE(HWSTAM, 0xeffe);
3635 
3636 	ibx_irq_pre_postinstall(dev);
3637 
3638 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3639 
3640 	gen5_gt_irq_postinstall(dev);
3641 
3642 	ibx_irq_postinstall(dev);
3643 
3644 	if (IS_IRONLAKE_M(dev)) {
3645 		/* Enable PCU event interrupts
3646 		 *
3647 		 * spinlocking not required here for correctness since interrupt
3648 		 * setup is guaranteed to run in single-threaded context. But we
3649 		 * need it to make the assert_spin_locked happy. */
3650 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3651 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3652 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3653 	}
3654 
3655 	return 0;
3656 }
3657 
3658 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3659 {
3660 	u32 pipestat_mask;
3661 	u32 iir_mask;
3662 
3663 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3664 			PIPE_FIFO_UNDERRUN_STATUS;
3665 
3666 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3667 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3668 	POSTING_READ(PIPESTAT(PIPE_A));
3669 
3670 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3671 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3672 
3673 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3674 					       PIPE_GMBUS_INTERRUPT_STATUS);
3675 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3676 
3677 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3678 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3679 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3680 	dev_priv->irq_mask &= ~iir_mask;
3681 
3682 	I915_WRITE(VLV_IIR, iir_mask);
3683 	I915_WRITE(VLV_IIR, iir_mask);
3684 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3685 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3686 	POSTING_READ(VLV_IER);
3687 }
3688 
3689 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3690 {
3691 	u32 pipestat_mask;
3692 	u32 iir_mask;
3693 
3694 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3695 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3697 
3698 	dev_priv->irq_mask |= iir_mask;
3699 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3700 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3701 	I915_WRITE(VLV_IIR, iir_mask);
3702 	I915_WRITE(VLV_IIR, iir_mask);
3703 	POSTING_READ(VLV_IIR);
3704 
3705 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3706 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3707 
3708 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3709 					        PIPE_GMBUS_INTERRUPT_STATUS);
3710 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3711 
3712 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3713 			PIPE_FIFO_UNDERRUN_STATUS;
3714 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3715 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3716 	POSTING_READ(PIPESTAT(PIPE_A));
3717 }
3718 
3719 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3720 {
3721 	assert_spin_locked(&dev_priv->irq_lock);
3722 
3723 	if (dev_priv->display_irqs_enabled)
3724 		return;
3725 
3726 	dev_priv->display_irqs_enabled = true;
3727 
3728 	if (dev_priv->dev->irq_enabled)
3729 		valleyview_display_irqs_install(dev_priv);
3730 }
3731 
3732 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3733 {
3734 	assert_spin_locked(&dev_priv->irq_lock);
3735 
3736 	if (!dev_priv->display_irqs_enabled)
3737 		return;
3738 
3739 	dev_priv->display_irqs_enabled = false;
3740 
3741 	if (dev_priv->dev->irq_enabled)
3742 		valleyview_display_irqs_uninstall(dev_priv);
3743 }
3744 
3745 static int valleyview_irq_postinstall(struct drm_device *dev)
3746 {
3747 	struct drm_i915_private *dev_priv = dev->dev_private;
3748 	unsigned long irqflags;
3749 
3750 	dev_priv->irq_mask = ~0;
3751 
3752 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3753 	POSTING_READ(PORT_HOTPLUG_EN);
3754 
3755 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3756 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3757 	I915_WRITE(VLV_IIR, 0xffffffff);
3758 	POSTING_READ(VLV_IER);
3759 
3760 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3761 	 * just to make the assert_spin_locked check happy. */
3762 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3763 	if (dev_priv->display_irqs_enabled)
3764 		valleyview_display_irqs_install(dev_priv);
3765 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3766 
3767 	I915_WRITE(VLV_IIR, 0xffffffff);
3768 	I915_WRITE(VLV_IIR, 0xffffffff);
3769 
3770 	gen5_gt_irq_postinstall(dev);
3771 
3772 	/* ack & enable invalid PTE error interrupts */
3773 #if 0 /* FIXME: add support to irq handler for checking these bits */
3774 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3775 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3776 #endif
3777 
3778 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3779 
3780 	return 0;
3781 }
3782 
3783 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785 	int i;
3786 
3787 	/* These are interrupts we'll toggle with the ring mask register */
3788 	uint32_t gt_interrupts[] = {
3789 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3790 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3791 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3792 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3793 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3794 		0,
3795 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3796 		};
3797 
3798 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3799 		GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3800 
3801 	dev_priv->pm_irq_mask = 0xffffffff;
3802 }
3803 
3804 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3805 {
3806 	struct drm_device *dev = dev_priv->dev;
3807 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3808 		GEN8_PIPE_CDCLK_CRC_DONE |
3809 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3810 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3811 		GEN8_PIPE_FIFO_UNDERRUN;
3812 	int pipe;
3813 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3814 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3815 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3816 
3817 	for_each_pipe(pipe)
3818 		if (intel_display_power_enabled(dev_priv,
3819 				POWER_DOMAIN_PIPE(pipe)))
3820 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3821 					  dev_priv->de_irq_mask[pipe],
3822 					  de_pipe_enables);
3823 
3824 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3825 }
3826 
3827 static int gen8_irq_postinstall(struct drm_device *dev)
3828 {
3829 	struct drm_i915_private *dev_priv = dev->dev_private;
3830 
3831 	ibx_irq_pre_postinstall(dev);
3832 
3833 	gen8_gt_irq_postinstall(dev_priv);
3834 	gen8_de_irq_postinstall(dev_priv);
3835 
3836 	ibx_irq_postinstall(dev);
3837 
3838 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3839 	POSTING_READ(GEN8_MASTER_IRQ);
3840 
3841 	return 0;
3842 }
3843 
3844 static int cherryview_irq_postinstall(struct drm_device *dev)
3845 {
3846 	struct drm_i915_private *dev_priv = dev->dev_private;
3847 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3848 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3851 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3852 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3853 	unsigned long irqflags;
3854 	int pipe;
3855 
3856 	/*
3857 	 * Leave vblank interrupts masked initially.  enable/disable will
3858 	 * toggle them based on usage.
3859 	 */
3860 	dev_priv->irq_mask = ~enable_mask;
3861 
3862 	for_each_pipe(pipe)
3863 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3864 
3865 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3866 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3867 	for_each_pipe(pipe)
3868 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3869 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3870 
3871 	I915_WRITE(VLV_IIR, 0xffffffff);
3872 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3873 	I915_WRITE(VLV_IER, enable_mask);
3874 
3875 	gen8_gt_irq_postinstall(dev_priv);
3876 
3877 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3878 	POSTING_READ(GEN8_MASTER_IRQ);
3879 
3880 	return 0;
3881 }
3882 
3883 static void gen8_irq_uninstall(struct drm_device *dev)
3884 {
3885 	struct drm_i915_private *dev_priv = dev->dev_private;
3886 
3887 	if (!dev_priv)
3888 		return;
3889 
3890 	gen8_irq_reset(dev);
3891 }
3892 
3893 static void valleyview_irq_uninstall(struct drm_device *dev)
3894 {
3895 	struct drm_i915_private *dev_priv = dev->dev_private;
3896 	unsigned long irqflags;
3897 	int pipe;
3898 
3899 	if (!dev_priv)
3900 		return;
3901 
3902 	I915_WRITE(VLV_MASTER_IER, 0);
3903 
3904 	for_each_pipe(pipe)
3905 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3906 
3907 	I915_WRITE(HWSTAM, 0xffffffff);
3908 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3909 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3910 
3911 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3912 	if (dev_priv->display_irqs_enabled)
3913 		valleyview_display_irqs_uninstall(dev_priv);
3914 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3915 
3916 	dev_priv->irq_mask = 0;
3917 
3918 	I915_WRITE(VLV_IIR, 0xffffffff);
3919 	I915_WRITE(VLV_IMR, 0xffffffff);
3920 	I915_WRITE(VLV_IER, 0x0);
3921 	POSTING_READ(VLV_IER);
3922 }
3923 
3924 static void cherryview_irq_uninstall(struct drm_device *dev)
3925 {
3926 	struct drm_i915_private *dev_priv = dev->dev_private;
3927 	int pipe;
3928 
3929 	if (!dev_priv)
3930 		return;
3931 
3932 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3933 	POSTING_READ(GEN8_MASTER_IRQ);
3934 
3935 #define GEN8_IRQ_FINI_NDX(type, which)				\
3936 do {								\
3937 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3938 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3939 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3940 	POSTING_READ(GEN8_##type##_IIR(which));			\
3941 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3942 } while (0)
3943 
3944 #define GEN8_IRQ_FINI(type)				\
3945 do {							\
3946 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3947 	I915_WRITE(GEN8_##type##_IER, 0);		\
3948 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3949 	POSTING_READ(GEN8_##type##_IIR);		\
3950 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3951 } while (0)
3952 
3953 	GEN8_IRQ_FINI_NDX(GT, 0);
3954 	GEN8_IRQ_FINI_NDX(GT, 1);
3955 	GEN8_IRQ_FINI_NDX(GT, 2);
3956 	GEN8_IRQ_FINI_NDX(GT, 3);
3957 
3958 	GEN8_IRQ_FINI(PCU);
3959 
3960 #undef GEN8_IRQ_FINI
3961 #undef GEN8_IRQ_FINI_NDX
3962 
3963 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3964 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965 
3966 	for_each_pipe(pipe)
3967 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3968 
3969 	I915_WRITE(VLV_IMR, 0xffffffff);
3970 	I915_WRITE(VLV_IER, 0x0);
3971 	I915_WRITE(VLV_IIR, 0xffffffff);
3972 	POSTING_READ(VLV_IIR);
3973 }
3974 
3975 static void ironlake_irq_uninstall(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = dev->dev_private;
3978 
3979 	if (!dev_priv)
3980 		return;
3981 
3982 	ironlake_irq_reset(dev);
3983 }
3984 
3985 static void i8xx_irq_preinstall(struct drm_device * dev)
3986 {
3987 	struct drm_i915_private *dev_priv = dev->dev_private;
3988 	int pipe;
3989 
3990 	for_each_pipe(pipe)
3991 		I915_WRITE(PIPESTAT(pipe), 0);
3992 	I915_WRITE16(IMR, 0xffff);
3993 	I915_WRITE16(IER, 0x0);
3994 	POSTING_READ16(IER);
3995 }
3996 
3997 static int i8xx_irq_postinstall(struct drm_device *dev)
3998 {
3999 	struct drm_i915_private *dev_priv = dev->dev_private;
4000 	unsigned long irqflags;
4001 
4002 	I915_WRITE16(EMR,
4003 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4004 
4005 	/* Unmask the interrupts that we always want on. */
4006 	dev_priv->irq_mask =
4007 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4008 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4009 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4011 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4012 	I915_WRITE16(IMR, dev_priv->irq_mask);
4013 
4014 	I915_WRITE16(IER,
4015 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4016 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4017 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4018 		     I915_USER_INTERRUPT);
4019 	POSTING_READ16(IER);
4020 
4021 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4022 	 * just to make the assert_spin_locked check happy. */
4023 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4024 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4025 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4026 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4027 
4028 	return 0;
4029 }
4030 
4031 /*
4032  * Returns true when a page flip has completed.
4033  */
4034 static bool i8xx_handle_vblank(struct drm_device *dev,
4035 			       int plane, int pipe, u32 iir)
4036 {
4037 	struct drm_i915_private *dev_priv = dev->dev_private;
4038 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4039 
4040 	if (!intel_pipe_handle_vblank(dev, pipe))
4041 		return false;
4042 
4043 	if ((iir & flip_pending) == 0)
4044 		return false;
4045 
4046 	intel_prepare_page_flip(dev, plane);
4047 
4048 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4049 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4050 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4051 	 * the flip is completed (no longer pending). Since this doesn't raise
4052 	 * an interrupt per se, we watch for the change at vblank.
4053 	 */
4054 	if (I915_READ16(ISR) & flip_pending)
4055 		return false;
4056 
4057 	intel_finish_page_flip(dev, pipe);
4058 
4059 	return true;
4060 }
4061 
4062 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4063 {
4064 	struct drm_device *dev = arg;
4065 	struct drm_i915_private *dev_priv = dev->dev_private;
4066 	u16 iir, new_iir;
4067 	u32 pipe_stats[2];
4068 	unsigned long irqflags;
4069 	int pipe;
4070 	u16 flip_mask =
4071 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4072 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4073 
4074 	iir = I915_READ16(IIR);
4075 	if (iir == 0)
4076 		return IRQ_NONE;
4077 
4078 	while (iir & ~flip_mask) {
4079 		/* Can't rely on pipestat interrupt bit in iir as it might
4080 		 * have been cleared after the pipestat interrupt was received.
4081 		 * It doesn't set the bit in iir again, but it still produces
4082 		 * interrupts (for non-MSI).
4083 		 */
4084 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4085 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4086 			i915_handle_error(dev, false,
4087 					  "Command parser error, iir 0x%08x",
4088 					  iir);
4089 
4090 		for_each_pipe(pipe) {
4091 			int reg = PIPESTAT(pipe);
4092 			pipe_stats[pipe] = I915_READ(reg);
4093 
4094 			/*
4095 			 * Clear the PIPE*STAT regs before the IIR
4096 			 */
4097 			if (pipe_stats[pipe] & 0x8000ffff)
4098 				I915_WRITE(reg, pipe_stats[pipe]);
4099 		}
4100 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4101 
4102 		I915_WRITE16(IIR, iir & ~flip_mask);
4103 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4104 
4105 		i915_update_dri1_breadcrumb(dev);
4106 
4107 		if (iir & I915_USER_INTERRUPT)
4108 			notify_ring(dev, &dev_priv->ring[RCS]);
4109 
4110 		for_each_pipe(pipe) {
4111 			int plane = pipe;
4112 			if (HAS_FBC(dev))
4113 				plane = !plane;
4114 
4115 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4116 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4117 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4118 
4119 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4120 				i9xx_pipe_crc_irq_handler(dev, pipe);
4121 
4122 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4123 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4124 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4125 		}
4126 
4127 		iir = new_iir;
4128 	}
4129 
4130 	return IRQ_HANDLED;
4131 }
4132 
4133 static void i8xx_irq_uninstall(struct drm_device * dev)
4134 {
4135 	struct drm_i915_private *dev_priv = dev->dev_private;
4136 	int pipe;
4137 
4138 	for_each_pipe(pipe) {
4139 		/* Clear enable bits; then clear status bits */
4140 		I915_WRITE(PIPESTAT(pipe), 0);
4141 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4142 	}
4143 	I915_WRITE16(IMR, 0xffff);
4144 	I915_WRITE16(IER, 0x0);
4145 	I915_WRITE16(IIR, I915_READ16(IIR));
4146 }
4147 
4148 static void i915_irq_preinstall(struct drm_device * dev)
4149 {
4150 	struct drm_i915_private *dev_priv = dev->dev_private;
4151 	int pipe;
4152 
4153 	if (I915_HAS_HOTPLUG(dev)) {
4154 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4155 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4156 	}
4157 
4158 	I915_WRITE16(HWSTAM, 0xeffe);
4159 	for_each_pipe(pipe)
4160 		I915_WRITE(PIPESTAT(pipe), 0);
4161 	I915_WRITE(IMR, 0xffffffff);
4162 	I915_WRITE(IER, 0x0);
4163 	POSTING_READ(IER);
4164 }
4165 
4166 static int i915_irq_postinstall(struct drm_device *dev)
4167 {
4168 	struct drm_i915_private *dev_priv = dev->dev_private;
4169 	u32 enable_mask;
4170 	unsigned long irqflags;
4171 
4172 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4173 
4174 	/* Unmask the interrupts that we always want on. */
4175 	dev_priv->irq_mask =
4176 		~(I915_ASLE_INTERRUPT |
4177 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4178 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4179 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4180 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4181 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4182 
4183 	enable_mask =
4184 		I915_ASLE_INTERRUPT |
4185 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4186 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4187 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4188 		I915_USER_INTERRUPT;
4189 
4190 	if (I915_HAS_HOTPLUG(dev)) {
4191 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4192 		POSTING_READ(PORT_HOTPLUG_EN);
4193 
4194 		/* Enable in IER... */
4195 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4196 		/* and unmask in IMR */
4197 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4198 	}
4199 
4200 	I915_WRITE(IMR, dev_priv->irq_mask);
4201 	I915_WRITE(IER, enable_mask);
4202 	POSTING_READ(IER);
4203 
4204 	i915_enable_asle_pipestat(dev);
4205 
4206 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4207 	 * just to make the assert_spin_locked check happy. */
4208 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4209 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4210 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4211 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4212 
4213 	return 0;
4214 }
4215 
4216 /*
4217  * Returns true when a page flip has completed.
4218  */
4219 static bool i915_handle_vblank(struct drm_device *dev,
4220 			       int plane, int pipe, u32 iir)
4221 {
4222 	struct drm_i915_private *dev_priv = dev->dev_private;
4223 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4224 
4225 	if (!intel_pipe_handle_vblank(dev, pipe))
4226 		return false;
4227 
4228 	if ((iir & flip_pending) == 0)
4229 		return false;
4230 
4231 	intel_prepare_page_flip(dev, plane);
4232 
4233 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4234 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4235 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4236 	 * the flip is completed (no longer pending). Since this doesn't raise
4237 	 * an interrupt per se, we watch for the change at vblank.
4238 	 */
4239 	if (I915_READ(ISR) & flip_pending)
4240 		return false;
4241 
4242 	intel_finish_page_flip(dev, pipe);
4243 
4244 	return true;
4245 }
4246 
4247 static irqreturn_t i915_irq_handler(int irq, void *arg)
4248 {
4249 	struct drm_device *dev = arg;
4250 	struct drm_i915_private *dev_priv = dev->dev_private;
4251 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4252 	unsigned long irqflags;
4253 	u32 flip_mask =
4254 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4255 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4256 	int pipe, ret = IRQ_NONE;
4257 
4258 	iir = I915_READ(IIR);
4259 	do {
4260 		bool irq_received = (iir & ~flip_mask) != 0;
4261 		bool blc_event = false;
4262 
4263 		/* Can't rely on pipestat interrupt bit in iir as it might
4264 		 * have been cleared after the pipestat interrupt was received.
4265 		 * It doesn't set the bit in iir again, but it still produces
4266 		 * interrupts (for non-MSI).
4267 		 */
4268 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4269 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4270 			i915_handle_error(dev, false,
4271 					  "Command parser error, iir 0x%08x",
4272 					  iir);
4273 
4274 		for_each_pipe(pipe) {
4275 			int reg = PIPESTAT(pipe);
4276 			pipe_stats[pipe] = I915_READ(reg);
4277 
4278 			/* Clear the PIPE*STAT regs before the IIR */
4279 			if (pipe_stats[pipe] & 0x8000ffff) {
4280 				I915_WRITE(reg, pipe_stats[pipe]);
4281 				irq_received = true;
4282 			}
4283 		}
4284 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4285 
4286 		if (!irq_received)
4287 			break;
4288 
4289 		/* Consume port.  Then clear IIR or we'll miss events */
4290 		if (I915_HAS_HOTPLUG(dev) &&
4291 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4292 			i9xx_hpd_irq_handler(dev);
4293 
4294 		I915_WRITE(IIR, iir & ~flip_mask);
4295 		new_iir = I915_READ(IIR); /* Flush posted writes */
4296 
4297 		if (iir & I915_USER_INTERRUPT)
4298 			notify_ring(dev, &dev_priv->ring[RCS]);
4299 
4300 		for_each_pipe(pipe) {
4301 			int plane = pipe;
4302 			if (HAS_FBC(dev))
4303 				plane = !plane;
4304 
4305 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4306 			    i915_handle_vblank(dev, plane, pipe, iir))
4307 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4308 
4309 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4310 				blc_event = true;
4311 
4312 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4313 				i9xx_pipe_crc_irq_handler(dev, pipe);
4314 
4315 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4316 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4317 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4318 		}
4319 
4320 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4321 			intel_opregion_asle_intr(dev);
4322 
4323 		/* With MSI, interrupts are only generated when iir
4324 		 * transitions from zero to nonzero.  If another bit got
4325 		 * set while we were handling the existing iir bits, then
4326 		 * we would never get another interrupt.
4327 		 *
4328 		 * This is fine on non-MSI as well, as if we hit this path
4329 		 * we avoid exiting the interrupt handler only to generate
4330 		 * another one.
4331 		 *
4332 		 * Note that for MSI this could cause a stray interrupt report
4333 		 * if an interrupt landed in the time between writing IIR and
4334 		 * the posting read.  This should be rare enough to never
4335 		 * trigger the 99% of 100,000 interrupts test for disabling
4336 		 * stray interrupts.
4337 		 */
4338 		ret = IRQ_HANDLED;
4339 		iir = new_iir;
4340 	} while (iir & ~flip_mask);
4341 
4342 	i915_update_dri1_breadcrumb(dev);
4343 
4344 	return ret;
4345 }
4346 
4347 static void i915_irq_uninstall(struct drm_device * dev)
4348 {
4349 	struct drm_i915_private *dev_priv = dev->dev_private;
4350 	int pipe;
4351 
4352 	if (I915_HAS_HOTPLUG(dev)) {
4353 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4354 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4355 	}
4356 
4357 	I915_WRITE16(HWSTAM, 0xffff);
4358 	for_each_pipe(pipe) {
4359 		/* Clear enable bits; then clear status bits */
4360 		I915_WRITE(PIPESTAT(pipe), 0);
4361 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4362 	}
4363 	I915_WRITE(IMR, 0xffffffff);
4364 	I915_WRITE(IER, 0x0);
4365 
4366 	I915_WRITE(IIR, I915_READ(IIR));
4367 }
4368 
4369 static void i965_irq_preinstall(struct drm_device * dev)
4370 {
4371 	struct drm_i915_private *dev_priv = dev->dev_private;
4372 	int pipe;
4373 
4374 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4375 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4376 
4377 	I915_WRITE(HWSTAM, 0xeffe);
4378 	for_each_pipe(pipe)
4379 		I915_WRITE(PIPESTAT(pipe), 0);
4380 	I915_WRITE(IMR, 0xffffffff);
4381 	I915_WRITE(IER, 0x0);
4382 	POSTING_READ(IER);
4383 }
4384 
4385 static int i965_irq_postinstall(struct drm_device *dev)
4386 {
4387 	struct drm_i915_private *dev_priv = dev->dev_private;
4388 	u32 enable_mask;
4389 	u32 error_mask;
4390 	unsigned long irqflags;
4391 
4392 	/* Unmask the interrupts that we always want on. */
4393 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4394 			       I915_DISPLAY_PORT_INTERRUPT |
4395 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4396 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4397 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4398 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4399 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4400 
4401 	enable_mask = ~dev_priv->irq_mask;
4402 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4403 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4404 	enable_mask |= I915_USER_INTERRUPT;
4405 
4406 	if (IS_G4X(dev))
4407 		enable_mask |= I915_BSD_USER_INTERRUPT;
4408 
4409 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4410 	 * just to make the assert_spin_locked check happy. */
4411 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4412 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4413 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4414 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4415 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4416 
4417 	/*
4418 	 * Enable some error detection, note the instruction error mask
4419 	 * bit is reserved, so we leave it masked.
4420 	 */
4421 	if (IS_G4X(dev)) {
4422 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4423 			       GM45_ERROR_MEM_PRIV |
4424 			       GM45_ERROR_CP_PRIV |
4425 			       I915_ERROR_MEMORY_REFRESH);
4426 	} else {
4427 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4428 			       I915_ERROR_MEMORY_REFRESH);
4429 	}
4430 	I915_WRITE(EMR, error_mask);
4431 
4432 	I915_WRITE(IMR, dev_priv->irq_mask);
4433 	I915_WRITE(IER, enable_mask);
4434 	POSTING_READ(IER);
4435 
4436 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4437 	POSTING_READ(PORT_HOTPLUG_EN);
4438 
4439 	i915_enable_asle_pipestat(dev);
4440 
4441 	return 0;
4442 }
4443 
4444 static void i915_hpd_irq_setup(struct drm_device *dev)
4445 {
4446 	struct drm_i915_private *dev_priv = dev->dev_private;
4447 	struct drm_mode_config *mode_config = &dev->mode_config;
4448 	struct intel_encoder *intel_encoder;
4449 	u32 hotplug_en;
4450 
4451 	assert_spin_locked(&dev_priv->irq_lock);
4452 
4453 	if (I915_HAS_HOTPLUG(dev)) {
4454 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4455 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4456 		/* Note HDMI and DP share hotplug bits */
4457 		/* enable bits are the same for all generations */
4458 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4459 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4460 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4461 		/* Programming the CRT detection parameters tends
4462 		   to generate a spurious hotplug event about three
4463 		   seconds later.  So just do it once.
4464 		*/
4465 		if (IS_G4X(dev))
4466 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4467 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4468 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4469 
4470 		/* Ignore TV since it's buggy */
4471 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4472 	}
4473 }
4474 
4475 static irqreturn_t i965_irq_handler(int irq, void *arg)
4476 {
4477 	struct drm_device *dev = arg;
4478 	struct drm_i915_private *dev_priv = dev->dev_private;
4479 	u32 iir, new_iir;
4480 	u32 pipe_stats[I915_MAX_PIPES];
4481 	unsigned long irqflags;
4482 	int ret = IRQ_NONE, pipe;
4483 	u32 flip_mask =
4484 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4485 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4486 
4487 	iir = I915_READ(IIR);
4488 
4489 	for (;;) {
4490 		bool irq_received = (iir & ~flip_mask) != 0;
4491 		bool blc_event = false;
4492 
4493 		/* Can't rely on pipestat interrupt bit in iir as it might
4494 		 * have been cleared after the pipestat interrupt was received.
4495 		 * It doesn't set the bit in iir again, but it still produces
4496 		 * interrupts (for non-MSI).
4497 		 */
4498 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4499 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4500 			i915_handle_error(dev, false,
4501 					  "Command parser error, iir 0x%08x",
4502 					  iir);
4503 
4504 		for_each_pipe(pipe) {
4505 			int reg = PIPESTAT(pipe);
4506 			pipe_stats[pipe] = I915_READ(reg);
4507 
4508 			/*
4509 			 * Clear the PIPE*STAT regs before the IIR
4510 			 */
4511 			if (pipe_stats[pipe] & 0x8000ffff) {
4512 				I915_WRITE(reg, pipe_stats[pipe]);
4513 				irq_received = true;
4514 			}
4515 		}
4516 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4517 
4518 		if (!irq_received)
4519 			break;
4520 
4521 		ret = IRQ_HANDLED;
4522 
4523 		/* Consume port.  Then clear IIR or we'll miss events */
4524 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4525 			i9xx_hpd_irq_handler(dev);
4526 
4527 		I915_WRITE(IIR, iir & ~flip_mask);
4528 		new_iir = I915_READ(IIR); /* Flush posted writes */
4529 
4530 		if (iir & I915_USER_INTERRUPT)
4531 			notify_ring(dev, &dev_priv->ring[RCS]);
4532 		if (iir & I915_BSD_USER_INTERRUPT)
4533 			notify_ring(dev, &dev_priv->ring[VCS]);
4534 
4535 		for_each_pipe(pipe) {
4536 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4537 			    i915_handle_vblank(dev, pipe, pipe, iir))
4538 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4539 
4540 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4541 				blc_event = true;
4542 
4543 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4544 				i9xx_pipe_crc_irq_handler(dev, pipe);
4545 
4546 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4547 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4548 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4549 		}
4550 
4551 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4552 			intel_opregion_asle_intr(dev);
4553 
4554 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4555 			gmbus_irq_handler(dev);
4556 
4557 		/* With MSI, interrupts are only generated when iir
4558 		 * transitions from zero to nonzero.  If another bit got
4559 		 * set while we were handling the existing iir bits, then
4560 		 * we would never get another interrupt.
4561 		 *
4562 		 * This is fine on non-MSI as well, as if we hit this path
4563 		 * we avoid exiting the interrupt handler only to generate
4564 		 * another one.
4565 		 *
4566 		 * Note that for MSI this could cause a stray interrupt report
4567 		 * if an interrupt landed in the time between writing IIR and
4568 		 * the posting read.  This should be rare enough to never
4569 		 * trigger the 99% of 100,000 interrupts test for disabling
4570 		 * stray interrupts.
4571 		 */
4572 		iir = new_iir;
4573 	}
4574 
4575 	i915_update_dri1_breadcrumb(dev);
4576 
4577 	return ret;
4578 }
4579 
4580 static void i965_irq_uninstall(struct drm_device * dev)
4581 {
4582 	struct drm_i915_private *dev_priv = dev->dev_private;
4583 	int pipe;
4584 
4585 	if (!dev_priv)
4586 		return;
4587 
4588 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4589 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4590 
4591 	I915_WRITE(HWSTAM, 0xffffffff);
4592 	for_each_pipe(pipe)
4593 		I915_WRITE(PIPESTAT(pipe), 0);
4594 	I915_WRITE(IMR, 0xffffffff);
4595 	I915_WRITE(IER, 0x0);
4596 
4597 	for_each_pipe(pipe)
4598 		I915_WRITE(PIPESTAT(pipe),
4599 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4600 	I915_WRITE(IIR, I915_READ(IIR));
4601 }
4602 
4603 static void intel_hpd_irq_reenable(struct work_struct *work)
4604 {
4605 	struct drm_i915_private *dev_priv =
4606 		container_of(work, typeof(*dev_priv),
4607 			     hotplug_reenable_work.work);
4608 	struct drm_device *dev = dev_priv->dev;
4609 	struct drm_mode_config *mode_config = &dev->mode_config;
4610 	unsigned long irqflags;
4611 	int i;
4612 
4613 	intel_runtime_pm_get(dev_priv);
4614 
4615 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4616 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4617 		struct drm_connector *connector;
4618 
4619 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4620 			continue;
4621 
4622 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4623 
4624 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4625 			struct intel_connector *intel_connector = to_intel_connector(connector);
4626 
4627 			if (intel_connector->encoder->hpd_pin == i) {
4628 				if (connector->polled != intel_connector->polled)
4629 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4630 							 connector->name);
4631 				connector->polled = intel_connector->polled;
4632 				if (!connector->polled)
4633 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4634 			}
4635 		}
4636 	}
4637 	if (dev_priv->display.hpd_irq_setup)
4638 		dev_priv->display.hpd_irq_setup(dev);
4639 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4640 
4641 	intel_runtime_pm_put(dev_priv);
4642 }
4643 
4644 void intel_irq_init(struct drm_device *dev)
4645 {
4646 	struct drm_i915_private *dev_priv = dev->dev_private;
4647 
4648 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4649 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4650 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4651 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4652 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4653 
4654 	/* Let's track the enabled rps events */
4655 	if (IS_VALLEYVIEW(dev))
4656 		/* WaGsvRC0ResidenncyMethod:VLV */
4657 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4658 	else
4659 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4660 
4661 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4662 		    i915_hangcheck_elapsed,
4663 		    (unsigned long) dev);
4664 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4665 			  intel_hpd_irq_reenable);
4666 
4667 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4668 
4669 	/* Haven't installed the IRQ handler yet */
4670 	dev_priv->pm._irqs_disabled = true;
4671 
4672 	if (IS_GEN2(dev)) {
4673 		dev->max_vblank_count = 0;
4674 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4675 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4676 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4677 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4678 	} else {
4679 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4680 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4681 	}
4682 
4683 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4684 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4685 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4686 	}
4687 
4688 	if (IS_CHERRYVIEW(dev)) {
4689 		dev->driver->irq_handler = cherryview_irq_handler;
4690 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4691 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4692 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4693 		dev->driver->enable_vblank = valleyview_enable_vblank;
4694 		dev->driver->disable_vblank = valleyview_disable_vblank;
4695 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4696 	} else if (IS_VALLEYVIEW(dev)) {
4697 		dev->driver->irq_handler = valleyview_irq_handler;
4698 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4699 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4700 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4701 		dev->driver->enable_vblank = valleyview_enable_vblank;
4702 		dev->driver->disable_vblank = valleyview_disable_vblank;
4703 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4704 	} else if (IS_GEN8(dev)) {
4705 		dev->driver->irq_handler = gen8_irq_handler;
4706 		dev->driver->irq_preinstall = gen8_irq_reset;
4707 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4708 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4709 		dev->driver->enable_vblank = gen8_enable_vblank;
4710 		dev->driver->disable_vblank = gen8_disable_vblank;
4711 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4712 	} else if (HAS_PCH_SPLIT(dev)) {
4713 		dev->driver->irq_handler = ironlake_irq_handler;
4714 		dev->driver->irq_preinstall = ironlake_irq_reset;
4715 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4716 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4717 		dev->driver->enable_vblank = ironlake_enable_vblank;
4718 		dev->driver->disable_vblank = ironlake_disable_vblank;
4719 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4720 	} else {
4721 		if (INTEL_INFO(dev)->gen == 2) {
4722 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4723 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4724 			dev->driver->irq_handler = i8xx_irq_handler;
4725 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4726 		} else if (INTEL_INFO(dev)->gen == 3) {
4727 			dev->driver->irq_preinstall = i915_irq_preinstall;
4728 			dev->driver->irq_postinstall = i915_irq_postinstall;
4729 			dev->driver->irq_uninstall = i915_irq_uninstall;
4730 			dev->driver->irq_handler = i915_irq_handler;
4731 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4732 		} else {
4733 			dev->driver->irq_preinstall = i965_irq_preinstall;
4734 			dev->driver->irq_postinstall = i965_irq_postinstall;
4735 			dev->driver->irq_uninstall = i965_irq_uninstall;
4736 			dev->driver->irq_handler = i965_irq_handler;
4737 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4738 		}
4739 		dev->driver->enable_vblank = i915_enable_vblank;
4740 		dev->driver->disable_vblank = i915_disable_vblank;
4741 	}
4742 }
4743 
4744 void intel_hpd_init(struct drm_device *dev)
4745 {
4746 	struct drm_i915_private *dev_priv = dev->dev_private;
4747 	struct drm_mode_config *mode_config = &dev->mode_config;
4748 	struct drm_connector *connector;
4749 	unsigned long irqflags;
4750 	int i;
4751 
4752 	for (i = 1; i < HPD_NUM_PINS; i++) {
4753 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4754 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4755 	}
4756 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4757 		struct intel_connector *intel_connector = to_intel_connector(connector);
4758 		connector->polled = intel_connector->polled;
4759 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4760 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4761 		if (intel_connector->mst_port)
4762 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4763 	}
4764 
4765 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4766 	 * just to make the assert_spin_locked checks happy. */
4767 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4768 	if (dev_priv->display.hpd_irq_setup)
4769 		dev_priv->display.hpd_irq_setup(dev);
4770 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4771 }
4772 
4773 /* Disable interrupts so we can allow runtime PM. */
4774 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4775 {
4776 	struct drm_i915_private *dev_priv = dev->dev_private;
4777 
4778 	dev->driver->irq_uninstall(dev);
4779 	dev_priv->pm._irqs_disabled = true;
4780 }
4781 
4782 /* Restore interrupts so we can recover from runtime PM. */
4783 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4784 {
4785 	struct drm_i915_private *dev_priv = dev->dev_private;
4786 
4787 	dev_priv->pm._irqs_disabled = false;
4788 	dev->driver->irq_preinstall(dev);
4789 	dev->driver->irq_postinstall(dev);
4790 }
4791