xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38 
39 static const u32 hpd_ibx[] = {
40 	[HPD_CRT] = SDE_CRT_HOTPLUG,
41 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46 
47 static const u32 hpd_cpt[] = {
48 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54 
55 static const u32 hpd_mask_i915[] = {
56 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63 
64 static const u32 hpd_status_gen4[] = {
65 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72 
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81 
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 	assert_spin_locked(&dev_priv->irq_lock);
87 
88 	if ((dev_priv->irq_mask & mask) != 0) {
89 		dev_priv->irq_mask &= ~mask;
90 		I915_WRITE(DEIMR, dev_priv->irq_mask);
91 		POSTING_READ(DEIMR);
92 	}
93 }
94 
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 	assert_spin_locked(&dev_priv->irq_lock);
99 
100 	if ((dev_priv->irq_mask & mask) != mask) {
101 		dev_priv->irq_mask |= mask;
102 		I915_WRITE(DEIMR, dev_priv->irq_mask);
103 		POSTING_READ(DEIMR);
104 	}
105 }
106 
107 static bool ivb_can_enable_err_int(struct drm_device *dev)
108 {
109 	struct drm_i915_private *dev_priv = dev->dev_private;
110 	struct intel_crtc *crtc;
111 	enum pipe pipe;
112 
113 	assert_spin_locked(&dev_priv->irq_lock);
114 
115 	for_each_pipe(pipe) {
116 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
117 
118 		if (crtc->cpu_fifo_underrun_disabled)
119 			return false;
120 	}
121 
122 	return true;
123 }
124 
125 static bool cpt_can_enable_serr_int(struct drm_device *dev)
126 {
127 	struct drm_i915_private *dev_priv = dev->dev_private;
128 	enum pipe pipe;
129 	struct intel_crtc *crtc;
130 
131 	for_each_pipe(pipe) {
132 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
133 
134 		if (crtc->pch_fifo_underrun_disabled)
135 			return false;
136 	}
137 
138 	return true;
139 }
140 
141 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
142 						 enum pipe pipe, bool enable)
143 {
144 	struct drm_i915_private *dev_priv = dev->dev_private;
145 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
146 					  DE_PIPEB_FIFO_UNDERRUN;
147 
148 	if (enable)
149 		ironlake_enable_display_irq(dev_priv, bit);
150 	else
151 		ironlake_disable_display_irq(dev_priv, bit);
152 }
153 
154 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
155 						  bool enable)
156 {
157 	struct drm_i915_private *dev_priv = dev->dev_private;
158 
159 	if (enable) {
160 		if (!ivb_can_enable_err_int(dev))
161 			return;
162 
163 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN_A |
164 					 ERR_INT_FIFO_UNDERRUN_B |
165 					 ERR_INT_FIFO_UNDERRUN_C);
166 
167 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
168 	} else {
169 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
170 	}
171 }
172 
173 static void ibx_set_fifo_underrun_reporting(struct intel_crtc *crtc,
174 					    bool enable)
175 {
176 	struct drm_device *dev = crtc->base.dev;
177 	struct drm_i915_private *dev_priv = dev->dev_private;
178 	uint32_t bit = (crtc->pipe == PIPE_A) ? SDE_TRANSA_FIFO_UNDER :
179 						SDE_TRANSB_FIFO_UNDER;
180 
181 	if (enable)
182 		I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~bit);
183 	else
184 		I915_WRITE(SDEIMR, I915_READ(SDEIMR) | bit);
185 
186 	POSTING_READ(SDEIMR);
187 }
188 
189 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
190 					    enum transcoder pch_transcoder,
191 					    bool enable)
192 {
193 	struct drm_i915_private *dev_priv = dev->dev_private;
194 
195 	if (enable) {
196 		if (!cpt_can_enable_serr_int(dev))
197 			return;
198 
199 		I915_WRITE(SERR_INT, SERR_INT_TRANS_A_FIFO_UNDERRUN |
200 				     SERR_INT_TRANS_B_FIFO_UNDERRUN |
201 				     SERR_INT_TRANS_C_FIFO_UNDERRUN);
202 
203 		I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~SDE_ERROR_CPT);
204 	} else {
205 		I915_WRITE(SDEIMR, I915_READ(SDEIMR) | SDE_ERROR_CPT);
206 	}
207 
208 	POSTING_READ(SDEIMR);
209 }
210 
211 /**
212  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
213  * @dev: drm device
214  * @pipe: pipe
215  * @enable: true if we want to report FIFO underrun errors, false otherwise
216  *
217  * This function makes us disable or enable CPU fifo underruns for a specific
218  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
219  * reporting for one pipe may also disable all the other CPU error interruts for
220  * the other pipes, due to the fact that there's just one interrupt mask/enable
221  * bit for all the pipes.
222  *
223  * Returns the previous state of underrun reporting.
224  */
225 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
226 					   enum pipe pipe, bool enable)
227 {
228 	struct drm_i915_private *dev_priv = dev->dev_private;
229 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
230 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
231 	unsigned long flags;
232 	bool ret;
233 
234 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
235 
236 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
237 
238 	if (enable == ret)
239 		goto done;
240 
241 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
242 
243 	if (IS_GEN5(dev) || IS_GEN6(dev))
244 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
245 	else if (IS_GEN7(dev))
246 		ivybridge_set_fifo_underrun_reporting(dev, enable);
247 
248 done:
249 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
250 	return ret;
251 }
252 
253 /**
254  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
255  * @dev: drm device
256  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
257  * @enable: true if we want to report FIFO underrun errors, false otherwise
258  *
259  * This function makes us disable or enable PCH fifo underruns for a specific
260  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
261  * underrun reporting for one transcoder may also disable all the other PCH
262  * error interruts for the other transcoders, due to the fact that there's just
263  * one interrupt mask/enable bit for all the transcoders.
264  *
265  * Returns the previous state of underrun reporting.
266  */
267 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
268 					   enum transcoder pch_transcoder,
269 					   bool enable)
270 {
271 	struct drm_i915_private *dev_priv = dev->dev_private;
272 	enum pipe p;
273 	struct drm_crtc *crtc;
274 	struct intel_crtc *intel_crtc;
275 	unsigned long flags;
276 	bool ret;
277 
278 	if (HAS_PCH_LPT(dev)) {
279 		crtc = NULL;
280 		for_each_pipe(p) {
281 			struct drm_crtc *c = dev_priv->pipe_to_crtc_mapping[p];
282 			if (intel_pipe_has_type(c, INTEL_OUTPUT_ANALOG)) {
283 				crtc = c;
284 				break;
285 			}
286 		}
287 		if (!crtc) {
288 			DRM_ERROR("PCH FIFO underrun, but no CRTC using the PCH found\n");
289 			return false;
290 		}
291 	} else {
292 		crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
293 	}
294 	intel_crtc = to_intel_crtc(crtc);
295 
296 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
297 
298 	ret = !intel_crtc->pch_fifo_underrun_disabled;
299 
300 	if (enable == ret)
301 		goto done;
302 
303 	intel_crtc->pch_fifo_underrun_disabled = !enable;
304 
305 	if (HAS_PCH_IBX(dev))
306 		ibx_set_fifo_underrun_reporting(intel_crtc, enable);
307 	else
308 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
309 
310 done:
311 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
312 	return ret;
313 }
314 
315 
316 void
317 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
318 {
319 	u32 reg = PIPESTAT(pipe);
320 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
321 
322 	if ((pipestat & mask) == mask)
323 		return;
324 
325 	/* Enable the interrupt, clear any pending status */
326 	pipestat |= mask | (mask >> 16);
327 	I915_WRITE(reg, pipestat);
328 	POSTING_READ(reg);
329 }
330 
331 void
332 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
333 {
334 	u32 reg = PIPESTAT(pipe);
335 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
336 
337 	if ((pipestat & mask) == 0)
338 		return;
339 
340 	pipestat &= ~mask;
341 	I915_WRITE(reg, pipestat);
342 	POSTING_READ(reg);
343 }
344 
345 /**
346  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
347  */
348 static void i915_enable_asle_pipestat(struct drm_device *dev)
349 {
350 	drm_i915_private_t *dev_priv = dev->dev_private;
351 	unsigned long irqflags;
352 
353 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
354 		return;
355 
356 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
357 
358 	i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
359 	if (INTEL_INFO(dev)->gen >= 4)
360 		i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
361 
362 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
363 }
364 
365 /**
366  * i915_pipe_enabled - check if a pipe is enabled
367  * @dev: DRM device
368  * @pipe: pipe to check
369  *
370  * Reading certain registers when the pipe is disabled can hang the chip.
371  * Use this routine to make sure the PLL is running and the pipe is active
372  * before reading such registers if unsure.
373  */
374 static int
375 i915_pipe_enabled(struct drm_device *dev, int pipe)
376 {
377 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
378 
379 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
380 		/* Locking is horribly broken here, but whatever. */
381 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
382 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
383 
384 		return intel_crtc->active;
385 	} else {
386 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
387 	}
388 }
389 
390 /* Called from drm generic code, passed a 'crtc', which
391  * we use as a pipe index
392  */
393 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
394 {
395 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
396 	unsigned long high_frame;
397 	unsigned long low_frame;
398 	u32 high1, high2, low;
399 
400 	if (!i915_pipe_enabled(dev, pipe)) {
401 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
402 				"pipe %c\n", pipe_name(pipe));
403 		return 0;
404 	}
405 
406 	high_frame = PIPEFRAME(pipe);
407 	low_frame = PIPEFRAMEPIXEL(pipe);
408 
409 	/*
410 	 * High & low register fields aren't synchronized, so make sure
411 	 * we get a low value that's stable across two reads of the high
412 	 * register.
413 	 */
414 	do {
415 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
416 		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
417 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
418 	} while (high1 != high2);
419 
420 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
421 	low >>= PIPE_FRAME_LOW_SHIFT;
422 	return (high1 << 8) | low;
423 }
424 
425 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
426 {
427 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
428 	int reg = PIPE_FRMCOUNT_GM45(pipe);
429 
430 	if (!i915_pipe_enabled(dev, pipe)) {
431 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
432 				 "pipe %c\n", pipe_name(pipe));
433 		return 0;
434 	}
435 
436 	return I915_READ(reg);
437 }
438 
439 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
440 			     int *vpos, int *hpos)
441 {
442 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
443 	u32 vbl = 0, position = 0;
444 	int vbl_start, vbl_end, htotal, vtotal;
445 	bool in_vbl = true;
446 	int ret = 0;
447 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
448 								      pipe);
449 
450 	if (!i915_pipe_enabled(dev, pipe)) {
451 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
452 				 "pipe %c\n", pipe_name(pipe));
453 		return 0;
454 	}
455 
456 	/* Get vtotal. */
457 	vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
458 
459 	if (INTEL_INFO(dev)->gen >= 4) {
460 		/* No obvious pixelcount register. Only query vertical
461 		 * scanout position from Display scan line register.
462 		 */
463 		position = I915_READ(PIPEDSL(pipe));
464 
465 		/* Decode into vertical scanout position. Don't have
466 		 * horizontal scanout position.
467 		 */
468 		*vpos = position & 0x1fff;
469 		*hpos = 0;
470 	} else {
471 		/* Have access to pixelcount since start of frame.
472 		 * We can split this into vertical and horizontal
473 		 * scanout position.
474 		 */
475 		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
476 
477 		htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
478 		*vpos = position / htotal;
479 		*hpos = position - (*vpos * htotal);
480 	}
481 
482 	/* Query vblank area. */
483 	vbl = I915_READ(VBLANK(cpu_transcoder));
484 
485 	/* Test position against vblank region. */
486 	vbl_start = vbl & 0x1fff;
487 	vbl_end = (vbl >> 16) & 0x1fff;
488 
489 	if ((*vpos < vbl_start) || (*vpos > vbl_end))
490 		in_vbl = false;
491 
492 	/* Inside "upper part" of vblank area? Apply corrective offset: */
493 	if (in_vbl && (*vpos >= vbl_start))
494 		*vpos = *vpos - vtotal;
495 
496 	/* Readouts valid? */
497 	if (vbl > 0)
498 		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
499 
500 	/* In vblank? */
501 	if (in_vbl)
502 		ret |= DRM_SCANOUTPOS_INVBL;
503 
504 	return ret;
505 }
506 
507 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
508 			      int *max_error,
509 			      struct timeval *vblank_time,
510 			      unsigned flags)
511 {
512 	struct drm_crtc *crtc;
513 
514 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
515 		DRM_ERROR("Invalid crtc %d\n", pipe);
516 		return -EINVAL;
517 	}
518 
519 	/* Get drm_crtc to timestamp: */
520 	crtc = intel_get_crtc_for_pipe(dev, pipe);
521 	if (crtc == NULL) {
522 		DRM_ERROR("Invalid crtc %d\n", pipe);
523 		return -EINVAL;
524 	}
525 
526 	if (!crtc->enabled) {
527 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
528 		return -EBUSY;
529 	}
530 
531 	/* Helper routine in DRM core does all the work: */
532 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
533 						     vblank_time, flags,
534 						     crtc);
535 }
536 
537 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
538 {
539 	enum drm_connector_status old_status;
540 
541 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
542 	old_status = connector->status;
543 
544 	connector->status = connector->funcs->detect(connector, false);
545 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
546 		      connector->base.id,
547 		      drm_get_connector_name(connector),
548 		      old_status, connector->status);
549 	return (old_status != connector->status);
550 }
551 
552 /*
553  * Handle hotplug events outside the interrupt handler proper.
554  */
555 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
556 
557 static void i915_hotplug_work_func(struct work_struct *work)
558 {
559 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
560 						    hotplug_work);
561 	struct drm_device *dev = dev_priv->dev;
562 	struct drm_mode_config *mode_config = &dev->mode_config;
563 	struct intel_connector *intel_connector;
564 	struct intel_encoder *intel_encoder;
565 	struct drm_connector *connector;
566 	unsigned long irqflags;
567 	bool hpd_disabled = false;
568 	bool changed = false;
569 	u32 hpd_event_bits;
570 
571 	/* HPD irq before everything is fully set up. */
572 	if (!dev_priv->enable_hotplug_processing)
573 		return;
574 
575 	mutex_lock(&mode_config->mutex);
576 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
577 
578 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
579 
580 	hpd_event_bits = dev_priv->hpd_event_bits;
581 	dev_priv->hpd_event_bits = 0;
582 	list_for_each_entry(connector, &mode_config->connector_list, head) {
583 		intel_connector = to_intel_connector(connector);
584 		intel_encoder = intel_connector->encoder;
585 		if (intel_encoder->hpd_pin > HPD_NONE &&
586 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
587 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
588 			DRM_INFO("HPD interrupt storm detected on connector %s: "
589 				 "switching from hotplug detection to polling\n",
590 				drm_get_connector_name(connector));
591 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
592 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
593 				| DRM_CONNECTOR_POLL_DISCONNECT;
594 			hpd_disabled = true;
595 		}
596 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
597 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
598 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
599 		}
600 	}
601 	 /* if there were no outputs to poll, poll was disabled,
602 	  * therefore make sure it's enabled when disabling HPD on
603 	  * some connectors */
604 	if (hpd_disabled) {
605 		drm_kms_helper_poll_enable(dev);
606 		mod_timer(&dev_priv->hotplug_reenable_timer,
607 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
608 	}
609 
610 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
611 
612 	list_for_each_entry(connector, &mode_config->connector_list, head) {
613 		intel_connector = to_intel_connector(connector);
614 		intel_encoder = intel_connector->encoder;
615 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
616 			if (intel_encoder->hot_plug)
617 				intel_encoder->hot_plug(intel_encoder);
618 			if (intel_hpd_irq_event(dev, connector))
619 				changed = true;
620 		}
621 	}
622 	mutex_unlock(&mode_config->mutex);
623 
624 	if (changed)
625 		drm_kms_helper_hotplug_event(dev);
626 }
627 
628 static void ironlake_handle_rps_change(struct drm_device *dev)
629 {
630 	drm_i915_private_t *dev_priv = dev->dev_private;
631 	u32 busy_up, busy_down, max_avg, min_avg;
632 	u8 new_delay;
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&mchdev_lock, flags);
636 
637 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
638 
639 	new_delay = dev_priv->ips.cur_delay;
640 
641 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
642 	busy_up = I915_READ(RCPREVBSYTUPAVG);
643 	busy_down = I915_READ(RCPREVBSYTDNAVG);
644 	max_avg = I915_READ(RCBMAXAVG);
645 	min_avg = I915_READ(RCBMINAVG);
646 
647 	/* Handle RCS change request from hw */
648 	if (busy_up > max_avg) {
649 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
650 			new_delay = dev_priv->ips.cur_delay - 1;
651 		if (new_delay < dev_priv->ips.max_delay)
652 			new_delay = dev_priv->ips.max_delay;
653 	} else if (busy_down < min_avg) {
654 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
655 			new_delay = dev_priv->ips.cur_delay + 1;
656 		if (new_delay > dev_priv->ips.min_delay)
657 			new_delay = dev_priv->ips.min_delay;
658 	}
659 
660 	if (ironlake_set_drps(dev, new_delay))
661 		dev_priv->ips.cur_delay = new_delay;
662 
663 	spin_unlock_irqrestore(&mchdev_lock, flags);
664 
665 	return;
666 }
667 
668 static void notify_ring(struct drm_device *dev,
669 			struct intel_ring_buffer *ring)
670 {
671 	struct drm_i915_private *dev_priv = dev->dev_private;
672 
673 	if (ring->obj == NULL)
674 		return;
675 
676 	trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
677 
678 	wake_up_all(&ring->irq_queue);
679 	if (i915_enable_hangcheck) {
680 		mod_timer(&dev_priv->gpu_error.hangcheck_timer,
681 			  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
682 	}
683 }
684 
685 static void gen6_pm_rps_work(struct work_struct *work)
686 {
687 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
688 						    rps.work);
689 	u32 pm_iir, pm_imr;
690 	u8 new_delay;
691 
692 	spin_lock_irq(&dev_priv->rps.lock);
693 	pm_iir = dev_priv->rps.pm_iir;
694 	dev_priv->rps.pm_iir = 0;
695 	pm_imr = I915_READ(GEN6_PMIMR);
696 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
697 	I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
698 	spin_unlock_irq(&dev_priv->rps.lock);
699 
700 	if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
701 		return;
702 
703 	mutex_lock(&dev_priv->rps.hw_lock);
704 
705 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
706 		new_delay = dev_priv->rps.cur_delay + 1;
707 
708 		/*
709 		 * For better performance, jump directly
710 		 * to RPe if we're below it.
711 		 */
712 		if (IS_VALLEYVIEW(dev_priv->dev) &&
713 		    dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
714 			new_delay = dev_priv->rps.rpe_delay;
715 	} else
716 		new_delay = dev_priv->rps.cur_delay - 1;
717 
718 	/* sysfs frequency interfaces may have snuck in while servicing the
719 	 * interrupt
720 	 */
721 	if (new_delay >= dev_priv->rps.min_delay &&
722 	    new_delay <= dev_priv->rps.max_delay) {
723 		if (IS_VALLEYVIEW(dev_priv->dev))
724 			valleyview_set_rps(dev_priv->dev, new_delay);
725 		else
726 			gen6_set_rps(dev_priv->dev, new_delay);
727 	}
728 
729 	if (IS_VALLEYVIEW(dev_priv->dev)) {
730 		/*
731 		 * On VLV, when we enter RC6 we may not be at the minimum
732 		 * voltage level, so arm a timer to check.  It should only
733 		 * fire when there's activity or once after we've entered
734 		 * RC6, and then won't be re-armed until the next RPS interrupt.
735 		 */
736 		mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
737 				 msecs_to_jiffies(100));
738 	}
739 
740 	mutex_unlock(&dev_priv->rps.hw_lock);
741 }
742 
743 
744 /**
745  * ivybridge_parity_work - Workqueue called when a parity error interrupt
746  * occurred.
747  * @work: workqueue struct
748  *
749  * Doesn't actually do anything except notify userspace. As a consequence of
750  * this event, userspace should try to remap the bad rows since statistically
751  * it is likely the same row is more likely to go bad again.
752  */
753 static void ivybridge_parity_work(struct work_struct *work)
754 {
755 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
756 						    l3_parity.error_work);
757 	u32 error_status, row, bank, subbank;
758 	char *parity_event[5];
759 	uint32_t misccpctl;
760 	unsigned long flags;
761 
762 	/* We must turn off DOP level clock gating to access the L3 registers.
763 	 * In order to prevent a get/put style interface, acquire struct mutex
764 	 * any time we access those registers.
765 	 */
766 	mutex_lock(&dev_priv->dev->struct_mutex);
767 
768 	misccpctl = I915_READ(GEN7_MISCCPCTL);
769 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
770 	POSTING_READ(GEN7_MISCCPCTL);
771 
772 	error_status = I915_READ(GEN7_L3CDERRST1);
773 	row = GEN7_PARITY_ERROR_ROW(error_status);
774 	bank = GEN7_PARITY_ERROR_BANK(error_status);
775 	subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
776 
777 	I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
778 				    GEN7_L3CDERRST1_ENABLE);
779 	POSTING_READ(GEN7_L3CDERRST1);
780 
781 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
782 
783 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
784 	dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
785 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
786 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
787 
788 	mutex_unlock(&dev_priv->dev->struct_mutex);
789 
790 	parity_event[0] = "L3_PARITY_ERROR=1";
791 	parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
792 	parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
793 	parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
794 	parity_event[4] = NULL;
795 
796 	kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
797 			   KOBJ_CHANGE, parity_event);
798 
799 	DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
800 		  row, bank, subbank);
801 
802 	kfree(parity_event[3]);
803 	kfree(parity_event[2]);
804 	kfree(parity_event[1]);
805 }
806 
807 static void ivybridge_handle_parity_error(struct drm_device *dev)
808 {
809 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
810 	unsigned long flags;
811 
812 	if (!HAS_L3_GPU_CACHE(dev))
813 		return;
814 
815 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
816 	dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
817 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
818 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
819 
820 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
821 }
822 
823 static void snb_gt_irq_handler(struct drm_device *dev,
824 			       struct drm_i915_private *dev_priv,
825 			       u32 gt_iir)
826 {
827 
828 	if (gt_iir &
829 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
830 		notify_ring(dev, &dev_priv->ring[RCS]);
831 	if (gt_iir & GT_BSD_USER_INTERRUPT)
832 		notify_ring(dev, &dev_priv->ring[VCS]);
833 	if (gt_iir & GT_BLT_USER_INTERRUPT)
834 		notify_ring(dev, &dev_priv->ring[BCS]);
835 
836 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
837 		      GT_BSD_CS_ERROR_INTERRUPT |
838 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
839 		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
840 		i915_handle_error(dev, false);
841 	}
842 
843 	if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
844 		ivybridge_handle_parity_error(dev);
845 }
846 
847 /* Legacy way of handling PM interrupts */
848 static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
849 				u32 pm_iir)
850 {
851 	unsigned long flags;
852 
853 	/*
854 	 * IIR bits should never already be set because IMR should
855 	 * prevent an interrupt from being shown in IIR. The warning
856 	 * displays a case where we've unsafely cleared
857 	 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
858 	 * type is not a problem, it displays a problem in the logic.
859 	 *
860 	 * The mask bit in IMR is cleared by dev_priv->rps.work.
861 	 */
862 
863 	spin_lock_irqsave(&dev_priv->rps.lock, flags);
864 	dev_priv->rps.pm_iir |= pm_iir;
865 	I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
866 	POSTING_READ(GEN6_PMIMR);
867 	spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
868 
869 	queue_work(dev_priv->wq, &dev_priv->rps.work);
870 }
871 
872 #define HPD_STORM_DETECT_PERIOD 1000
873 #define HPD_STORM_THRESHOLD 5
874 
875 static inline void intel_hpd_irq_handler(struct drm_device *dev,
876 					 u32 hotplug_trigger,
877 					 const u32 *hpd)
878 {
879 	drm_i915_private_t *dev_priv = dev->dev_private;
880 	int i;
881 	bool storm_detected = false;
882 
883 	if (!hotplug_trigger)
884 		return;
885 
886 	spin_lock(&dev_priv->irq_lock);
887 	for (i = 1; i < HPD_NUM_PINS; i++) {
888 
889 		if (!(hpd[i] & hotplug_trigger) ||
890 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
891 			continue;
892 
893 		dev_priv->hpd_event_bits |= (1 << i);
894 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
895 				   dev_priv->hpd_stats[i].hpd_last_jiffies
896 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
897 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
898 			dev_priv->hpd_stats[i].hpd_cnt = 0;
899 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
900 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
901 			dev_priv->hpd_event_bits &= ~(1 << i);
902 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
903 			storm_detected = true;
904 		} else {
905 			dev_priv->hpd_stats[i].hpd_cnt++;
906 		}
907 	}
908 
909 	if (storm_detected)
910 		dev_priv->display.hpd_irq_setup(dev);
911 	spin_unlock(&dev_priv->irq_lock);
912 
913 	queue_work(dev_priv->wq,
914 		   &dev_priv->hotplug_work);
915 }
916 
917 static void gmbus_irq_handler(struct drm_device *dev)
918 {
919 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
920 
921 	wake_up_all(&dev_priv->gmbus_wait_queue);
922 }
923 
924 static void dp_aux_irq_handler(struct drm_device *dev)
925 {
926 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
927 
928 	wake_up_all(&dev_priv->gmbus_wait_queue);
929 }
930 
931 /* Unlike gen6_queue_rps_work() from which this function is originally derived,
932  * we must be able to deal with other PM interrupts. This is complicated because
933  * of the way in which we use the masks to defer the RPS work (which for
934  * posterity is necessary because of forcewake).
935  */
936 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
937 			       u32 pm_iir)
938 {
939 	unsigned long flags;
940 
941 	spin_lock_irqsave(&dev_priv->rps.lock, flags);
942 	dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
943 	if (dev_priv->rps.pm_iir) {
944 		I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
945 		/* never want to mask useful interrupts. (also posting read) */
946 		WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
947 		/* TODO: if queue_work is slow, move it out of the spinlock */
948 		queue_work(dev_priv->wq, &dev_priv->rps.work);
949 	}
950 	spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
951 
952 	if (pm_iir & ~GEN6_PM_RPS_EVENTS) {
953 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
954 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
955 
956 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
957 			DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
958 			i915_handle_error(dev_priv->dev, false);
959 		}
960 	}
961 }
962 
963 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
964 {
965 	struct drm_device *dev = (struct drm_device *) arg;
966 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
967 	u32 iir, gt_iir, pm_iir;
968 	irqreturn_t ret = IRQ_NONE;
969 	unsigned long irqflags;
970 	int pipe;
971 	u32 pipe_stats[I915_MAX_PIPES];
972 
973 	atomic_inc(&dev_priv->irq_received);
974 
975 	while (true) {
976 		iir = I915_READ(VLV_IIR);
977 		gt_iir = I915_READ(GTIIR);
978 		pm_iir = I915_READ(GEN6_PMIIR);
979 
980 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
981 			goto out;
982 
983 		ret = IRQ_HANDLED;
984 
985 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
986 
987 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
988 		for_each_pipe(pipe) {
989 			int reg = PIPESTAT(pipe);
990 			pipe_stats[pipe] = I915_READ(reg);
991 
992 			/*
993 			 * Clear the PIPE*STAT regs before the IIR
994 			 */
995 			if (pipe_stats[pipe] & 0x8000ffff) {
996 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
997 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
998 							 pipe_name(pipe));
999 				I915_WRITE(reg, pipe_stats[pipe]);
1000 			}
1001 		}
1002 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1003 
1004 		for_each_pipe(pipe) {
1005 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1006 				drm_handle_vblank(dev, pipe);
1007 
1008 			if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1009 				intel_prepare_page_flip(dev, pipe);
1010 				intel_finish_page_flip(dev, pipe);
1011 			}
1012 		}
1013 
1014 		/* Consume port.  Then clear IIR or we'll miss events */
1015 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1016 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1017 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1018 
1019 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1020 					 hotplug_status);
1021 
1022 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1023 
1024 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1025 			I915_READ(PORT_HOTPLUG_STAT);
1026 		}
1027 
1028 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1029 			gmbus_irq_handler(dev);
1030 
1031 		if (pm_iir & GEN6_PM_RPS_EVENTS)
1032 			gen6_queue_rps_work(dev_priv, pm_iir);
1033 
1034 		I915_WRITE(GTIIR, gt_iir);
1035 		I915_WRITE(GEN6_PMIIR, pm_iir);
1036 		I915_WRITE(VLV_IIR, iir);
1037 	}
1038 
1039 out:
1040 	return ret;
1041 }
1042 
1043 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1044 {
1045 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1046 	int pipe;
1047 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1048 
1049 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1050 
1051 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1052 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1053 			       SDE_AUDIO_POWER_SHIFT);
1054 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1055 				 port_name(port));
1056 	}
1057 
1058 	if (pch_iir & SDE_AUX_MASK)
1059 		dp_aux_irq_handler(dev);
1060 
1061 	if (pch_iir & SDE_GMBUS)
1062 		gmbus_irq_handler(dev);
1063 
1064 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1065 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1066 
1067 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1068 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1069 
1070 	if (pch_iir & SDE_POISON)
1071 		DRM_ERROR("PCH poison interrupt\n");
1072 
1073 	if (pch_iir & SDE_FDI_MASK)
1074 		for_each_pipe(pipe)
1075 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1076 					 pipe_name(pipe),
1077 					 I915_READ(FDI_RX_IIR(pipe)));
1078 
1079 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1080 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1081 
1082 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1083 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1084 
1085 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1086 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1087 							  false))
1088 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1089 
1090 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1091 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1092 							  false))
1093 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1094 }
1095 
1096 static void ivb_err_int_handler(struct drm_device *dev)
1097 {
1098 	struct drm_i915_private *dev_priv = dev->dev_private;
1099 	u32 err_int = I915_READ(GEN7_ERR_INT);
1100 
1101 	if (err_int & ERR_INT_POISON)
1102 		DRM_ERROR("Poison interrupt\n");
1103 
1104 	if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1105 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1106 			DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1107 
1108 	if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1109 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1110 			DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1111 
1112 	if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1113 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1114 			DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1115 
1116 	I915_WRITE(GEN7_ERR_INT, err_int);
1117 }
1118 
1119 static void cpt_serr_int_handler(struct drm_device *dev)
1120 {
1121 	struct drm_i915_private *dev_priv = dev->dev_private;
1122 	u32 serr_int = I915_READ(SERR_INT);
1123 
1124 	if (serr_int & SERR_INT_POISON)
1125 		DRM_ERROR("PCH poison interrupt\n");
1126 
1127 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1128 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1129 							  false))
1130 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1131 
1132 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1133 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1134 							  false))
1135 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1136 
1137 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1138 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1139 							  false))
1140 			DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1141 
1142 	I915_WRITE(SERR_INT, serr_int);
1143 }
1144 
1145 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1146 {
1147 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1148 	int pipe;
1149 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1150 
1151 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1152 
1153 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1154 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1155 			       SDE_AUDIO_POWER_SHIFT_CPT);
1156 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1157 				 port_name(port));
1158 	}
1159 
1160 	if (pch_iir & SDE_AUX_MASK_CPT)
1161 		dp_aux_irq_handler(dev);
1162 
1163 	if (pch_iir & SDE_GMBUS_CPT)
1164 		gmbus_irq_handler(dev);
1165 
1166 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1167 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1168 
1169 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1170 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1171 
1172 	if (pch_iir & SDE_FDI_MASK_CPT)
1173 		for_each_pipe(pipe)
1174 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1175 					 pipe_name(pipe),
1176 					 I915_READ(FDI_RX_IIR(pipe)));
1177 
1178 	if (pch_iir & SDE_ERROR_CPT)
1179 		cpt_serr_int_handler(dev);
1180 }
1181 
1182 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1183 {
1184 	struct drm_device *dev = (struct drm_device *) arg;
1185 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1186 	u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1187 	irqreturn_t ret = IRQ_NONE;
1188 	int i;
1189 
1190 	atomic_inc(&dev_priv->irq_received);
1191 
1192 	/* We get interrupts on unclaimed registers, so check for this before we
1193 	 * do any I915_{READ,WRITE}. */
1194 	if (IS_HASWELL(dev) &&
1195 	    (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1196 		DRM_ERROR("Unclaimed register before interrupt\n");
1197 		I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1198 	}
1199 
1200 	/* disable master interrupt before clearing iir  */
1201 	de_ier = I915_READ(DEIER);
1202 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1203 
1204 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1205 	 * interrupts will will be stored on its back queue, and then we'll be
1206 	 * able to process them after we restore SDEIER (as soon as we restore
1207 	 * it, we'll get an interrupt if SDEIIR still has something to process
1208 	 * due to its back queue). */
1209 	if (!HAS_PCH_NOP(dev)) {
1210 		sde_ier = I915_READ(SDEIER);
1211 		I915_WRITE(SDEIER, 0);
1212 		POSTING_READ(SDEIER);
1213 	}
1214 
1215 	/* On Haswell, also mask ERR_INT because we don't want to risk
1216 	 * generating "unclaimed register" interrupts from inside the interrupt
1217 	 * handler. */
1218 	if (IS_HASWELL(dev)) {
1219 		spin_lock(&dev_priv->irq_lock);
1220 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1221 		spin_unlock(&dev_priv->irq_lock);
1222 	}
1223 
1224 	gt_iir = I915_READ(GTIIR);
1225 	if (gt_iir) {
1226 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1227 		I915_WRITE(GTIIR, gt_iir);
1228 		ret = IRQ_HANDLED;
1229 	}
1230 
1231 	de_iir = I915_READ(DEIIR);
1232 	if (de_iir) {
1233 		if (de_iir & DE_ERR_INT_IVB)
1234 			ivb_err_int_handler(dev);
1235 
1236 		if (de_iir & DE_AUX_CHANNEL_A_IVB)
1237 			dp_aux_irq_handler(dev);
1238 
1239 		if (de_iir & DE_GSE_IVB)
1240 			intel_opregion_asle_intr(dev);
1241 
1242 		for (i = 0; i < 3; i++) {
1243 			if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1244 				drm_handle_vblank(dev, i);
1245 			if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1246 				intel_prepare_page_flip(dev, i);
1247 				intel_finish_page_flip_plane(dev, i);
1248 			}
1249 		}
1250 
1251 		/* check event from PCH */
1252 		if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1253 			u32 pch_iir = I915_READ(SDEIIR);
1254 
1255 			cpt_irq_handler(dev, pch_iir);
1256 
1257 			/* clear PCH hotplug event before clear CPU irq */
1258 			I915_WRITE(SDEIIR, pch_iir);
1259 		}
1260 
1261 		I915_WRITE(DEIIR, de_iir);
1262 		ret = IRQ_HANDLED;
1263 	}
1264 
1265 	pm_iir = I915_READ(GEN6_PMIIR);
1266 	if (pm_iir) {
1267 		if (IS_HASWELL(dev))
1268 			hsw_pm_irq_handler(dev_priv, pm_iir);
1269 		else if (pm_iir & GEN6_PM_RPS_EVENTS)
1270 			gen6_queue_rps_work(dev_priv, pm_iir);
1271 		I915_WRITE(GEN6_PMIIR, pm_iir);
1272 		ret = IRQ_HANDLED;
1273 	}
1274 
1275 	if (IS_HASWELL(dev)) {
1276 		spin_lock(&dev_priv->irq_lock);
1277 		if (ivb_can_enable_err_int(dev))
1278 			ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1279 		spin_unlock(&dev_priv->irq_lock);
1280 	}
1281 
1282 	I915_WRITE(DEIER, de_ier);
1283 	POSTING_READ(DEIER);
1284 	if (!HAS_PCH_NOP(dev)) {
1285 		I915_WRITE(SDEIER, sde_ier);
1286 		POSTING_READ(SDEIER);
1287 	}
1288 
1289 	return ret;
1290 }
1291 
1292 static void ilk_gt_irq_handler(struct drm_device *dev,
1293 			       struct drm_i915_private *dev_priv,
1294 			       u32 gt_iir)
1295 {
1296 	if (gt_iir &
1297 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1298 		notify_ring(dev, &dev_priv->ring[RCS]);
1299 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1300 		notify_ring(dev, &dev_priv->ring[VCS]);
1301 }
1302 
1303 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1304 {
1305 	struct drm_device *dev = (struct drm_device *) arg;
1306 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1307 	int ret = IRQ_NONE;
1308 	u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1309 
1310 	atomic_inc(&dev_priv->irq_received);
1311 
1312 	/* disable master interrupt before clearing iir  */
1313 	de_ier = I915_READ(DEIER);
1314 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1315 	POSTING_READ(DEIER);
1316 
1317 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1318 	 * interrupts will will be stored on its back queue, and then we'll be
1319 	 * able to process them after we restore SDEIER (as soon as we restore
1320 	 * it, we'll get an interrupt if SDEIIR still has something to process
1321 	 * due to its back queue). */
1322 	sde_ier = I915_READ(SDEIER);
1323 	I915_WRITE(SDEIER, 0);
1324 	POSTING_READ(SDEIER);
1325 
1326 	de_iir = I915_READ(DEIIR);
1327 	gt_iir = I915_READ(GTIIR);
1328 	pm_iir = I915_READ(GEN6_PMIIR);
1329 
1330 	if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1331 		goto done;
1332 
1333 	ret = IRQ_HANDLED;
1334 
1335 	if (IS_GEN5(dev))
1336 		ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1337 	else
1338 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1339 
1340 	if (de_iir & DE_AUX_CHANNEL_A)
1341 		dp_aux_irq_handler(dev);
1342 
1343 	if (de_iir & DE_GSE)
1344 		intel_opregion_asle_intr(dev);
1345 
1346 	if (de_iir & DE_PIPEA_VBLANK)
1347 		drm_handle_vblank(dev, 0);
1348 
1349 	if (de_iir & DE_PIPEB_VBLANK)
1350 		drm_handle_vblank(dev, 1);
1351 
1352 	if (de_iir & DE_POISON)
1353 		DRM_ERROR("Poison interrupt\n");
1354 
1355 	if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1356 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1357 			DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1358 
1359 	if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1360 		if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1361 			DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1362 
1363 	if (de_iir & DE_PLANEA_FLIP_DONE) {
1364 		intel_prepare_page_flip(dev, 0);
1365 		intel_finish_page_flip_plane(dev, 0);
1366 	}
1367 
1368 	if (de_iir & DE_PLANEB_FLIP_DONE) {
1369 		intel_prepare_page_flip(dev, 1);
1370 		intel_finish_page_flip_plane(dev, 1);
1371 	}
1372 
1373 	/* check event from PCH */
1374 	if (de_iir & DE_PCH_EVENT) {
1375 		u32 pch_iir = I915_READ(SDEIIR);
1376 
1377 		if (HAS_PCH_CPT(dev))
1378 			cpt_irq_handler(dev, pch_iir);
1379 		else
1380 			ibx_irq_handler(dev, pch_iir);
1381 
1382 		/* should clear PCH hotplug event before clear CPU irq */
1383 		I915_WRITE(SDEIIR, pch_iir);
1384 	}
1385 
1386 	if (IS_GEN5(dev) &&  de_iir & DE_PCU_EVENT)
1387 		ironlake_handle_rps_change(dev);
1388 
1389 	if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1390 		gen6_queue_rps_work(dev_priv, pm_iir);
1391 
1392 	I915_WRITE(GTIIR, gt_iir);
1393 	I915_WRITE(DEIIR, de_iir);
1394 	I915_WRITE(GEN6_PMIIR, pm_iir);
1395 
1396 done:
1397 	I915_WRITE(DEIER, de_ier);
1398 	POSTING_READ(DEIER);
1399 	I915_WRITE(SDEIER, sde_ier);
1400 	POSTING_READ(SDEIER);
1401 
1402 	return ret;
1403 }
1404 
1405 /**
1406  * i915_error_work_func - do process context error handling work
1407  * @work: work struct
1408  *
1409  * Fire an error uevent so userspace can see that a hang or error
1410  * was detected.
1411  */
1412 static void i915_error_work_func(struct work_struct *work)
1413 {
1414 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1415 						    work);
1416 	drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1417 						    gpu_error);
1418 	struct drm_device *dev = dev_priv->dev;
1419 	struct intel_ring_buffer *ring;
1420 	char *error_event[] = { "ERROR=1", NULL };
1421 	char *reset_event[] = { "RESET=1", NULL };
1422 	char *reset_done_event[] = { "ERROR=0", NULL };
1423 	int i, ret;
1424 
1425 	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1426 
1427 	/*
1428 	 * Note that there's only one work item which does gpu resets, so we
1429 	 * need not worry about concurrent gpu resets potentially incrementing
1430 	 * error->reset_counter twice. We only need to take care of another
1431 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
1432 	 * quick check for that is good enough: schedule_work ensures the
1433 	 * correct ordering between hang detection and this work item, and since
1434 	 * the reset in-progress bit is only ever set by code outside of this
1435 	 * work we don't need to worry about any other races.
1436 	 */
1437 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1438 		DRM_DEBUG_DRIVER("resetting chip\n");
1439 		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1440 				   reset_event);
1441 
1442 		ret = i915_reset(dev);
1443 
1444 		if (ret == 0) {
1445 			/*
1446 			 * After all the gem state is reset, increment the reset
1447 			 * counter and wake up everyone waiting for the reset to
1448 			 * complete.
1449 			 *
1450 			 * Since unlock operations are a one-sided barrier only,
1451 			 * we need to insert a barrier here to order any seqno
1452 			 * updates before
1453 			 * the counter increment.
1454 			 */
1455 			smp_mb__before_atomic_inc();
1456 			atomic_inc(&dev_priv->gpu_error.reset_counter);
1457 
1458 			kobject_uevent_env(&dev->primary->kdev.kobj,
1459 					   KOBJ_CHANGE, reset_done_event);
1460 		} else {
1461 			atomic_set(&error->reset_counter, I915_WEDGED);
1462 		}
1463 
1464 		for_each_ring(ring, dev_priv, i)
1465 			wake_up_all(&ring->irq_queue);
1466 
1467 		intel_display_handle_reset(dev);
1468 
1469 		wake_up_all(&dev_priv->gpu_error.reset_queue);
1470 	}
1471 }
1472 
1473 /* NB: please notice the memset */
1474 static void i915_get_extra_instdone(struct drm_device *dev,
1475 				    uint32_t *instdone)
1476 {
1477 	struct drm_i915_private *dev_priv = dev->dev_private;
1478 	memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
1479 
1480 	switch(INTEL_INFO(dev)->gen) {
1481 	case 2:
1482 	case 3:
1483 		instdone[0] = I915_READ(INSTDONE);
1484 		break;
1485 	case 4:
1486 	case 5:
1487 	case 6:
1488 		instdone[0] = I915_READ(INSTDONE_I965);
1489 		instdone[1] = I915_READ(INSTDONE1);
1490 		break;
1491 	default:
1492 		WARN_ONCE(1, "Unsupported platform\n");
1493 	case 7:
1494 		instdone[0] = I915_READ(GEN7_INSTDONE_1);
1495 		instdone[1] = I915_READ(GEN7_SC_INSTDONE);
1496 		instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
1497 		instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
1498 		break;
1499 	}
1500 }
1501 
1502 #ifdef CONFIG_DEBUG_FS
1503 static struct drm_i915_error_object *
1504 i915_error_object_create_sized(struct drm_i915_private *dev_priv,
1505 			       struct drm_i915_gem_object *src,
1506 			       const int num_pages)
1507 {
1508 	struct drm_i915_error_object *dst;
1509 	int i;
1510 	u32 reloc_offset;
1511 
1512 	if (src == NULL || src->pages == NULL)
1513 		return NULL;
1514 
1515 	dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
1516 	if (dst == NULL)
1517 		return NULL;
1518 
1519 	reloc_offset = src->gtt_offset;
1520 	for (i = 0; i < num_pages; i++) {
1521 		unsigned long flags;
1522 		void *d;
1523 
1524 		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
1525 		if (d == NULL)
1526 			goto unwind;
1527 
1528 		local_irq_save(flags);
1529 		if (reloc_offset < dev_priv->gtt.mappable_end &&
1530 		    src->has_global_gtt_mapping) {
1531 			void __iomem *s;
1532 
1533 			/* Simply ignore tiling or any overlapping fence.
1534 			 * It's part of the error state, and this hopefully
1535 			 * captures what the GPU read.
1536 			 */
1537 
1538 			s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
1539 						     reloc_offset);
1540 			memcpy_fromio(d, s, PAGE_SIZE);
1541 			io_mapping_unmap_atomic(s);
1542 		} else if (src->stolen) {
1543 			unsigned long offset;
1544 
1545 			offset = dev_priv->mm.stolen_base;
1546 			offset += src->stolen->start;
1547 			offset += i << PAGE_SHIFT;
1548 
1549 			memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
1550 		} else {
1551 			struct page *page;
1552 			void *s;
1553 
1554 			page = i915_gem_object_get_page(src, i);
1555 
1556 			drm_clflush_pages(&page, 1);
1557 
1558 			s = kmap_atomic(page);
1559 			memcpy(d, s, PAGE_SIZE);
1560 			kunmap_atomic(s);
1561 
1562 			drm_clflush_pages(&page, 1);
1563 		}
1564 		local_irq_restore(flags);
1565 
1566 		dst->pages[i] = d;
1567 
1568 		reloc_offset += PAGE_SIZE;
1569 	}
1570 	dst->page_count = num_pages;
1571 	dst->gtt_offset = src->gtt_offset;
1572 
1573 	return dst;
1574 
1575 unwind:
1576 	while (i--)
1577 		kfree(dst->pages[i]);
1578 	kfree(dst);
1579 	return NULL;
1580 }
1581 #define i915_error_object_create(dev_priv, src) \
1582 	i915_error_object_create_sized((dev_priv), (src), \
1583 				       (src)->base.size>>PAGE_SHIFT)
1584 
1585 static void
1586 i915_error_object_free(struct drm_i915_error_object *obj)
1587 {
1588 	int page;
1589 
1590 	if (obj == NULL)
1591 		return;
1592 
1593 	for (page = 0; page < obj->page_count; page++)
1594 		kfree(obj->pages[page]);
1595 
1596 	kfree(obj);
1597 }
1598 
1599 void
1600 i915_error_state_free(struct kref *error_ref)
1601 {
1602 	struct drm_i915_error_state *error = container_of(error_ref,
1603 							  typeof(*error), ref);
1604 	int i;
1605 
1606 	for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
1607 		i915_error_object_free(error->ring[i].batchbuffer);
1608 		i915_error_object_free(error->ring[i].ringbuffer);
1609 		i915_error_object_free(error->ring[i].ctx);
1610 		kfree(error->ring[i].requests);
1611 	}
1612 
1613 	kfree(error->active_bo);
1614 	kfree(error->overlay);
1615 	kfree(error->display);
1616 	kfree(error);
1617 }
1618 static void capture_bo(struct drm_i915_error_buffer *err,
1619 		       struct drm_i915_gem_object *obj)
1620 {
1621 	err->size = obj->base.size;
1622 	err->name = obj->base.name;
1623 	err->rseqno = obj->last_read_seqno;
1624 	err->wseqno = obj->last_write_seqno;
1625 	err->gtt_offset = obj->gtt_offset;
1626 	err->read_domains = obj->base.read_domains;
1627 	err->write_domain = obj->base.write_domain;
1628 	err->fence_reg = obj->fence_reg;
1629 	err->pinned = 0;
1630 	if (obj->pin_count > 0)
1631 		err->pinned = 1;
1632 	if (obj->user_pin_count > 0)
1633 		err->pinned = -1;
1634 	err->tiling = obj->tiling_mode;
1635 	err->dirty = obj->dirty;
1636 	err->purgeable = obj->madv != I915_MADV_WILLNEED;
1637 	err->ring = obj->ring ? obj->ring->id : -1;
1638 	err->cache_level = obj->cache_level;
1639 }
1640 
1641 static u32 capture_active_bo(struct drm_i915_error_buffer *err,
1642 			     int count, struct list_head *head)
1643 {
1644 	struct drm_i915_gem_object *obj;
1645 	int i = 0;
1646 
1647 	list_for_each_entry(obj, head, mm_list) {
1648 		capture_bo(err++, obj);
1649 		if (++i == count)
1650 			break;
1651 	}
1652 
1653 	return i;
1654 }
1655 
1656 static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
1657 			     int count, struct list_head *head)
1658 {
1659 	struct drm_i915_gem_object *obj;
1660 	int i = 0;
1661 
1662 	list_for_each_entry(obj, head, global_list) {
1663 		if (obj->pin_count == 0)
1664 			continue;
1665 
1666 		capture_bo(err++, obj);
1667 		if (++i == count)
1668 			break;
1669 	}
1670 
1671 	return i;
1672 }
1673 
1674 static void i915_gem_record_fences(struct drm_device *dev,
1675 				   struct drm_i915_error_state *error)
1676 {
1677 	struct drm_i915_private *dev_priv = dev->dev_private;
1678 	int i;
1679 
1680 	/* Fences */
1681 	switch (INTEL_INFO(dev)->gen) {
1682 	case 7:
1683 	case 6:
1684 		for (i = 0; i < dev_priv->num_fence_regs; i++)
1685 			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
1686 		break;
1687 	case 5:
1688 	case 4:
1689 		for (i = 0; i < 16; i++)
1690 			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
1691 		break;
1692 	case 3:
1693 		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
1694 			for (i = 0; i < 8; i++)
1695 				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
1696 	case 2:
1697 		for (i = 0; i < 8; i++)
1698 			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
1699 		break;
1700 
1701 	default:
1702 		BUG();
1703 	}
1704 }
1705 
1706 static struct drm_i915_error_object *
1707 i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
1708 			     struct intel_ring_buffer *ring)
1709 {
1710 	struct drm_i915_gem_object *obj;
1711 	u32 seqno;
1712 
1713 	if (!ring->get_seqno)
1714 		return NULL;
1715 
1716 	if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
1717 		u32 acthd = I915_READ(ACTHD);
1718 
1719 		if (WARN_ON(ring->id != RCS))
1720 			return NULL;
1721 
1722 		obj = ring->private;
1723 		if (acthd >= obj->gtt_offset &&
1724 		    acthd < obj->gtt_offset + obj->base.size)
1725 			return i915_error_object_create(dev_priv, obj);
1726 	}
1727 
1728 	seqno = ring->get_seqno(ring, false);
1729 	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
1730 		if (obj->ring != ring)
1731 			continue;
1732 
1733 		if (i915_seqno_passed(seqno, obj->last_read_seqno))
1734 			continue;
1735 
1736 		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
1737 			continue;
1738 
1739 		/* We need to copy these to an anonymous buffer as the simplest
1740 		 * method to avoid being overwritten by userspace.
1741 		 */
1742 		return i915_error_object_create(dev_priv, obj);
1743 	}
1744 
1745 	return NULL;
1746 }
1747 
1748 static void i915_record_ring_state(struct drm_device *dev,
1749 				   struct drm_i915_error_state *error,
1750 				   struct intel_ring_buffer *ring)
1751 {
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 
1754 	if (INTEL_INFO(dev)->gen >= 6) {
1755 		error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
1756 		error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
1757 		error->semaphore_mboxes[ring->id][0]
1758 			= I915_READ(RING_SYNC_0(ring->mmio_base));
1759 		error->semaphore_mboxes[ring->id][1]
1760 			= I915_READ(RING_SYNC_1(ring->mmio_base));
1761 		error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
1762 		error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
1763 	}
1764 
1765 	if (INTEL_INFO(dev)->gen >= 4) {
1766 		error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1767 		error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1768 		error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1769 		error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1770 		error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1771 		if (ring->id == RCS)
1772 			error->bbaddr = I915_READ64(BB_ADDR);
1773 	} else {
1774 		error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1775 		error->ipeir[ring->id] = I915_READ(IPEIR);
1776 		error->ipehr[ring->id] = I915_READ(IPEHR);
1777 		error->instdone[ring->id] = I915_READ(INSTDONE);
1778 	}
1779 
1780 	error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1781 	error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1782 	error->seqno[ring->id] = ring->get_seqno(ring, false);
1783 	error->acthd[ring->id] = intel_ring_get_active_head(ring);
1784 	error->head[ring->id] = I915_READ_HEAD(ring);
1785 	error->tail[ring->id] = I915_READ_TAIL(ring);
1786 	error->ctl[ring->id] = I915_READ_CTL(ring);
1787 
1788 	error->cpu_ring_head[ring->id] = ring->head;
1789 	error->cpu_ring_tail[ring->id] = ring->tail;
1790 }
1791 
1792 
1793 static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
1794 					   struct drm_i915_error_state *error,
1795 					   struct drm_i915_error_ring *ering)
1796 {
1797 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1798 	struct drm_i915_gem_object *obj;
1799 
1800 	/* Currently render ring is the only HW context user */
1801 	if (ring->id != RCS || !error->ccid)
1802 		return;
1803 
1804 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1805 		if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
1806 			ering->ctx = i915_error_object_create_sized(dev_priv,
1807 								    obj, 1);
1808 		}
1809 	}
1810 }
1811 
1812 static void i915_gem_record_rings(struct drm_device *dev,
1813 				  struct drm_i915_error_state *error)
1814 {
1815 	struct drm_i915_private *dev_priv = dev->dev_private;
1816 	struct intel_ring_buffer *ring;
1817 	struct drm_i915_gem_request *request;
1818 	int i, count;
1819 
1820 	for_each_ring(ring, dev_priv, i) {
1821 		i915_record_ring_state(dev, error, ring);
1822 
1823 		error->ring[i].batchbuffer =
1824 			i915_error_first_batchbuffer(dev_priv, ring);
1825 
1826 		error->ring[i].ringbuffer =
1827 			i915_error_object_create(dev_priv, ring->obj);
1828 
1829 
1830 		i915_gem_record_active_context(ring, error, &error->ring[i]);
1831 
1832 		count = 0;
1833 		list_for_each_entry(request, &ring->request_list, list)
1834 			count++;
1835 
1836 		error->ring[i].num_requests = count;
1837 		error->ring[i].requests =
1838 			kmalloc(count*sizeof(struct drm_i915_error_request),
1839 				GFP_ATOMIC);
1840 		if (error->ring[i].requests == NULL) {
1841 			error->ring[i].num_requests = 0;
1842 			continue;
1843 		}
1844 
1845 		count = 0;
1846 		list_for_each_entry(request, &ring->request_list, list) {
1847 			struct drm_i915_error_request *erq;
1848 
1849 			erq = &error->ring[i].requests[count++];
1850 			erq->seqno = request->seqno;
1851 			erq->jiffies = request->emitted_jiffies;
1852 			erq->tail = request->tail;
1853 		}
1854 	}
1855 }
1856 
1857 /**
1858  * i915_capture_error_state - capture an error record for later analysis
1859  * @dev: drm device
1860  *
1861  * Should be called when an error is detected (either a hang or an error
1862  * interrupt) to capture error state from the time of the error.  Fills
1863  * out a structure which becomes available in debugfs for user level tools
1864  * to pick up.
1865  */
1866 static void i915_capture_error_state(struct drm_device *dev)
1867 {
1868 	struct drm_i915_private *dev_priv = dev->dev_private;
1869 	struct drm_i915_gem_object *obj;
1870 	struct drm_i915_error_state *error;
1871 	unsigned long flags;
1872 	int i, pipe;
1873 
1874 	spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1875 	error = dev_priv->gpu_error.first_error;
1876 	spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1877 	if (error)
1878 		return;
1879 
1880 	/* Account for pipe specific data like PIPE*STAT */
1881 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
1882 	if (!error) {
1883 		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1884 		return;
1885 	}
1886 
1887 	DRM_INFO("capturing error event; look for more information in "
1888 		 "/sys/kernel/debug/dri/%d/i915_error_state\n",
1889 		 dev->primary->index);
1890 
1891 	kref_init(&error->ref);
1892 	error->eir = I915_READ(EIR);
1893 	error->pgtbl_er = I915_READ(PGTBL_ER);
1894 	if (HAS_HW_CONTEXTS(dev))
1895 		error->ccid = I915_READ(CCID);
1896 
1897 	if (HAS_PCH_SPLIT(dev))
1898 		error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1899 	else if (IS_VALLEYVIEW(dev))
1900 		error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1901 	else if (IS_GEN2(dev))
1902 		error->ier = I915_READ16(IER);
1903 	else
1904 		error->ier = I915_READ(IER);
1905 
1906 	if (INTEL_INFO(dev)->gen >= 6)
1907 		error->derrmr = I915_READ(DERRMR);
1908 
1909 	if (IS_VALLEYVIEW(dev))
1910 		error->forcewake = I915_READ(FORCEWAKE_VLV);
1911 	else if (INTEL_INFO(dev)->gen >= 7)
1912 		error->forcewake = I915_READ(FORCEWAKE_MT);
1913 	else if (INTEL_INFO(dev)->gen == 6)
1914 		error->forcewake = I915_READ(FORCEWAKE);
1915 
1916 	if (!HAS_PCH_SPLIT(dev))
1917 		for_each_pipe(pipe)
1918 			error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
1919 
1920 	if (INTEL_INFO(dev)->gen >= 6) {
1921 		error->error = I915_READ(ERROR_GEN6);
1922 		error->done_reg = I915_READ(DONE_REG);
1923 	}
1924 
1925 	if (INTEL_INFO(dev)->gen == 7)
1926 		error->err_int = I915_READ(GEN7_ERR_INT);
1927 
1928 	i915_get_extra_instdone(dev, error->extra_instdone);
1929 
1930 	i915_gem_record_fences(dev, error);
1931 	i915_gem_record_rings(dev, error);
1932 
1933 	/* Record buffers on the active and pinned lists. */
1934 	error->active_bo = NULL;
1935 	error->pinned_bo = NULL;
1936 
1937 	i = 0;
1938 	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1939 		i++;
1940 	error->active_bo_count = i;
1941 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1942 		if (obj->pin_count)
1943 			i++;
1944 	error->pinned_bo_count = i - error->active_bo_count;
1945 
1946 	error->active_bo = NULL;
1947 	error->pinned_bo = NULL;
1948 	if (i) {
1949 		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1950 					   GFP_ATOMIC);
1951 		if (error->active_bo)
1952 			error->pinned_bo =
1953 				error->active_bo + error->active_bo_count;
1954 	}
1955 
1956 	if (error->active_bo)
1957 		error->active_bo_count =
1958 			capture_active_bo(error->active_bo,
1959 					  error->active_bo_count,
1960 					  &dev_priv->mm.active_list);
1961 
1962 	if (error->pinned_bo)
1963 		error->pinned_bo_count =
1964 			capture_pinned_bo(error->pinned_bo,
1965 					  error->pinned_bo_count,
1966 					  &dev_priv->mm.bound_list);
1967 
1968 	do_gettimeofday(&error->time);
1969 
1970 	error->overlay = intel_overlay_capture_error_state(dev);
1971 	error->display = intel_display_capture_error_state(dev);
1972 
1973 	spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1974 	if (dev_priv->gpu_error.first_error == NULL) {
1975 		dev_priv->gpu_error.first_error = error;
1976 		error = NULL;
1977 	}
1978 	spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1979 
1980 	if (error)
1981 		i915_error_state_free(&error->ref);
1982 }
1983 
1984 void i915_destroy_error_state(struct drm_device *dev)
1985 {
1986 	struct drm_i915_private *dev_priv = dev->dev_private;
1987 	struct drm_i915_error_state *error;
1988 	unsigned long flags;
1989 
1990 	spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1991 	error = dev_priv->gpu_error.first_error;
1992 	dev_priv->gpu_error.first_error = NULL;
1993 	spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1994 
1995 	if (error)
1996 		kref_put(&error->ref, i915_error_state_free);
1997 }
1998 #else
1999 #define i915_capture_error_state(x)
2000 #endif
2001 
2002 static void i915_report_and_clear_eir(struct drm_device *dev)
2003 {
2004 	struct drm_i915_private *dev_priv = dev->dev_private;
2005 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2006 	u32 eir = I915_READ(EIR);
2007 	int pipe, i;
2008 
2009 	if (!eir)
2010 		return;
2011 
2012 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2013 
2014 	i915_get_extra_instdone(dev, instdone);
2015 
2016 	if (IS_G4X(dev)) {
2017 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2018 			u32 ipeir = I915_READ(IPEIR_I965);
2019 
2020 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2021 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2022 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2023 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2024 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2025 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2026 			I915_WRITE(IPEIR_I965, ipeir);
2027 			POSTING_READ(IPEIR_I965);
2028 		}
2029 		if (eir & GM45_ERROR_PAGE_TABLE) {
2030 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2031 			pr_err("page table error\n");
2032 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2033 			I915_WRITE(PGTBL_ER, pgtbl_err);
2034 			POSTING_READ(PGTBL_ER);
2035 		}
2036 	}
2037 
2038 	if (!IS_GEN2(dev)) {
2039 		if (eir & I915_ERROR_PAGE_TABLE) {
2040 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2041 			pr_err("page table error\n");
2042 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2043 			I915_WRITE(PGTBL_ER, pgtbl_err);
2044 			POSTING_READ(PGTBL_ER);
2045 		}
2046 	}
2047 
2048 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2049 		pr_err("memory refresh error:\n");
2050 		for_each_pipe(pipe)
2051 			pr_err("pipe %c stat: 0x%08x\n",
2052 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2053 		/* pipestat has already been acked */
2054 	}
2055 	if (eir & I915_ERROR_INSTRUCTION) {
2056 		pr_err("instruction error\n");
2057 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2058 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2059 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2060 		if (INTEL_INFO(dev)->gen < 4) {
2061 			u32 ipeir = I915_READ(IPEIR);
2062 
2063 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2064 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2065 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2066 			I915_WRITE(IPEIR, ipeir);
2067 			POSTING_READ(IPEIR);
2068 		} else {
2069 			u32 ipeir = I915_READ(IPEIR_I965);
2070 
2071 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2072 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2073 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2074 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2075 			I915_WRITE(IPEIR_I965, ipeir);
2076 			POSTING_READ(IPEIR_I965);
2077 		}
2078 	}
2079 
2080 	I915_WRITE(EIR, eir);
2081 	POSTING_READ(EIR);
2082 	eir = I915_READ(EIR);
2083 	if (eir) {
2084 		/*
2085 		 * some errors might have become stuck,
2086 		 * mask them.
2087 		 */
2088 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2089 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2090 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2091 	}
2092 }
2093 
2094 /**
2095  * i915_handle_error - handle an error interrupt
2096  * @dev: drm device
2097  *
2098  * Do some basic checking of regsiter state at error interrupt time and
2099  * dump it to the syslog.  Also call i915_capture_error_state() to make
2100  * sure we get a record and make it available in debugfs.  Fire a uevent
2101  * so userspace knows something bad happened (should trigger collection
2102  * of a ring dump etc.).
2103  */
2104 void i915_handle_error(struct drm_device *dev, bool wedged)
2105 {
2106 	struct drm_i915_private *dev_priv = dev->dev_private;
2107 	struct intel_ring_buffer *ring;
2108 	int i;
2109 
2110 	i915_capture_error_state(dev);
2111 	i915_report_and_clear_eir(dev);
2112 
2113 	if (wedged) {
2114 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2115 				&dev_priv->gpu_error.reset_counter);
2116 
2117 		/*
2118 		 * Wakeup waiting processes so that the reset work item
2119 		 * doesn't deadlock trying to grab various locks.
2120 		 */
2121 		for_each_ring(ring, dev_priv, i)
2122 			wake_up_all(&ring->irq_queue);
2123 	}
2124 
2125 	queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
2126 }
2127 
2128 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2129 {
2130 	drm_i915_private_t *dev_priv = dev->dev_private;
2131 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2132 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133 	struct drm_i915_gem_object *obj;
2134 	struct intel_unpin_work *work;
2135 	unsigned long flags;
2136 	bool stall_detected;
2137 
2138 	/* Ignore early vblank irqs */
2139 	if (intel_crtc == NULL)
2140 		return;
2141 
2142 	spin_lock_irqsave(&dev->event_lock, flags);
2143 	work = intel_crtc->unpin_work;
2144 
2145 	if (work == NULL ||
2146 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2147 	    !work->enable_stall_check) {
2148 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2149 		spin_unlock_irqrestore(&dev->event_lock, flags);
2150 		return;
2151 	}
2152 
2153 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2154 	obj = work->pending_flip_obj;
2155 	if (INTEL_INFO(dev)->gen >= 4) {
2156 		int dspsurf = DSPSURF(intel_crtc->plane);
2157 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2158 					obj->gtt_offset;
2159 	} else {
2160 		int dspaddr = DSPADDR(intel_crtc->plane);
2161 		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
2162 							crtc->y * crtc->fb->pitches[0] +
2163 							crtc->x * crtc->fb->bits_per_pixel/8);
2164 	}
2165 
2166 	spin_unlock_irqrestore(&dev->event_lock, flags);
2167 
2168 	if (stall_detected) {
2169 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2170 		intel_prepare_page_flip(dev, intel_crtc->plane);
2171 	}
2172 }
2173 
2174 /* Called from drm generic code, passed 'crtc' which
2175  * we use as a pipe index
2176  */
2177 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2178 {
2179 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2180 	unsigned long irqflags;
2181 
2182 	if (!i915_pipe_enabled(dev, pipe))
2183 		return -EINVAL;
2184 
2185 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2186 	if (INTEL_INFO(dev)->gen >= 4)
2187 		i915_enable_pipestat(dev_priv, pipe,
2188 				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2189 	else
2190 		i915_enable_pipestat(dev_priv, pipe,
2191 				     PIPE_VBLANK_INTERRUPT_ENABLE);
2192 
2193 	/* maintain vblank delivery even in deep C-states */
2194 	if (dev_priv->info->gen == 3)
2195 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2196 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2197 
2198 	return 0;
2199 }
2200 
2201 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2202 {
2203 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2204 	unsigned long irqflags;
2205 
2206 	if (!i915_pipe_enabled(dev, pipe))
2207 		return -EINVAL;
2208 
2209 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2210 	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
2211 				    DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2212 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2213 
2214 	return 0;
2215 }
2216 
2217 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
2218 {
2219 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2220 	unsigned long irqflags;
2221 
2222 	if (!i915_pipe_enabled(dev, pipe))
2223 		return -EINVAL;
2224 
2225 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2226 	ironlake_enable_display_irq(dev_priv,
2227 				    DE_PIPEA_VBLANK_IVB << (5 * pipe));
2228 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2229 
2230 	return 0;
2231 }
2232 
2233 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2234 {
2235 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2236 	unsigned long irqflags;
2237 	u32 imr;
2238 
2239 	if (!i915_pipe_enabled(dev, pipe))
2240 		return -EINVAL;
2241 
2242 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2243 	imr = I915_READ(VLV_IMR);
2244 	if (pipe == 0)
2245 		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2246 	else
2247 		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2248 	I915_WRITE(VLV_IMR, imr);
2249 	i915_enable_pipestat(dev_priv, pipe,
2250 			     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2251 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2252 
2253 	return 0;
2254 }
2255 
2256 /* Called from drm generic code, passed 'crtc' which
2257  * we use as a pipe index
2258  */
2259 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2260 {
2261 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2262 	unsigned long irqflags;
2263 
2264 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2265 	if (dev_priv->info->gen == 3)
2266 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2267 
2268 	i915_disable_pipestat(dev_priv, pipe,
2269 			      PIPE_VBLANK_INTERRUPT_ENABLE |
2270 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2271 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2272 }
2273 
2274 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2275 {
2276 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2277 	unsigned long irqflags;
2278 
2279 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2280 	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
2281 				     DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2282 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2283 }
2284 
2285 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
2286 {
2287 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2288 	unsigned long irqflags;
2289 
2290 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2291 	ironlake_disable_display_irq(dev_priv,
2292 				     DE_PIPEA_VBLANK_IVB << (pipe * 5));
2293 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2294 }
2295 
2296 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2297 {
2298 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2299 	unsigned long irqflags;
2300 	u32 imr;
2301 
2302 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2303 	i915_disable_pipestat(dev_priv, pipe,
2304 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2305 	imr = I915_READ(VLV_IMR);
2306 	if (pipe == 0)
2307 		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2308 	else
2309 		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2310 	I915_WRITE(VLV_IMR, imr);
2311 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2312 }
2313 
2314 static u32
2315 ring_last_seqno(struct intel_ring_buffer *ring)
2316 {
2317 	return list_entry(ring->request_list.prev,
2318 			  struct drm_i915_gem_request, list)->seqno;
2319 }
2320 
2321 static bool
2322 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2323 {
2324 	return (list_empty(&ring->request_list) ||
2325 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2326 }
2327 
2328 static struct intel_ring_buffer *
2329 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2330 {
2331 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 	u32 cmd, ipehr, acthd, acthd_min;
2333 
2334 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2335 	if ((ipehr & ~(0x3 << 16)) !=
2336 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2337 		return NULL;
2338 
2339 	/* ACTHD is likely pointing to the dword after the actual command,
2340 	 * so scan backwards until we find the MBOX.
2341 	 */
2342 	acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2343 	acthd_min = max((int)acthd - 3 * 4, 0);
2344 	do {
2345 		cmd = ioread32(ring->virtual_start + acthd);
2346 		if (cmd == ipehr)
2347 			break;
2348 
2349 		acthd -= 4;
2350 		if (acthd < acthd_min)
2351 			return NULL;
2352 	} while (1);
2353 
2354 	*seqno = ioread32(ring->virtual_start+acthd+4)+1;
2355 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2356 }
2357 
2358 static int semaphore_passed(struct intel_ring_buffer *ring)
2359 {
2360 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2361 	struct intel_ring_buffer *signaller;
2362 	u32 seqno, ctl;
2363 
2364 	ring->hangcheck.deadlock = true;
2365 
2366 	signaller = semaphore_waits_for(ring, &seqno);
2367 	if (signaller == NULL || signaller->hangcheck.deadlock)
2368 		return -1;
2369 
2370 	/* cursory check for an unkickable deadlock */
2371 	ctl = I915_READ_CTL(signaller);
2372 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2373 		return -1;
2374 
2375 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2376 }
2377 
2378 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2379 {
2380 	struct intel_ring_buffer *ring;
2381 	int i;
2382 
2383 	for_each_ring(ring, dev_priv, i)
2384 		ring->hangcheck.deadlock = false;
2385 }
2386 
2387 static enum intel_ring_hangcheck_action
2388 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2389 {
2390 	struct drm_device *dev = ring->dev;
2391 	struct drm_i915_private *dev_priv = dev->dev_private;
2392 	u32 tmp;
2393 
2394 	if (ring->hangcheck.acthd != acthd)
2395 		return active;
2396 
2397 	if (IS_GEN2(dev))
2398 		return hung;
2399 
2400 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2401 	 * If so we can simply poke the RB_WAIT bit
2402 	 * and break the hang. This should work on
2403 	 * all but the second generation chipsets.
2404 	 */
2405 	tmp = I915_READ_CTL(ring);
2406 	if (tmp & RING_WAIT) {
2407 		DRM_ERROR("Kicking stuck wait on %s\n",
2408 			  ring->name);
2409 		I915_WRITE_CTL(ring, tmp);
2410 		return kick;
2411 	}
2412 
2413 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2414 		switch (semaphore_passed(ring)) {
2415 		default:
2416 			return hung;
2417 		case 1:
2418 			DRM_ERROR("Kicking stuck semaphore on %s\n",
2419 				  ring->name);
2420 			I915_WRITE_CTL(ring, tmp);
2421 			return kick;
2422 		case 0:
2423 			return wait;
2424 		}
2425 	}
2426 
2427 	return hung;
2428 }
2429 
2430 /**
2431  * This is called when the chip hasn't reported back with completed
2432  * batchbuffers in a long time. We keep track per ring seqno progress and
2433  * if there are no progress, hangcheck score for that ring is increased.
2434  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2435  * we kick the ring. If we see no progress on three subsequent calls
2436  * we assume chip is wedged and try to fix it by resetting the chip.
2437  */
2438 void i915_hangcheck_elapsed(unsigned long data)
2439 {
2440 	struct drm_device *dev = (struct drm_device *)data;
2441 	drm_i915_private_t *dev_priv = dev->dev_private;
2442 	struct intel_ring_buffer *ring;
2443 	int i;
2444 	int busy_count = 0, rings_hung = 0;
2445 	bool stuck[I915_NUM_RINGS] = { 0 };
2446 #define BUSY 1
2447 #define KICK 5
2448 #define HUNG 20
2449 #define FIRE 30
2450 
2451 	if (!i915_enable_hangcheck)
2452 		return;
2453 
2454 	for_each_ring(ring, dev_priv, i) {
2455 		u32 seqno, acthd;
2456 		bool busy = true;
2457 
2458 		semaphore_clear_deadlocks(dev_priv);
2459 
2460 		seqno = ring->get_seqno(ring, false);
2461 		acthd = intel_ring_get_active_head(ring);
2462 
2463 		if (ring->hangcheck.seqno == seqno) {
2464 			if (ring_idle(ring, seqno)) {
2465 				if (waitqueue_active(&ring->irq_queue)) {
2466 					/* Issue a wake-up to catch stuck h/w. */
2467 					DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2468 						  ring->name);
2469 					wake_up_all(&ring->irq_queue);
2470 					ring->hangcheck.score += HUNG;
2471 				} else
2472 					busy = false;
2473 			} else {
2474 				int score;
2475 
2476 				/* We always increment the hangcheck score
2477 				 * if the ring is busy and still processing
2478 				 * the same request, so that no single request
2479 				 * can run indefinitely (such as a chain of
2480 				 * batches). The only time we do not increment
2481 				 * the hangcheck score on this ring, if this
2482 				 * ring is in a legitimate wait for another
2483 				 * ring. In that case the waiting ring is a
2484 				 * victim and we want to be sure we catch the
2485 				 * right culprit. Then every time we do kick
2486 				 * the ring, add a small increment to the
2487 				 * score so that we can catch a batch that is
2488 				 * being repeatedly kicked and so responsible
2489 				 * for stalling the machine.
2490 				 */
2491 				ring->hangcheck.action = ring_stuck(ring,
2492 								    acthd);
2493 
2494 				switch (ring->hangcheck.action) {
2495 				case wait:
2496 					score = 0;
2497 					break;
2498 				case active:
2499 					score = BUSY;
2500 					break;
2501 				case kick:
2502 					score = KICK;
2503 					break;
2504 				case hung:
2505 					score = HUNG;
2506 					stuck[i] = true;
2507 					break;
2508 				}
2509 				ring->hangcheck.score += score;
2510 			}
2511 		} else {
2512 			/* Gradually reduce the count so that we catch DoS
2513 			 * attempts across multiple batches.
2514 			 */
2515 			if (ring->hangcheck.score > 0)
2516 				ring->hangcheck.score--;
2517 		}
2518 
2519 		ring->hangcheck.seqno = seqno;
2520 		ring->hangcheck.acthd = acthd;
2521 		busy_count += busy;
2522 	}
2523 
2524 	for_each_ring(ring, dev_priv, i) {
2525 		if (ring->hangcheck.score > FIRE) {
2526 			DRM_ERROR("%s on %s\n",
2527 				  stuck[i] ? "stuck" : "no progress",
2528 				  ring->name);
2529 			rings_hung++;
2530 		}
2531 	}
2532 
2533 	if (rings_hung)
2534 		return i915_handle_error(dev, true);
2535 
2536 	if (busy_count)
2537 		/* Reset timer case chip hangs without another request
2538 		 * being added */
2539 		mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2540 			  round_jiffies_up(jiffies +
2541 					   DRM_I915_HANGCHECK_JIFFIES));
2542 }
2543 
2544 static void ibx_irq_preinstall(struct drm_device *dev)
2545 {
2546 	struct drm_i915_private *dev_priv = dev->dev_private;
2547 
2548 	if (HAS_PCH_NOP(dev))
2549 		return;
2550 
2551 	/* south display irq */
2552 	I915_WRITE(SDEIMR, 0xffffffff);
2553 	/*
2554 	 * SDEIER is also touched by the interrupt handler to work around missed
2555 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2556 	 * is enabled - instead we unconditionally enable all PCH interrupt
2557 	 * sources here, but then only unmask them as needed with SDEIMR.
2558 	 */
2559 	I915_WRITE(SDEIER, 0xffffffff);
2560 	POSTING_READ(SDEIER);
2561 }
2562 
2563 /* drm_dma.h hooks
2564 */
2565 static void ironlake_irq_preinstall(struct drm_device *dev)
2566 {
2567 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2568 
2569 	atomic_set(&dev_priv->irq_received, 0);
2570 
2571 	I915_WRITE(HWSTAM, 0xeffe);
2572 
2573 	/* XXX hotplug from PCH */
2574 
2575 	I915_WRITE(DEIMR, 0xffffffff);
2576 	I915_WRITE(DEIER, 0x0);
2577 	POSTING_READ(DEIER);
2578 
2579 	/* and GT */
2580 	I915_WRITE(GTIMR, 0xffffffff);
2581 	I915_WRITE(GTIER, 0x0);
2582 	POSTING_READ(GTIER);
2583 
2584 	ibx_irq_preinstall(dev);
2585 }
2586 
2587 static void ivybridge_irq_preinstall(struct drm_device *dev)
2588 {
2589 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590 
2591 	atomic_set(&dev_priv->irq_received, 0);
2592 
2593 	I915_WRITE(HWSTAM, 0xeffe);
2594 
2595 	/* XXX hotplug from PCH */
2596 
2597 	I915_WRITE(DEIMR, 0xffffffff);
2598 	I915_WRITE(DEIER, 0x0);
2599 	POSTING_READ(DEIER);
2600 
2601 	/* and GT */
2602 	I915_WRITE(GTIMR, 0xffffffff);
2603 	I915_WRITE(GTIER, 0x0);
2604 	POSTING_READ(GTIER);
2605 
2606 	/* Power management */
2607 	I915_WRITE(GEN6_PMIMR, 0xffffffff);
2608 	I915_WRITE(GEN6_PMIER, 0x0);
2609 	POSTING_READ(GEN6_PMIER);
2610 
2611 	ibx_irq_preinstall(dev);
2612 }
2613 
2614 static void valleyview_irq_preinstall(struct drm_device *dev)
2615 {
2616 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2617 	int pipe;
2618 
2619 	atomic_set(&dev_priv->irq_received, 0);
2620 
2621 	/* VLV magic */
2622 	I915_WRITE(VLV_IMR, 0);
2623 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2624 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2625 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2626 
2627 	/* and GT */
2628 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2629 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2630 	I915_WRITE(GTIMR, 0xffffffff);
2631 	I915_WRITE(GTIER, 0x0);
2632 	POSTING_READ(GTIER);
2633 
2634 	I915_WRITE(DPINVGTT, 0xff);
2635 
2636 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2637 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2638 	for_each_pipe(pipe)
2639 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2640 	I915_WRITE(VLV_IIR, 0xffffffff);
2641 	I915_WRITE(VLV_IMR, 0xffffffff);
2642 	I915_WRITE(VLV_IER, 0x0);
2643 	POSTING_READ(VLV_IER);
2644 }
2645 
2646 static void ibx_hpd_irq_setup(struct drm_device *dev)
2647 {
2648 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2649 	struct drm_mode_config *mode_config = &dev->mode_config;
2650 	struct intel_encoder *intel_encoder;
2651 	u32 mask = ~I915_READ(SDEIMR);
2652 	u32 hotplug;
2653 
2654 	if (HAS_PCH_IBX(dev)) {
2655 		mask &= ~SDE_HOTPLUG_MASK;
2656 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2657 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2658 				mask |= hpd_ibx[intel_encoder->hpd_pin];
2659 	} else {
2660 		mask &= ~SDE_HOTPLUG_MASK_CPT;
2661 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2662 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2663 				mask |= hpd_cpt[intel_encoder->hpd_pin];
2664 	}
2665 
2666 	I915_WRITE(SDEIMR, ~mask);
2667 
2668 	/*
2669 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2670 	 * duration to 2ms (which is the minimum in the Display Port spec)
2671 	 *
2672 	 * This register is the same on all known PCH chips.
2673 	 */
2674 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2675 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2676 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2677 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2678 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2679 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2680 }
2681 
2682 static void ibx_irq_postinstall(struct drm_device *dev)
2683 {
2684 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2685 	u32 mask;
2686 
2687 	if (HAS_PCH_NOP(dev))
2688 		return;
2689 
2690 	if (HAS_PCH_IBX(dev)) {
2691 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2692 		       SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2693 	} else {
2694 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2695 
2696 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2697 	}
2698 
2699 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2700 	I915_WRITE(SDEIMR, ~mask);
2701 }
2702 
2703 static int ironlake_irq_postinstall(struct drm_device *dev)
2704 {
2705 	unsigned long irqflags;
2706 
2707 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2708 	/* enable kind of interrupts always enabled */
2709 	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2710 			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2711 			   DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2712 			   DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2713 	u32 gt_irqs;
2714 
2715 	dev_priv->irq_mask = ~display_mask;
2716 
2717 	/* should always can generate irq */
2718 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2719 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2720 	I915_WRITE(DEIER, display_mask |
2721 			  DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT);
2722 	POSTING_READ(DEIER);
2723 
2724 	dev_priv->gt_irq_mask = ~0;
2725 
2726 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2727 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2728 
2729 	gt_irqs = GT_RENDER_USER_INTERRUPT;
2730 
2731 	if (IS_GEN6(dev))
2732 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2733 	else
2734 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2735 			   ILK_BSD_USER_INTERRUPT;
2736 
2737 	I915_WRITE(GTIER, gt_irqs);
2738 	POSTING_READ(GTIER);
2739 
2740 	ibx_irq_postinstall(dev);
2741 
2742 	if (IS_IRONLAKE_M(dev)) {
2743 		/* Enable PCU event interrupts
2744 		 *
2745 		 * spinlocking not required here for correctness since interrupt
2746 		 * setup is guaranteed to run in single-threaded context. But we
2747 		 * need it to make the assert_spin_locked happy. */
2748 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2749 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2750 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int ivybridge_irq_postinstall(struct drm_device *dev)
2757 {
2758 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2759 	/* enable kind of interrupts always enabled */
2760 	u32 display_mask =
2761 		DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2762 		DE_PLANEC_FLIP_DONE_IVB |
2763 		DE_PLANEB_FLIP_DONE_IVB |
2764 		DE_PLANEA_FLIP_DONE_IVB |
2765 		DE_AUX_CHANNEL_A_IVB |
2766 		DE_ERR_INT_IVB;
2767 	u32 pm_irqs = GEN6_PM_RPS_EVENTS;
2768 	u32 gt_irqs;
2769 
2770 	dev_priv->irq_mask = ~display_mask;
2771 
2772 	/* should always can generate irq */
2773 	I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2774 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2775 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2776 	I915_WRITE(DEIER,
2777 		   display_mask |
2778 		   DE_PIPEC_VBLANK_IVB |
2779 		   DE_PIPEB_VBLANK_IVB |
2780 		   DE_PIPEA_VBLANK_IVB);
2781 	POSTING_READ(DEIER);
2782 
2783 	dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2784 
2785 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2786 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2787 
2788 	gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2789 		  GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2790 	I915_WRITE(GTIER, gt_irqs);
2791 	POSTING_READ(GTIER);
2792 
2793 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2794 	if (HAS_VEBOX(dev))
2795 		pm_irqs |= PM_VEBOX_USER_INTERRUPT |
2796 			PM_VEBOX_CS_ERROR_INTERRUPT;
2797 
2798 	/* Our enable/disable rps functions may touch these registers so
2799 	 * make sure to set a known state for only the non-RPS bits.
2800 	 * The RMW is extra paranoia since this should be called after being set
2801 	 * to a known state in preinstall.
2802 	 * */
2803 	I915_WRITE(GEN6_PMIMR,
2804 		   (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
2805 	I915_WRITE(GEN6_PMIER,
2806 		   (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
2807 	POSTING_READ(GEN6_PMIER);
2808 
2809 	ibx_irq_postinstall(dev);
2810 
2811 	return 0;
2812 }
2813 
2814 static int valleyview_irq_postinstall(struct drm_device *dev)
2815 {
2816 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2817 	u32 gt_irqs;
2818 	u32 enable_mask;
2819 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2820 
2821 	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2822 	enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2823 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2824 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2825 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2826 
2827 	/*
2828 	 *Leave vblank interrupts masked initially.  enable/disable will
2829 	 * toggle them based on usage.
2830 	 */
2831 	dev_priv->irq_mask = (~enable_mask) |
2832 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2833 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2834 
2835 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2836 	POSTING_READ(PORT_HOTPLUG_EN);
2837 
2838 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2839 	I915_WRITE(VLV_IER, enable_mask);
2840 	I915_WRITE(VLV_IIR, 0xffffffff);
2841 	I915_WRITE(PIPESTAT(0), 0xffff);
2842 	I915_WRITE(PIPESTAT(1), 0xffff);
2843 	POSTING_READ(VLV_IER);
2844 
2845 	i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2846 	i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2847 	i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2848 
2849 	I915_WRITE(VLV_IIR, 0xffffffff);
2850 	I915_WRITE(VLV_IIR, 0xffffffff);
2851 
2852 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2853 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2854 
2855 	gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2856 		GT_BLT_USER_INTERRUPT;
2857 	I915_WRITE(GTIER, gt_irqs);
2858 	POSTING_READ(GTIER);
2859 
2860 	/* ack & enable invalid PTE error interrupts */
2861 #if 0 /* FIXME: add support to irq handler for checking these bits */
2862 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2863 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2864 #endif
2865 
2866 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2867 
2868 	return 0;
2869 }
2870 
2871 static void valleyview_irq_uninstall(struct drm_device *dev)
2872 {
2873 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2874 	int pipe;
2875 
2876 	if (!dev_priv)
2877 		return;
2878 
2879 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
2880 
2881 	for_each_pipe(pipe)
2882 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2883 
2884 	I915_WRITE(HWSTAM, 0xffffffff);
2885 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2886 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2887 	for_each_pipe(pipe)
2888 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2889 	I915_WRITE(VLV_IIR, 0xffffffff);
2890 	I915_WRITE(VLV_IMR, 0xffffffff);
2891 	I915_WRITE(VLV_IER, 0x0);
2892 	POSTING_READ(VLV_IER);
2893 }
2894 
2895 static void ironlake_irq_uninstall(struct drm_device *dev)
2896 {
2897 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2898 
2899 	if (!dev_priv)
2900 		return;
2901 
2902 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
2903 
2904 	I915_WRITE(HWSTAM, 0xffffffff);
2905 
2906 	I915_WRITE(DEIMR, 0xffffffff);
2907 	I915_WRITE(DEIER, 0x0);
2908 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2909 	if (IS_GEN7(dev))
2910 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2911 
2912 	I915_WRITE(GTIMR, 0xffffffff);
2913 	I915_WRITE(GTIER, 0x0);
2914 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2915 
2916 	if (HAS_PCH_NOP(dev))
2917 		return;
2918 
2919 	I915_WRITE(SDEIMR, 0xffffffff);
2920 	I915_WRITE(SDEIER, 0x0);
2921 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2922 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2923 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2924 }
2925 
2926 static void i8xx_irq_preinstall(struct drm_device * dev)
2927 {
2928 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2929 	int pipe;
2930 
2931 	atomic_set(&dev_priv->irq_received, 0);
2932 
2933 	for_each_pipe(pipe)
2934 		I915_WRITE(PIPESTAT(pipe), 0);
2935 	I915_WRITE16(IMR, 0xffff);
2936 	I915_WRITE16(IER, 0x0);
2937 	POSTING_READ16(IER);
2938 }
2939 
2940 static int i8xx_irq_postinstall(struct drm_device *dev)
2941 {
2942 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2943 
2944 	I915_WRITE16(EMR,
2945 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2946 
2947 	/* Unmask the interrupts that we always want on. */
2948 	dev_priv->irq_mask =
2949 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2950 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2951 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2952 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2953 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2954 	I915_WRITE16(IMR, dev_priv->irq_mask);
2955 
2956 	I915_WRITE16(IER,
2957 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2958 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2959 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2960 		     I915_USER_INTERRUPT);
2961 	POSTING_READ16(IER);
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * Returns true when a page flip has completed.
2968  */
2969 static bool i8xx_handle_vblank(struct drm_device *dev,
2970 			       int pipe, u16 iir)
2971 {
2972 	drm_i915_private_t *dev_priv = dev->dev_private;
2973 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2974 
2975 	if (!drm_handle_vblank(dev, pipe))
2976 		return false;
2977 
2978 	if ((iir & flip_pending) == 0)
2979 		return false;
2980 
2981 	intel_prepare_page_flip(dev, pipe);
2982 
2983 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
2984 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2985 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2986 	 * the flip is completed (no longer pending). Since this doesn't raise
2987 	 * an interrupt per se, we watch for the change at vblank.
2988 	 */
2989 	if (I915_READ16(ISR) & flip_pending)
2990 		return false;
2991 
2992 	intel_finish_page_flip(dev, pipe);
2993 
2994 	return true;
2995 }
2996 
2997 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2998 {
2999 	struct drm_device *dev = (struct drm_device *) arg;
3000 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3001 	u16 iir, new_iir;
3002 	u32 pipe_stats[2];
3003 	unsigned long irqflags;
3004 	int irq_received;
3005 	int pipe;
3006 	u16 flip_mask =
3007 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3008 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3009 
3010 	atomic_inc(&dev_priv->irq_received);
3011 
3012 	iir = I915_READ16(IIR);
3013 	if (iir == 0)
3014 		return IRQ_NONE;
3015 
3016 	while (iir & ~flip_mask) {
3017 		/* Can't rely on pipestat interrupt bit in iir as it might
3018 		 * have been cleared after the pipestat interrupt was received.
3019 		 * It doesn't set the bit in iir again, but it still produces
3020 		 * interrupts (for non-MSI).
3021 		 */
3022 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3023 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3024 			i915_handle_error(dev, false);
3025 
3026 		for_each_pipe(pipe) {
3027 			int reg = PIPESTAT(pipe);
3028 			pipe_stats[pipe] = I915_READ(reg);
3029 
3030 			/*
3031 			 * Clear the PIPE*STAT regs before the IIR
3032 			 */
3033 			if (pipe_stats[pipe] & 0x8000ffff) {
3034 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3035 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3036 							 pipe_name(pipe));
3037 				I915_WRITE(reg, pipe_stats[pipe]);
3038 				irq_received = 1;
3039 			}
3040 		}
3041 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3042 
3043 		I915_WRITE16(IIR, iir & ~flip_mask);
3044 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3045 
3046 		i915_update_dri1_breadcrumb(dev);
3047 
3048 		if (iir & I915_USER_INTERRUPT)
3049 			notify_ring(dev, &dev_priv->ring[RCS]);
3050 
3051 		if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
3052 		    i8xx_handle_vblank(dev, 0, iir))
3053 			flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
3054 
3055 		if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
3056 		    i8xx_handle_vblank(dev, 1, iir))
3057 			flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
3058 
3059 		iir = new_iir;
3060 	}
3061 
3062 	return IRQ_HANDLED;
3063 }
3064 
3065 static void i8xx_irq_uninstall(struct drm_device * dev)
3066 {
3067 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3068 	int pipe;
3069 
3070 	for_each_pipe(pipe) {
3071 		/* Clear enable bits; then clear status bits */
3072 		I915_WRITE(PIPESTAT(pipe), 0);
3073 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3074 	}
3075 	I915_WRITE16(IMR, 0xffff);
3076 	I915_WRITE16(IER, 0x0);
3077 	I915_WRITE16(IIR, I915_READ16(IIR));
3078 }
3079 
3080 static void i915_irq_preinstall(struct drm_device * dev)
3081 {
3082 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3083 	int pipe;
3084 
3085 	atomic_set(&dev_priv->irq_received, 0);
3086 
3087 	if (I915_HAS_HOTPLUG(dev)) {
3088 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3089 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3090 	}
3091 
3092 	I915_WRITE16(HWSTAM, 0xeffe);
3093 	for_each_pipe(pipe)
3094 		I915_WRITE(PIPESTAT(pipe), 0);
3095 	I915_WRITE(IMR, 0xffffffff);
3096 	I915_WRITE(IER, 0x0);
3097 	POSTING_READ(IER);
3098 }
3099 
3100 static int i915_irq_postinstall(struct drm_device *dev)
3101 {
3102 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3103 	u32 enable_mask;
3104 
3105 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3106 
3107 	/* Unmask the interrupts that we always want on. */
3108 	dev_priv->irq_mask =
3109 		~(I915_ASLE_INTERRUPT |
3110 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3111 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3112 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3113 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3114 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3115 
3116 	enable_mask =
3117 		I915_ASLE_INTERRUPT |
3118 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3119 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3120 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3121 		I915_USER_INTERRUPT;
3122 
3123 	if (I915_HAS_HOTPLUG(dev)) {
3124 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3125 		POSTING_READ(PORT_HOTPLUG_EN);
3126 
3127 		/* Enable in IER... */
3128 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3129 		/* and unmask in IMR */
3130 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3131 	}
3132 
3133 	I915_WRITE(IMR, dev_priv->irq_mask);
3134 	I915_WRITE(IER, enable_mask);
3135 	POSTING_READ(IER);
3136 
3137 	i915_enable_asle_pipestat(dev);
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * Returns true when a page flip has completed.
3144  */
3145 static bool i915_handle_vblank(struct drm_device *dev,
3146 			       int plane, int pipe, u32 iir)
3147 {
3148 	drm_i915_private_t *dev_priv = dev->dev_private;
3149 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3150 
3151 	if (!drm_handle_vblank(dev, pipe))
3152 		return false;
3153 
3154 	if ((iir & flip_pending) == 0)
3155 		return false;
3156 
3157 	intel_prepare_page_flip(dev, plane);
3158 
3159 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3160 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3161 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3162 	 * the flip is completed (no longer pending). Since this doesn't raise
3163 	 * an interrupt per se, we watch for the change at vblank.
3164 	 */
3165 	if (I915_READ(ISR) & flip_pending)
3166 		return false;
3167 
3168 	intel_finish_page_flip(dev, pipe);
3169 
3170 	return true;
3171 }
3172 
3173 static irqreturn_t i915_irq_handler(int irq, void *arg)
3174 {
3175 	struct drm_device *dev = (struct drm_device *) arg;
3176 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3177 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3178 	unsigned long irqflags;
3179 	u32 flip_mask =
3180 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3181 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3182 	int pipe, ret = IRQ_NONE;
3183 
3184 	atomic_inc(&dev_priv->irq_received);
3185 
3186 	iir = I915_READ(IIR);
3187 	do {
3188 		bool irq_received = (iir & ~flip_mask) != 0;
3189 		bool blc_event = false;
3190 
3191 		/* Can't rely on pipestat interrupt bit in iir as it might
3192 		 * have been cleared after the pipestat interrupt was received.
3193 		 * It doesn't set the bit in iir again, but it still produces
3194 		 * interrupts (for non-MSI).
3195 		 */
3196 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3197 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3198 			i915_handle_error(dev, false);
3199 
3200 		for_each_pipe(pipe) {
3201 			int reg = PIPESTAT(pipe);
3202 			pipe_stats[pipe] = I915_READ(reg);
3203 
3204 			/* Clear the PIPE*STAT regs before the IIR */
3205 			if (pipe_stats[pipe] & 0x8000ffff) {
3206 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3207 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3208 							 pipe_name(pipe));
3209 				I915_WRITE(reg, pipe_stats[pipe]);
3210 				irq_received = true;
3211 			}
3212 		}
3213 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3214 
3215 		if (!irq_received)
3216 			break;
3217 
3218 		/* Consume port.  Then clear IIR or we'll miss events */
3219 		if ((I915_HAS_HOTPLUG(dev)) &&
3220 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3221 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3222 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3223 
3224 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3225 				  hotplug_status);
3226 
3227 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3228 
3229 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3230 			POSTING_READ(PORT_HOTPLUG_STAT);
3231 		}
3232 
3233 		I915_WRITE(IIR, iir & ~flip_mask);
3234 		new_iir = I915_READ(IIR); /* Flush posted writes */
3235 
3236 		if (iir & I915_USER_INTERRUPT)
3237 			notify_ring(dev, &dev_priv->ring[RCS]);
3238 
3239 		for_each_pipe(pipe) {
3240 			int plane = pipe;
3241 			if (IS_MOBILE(dev))
3242 				plane = !plane;
3243 
3244 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3245 			    i915_handle_vblank(dev, plane, pipe, iir))
3246 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3247 
3248 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3249 				blc_event = true;
3250 		}
3251 
3252 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3253 			intel_opregion_asle_intr(dev);
3254 
3255 		/* With MSI, interrupts are only generated when iir
3256 		 * transitions from zero to nonzero.  If another bit got
3257 		 * set while we were handling the existing iir bits, then
3258 		 * we would never get another interrupt.
3259 		 *
3260 		 * This is fine on non-MSI as well, as if we hit this path
3261 		 * we avoid exiting the interrupt handler only to generate
3262 		 * another one.
3263 		 *
3264 		 * Note that for MSI this could cause a stray interrupt report
3265 		 * if an interrupt landed in the time between writing IIR and
3266 		 * the posting read.  This should be rare enough to never
3267 		 * trigger the 99% of 100,000 interrupts test for disabling
3268 		 * stray interrupts.
3269 		 */
3270 		ret = IRQ_HANDLED;
3271 		iir = new_iir;
3272 	} while (iir & ~flip_mask);
3273 
3274 	i915_update_dri1_breadcrumb(dev);
3275 
3276 	return ret;
3277 }
3278 
3279 static void i915_irq_uninstall(struct drm_device * dev)
3280 {
3281 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3282 	int pipe;
3283 
3284 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3285 
3286 	if (I915_HAS_HOTPLUG(dev)) {
3287 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3288 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3289 	}
3290 
3291 	I915_WRITE16(HWSTAM, 0xffff);
3292 	for_each_pipe(pipe) {
3293 		/* Clear enable bits; then clear status bits */
3294 		I915_WRITE(PIPESTAT(pipe), 0);
3295 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3296 	}
3297 	I915_WRITE(IMR, 0xffffffff);
3298 	I915_WRITE(IER, 0x0);
3299 
3300 	I915_WRITE(IIR, I915_READ(IIR));
3301 }
3302 
3303 static void i965_irq_preinstall(struct drm_device * dev)
3304 {
3305 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3306 	int pipe;
3307 
3308 	atomic_set(&dev_priv->irq_received, 0);
3309 
3310 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3311 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3312 
3313 	I915_WRITE(HWSTAM, 0xeffe);
3314 	for_each_pipe(pipe)
3315 		I915_WRITE(PIPESTAT(pipe), 0);
3316 	I915_WRITE(IMR, 0xffffffff);
3317 	I915_WRITE(IER, 0x0);
3318 	POSTING_READ(IER);
3319 }
3320 
3321 static int i965_irq_postinstall(struct drm_device *dev)
3322 {
3323 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3324 	u32 enable_mask;
3325 	u32 error_mask;
3326 
3327 	/* Unmask the interrupts that we always want on. */
3328 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3329 			       I915_DISPLAY_PORT_INTERRUPT |
3330 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3331 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3332 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3333 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3334 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3335 
3336 	enable_mask = ~dev_priv->irq_mask;
3337 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3338 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3339 	enable_mask |= I915_USER_INTERRUPT;
3340 
3341 	if (IS_G4X(dev))
3342 		enable_mask |= I915_BSD_USER_INTERRUPT;
3343 
3344 	i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
3345 
3346 	/*
3347 	 * Enable some error detection, note the instruction error mask
3348 	 * bit is reserved, so we leave it masked.
3349 	 */
3350 	if (IS_G4X(dev)) {
3351 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3352 			       GM45_ERROR_MEM_PRIV |
3353 			       GM45_ERROR_CP_PRIV |
3354 			       I915_ERROR_MEMORY_REFRESH);
3355 	} else {
3356 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3357 			       I915_ERROR_MEMORY_REFRESH);
3358 	}
3359 	I915_WRITE(EMR, error_mask);
3360 
3361 	I915_WRITE(IMR, dev_priv->irq_mask);
3362 	I915_WRITE(IER, enable_mask);
3363 	POSTING_READ(IER);
3364 
3365 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3366 	POSTING_READ(PORT_HOTPLUG_EN);
3367 
3368 	i915_enable_asle_pipestat(dev);
3369 
3370 	return 0;
3371 }
3372 
3373 static void i915_hpd_irq_setup(struct drm_device *dev)
3374 {
3375 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3376 	struct drm_mode_config *mode_config = &dev->mode_config;
3377 	struct intel_encoder *intel_encoder;
3378 	u32 hotplug_en;
3379 
3380 	assert_spin_locked(&dev_priv->irq_lock);
3381 
3382 	if (I915_HAS_HOTPLUG(dev)) {
3383 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3384 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3385 		/* Note HDMI and DP share hotplug bits */
3386 		/* enable bits are the same for all generations */
3387 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3388 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3389 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3390 		/* Programming the CRT detection parameters tends
3391 		   to generate a spurious hotplug event about three
3392 		   seconds later.  So just do it once.
3393 		*/
3394 		if (IS_G4X(dev))
3395 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3396 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3397 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3398 
3399 		/* Ignore TV since it's buggy */
3400 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3401 	}
3402 }
3403 
3404 static irqreturn_t i965_irq_handler(int irq, void *arg)
3405 {
3406 	struct drm_device *dev = (struct drm_device *) arg;
3407 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3408 	u32 iir, new_iir;
3409 	u32 pipe_stats[I915_MAX_PIPES];
3410 	unsigned long irqflags;
3411 	int irq_received;
3412 	int ret = IRQ_NONE, pipe;
3413 	u32 flip_mask =
3414 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3415 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3416 
3417 	atomic_inc(&dev_priv->irq_received);
3418 
3419 	iir = I915_READ(IIR);
3420 
3421 	for (;;) {
3422 		bool blc_event = false;
3423 
3424 		irq_received = (iir & ~flip_mask) != 0;
3425 
3426 		/* Can't rely on pipestat interrupt bit in iir as it might
3427 		 * have been cleared after the pipestat interrupt was received.
3428 		 * It doesn't set the bit in iir again, but it still produces
3429 		 * interrupts (for non-MSI).
3430 		 */
3431 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3432 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3433 			i915_handle_error(dev, false);
3434 
3435 		for_each_pipe(pipe) {
3436 			int reg = PIPESTAT(pipe);
3437 			pipe_stats[pipe] = I915_READ(reg);
3438 
3439 			/*
3440 			 * Clear the PIPE*STAT regs before the IIR
3441 			 */
3442 			if (pipe_stats[pipe] & 0x8000ffff) {
3443 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3444 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3445 							 pipe_name(pipe));
3446 				I915_WRITE(reg, pipe_stats[pipe]);
3447 				irq_received = 1;
3448 			}
3449 		}
3450 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3451 
3452 		if (!irq_received)
3453 			break;
3454 
3455 		ret = IRQ_HANDLED;
3456 
3457 		/* Consume port.  Then clear IIR or we'll miss events */
3458 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3459 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3460 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3461 								  HOTPLUG_INT_STATUS_G4X :
3462 								  HOTPLUG_INT_STATUS_I915);
3463 
3464 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3465 				  hotplug_status);
3466 
3467 			intel_hpd_irq_handler(dev, hotplug_trigger,
3468 					      IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3469 
3470 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3471 			I915_READ(PORT_HOTPLUG_STAT);
3472 		}
3473 
3474 		I915_WRITE(IIR, iir & ~flip_mask);
3475 		new_iir = I915_READ(IIR); /* Flush posted writes */
3476 
3477 		if (iir & I915_USER_INTERRUPT)
3478 			notify_ring(dev, &dev_priv->ring[RCS]);
3479 		if (iir & I915_BSD_USER_INTERRUPT)
3480 			notify_ring(dev, &dev_priv->ring[VCS]);
3481 
3482 		for_each_pipe(pipe) {
3483 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3484 			    i915_handle_vblank(dev, pipe, pipe, iir))
3485 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3486 
3487 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3488 				blc_event = true;
3489 		}
3490 
3491 
3492 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3493 			intel_opregion_asle_intr(dev);
3494 
3495 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3496 			gmbus_irq_handler(dev);
3497 
3498 		/* With MSI, interrupts are only generated when iir
3499 		 * transitions from zero to nonzero.  If another bit got
3500 		 * set while we were handling the existing iir bits, then
3501 		 * we would never get another interrupt.
3502 		 *
3503 		 * This is fine on non-MSI as well, as if we hit this path
3504 		 * we avoid exiting the interrupt handler only to generate
3505 		 * another one.
3506 		 *
3507 		 * Note that for MSI this could cause a stray interrupt report
3508 		 * if an interrupt landed in the time between writing IIR and
3509 		 * the posting read.  This should be rare enough to never
3510 		 * trigger the 99% of 100,000 interrupts test for disabling
3511 		 * stray interrupts.
3512 		 */
3513 		iir = new_iir;
3514 	}
3515 
3516 	i915_update_dri1_breadcrumb(dev);
3517 
3518 	return ret;
3519 }
3520 
3521 static void i965_irq_uninstall(struct drm_device * dev)
3522 {
3523 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3524 	int pipe;
3525 
3526 	if (!dev_priv)
3527 		return;
3528 
3529 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3530 
3531 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3532 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3533 
3534 	I915_WRITE(HWSTAM, 0xffffffff);
3535 	for_each_pipe(pipe)
3536 		I915_WRITE(PIPESTAT(pipe), 0);
3537 	I915_WRITE(IMR, 0xffffffff);
3538 	I915_WRITE(IER, 0x0);
3539 
3540 	for_each_pipe(pipe)
3541 		I915_WRITE(PIPESTAT(pipe),
3542 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3543 	I915_WRITE(IIR, I915_READ(IIR));
3544 }
3545 
3546 static void i915_reenable_hotplug_timer_func(unsigned long data)
3547 {
3548 	drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3549 	struct drm_device *dev = dev_priv->dev;
3550 	struct drm_mode_config *mode_config = &dev->mode_config;
3551 	unsigned long irqflags;
3552 	int i;
3553 
3554 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3555 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3556 		struct drm_connector *connector;
3557 
3558 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3559 			continue;
3560 
3561 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3562 
3563 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3564 			struct intel_connector *intel_connector = to_intel_connector(connector);
3565 
3566 			if (intel_connector->encoder->hpd_pin == i) {
3567 				if (connector->polled != intel_connector->polled)
3568 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3569 							 drm_get_connector_name(connector));
3570 				connector->polled = intel_connector->polled;
3571 				if (!connector->polled)
3572 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3573 			}
3574 		}
3575 	}
3576 	if (dev_priv->display.hpd_irq_setup)
3577 		dev_priv->display.hpd_irq_setup(dev);
3578 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3579 }
3580 
3581 void intel_irq_init(struct drm_device *dev)
3582 {
3583 	struct drm_i915_private *dev_priv = dev->dev_private;
3584 
3585 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3586 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3587 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3588 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3589 
3590 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3591 		    i915_hangcheck_elapsed,
3592 		    (unsigned long) dev);
3593 	setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3594 		    (unsigned long) dev_priv);
3595 
3596 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3597 
3598 	dev->driver->get_vblank_counter = i915_get_vblank_counter;
3599 	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3600 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3601 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3602 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3603 	}
3604 
3605 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3606 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3607 	else
3608 		dev->driver->get_vblank_timestamp = NULL;
3609 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3610 
3611 	if (IS_VALLEYVIEW(dev)) {
3612 		dev->driver->irq_handler = valleyview_irq_handler;
3613 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
3614 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
3615 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
3616 		dev->driver->enable_vblank = valleyview_enable_vblank;
3617 		dev->driver->disable_vblank = valleyview_disable_vblank;
3618 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3619 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3620 		/* Share uninstall handlers with ILK/SNB */
3621 		dev->driver->irq_handler = ivybridge_irq_handler;
3622 		dev->driver->irq_preinstall = ivybridge_irq_preinstall;
3623 		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3624 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3625 		dev->driver->enable_vblank = ivybridge_enable_vblank;
3626 		dev->driver->disable_vblank = ivybridge_disable_vblank;
3627 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3628 	} else if (HAS_PCH_SPLIT(dev)) {
3629 		dev->driver->irq_handler = ironlake_irq_handler;
3630 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
3631 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
3632 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3633 		dev->driver->enable_vblank = ironlake_enable_vblank;
3634 		dev->driver->disable_vblank = ironlake_disable_vblank;
3635 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3636 	} else {
3637 		if (INTEL_INFO(dev)->gen == 2) {
3638 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
3639 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
3640 			dev->driver->irq_handler = i8xx_irq_handler;
3641 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
3642 		} else if (INTEL_INFO(dev)->gen == 3) {
3643 			dev->driver->irq_preinstall = i915_irq_preinstall;
3644 			dev->driver->irq_postinstall = i915_irq_postinstall;
3645 			dev->driver->irq_uninstall = i915_irq_uninstall;
3646 			dev->driver->irq_handler = i915_irq_handler;
3647 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3648 		} else {
3649 			dev->driver->irq_preinstall = i965_irq_preinstall;
3650 			dev->driver->irq_postinstall = i965_irq_postinstall;
3651 			dev->driver->irq_uninstall = i965_irq_uninstall;
3652 			dev->driver->irq_handler = i965_irq_handler;
3653 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3654 		}
3655 		dev->driver->enable_vblank = i915_enable_vblank;
3656 		dev->driver->disable_vblank = i915_disable_vblank;
3657 	}
3658 }
3659 
3660 void intel_hpd_init(struct drm_device *dev)
3661 {
3662 	struct drm_i915_private *dev_priv = dev->dev_private;
3663 	struct drm_mode_config *mode_config = &dev->mode_config;
3664 	struct drm_connector *connector;
3665 	unsigned long irqflags;
3666 	int i;
3667 
3668 	for (i = 1; i < HPD_NUM_PINS; i++) {
3669 		dev_priv->hpd_stats[i].hpd_cnt = 0;
3670 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3671 	}
3672 	list_for_each_entry(connector, &mode_config->connector_list, head) {
3673 		struct intel_connector *intel_connector = to_intel_connector(connector);
3674 		connector->polled = intel_connector->polled;
3675 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3676 			connector->polled = DRM_CONNECTOR_POLL_HPD;
3677 	}
3678 
3679 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3680 	 * just to make the assert_spin_locked checks happy. */
3681 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3682 	if (dev_priv->display.hpd_irq_setup)
3683 		dev_priv->display.hpd_irq_setup(dev);
3684 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3685 }
3686