xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 				     uint32_t mask,
178 				     uint32_t bits)
179 {
180 	uint32_t val;
181 
182 	assert_spin_locked(&dev_priv->irq_lock);
183 	WARN_ON(bits & ~mask);
184 
185 	val = I915_READ(PORT_HOTPLUG_EN);
186 	val &= ~mask;
187 	val |= bits;
188 	I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190 
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 				   uint32_t mask,
205 				   uint32_t bits)
206 {
207 	spin_lock_irq(&dev_priv->irq_lock);
208 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 	spin_unlock_irq(&dev_priv->irq_lock);
210 }
211 
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 			    uint32_t interrupt_mask,
220 			    uint32_t enabled_irq_mask)
221 {
222 	uint32_t new_val;
223 
224 	assert_spin_locked(&dev_priv->irq_lock);
225 
226 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
227 
228 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 		return;
230 
231 	new_val = dev_priv->irq_mask;
232 	new_val &= ~interrupt_mask;
233 	new_val |= (~enabled_irq_mask & interrupt_mask);
234 
235 	if (new_val != dev_priv->irq_mask) {
236 		dev_priv->irq_mask = new_val;
237 		I915_WRITE(DEIMR, dev_priv->irq_mask);
238 		POSTING_READ(DEIMR);
239 	}
240 }
241 
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 			      uint32_t interrupt_mask,
250 			      uint32_t enabled_irq_mask)
251 {
252 	assert_spin_locked(&dev_priv->irq_lock);
253 
254 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
255 
256 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 		return;
258 
259 	dev_priv->gt_irq_mask &= ~interrupt_mask;
260 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 	POSTING_READ(GTIMR);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269 
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 	ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274 
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279 
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284 
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289 
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 			      uint32_t interrupt_mask,
298 			      uint32_t enabled_irq_mask)
299 {
300 	uint32_t new_val;
301 
302 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
303 
304 	assert_spin_locked(&dev_priv->irq_lock);
305 
306 	new_val = dev_priv->pm_irq_mask;
307 	new_val &= ~interrupt_mask;
308 	new_val |= (~enabled_irq_mask & interrupt_mask);
309 
310 	if (new_val != dev_priv->pm_irq_mask) {
311 		dev_priv->pm_irq_mask = new_val;
312 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 		POSTING_READ(gen6_pm_imr(dev_priv));
314 	}
315 }
316 
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 		return;
321 
322 	snb_update_pm_irq(dev_priv, mask, mask);
323 }
324 
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 				  uint32_t mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_disable_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	i915_reg_t reg = gen6_pm_iir(dev_priv);
343 
344 	spin_lock_irq(&dev_priv->irq_lock);
345 	I915_WRITE(reg, dev_priv->pm_rps_events);
346 	I915_WRITE(reg, dev_priv->pm_rps_events);
347 	POSTING_READ(reg);
348 	dev_priv->rps.pm_iir = 0;
349 	spin_unlock_irq(&dev_priv->irq_lock);
350 }
351 
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 	struct drm_i915_private *dev_priv = dev->dev_private;
355 
356 	spin_lock_irq(&dev_priv->irq_lock);
357 
358 	WARN_ON(dev_priv->rps.pm_iir);
359 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 	dev_priv->rps.interrupts_enabled = true;
361 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 				dev_priv->pm_rps_events);
363 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364 
365 	spin_unlock_irq(&dev_priv->irq_lock);
366 }
367 
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 	/*
371 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 	 *
374 	 * TODO: verify if this can be reproduced on VLV,CHV.
375 	 */
376 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378 
379 	if (INTEL_INFO(dev_priv)->gen >= 8)
380 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381 
382 	return mask;
383 }
384 
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 	struct drm_i915_private *dev_priv = dev->dev_private;
388 
389 	spin_lock_irq(&dev_priv->irq_lock);
390 	dev_priv->rps.interrupts_enabled = false;
391 	spin_unlock_irq(&dev_priv->irq_lock);
392 
393 	cancel_work_sync(&dev_priv->rps.work);
394 
395 	spin_lock_irq(&dev_priv->irq_lock);
396 
397 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398 
399 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 				~dev_priv->pm_rps_events);
402 
403 	spin_unlock_irq(&dev_priv->irq_lock);
404 
405 	synchronize_irq(dev->irq);
406 }
407 
408 /**
409  * bdw_update_port_irq - update DE port interrupt
410  * @dev_priv: driver private
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 				uint32_t interrupt_mask,
416 				uint32_t enabled_irq_mask)
417 {
418 	uint32_t new_val;
419 	uint32_t old_val;
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
424 
425 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 		return;
427 
428 	old_val = I915_READ(GEN8_DE_PORT_IMR);
429 
430 	new_val = old_val;
431 	new_val &= ~interrupt_mask;
432 	new_val |= (~enabled_irq_mask & interrupt_mask);
433 
434 	if (new_val != old_val) {
435 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 		POSTING_READ(GEN8_DE_PORT_IMR);
437 	}
438 }
439 
440 /**
441  * bdw_update_pipe_irq - update DE pipe interrupt
442  * @dev_priv: driver private
443  * @pipe: pipe whose interrupt to update
444  * @interrupt_mask: mask of interrupt bits to update
445  * @enabled_irq_mask: mask of interrupt bits to enable
446  */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 			 enum pipe pipe,
449 			 uint32_t interrupt_mask,
450 			 uint32_t enabled_irq_mask)
451 {
452 	uint32_t new_val;
453 
454 	assert_spin_locked(&dev_priv->irq_lock);
455 
456 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
457 
458 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 		return;
460 
461 	new_val = dev_priv->de_irq_mask[pipe];
462 	new_val &= ~interrupt_mask;
463 	new_val |= (~enabled_irq_mask & interrupt_mask);
464 
465 	if (new_val != dev_priv->de_irq_mask[pipe]) {
466 		dev_priv->de_irq_mask[pipe] = new_val;
467 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 	}
470 }
471 
472 /**
473  * ibx_display_interrupt_update - update SDEIMR
474  * @dev_priv: driver private
475  * @interrupt_mask: mask of interrupt bits to update
476  * @enabled_irq_mask: mask of interrupt bits to enable
477  */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 				  uint32_t interrupt_mask,
480 				  uint32_t enabled_irq_mask)
481 {
482 	uint32_t sdeimr = I915_READ(SDEIMR);
483 	sdeimr &= ~interrupt_mask;
484 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
485 
486 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
487 
488 	assert_spin_locked(&dev_priv->irq_lock);
489 
490 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 		return;
492 
493 	I915_WRITE(SDEIMR, sdeimr);
494 	POSTING_READ(SDEIMR);
495 }
496 
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 		       u32 enable_mask, u32 status_mask)
500 {
501 	i915_reg_t reg = PIPESTAT(pipe);
502 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503 
504 	assert_spin_locked(&dev_priv->irq_lock);
505 	WARN_ON(!intel_irqs_enabled(dev_priv));
506 
507 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 		      pipe_name(pipe), enable_mask, status_mask))
511 		return;
512 
513 	if ((pipestat & enable_mask) == enable_mask)
514 		return;
515 
516 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517 
518 	/* Enable the interrupt, clear any pending status */
519 	pipestat |= enable_mask | status_mask;
520 	I915_WRITE(reg, pipestat);
521 	POSTING_READ(reg);
522 }
523 
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 		        u32 enable_mask, u32 status_mask)
527 {
528 	i915_reg_t reg = PIPESTAT(pipe);
529 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530 
531 	assert_spin_locked(&dev_priv->irq_lock);
532 	WARN_ON(!intel_irqs_enabled(dev_priv));
533 
534 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 		      pipe_name(pipe), enable_mask, status_mask))
538 		return;
539 
540 	if ((pipestat & enable_mask) == 0)
541 		return;
542 
543 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544 
545 	pipestat &= ~enable_mask;
546 	I915_WRITE(reg, pipestat);
547 	POSTING_READ(reg);
548 }
549 
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 	u32 enable_mask = status_mask << 16;
553 
554 	/*
555 	 * On pipe A we don't support the PSR interrupt yet,
556 	 * on pipe B and C the same bit MBZ.
557 	 */
558 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 		return 0;
560 	/*
561 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 	 * A the same bit is for perf counters which we don't use either.
563 	 */
564 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 		return 0;
566 
567 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574 
575 	return enable_mask;
576 }
577 
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 		     u32 status_mask)
581 {
582 	u32 enable_mask;
583 
584 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 							   status_mask);
587 	else
588 		enable_mask = status_mask << 16;
589 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591 
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 		      u32 status_mask)
595 {
596 	u32 enable_mask;
597 
598 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 							   status_mask);
601 	else
602 		enable_mask = status_mask << 16;
603 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605 
606 /**
607  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608  * @dev: drm device
609  */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 	struct drm_i915_private *dev_priv = dev->dev_private;
613 
614 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 		return;
616 
617 	spin_lock_irq(&dev_priv->irq_lock);
618 
619 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 	if (INTEL_INFO(dev)->gen >= 4)
621 		i915_enable_pipestat(dev_priv, PIPE_A,
622 				     PIPE_LEGACY_BLC_EVENT_STATUS);
623 
624 	spin_unlock_irq(&dev_priv->irq_lock);
625 }
626 
627 /*
628  * This timing diagram depicts the video signal in and
629  * around the vertical blanking period.
630  *
631  * Assumptions about the fictitious mode used in this example:
632  *  vblank_start >= 3
633  *  vsync_start = vblank_start + 1
634  *  vsync_end = vblank_start + 2
635  *  vtotal = vblank_start + 3
636  *
637  *           start of vblank:
638  *           latch double buffered registers
639  *           increment frame counter (ctg+)
640  *           generate start of vblank interrupt (gen4+)
641  *           |
642  *           |          frame start:
643  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
644  *           |          may be shifted forward 1-3 extra lines via PIPECONF
645  *           |          |
646  *           |          |  start of vsync:
647  *           |          |  generate vsync interrupt
648  *           |          |  |
649  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
650  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
651  * ----va---> <-----------------vb--------------------> <--------va-------------
652  *       |          |       <----vs----->                     |
653  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656  *       |          |                                         |
657  *       last visible pixel                                   first visible pixel
658  *                  |                                         increment frame counter (gen3/4)
659  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
660  *
661  * x  = horizontal active
662  * _  = horizontal blanking
663  * hs = horizontal sync
664  * va = vertical active
665  * vb = vertical blanking
666  * vs = vertical sync
667  * vbs = vblank_start (number)
668  *
669  * Summary:
670  * - most events happen at the start of horizontal sync
671  * - frame start happens at the start of horizontal blank, 1-4 lines
672  *   (depending on PIPECONF settings) after the start of vblank
673  * - gen3/4 pixel and frame counter are synchronized with the start
674  *   of horizontal active on the first line of vertical active
675  */
676 
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 	/* Gen2 doesn't have a hardware frame counter */
680 	return 0;
681 }
682 
683 /* Called from drm generic code, passed a 'crtc', which
684  * we use as a pipe index
685  */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 	struct drm_i915_private *dev_priv = dev->dev_private;
689 	i915_reg_t high_frame, low_frame;
690 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 	struct intel_crtc *intel_crtc =
692 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694 
695 	htotal = mode->crtc_htotal;
696 	hsync_start = mode->crtc_hsync_start;
697 	vbl_start = mode->crtc_vblank_start;
698 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
700 
701 	/* Convert to pixel count */
702 	vbl_start *= htotal;
703 
704 	/* Start of vblank event occurs at start of hsync */
705 	vbl_start -= htotal - hsync_start;
706 
707 	high_frame = PIPEFRAME(pipe);
708 	low_frame = PIPEFRAMEPIXEL(pipe);
709 
710 	/*
711 	 * High & low register fields aren't synchronized, so make sure
712 	 * we get a low value that's stable across two reads of the high
713 	 * register.
714 	 */
715 	do {
716 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 		low   = I915_READ(low_frame);
718 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 	} while (high1 != high2);
720 
721 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 	pixel = low & PIPE_PIXEL_MASK;
723 	low >>= PIPE_FRAME_LOW_SHIFT;
724 
725 	/*
726 	 * The frame counter increments at beginning of active.
727 	 * Cook up a vblank counter by also checking the pixel
728 	 * counter against vblank start.
729 	 */
730 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732 
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 	struct drm_i915_private *dev_priv = dev->dev_private;
736 
737 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739 
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 	struct drm_device *dev = crtc->base.dev;
744 	struct drm_i915_private *dev_priv = dev->dev_private;
745 	const struct drm_display_mode *mode = &crtc->base.hwmode;
746 	enum pipe pipe = crtc->pipe;
747 	int position, vtotal;
748 
749 	vtotal = mode->crtc_vtotal;
750 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 		vtotal /= 2;
752 
753 	if (IS_GEN2(dev))
754 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 	else
756 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757 
758 	/*
759 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 	 * read it just before the start of vblank.  So try it again
761 	 * so we don't accidentally end up spanning a vblank frame
762 	 * increment, causing the pipe_update_end() code to squak at us.
763 	 *
764 	 * The nature of this problem means we can't simply check the ISR
765 	 * bit and return the vblank start value; nor can we use the scanline
766 	 * debug register in the transcoder as it appears to have the same
767 	 * problem.  We may need to extend this to include other platforms,
768 	 * but so far testing only shows the problem on HSW.
769 	 */
770 	if (HAS_DDI(dev) && !position) {
771 		int i, temp;
772 
773 		for (i = 0; i < 100; i++) {
774 			udelay(1);
775 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 				DSL_LINEMASK_GEN3;
777 			if (temp != position) {
778 				position = temp;
779 				break;
780 			}
781 		}
782 	}
783 
784 	/*
785 	 * See update_scanline_offset() for the details on the
786 	 * scanline_offset adjustment.
787 	 */
788 	return (position + crtc->scanline_offset) % vtotal;
789 }
790 
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 				    unsigned int flags, int *vpos, int *hpos,
793 				    ktime_t *stime, ktime_t *etime,
794 				    const struct drm_display_mode *mode)
795 {
796 	struct drm_i915_private *dev_priv = dev->dev_private;
797 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 	int position;
800 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 	bool in_vbl = true;
802 	int ret = 0;
803 	unsigned long irqflags;
804 
805 	if (WARN_ON(!mode->crtc_clock)) {
806 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 				 "pipe %c\n", pipe_name(pipe));
808 		return 0;
809 	}
810 
811 	htotal = mode->crtc_htotal;
812 	hsync_start = mode->crtc_hsync_start;
813 	vtotal = mode->crtc_vtotal;
814 	vbl_start = mode->crtc_vblank_start;
815 	vbl_end = mode->crtc_vblank_end;
816 
817 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 		vbl_end /= 2;
820 		vtotal /= 2;
821 	}
822 
823 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824 
825 	/*
826 	 * Lock uncore.lock, as we will do multiple timing critical raw
827 	 * register reads, potentially with preemption disabled, so the
828 	 * following code must not block on uncore.lock.
829 	 */
830 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831 
832 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833 
834 	/* Get optional system timestamp before query. */
835 	if (stime)
836 		*stime = ktime_get();
837 
838 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 		/* No obvious pixelcount register. Only query vertical
840 		 * scanout position from Display scan line register.
841 		 */
842 		position = __intel_get_crtc_scanline(intel_crtc);
843 	} else {
844 		/* Have access to pixelcount since start of frame.
845 		 * We can split this into vertical and horizontal
846 		 * scanout position.
847 		 */
848 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849 
850 		/* convert to pixel counts */
851 		vbl_start *= htotal;
852 		vbl_end *= htotal;
853 		vtotal *= htotal;
854 
855 		/*
856 		 * In interlaced modes, the pixel counter counts all pixels,
857 		 * so one field will have htotal more pixels. In order to avoid
858 		 * the reported position from jumping backwards when the pixel
859 		 * counter is beyond the length of the shorter field, just
860 		 * clamp the position the length of the shorter field. This
861 		 * matches how the scanline counter based position works since
862 		 * the scanline counter doesn't count the two half lines.
863 		 */
864 		if (position >= vtotal)
865 			position = vtotal - 1;
866 
867 		/*
868 		 * Start of vblank interrupt is triggered at start of hsync,
869 		 * just prior to the first active line of vblank. However we
870 		 * consider lines to start at the leading edge of horizontal
871 		 * active. So, should we get here before we've crossed into
872 		 * the horizontal active of the first line in vblank, we would
873 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 		 * always add htotal-hsync_start to the current pixel position.
875 		 */
876 		position = (position + htotal - hsync_start) % vtotal;
877 	}
878 
879 	/* Get optional system timestamp after query. */
880 	if (etime)
881 		*etime = ktime_get();
882 
883 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884 
885 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886 
887 	in_vbl = position >= vbl_start && position < vbl_end;
888 
889 	/*
890 	 * While in vblank, position will be negative
891 	 * counting up towards 0 at vbl_end. And outside
892 	 * vblank, position will be positive counting
893 	 * up since vbl_end.
894 	 */
895 	if (position >= vbl_start)
896 		position -= vbl_end;
897 	else
898 		position += vtotal - vbl_end;
899 
900 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 		*vpos = position;
902 		*hpos = 0;
903 	} else {
904 		*vpos = position / htotal;
905 		*hpos = position - (*vpos * htotal);
906 	}
907 
908 	/* In vblank? */
909 	if (in_vbl)
910 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
911 
912 	return ret;
913 }
914 
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 	unsigned long irqflags;
919 	int position;
920 
921 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 	position = __intel_get_crtc_scanline(crtc);
923 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924 
925 	return position;
926 }
927 
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 			      int *max_error,
930 			      struct timeval *vblank_time,
931 			      unsigned flags)
932 {
933 	struct drm_crtc *crtc;
934 
935 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 		DRM_ERROR("Invalid crtc %u\n", pipe);
937 		return -EINVAL;
938 	}
939 
940 	/* Get drm_crtc to timestamp: */
941 	crtc = intel_get_crtc_for_pipe(dev, pipe);
942 	if (crtc == NULL) {
943 		DRM_ERROR("Invalid crtc %u\n", pipe);
944 		return -EINVAL;
945 	}
946 
947 	if (!crtc->hwmode.crtc_clock) {
948 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 		return -EBUSY;
950 	}
951 
952 	/* Helper routine in DRM core does all the work: */
953 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 						     vblank_time, flags,
955 						     &crtc->hwmode);
956 }
957 
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 	struct drm_i915_private *dev_priv = dev->dev_private;
961 	u32 busy_up, busy_down, max_avg, min_avg;
962 	u8 new_delay;
963 
964 	spin_lock(&mchdev_lock);
965 
966 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967 
968 	new_delay = dev_priv->ips.cur_delay;
969 
970 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 	busy_up = I915_READ(RCPREVBSYTUPAVG);
972 	busy_down = I915_READ(RCPREVBSYTDNAVG);
973 	max_avg = I915_READ(RCBMAXAVG);
974 	min_avg = I915_READ(RCBMINAVG);
975 
976 	/* Handle RCS change request from hw */
977 	if (busy_up > max_avg) {
978 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 			new_delay = dev_priv->ips.cur_delay - 1;
980 		if (new_delay < dev_priv->ips.max_delay)
981 			new_delay = dev_priv->ips.max_delay;
982 	} else if (busy_down < min_avg) {
983 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 			new_delay = dev_priv->ips.cur_delay + 1;
985 		if (new_delay > dev_priv->ips.min_delay)
986 			new_delay = dev_priv->ips.min_delay;
987 	}
988 
989 	if (ironlake_set_drps(dev, new_delay))
990 		dev_priv->ips.cur_delay = new_delay;
991 
992 	spin_unlock(&mchdev_lock);
993 
994 	return;
995 }
996 
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 	if (!intel_engine_initialized(engine))
1000 		return;
1001 
1002 	trace_i915_gem_request_notify(engine);
1003 	engine->user_interrupts++;
1004 
1005 	wake_up_all(&engine->irq_queue);
1006 }
1007 
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 			struct intel_rps_ei *ei)
1010 {
1011 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015 
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 			 const struct intel_rps_ei *old,
1018 			 const struct intel_rps_ei *now,
1019 			 int threshold)
1020 {
1021 	u64 time, c0;
1022 	unsigned int mul = 100;
1023 
1024 	if (old->cz_clock == 0)
1025 		return false;
1026 
1027 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 		mul <<= 8;
1029 
1030 	time = now->cz_clock - old->cz_clock;
1031 	time *= threshold * dev_priv->czclk_freq;
1032 
1033 	/* Workload can be split between render + media, e.g. SwapBuffers
1034 	 * being blitted in X after being rendered in mesa. To account for
1035 	 * this we need to combine both engines into our activity counter.
1036 	 */
1037 	c0 = now->render_c0 - old->render_c0;
1038 	c0 += now->media_c0 - old->media_c0;
1039 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040 
1041 	return c0 >= time;
1042 }
1043 
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049 
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 	struct intel_rps_ei now;
1053 	u32 events = 0;
1054 
1055 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 		return 0;
1057 
1058 	vlv_c0_read(dev_priv, &now);
1059 	if (now.cz_clock == 0)
1060 		return 0;
1061 
1062 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 		if (!vlv_c0_above(dev_priv,
1064 				  &dev_priv->rps.down_ei, &now,
1065 				  dev_priv->rps.down_threshold))
1066 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 		dev_priv->rps.down_ei = now;
1068 	}
1069 
1070 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 		if (vlv_c0_above(dev_priv,
1072 				 &dev_priv->rps.up_ei, &now,
1073 				 dev_priv->rps.up_threshold))
1074 			events |= GEN6_PM_RP_UP_THRESHOLD;
1075 		dev_priv->rps.up_ei = now;
1076 	}
1077 
1078 	return events;
1079 }
1080 
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 	struct intel_engine_cs *engine;
1084 
1085 	for_each_engine(engine, dev_priv)
1086 		if (engine->irq_refcount)
1087 			return true;
1088 
1089 	return false;
1090 }
1091 
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 	struct drm_i915_private *dev_priv =
1095 		container_of(work, struct drm_i915_private, rps.work);
1096 	bool client_boost;
1097 	int new_delay, adj, min, max;
1098 	u32 pm_iir;
1099 
1100 	spin_lock_irq(&dev_priv->irq_lock);
1101 	/* Speed up work cancelation during disabling rps interrupts. */
1102 	if (!dev_priv->rps.interrupts_enabled) {
1103 		spin_unlock_irq(&dev_priv->irq_lock);
1104 		return;
1105 	}
1106 
1107 	/*
1108 	 * The RPS work is synced during runtime suspend, we don't require a
1109 	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 	 * always hold an RPM reference while the work is running.
1111 	 */
1112 	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113 
1114 	pm_iir = dev_priv->rps.pm_iir;
1115 	dev_priv->rps.pm_iir = 0;
1116 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 	client_boost = dev_priv->rps.client_boost;
1119 	dev_priv->rps.client_boost = false;
1120 	spin_unlock_irq(&dev_priv->irq_lock);
1121 
1122 	/* Make sure we didn't queue anything we're not going to process. */
1123 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124 
1125 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 		goto out;
1127 
1128 	mutex_lock(&dev_priv->rps.hw_lock);
1129 
1130 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131 
1132 	adj = dev_priv->rps.last_adj;
1133 	new_delay = dev_priv->rps.cur_freq;
1134 	min = dev_priv->rps.min_freq_softlimit;
1135 	max = dev_priv->rps.max_freq_softlimit;
1136 
1137 	if (client_boost) {
1138 		new_delay = dev_priv->rps.max_freq_softlimit;
1139 		adj = 0;
1140 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 		if (adj > 0)
1142 			adj *= 2;
1143 		else /* CHV needs even encode values */
1144 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 		/*
1146 		 * For better performance, jump directly
1147 		 * to RPe if we're below it.
1148 		 */
1149 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 			new_delay = dev_priv->rps.efficient_freq;
1151 			adj = 0;
1152 		}
1153 	} else if (any_waiters(dev_priv)) {
1154 		adj = 0;
1155 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 			new_delay = dev_priv->rps.efficient_freq;
1158 		else
1159 			new_delay = dev_priv->rps.min_freq_softlimit;
1160 		adj = 0;
1161 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 		if (adj < 0)
1163 			adj *= 2;
1164 		else /* CHV needs even encode values */
1165 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 	} else { /* unknown event */
1167 		adj = 0;
1168 	}
1169 
1170 	dev_priv->rps.last_adj = adj;
1171 
1172 	/* sysfs frequency interfaces may have snuck in while servicing the
1173 	 * interrupt
1174 	 */
1175 	new_delay += adj;
1176 	new_delay = clamp_t(int, new_delay, min, max);
1177 
1178 	intel_set_rps(dev_priv->dev, new_delay);
1179 
1180 	mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184 
1185 
1186 /**
1187  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188  * occurred.
1189  * @work: workqueue struct
1190  *
1191  * Doesn't actually do anything except notify userspace. As a consequence of
1192  * this event, userspace should try to remap the bad rows since statistically
1193  * it is likely the same row is more likely to go bad again.
1194  */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 	struct drm_i915_private *dev_priv =
1198 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 	u32 error_status, row, bank, subbank;
1200 	char *parity_event[6];
1201 	uint32_t misccpctl;
1202 	uint8_t slice = 0;
1203 
1204 	/* We must turn off DOP level clock gating to access the L3 registers.
1205 	 * In order to prevent a get/put style interface, acquire struct mutex
1206 	 * any time we access those registers.
1207 	 */
1208 	mutex_lock(&dev_priv->dev->struct_mutex);
1209 
1210 	/* If we've screwed up tracking, just let the interrupt fire again */
1211 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 		goto out;
1213 
1214 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 	POSTING_READ(GEN7_MISCCPCTL);
1217 
1218 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 		i915_reg_t reg;
1220 
1221 		slice--;
1222 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 			break;
1224 
1225 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226 
1227 		reg = GEN7_L3CDERRST1(slice);
1228 
1229 		error_status = I915_READ(reg);
1230 		row = GEN7_PARITY_ERROR_ROW(error_status);
1231 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233 
1234 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 		POSTING_READ(reg);
1236 
1237 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 		parity_event[5] = NULL;
1243 
1244 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 				   KOBJ_CHANGE, parity_event);
1246 
1247 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 			  slice, row, bank, subbank);
1249 
1250 		kfree(parity_event[4]);
1251 		kfree(parity_event[3]);
1252 		kfree(parity_event[2]);
1253 		kfree(parity_event[1]);
1254 	}
1255 
1256 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257 
1258 out:
1259 	WARN_ON(dev_priv->l3_parity.which_slice);
1260 	spin_lock_irq(&dev_priv->irq_lock);
1261 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 	spin_unlock_irq(&dev_priv->irq_lock);
1263 
1264 	mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266 
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 	struct drm_i915_private *dev_priv = dev->dev_private;
1270 
1271 	if (!HAS_L3_DPF(dev))
1272 		return;
1273 
1274 	spin_lock(&dev_priv->irq_lock);
1275 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 	spin_unlock(&dev_priv->irq_lock);
1277 
1278 	iir &= GT_PARITY_ERROR(dev);
1279 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 		dev_priv->l3_parity.which_slice |= 1 << 1;
1281 
1282 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 		dev_priv->l3_parity.which_slice |= 1 << 0;
1284 
1285 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287 
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 			       struct drm_i915_private *dev_priv,
1290 			       u32 gt_iir)
1291 {
1292 	if (gt_iir &
1293 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 		notify_ring(&dev_priv->engine[RCS]);
1295 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 		notify_ring(&dev_priv->engine[VCS]);
1297 }
1298 
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 			       struct drm_i915_private *dev_priv,
1301 			       u32 gt_iir)
1302 {
1303 
1304 	if (gt_iir &
1305 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 		notify_ring(&dev_priv->engine[RCS]);
1307 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 		notify_ring(&dev_priv->engine[VCS]);
1309 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 		notify_ring(&dev_priv->engine[BCS]);
1311 
1312 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 		      GT_BSD_CS_ERROR_INTERRUPT |
1314 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316 
1317 	if (gt_iir & GT_PARITY_ERROR(dev))
1318 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320 
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 		notify_ring(engine);
1326 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 		tasklet_schedule(&engine->irq_tasklet);
1328 }
1329 
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 				       u32 master_ctl)
1332 {
1333 	irqreturn_t ret = IRQ_NONE;
1334 
1335 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 		if (iir) {
1338 			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 			ret = IRQ_HANDLED;
1340 
1341 			gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 					    iir, GEN8_RCS_IRQ_SHIFT);
1343 
1344 			gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 					    iir, GEN8_BCS_IRQ_SHIFT);
1346 		} else
1347 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 	}
1349 
1350 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 		if (iir) {
1353 			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 			ret = IRQ_HANDLED;
1355 
1356 			gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 					    iir, GEN8_VCS1_IRQ_SHIFT);
1358 
1359 			gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 					    iir, GEN8_VCS2_IRQ_SHIFT);
1361 		} else
1362 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 	}
1364 
1365 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 		if (iir) {
1368 			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 			ret = IRQ_HANDLED;
1370 
1371 			gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 					    iir, GEN8_VECS_IRQ_SHIFT);
1373 		} else
1374 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 	}
1376 
1377 	if (master_ctl & GEN8_GT_PM_IRQ) {
1378 		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 		if (iir & dev_priv->pm_rps_events) {
1380 			I915_WRITE_FW(GEN8_GT_IIR(2),
1381 				      iir & dev_priv->pm_rps_events);
1382 			ret = IRQ_HANDLED;
1383 			gen6_rps_irq_handler(dev_priv, iir);
1384 		} else
1385 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 	switch (port) {
1394 	case PORT_A:
1395 		return val & PORTA_HOTPLUG_LONG_DETECT;
1396 	case PORT_B:
1397 		return val & PORTB_HOTPLUG_LONG_DETECT;
1398 	case PORT_C:
1399 		return val & PORTC_HOTPLUG_LONG_DETECT;
1400 	default:
1401 		return false;
1402 	}
1403 }
1404 
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 	switch (port) {
1408 	case PORT_E:
1409 		return val & PORTE_HOTPLUG_LONG_DETECT;
1410 	default:
1411 		return false;
1412 	}
1413 }
1414 
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 	switch (port) {
1418 	case PORT_A:
1419 		return val & PORTA_HOTPLUG_LONG_DETECT;
1420 	case PORT_B:
1421 		return val & PORTB_HOTPLUG_LONG_DETECT;
1422 	case PORT_C:
1423 		return val & PORTC_HOTPLUG_LONG_DETECT;
1424 	case PORT_D:
1425 		return val & PORTD_HOTPLUG_LONG_DETECT;
1426 	default:
1427 		return false;
1428 	}
1429 }
1430 
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 	switch (port) {
1434 	case PORT_A:
1435 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 	default:
1437 		return false;
1438 	}
1439 }
1440 
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 	switch (port) {
1444 	case PORT_B:
1445 		return val & PORTB_HOTPLUG_LONG_DETECT;
1446 	case PORT_C:
1447 		return val & PORTC_HOTPLUG_LONG_DETECT;
1448 	case PORT_D:
1449 		return val & PORTD_HOTPLUG_LONG_DETECT;
1450 	default:
1451 		return false;
1452 	}
1453 }
1454 
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 	switch (port) {
1458 	case PORT_B:
1459 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 	case PORT_C:
1461 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 	case PORT_D:
1463 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 	default:
1465 		return false;
1466 	}
1467 }
1468 
1469 /*
1470  * Get a bit mask of pins that have triggered, and which ones may be long.
1471  * This can be called multiple times with the same masks to accumulate
1472  * hotplug detection results from several registers.
1473  *
1474  * Note that the caller is expected to zero out the masks initially.
1475  */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 			     const u32 hpd[HPD_NUM_PINS],
1479 			     bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 	enum port port;
1482 	int i;
1483 
1484 	for_each_hpd_pin(i) {
1485 		if ((hpd[i] & hotplug_trigger) == 0)
1486 			continue;
1487 
1488 		*pin_mask |= BIT(i);
1489 
1490 		if (!intel_hpd_pin_to_port(i, &port))
1491 			continue;
1492 
1493 		if (long_pulse_detect(port, dig_hotplug_reg))
1494 			*long_mask |= BIT(i);
1495 	}
1496 
1497 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499 
1500 }
1501 
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 	struct drm_i915_private *dev_priv = dev->dev_private;
1505 
1506 	wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508 
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 	struct drm_i915_private *dev_priv = dev->dev_private;
1512 
1513 	wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515 
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 					 uint32_t crc0, uint32_t crc1,
1519 					 uint32_t crc2, uint32_t crc3,
1520 					 uint32_t crc4)
1521 {
1522 	struct drm_i915_private *dev_priv = dev->dev_private;
1523 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 	struct intel_pipe_crc_entry *entry;
1525 	int head, tail;
1526 
1527 	spin_lock(&pipe_crc->lock);
1528 
1529 	if (!pipe_crc->entries) {
1530 		spin_unlock(&pipe_crc->lock);
1531 		DRM_DEBUG_KMS("spurious interrupt\n");
1532 		return;
1533 	}
1534 
1535 	head = pipe_crc->head;
1536 	tail = pipe_crc->tail;
1537 
1538 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 		spin_unlock(&pipe_crc->lock);
1540 		DRM_ERROR("CRC buffer overflowing\n");
1541 		return;
1542 	}
1543 
1544 	entry = &pipe_crc->entries[head];
1545 
1546 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 	entry->crc[0] = crc0;
1548 	entry->crc[1] = crc1;
1549 	entry->crc[2] = crc2;
1550 	entry->crc[3] = crc3;
1551 	entry->crc[4] = crc4;
1552 
1553 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 	pipe_crc->head = head;
1555 
1556 	spin_unlock(&pipe_crc->lock);
1557 
1558 	wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 			     uint32_t crc0, uint32_t crc1,
1564 			     uint32_t crc2, uint32_t crc3,
1565 			     uint32_t crc4) {}
1566 #endif
1567 
1568 
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 	struct drm_i915_private *dev_priv = dev->dev_private;
1572 
1573 	display_pipe_crc_irq_handler(dev, pipe,
1574 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 				     0, 0, 0, 0);
1576 }
1577 
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 	struct drm_i915_private *dev_priv = dev->dev_private;
1581 
1582 	display_pipe_crc_irq_handler(dev, pipe,
1583 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589 
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 	struct drm_i915_private *dev_priv = dev->dev_private;
1593 	uint32_t res1, res2;
1594 
1595 	if (INTEL_INFO(dev)->gen >= 3)
1596 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 	else
1598 		res1 = 0;
1599 
1600 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 	else
1603 		res2 = 0;
1604 
1605 	display_pipe_crc_irq_handler(dev, pipe,
1606 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 				     res1, res2);
1610 }
1611 
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613  * IMR bits until the work is done. Other interrupts can be processed without
1614  * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 	if (pm_iir & dev_priv->pm_rps_events) {
1618 		spin_lock(&dev_priv->irq_lock);
1619 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 		if (dev_priv->rps.interrupts_enabled) {
1621 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 		}
1624 		spin_unlock(&dev_priv->irq_lock);
1625 	}
1626 
1627 	if (INTEL_INFO(dev_priv)->gen >= 8)
1628 		return;
1629 
1630 	if (HAS_VEBOX(dev_priv)) {
1631 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 			notify_ring(&dev_priv->engine[VECS]);
1633 
1634 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 	}
1637 }
1638 
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 	if (!drm_handle_vblank(dev, pipe))
1642 		return false;
1643 
1644 	return true;
1645 }
1646 
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 	struct drm_i915_private *dev_priv = dev->dev_private;
1650 	u32 pipe_stats[I915_MAX_PIPES] = { };
1651 	int pipe;
1652 
1653 	spin_lock(&dev_priv->irq_lock);
1654 
1655 	if (!dev_priv->display_irqs_enabled) {
1656 		spin_unlock(&dev_priv->irq_lock);
1657 		return;
1658 	}
1659 
1660 	for_each_pipe(dev_priv, pipe) {
1661 		i915_reg_t reg;
1662 		u32 mask, iir_bit = 0;
1663 
1664 		/*
1665 		 * PIPESTAT bits get signalled even when the interrupt is
1666 		 * disabled with the mask bits, and some of the status bits do
1667 		 * not generate interrupts at all (like the underrun bit). Hence
1668 		 * we need to be careful that we only handle what we want to
1669 		 * handle.
1670 		 */
1671 
1672 		/* fifo underruns are filterered in the underrun handler. */
1673 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1674 
1675 		switch (pipe) {
1676 		case PIPE_A:
1677 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 			break;
1679 		case PIPE_B:
1680 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 			break;
1682 		case PIPE_C:
1683 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 			break;
1685 		}
1686 		if (iir & iir_bit)
1687 			mask |= dev_priv->pipestat_irq_mask[pipe];
1688 
1689 		if (!mask)
1690 			continue;
1691 
1692 		reg = PIPESTAT(pipe);
1693 		mask |= PIPESTAT_INT_ENABLE_MASK;
1694 		pipe_stats[pipe] = I915_READ(reg) & mask;
1695 
1696 		/*
1697 		 * Clear the PIPE*STAT regs before the IIR
1698 		 */
1699 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 					PIPESTAT_INT_STATUS_MASK))
1701 			I915_WRITE(reg, pipe_stats[pipe]);
1702 	}
1703 	spin_unlock(&dev_priv->irq_lock);
1704 
1705 	for_each_pipe(dev_priv, pipe) {
1706 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 		    intel_pipe_handle_vblank(dev, pipe))
1708 			intel_check_page_flip(dev, pipe);
1709 
1710 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 			intel_prepare_page_flip(dev, pipe);
1712 			intel_finish_page_flip(dev, pipe);
1713 		}
1714 
1715 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 			i9xx_pipe_crc_irq_handler(dev, pipe);
1717 
1718 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 	}
1721 
1722 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 		gmbus_irq_handler(dev);
1724 }
1725 
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 	struct drm_i915_private *dev_priv = dev->dev_private;
1729 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 	u32 pin_mask = 0, long_mask = 0;
1731 
1732 	if (!hotplug_status)
1733 		return;
1734 
1735 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 	/*
1737 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 	 * may miss hotplug events.
1739 	 */
1740 	POSTING_READ(PORT_HOTPLUG_STAT);
1741 
1742 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744 
1745 		if (hotplug_trigger) {
1746 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 					   hotplug_trigger, hpd_status_g4x,
1748 					   i9xx_port_hotplug_long_detect);
1749 
1750 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 		}
1752 
1753 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 			dp_aux_irq_handler(dev);
1755 	} else {
1756 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757 
1758 		if (hotplug_trigger) {
1759 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 					   hotplug_trigger, hpd_status_i915,
1761 					   i9xx_port_hotplug_long_detect);
1762 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 		}
1764 	}
1765 }
1766 
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 	struct drm_device *dev = arg;
1770 	struct drm_i915_private *dev_priv = dev->dev_private;
1771 	u32 iir, gt_iir, pm_iir;
1772 	irqreturn_t ret = IRQ_NONE;
1773 
1774 	if (!intel_irqs_enabled(dev_priv))
1775 		return IRQ_NONE;
1776 
1777 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 	disable_rpm_wakeref_asserts(dev_priv);
1779 
1780 	while (true) {
1781 		/* Find, clear, then process each source of interrupt */
1782 
1783 		gt_iir = I915_READ(GTIIR);
1784 		if (gt_iir)
1785 			I915_WRITE(GTIIR, gt_iir);
1786 
1787 		pm_iir = I915_READ(GEN6_PMIIR);
1788 		if (pm_iir)
1789 			I915_WRITE(GEN6_PMIIR, pm_iir);
1790 
1791 		iir = I915_READ(VLV_IIR);
1792 		if (iir) {
1793 			/* Consume port before clearing IIR or we'll miss events */
1794 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795 				i9xx_hpd_irq_handler(dev);
1796 			I915_WRITE(VLV_IIR, iir);
1797 		}
1798 
1799 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800 			goto out;
1801 
1802 		ret = IRQ_HANDLED;
1803 
1804 		if (gt_iir)
1805 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806 		if (pm_iir)
1807 			gen6_rps_irq_handler(dev_priv, pm_iir);
1808 		/* Call regardless, as some status bits might not be
1809 		 * signalled in iir */
1810 		valleyview_pipestat_irq_handler(dev, iir);
1811 	}
1812 
1813 out:
1814 	enable_rpm_wakeref_asserts(dev_priv);
1815 
1816 	return ret;
1817 }
1818 
1819 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820 {
1821 	struct drm_device *dev = arg;
1822 	struct drm_i915_private *dev_priv = dev->dev_private;
1823 	u32 master_ctl, iir;
1824 	irqreturn_t ret = IRQ_NONE;
1825 
1826 	if (!intel_irqs_enabled(dev_priv))
1827 		return IRQ_NONE;
1828 
1829 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830 	disable_rpm_wakeref_asserts(dev_priv);
1831 
1832 	do {
1833 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834 		iir = I915_READ(VLV_IIR);
1835 
1836 		if (master_ctl == 0 && iir == 0)
1837 			break;
1838 
1839 		ret = IRQ_HANDLED;
1840 
1841 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1842 
1843 		/* Find, clear, then process each source of interrupt */
1844 
1845 		if (iir) {
1846 			/* Consume port before clearing IIR or we'll miss events */
1847 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848 				i9xx_hpd_irq_handler(dev);
1849 			I915_WRITE(VLV_IIR, iir);
1850 		}
1851 
1852 		gen8_gt_irq_handler(dev_priv, master_ctl);
1853 
1854 		/* Call regardless, as some status bits might not be
1855 		 * signalled in iir */
1856 		valleyview_pipestat_irq_handler(dev, iir);
1857 
1858 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859 		POSTING_READ(GEN8_MASTER_IRQ);
1860 	} while (0);
1861 
1862 	enable_rpm_wakeref_asserts(dev_priv);
1863 
1864 	return ret;
1865 }
1866 
1867 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868 				const u32 hpd[HPD_NUM_PINS])
1869 {
1870 	struct drm_i915_private *dev_priv = to_i915(dev);
1871 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872 
1873 	/*
1874 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875 	 * unless we touch the hotplug register, even if hotplug_trigger is
1876 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877 	 * errors.
1878 	 */
1879 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880 	if (!hotplug_trigger) {
1881 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882 			PORTD_HOTPLUG_STATUS_MASK |
1883 			PORTC_HOTPLUG_STATUS_MASK |
1884 			PORTB_HOTPLUG_STATUS_MASK;
1885 		dig_hotplug_reg &= ~mask;
1886 	}
1887 
1888 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889 	if (!hotplug_trigger)
1890 		return;
1891 
1892 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893 			   dig_hotplug_reg, hpd,
1894 			   pch_port_hotplug_long_detect);
1895 
1896 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897 }
1898 
1899 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900 {
1901 	struct drm_i915_private *dev_priv = dev->dev_private;
1902 	int pipe;
1903 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904 
1905 	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906 
1907 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909 			       SDE_AUDIO_POWER_SHIFT);
1910 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911 				 port_name(port));
1912 	}
1913 
1914 	if (pch_iir & SDE_AUX_MASK)
1915 		dp_aux_irq_handler(dev);
1916 
1917 	if (pch_iir & SDE_GMBUS)
1918 		gmbus_irq_handler(dev);
1919 
1920 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922 
1923 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925 
1926 	if (pch_iir & SDE_POISON)
1927 		DRM_ERROR("PCH poison interrupt\n");
1928 
1929 	if (pch_iir & SDE_FDI_MASK)
1930 		for_each_pipe(dev_priv, pipe)
1931 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932 					 pipe_name(pipe),
1933 					 I915_READ(FDI_RX_IIR(pipe)));
1934 
1935 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937 
1938 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940 
1941 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943 
1944 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 }
1947 
1948 static void ivb_err_int_handler(struct drm_device *dev)
1949 {
1950 	struct drm_i915_private *dev_priv = dev->dev_private;
1951 	u32 err_int = I915_READ(GEN7_ERR_INT);
1952 	enum pipe pipe;
1953 
1954 	if (err_int & ERR_INT_POISON)
1955 		DRM_ERROR("Poison interrupt\n");
1956 
1957 	for_each_pipe(dev_priv, pipe) {
1958 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960 
1961 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962 			if (IS_IVYBRIDGE(dev))
1963 				ivb_pipe_crc_irq_handler(dev, pipe);
1964 			else
1965 				hsw_pipe_crc_irq_handler(dev, pipe);
1966 		}
1967 	}
1968 
1969 	I915_WRITE(GEN7_ERR_INT, err_int);
1970 }
1971 
1972 static void cpt_serr_int_handler(struct drm_device *dev)
1973 {
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 	u32 serr_int = I915_READ(SERR_INT);
1976 
1977 	if (serr_int & SERR_INT_POISON)
1978 		DRM_ERROR("PCH poison interrupt\n");
1979 
1980 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982 
1983 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985 
1986 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988 
1989 	I915_WRITE(SERR_INT, serr_int);
1990 }
1991 
1992 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993 {
1994 	struct drm_i915_private *dev_priv = dev->dev_private;
1995 	int pipe;
1996 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997 
1998 	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999 
2000 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002 			       SDE_AUDIO_POWER_SHIFT_CPT);
2003 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004 				 port_name(port));
2005 	}
2006 
2007 	if (pch_iir & SDE_AUX_MASK_CPT)
2008 		dp_aux_irq_handler(dev);
2009 
2010 	if (pch_iir & SDE_GMBUS_CPT)
2011 		gmbus_irq_handler(dev);
2012 
2013 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015 
2016 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018 
2019 	if (pch_iir & SDE_FDI_MASK_CPT)
2020 		for_each_pipe(dev_priv, pipe)
2021 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022 					 pipe_name(pipe),
2023 					 I915_READ(FDI_RX_IIR(pipe)));
2024 
2025 	if (pch_iir & SDE_ERROR_CPT)
2026 		cpt_serr_int_handler(dev);
2027 }
2028 
2029 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030 {
2031 	struct drm_i915_private *dev_priv = dev->dev_private;
2032 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033 		~SDE_PORTE_HOTPLUG_SPT;
2034 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035 	u32 pin_mask = 0, long_mask = 0;
2036 
2037 	if (hotplug_trigger) {
2038 		u32 dig_hotplug_reg;
2039 
2040 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042 
2043 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044 				   dig_hotplug_reg, hpd_spt,
2045 				   spt_port_hotplug_long_detect);
2046 	}
2047 
2048 	if (hotplug2_trigger) {
2049 		u32 dig_hotplug_reg;
2050 
2051 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053 
2054 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055 				   dig_hotplug_reg, hpd_spt,
2056 				   spt_port_hotplug2_long_detect);
2057 	}
2058 
2059 	if (pin_mask)
2060 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061 
2062 	if (pch_iir & SDE_GMBUS_CPT)
2063 		gmbus_irq_handler(dev);
2064 }
2065 
2066 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067 				const u32 hpd[HPD_NUM_PINS])
2068 {
2069 	struct drm_i915_private *dev_priv = to_i915(dev);
2070 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071 
2072 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074 
2075 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 			   dig_hotplug_reg, hpd,
2077 			   ilk_port_hotplug_long_detect);
2078 
2079 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080 }
2081 
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084 	struct drm_i915_private *dev_priv = dev->dev_private;
2085 	enum pipe pipe;
2086 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087 
2088 	if (hotplug_trigger)
2089 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090 
2091 	if (de_iir & DE_AUX_CHANNEL_A)
2092 		dp_aux_irq_handler(dev);
2093 
2094 	if (de_iir & DE_GSE)
2095 		intel_opregion_asle_intr(dev);
2096 
2097 	if (de_iir & DE_POISON)
2098 		DRM_ERROR("Poison interrupt\n");
2099 
2100 	for_each_pipe(dev_priv, pipe) {
2101 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102 		    intel_pipe_handle_vblank(dev, pipe))
2103 			intel_check_page_flip(dev, pipe);
2104 
2105 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107 
2108 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109 			i9xx_pipe_crc_irq_handler(dev, pipe);
2110 
2111 		/* plane/pipes map 1:1 on ilk+ */
2112 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113 			intel_prepare_page_flip(dev, pipe);
2114 			intel_finish_page_flip_plane(dev, pipe);
2115 		}
2116 	}
2117 
2118 	/* check event from PCH */
2119 	if (de_iir & DE_PCH_EVENT) {
2120 		u32 pch_iir = I915_READ(SDEIIR);
2121 
2122 		if (HAS_PCH_CPT(dev))
2123 			cpt_irq_handler(dev, pch_iir);
2124 		else
2125 			ibx_irq_handler(dev, pch_iir);
2126 
2127 		/* should clear PCH hotplug event before clear CPU irq */
2128 		I915_WRITE(SDEIIR, pch_iir);
2129 	}
2130 
2131 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132 		ironlake_rps_change_irq_handler(dev);
2133 }
2134 
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137 	struct drm_i915_private *dev_priv = dev->dev_private;
2138 	enum pipe pipe;
2139 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140 
2141 	if (hotplug_trigger)
2142 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143 
2144 	if (de_iir & DE_ERR_INT_IVB)
2145 		ivb_err_int_handler(dev);
2146 
2147 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148 		dp_aux_irq_handler(dev);
2149 
2150 	if (de_iir & DE_GSE_IVB)
2151 		intel_opregion_asle_intr(dev);
2152 
2153 	for_each_pipe(dev_priv, pipe) {
2154 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155 		    intel_pipe_handle_vblank(dev, pipe))
2156 			intel_check_page_flip(dev, pipe);
2157 
2158 		/* plane/pipes map 1:1 on ilk+ */
2159 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160 			intel_prepare_page_flip(dev, pipe);
2161 			intel_finish_page_flip_plane(dev, pipe);
2162 		}
2163 	}
2164 
2165 	/* check event from PCH */
2166 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167 		u32 pch_iir = I915_READ(SDEIIR);
2168 
2169 		cpt_irq_handler(dev, pch_iir);
2170 
2171 		/* clear PCH hotplug event before clear CPU irq */
2172 		I915_WRITE(SDEIIR, pch_iir);
2173 	}
2174 }
2175 
2176 /*
2177  * To handle irqs with the minimum potential races with fresh interrupts, we:
2178  * 1 - Disable Master Interrupt Control.
2179  * 2 - Find the source(s) of the interrupt.
2180  * 3 - Clear the Interrupt Identity bits (IIR).
2181  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182  * 5 - Re-enable Master Interrupt Control.
2183  */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186 	struct drm_device *dev = arg;
2187 	struct drm_i915_private *dev_priv = dev->dev_private;
2188 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189 	irqreturn_t ret = IRQ_NONE;
2190 
2191 	if (!intel_irqs_enabled(dev_priv))
2192 		return IRQ_NONE;
2193 
2194 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195 	disable_rpm_wakeref_asserts(dev_priv);
2196 
2197 	/* disable master interrupt before clearing iir  */
2198 	de_ier = I915_READ(DEIER);
2199 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200 	POSTING_READ(DEIER);
2201 
2202 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2203 	 * interrupts will will be stored on its back queue, and then we'll be
2204 	 * able to process them after we restore SDEIER (as soon as we restore
2205 	 * it, we'll get an interrupt if SDEIIR still has something to process
2206 	 * due to its back queue). */
2207 	if (!HAS_PCH_NOP(dev)) {
2208 		sde_ier = I915_READ(SDEIER);
2209 		I915_WRITE(SDEIER, 0);
2210 		POSTING_READ(SDEIER);
2211 	}
2212 
2213 	/* Find, clear, then process each source of interrupt */
2214 
2215 	gt_iir = I915_READ(GTIIR);
2216 	if (gt_iir) {
2217 		I915_WRITE(GTIIR, gt_iir);
2218 		ret = IRQ_HANDLED;
2219 		if (INTEL_INFO(dev)->gen >= 6)
2220 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221 		else
2222 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223 	}
2224 
2225 	de_iir = I915_READ(DEIIR);
2226 	if (de_iir) {
2227 		I915_WRITE(DEIIR, de_iir);
2228 		ret = IRQ_HANDLED;
2229 		if (INTEL_INFO(dev)->gen >= 7)
2230 			ivb_display_irq_handler(dev, de_iir);
2231 		else
2232 			ilk_display_irq_handler(dev, de_iir);
2233 	}
2234 
2235 	if (INTEL_INFO(dev)->gen >= 6) {
2236 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2237 		if (pm_iir) {
2238 			I915_WRITE(GEN6_PMIIR, pm_iir);
2239 			ret = IRQ_HANDLED;
2240 			gen6_rps_irq_handler(dev_priv, pm_iir);
2241 		}
2242 	}
2243 
2244 	I915_WRITE(DEIER, de_ier);
2245 	POSTING_READ(DEIER);
2246 	if (!HAS_PCH_NOP(dev)) {
2247 		I915_WRITE(SDEIER, sde_ier);
2248 		POSTING_READ(SDEIER);
2249 	}
2250 
2251 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252 	enable_rpm_wakeref_asserts(dev_priv);
2253 
2254 	return ret;
2255 }
2256 
2257 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258 				const u32 hpd[HPD_NUM_PINS])
2259 {
2260 	struct drm_i915_private *dev_priv = to_i915(dev);
2261 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262 
2263 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265 
2266 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267 			   dig_hotplug_reg, hpd,
2268 			   bxt_port_hotplug_long_detect);
2269 
2270 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271 }
2272 
2273 static irqreturn_t
2274 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275 {
2276 	struct drm_device *dev = dev_priv->dev;
2277 	irqreturn_t ret = IRQ_NONE;
2278 	u32 iir;
2279 	enum pipe pipe;
2280 
2281 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2282 		iir = I915_READ(GEN8_DE_MISC_IIR);
2283 		if (iir) {
2284 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285 			ret = IRQ_HANDLED;
2286 			if (iir & GEN8_DE_MISC_GSE)
2287 				intel_opregion_asle_intr(dev);
2288 			else
2289 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2290 		}
2291 		else
2292 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293 	}
2294 
2295 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296 		iir = I915_READ(GEN8_DE_PORT_IIR);
2297 		if (iir) {
2298 			u32 tmp_mask;
2299 			bool found = false;
2300 
2301 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302 			ret = IRQ_HANDLED;
2303 
2304 			tmp_mask = GEN8_AUX_CHANNEL_A;
2305 			if (INTEL_INFO(dev_priv)->gen >= 9)
2306 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2307 					    GEN9_AUX_CHANNEL_C |
2308 					    GEN9_AUX_CHANNEL_D;
2309 
2310 			if (iir & tmp_mask) {
2311 				dp_aux_irq_handler(dev);
2312 				found = true;
2313 			}
2314 
2315 			if (IS_BROXTON(dev_priv)) {
2316 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317 				if (tmp_mask) {
2318 					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319 					found = true;
2320 				}
2321 			} else if (IS_BROADWELL(dev_priv)) {
2322 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323 				if (tmp_mask) {
2324 					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325 					found = true;
2326 				}
2327 			}
2328 
2329 			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330 				gmbus_irq_handler(dev);
2331 				found = true;
2332 			}
2333 
2334 			if (!found)
2335 				DRM_ERROR("Unexpected DE Port interrupt\n");
2336 		}
2337 		else
2338 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339 	}
2340 
2341 	for_each_pipe(dev_priv, pipe) {
2342 		u32 flip_done, fault_errors;
2343 
2344 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345 			continue;
2346 
2347 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348 		if (!iir) {
2349 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350 			continue;
2351 		}
2352 
2353 		ret = IRQ_HANDLED;
2354 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355 
2356 		if (iir & GEN8_PIPE_VBLANK &&
2357 		    intel_pipe_handle_vblank(dev, pipe))
2358 			intel_check_page_flip(dev, pipe);
2359 
2360 		flip_done = iir;
2361 		if (INTEL_INFO(dev_priv)->gen >= 9)
2362 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363 		else
2364 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365 
2366 		if (flip_done) {
2367 			intel_prepare_page_flip(dev, pipe);
2368 			intel_finish_page_flip_plane(dev, pipe);
2369 		}
2370 
2371 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372 			hsw_pipe_crc_irq_handler(dev, pipe);
2373 
2374 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376 
2377 		fault_errors = iir;
2378 		if (INTEL_INFO(dev_priv)->gen >= 9)
2379 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380 		else
2381 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382 
2383 		if (fault_errors)
2384 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385 				  pipe_name(pipe),
2386 				  fault_errors);
2387 	}
2388 
2389 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390 	    master_ctl & GEN8_DE_PCH_IRQ) {
2391 		/*
2392 		 * FIXME(BDW): Assume for now that the new interrupt handling
2393 		 * scheme also closed the SDE interrupt handling race we've seen
2394 		 * on older pch-split platforms. But this needs testing.
2395 		 */
2396 		iir = I915_READ(SDEIIR);
2397 		if (iir) {
2398 			I915_WRITE(SDEIIR, iir);
2399 			ret = IRQ_HANDLED;
2400 
2401 			if (HAS_PCH_SPT(dev_priv))
2402 				spt_irq_handler(dev, iir);
2403 			else
2404 				cpt_irq_handler(dev, iir);
2405 		} else {
2406 			/*
2407 			 * Like on previous PCH there seems to be something
2408 			 * fishy going on with forwarding PCH interrupts.
2409 			 */
2410 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411 		}
2412 	}
2413 
2414 	return ret;
2415 }
2416 
2417 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418 {
2419 	struct drm_device *dev = arg;
2420 	struct drm_i915_private *dev_priv = dev->dev_private;
2421 	u32 master_ctl;
2422 	irqreturn_t ret;
2423 
2424 	if (!intel_irqs_enabled(dev_priv))
2425 		return IRQ_NONE;
2426 
2427 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429 	if (!master_ctl)
2430 		return IRQ_NONE;
2431 
2432 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433 
2434 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435 	disable_rpm_wakeref_asserts(dev_priv);
2436 
2437 	/* Find, clear, then process each source of interrupt */
2438 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440 
2441 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2443 
2444 	enable_rpm_wakeref_asserts(dev_priv);
2445 
2446 	return ret;
2447 }
2448 
2449 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450 			       bool reset_completed)
2451 {
2452 	struct intel_engine_cs *engine;
2453 
2454 	/*
2455 	 * Notify all waiters for GPU completion events that reset state has
2456 	 * been changed, and that they need to restart their wait after
2457 	 * checking for potential errors (and bail out to drop locks if there is
2458 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2459 	 */
2460 
2461 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2462 	for_each_engine(engine, dev_priv)
2463 		wake_up_all(&engine->irq_queue);
2464 
2465 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2466 	wake_up_all(&dev_priv->pending_flip_queue);
2467 
2468 	/*
2469 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2470 	 * reset state is cleared.
2471 	 */
2472 	if (reset_completed)
2473 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2474 }
2475 
2476 /**
2477  * i915_reset_and_wakeup - do process context error handling work
2478  * @dev: drm device
2479  *
2480  * Fire an error uevent so userspace can see that a hang or error
2481  * was detected.
2482  */
2483 static void i915_reset_and_wakeup(struct drm_device *dev)
2484 {
2485 	struct drm_i915_private *dev_priv = to_i915(dev);
2486 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2487 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2488 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2489 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2490 	int ret;
2491 
2492 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2493 
2494 	/*
2495 	 * Note that there's only one work item which does gpu resets, so we
2496 	 * need not worry about concurrent gpu resets potentially incrementing
2497 	 * error->reset_counter twice. We only need to take care of another
2498 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2499 	 * quick check for that is good enough: schedule_work ensures the
2500 	 * correct ordering between hang detection and this work item, and since
2501 	 * the reset in-progress bit is only ever set by code outside of this
2502 	 * work we don't need to worry about any other races.
2503 	 */
2504 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2505 		DRM_DEBUG_DRIVER("resetting chip\n");
2506 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2507 				   reset_event);
2508 
2509 		/*
2510 		 * In most cases it's guaranteed that we get here with an RPM
2511 		 * reference held, for example because there is a pending GPU
2512 		 * request that won't finish until the reset is done. This
2513 		 * isn't the case at least when we get here by doing a
2514 		 * simulated reset via debugs, so get an RPM reference.
2515 		 */
2516 		intel_runtime_pm_get(dev_priv);
2517 
2518 		intel_prepare_reset(dev);
2519 
2520 		/*
2521 		 * All state reset _must_ be completed before we update the
2522 		 * reset counter, for otherwise waiters might miss the reset
2523 		 * pending state and not properly drop locks, resulting in
2524 		 * deadlocks with the reset work.
2525 		 */
2526 		ret = i915_reset(dev);
2527 
2528 		intel_finish_reset(dev);
2529 
2530 		intel_runtime_pm_put(dev_priv);
2531 
2532 		if (ret == 0) {
2533 			/*
2534 			 * After all the gem state is reset, increment the reset
2535 			 * counter and wake up everyone waiting for the reset to
2536 			 * complete.
2537 			 *
2538 			 * Since unlock operations are a one-sided barrier only,
2539 			 * we need to insert a barrier here to order any seqno
2540 			 * updates before
2541 			 * the counter increment.
2542 			 */
2543 			smp_mb__before_atomic();
2544 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2545 
2546 			kobject_uevent_env(&dev->primary->kdev->kobj,
2547 					   KOBJ_CHANGE, reset_done_event);
2548 		} else {
2549 			atomic_or(I915_WEDGED, &error->reset_counter);
2550 		}
2551 
2552 		/*
2553 		 * Note: The wake_up also serves as a memory barrier so that
2554 		 * waiters see the update value of the reset counter atomic_t.
2555 		 */
2556 		i915_error_wake_up(dev_priv, true);
2557 	}
2558 }
2559 
2560 static void i915_report_and_clear_eir(struct drm_device *dev)
2561 {
2562 	struct drm_i915_private *dev_priv = dev->dev_private;
2563 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2564 	u32 eir = I915_READ(EIR);
2565 	int pipe, i;
2566 
2567 	if (!eir)
2568 		return;
2569 
2570 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2571 
2572 	i915_get_extra_instdone(dev, instdone);
2573 
2574 	if (IS_G4X(dev)) {
2575 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2576 			u32 ipeir = I915_READ(IPEIR_I965);
2577 
2578 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2579 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2580 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2581 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2582 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2583 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2584 			I915_WRITE(IPEIR_I965, ipeir);
2585 			POSTING_READ(IPEIR_I965);
2586 		}
2587 		if (eir & GM45_ERROR_PAGE_TABLE) {
2588 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2589 			pr_err("page table error\n");
2590 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2591 			I915_WRITE(PGTBL_ER, pgtbl_err);
2592 			POSTING_READ(PGTBL_ER);
2593 		}
2594 	}
2595 
2596 	if (!IS_GEN2(dev)) {
2597 		if (eir & I915_ERROR_PAGE_TABLE) {
2598 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2599 			pr_err("page table error\n");
2600 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2601 			I915_WRITE(PGTBL_ER, pgtbl_err);
2602 			POSTING_READ(PGTBL_ER);
2603 		}
2604 	}
2605 
2606 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2607 		pr_err("memory refresh error:\n");
2608 		for_each_pipe(dev_priv, pipe)
2609 			pr_err("pipe %c stat: 0x%08x\n",
2610 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2611 		/* pipestat has already been acked */
2612 	}
2613 	if (eir & I915_ERROR_INSTRUCTION) {
2614 		pr_err("instruction error\n");
2615 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2616 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2617 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2618 		if (INTEL_INFO(dev)->gen < 4) {
2619 			u32 ipeir = I915_READ(IPEIR);
2620 
2621 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2622 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2623 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2624 			I915_WRITE(IPEIR, ipeir);
2625 			POSTING_READ(IPEIR);
2626 		} else {
2627 			u32 ipeir = I915_READ(IPEIR_I965);
2628 
2629 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2630 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2631 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2632 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2633 			I915_WRITE(IPEIR_I965, ipeir);
2634 			POSTING_READ(IPEIR_I965);
2635 		}
2636 	}
2637 
2638 	I915_WRITE(EIR, eir);
2639 	POSTING_READ(EIR);
2640 	eir = I915_READ(EIR);
2641 	if (eir) {
2642 		/*
2643 		 * some errors might have become stuck,
2644 		 * mask them.
2645 		 */
2646 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2647 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2648 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2649 	}
2650 }
2651 
2652 /**
2653  * i915_handle_error - handle a gpu error
2654  * @dev: drm device
2655  * @engine_mask: mask representing engines that are hung
2656  * Do some basic checking of register state at error time and
2657  * dump it to the syslog.  Also call i915_capture_error_state() to make
2658  * sure we get a record and make it available in debugfs.  Fire a uevent
2659  * so userspace knows something bad happened (should trigger collection
2660  * of a ring dump etc.).
2661  */
2662 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2663 		       const char *fmt, ...)
2664 {
2665 	struct drm_i915_private *dev_priv = dev->dev_private;
2666 	va_list args;
2667 	char error_msg[80];
2668 
2669 	va_start(args, fmt);
2670 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2671 	va_end(args);
2672 
2673 	i915_capture_error_state(dev, engine_mask, error_msg);
2674 	i915_report_and_clear_eir(dev);
2675 
2676 	if (engine_mask) {
2677 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2678 				&dev_priv->gpu_error.reset_counter);
2679 
2680 		/*
2681 		 * Wakeup waiting processes so that the reset function
2682 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2683 		 * various locks. By bumping the reset counter first, the woken
2684 		 * processes will see a reset in progress and back off,
2685 		 * releasing their locks and then wait for the reset completion.
2686 		 * We must do this for _all_ gpu waiters that might hold locks
2687 		 * that the reset work needs to acquire.
2688 		 *
2689 		 * Note: The wake_up serves as the required memory barrier to
2690 		 * ensure that the waiters see the updated value of the reset
2691 		 * counter atomic_t.
2692 		 */
2693 		i915_error_wake_up(dev_priv, false);
2694 	}
2695 
2696 	i915_reset_and_wakeup(dev);
2697 }
2698 
2699 /* Called from drm generic code, passed 'crtc' which
2700  * we use as a pipe index
2701  */
2702 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704 	struct drm_i915_private *dev_priv = dev->dev_private;
2705 	unsigned long irqflags;
2706 
2707 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708 	if (INTEL_INFO(dev)->gen >= 4)
2709 		i915_enable_pipestat(dev_priv, pipe,
2710 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2711 	else
2712 		i915_enable_pipestat(dev_priv, pipe,
2713 				     PIPE_VBLANK_INTERRUPT_STATUS);
2714 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715 
2716 	return 0;
2717 }
2718 
2719 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2720 {
2721 	struct drm_i915_private *dev_priv = dev->dev_private;
2722 	unsigned long irqflags;
2723 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2724 						     DE_PIPE_VBLANK(pipe);
2725 
2726 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727 	ilk_enable_display_irq(dev_priv, bit);
2728 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729 
2730 	return 0;
2731 }
2732 
2733 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735 	struct drm_i915_private *dev_priv = dev->dev_private;
2736 	unsigned long irqflags;
2737 
2738 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739 	i915_enable_pipestat(dev_priv, pipe,
2740 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2741 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742 
2743 	return 0;
2744 }
2745 
2746 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2747 {
2748 	struct drm_i915_private *dev_priv = dev->dev_private;
2749 	unsigned long irqflags;
2750 
2751 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2753 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 
2755 	return 0;
2756 }
2757 
2758 /* Called from drm generic code, passed 'crtc' which
2759  * we use as a pipe index
2760  */
2761 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763 	struct drm_i915_private *dev_priv = dev->dev_private;
2764 	unsigned long irqflags;
2765 
2766 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767 	i915_disable_pipestat(dev_priv, pipe,
2768 			      PIPE_VBLANK_INTERRUPT_STATUS |
2769 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2770 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771 }
2772 
2773 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775 	struct drm_i915_private *dev_priv = dev->dev_private;
2776 	unsigned long irqflags;
2777 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2778 						     DE_PIPE_VBLANK(pipe);
2779 
2780 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2781 	ilk_disable_display_irq(dev_priv, bit);
2782 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2783 }
2784 
2785 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787 	struct drm_i915_private *dev_priv = dev->dev_private;
2788 	unsigned long irqflags;
2789 
2790 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791 	i915_disable_pipestat(dev_priv, pipe,
2792 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2793 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2794 }
2795 
2796 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2797 {
2798 	struct drm_i915_private *dev_priv = dev->dev_private;
2799 	unsigned long irqflags;
2800 
2801 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2803 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2804 }
2805 
2806 static bool
2807 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2808 {
2809 	return i915_seqno_passed(seqno,
2810 				 READ_ONCE(engine->last_submitted_seqno));
2811 }
2812 
2813 static bool
2814 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2815 {
2816 	if (INTEL_INFO(dev)->gen >= 8) {
2817 		return (ipehr >> 23) == 0x1c;
2818 	} else {
2819 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2820 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2821 				 MI_SEMAPHORE_REGISTER);
2822 	}
2823 }
2824 
2825 static struct intel_engine_cs *
2826 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2827 				 u64 offset)
2828 {
2829 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2830 	struct intel_engine_cs *signaller;
2831 
2832 	if (INTEL_INFO(dev_priv)->gen >= 8) {
2833 		for_each_engine(signaller, dev_priv) {
2834 			if (engine == signaller)
2835 				continue;
2836 
2837 			if (offset == signaller->semaphore.signal_ggtt[engine->id])
2838 				return signaller;
2839 		}
2840 	} else {
2841 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2842 
2843 		for_each_engine(signaller, dev_priv) {
2844 			if(engine == signaller)
2845 				continue;
2846 
2847 			if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2848 				return signaller;
2849 		}
2850 	}
2851 
2852 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2853 		  engine->id, ipehr, offset);
2854 
2855 	return NULL;
2856 }
2857 
2858 static struct intel_engine_cs *
2859 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2860 {
2861 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2862 	u32 cmd, ipehr, head;
2863 	u64 offset = 0;
2864 	int i, backwards;
2865 
2866 	/*
2867 	 * This function does not support execlist mode - any attempt to
2868 	 * proceed further into this function will result in a kernel panic
2869 	 * when dereferencing ring->buffer, which is not set up in execlist
2870 	 * mode.
2871 	 *
2872 	 * The correct way of doing it would be to derive the currently
2873 	 * executing ring buffer from the current context, which is derived
2874 	 * from the currently running request. Unfortunately, to get the
2875 	 * current request we would have to grab the struct_mutex before doing
2876 	 * anything else, which would be ill-advised since some other thread
2877 	 * might have grabbed it already and managed to hang itself, causing
2878 	 * the hang checker to deadlock.
2879 	 *
2880 	 * Therefore, this function does not support execlist mode in its
2881 	 * current form. Just return NULL and move on.
2882 	 */
2883 	if (engine->buffer == NULL)
2884 		return NULL;
2885 
2886 	ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2887 	if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2888 		return NULL;
2889 
2890 	/*
2891 	 * HEAD is likely pointing to the dword after the actual command,
2892 	 * so scan backwards until we find the MBOX. But limit it to just 3
2893 	 * or 4 dwords depending on the semaphore wait command size.
2894 	 * Note that we don't care about ACTHD here since that might
2895 	 * point at at batch, and semaphores are always emitted into the
2896 	 * ringbuffer itself.
2897 	 */
2898 	head = I915_READ_HEAD(engine) & HEAD_ADDR;
2899 	backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2900 
2901 	for (i = backwards; i; --i) {
2902 		/*
2903 		 * Be paranoid and presume the hw has gone off into the wild -
2904 		 * our ring is smaller than what the hardware (and hence
2905 		 * HEAD_ADDR) allows. Also handles wrap-around.
2906 		 */
2907 		head &= engine->buffer->size - 1;
2908 
2909 		/* This here seems to blow up */
2910 		cmd = ioread32(engine->buffer->virtual_start + head);
2911 		if (cmd == ipehr)
2912 			break;
2913 
2914 		head -= 4;
2915 	}
2916 
2917 	if (!i)
2918 		return NULL;
2919 
2920 	*seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2921 	if (INTEL_INFO(engine->dev)->gen >= 8) {
2922 		offset = ioread32(engine->buffer->virtual_start + head + 12);
2923 		offset <<= 32;
2924 		offset = ioread32(engine->buffer->virtual_start + head + 8);
2925 	}
2926 	return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2927 }
2928 
2929 static int semaphore_passed(struct intel_engine_cs *engine)
2930 {
2931 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2932 	struct intel_engine_cs *signaller;
2933 	u32 seqno;
2934 
2935 	engine->hangcheck.deadlock++;
2936 
2937 	signaller = semaphore_waits_for(engine, &seqno);
2938 	if (signaller == NULL)
2939 		return -1;
2940 
2941 	/* Prevent pathological recursion due to driver bugs */
2942 	if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2943 		return -1;
2944 
2945 	if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2946 		return 1;
2947 
2948 	/* cursory check for an unkickable deadlock */
2949 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2950 	    semaphore_passed(signaller) < 0)
2951 		return -1;
2952 
2953 	return 0;
2954 }
2955 
2956 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2957 {
2958 	struct intel_engine_cs *engine;
2959 
2960 	for_each_engine(engine, dev_priv)
2961 		engine->hangcheck.deadlock = 0;
2962 }
2963 
2964 static bool subunits_stuck(struct intel_engine_cs *engine)
2965 {
2966 	u32 instdone[I915_NUM_INSTDONE_REG];
2967 	bool stuck;
2968 	int i;
2969 
2970 	if (engine->id != RCS)
2971 		return true;
2972 
2973 	i915_get_extra_instdone(engine->dev, instdone);
2974 
2975 	/* There might be unstable subunit states even when
2976 	 * actual head is not moving. Filter out the unstable ones by
2977 	 * accumulating the undone -> done transitions and only
2978 	 * consider those as progress.
2979 	 */
2980 	stuck = true;
2981 	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2982 		const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2983 
2984 		if (tmp != engine->hangcheck.instdone[i])
2985 			stuck = false;
2986 
2987 		engine->hangcheck.instdone[i] |= tmp;
2988 	}
2989 
2990 	return stuck;
2991 }
2992 
2993 static enum intel_ring_hangcheck_action
2994 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2995 {
2996 	if (acthd != engine->hangcheck.acthd) {
2997 
2998 		/* Clear subunit states on head movement */
2999 		memset(engine->hangcheck.instdone, 0,
3000 		       sizeof(engine->hangcheck.instdone));
3001 
3002 		return HANGCHECK_ACTIVE;
3003 	}
3004 
3005 	if (!subunits_stuck(engine))
3006 		return HANGCHECK_ACTIVE;
3007 
3008 	return HANGCHECK_HUNG;
3009 }
3010 
3011 static enum intel_ring_hangcheck_action
3012 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3013 {
3014 	struct drm_device *dev = engine->dev;
3015 	struct drm_i915_private *dev_priv = dev->dev_private;
3016 	enum intel_ring_hangcheck_action ha;
3017 	u32 tmp;
3018 
3019 	ha = head_stuck(engine, acthd);
3020 	if (ha != HANGCHECK_HUNG)
3021 		return ha;
3022 
3023 	if (IS_GEN2(dev))
3024 		return HANGCHECK_HUNG;
3025 
3026 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3027 	 * If so we can simply poke the RB_WAIT bit
3028 	 * and break the hang. This should work on
3029 	 * all but the second generation chipsets.
3030 	 */
3031 	tmp = I915_READ_CTL(engine);
3032 	if (tmp & RING_WAIT) {
3033 		i915_handle_error(dev, 0,
3034 				  "Kicking stuck wait on %s",
3035 				  engine->name);
3036 		I915_WRITE_CTL(engine, tmp);
3037 		return HANGCHECK_KICK;
3038 	}
3039 
3040 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3041 		switch (semaphore_passed(engine)) {
3042 		default:
3043 			return HANGCHECK_HUNG;
3044 		case 1:
3045 			i915_handle_error(dev, 0,
3046 					  "Kicking stuck semaphore on %s",
3047 					  engine->name);
3048 			I915_WRITE_CTL(engine, tmp);
3049 			return HANGCHECK_KICK;
3050 		case 0:
3051 			return HANGCHECK_WAIT;
3052 		}
3053 	}
3054 
3055 	return HANGCHECK_HUNG;
3056 }
3057 
3058 static unsigned kick_waiters(struct intel_engine_cs *engine)
3059 {
3060 	struct drm_i915_private *i915 = to_i915(engine->dev);
3061 	unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3062 
3063 	if (engine->hangcheck.user_interrupts == user_interrupts &&
3064 	    !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3065 		if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3066 			DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3067 				  engine->name);
3068 		else
3069 			DRM_INFO("Fake missed irq on %s\n",
3070 				 engine->name);
3071 		wake_up_all(&engine->irq_queue);
3072 	}
3073 
3074 	return user_interrupts;
3075 }
3076 /*
3077  * This is called when the chip hasn't reported back with completed
3078  * batchbuffers in a long time. We keep track per ring seqno progress and
3079  * if there are no progress, hangcheck score for that ring is increased.
3080  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3081  * we kick the ring. If we see no progress on three subsequent calls
3082  * we assume chip is wedged and try to fix it by resetting the chip.
3083  */
3084 static void i915_hangcheck_elapsed(struct work_struct *work)
3085 {
3086 	struct drm_i915_private *dev_priv =
3087 		container_of(work, typeof(*dev_priv),
3088 			     gpu_error.hangcheck_work.work);
3089 	struct drm_device *dev = dev_priv->dev;
3090 	struct intel_engine_cs *engine;
3091 	enum intel_engine_id id;
3092 	int busy_count = 0, rings_hung = 0;
3093 	bool stuck[I915_NUM_ENGINES] = { 0 };
3094 #define BUSY 1
3095 #define KICK 5
3096 #define HUNG 20
3097 #define ACTIVE_DECAY 15
3098 
3099 	if (!i915.enable_hangcheck)
3100 		return;
3101 
3102 	/*
3103 	 * The hangcheck work is synced during runtime suspend, we don't
3104 	 * require a wakeref. TODO: instead of disabling the asserts make
3105 	 * sure that we hold a reference when this work is running.
3106 	 */
3107 	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3108 
3109 	/* As enabling the GPU requires fairly extensive mmio access,
3110 	 * periodically arm the mmio checker to see if we are triggering
3111 	 * any invalid access.
3112 	 */
3113 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3114 
3115 	for_each_engine_id(engine, dev_priv, id) {
3116 		u64 acthd;
3117 		u32 seqno;
3118 		unsigned user_interrupts;
3119 		bool busy = true;
3120 
3121 		semaphore_clear_deadlocks(dev_priv);
3122 
3123 		/* We don't strictly need an irq-barrier here, as we are not
3124 		 * serving an interrupt request, be paranoid in case the
3125 		 * barrier has side-effects (such as preventing a broken
3126 		 * cacheline snoop) and so be sure that we can see the seqno
3127 		 * advance. If the seqno should stick, due to a stale
3128 		 * cacheline, we would erroneously declare the GPU hung.
3129 		 */
3130 		if (engine->irq_seqno_barrier)
3131 			engine->irq_seqno_barrier(engine);
3132 
3133 		acthd = intel_ring_get_active_head(engine);
3134 		seqno = engine->get_seqno(engine);
3135 
3136 		/* Reset stuck interrupts between batch advances */
3137 		user_interrupts = 0;
3138 
3139 		if (engine->hangcheck.seqno == seqno) {
3140 			if (ring_idle(engine, seqno)) {
3141 				engine->hangcheck.action = HANGCHECK_IDLE;
3142 				if (waitqueue_active(&engine->irq_queue)) {
3143 					/* Safeguard against driver failure */
3144 					user_interrupts = kick_waiters(engine);
3145 					engine->hangcheck.score += BUSY;
3146 				} else
3147 					busy = false;
3148 			} else {
3149 				/* We always increment the hangcheck score
3150 				 * if the ring is busy and still processing
3151 				 * the same request, so that no single request
3152 				 * can run indefinitely (such as a chain of
3153 				 * batches). The only time we do not increment
3154 				 * the hangcheck score on this ring, if this
3155 				 * ring is in a legitimate wait for another
3156 				 * ring. In that case the waiting ring is a
3157 				 * victim and we want to be sure we catch the
3158 				 * right culprit. Then every time we do kick
3159 				 * the ring, add a small increment to the
3160 				 * score so that we can catch a batch that is
3161 				 * being repeatedly kicked and so responsible
3162 				 * for stalling the machine.
3163 				 */
3164 				engine->hangcheck.action = ring_stuck(engine,
3165 								      acthd);
3166 
3167 				switch (engine->hangcheck.action) {
3168 				case HANGCHECK_IDLE:
3169 				case HANGCHECK_WAIT:
3170 					break;
3171 				case HANGCHECK_ACTIVE:
3172 					engine->hangcheck.score += BUSY;
3173 					break;
3174 				case HANGCHECK_KICK:
3175 					engine->hangcheck.score += KICK;
3176 					break;
3177 				case HANGCHECK_HUNG:
3178 					engine->hangcheck.score += HUNG;
3179 					stuck[id] = true;
3180 					break;
3181 				}
3182 			}
3183 		} else {
3184 			engine->hangcheck.action = HANGCHECK_ACTIVE;
3185 
3186 			/* Gradually reduce the count so that we catch DoS
3187 			 * attempts across multiple batches.
3188 			 */
3189 			if (engine->hangcheck.score > 0)
3190 				engine->hangcheck.score -= ACTIVE_DECAY;
3191 			if (engine->hangcheck.score < 0)
3192 				engine->hangcheck.score = 0;
3193 
3194 			/* Clear head and subunit states on seqno movement */
3195 			acthd = 0;
3196 
3197 			memset(engine->hangcheck.instdone, 0,
3198 			       sizeof(engine->hangcheck.instdone));
3199 		}
3200 
3201 		engine->hangcheck.seqno = seqno;
3202 		engine->hangcheck.acthd = acthd;
3203 		engine->hangcheck.user_interrupts = user_interrupts;
3204 		busy_count += busy;
3205 	}
3206 
3207 	for_each_engine_id(engine, dev_priv, id) {
3208 		if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3209 			DRM_INFO("%s on %s\n",
3210 				 stuck[id] ? "stuck" : "no progress",
3211 				 engine->name);
3212 			rings_hung |= intel_engine_flag(engine);
3213 		}
3214 	}
3215 
3216 	if (rings_hung) {
3217 		i915_handle_error(dev, rings_hung, "Engine(s) hung");
3218 		goto out;
3219 	}
3220 
3221 	if (busy_count)
3222 		/* Reset timer case chip hangs without another request
3223 		 * being added */
3224 		i915_queue_hangcheck(dev);
3225 
3226 out:
3227 	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3228 }
3229 
3230 void i915_queue_hangcheck(struct drm_device *dev)
3231 {
3232 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3233 
3234 	if (!i915.enable_hangcheck)
3235 		return;
3236 
3237 	/* Don't continually defer the hangcheck so that it is always run at
3238 	 * least once after work has been scheduled on any ring. Otherwise,
3239 	 * we will ignore a hung ring if a second ring is kept busy.
3240 	 */
3241 
3242 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3243 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3244 }
3245 
3246 static void ibx_irq_reset(struct drm_device *dev)
3247 {
3248 	struct drm_i915_private *dev_priv = dev->dev_private;
3249 
3250 	if (HAS_PCH_NOP(dev))
3251 		return;
3252 
3253 	GEN5_IRQ_RESET(SDE);
3254 
3255 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3256 		I915_WRITE(SERR_INT, 0xffffffff);
3257 }
3258 
3259 /*
3260  * SDEIER is also touched by the interrupt handler to work around missed PCH
3261  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3262  * instead we unconditionally enable all PCH interrupt sources here, but then
3263  * only unmask them as needed with SDEIMR.
3264  *
3265  * This function needs to be called before interrupts are enabled.
3266  */
3267 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3268 {
3269 	struct drm_i915_private *dev_priv = dev->dev_private;
3270 
3271 	if (HAS_PCH_NOP(dev))
3272 		return;
3273 
3274 	WARN_ON(I915_READ(SDEIER) != 0);
3275 	I915_WRITE(SDEIER, 0xffffffff);
3276 	POSTING_READ(SDEIER);
3277 }
3278 
3279 static void gen5_gt_irq_reset(struct drm_device *dev)
3280 {
3281 	struct drm_i915_private *dev_priv = dev->dev_private;
3282 
3283 	GEN5_IRQ_RESET(GT);
3284 	if (INTEL_INFO(dev)->gen >= 6)
3285 		GEN5_IRQ_RESET(GEN6_PM);
3286 }
3287 
3288 /* drm_dma.h hooks
3289 */
3290 static void ironlake_irq_reset(struct drm_device *dev)
3291 {
3292 	struct drm_i915_private *dev_priv = dev->dev_private;
3293 
3294 	I915_WRITE(HWSTAM, 0xffffffff);
3295 
3296 	GEN5_IRQ_RESET(DE);
3297 	if (IS_GEN7(dev))
3298 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3299 
3300 	gen5_gt_irq_reset(dev);
3301 
3302 	ibx_irq_reset(dev);
3303 }
3304 
3305 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3306 {
3307 	enum pipe pipe;
3308 
3309 	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3310 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3311 
3312 	for_each_pipe(dev_priv, pipe)
3313 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3314 
3315 	GEN5_IRQ_RESET(VLV_);
3316 }
3317 
3318 static void valleyview_irq_preinstall(struct drm_device *dev)
3319 {
3320 	struct drm_i915_private *dev_priv = dev->dev_private;
3321 
3322 	/* VLV magic */
3323 	I915_WRITE(VLV_IMR, 0);
3324 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3325 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3326 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3327 
3328 	gen5_gt_irq_reset(dev);
3329 
3330 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3331 
3332 	vlv_display_irq_reset(dev_priv);
3333 }
3334 
3335 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3336 {
3337 	GEN8_IRQ_RESET_NDX(GT, 0);
3338 	GEN8_IRQ_RESET_NDX(GT, 1);
3339 	GEN8_IRQ_RESET_NDX(GT, 2);
3340 	GEN8_IRQ_RESET_NDX(GT, 3);
3341 }
3342 
3343 static void gen8_irq_reset(struct drm_device *dev)
3344 {
3345 	struct drm_i915_private *dev_priv = dev->dev_private;
3346 	int pipe;
3347 
3348 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3349 	POSTING_READ(GEN8_MASTER_IRQ);
3350 
3351 	gen8_gt_irq_reset(dev_priv);
3352 
3353 	for_each_pipe(dev_priv, pipe)
3354 		if (intel_display_power_is_enabled(dev_priv,
3355 						   POWER_DOMAIN_PIPE(pipe)))
3356 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3357 
3358 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3359 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3360 	GEN5_IRQ_RESET(GEN8_PCU_);
3361 
3362 	if (HAS_PCH_SPLIT(dev))
3363 		ibx_irq_reset(dev);
3364 }
3365 
3366 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3367 				     unsigned int pipe_mask)
3368 {
3369 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3370 	enum pipe pipe;
3371 
3372 	spin_lock_irq(&dev_priv->irq_lock);
3373 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3374 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3375 				  dev_priv->de_irq_mask[pipe],
3376 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3377 	spin_unlock_irq(&dev_priv->irq_lock);
3378 }
3379 
3380 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3381 				     unsigned int pipe_mask)
3382 {
3383 	enum pipe pipe;
3384 
3385 	spin_lock_irq(&dev_priv->irq_lock);
3386 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3387 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3388 	spin_unlock_irq(&dev_priv->irq_lock);
3389 
3390 	/* make sure we're done processing display irqs */
3391 	synchronize_irq(dev_priv->dev->irq);
3392 }
3393 
3394 static void cherryview_irq_preinstall(struct drm_device *dev)
3395 {
3396 	struct drm_i915_private *dev_priv = dev->dev_private;
3397 
3398 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3399 	POSTING_READ(GEN8_MASTER_IRQ);
3400 
3401 	gen8_gt_irq_reset(dev_priv);
3402 
3403 	GEN5_IRQ_RESET(GEN8_PCU_);
3404 
3405 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3406 
3407 	vlv_display_irq_reset(dev_priv);
3408 }
3409 
3410 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3411 				  const u32 hpd[HPD_NUM_PINS])
3412 {
3413 	struct drm_i915_private *dev_priv = to_i915(dev);
3414 	struct intel_encoder *encoder;
3415 	u32 enabled_irqs = 0;
3416 
3417 	for_each_intel_encoder(dev, encoder)
3418 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3419 			enabled_irqs |= hpd[encoder->hpd_pin];
3420 
3421 	return enabled_irqs;
3422 }
3423 
3424 static void ibx_hpd_irq_setup(struct drm_device *dev)
3425 {
3426 	struct drm_i915_private *dev_priv = dev->dev_private;
3427 	u32 hotplug_irqs, hotplug, enabled_irqs;
3428 
3429 	if (HAS_PCH_IBX(dev)) {
3430 		hotplug_irqs = SDE_HOTPLUG_MASK;
3431 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3432 	} else {
3433 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3434 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3435 	}
3436 
3437 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3438 
3439 	/*
3440 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3441 	 * duration to 2ms (which is the minimum in the Display Port spec).
3442 	 * The pulse duration bits are reserved on LPT+.
3443 	 */
3444 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3445 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3446 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3447 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3448 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3449 	/*
3450 	 * When CPU and PCH are on the same package, port A
3451 	 * HPD must be enabled in both north and south.
3452 	 */
3453 	if (HAS_PCH_LPT_LP(dev))
3454 		hotplug |= PORTA_HOTPLUG_ENABLE;
3455 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3456 }
3457 
3458 static void spt_hpd_irq_setup(struct drm_device *dev)
3459 {
3460 	struct drm_i915_private *dev_priv = dev->dev_private;
3461 	u32 hotplug_irqs, hotplug, enabled_irqs;
3462 
3463 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3464 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3465 
3466 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467 
3468 	/* Enable digital hotplug on the PCH */
3469 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3470 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3471 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3472 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3473 
3474 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3475 	hotplug |= PORTE_HOTPLUG_ENABLE;
3476 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3477 }
3478 
3479 static void ilk_hpd_irq_setup(struct drm_device *dev)
3480 {
3481 	struct drm_i915_private *dev_priv = dev->dev_private;
3482 	u32 hotplug_irqs, hotplug, enabled_irqs;
3483 
3484 	if (INTEL_INFO(dev)->gen >= 8) {
3485 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3486 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3487 
3488 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3489 	} else if (INTEL_INFO(dev)->gen >= 7) {
3490 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3491 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3492 
3493 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3494 	} else {
3495 		hotplug_irqs = DE_DP_A_HOTPLUG;
3496 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3497 
3498 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3499 	}
3500 
3501 	/*
3502 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3503 	 * duration to 2ms (which is the minimum in the Display Port spec)
3504 	 * The pulse duration bits are reserved on HSW+.
3505 	 */
3506 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3507 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3508 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3509 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3510 
3511 	ibx_hpd_irq_setup(dev);
3512 }
3513 
3514 static void bxt_hpd_irq_setup(struct drm_device *dev)
3515 {
3516 	struct drm_i915_private *dev_priv = dev->dev_private;
3517 	u32 hotplug_irqs, hotplug, enabled_irqs;
3518 
3519 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3520 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3521 
3522 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3523 
3524 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3525 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3526 		PORTA_HOTPLUG_ENABLE;
3527 
3528 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3529 		      hotplug, enabled_irqs);
3530 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3531 
3532 	/*
3533 	 * For BXT invert bit has to be set based on AOB design
3534 	 * for HPD detection logic, update it based on VBT fields.
3535 	 */
3536 
3537 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3538 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3539 		hotplug |= BXT_DDIA_HPD_INVERT;
3540 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3541 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3542 		hotplug |= BXT_DDIB_HPD_INVERT;
3543 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3544 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3545 		hotplug |= BXT_DDIC_HPD_INVERT;
3546 
3547 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3548 }
3549 
3550 static void ibx_irq_postinstall(struct drm_device *dev)
3551 {
3552 	struct drm_i915_private *dev_priv = dev->dev_private;
3553 	u32 mask;
3554 
3555 	if (HAS_PCH_NOP(dev))
3556 		return;
3557 
3558 	if (HAS_PCH_IBX(dev))
3559 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3560 	else
3561 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3562 
3563 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3564 	I915_WRITE(SDEIMR, ~mask);
3565 }
3566 
3567 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3568 {
3569 	struct drm_i915_private *dev_priv = dev->dev_private;
3570 	u32 pm_irqs, gt_irqs;
3571 
3572 	pm_irqs = gt_irqs = 0;
3573 
3574 	dev_priv->gt_irq_mask = ~0;
3575 	if (HAS_L3_DPF(dev)) {
3576 		/* L3 parity interrupt is always unmasked. */
3577 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3578 		gt_irqs |= GT_PARITY_ERROR(dev);
3579 	}
3580 
3581 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3582 	if (IS_GEN5(dev)) {
3583 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3584 			   ILK_BSD_USER_INTERRUPT;
3585 	} else {
3586 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3587 	}
3588 
3589 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3590 
3591 	if (INTEL_INFO(dev)->gen >= 6) {
3592 		/*
3593 		 * RPS interrupts will get enabled/disabled on demand when RPS
3594 		 * itself is enabled/disabled.
3595 		 */
3596 		if (HAS_VEBOX(dev))
3597 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3598 
3599 		dev_priv->pm_irq_mask = 0xffffffff;
3600 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3601 	}
3602 }
3603 
3604 static int ironlake_irq_postinstall(struct drm_device *dev)
3605 {
3606 	struct drm_i915_private *dev_priv = dev->dev_private;
3607 	u32 display_mask, extra_mask;
3608 
3609 	if (INTEL_INFO(dev)->gen >= 7) {
3610 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3611 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3612 				DE_PLANEB_FLIP_DONE_IVB |
3613 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3614 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3615 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3616 			      DE_DP_A_HOTPLUG_IVB);
3617 	} else {
3618 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3619 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3620 				DE_AUX_CHANNEL_A |
3621 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3622 				DE_POISON);
3623 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3624 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3625 			      DE_DP_A_HOTPLUG);
3626 	}
3627 
3628 	dev_priv->irq_mask = ~display_mask;
3629 
3630 	I915_WRITE(HWSTAM, 0xeffe);
3631 
3632 	ibx_irq_pre_postinstall(dev);
3633 
3634 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3635 
3636 	gen5_gt_irq_postinstall(dev);
3637 
3638 	ibx_irq_postinstall(dev);
3639 
3640 	if (IS_IRONLAKE_M(dev)) {
3641 		/* Enable PCU event interrupts
3642 		 *
3643 		 * spinlocking not required here for correctness since interrupt
3644 		 * setup is guaranteed to run in single-threaded context. But we
3645 		 * need it to make the assert_spin_locked happy. */
3646 		spin_lock_irq(&dev_priv->irq_lock);
3647 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3648 		spin_unlock_irq(&dev_priv->irq_lock);
3649 	}
3650 
3651 	return 0;
3652 }
3653 
3654 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3655 {
3656 	u32 pipestat_mask;
3657 	u32 iir_mask;
3658 	enum pipe pipe;
3659 
3660 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3661 			PIPE_FIFO_UNDERRUN_STATUS;
3662 
3663 	for_each_pipe(dev_priv, pipe)
3664 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3665 	POSTING_READ(PIPESTAT(PIPE_A));
3666 
3667 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3668 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3669 
3670 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3671 	for_each_pipe(dev_priv, pipe)
3672 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3673 
3674 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3675 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3677 	if (IS_CHERRYVIEW(dev_priv))
3678 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3679 	dev_priv->irq_mask &= ~iir_mask;
3680 
3681 	I915_WRITE(VLV_IIR, iir_mask);
3682 	I915_WRITE(VLV_IIR, iir_mask);
3683 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3684 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3685 	POSTING_READ(VLV_IMR);
3686 }
3687 
3688 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3689 {
3690 	u32 pipestat_mask;
3691 	u32 iir_mask;
3692 	enum pipe pipe;
3693 
3694 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3695 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3697 	if (IS_CHERRYVIEW(dev_priv))
3698 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3699 
3700 	dev_priv->irq_mask |= iir_mask;
3701 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3702 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3703 	I915_WRITE(VLV_IIR, iir_mask);
3704 	I915_WRITE(VLV_IIR, iir_mask);
3705 	POSTING_READ(VLV_IIR);
3706 
3707 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3708 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3709 
3710 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3711 	for_each_pipe(dev_priv, pipe)
3712 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3713 
3714 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3715 			PIPE_FIFO_UNDERRUN_STATUS;
3716 
3717 	for_each_pipe(dev_priv, pipe)
3718 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3719 	POSTING_READ(PIPESTAT(PIPE_A));
3720 }
3721 
3722 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3723 {
3724 	assert_spin_locked(&dev_priv->irq_lock);
3725 
3726 	if (dev_priv->display_irqs_enabled)
3727 		return;
3728 
3729 	dev_priv->display_irqs_enabled = true;
3730 
3731 	if (intel_irqs_enabled(dev_priv))
3732 		valleyview_display_irqs_install(dev_priv);
3733 }
3734 
3735 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3736 {
3737 	assert_spin_locked(&dev_priv->irq_lock);
3738 
3739 	if (!dev_priv->display_irqs_enabled)
3740 		return;
3741 
3742 	dev_priv->display_irqs_enabled = false;
3743 
3744 	if (intel_irqs_enabled(dev_priv))
3745 		valleyview_display_irqs_uninstall(dev_priv);
3746 }
3747 
3748 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3749 {
3750 	dev_priv->irq_mask = ~0;
3751 
3752 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3753 	POSTING_READ(PORT_HOTPLUG_EN);
3754 
3755 	I915_WRITE(VLV_IIR, 0xffffffff);
3756 	I915_WRITE(VLV_IIR, 0xffffffff);
3757 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3758 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3759 	POSTING_READ(VLV_IMR);
3760 
3761 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3762 	 * just to make the assert_spin_locked check happy. */
3763 	spin_lock_irq(&dev_priv->irq_lock);
3764 	if (dev_priv->display_irqs_enabled)
3765 		valleyview_display_irqs_install(dev_priv);
3766 	spin_unlock_irq(&dev_priv->irq_lock);
3767 }
3768 
3769 static int valleyview_irq_postinstall(struct drm_device *dev)
3770 {
3771 	struct drm_i915_private *dev_priv = dev->dev_private;
3772 
3773 	vlv_display_irq_postinstall(dev_priv);
3774 
3775 	gen5_gt_irq_postinstall(dev);
3776 
3777 	/* ack & enable invalid PTE error interrupts */
3778 #if 0 /* FIXME: add support to irq handler for checking these bits */
3779 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3780 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3781 #endif
3782 
3783 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3784 
3785 	return 0;
3786 }
3787 
3788 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3789 {
3790 	/* These are interrupts we'll toggle with the ring mask register */
3791 	uint32_t gt_interrupts[] = {
3792 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3793 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3794 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3795 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3796 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3797 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3798 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3799 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3800 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3801 		0,
3802 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3803 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3804 		};
3805 
3806 	dev_priv->pm_irq_mask = 0xffffffff;
3807 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3808 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3809 	/*
3810 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3811 	 * is enabled/disabled.
3812 	 */
3813 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3814 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3815 }
3816 
3817 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3818 {
3819 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3820 	uint32_t de_pipe_enables;
3821 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3822 	u32 de_port_enables;
3823 	enum pipe pipe;
3824 
3825 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3826 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3827 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3828 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3829 				  GEN9_AUX_CHANNEL_D;
3830 		if (IS_BROXTON(dev_priv))
3831 			de_port_masked |= BXT_DE_PORT_GMBUS;
3832 	} else {
3833 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3834 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3835 	}
3836 
3837 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3838 					   GEN8_PIPE_FIFO_UNDERRUN;
3839 
3840 	de_port_enables = de_port_masked;
3841 	if (IS_BROXTON(dev_priv))
3842 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3843 	else if (IS_BROADWELL(dev_priv))
3844 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3845 
3846 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3847 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3848 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3849 
3850 	for_each_pipe(dev_priv, pipe)
3851 		if (intel_display_power_is_enabled(dev_priv,
3852 				POWER_DOMAIN_PIPE(pipe)))
3853 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3854 					  dev_priv->de_irq_mask[pipe],
3855 					  de_pipe_enables);
3856 
3857 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3858 }
3859 
3860 static int gen8_irq_postinstall(struct drm_device *dev)
3861 {
3862 	struct drm_i915_private *dev_priv = dev->dev_private;
3863 
3864 	if (HAS_PCH_SPLIT(dev))
3865 		ibx_irq_pre_postinstall(dev);
3866 
3867 	gen8_gt_irq_postinstall(dev_priv);
3868 	gen8_de_irq_postinstall(dev_priv);
3869 
3870 	if (HAS_PCH_SPLIT(dev))
3871 		ibx_irq_postinstall(dev);
3872 
3873 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3874 	POSTING_READ(GEN8_MASTER_IRQ);
3875 
3876 	return 0;
3877 }
3878 
3879 static int cherryview_irq_postinstall(struct drm_device *dev)
3880 {
3881 	struct drm_i915_private *dev_priv = dev->dev_private;
3882 
3883 	vlv_display_irq_postinstall(dev_priv);
3884 
3885 	gen8_gt_irq_postinstall(dev_priv);
3886 
3887 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3888 	POSTING_READ(GEN8_MASTER_IRQ);
3889 
3890 	return 0;
3891 }
3892 
3893 static void gen8_irq_uninstall(struct drm_device *dev)
3894 {
3895 	struct drm_i915_private *dev_priv = dev->dev_private;
3896 
3897 	if (!dev_priv)
3898 		return;
3899 
3900 	gen8_irq_reset(dev);
3901 }
3902 
3903 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3904 {
3905 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3906 	 * just to make the assert_spin_locked check happy. */
3907 	spin_lock_irq(&dev_priv->irq_lock);
3908 	if (dev_priv->display_irqs_enabled)
3909 		valleyview_display_irqs_uninstall(dev_priv);
3910 	spin_unlock_irq(&dev_priv->irq_lock);
3911 
3912 	vlv_display_irq_reset(dev_priv);
3913 
3914 	dev_priv->irq_mask = ~0;
3915 }
3916 
3917 static void valleyview_irq_uninstall(struct drm_device *dev)
3918 {
3919 	struct drm_i915_private *dev_priv = dev->dev_private;
3920 
3921 	if (!dev_priv)
3922 		return;
3923 
3924 	I915_WRITE(VLV_MASTER_IER, 0);
3925 
3926 	gen5_gt_irq_reset(dev);
3927 
3928 	I915_WRITE(HWSTAM, 0xffffffff);
3929 
3930 	vlv_display_irq_uninstall(dev_priv);
3931 }
3932 
3933 static void cherryview_irq_uninstall(struct drm_device *dev)
3934 {
3935 	struct drm_i915_private *dev_priv = dev->dev_private;
3936 
3937 	if (!dev_priv)
3938 		return;
3939 
3940 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3941 	POSTING_READ(GEN8_MASTER_IRQ);
3942 
3943 	gen8_gt_irq_reset(dev_priv);
3944 
3945 	GEN5_IRQ_RESET(GEN8_PCU_);
3946 
3947 	vlv_display_irq_uninstall(dev_priv);
3948 }
3949 
3950 static void ironlake_irq_uninstall(struct drm_device *dev)
3951 {
3952 	struct drm_i915_private *dev_priv = dev->dev_private;
3953 
3954 	if (!dev_priv)
3955 		return;
3956 
3957 	ironlake_irq_reset(dev);
3958 }
3959 
3960 static void i8xx_irq_preinstall(struct drm_device * dev)
3961 {
3962 	struct drm_i915_private *dev_priv = dev->dev_private;
3963 	int pipe;
3964 
3965 	for_each_pipe(dev_priv, pipe)
3966 		I915_WRITE(PIPESTAT(pipe), 0);
3967 	I915_WRITE16(IMR, 0xffff);
3968 	I915_WRITE16(IER, 0x0);
3969 	POSTING_READ16(IER);
3970 }
3971 
3972 static int i8xx_irq_postinstall(struct drm_device *dev)
3973 {
3974 	struct drm_i915_private *dev_priv = dev->dev_private;
3975 
3976 	I915_WRITE16(EMR,
3977 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3978 
3979 	/* Unmask the interrupts that we always want on. */
3980 	dev_priv->irq_mask =
3981 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3982 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3983 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3984 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3985 	I915_WRITE16(IMR, dev_priv->irq_mask);
3986 
3987 	I915_WRITE16(IER,
3988 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3989 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3990 		     I915_USER_INTERRUPT);
3991 	POSTING_READ16(IER);
3992 
3993 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3994 	 * just to make the assert_spin_locked check happy. */
3995 	spin_lock_irq(&dev_priv->irq_lock);
3996 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3997 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3998 	spin_unlock_irq(&dev_priv->irq_lock);
3999 
4000 	return 0;
4001 }
4002 
4003 /*
4004  * Returns true when a page flip has completed.
4005  */
4006 static bool i8xx_handle_vblank(struct drm_device *dev,
4007 			       int plane, int pipe, u32 iir)
4008 {
4009 	struct drm_i915_private *dev_priv = dev->dev_private;
4010 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4011 
4012 	if (!intel_pipe_handle_vblank(dev, pipe))
4013 		return false;
4014 
4015 	if ((iir & flip_pending) == 0)
4016 		goto check_page_flip;
4017 
4018 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4019 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4020 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4021 	 * the flip is completed (no longer pending). Since this doesn't raise
4022 	 * an interrupt per se, we watch for the change at vblank.
4023 	 */
4024 	if (I915_READ16(ISR) & flip_pending)
4025 		goto check_page_flip;
4026 
4027 	intel_prepare_page_flip(dev, plane);
4028 	intel_finish_page_flip(dev, pipe);
4029 	return true;
4030 
4031 check_page_flip:
4032 	intel_check_page_flip(dev, pipe);
4033 	return false;
4034 }
4035 
4036 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4037 {
4038 	struct drm_device *dev = arg;
4039 	struct drm_i915_private *dev_priv = dev->dev_private;
4040 	u16 iir, new_iir;
4041 	u32 pipe_stats[2];
4042 	int pipe;
4043 	u16 flip_mask =
4044 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4045 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4046 	irqreturn_t ret;
4047 
4048 	if (!intel_irqs_enabled(dev_priv))
4049 		return IRQ_NONE;
4050 
4051 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4052 	disable_rpm_wakeref_asserts(dev_priv);
4053 
4054 	ret = IRQ_NONE;
4055 	iir = I915_READ16(IIR);
4056 	if (iir == 0)
4057 		goto out;
4058 
4059 	while (iir & ~flip_mask) {
4060 		/* Can't rely on pipestat interrupt bit in iir as it might
4061 		 * have been cleared after the pipestat interrupt was received.
4062 		 * It doesn't set the bit in iir again, but it still produces
4063 		 * interrupts (for non-MSI).
4064 		 */
4065 		spin_lock(&dev_priv->irq_lock);
4066 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4067 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4068 
4069 		for_each_pipe(dev_priv, pipe) {
4070 			i915_reg_t reg = PIPESTAT(pipe);
4071 			pipe_stats[pipe] = I915_READ(reg);
4072 
4073 			/*
4074 			 * Clear the PIPE*STAT regs before the IIR
4075 			 */
4076 			if (pipe_stats[pipe] & 0x8000ffff)
4077 				I915_WRITE(reg, pipe_stats[pipe]);
4078 		}
4079 		spin_unlock(&dev_priv->irq_lock);
4080 
4081 		I915_WRITE16(IIR, iir & ~flip_mask);
4082 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4083 
4084 		if (iir & I915_USER_INTERRUPT)
4085 			notify_ring(&dev_priv->engine[RCS]);
4086 
4087 		for_each_pipe(dev_priv, pipe) {
4088 			int plane = pipe;
4089 			if (HAS_FBC(dev))
4090 				plane = !plane;
4091 
4092 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4093 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4094 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4095 
4096 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4097 				i9xx_pipe_crc_irq_handler(dev, pipe);
4098 
4099 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4100 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4101 								    pipe);
4102 		}
4103 
4104 		iir = new_iir;
4105 	}
4106 	ret = IRQ_HANDLED;
4107 
4108 out:
4109 	enable_rpm_wakeref_asserts(dev_priv);
4110 
4111 	return ret;
4112 }
4113 
4114 static void i8xx_irq_uninstall(struct drm_device * dev)
4115 {
4116 	struct drm_i915_private *dev_priv = dev->dev_private;
4117 	int pipe;
4118 
4119 	for_each_pipe(dev_priv, pipe) {
4120 		/* Clear enable bits; then clear status bits */
4121 		I915_WRITE(PIPESTAT(pipe), 0);
4122 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4123 	}
4124 	I915_WRITE16(IMR, 0xffff);
4125 	I915_WRITE16(IER, 0x0);
4126 	I915_WRITE16(IIR, I915_READ16(IIR));
4127 }
4128 
4129 static void i915_irq_preinstall(struct drm_device * dev)
4130 {
4131 	struct drm_i915_private *dev_priv = dev->dev_private;
4132 	int pipe;
4133 
4134 	if (I915_HAS_HOTPLUG(dev)) {
4135 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4136 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4137 	}
4138 
4139 	I915_WRITE16(HWSTAM, 0xeffe);
4140 	for_each_pipe(dev_priv, pipe)
4141 		I915_WRITE(PIPESTAT(pipe), 0);
4142 	I915_WRITE(IMR, 0xffffffff);
4143 	I915_WRITE(IER, 0x0);
4144 	POSTING_READ(IER);
4145 }
4146 
4147 static int i915_irq_postinstall(struct drm_device *dev)
4148 {
4149 	struct drm_i915_private *dev_priv = dev->dev_private;
4150 	u32 enable_mask;
4151 
4152 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4153 
4154 	/* Unmask the interrupts that we always want on. */
4155 	dev_priv->irq_mask =
4156 		~(I915_ASLE_INTERRUPT |
4157 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4158 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4159 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4160 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4161 
4162 	enable_mask =
4163 		I915_ASLE_INTERRUPT |
4164 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4165 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4166 		I915_USER_INTERRUPT;
4167 
4168 	if (I915_HAS_HOTPLUG(dev)) {
4169 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170 		POSTING_READ(PORT_HOTPLUG_EN);
4171 
4172 		/* Enable in IER... */
4173 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4174 		/* and unmask in IMR */
4175 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4176 	}
4177 
4178 	I915_WRITE(IMR, dev_priv->irq_mask);
4179 	I915_WRITE(IER, enable_mask);
4180 	POSTING_READ(IER);
4181 
4182 	i915_enable_asle_pipestat(dev);
4183 
4184 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4185 	 * just to make the assert_spin_locked check happy. */
4186 	spin_lock_irq(&dev_priv->irq_lock);
4187 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4188 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4189 	spin_unlock_irq(&dev_priv->irq_lock);
4190 
4191 	return 0;
4192 }
4193 
4194 /*
4195  * Returns true when a page flip has completed.
4196  */
4197 static bool i915_handle_vblank(struct drm_device *dev,
4198 			       int plane, int pipe, u32 iir)
4199 {
4200 	struct drm_i915_private *dev_priv = dev->dev_private;
4201 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4202 
4203 	if (!intel_pipe_handle_vblank(dev, pipe))
4204 		return false;
4205 
4206 	if ((iir & flip_pending) == 0)
4207 		goto check_page_flip;
4208 
4209 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4210 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4211 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4212 	 * the flip is completed (no longer pending). Since this doesn't raise
4213 	 * an interrupt per se, we watch for the change at vblank.
4214 	 */
4215 	if (I915_READ(ISR) & flip_pending)
4216 		goto check_page_flip;
4217 
4218 	intel_prepare_page_flip(dev, plane);
4219 	intel_finish_page_flip(dev, pipe);
4220 	return true;
4221 
4222 check_page_flip:
4223 	intel_check_page_flip(dev, pipe);
4224 	return false;
4225 }
4226 
4227 static irqreturn_t i915_irq_handler(int irq, void *arg)
4228 {
4229 	struct drm_device *dev = arg;
4230 	struct drm_i915_private *dev_priv = dev->dev_private;
4231 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4232 	u32 flip_mask =
4233 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4234 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4235 	int pipe, ret = IRQ_NONE;
4236 
4237 	if (!intel_irqs_enabled(dev_priv))
4238 		return IRQ_NONE;
4239 
4240 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4241 	disable_rpm_wakeref_asserts(dev_priv);
4242 
4243 	iir = I915_READ(IIR);
4244 	do {
4245 		bool irq_received = (iir & ~flip_mask) != 0;
4246 		bool blc_event = false;
4247 
4248 		/* Can't rely on pipestat interrupt bit in iir as it might
4249 		 * have been cleared after the pipestat interrupt was received.
4250 		 * It doesn't set the bit in iir again, but it still produces
4251 		 * interrupts (for non-MSI).
4252 		 */
4253 		spin_lock(&dev_priv->irq_lock);
4254 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4255 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4256 
4257 		for_each_pipe(dev_priv, pipe) {
4258 			i915_reg_t reg = PIPESTAT(pipe);
4259 			pipe_stats[pipe] = I915_READ(reg);
4260 
4261 			/* Clear the PIPE*STAT regs before the IIR */
4262 			if (pipe_stats[pipe] & 0x8000ffff) {
4263 				I915_WRITE(reg, pipe_stats[pipe]);
4264 				irq_received = true;
4265 			}
4266 		}
4267 		spin_unlock(&dev_priv->irq_lock);
4268 
4269 		if (!irq_received)
4270 			break;
4271 
4272 		/* Consume port.  Then clear IIR or we'll miss events */
4273 		if (I915_HAS_HOTPLUG(dev) &&
4274 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4275 			i9xx_hpd_irq_handler(dev);
4276 
4277 		I915_WRITE(IIR, iir & ~flip_mask);
4278 		new_iir = I915_READ(IIR); /* Flush posted writes */
4279 
4280 		if (iir & I915_USER_INTERRUPT)
4281 			notify_ring(&dev_priv->engine[RCS]);
4282 
4283 		for_each_pipe(dev_priv, pipe) {
4284 			int plane = pipe;
4285 			if (HAS_FBC(dev))
4286 				plane = !plane;
4287 
4288 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4289 			    i915_handle_vblank(dev, plane, pipe, iir))
4290 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4291 
4292 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4293 				blc_event = true;
4294 
4295 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4296 				i9xx_pipe_crc_irq_handler(dev, pipe);
4297 
4298 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4299 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4300 								    pipe);
4301 		}
4302 
4303 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4304 			intel_opregion_asle_intr(dev);
4305 
4306 		/* With MSI, interrupts are only generated when iir
4307 		 * transitions from zero to nonzero.  If another bit got
4308 		 * set while we were handling the existing iir bits, then
4309 		 * we would never get another interrupt.
4310 		 *
4311 		 * This is fine on non-MSI as well, as if we hit this path
4312 		 * we avoid exiting the interrupt handler only to generate
4313 		 * another one.
4314 		 *
4315 		 * Note that for MSI this could cause a stray interrupt report
4316 		 * if an interrupt landed in the time between writing IIR and
4317 		 * the posting read.  This should be rare enough to never
4318 		 * trigger the 99% of 100,000 interrupts test for disabling
4319 		 * stray interrupts.
4320 		 */
4321 		ret = IRQ_HANDLED;
4322 		iir = new_iir;
4323 	} while (iir & ~flip_mask);
4324 
4325 	enable_rpm_wakeref_asserts(dev_priv);
4326 
4327 	return ret;
4328 }
4329 
4330 static void i915_irq_uninstall(struct drm_device * dev)
4331 {
4332 	struct drm_i915_private *dev_priv = dev->dev_private;
4333 	int pipe;
4334 
4335 	if (I915_HAS_HOTPLUG(dev)) {
4336 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4337 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4338 	}
4339 
4340 	I915_WRITE16(HWSTAM, 0xffff);
4341 	for_each_pipe(dev_priv, pipe) {
4342 		/* Clear enable bits; then clear status bits */
4343 		I915_WRITE(PIPESTAT(pipe), 0);
4344 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4345 	}
4346 	I915_WRITE(IMR, 0xffffffff);
4347 	I915_WRITE(IER, 0x0);
4348 
4349 	I915_WRITE(IIR, I915_READ(IIR));
4350 }
4351 
4352 static void i965_irq_preinstall(struct drm_device * dev)
4353 {
4354 	struct drm_i915_private *dev_priv = dev->dev_private;
4355 	int pipe;
4356 
4357 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4358 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4359 
4360 	I915_WRITE(HWSTAM, 0xeffe);
4361 	for_each_pipe(dev_priv, pipe)
4362 		I915_WRITE(PIPESTAT(pipe), 0);
4363 	I915_WRITE(IMR, 0xffffffff);
4364 	I915_WRITE(IER, 0x0);
4365 	POSTING_READ(IER);
4366 }
4367 
4368 static int i965_irq_postinstall(struct drm_device *dev)
4369 {
4370 	struct drm_i915_private *dev_priv = dev->dev_private;
4371 	u32 enable_mask;
4372 	u32 error_mask;
4373 
4374 	/* Unmask the interrupts that we always want on. */
4375 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4376 			       I915_DISPLAY_PORT_INTERRUPT |
4377 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4378 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4379 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4380 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4381 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4382 
4383 	enable_mask = ~dev_priv->irq_mask;
4384 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4385 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4386 	enable_mask |= I915_USER_INTERRUPT;
4387 
4388 	if (IS_G4X(dev))
4389 		enable_mask |= I915_BSD_USER_INTERRUPT;
4390 
4391 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4392 	 * just to make the assert_spin_locked check happy. */
4393 	spin_lock_irq(&dev_priv->irq_lock);
4394 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4395 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4396 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4397 	spin_unlock_irq(&dev_priv->irq_lock);
4398 
4399 	/*
4400 	 * Enable some error detection, note the instruction error mask
4401 	 * bit is reserved, so we leave it masked.
4402 	 */
4403 	if (IS_G4X(dev)) {
4404 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4405 			       GM45_ERROR_MEM_PRIV |
4406 			       GM45_ERROR_CP_PRIV |
4407 			       I915_ERROR_MEMORY_REFRESH);
4408 	} else {
4409 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4410 			       I915_ERROR_MEMORY_REFRESH);
4411 	}
4412 	I915_WRITE(EMR, error_mask);
4413 
4414 	I915_WRITE(IMR, dev_priv->irq_mask);
4415 	I915_WRITE(IER, enable_mask);
4416 	POSTING_READ(IER);
4417 
4418 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4419 	POSTING_READ(PORT_HOTPLUG_EN);
4420 
4421 	i915_enable_asle_pipestat(dev);
4422 
4423 	return 0;
4424 }
4425 
4426 static void i915_hpd_irq_setup(struct drm_device *dev)
4427 {
4428 	struct drm_i915_private *dev_priv = dev->dev_private;
4429 	u32 hotplug_en;
4430 
4431 	assert_spin_locked(&dev_priv->irq_lock);
4432 
4433 	/* Note HDMI and DP share hotplug bits */
4434 	/* enable bits are the same for all generations */
4435 	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4436 	/* Programming the CRT detection parameters tends
4437 	   to generate a spurious hotplug event about three
4438 	   seconds later.  So just do it once.
4439 	*/
4440 	if (IS_G4X(dev))
4441 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4442 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4443 
4444 	/* Ignore TV since it's buggy */
4445 	i915_hotplug_interrupt_update_locked(dev_priv,
4446 					     HOTPLUG_INT_EN_MASK |
4447 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4448 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4449 					     hotplug_en);
4450 }
4451 
4452 static irqreturn_t i965_irq_handler(int irq, void *arg)
4453 {
4454 	struct drm_device *dev = arg;
4455 	struct drm_i915_private *dev_priv = dev->dev_private;
4456 	u32 iir, new_iir;
4457 	u32 pipe_stats[I915_MAX_PIPES];
4458 	int ret = IRQ_NONE, pipe;
4459 	u32 flip_mask =
4460 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4461 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4462 
4463 	if (!intel_irqs_enabled(dev_priv))
4464 		return IRQ_NONE;
4465 
4466 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4467 	disable_rpm_wakeref_asserts(dev_priv);
4468 
4469 	iir = I915_READ(IIR);
4470 
4471 	for (;;) {
4472 		bool irq_received = (iir & ~flip_mask) != 0;
4473 		bool blc_event = false;
4474 
4475 		/* Can't rely on pipestat interrupt bit in iir as it might
4476 		 * have been cleared after the pipestat interrupt was received.
4477 		 * It doesn't set the bit in iir again, but it still produces
4478 		 * interrupts (for non-MSI).
4479 		 */
4480 		spin_lock(&dev_priv->irq_lock);
4481 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4482 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4483 
4484 		for_each_pipe(dev_priv, pipe) {
4485 			i915_reg_t reg = PIPESTAT(pipe);
4486 			pipe_stats[pipe] = I915_READ(reg);
4487 
4488 			/*
4489 			 * Clear the PIPE*STAT regs before the IIR
4490 			 */
4491 			if (pipe_stats[pipe] & 0x8000ffff) {
4492 				I915_WRITE(reg, pipe_stats[pipe]);
4493 				irq_received = true;
4494 			}
4495 		}
4496 		spin_unlock(&dev_priv->irq_lock);
4497 
4498 		if (!irq_received)
4499 			break;
4500 
4501 		ret = IRQ_HANDLED;
4502 
4503 		/* Consume port.  Then clear IIR or we'll miss events */
4504 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4505 			i9xx_hpd_irq_handler(dev);
4506 
4507 		I915_WRITE(IIR, iir & ~flip_mask);
4508 		new_iir = I915_READ(IIR); /* Flush posted writes */
4509 
4510 		if (iir & I915_USER_INTERRUPT)
4511 			notify_ring(&dev_priv->engine[RCS]);
4512 		if (iir & I915_BSD_USER_INTERRUPT)
4513 			notify_ring(&dev_priv->engine[VCS]);
4514 
4515 		for_each_pipe(dev_priv, pipe) {
4516 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4517 			    i915_handle_vblank(dev, pipe, pipe, iir))
4518 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4519 
4520 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4521 				blc_event = true;
4522 
4523 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4524 				i9xx_pipe_crc_irq_handler(dev, pipe);
4525 
4526 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4527 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4528 		}
4529 
4530 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4531 			intel_opregion_asle_intr(dev);
4532 
4533 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4534 			gmbus_irq_handler(dev);
4535 
4536 		/* With MSI, interrupts are only generated when iir
4537 		 * transitions from zero to nonzero.  If another bit got
4538 		 * set while we were handling the existing iir bits, then
4539 		 * we would never get another interrupt.
4540 		 *
4541 		 * This is fine on non-MSI as well, as if we hit this path
4542 		 * we avoid exiting the interrupt handler only to generate
4543 		 * another one.
4544 		 *
4545 		 * Note that for MSI this could cause a stray interrupt report
4546 		 * if an interrupt landed in the time between writing IIR and
4547 		 * the posting read.  This should be rare enough to never
4548 		 * trigger the 99% of 100,000 interrupts test for disabling
4549 		 * stray interrupts.
4550 		 */
4551 		iir = new_iir;
4552 	}
4553 
4554 	enable_rpm_wakeref_asserts(dev_priv);
4555 
4556 	return ret;
4557 }
4558 
4559 static void i965_irq_uninstall(struct drm_device * dev)
4560 {
4561 	struct drm_i915_private *dev_priv = dev->dev_private;
4562 	int pipe;
4563 
4564 	if (!dev_priv)
4565 		return;
4566 
4567 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4568 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4569 
4570 	I915_WRITE(HWSTAM, 0xffffffff);
4571 	for_each_pipe(dev_priv, pipe)
4572 		I915_WRITE(PIPESTAT(pipe), 0);
4573 	I915_WRITE(IMR, 0xffffffff);
4574 	I915_WRITE(IER, 0x0);
4575 
4576 	for_each_pipe(dev_priv, pipe)
4577 		I915_WRITE(PIPESTAT(pipe),
4578 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4579 	I915_WRITE(IIR, I915_READ(IIR));
4580 }
4581 
4582 /**
4583  * intel_irq_init - initializes irq support
4584  * @dev_priv: i915 device instance
4585  *
4586  * This function initializes all the irq support including work items, timers
4587  * and all the vtables. It does not setup the interrupt itself though.
4588  */
4589 void intel_irq_init(struct drm_i915_private *dev_priv)
4590 {
4591 	struct drm_device *dev = dev_priv->dev;
4592 
4593 	intel_hpd_init_work(dev_priv);
4594 
4595 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4596 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4597 
4598 	/* Let's track the enabled rps events */
4599 	if (IS_VALLEYVIEW(dev_priv))
4600 		/* WaGsvRC0ResidencyMethod:vlv */
4601 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4602 	else
4603 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4604 
4605 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4606 			  i915_hangcheck_elapsed);
4607 
4608 	if (IS_GEN2(dev_priv)) {
4609 		dev->max_vblank_count = 0;
4610 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4611 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4612 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4613 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4614 	} else {
4615 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4616 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4617 	}
4618 
4619 	/*
4620 	 * Opt out of the vblank disable timer on everything except gen2.
4621 	 * Gen2 doesn't have a hardware frame counter and so depends on
4622 	 * vblank interrupts to produce sane vblank seuquence numbers.
4623 	 */
4624 	if (!IS_GEN2(dev_priv))
4625 		dev->vblank_disable_immediate = true;
4626 
4627 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4628 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4629 
4630 	if (IS_CHERRYVIEW(dev_priv)) {
4631 		dev->driver->irq_handler = cherryview_irq_handler;
4632 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4633 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4634 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4635 		dev->driver->enable_vblank = valleyview_enable_vblank;
4636 		dev->driver->disable_vblank = valleyview_disable_vblank;
4637 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4638 	} else if (IS_VALLEYVIEW(dev_priv)) {
4639 		dev->driver->irq_handler = valleyview_irq_handler;
4640 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4641 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4642 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4643 		dev->driver->enable_vblank = valleyview_enable_vblank;
4644 		dev->driver->disable_vblank = valleyview_disable_vblank;
4645 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4646 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4647 		dev->driver->irq_handler = gen8_irq_handler;
4648 		dev->driver->irq_preinstall = gen8_irq_reset;
4649 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4650 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4651 		dev->driver->enable_vblank = gen8_enable_vblank;
4652 		dev->driver->disable_vblank = gen8_disable_vblank;
4653 		if (IS_BROXTON(dev))
4654 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4655 		else if (HAS_PCH_SPT(dev))
4656 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4657 		else
4658 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4659 	} else if (HAS_PCH_SPLIT(dev)) {
4660 		dev->driver->irq_handler = ironlake_irq_handler;
4661 		dev->driver->irq_preinstall = ironlake_irq_reset;
4662 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4663 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4664 		dev->driver->enable_vblank = ironlake_enable_vblank;
4665 		dev->driver->disable_vblank = ironlake_disable_vblank;
4666 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4667 	} else {
4668 		if (INTEL_INFO(dev_priv)->gen == 2) {
4669 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4670 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4671 			dev->driver->irq_handler = i8xx_irq_handler;
4672 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4673 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4674 			dev->driver->irq_preinstall = i915_irq_preinstall;
4675 			dev->driver->irq_postinstall = i915_irq_postinstall;
4676 			dev->driver->irq_uninstall = i915_irq_uninstall;
4677 			dev->driver->irq_handler = i915_irq_handler;
4678 		} else {
4679 			dev->driver->irq_preinstall = i965_irq_preinstall;
4680 			dev->driver->irq_postinstall = i965_irq_postinstall;
4681 			dev->driver->irq_uninstall = i965_irq_uninstall;
4682 			dev->driver->irq_handler = i965_irq_handler;
4683 		}
4684 		if (I915_HAS_HOTPLUG(dev_priv))
4685 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4686 		dev->driver->enable_vblank = i915_enable_vblank;
4687 		dev->driver->disable_vblank = i915_disable_vblank;
4688 	}
4689 }
4690 
4691 /**
4692  * intel_irq_install - enables the hardware interrupt
4693  * @dev_priv: i915 device instance
4694  *
4695  * This function enables the hardware interrupt handling, but leaves the hotplug
4696  * handling still disabled. It is called after intel_irq_init().
4697  *
4698  * In the driver load and resume code we need working interrupts in a few places
4699  * but don't want to deal with the hassle of concurrent probe and hotplug
4700  * workers. Hence the split into this two-stage approach.
4701  */
4702 int intel_irq_install(struct drm_i915_private *dev_priv)
4703 {
4704 	/*
4705 	 * We enable some interrupt sources in our postinstall hooks, so mark
4706 	 * interrupts as enabled _before_ actually enabling them to avoid
4707 	 * special cases in our ordering checks.
4708 	 */
4709 	dev_priv->pm.irqs_enabled = true;
4710 
4711 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4712 }
4713 
4714 /**
4715  * intel_irq_uninstall - finilizes all irq handling
4716  * @dev_priv: i915 device instance
4717  *
4718  * This stops interrupt and hotplug handling and unregisters and frees all
4719  * resources acquired in the init functions.
4720  */
4721 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4722 {
4723 	drm_irq_uninstall(dev_priv->dev);
4724 	intel_hpd_cancel_work(dev_priv);
4725 	dev_priv->pm.irqs_enabled = false;
4726 }
4727 
4728 /**
4729  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4730  * @dev_priv: i915 device instance
4731  *
4732  * This function is used to disable interrupts at runtime, both in the runtime
4733  * pm and the system suspend/resume code.
4734  */
4735 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4736 {
4737 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4738 	dev_priv->pm.irqs_enabled = false;
4739 	synchronize_irq(dev_priv->dev->irq);
4740 }
4741 
4742 /**
4743  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4744  * @dev_priv: i915 device instance
4745  *
4746  * This function is used to enable interrupts at runtime, both in the runtime
4747  * pm and the system suspend/resume code.
4748  */
4749 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4750 {
4751 	dev_priv->pm.irqs_enabled = true;
4752 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4753 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4754 }
4755