xref: /linux/drivers/gpu/drm/i915/i915_irq.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 				     uint32_t mask,
178 				     uint32_t bits)
179 {
180 	uint32_t val;
181 
182 	assert_spin_locked(&dev_priv->irq_lock);
183 	WARN_ON(bits & ~mask);
184 
185 	val = I915_READ(PORT_HOTPLUG_EN);
186 	val &= ~mask;
187 	val |= bits;
188 	I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190 
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 				   uint32_t mask,
205 				   uint32_t bits)
206 {
207 	spin_lock_irq(&dev_priv->irq_lock);
208 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 	spin_unlock_irq(&dev_priv->irq_lock);
210 }
211 
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 			    uint32_t interrupt_mask,
220 			    uint32_t enabled_irq_mask)
221 {
222 	uint32_t new_val;
223 
224 	assert_spin_locked(&dev_priv->irq_lock);
225 
226 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
227 
228 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 		return;
230 
231 	new_val = dev_priv->irq_mask;
232 	new_val &= ~interrupt_mask;
233 	new_val |= (~enabled_irq_mask & interrupt_mask);
234 
235 	if (new_val != dev_priv->irq_mask) {
236 		dev_priv->irq_mask = new_val;
237 		I915_WRITE(DEIMR, dev_priv->irq_mask);
238 		POSTING_READ(DEIMR);
239 	}
240 }
241 
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 			      uint32_t interrupt_mask,
250 			      uint32_t enabled_irq_mask)
251 {
252 	assert_spin_locked(&dev_priv->irq_lock);
253 
254 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
255 
256 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 		return;
258 
259 	dev_priv->gt_irq_mask &= ~interrupt_mask;
260 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 	POSTING_READ(GTIMR);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269 
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 	ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274 
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279 
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284 
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289 
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 			      uint32_t interrupt_mask,
298 			      uint32_t enabled_irq_mask)
299 {
300 	uint32_t new_val;
301 
302 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
303 
304 	assert_spin_locked(&dev_priv->irq_lock);
305 
306 	new_val = dev_priv->pm_irq_mask;
307 	new_val &= ~interrupt_mask;
308 	new_val |= (~enabled_irq_mask & interrupt_mask);
309 
310 	if (new_val != dev_priv->pm_irq_mask) {
311 		dev_priv->pm_irq_mask = new_val;
312 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 		POSTING_READ(gen6_pm_imr(dev_priv));
314 	}
315 }
316 
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 		return;
321 
322 	snb_update_pm_irq(dev_priv, mask, mask);
323 }
324 
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 				  uint32_t mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_disable_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	i915_reg_t reg = gen6_pm_iir(dev_priv);
343 
344 	spin_lock_irq(&dev_priv->irq_lock);
345 	I915_WRITE(reg, dev_priv->pm_rps_events);
346 	I915_WRITE(reg, dev_priv->pm_rps_events);
347 	POSTING_READ(reg);
348 	dev_priv->rps.pm_iir = 0;
349 	spin_unlock_irq(&dev_priv->irq_lock);
350 }
351 
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 	struct drm_i915_private *dev_priv = dev->dev_private;
355 
356 	spin_lock_irq(&dev_priv->irq_lock);
357 
358 	WARN_ON(dev_priv->rps.pm_iir);
359 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 	dev_priv->rps.interrupts_enabled = true;
361 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 				dev_priv->pm_rps_events);
363 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364 
365 	spin_unlock_irq(&dev_priv->irq_lock);
366 }
367 
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 	/*
371 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 	 *
374 	 * TODO: verify if this can be reproduced on VLV,CHV.
375 	 */
376 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378 
379 	if (INTEL_INFO(dev_priv)->gen >= 8)
380 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381 
382 	return mask;
383 }
384 
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 	struct drm_i915_private *dev_priv = dev->dev_private;
388 
389 	spin_lock_irq(&dev_priv->irq_lock);
390 	dev_priv->rps.interrupts_enabled = false;
391 	spin_unlock_irq(&dev_priv->irq_lock);
392 
393 	cancel_work_sync(&dev_priv->rps.work);
394 
395 	spin_lock_irq(&dev_priv->irq_lock);
396 
397 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398 
399 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 				~dev_priv->pm_rps_events);
402 
403 	spin_unlock_irq(&dev_priv->irq_lock);
404 
405 	synchronize_irq(dev->irq);
406 }
407 
408 /**
409  * bdw_update_port_irq - update DE port interrupt
410  * @dev_priv: driver private
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 				uint32_t interrupt_mask,
416 				uint32_t enabled_irq_mask)
417 {
418 	uint32_t new_val;
419 	uint32_t old_val;
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
424 
425 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 		return;
427 
428 	old_val = I915_READ(GEN8_DE_PORT_IMR);
429 
430 	new_val = old_val;
431 	new_val &= ~interrupt_mask;
432 	new_val |= (~enabled_irq_mask & interrupt_mask);
433 
434 	if (new_val != old_val) {
435 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 		POSTING_READ(GEN8_DE_PORT_IMR);
437 	}
438 }
439 
440 /**
441  * bdw_update_pipe_irq - update DE pipe interrupt
442  * @dev_priv: driver private
443  * @pipe: pipe whose interrupt to update
444  * @interrupt_mask: mask of interrupt bits to update
445  * @enabled_irq_mask: mask of interrupt bits to enable
446  */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 			 enum pipe pipe,
449 			 uint32_t interrupt_mask,
450 			 uint32_t enabled_irq_mask)
451 {
452 	uint32_t new_val;
453 
454 	assert_spin_locked(&dev_priv->irq_lock);
455 
456 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
457 
458 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 		return;
460 
461 	new_val = dev_priv->de_irq_mask[pipe];
462 	new_val &= ~interrupt_mask;
463 	new_val |= (~enabled_irq_mask & interrupt_mask);
464 
465 	if (new_val != dev_priv->de_irq_mask[pipe]) {
466 		dev_priv->de_irq_mask[pipe] = new_val;
467 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 	}
470 }
471 
472 /**
473  * ibx_display_interrupt_update - update SDEIMR
474  * @dev_priv: driver private
475  * @interrupt_mask: mask of interrupt bits to update
476  * @enabled_irq_mask: mask of interrupt bits to enable
477  */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 				  uint32_t interrupt_mask,
480 				  uint32_t enabled_irq_mask)
481 {
482 	uint32_t sdeimr = I915_READ(SDEIMR);
483 	sdeimr &= ~interrupt_mask;
484 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
485 
486 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
487 
488 	assert_spin_locked(&dev_priv->irq_lock);
489 
490 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 		return;
492 
493 	I915_WRITE(SDEIMR, sdeimr);
494 	POSTING_READ(SDEIMR);
495 }
496 
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 		       u32 enable_mask, u32 status_mask)
500 {
501 	i915_reg_t reg = PIPESTAT(pipe);
502 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503 
504 	assert_spin_locked(&dev_priv->irq_lock);
505 	WARN_ON(!intel_irqs_enabled(dev_priv));
506 
507 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 		      pipe_name(pipe), enable_mask, status_mask))
511 		return;
512 
513 	if ((pipestat & enable_mask) == enable_mask)
514 		return;
515 
516 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517 
518 	/* Enable the interrupt, clear any pending status */
519 	pipestat |= enable_mask | status_mask;
520 	I915_WRITE(reg, pipestat);
521 	POSTING_READ(reg);
522 }
523 
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 		        u32 enable_mask, u32 status_mask)
527 {
528 	i915_reg_t reg = PIPESTAT(pipe);
529 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530 
531 	assert_spin_locked(&dev_priv->irq_lock);
532 	WARN_ON(!intel_irqs_enabled(dev_priv));
533 
534 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 		      pipe_name(pipe), enable_mask, status_mask))
538 		return;
539 
540 	if ((pipestat & enable_mask) == 0)
541 		return;
542 
543 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544 
545 	pipestat &= ~enable_mask;
546 	I915_WRITE(reg, pipestat);
547 	POSTING_READ(reg);
548 }
549 
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 	u32 enable_mask = status_mask << 16;
553 
554 	/*
555 	 * On pipe A we don't support the PSR interrupt yet,
556 	 * on pipe B and C the same bit MBZ.
557 	 */
558 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 		return 0;
560 	/*
561 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 	 * A the same bit is for perf counters which we don't use either.
563 	 */
564 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 		return 0;
566 
567 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574 
575 	return enable_mask;
576 }
577 
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 		     u32 status_mask)
581 {
582 	u32 enable_mask;
583 
584 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 							   status_mask);
587 	else
588 		enable_mask = status_mask << 16;
589 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591 
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 		      u32 status_mask)
595 {
596 	u32 enable_mask;
597 
598 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 							   status_mask);
601 	else
602 		enable_mask = status_mask << 16;
603 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605 
606 /**
607  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608  * @dev: drm device
609  */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 	struct drm_i915_private *dev_priv = dev->dev_private;
613 
614 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 		return;
616 
617 	spin_lock_irq(&dev_priv->irq_lock);
618 
619 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 	if (INTEL_INFO(dev)->gen >= 4)
621 		i915_enable_pipestat(dev_priv, PIPE_A,
622 				     PIPE_LEGACY_BLC_EVENT_STATUS);
623 
624 	spin_unlock_irq(&dev_priv->irq_lock);
625 }
626 
627 /*
628  * This timing diagram depicts the video signal in and
629  * around the vertical blanking period.
630  *
631  * Assumptions about the fictitious mode used in this example:
632  *  vblank_start >= 3
633  *  vsync_start = vblank_start + 1
634  *  vsync_end = vblank_start + 2
635  *  vtotal = vblank_start + 3
636  *
637  *           start of vblank:
638  *           latch double buffered registers
639  *           increment frame counter (ctg+)
640  *           generate start of vblank interrupt (gen4+)
641  *           |
642  *           |          frame start:
643  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
644  *           |          may be shifted forward 1-3 extra lines via PIPECONF
645  *           |          |
646  *           |          |  start of vsync:
647  *           |          |  generate vsync interrupt
648  *           |          |  |
649  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
650  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
651  * ----va---> <-----------------vb--------------------> <--------va-------------
652  *       |          |       <----vs----->                     |
653  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656  *       |          |                                         |
657  *       last visible pixel                                   first visible pixel
658  *                  |                                         increment frame counter (gen3/4)
659  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
660  *
661  * x  = horizontal active
662  * _  = horizontal blanking
663  * hs = horizontal sync
664  * va = vertical active
665  * vb = vertical blanking
666  * vs = vertical sync
667  * vbs = vblank_start (number)
668  *
669  * Summary:
670  * - most events happen at the start of horizontal sync
671  * - frame start happens at the start of horizontal blank, 1-4 lines
672  *   (depending on PIPECONF settings) after the start of vblank
673  * - gen3/4 pixel and frame counter are synchronized with the start
674  *   of horizontal active on the first line of vertical active
675  */
676 
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 	/* Gen2 doesn't have a hardware frame counter */
680 	return 0;
681 }
682 
683 /* Called from drm generic code, passed a 'crtc', which
684  * we use as a pipe index
685  */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 	struct drm_i915_private *dev_priv = dev->dev_private;
689 	i915_reg_t high_frame, low_frame;
690 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 	struct intel_crtc *intel_crtc =
692 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694 
695 	htotal = mode->crtc_htotal;
696 	hsync_start = mode->crtc_hsync_start;
697 	vbl_start = mode->crtc_vblank_start;
698 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
700 
701 	/* Convert to pixel count */
702 	vbl_start *= htotal;
703 
704 	/* Start of vblank event occurs at start of hsync */
705 	vbl_start -= htotal - hsync_start;
706 
707 	high_frame = PIPEFRAME(pipe);
708 	low_frame = PIPEFRAMEPIXEL(pipe);
709 
710 	/*
711 	 * High & low register fields aren't synchronized, so make sure
712 	 * we get a low value that's stable across two reads of the high
713 	 * register.
714 	 */
715 	do {
716 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 		low   = I915_READ(low_frame);
718 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 	} while (high1 != high2);
720 
721 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 	pixel = low & PIPE_PIXEL_MASK;
723 	low >>= PIPE_FRAME_LOW_SHIFT;
724 
725 	/*
726 	 * The frame counter increments at beginning of active.
727 	 * Cook up a vblank counter by also checking the pixel
728 	 * counter against vblank start.
729 	 */
730 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732 
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 	struct drm_i915_private *dev_priv = dev->dev_private;
736 
737 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739 
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 	struct drm_device *dev = crtc->base.dev;
744 	struct drm_i915_private *dev_priv = dev->dev_private;
745 	const struct drm_display_mode *mode = &crtc->base.hwmode;
746 	enum pipe pipe = crtc->pipe;
747 	int position, vtotal;
748 
749 	vtotal = mode->crtc_vtotal;
750 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 		vtotal /= 2;
752 
753 	if (IS_GEN2(dev))
754 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 	else
756 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757 
758 	/*
759 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 	 * read it just before the start of vblank.  So try it again
761 	 * so we don't accidentally end up spanning a vblank frame
762 	 * increment, causing the pipe_update_end() code to squak at us.
763 	 *
764 	 * The nature of this problem means we can't simply check the ISR
765 	 * bit and return the vblank start value; nor can we use the scanline
766 	 * debug register in the transcoder as it appears to have the same
767 	 * problem.  We may need to extend this to include other platforms,
768 	 * but so far testing only shows the problem on HSW.
769 	 */
770 	if (HAS_DDI(dev) && !position) {
771 		int i, temp;
772 
773 		for (i = 0; i < 100; i++) {
774 			udelay(1);
775 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 				DSL_LINEMASK_GEN3;
777 			if (temp != position) {
778 				position = temp;
779 				break;
780 			}
781 		}
782 	}
783 
784 	/*
785 	 * See update_scanline_offset() for the details on the
786 	 * scanline_offset adjustment.
787 	 */
788 	return (position + crtc->scanline_offset) % vtotal;
789 }
790 
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 				    unsigned int flags, int *vpos, int *hpos,
793 				    ktime_t *stime, ktime_t *etime,
794 				    const struct drm_display_mode *mode)
795 {
796 	struct drm_i915_private *dev_priv = dev->dev_private;
797 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 	int position;
800 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 	bool in_vbl = true;
802 	int ret = 0;
803 	unsigned long irqflags;
804 
805 	if (WARN_ON(!mode->crtc_clock)) {
806 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 				 "pipe %c\n", pipe_name(pipe));
808 		return 0;
809 	}
810 
811 	htotal = mode->crtc_htotal;
812 	hsync_start = mode->crtc_hsync_start;
813 	vtotal = mode->crtc_vtotal;
814 	vbl_start = mode->crtc_vblank_start;
815 	vbl_end = mode->crtc_vblank_end;
816 
817 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 		vbl_end /= 2;
820 		vtotal /= 2;
821 	}
822 
823 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824 
825 	/*
826 	 * Lock uncore.lock, as we will do multiple timing critical raw
827 	 * register reads, potentially with preemption disabled, so the
828 	 * following code must not block on uncore.lock.
829 	 */
830 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831 
832 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833 
834 	/* Get optional system timestamp before query. */
835 	if (stime)
836 		*stime = ktime_get();
837 
838 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 		/* No obvious pixelcount register. Only query vertical
840 		 * scanout position from Display scan line register.
841 		 */
842 		position = __intel_get_crtc_scanline(intel_crtc);
843 	} else {
844 		/* Have access to pixelcount since start of frame.
845 		 * We can split this into vertical and horizontal
846 		 * scanout position.
847 		 */
848 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849 
850 		/* convert to pixel counts */
851 		vbl_start *= htotal;
852 		vbl_end *= htotal;
853 		vtotal *= htotal;
854 
855 		/*
856 		 * In interlaced modes, the pixel counter counts all pixels,
857 		 * so one field will have htotal more pixels. In order to avoid
858 		 * the reported position from jumping backwards when the pixel
859 		 * counter is beyond the length of the shorter field, just
860 		 * clamp the position the length of the shorter field. This
861 		 * matches how the scanline counter based position works since
862 		 * the scanline counter doesn't count the two half lines.
863 		 */
864 		if (position >= vtotal)
865 			position = vtotal - 1;
866 
867 		/*
868 		 * Start of vblank interrupt is triggered at start of hsync,
869 		 * just prior to the first active line of vblank. However we
870 		 * consider lines to start at the leading edge of horizontal
871 		 * active. So, should we get here before we've crossed into
872 		 * the horizontal active of the first line in vblank, we would
873 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 		 * always add htotal-hsync_start to the current pixel position.
875 		 */
876 		position = (position + htotal - hsync_start) % vtotal;
877 	}
878 
879 	/* Get optional system timestamp after query. */
880 	if (etime)
881 		*etime = ktime_get();
882 
883 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884 
885 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886 
887 	in_vbl = position >= vbl_start && position < vbl_end;
888 
889 	/*
890 	 * While in vblank, position will be negative
891 	 * counting up towards 0 at vbl_end. And outside
892 	 * vblank, position will be positive counting
893 	 * up since vbl_end.
894 	 */
895 	if (position >= vbl_start)
896 		position -= vbl_end;
897 	else
898 		position += vtotal - vbl_end;
899 
900 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 		*vpos = position;
902 		*hpos = 0;
903 	} else {
904 		*vpos = position / htotal;
905 		*hpos = position - (*vpos * htotal);
906 	}
907 
908 	/* In vblank? */
909 	if (in_vbl)
910 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
911 
912 	return ret;
913 }
914 
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 	unsigned long irqflags;
919 	int position;
920 
921 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 	position = __intel_get_crtc_scanline(crtc);
923 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924 
925 	return position;
926 }
927 
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 			      int *max_error,
930 			      struct timeval *vblank_time,
931 			      unsigned flags)
932 {
933 	struct drm_crtc *crtc;
934 
935 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 		DRM_ERROR("Invalid crtc %u\n", pipe);
937 		return -EINVAL;
938 	}
939 
940 	/* Get drm_crtc to timestamp: */
941 	crtc = intel_get_crtc_for_pipe(dev, pipe);
942 	if (crtc == NULL) {
943 		DRM_ERROR("Invalid crtc %u\n", pipe);
944 		return -EINVAL;
945 	}
946 
947 	if (!crtc->hwmode.crtc_clock) {
948 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 		return -EBUSY;
950 	}
951 
952 	/* Helper routine in DRM core does all the work: */
953 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 						     vblank_time, flags,
955 						     &crtc->hwmode);
956 }
957 
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 	struct drm_i915_private *dev_priv = dev->dev_private;
961 	u32 busy_up, busy_down, max_avg, min_avg;
962 	u8 new_delay;
963 
964 	spin_lock(&mchdev_lock);
965 
966 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967 
968 	new_delay = dev_priv->ips.cur_delay;
969 
970 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 	busy_up = I915_READ(RCPREVBSYTUPAVG);
972 	busy_down = I915_READ(RCPREVBSYTDNAVG);
973 	max_avg = I915_READ(RCBMAXAVG);
974 	min_avg = I915_READ(RCBMINAVG);
975 
976 	/* Handle RCS change request from hw */
977 	if (busy_up > max_avg) {
978 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 			new_delay = dev_priv->ips.cur_delay - 1;
980 		if (new_delay < dev_priv->ips.max_delay)
981 			new_delay = dev_priv->ips.max_delay;
982 	} else if (busy_down < min_avg) {
983 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 			new_delay = dev_priv->ips.cur_delay + 1;
985 		if (new_delay > dev_priv->ips.min_delay)
986 			new_delay = dev_priv->ips.min_delay;
987 	}
988 
989 	if (ironlake_set_drps(dev, new_delay))
990 		dev_priv->ips.cur_delay = new_delay;
991 
992 	spin_unlock(&mchdev_lock);
993 
994 	return;
995 }
996 
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 	if (!intel_engine_initialized(engine))
1000 		return;
1001 
1002 	trace_i915_gem_request_notify(engine);
1003 	engine->user_interrupts++;
1004 
1005 	wake_up_all(&engine->irq_queue);
1006 }
1007 
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 			struct intel_rps_ei *ei)
1010 {
1011 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015 
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 			 const struct intel_rps_ei *old,
1018 			 const struct intel_rps_ei *now,
1019 			 int threshold)
1020 {
1021 	u64 time, c0;
1022 	unsigned int mul = 100;
1023 
1024 	if (old->cz_clock == 0)
1025 		return false;
1026 
1027 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 		mul <<= 8;
1029 
1030 	time = now->cz_clock - old->cz_clock;
1031 	time *= threshold * dev_priv->czclk_freq;
1032 
1033 	/* Workload can be split between render + media, e.g. SwapBuffers
1034 	 * being blitted in X after being rendered in mesa. To account for
1035 	 * this we need to combine both engines into our activity counter.
1036 	 */
1037 	c0 = now->render_c0 - old->render_c0;
1038 	c0 += now->media_c0 - old->media_c0;
1039 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040 
1041 	return c0 >= time;
1042 }
1043 
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049 
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 	struct intel_rps_ei now;
1053 	u32 events = 0;
1054 
1055 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 		return 0;
1057 
1058 	vlv_c0_read(dev_priv, &now);
1059 	if (now.cz_clock == 0)
1060 		return 0;
1061 
1062 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 		if (!vlv_c0_above(dev_priv,
1064 				  &dev_priv->rps.down_ei, &now,
1065 				  dev_priv->rps.down_threshold))
1066 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 		dev_priv->rps.down_ei = now;
1068 	}
1069 
1070 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 		if (vlv_c0_above(dev_priv,
1072 				 &dev_priv->rps.up_ei, &now,
1073 				 dev_priv->rps.up_threshold))
1074 			events |= GEN6_PM_RP_UP_THRESHOLD;
1075 		dev_priv->rps.up_ei = now;
1076 	}
1077 
1078 	return events;
1079 }
1080 
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 	struct intel_engine_cs *engine;
1084 
1085 	for_each_engine(engine, dev_priv)
1086 		if (engine->irq_refcount)
1087 			return true;
1088 
1089 	return false;
1090 }
1091 
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 	struct drm_i915_private *dev_priv =
1095 		container_of(work, struct drm_i915_private, rps.work);
1096 	bool client_boost;
1097 	int new_delay, adj, min, max;
1098 	u32 pm_iir;
1099 
1100 	spin_lock_irq(&dev_priv->irq_lock);
1101 	/* Speed up work cancelation during disabling rps interrupts. */
1102 	if (!dev_priv->rps.interrupts_enabled) {
1103 		spin_unlock_irq(&dev_priv->irq_lock);
1104 		return;
1105 	}
1106 
1107 	/*
1108 	 * The RPS work is synced during runtime suspend, we don't require a
1109 	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 	 * always hold an RPM reference while the work is running.
1111 	 */
1112 	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113 
1114 	pm_iir = dev_priv->rps.pm_iir;
1115 	dev_priv->rps.pm_iir = 0;
1116 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 	client_boost = dev_priv->rps.client_boost;
1119 	dev_priv->rps.client_boost = false;
1120 	spin_unlock_irq(&dev_priv->irq_lock);
1121 
1122 	/* Make sure we didn't queue anything we're not going to process. */
1123 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124 
1125 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 		goto out;
1127 
1128 	mutex_lock(&dev_priv->rps.hw_lock);
1129 
1130 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131 
1132 	adj = dev_priv->rps.last_adj;
1133 	new_delay = dev_priv->rps.cur_freq;
1134 	min = dev_priv->rps.min_freq_softlimit;
1135 	max = dev_priv->rps.max_freq_softlimit;
1136 
1137 	if (client_boost) {
1138 		new_delay = dev_priv->rps.max_freq_softlimit;
1139 		adj = 0;
1140 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 		if (adj > 0)
1142 			adj *= 2;
1143 		else /* CHV needs even encode values */
1144 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 		/*
1146 		 * For better performance, jump directly
1147 		 * to RPe if we're below it.
1148 		 */
1149 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 			new_delay = dev_priv->rps.efficient_freq;
1151 			adj = 0;
1152 		}
1153 	} else if (any_waiters(dev_priv)) {
1154 		adj = 0;
1155 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 			new_delay = dev_priv->rps.efficient_freq;
1158 		else
1159 			new_delay = dev_priv->rps.min_freq_softlimit;
1160 		adj = 0;
1161 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 		if (adj < 0)
1163 			adj *= 2;
1164 		else /* CHV needs even encode values */
1165 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 	} else { /* unknown event */
1167 		adj = 0;
1168 	}
1169 
1170 	dev_priv->rps.last_adj = adj;
1171 
1172 	/* sysfs frequency interfaces may have snuck in while servicing the
1173 	 * interrupt
1174 	 */
1175 	new_delay += adj;
1176 	new_delay = clamp_t(int, new_delay, min, max);
1177 
1178 	intel_set_rps(dev_priv->dev, new_delay);
1179 
1180 	mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184 
1185 
1186 /**
1187  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188  * occurred.
1189  * @work: workqueue struct
1190  *
1191  * Doesn't actually do anything except notify userspace. As a consequence of
1192  * this event, userspace should try to remap the bad rows since statistically
1193  * it is likely the same row is more likely to go bad again.
1194  */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 	struct drm_i915_private *dev_priv =
1198 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 	u32 error_status, row, bank, subbank;
1200 	char *parity_event[6];
1201 	uint32_t misccpctl;
1202 	uint8_t slice = 0;
1203 
1204 	/* We must turn off DOP level clock gating to access the L3 registers.
1205 	 * In order to prevent a get/put style interface, acquire struct mutex
1206 	 * any time we access those registers.
1207 	 */
1208 	mutex_lock(&dev_priv->dev->struct_mutex);
1209 
1210 	/* If we've screwed up tracking, just let the interrupt fire again */
1211 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 		goto out;
1213 
1214 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 	POSTING_READ(GEN7_MISCCPCTL);
1217 
1218 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 		i915_reg_t reg;
1220 
1221 		slice--;
1222 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 			break;
1224 
1225 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226 
1227 		reg = GEN7_L3CDERRST1(slice);
1228 
1229 		error_status = I915_READ(reg);
1230 		row = GEN7_PARITY_ERROR_ROW(error_status);
1231 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233 
1234 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 		POSTING_READ(reg);
1236 
1237 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 		parity_event[5] = NULL;
1243 
1244 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 				   KOBJ_CHANGE, parity_event);
1246 
1247 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 			  slice, row, bank, subbank);
1249 
1250 		kfree(parity_event[4]);
1251 		kfree(parity_event[3]);
1252 		kfree(parity_event[2]);
1253 		kfree(parity_event[1]);
1254 	}
1255 
1256 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257 
1258 out:
1259 	WARN_ON(dev_priv->l3_parity.which_slice);
1260 	spin_lock_irq(&dev_priv->irq_lock);
1261 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 	spin_unlock_irq(&dev_priv->irq_lock);
1263 
1264 	mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266 
1267 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1268 					       u32 iir)
1269 {
1270 	if (!HAS_L3_DPF(dev_priv))
1271 		return;
1272 
1273 	spin_lock(&dev_priv->irq_lock);
1274 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1275 	spin_unlock(&dev_priv->irq_lock);
1276 
1277 	iir &= GT_PARITY_ERROR(dev_priv);
1278 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1279 		dev_priv->l3_parity.which_slice |= 1 << 1;
1280 
1281 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1282 		dev_priv->l3_parity.which_slice |= 1 << 0;
1283 
1284 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1285 }
1286 
1287 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1288 			       u32 gt_iir)
1289 {
1290 	if (gt_iir &
1291 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1292 		notify_ring(&dev_priv->engine[RCS]);
1293 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1294 		notify_ring(&dev_priv->engine[VCS]);
1295 }
1296 
1297 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1298 			       u32 gt_iir)
1299 {
1300 
1301 	if (gt_iir &
1302 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1303 		notify_ring(&dev_priv->engine[RCS]);
1304 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1305 		notify_ring(&dev_priv->engine[VCS]);
1306 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1307 		notify_ring(&dev_priv->engine[BCS]);
1308 
1309 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1310 		      GT_BSD_CS_ERROR_INTERRUPT |
1311 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1312 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1313 
1314 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1315 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1316 }
1317 
1318 static __always_inline void
1319 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1320 {
1321 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1322 		notify_ring(engine);
1323 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1324 		tasklet_schedule(&engine->irq_tasklet);
1325 }
1326 
1327 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1328 				   u32 master_ctl,
1329 				   u32 gt_iir[4])
1330 {
1331 	irqreturn_t ret = IRQ_NONE;
1332 
1333 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1334 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1335 		if (gt_iir[0]) {
1336 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1337 			ret = IRQ_HANDLED;
1338 		} else
1339 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1340 	}
1341 
1342 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1343 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1344 		if (gt_iir[1]) {
1345 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1346 			ret = IRQ_HANDLED;
1347 		} else
1348 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1349 	}
1350 
1351 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1352 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1353 		if (gt_iir[3]) {
1354 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1355 			ret = IRQ_HANDLED;
1356 		} else
1357 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1358 	}
1359 
1360 	if (master_ctl & GEN8_GT_PM_IRQ) {
1361 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1362 		if (gt_iir[2] & dev_priv->pm_rps_events) {
1363 			I915_WRITE_FW(GEN8_GT_IIR(2),
1364 				      gt_iir[2] & dev_priv->pm_rps_events);
1365 			ret = IRQ_HANDLED;
1366 		} else
1367 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1374 				u32 gt_iir[4])
1375 {
1376 	if (gt_iir[0]) {
1377 		gen8_cs_irq_handler(&dev_priv->engine[RCS],
1378 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1379 		gen8_cs_irq_handler(&dev_priv->engine[BCS],
1380 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1381 	}
1382 
1383 	if (gt_iir[1]) {
1384 		gen8_cs_irq_handler(&dev_priv->engine[VCS],
1385 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1386 		gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1387 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1388 	}
1389 
1390 	if (gt_iir[3])
1391 		gen8_cs_irq_handler(&dev_priv->engine[VECS],
1392 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1393 
1394 	if (gt_iir[2] & dev_priv->pm_rps_events)
1395 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1396 }
1397 
1398 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1399 {
1400 	switch (port) {
1401 	case PORT_A:
1402 		return val & PORTA_HOTPLUG_LONG_DETECT;
1403 	case PORT_B:
1404 		return val & PORTB_HOTPLUG_LONG_DETECT;
1405 	case PORT_C:
1406 		return val & PORTC_HOTPLUG_LONG_DETECT;
1407 	default:
1408 		return false;
1409 	}
1410 }
1411 
1412 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1413 {
1414 	switch (port) {
1415 	case PORT_E:
1416 		return val & PORTE_HOTPLUG_LONG_DETECT;
1417 	default:
1418 		return false;
1419 	}
1420 }
1421 
1422 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1423 {
1424 	switch (port) {
1425 	case PORT_A:
1426 		return val & PORTA_HOTPLUG_LONG_DETECT;
1427 	case PORT_B:
1428 		return val & PORTB_HOTPLUG_LONG_DETECT;
1429 	case PORT_C:
1430 		return val & PORTC_HOTPLUG_LONG_DETECT;
1431 	case PORT_D:
1432 		return val & PORTD_HOTPLUG_LONG_DETECT;
1433 	default:
1434 		return false;
1435 	}
1436 }
1437 
1438 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1439 {
1440 	switch (port) {
1441 	case PORT_A:
1442 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1443 	default:
1444 		return false;
1445 	}
1446 }
1447 
1448 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1449 {
1450 	switch (port) {
1451 	case PORT_B:
1452 		return val & PORTB_HOTPLUG_LONG_DETECT;
1453 	case PORT_C:
1454 		return val & PORTC_HOTPLUG_LONG_DETECT;
1455 	case PORT_D:
1456 		return val & PORTD_HOTPLUG_LONG_DETECT;
1457 	default:
1458 		return false;
1459 	}
1460 }
1461 
1462 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1463 {
1464 	switch (port) {
1465 	case PORT_B:
1466 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1467 	case PORT_C:
1468 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1469 	case PORT_D:
1470 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1471 	default:
1472 		return false;
1473 	}
1474 }
1475 
1476 /*
1477  * Get a bit mask of pins that have triggered, and which ones may be long.
1478  * This can be called multiple times with the same masks to accumulate
1479  * hotplug detection results from several registers.
1480  *
1481  * Note that the caller is expected to zero out the masks initially.
1482  */
1483 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1484 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1485 			     const u32 hpd[HPD_NUM_PINS],
1486 			     bool long_pulse_detect(enum port port, u32 val))
1487 {
1488 	enum port port;
1489 	int i;
1490 
1491 	for_each_hpd_pin(i) {
1492 		if ((hpd[i] & hotplug_trigger) == 0)
1493 			continue;
1494 
1495 		*pin_mask |= BIT(i);
1496 
1497 		if (!intel_hpd_pin_to_port(i, &port))
1498 			continue;
1499 
1500 		if (long_pulse_detect(port, dig_hotplug_reg))
1501 			*long_mask |= BIT(i);
1502 	}
1503 
1504 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1505 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1506 
1507 }
1508 
1509 static void gmbus_irq_handler(struct drm_device *dev)
1510 {
1511 	struct drm_i915_private *dev_priv = dev->dev_private;
1512 
1513 	wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515 
1516 static void dp_aux_irq_handler(struct drm_device *dev)
1517 {
1518 	struct drm_i915_private *dev_priv = dev->dev_private;
1519 
1520 	wake_up_all(&dev_priv->gmbus_wait_queue);
1521 }
1522 
1523 #if defined(CONFIG_DEBUG_FS)
1524 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1525 					 uint32_t crc0, uint32_t crc1,
1526 					 uint32_t crc2, uint32_t crc3,
1527 					 uint32_t crc4)
1528 {
1529 	struct drm_i915_private *dev_priv = dev->dev_private;
1530 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1531 	struct intel_pipe_crc_entry *entry;
1532 	int head, tail;
1533 
1534 	spin_lock(&pipe_crc->lock);
1535 
1536 	if (!pipe_crc->entries) {
1537 		spin_unlock(&pipe_crc->lock);
1538 		DRM_DEBUG_KMS("spurious interrupt\n");
1539 		return;
1540 	}
1541 
1542 	head = pipe_crc->head;
1543 	tail = pipe_crc->tail;
1544 
1545 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1546 		spin_unlock(&pipe_crc->lock);
1547 		DRM_ERROR("CRC buffer overflowing\n");
1548 		return;
1549 	}
1550 
1551 	entry = &pipe_crc->entries[head];
1552 
1553 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1554 	entry->crc[0] = crc0;
1555 	entry->crc[1] = crc1;
1556 	entry->crc[2] = crc2;
1557 	entry->crc[3] = crc3;
1558 	entry->crc[4] = crc4;
1559 
1560 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1561 	pipe_crc->head = head;
1562 
1563 	spin_unlock(&pipe_crc->lock);
1564 
1565 	wake_up_interruptible(&pipe_crc->wq);
1566 }
1567 #else
1568 static inline void
1569 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1570 			     uint32_t crc0, uint32_t crc1,
1571 			     uint32_t crc2, uint32_t crc3,
1572 			     uint32_t crc4) {}
1573 #endif
1574 
1575 
1576 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1577 {
1578 	struct drm_i915_private *dev_priv = dev->dev_private;
1579 
1580 	display_pipe_crc_irq_handler(dev, pipe,
1581 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1582 				     0, 0, 0, 0);
1583 }
1584 
1585 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1586 {
1587 	struct drm_i915_private *dev_priv = dev->dev_private;
1588 
1589 	display_pipe_crc_irq_handler(dev, pipe,
1590 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1591 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1592 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1593 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1594 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1595 }
1596 
1597 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1598 {
1599 	struct drm_i915_private *dev_priv = dev->dev_private;
1600 	uint32_t res1, res2;
1601 
1602 	if (INTEL_INFO(dev)->gen >= 3)
1603 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1604 	else
1605 		res1 = 0;
1606 
1607 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1608 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1609 	else
1610 		res2 = 0;
1611 
1612 	display_pipe_crc_irq_handler(dev, pipe,
1613 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1614 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1615 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1616 				     res1, res2);
1617 }
1618 
1619 /* The RPS events need forcewake, so we add them to a work queue and mask their
1620  * IMR bits until the work is done. Other interrupts can be processed without
1621  * the work queue. */
1622 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1623 {
1624 	if (pm_iir & dev_priv->pm_rps_events) {
1625 		spin_lock(&dev_priv->irq_lock);
1626 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1627 		if (dev_priv->rps.interrupts_enabled) {
1628 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1629 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1630 		}
1631 		spin_unlock(&dev_priv->irq_lock);
1632 	}
1633 
1634 	if (INTEL_INFO(dev_priv)->gen >= 8)
1635 		return;
1636 
1637 	if (HAS_VEBOX(dev_priv)) {
1638 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1639 			notify_ring(&dev_priv->engine[VECS]);
1640 
1641 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1642 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1643 	}
1644 }
1645 
1646 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1647 {
1648 	if (!drm_handle_vblank(dev, pipe))
1649 		return false;
1650 
1651 	return true;
1652 }
1653 
1654 static void valleyview_pipestat_irq_ack(struct drm_device *dev, u32 iir,
1655 					u32 pipe_stats[I915_MAX_PIPES])
1656 {
1657 	struct drm_i915_private *dev_priv = dev->dev_private;
1658 	int pipe;
1659 
1660 	spin_lock(&dev_priv->irq_lock);
1661 
1662 	if (!dev_priv->display_irqs_enabled) {
1663 		spin_unlock(&dev_priv->irq_lock);
1664 		return;
1665 	}
1666 
1667 	for_each_pipe(dev_priv, pipe) {
1668 		i915_reg_t reg;
1669 		u32 mask, iir_bit = 0;
1670 
1671 		/*
1672 		 * PIPESTAT bits get signalled even when the interrupt is
1673 		 * disabled with the mask bits, and some of the status bits do
1674 		 * not generate interrupts at all (like the underrun bit). Hence
1675 		 * we need to be careful that we only handle what we want to
1676 		 * handle.
1677 		 */
1678 
1679 		/* fifo underruns are filterered in the underrun handler. */
1680 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1681 
1682 		switch (pipe) {
1683 		case PIPE_A:
1684 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1685 			break;
1686 		case PIPE_B:
1687 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1688 			break;
1689 		case PIPE_C:
1690 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1691 			break;
1692 		}
1693 		if (iir & iir_bit)
1694 			mask |= dev_priv->pipestat_irq_mask[pipe];
1695 
1696 		if (!mask)
1697 			continue;
1698 
1699 		reg = PIPESTAT(pipe);
1700 		mask |= PIPESTAT_INT_ENABLE_MASK;
1701 		pipe_stats[pipe] = I915_READ(reg) & mask;
1702 
1703 		/*
1704 		 * Clear the PIPE*STAT regs before the IIR
1705 		 */
1706 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1707 					PIPESTAT_INT_STATUS_MASK))
1708 			I915_WRITE(reg, pipe_stats[pipe]);
1709 	}
1710 	spin_unlock(&dev_priv->irq_lock);
1711 }
1712 
1713 static void valleyview_pipestat_irq_handler(struct drm_device *dev,
1714 					    u32 pipe_stats[I915_MAX_PIPES])
1715 {
1716 	struct drm_i915_private *dev_priv = to_i915(dev);
1717 	enum pipe pipe;
1718 
1719 	for_each_pipe(dev_priv, pipe) {
1720 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1721 		    intel_pipe_handle_vblank(dev, pipe))
1722 			intel_check_page_flip(dev, pipe);
1723 
1724 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1725 			intel_prepare_page_flip(dev, pipe);
1726 			intel_finish_page_flip(dev, pipe);
1727 		}
1728 
1729 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1730 			i9xx_pipe_crc_irq_handler(dev, pipe);
1731 
1732 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1733 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1734 	}
1735 
1736 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1737 		gmbus_irq_handler(dev);
1738 }
1739 
1740 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1741 {
1742 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1743 
1744 	if (hotplug_status)
1745 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1746 
1747 	return hotplug_status;
1748 }
1749 
1750 static void i9xx_hpd_irq_handler(struct drm_device *dev,
1751 				 u32 hotplug_status)
1752 {
1753 	u32 pin_mask = 0, long_mask = 0;
1754 
1755 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1756 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1757 
1758 		if (hotplug_trigger) {
1759 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 					   hotplug_trigger, hpd_status_g4x,
1761 					   i9xx_port_hotplug_long_detect);
1762 
1763 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1764 		}
1765 
1766 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1767 			dp_aux_irq_handler(dev);
1768 	} else {
1769 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1770 
1771 		if (hotplug_trigger) {
1772 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1773 					   hotplug_trigger, hpd_status_i915,
1774 					   i9xx_port_hotplug_long_detect);
1775 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1776 		}
1777 	}
1778 }
1779 
1780 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1781 {
1782 	struct drm_device *dev = arg;
1783 	struct drm_i915_private *dev_priv = dev->dev_private;
1784 	irqreturn_t ret = IRQ_NONE;
1785 
1786 	if (!intel_irqs_enabled(dev_priv))
1787 		return IRQ_NONE;
1788 
1789 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1790 	disable_rpm_wakeref_asserts(dev_priv);
1791 
1792 	do {
1793 		u32 iir, gt_iir, pm_iir;
1794 		u32 pipe_stats[I915_MAX_PIPES] = {};
1795 		u32 hotplug_status = 0;
1796 		u32 ier = 0;
1797 
1798 		gt_iir = I915_READ(GTIIR);
1799 		pm_iir = I915_READ(GEN6_PMIIR);
1800 		iir = I915_READ(VLV_IIR);
1801 
1802 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1803 			break;
1804 
1805 		ret = IRQ_HANDLED;
1806 
1807 		/*
1808 		 * Theory on interrupt generation, based on empirical evidence:
1809 		 *
1810 		 * x = ((VLV_IIR & VLV_IER) ||
1811 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1812 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1813 		 *
1814 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1815 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1816 		 * guarantee the CPU interrupt will be raised again even if we
1817 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1818 		 * bits this time around.
1819 		 */
1820 		I915_WRITE(VLV_MASTER_IER, 0);
1821 		ier = I915_READ(VLV_IER);
1822 		I915_WRITE(VLV_IER, 0);
1823 
1824 		if (gt_iir)
1825 			I915_WRITE(GTIIR, gt_iir);
1826 		if (pm_iir)
1827 			I915_WRITE(GEN6_PMIIR, pm_iir);
1828 
1829 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1830 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1831 
1832 		/* Call regardless, as some status bits might not be
1833 		 * signalled in iir */
1834 		valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1835 
1836 		/*
1837 		 * VLV_IIR is single buffered, and reflects the level
1838 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1839 		 */
1840 		if (iir)
1841 			I915_WRITE(VLV_IIR, iir);
1842 
1843 		I915_WRITE(VLV_IER, ier);
1844 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1845 		POSTING_READ(VLV_MASTER_IER);
1846 
1847 		if (gt_iir)
1848 			snb_gt_irq_handler(dev_priv, gt_iir);
1849 		if (pm_iir)
1850 			gen6_rps_irq_handler(dev_priv, pm_iir);
1851 
1852 		if (hotplug_status)
1853 			i9xx_hpd_irq_handler(dev, hotplug_status);
1854 
1855 		valleyview_pipestat_irq_handler(dev, pipe_stats);
1856 	} while (0);
1857 
1858 	enable_rpm_wakeref_asserts(dev_priv);
1859 
1860 	return ret;
1861 }
1862 
1863 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1864 {
1865 	struct drm_device *dev = arg;
1866 	struct drm_i915_private *dev_priv = dev->dev_private;
1867 	irqreturn_t ret = IRQ_NONE;
1868 
1869 	if (!intel_irqs_enabled(dev_priv))
1870 		return IRQ_NONE;
1871 
1872 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1873 	disable_rpm_wakeref_asserts(dev_priv);
1874 
1875 	do {
1876 		u32 master_ctl, iir;
1877 		u32 gt_iir[4] = {};
1878 		u32 pipe_stats[I915_MAX_PIPES] = {};
1879 		u32 hotplug_status = 0;
1880 		u32 ier = 0;
1881 
1882 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1883 		iir = I915_READ(VLV_IIR);
1884 
1885 		if (master_ctl == 0 && iir == 0)
1886 			break;
1887 
1888 		ret = IRQ_HANDLED;
1889 
1890 		/*
1891 		 * Theory on interrupt generation, based on empirical evidence:
1892 		 *
1893 		 * x = ((VLV_IIR & VLV_IER) ||
1894 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1895 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1896 		 *
1897 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1898 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1899 		 * guarantee the CPU interrupt will be raised again even if we
1900 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1901 		 * bits this time around.
1902 		 */
1903 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1904 		ier = I915_READ(VLV_IER);
1905 		I915_WRITE(VLV_IER, 0);
1906 
1907 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1908 
1909 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1910 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1911 
1912 		/* Call regardless, as some status bits might not be
1913 		 * signalled in iir */
1914 		valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1915 
1916 		/*
1917 		 * VLV_IIR is single buffered, and reflects the level
1918 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 		 */
1920 		if (iir)
1921 			I915_WRITE(VLV_IIR, iir);
1922 
1923 		I915_WRITE(VLV_IER, ier);
1924 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1925 		POSTING_READ(GEN8_MASTER_IRQ);
1926 
1927 		gen8_gt_irq_handler(dev_priv, gt_iir);
1928 
1929 		if (hotplug_status)
1930 			i9xx_hpd_irq_handler(dev, hotplug_status);
1931 
1932 		valleyview_pipestat_irq_handler(dev, pipe_stats);
1933 	} while (0);
1934 
1935 	enable_rpm_wakeref_asserts(dev_priv);
1936 
1937 	return ret;
1938 }
1939 
1940 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1941 				const u32 hpd[HPD_NUM_PINS])
1942 {
1943 	struct drm_i915_private *dev_priv = to_i915(dev);
1944 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1945 
1946 	/*
1947 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1948 	 * unless we touch the hotplug register, even if hotplug_trigger is
1949 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1950 	 * errors.
1951 	 */
1952 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1953 	if (!hotplug_trigger) {
1954 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1955 			PORTD_HOTPLUG_STATUS_MASK |
1956 			PORTC_HOTPLUG_STATUS_MASK |
1957 			PORTB_HOTPLUG_STATUS_MASK;
1958 		dig_hotplug_reg &= ~mask;
1959 	}
1960 
1961 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1962 	if (!hotplug_trigger)
1963 		return;
1964 
1965 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1966 			   dig_hotplug_reg, hpd,
1967 			   pch_port_hotplug_long_detect);
1968 
1969 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1970 }
1971 
1972 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 	int pipe;
1976 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1977 
1978 	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1979 
1980 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1981 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1982 			       SDE_AUDIO_POWER_SHIFT);
1983 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1984 				 port_name(port));
1985 	}
1986 
1987 	if (pch_iir & SDE_AUX_MASK)
1988 		dp_aux_irq_handler(dev);
1989 
1990 	if (pch_iir & SDE_GMBUS)
1991 		gmbus_irq_handler(dev);
1992 
1993 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1994 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1995 
1996 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1997 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1998 
1999 	if (pch_iir & SDE_POISON)
2000 		DRM_ERROR("PCH poison interrupt\n");
2001 
2002 	if (pch_iir & SDE_FDI_MASK)
2003 		for_each_pipe(dev_priv, pipe)
2004 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2005 					 pipe_name(pipe),
2006 					 I915_READ(FDI_RX_IIR(pipe)));
2007 
2008 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2009 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2010 
2011 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2012 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2013 
2014 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2015 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016 
2017 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2018 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019 }
2020 
2021 static void ivb_err_int_handler(struct drm_device *dev)
2022 {
2023 	struct drm_i915_private *dev_priv = dev->dev_private;
2024 	u32 err_int = I915_READ(GEN7_ERR_INT);
2025 	enum pipe pipe;
2026 
2027 	if (err_int & ERR_INT_POISON)
2028 		DRM_ERROR("Poison interrupt\n");
2029 
2030 	for_each_pipe(dev_priv, pipe) {
2031 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2032 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2033 
2034 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2035 			if (IS_IVYBRIDGE(dev))
2036 				ivb_pipe_crc_irq_handler(dev, pipe);
2037 			else
2038 				hsw_pipe_crc_irq_handler(dev, pipe);
2039 		}
2040 	}
2041 
2042 	I915_WRITE(GEN7_ERR_INT, err_int);
2043 }
2044 
2045 static void cpt_serr_int_handler(struct drm_device *dev)
2046 {
2047 	struct drm_i915_private *dev_priv = dev->dev_private;
2048 	u32 serr_int = I915_READ(SERR_INT);
2049 
2050 	if (serr_int & SERR_INT_POISON)
2051 		DRM_ERROR("PCH poison interrupt\n");
2052 
2053 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2054 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2055 
2056 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2057 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2058 
2059 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2060 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2061 
2062 	I915_WRITE(SERR_INT, serr_int);
2063 }
2064 
2065 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2066 {
2067 	struct drm_i915_private *dev_priv = dev->dev_private;
2068 	int pipe;
2069 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2070 
2071 	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2072 
2073 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2074 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2075 			       SDE_AUDIO_POWER_SHIFT_CPT);
2076 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2077 				 port_name(port));
2078 	}
2079 
2080 	if (pch_iir & SDE_AUX_MASK_CPT)
2081 		dp_aux_irq_handler(dev);
2082 
2083 	if (pch_iir & SDE_GMBUS_CPT)
2084 		gmbus_irq_handler(dev);
2085 
2086 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2087 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2088 
2089 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2090 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2091 
2092 	if (pch_iir & SDE_FDI_MASK_CPT)
2093 		for_each_pipe(dev_priv, pipe)
2094 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2095 					 pipe_name(pipe),
2096 					 I915_READ(FDI_RX_IIR(pipe)));
2097 
2098 	if (pch_iir & SDE_ERROR_CPT)
2099 		cpt_serr_int_handler(dev);
2100 }
2101 
2102 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2103 {
2104 	struct drm_i915_private *dev_priv = dev->dev_private;
2105 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2106 		~SDE_PORTE_HOTPLUG_SPT;
2107 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2108 	u32 pin_mask = 0, long_mask = 0;
2109 
2110 	if (hotplug_trigger) {
2111 		u32 dig_hotplug_reg;
2112 
2113 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2114 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2115 
2116 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2117 				   dig_hotplug_reg, hpd_spt,
2118 				   spt_port_hotplug_long_detect);
2119 	}
2120 
2121 	if (hotplug2_trigger) {
2122 		u32 dig_hotplug_reg;
2123 
2124 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2125 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2126 
2127 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2128 				   dig_hotplug_reg, hpd_spt,
2129 				   spt_port_hotplug2_long_detect);
2130 	}
2131 
2132 	if (pin_mask)
2133 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2134 
2135 	if (pch_iir & SDE_GMBUS_CPT)
2136 		gmbus_irq_handler(dev);
2137 }
2138 
2139 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2140 				const u32 hpd[HPD_NUM_PINS])
2141 {
2142 	struct drm_i915_private *dev_priv = to_i915(dev);
2143 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2144 
2145 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2146 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2147 
2148 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2149 			   dig_hotplug_reg, hpd,
2150 			   ilk_port_hotplug_long_detect);
2151 
2152 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2153 }
2154 
2155 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2156 {
2157 	struct drm_i915_private *dev_priv = dev->dev_private;
2158 	enum pipe pipe;
2159 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2160 
2161 	if (hotplug_trigger)
2162 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2163 
2164 	if (de_iir & DE_AUX_CHANNEL_A)
2165 		dp_aux_irq_handler(dev);
2166 
2167 	if (de_iir & DE_GSE)
2168 		intel_opregion_asle_intr(dev);
2169 
2170 	if (de_iir & DE_POISON)
2171 		DRM_ERROR("Poison interrupt\n");
2172 
2173 	for_each_pipe(dev_priv, pipe) {
2174 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2175 		    intel_pipe_handle_vblank(dev, pipe))
2176 			intel_check_page_flip(dev, pipe);
2177 
2178 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2179 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2180 
2181 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2182 			i9xx_pipe_crc_irq_handler(dev, pipe);
2183 
2184 		/* plane/pipes map 1:1 on ilk+ */
2185 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2186 			intel_prepare_page_flip(dev, pipe);
2187 			intel_finish_page_flip_plane(dev, pipe);
2188 		}
2189 	}
2190 
2191 	/* check event from PCH */
2192 	if (de_iir & DE_PCH_EVENT) {
2193 		u32 pch_iir = I915_READ(SDEIIR);
2194 
2195 		if (HAS_PCH_CPT(dev))
2196 			cpt_irq_handler(dev, pch_iir);
2197 		else
2198 			ibx_irq_handler(dev, pch_iir);
2199 
2200 		/* should clear PCH hotplug event before clear CPU irq */
2201 		I915_WRITE(SDEIIR, pch_iir);
2202 	}
2203 
2204 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2205 		ironlake_rps_change_irq_handler(dev);
2206 }
2207 
2208 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2209 {
2210 	struct drm_i915_private *dev_priv = dev->dev_private;
2211 	enum pipe pipe;
2212 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2213 
2214 	if (hotplug_trigger)
2215 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2216 
2217 	if (de_iir & DE_ERR_INT_IVB)
2218 		ivb_err_int_handler(dev);
2219 
2220 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2221 		dp_aux_irq_handler(dev);
2222 
2223 	if (de_iir & DE_GSE_IVB)
2224 		intel_opregion_asle_intr(dev);
2225 
2226 	for_each_pipe(dev_priv, pipe) {
2227 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2228 		    intel_pipe_handle_vblank(dev, pipe))
2229 			intel_check_page_flip(dev, pipe);
2230 
2231 		/* plane/pipes map 1:1 on ilk+ */
2232 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2233 			intel_prepare_page_flip(dev, pipe);
2234 			intel_finish_page_flip_plane(dev, pipe);
2235 		}
2236 	}
2237 
2238 	/* check event from PCH */
2239 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2240 		u32 pch_iir = I915_READ(SDEIIR);
2241 
2242 		cpt_irq_handler(dev, pch_iir);
2243 
2244 		/* clear PCH hotplug event before clear CPU irq */
2245 		I915_WRITE(SDEIIR, pch_iir);
2246 	}
2247 }
2248 
2249 /*
2250  * To handle irqs with the minimum potential races with fresh interrupts, we:
2251  * 1 - Disable Master Interrupt Control.
2252  * 2 - Find the source(s) of the interrupt.
2253  * 3 - Clear the Interrupt Identity bits (IIR).
2254  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2255  * 5 - Re-enable Master Interrupt Control.
2256  */
2257 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2258 {
2259 	struct drm_device *dev = arg;
2260 	struct drm_i915_private *dev_priv = dev->dev_private;
2261 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2262 	irqreturn_t ret = IRQ_NONE;
2263 
2264 	if (!intel_irqs_enabled(dev_priv))
2265 		return IRQ_NONE;
2266 
2267 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2268 	disable_rpm_wakeref_asserts(dev_priv);
2269 
2270 	/* disable master interrupt before clearing iir  */
2271 	de_ier = I915_READ(DEIER);
2272 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2273 	POSTING_READ(DEIER);
2274 
2275 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2276 	 * interrupts will will be stored on its back queue, and then we'll be
2277 	 * able to process them after we restore SDEIER (as soon as we restore
2278 	 * it, we'll get an interrupt if SDEIIR still has something to process
2279 	 * due to its back queue). */
2280 	if (!HAS_PCH_NOP(dev)) {
2281 		sde_ier = I915_READ(SDEIER);
2282 		I915_WRITE(SDEIER, 0);
2283 		POSTING_READ(SDEIER);
2284 	}
2285 
2286 	/* Find, clear, then process each source of interrupt */
2287 
2288 	gt_iir = I915_READ(GTIIR);
2289 	if (gt_iir) {
2290 		I915_WRITE(GTIIR, gt_iir);
2291 		ret = IRQ_HANDLED;
2292 		if (INTEL_INFO(dev)->gen >= 6)
2293 			snb_gt_irq_handler(dev_priv, gt_iir);
2294 		else
2295 			ilk_gt_irq_handler(dev_priv, gt_iir);
2296 	}
2297 
2298 	de_iir = I915_READ(DEIIR);
2299 	if (de_iir) {
2300 		I915_WRITE(DEIIR, de_iir);
2301 		ret = IRQ_HANDLED;
2302 		if (INTEL_INFO(dev)->gen >= 7)
2303 			ivb_display_irq_handler(dev, de_iir);
2304 		else
2305 			ilk_display_irq_handler(dev, de_iir);
2306 	}
2307 
2308 	if (INTEL_INFO(dev)->gen >= 6) {
2309 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2310 		if (pm_iir) {
2311 			I915_WRITE(GEN6_PMIIR, pm_iir);
2312 			ret = IRQ_HANDLED;
2313 			gen6_rps_irq_handler(dev_priv, pm_iir);
2314 		}
2315 	}
2316 
2317 	I915_WRITE(DEIER, de_ier);
2318 	POSTING_READ(DEIER);
2319 	if (!HAS_PCH_NOP(dev)) {
2320 		I915_WRITE(SDEIER, sde_ier);
2321 		POSTING_READ(SDEIER);
2322 	}
2323 
2324 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2325 	enable_rpm_wakeref_asserts(dev_priv);
2326 
2327 	return ret;
2328 }
2329 
2330 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2331 				const u32 hpd[HPD_NUM_PINS])
2332 {
2333 	struct drm_i915_private *dev_priv = to_i915(dev);
2334 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2335 
2336 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2337 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2338 
2339 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2340 			   dig_hotplug_reg, hpd,
2341 			   bxt_port_hotplug_long_detect);
2342 
2343 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2344 }
2345 
2346 static irqreturn_t
2347 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2348 {
2349 	struct drm_device *dev = dev_priv->dev;
2350 	irqreturn_t ret = IRQ_NONE;
2351 	u32 iir;
2352 	enum pipe pipe;
2353 
2354 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2355 		iir = I915_READ(GEN8_DE_MISC_IIR);
2356 		if (iir) {
2357 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2358 			ret = IRQ_HANDLED;
2359 			if (iir & GEN8_DE_MISC_GSE)
2360 				intel_opregion_asle_intr(dev);
2361 			else
2362 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2363 		}
2364 		else
2365 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2366 	}
2367 
2368 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2369 		iir = I915_READ(GEN8_DE_PORT_IIR);
2370 		if (iir) {
2371 			u32 tmp_mask;
2372 			bool found = false;
2373 
2374 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2375 			ret = IRQ_HANDLED;
2376 
2377 			tmp_mask = GEN8_AUX_CHANNEL_A;
2378 			if (INTEL_INFO(dev_priv)->gen >= 9)
2379 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2380 					    GEN9_AUX_CHANNEL_C |
2381 					    GEN9_AUX_CHANNEL_D;
2382 
2383 			if (iir & tmp_mask) {
2384 				dp_aux_irq_handler(dev);
2385 				found = true;
2386 			}
2387 
2388 			if (IS_BROXTON(dev_priv)) {
2389 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2390 				if (tmp_mask) {
2391 					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2392 					found = true;
2393 				}
2394 			} else if (IS_BROADWELL(dev_priv)) {
2395 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2396 				if (tmp_mask) {
2397 					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2398 					found = true;
2399 				}
2400 			}
2401 
2402 			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2403 				gmbus_irq_handler(dev);
2404 				found = true;
2405 			}
2406 
2407 			if (!found)
2408 				DRM_ERROR("Unexpected DE Port interrupt\n");
2409 		}
2410 		else
2411 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2412 	}
2413 
2414 	for_each_pipe(dev_priv, pipe) {
2415 		u32 flip_done, fault_errors;
2416 
2417 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2418 			continue;
2419 
2420 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2421 		if (!iir) {
2422 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2423 			continue;
2424 		}
2425 
2426 		ret = IRQ_HANDLED;
2427 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2428 
2429 		if (iir & GEN8_PIPE_VBLANK &&
2430 		    intel_pipe_handle_vblank(dev, pipe))
2431 			intel_check_page_flip(dev, pipe);
2432 
2433 		flip_done = iir;
2434 		if (INTEL_INFO(dev_priv)->gen >= 9)
2435 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2436 		else
2437 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2438 
2439 		if (flip_done) {
2440 			intel_prepare_page_flip(dev, pipe);
2441 			intel_finish_page_flip_plane(dev, pipe);
2442 		}
2443 
2444 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2445 			hsw_pipe_crc_irq_handler(dev, pipe);
2446 
2447 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2448 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2449 
2450 		fault_errors = iir;
2451 		if (INTEL_INFO(dev_priv)->gen >= 9)
2452 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2453 		else
2454 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2455 
2456 		if (fault_errors)
2457 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2458 				  pipe_name(pipe),
2459 				  fault_errors);
2460 	}
2461 
2462 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2463 	    master_ctl & GEN8_DE_PCH_IRQ) {
2464 		/*
2465 		 * FIXME(BDW): Assume for now that the new interrupt handling
2466 		 * scheme also closed the SDE interrupt handling race we've seen
2467 		 * on older pch-split platforms. But this needs testing.
2468 		 */
2469 		iir = I915_READ(SDEIIR);
2470 		if (iir) {
2471 			I915_WRITE(SDEIIR, iir);
2472 			ret = IRQ_HANDLED;
2473 
2474 			if (HAS_PCH_SPT(dev_priv))
2475 				spt_irq_handler(dev, iir);
2476 			else
2477 				cpt_irq_handler(dev, iir);
2478 		} else {
2479 			/*
2480 			 * Like on previous PCH there seems to be something
2481 			 * fishy going on with forwarding PCH interrupts.
2482 			 */
2483 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2484 		}
2485 	}
2486 
2487 	return ret;
2488 }
2489 
2490 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2491 {
2492 	struct drm_device *dev = arg;
2493 	struct drm_i915_private *dev_priv = dev->dev_private;
2494 	u32 master_ctl;
2495 	u32 gt_iir[4] = {};
2496 	irqreturn_t ret;
2497 
2498 	if (!intel_irqs_enabled(dev_priv))
2499 		return IRQ_NONE;
2500 
2501 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2502 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2503 	if (!master_ctl)
2504 		return IRQ_NONE;
2505 
2506 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2507 
2508 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2509 	disable_rpm_wakeref_asserts(dev_priv);
2510 
2511 	/* Find, clear, then process each source of interrupt */
2512 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2513 	gen8_gt_irq_handler(dev_priv, gt_iir);
2514 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2515 
2516 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2517 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2518 
2519 	enable_rpm_wakeref_asserts(dev_priv);
2520 
2521 	return ret;
2522 }
2523 
2524 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2525 			       bool reset_completed)
2526 {
2527 	struct intel_engine_cs *engine;
2528 
2529 	/*
2530 	 * Notify all waiters for GPU completion events that reset state has
2531 	 * been changed, and that they need to restart their wait after
2532 	 * checking for potential errors (and bail out to drop locks if there is
2533 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2534 	 */
2535 
2536 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2537 	for_each_engine(engine, dev_priv)
2538 		wake_up_all(&engine->irq_queue);
2539 
2540 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2541 	wake_up_all(&dev_priv->pending_flip_queue);
2542 
2543 	/*
2544 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2545 	 * reset state is cleared.
2546 	 */
2547 	if (reset_completed)
2548 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2549 }
2550 
2551 /**
2552  * i915_reset_and_wakeup - do process context error handling work
2553  * @dev: drm device
2554  *
2555  * Fire an error uevent so userspace can see that a hang or error
2556  * was detected.
2557  */
2558 static void i915_reset_and_wakeup(struct drm_device *dev)
2559 {
2560 	struct drm_i915_private *dev_priv = to_i915(dev);
2561 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2562 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2563 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2564 	int ret;
2565 
2566 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2567 
2568 	/*
2569 	 * Note that there's only one work item which does gpu resets, so we
2570 	 * need not worry about concurrent gpu resets potentially incrementing
2571 	 * error->reset_counter twice. We only need to take care of another
2572 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2573 	 * quick check for that is good enough: schedule_work ensures the
2574 	 * correct ordering between hang detection and this work item, and since
2575 	 * the reset in-progress bit is only ever set by code outside of this
2576 	 * work we don't need to worry about any other races.
2577 	 */
2578 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2579 		DRM_DEBUG_DRIVER("resetting chip\n");
2580 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2581 				   reset_event);
2582 
2583 		/*
2584 		 * In most cases it's guaranteed that we get here with an RPM
2585 		 * reference held, for example because there is a pending GPU
2586 		 * request that won't finish until the reset is done. This
2587 		 * isn't the case at least when we get here by doing a
2588 		 * simulated reset via debugs, so get an RPM reference.
2589 		 */
2590 		intel_runtime_pm_get(dev_priv);
2591 
2592 		intel_prepare_reset(dev);
2593 
2594 		/*
2595 		 * All state reset _must_ be completed before we update the
2596 		 * reset counter, for otherwise waiters might miss the reset
2597 		 * pending state and not properly drop locks, resulting in
2598 		 * deadlocks with the reset work.
2599 		 */
2600 		ret = i915_reset(dev);
2601 
2602 		intel_finish_reset(dev);
2603 
2604 		intel_runtime_pm_put(dev_priv);
2605 
2606 		if (ret == 0)
2607 			kobject_uevent_env(&dev->primary->kdev->kobj,
2608 					   KOBJ_CHANGE, reset_done_event);
2609 
2610 		/*
2611 		 * Note: The wake_up also serves as a memory barrier so that
2612 		 * waiters see the update value of the reset counter atomic_t.
2613 		 */
2614 		i915_error_wake_up(dev_priv, true);
2615 	}
2616 }
2617 
2618 static void i915_report_and_clear_eir(struct drm_device *dev)
2619 {
2620 	struct drm_i915_private *dev_priv = dev->dev_private;
2621 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2622 	u32 eir = I915_READ(EIR);
2623 	int pipe, i;
2624 
2625 	if (!eir)
2626 		return;
2627 
2628 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2629 
2630 	i915_get_extra_instdone(dev, instdone);
2631 
2632 	if (IS_G4X(dev)) {
2633 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2634 			u32 ipeir = I915_READ(IPEIR_I965);
2635 
2636 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2637 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2638 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2639 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2640 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2641 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2642 			I915_WRITE(IPEIR_I965, ipeir);
2643 			POSTING_READ(IPEIR_I965);
2644 		}
2645 		if (eir & GM45_ERROR_PAGE_TABLE) {
2646 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2647 			pr_err("page table error\n");
2648 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2649 			I915_WRITE(PGTBL_ER, pgtbl_err);
2650 			POSTING_READ(PGTBL_ER);
2651 		}
2652 	}
2653 
2654 	if (!IS_GEN2(dev)) {
2655 		if (eir & I915_ERROR_PAGE_TABLE) {
2656 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2657 			pr_err("page table error\n");
2658 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2659 			I915_WRITE(PGTBL_ER, pgtbl_err);
2660 			POSTING_READ(PGTBL_ER);
2661 		}
2662 	}
2663 
2664 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2665 		pr_err("memory refresh error:\n");
2666 		for_each_pipe(dev_priv, pipe)
2667 			pr_err("pipe %c stat: 0x%08x\n",
2668 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2669 		/* pipestat has already been acked */
2670 	}
2671 	if (eir & I915_ERROR_INSTRUCTION) {
2672 		pr_err("instruction error\n");
2673 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2674 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2675 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2676 		if (INTEL_INFO(dev)->gen < 4) {
2677 			u32 ipeir = I915_READ(IPEIR);
2678 
2679 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2680 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2681 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2682 			I915_WRITE(IPEIR, ipeir);
2683 			POSTING_READ(IPEIR);
2684 		} else {
2685 			u32 ipeir = I915_READ(IPEIR_I965);
2686 
2687 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2688 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2689 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2690 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2691 			I915_WRITE(IPEIR_I965, ipeir);
2692 			POSTING_READ(IPEIR_I965);
2693 		}
2694 	}
2695 
2696 	I915_WRITE(EIR, eir);
2697 	POSTING_READ(EIR);
2698 	eir = I915_READ(EIR);
2699 	if (eir) {
2700 		/*
2701 		 * some errors might have become stuck,
2702 		 * mask them.
2703 		 */
2704 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2705 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2706 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2707 	}
2708 }
2709 
2710 /**
2711  * i915_handle_error - handle a gpu error
2712  * @dev: drm device
2713  * @engine_mask: mask representing engines that are hung
2714  * Do some basic checking of register state at error time and
2715  * dump it to the syslog.  Also call i915_capture_error_state() to make
2716  * sure we get a record and make it available in debugfs.  Fire a uevent
2717  * so userspace knows something bad happened (should trigger collection
2718  * of a ring dump etc.).
2719  */
2720 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2721 		       const char *fmt, ...)
2722 {
2723 	struct drm_i915_private *dev_priv = dev->dev_private;
2724 	va_list args;
2725 	char error_msg[80];
2726 
2727 	va_start(args, fmt);
2728 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2729 	va_end(args);
2730 
2731 	i915_capture_error_state(dev, engine_mask, error_msg);
2732 	i915_report_and_clear_eir(dev);
2733 
2734 	if (engine_mask) {
2735 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2736 				&dev_priv->gpu_error.reset_counter);
2737 
2738 		/*
2739 		 * Wakeup waiting processes so that the reset function
2740 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2741 		 * various locks. By bumping the reset counter first, the woken
2742 		 * processes will see a reset in progress and back off,
2743 		 * releasing their locks and then wait for the reset completion.
2744 		 * We must do this for _all_ gpu waiters that might hold locks
2745 		 * that the reset work needs to acquire.
2746 		 *
2747 		 * Note: The wake_up serves as the required memory barrier to
2748 		 * ensure that the waiters see the updated value of the reset
2749 		 * counter atomic_t.
2750 		 */
2751 		i915_error_wake_up(dev_priv, false);
2752 	}
2753 
2754 	i915_reset_and_wakeup(dev);
2755 }
2756 
2757 /* Called from drm generic code, passed 'crtc' which
2758  * we use as a pipe index
2759  */
2760 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762 	struct drm_i915_private *dev_priv = dev->dev_private;
2763 	unsigned long irqflags;
2764 
2765 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766 	if (INTEL_INFO(dev)->gen >= 4)
2767 		i915_enable_pipestat(dev_priv, pipe,
2768 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2769 	else
2770 		i915_enable_pipestat(dev_priv, pipe,
2771 				     PIPE_VBLANK_INTERRUPT_STATUS);
2772 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2773 
2774 	return 0;
2775 }
2776 
2777 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2778 {
2779 	struct drm_i915_private *dev_priv = dev->dev_private;
2780 	unsigned long irqflags;
2781 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2782 						     DE_PIPE_VBLANK(pipe);
2783 
2784 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785 	ilk_enable_display_irq(dev_priv, bit);
2786 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787 
2788 	return 0;
2789 }
2790 
2791 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793 	struct drm_i915_private *dev_priv = dev->dev_private;
2794 	unsigned long irqflags;
2795 
2796 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 	i915_enable_pipestat(dev_priv, pipe,
2798 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2799 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800 
2801 	return 0;
2802 }
2803 
2804 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2805 {
2806 	struct drm_i915_private *dev_priv = dev->dev_private;
2807 	unsigned long irqflags;
2808 
2809 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2810 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2811 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2812 
2813 	return 0;
2814 }
2815 
2816 /* Called from drm generic code, passed 'crtc' which
2817  * we use as a pipe index
2818  */
2819 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821 	struct drm_i915_private *dev_priv = dev->dev_private;
2822 	unsigned long irqflags;
2823 
2824 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825 	i915_disable_pipestat(dev_priv, pipe,
2826 			      PIPE_VBLANK_INTERRUPT_STATUS |
2827 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2828 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2829 }
2830 
2831 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2832 {
2833 	struct drm_i915_private *dev_priv = dev->dev_private;
2834 	unsigned long irqflags;
2835 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2836 						     DE_PIPE_VBLANK(pipe);
2837 
2838 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2839 	ilk_disable_display_irq(dev_priv, bit);
2840 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2841 }
2842 
2843 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845 	struct drm_i915_private *dev_priv = dev->dev_private;
2846 	unsigned long irqflags;
2847 
2848 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849 	i915_disable_pipestat(dev_priv, pipe,
2850 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2851 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2852 }
2853 
2854 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2855 {
2856 	struct drm_i915_private *dev_priv = dev->dev_private;
2857 	unsigned long irqflags;
2858 
2859 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2860 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2861 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2862 }
2863 
2864 static bool
2865 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2866 {
2867 	return i915_seqno_passed(seqno,
2868 				 READ_ONCE(engine->last_submitted_seqno));
2869 }
2870 
2871 static bool
2872 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2873 {
2874 	if (INTEL_INFO(dev)->gen >= 8) {
2875 		return (ipehr >> 23) == 0x1c;
2876 	} else {
2877 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2878 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2879 				 MI_SEMAPHORE_REGISTER);
2880 	}
2881 }
2882 
2883 static struct intel_engine_cs *
2884 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2885 				 u64 offset)
2886 {
2887 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2888 	struct intel_engine_cs *signaller;
2889 
2890 	if (INTEL_INFO(dev_priv)->gen >= 8) {
2891 		for_each_engine(signaller, dev_priv) {
2892 			if (engine == signaller)
2893 				continue;
2894 
2895 			if (offset == signaller->semaphore.signal_ggtt[engine->id])
2896 				return signaller;
2897 		}
2898 	} else {
2899 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2900 
2901 		for_each_engine(signaller, dev_priv) {
2902 			if(engine == signaller)
2903 				continue;
2904 
2905 			if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2906 				return signaller;
2907 		}
2908 	}
2909 
2910 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2911 		  engine->id, ipehr, offset);
2912 
2913 	return NULL;
2914 }
2915 
2916 static struct intel_engine_cs *
2917 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2918 {
2919 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2920 	u32 cmd, ipehr, head;
2921 	u64 offset = 0;
2922 	int i, backwards;
2923 
2924 	/*
2925 	 * This function does not support execlist mode - any attempt to
2926 	 * proceed further into this function will result in a kernel panic
2927 	 * when dereferencing ring->buffer, which is not set up in execlist
2928 	 * mode.
2929 	 *
2930 	 * The correct way of doing it would be to derive the currently
2931 	 * executing ring buffer from the current context, which is derived
2932 	 * from the currently running request. Unfortunately, to get the
2933 	 * current request we would have to grab the struct_mutex before doing
2934 	 * anything else, which would be ill-advised since some other thread
2935 	 * might have grabbed it already and managed to hang itself, causing
2936 	 * the hang checker to deadlock.
2937 	 *
2938 	 * Therefore, this function does not support execlist mode in its
2939 	 * current form. Just return NULL and move on.
2940 	 */
2941 	if (engine->buffer == NULL)
2942 		return NULL;
2943 
2944 	ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2945 	if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2946 		return NULL;
2947 
2948 	/*
2949 	 * HEAD is likely pointing to the dword after the actual command,
2950 	 * so scan backwards until we find the MBOX. But limit it to just 3
2951 	 * or 4 dwords depending on the semaphore wait command size.
2952 	 * Note that we don't care about ACTHD here since that might
2953 	 * point at at batch, and semaphores are always emitted into the
2954 	 * ringbuffer itself.
2955 	 */
2956 	head = I915_READ_HEAD(engine) & HEAD_ADDR;
2957 	backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2958 
2959 	for (i = backwards; i; --i) {
2960 		/*
2961 		 * Be paranoid and presume the hw has gone off into the wild -
2962 		 * our ring is smaller than what the hardware (and hence
2963 		 * HEAD_ADDR) allows. Also handles wrap-around.
2964 		 */
2965 		head &= engine->buffer->size - 1;
2966 
2967 		/* This here seems to blow up */
2968 		cmd = ioread32(engine->buffer->virtual_start + head);
2969 		if (cmd == ipehr)
2970 			break;
2971 
2972 		head -= 4;
2973 	}
2974 
2975 	if (!i)
2976 		return NULL;
2977 
2978 	*seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2979 	if (INTEL_INFO(engine->dev)->gen >= 8) {
2980 		offset = ioread32(engine->buffer->virtual_start + head + 12);
2981 		offset <<= 32;
2982 		offset = ioread32(engine->buffer->virtual_start + head + 8);
2983 	}
2984 	return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2985 }
2986 
2987 static int semaphore_passed(struct intel_engine_cs *engine)
2988 {
2989 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2990 	struct intel_engine_cs *signaller;
2991 	u32 seqno;
2992 
2993 	engine->hangcheck.deadlock++;
2994 
2995 	signaller = semaphore_waits_for(engine, &seqno);
2996 	if (signaller == NULL)
2997 		return -1;
2998 
2999 	/* Prevent pathological recursion due to driver bugs */
3000 	if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
3001 		return -1;
3002 
3003 	if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
3004 		return 1;
3005 
3006 	/* cursory check for an unkickable deadlock */
3007 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3008 	    semaphore_passed(signaller) < 0)
3009 		return -1;
3010 
3011 	return 0;
3012 }
3013 
3014 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3015 {
3016 	struct intel_engine_cs *engine;
3017 
3018 	for_each_engine(engine, dev_priv)
3019 		engine->hangcheck.deadlock = 0;
3020 }
3021 
3022 static bool subunits_stuck(struct intel_engine_cs *engine)
3023 {
3024 	u32 instdone[I915_NUM_INSTDONE_REG];
3025 	bool stuck;
3026 	int i;
3027 
3028 	if (engine->id != RCS)
3029 		return true;
3030 
3031 	i915_get_extra_instdone(engine->dev, instdone);
3032 
3033 	/* There might be unstable subunit states even when
3034 	 * actual head is not moving. Filter out the unstable ones by
3035 	 * accumulating the undone -> done transitions and only
3036 	 * consider those as progress.
3037 	 */
3038 	stuck = true;
3039 	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3040 		const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3041 
3042 		if (tmp != engine->hangcheck.instdone[i])
3043 			stuck = false;
3044 
3045 		engine->hangcheck.instdone[i] |= tmp;
3046 	}
3047 
3048 	return stuck;
3049 }
3050 
3051 static enum intel_ring_hangcheck_action
3052 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3053 {
3054 	if (acthd != engine->hangcheck.acthd) {
3055 
3056 		/* Clear subunit states on head movement */
3057 		memset(engine->hangcheck.instdone, 0,
3058 		       sizeof(engine->hangcheck.instdone));
3059 
3060 		return HANGCHECK_ACTIVE;
3061 	}
3062 
3063 	if (!subunits_stuck(engine))
3064 		return HANGCHECK_ACTIVE;
3065 
3066 	return HANGCHECK_HUNG;
3067 }
3068 
3069 static enum intel_ring_hangcheck_action
3070 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3071 {
3072 	struct drm_device *dev = engine->dev;
3073 	struct drm_i915_private *dev_priv = dev->dev_private;
3074 	enum intel_ring_hangcheck_action ha;
3075 	u32 tmp;
3076 
3077 	ha = head_stuck(engine, acthd);
3078 	if (ha != HANGCHECK_HUNG)
3079 		return ha;
3080 
3081 	if (IS_GEN2(dev))
3082 		return HANGCHECK_HUNG;
3083 
3084 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3085 	 * If so we can simply poke the RB_WAIT bit
3086 	 * and break the hang. This should work on
3087 	 * all but the second generation chipsets.
3088 	 */
3089 	tmp = I915_READ_CTL(engine);
3090 	if (tmp & RING_WAIT) {
3091 		i915_handle_error(dev, 0,
3092 				  "Kicking stuck wait on %s",
3093 				  engine->name);
3094 		I915_WRITE_CTL(engine, tmp);
3095 		return HANGCHECK_KICK;
3096 	}
3097 
3098 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3099 		switch (semaphore_passed(engine)) {
3100 		default:
3101 			return HANGCHECK_HUNG;
3102 		case 1:
3103 			i915_handle_error(dev, 0,
3104 					  "Kicking stuck semaphore on %s",
3105 					  engine->name);
3106 			I915_WRITE_CTL(engine, tmp);
3107 			return HANGCHECK_KICK;
3108 		case 0:
3109 			return HANGCHECK_WAIT;
3110 		}
3111 	}
3112 
3113 	return HANGCHECK_HUNG;
3114 }
3115 
3116 static unsigned kick_waiters(struct intel_engine_cs *engine)
3117 {
3118 	struct drm_i915_private *i915 = to_i915(engine->dev);
3119 	unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3120 
3121 	if (engine->hangcheck.user_interrupts == user_interrupts &&
3122 	    !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3123 		if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3124 			DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3125 				  engine->name);
3126 		else
3127 			DRM_INFO("Fake missed irq on %s\n",
3128 				 engine->name);
3129 		wake_up_all(&engine->irq_queue);
3130 	}
3131 
3132 	return user_interrupts;
3133 }
3134 /*
3135  * This is called when the chip hasn't reported back with completed
3136  * batchbuffers in a long time. We keep track per ring seqno progress and
3137  * if there are no progress, hangcheck score for that ring is increased.
3138  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3139  * we kick the ring. If we see no progress on three subsequent calls
3140  * we assume chip is wedged and try to fix it by resetting the chip.
3141  */
3142 static void i915_hangcheck_elapsed(struct work_struct *work)
3143 {
3144 	struct drm_i915_private *dev_priv =
3145 		container_of(work, typeof(*dev_priv),
3146 			     gpu_error.hangcheck_work.work);
3147 	struct drm_device *dev = dev_priv->dev;
3148 	struct intel_engine_cs *engine;
3149 	enum intel_engine_id id;
3150 	int busy_count = 0, rings_hung = 0;
3151 	bool stuck[I915_NUM_ENGINES] = { 0 };
3152 #define BUSY 1
3153 #define KICK 5
3154 #define HUNG 20
3155 #define ACTIVE_DECAY 15
3156 
3157 	if (!i915.enable_hangcheck)
3158 		return;
3159 
3160 	/*
3161 	 * The hangcheck work is synced during runtime suspend, we don't
3162 	 * require a wakeref. TODO: instead of disabling the asserts make
3163 	 * sure that we hold a reference when this work is running.
3164 	 */
3165 	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3166 
3167 	/* As enabling the GPU requires fairly extensive mmio access,
3168 	 * periodically arm the mmio checker to see if we are triggering
3169 	 * any invalid access.
3170 	 */
3171 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3172 
3173 	for_each_engine_id(engine, dev_priv, id) {
3174 		u64 acthd;
3175 		u32 seqno;
3176 		unsigned user_interrupts;
3177 		bool busy = true;
3178 
3179 		semaphore_clear_deadlocks(dev_priv);
3180 
3181 		/* We don't strictly need an irq-barrier here, as we are not
3182 		 * serving an interrupt request, be paranoid in case the
3183 		 * barrier has side-effects (such as preventing a broken
3184 		 * cacheline snoop) and so be sure that we can see the seqno
3185 		 * advance. If the seqno should stick, due to a stale
3186 		 * cacheline, we would erroneously declare the GPU hung.
3187 		 */
3188 		if (engine->irq_seqno_barrier)
3189 			engine->irq_seqno_barrier(engine);
3190 
3191 		acthd = intel_ring_get_active_head(engine);
3192 		seqno = engine->get_seqno(engine);
3193 
3194 		/* Reset stuck interrupts between batch advances */
3195 		user_interrupts = 0;
3196 
3197 		if (engine->hangcheck.seqno == seqno) {
3198 			if (ring_idle(engine, seqno)) {
3199 				engine->hangcheck.action = HANGCHECK_IDLE;
3200 				if (waitqueue_active(&engine->irq_queue)) {
3201 					/* Safeguard against driver failure */
3202 					user_interrupts = kick_waiters(engine);
3203 					engine->hangcheck.score += BUSY;
3204 				} else
3205 					busy = false;
3206 			} else {
3207 				/* We always increment the hangcheck score
3208 				 * if the ring is busy and still processing
3209 				 * the same request, so that no single request
3210 				 * can run indefinitely (such as a chain of
3211 				 * batches). The only time we do not increment
3212 				 * the hangcheck score on this ring, if this
3213 				 * ring is in a legitimate wait for another
3214 				 * ring. In that case the waiting ring is a
3215 				 * victim and we want to be sure we catch the
3216 				 * right culprit. Then every time we do kick
3217 				 * the ring, add a small increment to the
3218 				 * score so that we can catch a batch that is
3219 				 * being repeatedly kicked and so responsible
3220 				 * for stalling the machine.
3221 				 */
3222 				engine->hangcheck.action = ring_stuck(engine,
3223 								      acthd);
3224 
3225 				switch (engine->hangcheck.action) {
3226 				case HANGCHECK_IDLE:
3227 				case HANGCHECK_WAIT:
3228 					break;
3229 				case HANGCHECK_ACTIVE:
3230 					engine->hangcheck.score += BUSY;
3231 					break;
3232 				case HANGCHECK_KICK:
3233 					engine->hangcheck.score += KICK;
3234 					break;
3235 				case HANGCHECK_HUNG:
3236 					engine->hangcheck.score += HUNG;
3237 					stuck[id] = true;
3238 					break;
3239 				}
3240 			}
3241 		} else {
3242 			engine->hangcheck.action = HANGCHECK_ACTIVE;
3243 
3244 			/* Gradually reduce the count so that we catch DoS
3245 			 * attempts across multiple batches.
3246 			 */
3247 			if (engine->hangcheck.score > 0)
3248 				engine->hangcheck.score -= ACTIVE_DECAY;
3249 			if (engine->hangcheck.score < 0)
3250 				engine->hangcheck.score = 0;
3251 
3252 			/* Clear head and subunit states on seqno movement */
3253 			acthd = 0;
3254 
3255 			memset(engine->hangcheck.instdone, 0,
3256 			       sizeof(engine->hangcheck.instdone));
3257 		}
3258 
3259 		engine->hangcheck.seqno = seqno;
3260 		engine->hangcheck.acthd = acthd;
3261 		engine->hangcheck.user_interrupts = user_interrupts;
3262 		busy_count += busy;
3263 	}
3264 
3265 	for_each_engine_id(engine, dev_priv, id) {
3266 		if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3267 			DRM_INFO("%s on %s\n",
3268 				 stuck[id] ? "stuck" : "no progress",
3269 				 engine->name);
3270 			rings_hung |= intel_engine_flag(engine);
3271 		}
3272 	}
3273 
3274 	if (rings_hung) {
3275 		i915_handle_error(dev, rings_hung, "Engine(s) hung");
3276 		goto out;
3277 	}
3278 
3279 	if (busy_count)
3280 		/* Reset timer case chip hangs without another request
3281 		 * being added */
3282 		i915_queue_hangcheck(dev);
3283 
3284 out:
3285 	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3286 }
3287 
3288 void i915_queue_hangcheck(struct drm_device *dev)
3289 {
3290 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3291 
3292 	if (!i915.enable_hangcheck)
3293 		return;
3294 
3295 	/* Don't continually defer the hangcheck so that it is always run at
3296 	 * least once after work has been scheduled on any ring. Otherwise,
3297 	 * we will ignore a hung ring if a second ring is kept busy.
3298 	 */
3299 
3300 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3301 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3302 }
3303 
3304 static void ibx_irq_reset(struct drm_device *dev)
3305 {
3306 	struct drm_i915_private *dev_priv = dev->dev_private;
3307 
3308 	if (HAS_PCH_NOP(dev))
3309 		return;
3310 
3311 	GEN5_IRQ_RESET(SDE);
3312 
3313 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3314 		I915_WRITE(SERR_INT, 0xffffffff);
3315 }
3316 
3317 /*
3318  * SDEIER is also touched by the interrupt handler to work around missed PCH
3319  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3320  * instead we unconditionally enable all PCH interrupt sources here, but then
3321  * only unmask them as needed with SDEIMR.
3322  *
3323  * This function needs to be called before interrupts are enabled.
3324  */
3325 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3326 {
3327 	struct drm_i915_private *dev_priv = dev->dev_private;
3328 
3329 	if (HAS_PCH_NOP(dev))
3330 		return;
3331 
3332 	WARN_ON(I915_READ(SDEIER) != 0);
3333 	I915_WRITE(SDEIER, 0xffffffff);
3334 	POSTING_READ(SDEIER);
3335 }
3336 
3337 static void gen5_gt_irq_reset(struct drm_device *dev)
3338 {
3339 	struct drm_i915_private *dev_priv = dev->dev_private;
3340 
3341 	GEN5_IRQ_RESET(GT);
3342 	if (INTEL_INFO(dev)->gen >= 6)
3343 		GEN5_IRQ_RESET(GEN6_PM);
3344 }
3345 
3346 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3347 {
3348 	enum pipe pipe;
3349 
3350 	if (IS_CHERRYVIEW(dev_priv))
3351 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3352 	else
3353 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3354 
3355 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3356 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3357 
3358 	for_each_pipe(dev_priv, pipe) {
3359 		I915_WRITE(PIPESTAT(pipe),
3360 			   PIPE_FIFO_UNDERRUN_STATUS |
3361 			   PIPESTAT_INT_STATUS_MASK);
3362 		dev_priv->pipestat_irq_mask[pipe] = 0;
3363 	}
3364 
3365 	GEN5_IRQ_RESET(VLV_);
3366 	dev_priv->irq_mask = ~0;
3367 }
3368 
3369 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3370 {
3371 	u32 pipestat_mask;
3372 	u32 enable_mask;
3373 	enum pipe pipe;
3374 
3375 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3376 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3377 
3378 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3379 	for_each_pipe(dev_priv, pipe)
3380 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3381 
3382 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3383 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3384 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3385 	if (IS_CHERRYVIEW(dev_priv))
3386 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3387 
3388 	WARN_ON(dev_priv->irq_mask != ~0);
3389 
3390 	dev_priv->irq_mask = ~enable_mask;
3391 
3392 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3393 }
3394 
3395 /* drm_dma.h hooks
3396 */
3397 static void ironlake_irq_reset(struct drm_device *dev)
3398 {
3399 	struct drm_i915_private *dev_priv = dev->dev_private;
3400 
3401 	I915_WRITE(HWSTAM, 0xffffffff);
3402 
3403 	GEN5_IRQ_RESET(DE);
3404 	if (IS_GEN7(dev))
3405 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3406 
3407 	gen5_gt_irq_reset(dev);
3408 
3409 	ibx_irq_reset(dev);
3410 }
3411 
3412 static void valleyview_irq_preinstall(struct drm_device *dev)
3413 {
3414 	struct drm_i915_private *dev_priv = dev->dev_private;
3415 
3416 	I915_WRITE(VLV_MASTER_IER, 0);
3417 	POSTING_READ(VLV_MASTER_IER);
3418 
3419 	gen5_gt_irq_reset(dev);
3420 
3421 	spin_lock_irq(&dev_priv->irq_lock);
3422 	if (dev_priv->display_irqs_enabled)
3423 		vlv_display_irq_reset(dev_priv);
3424 	spin_unlock_irq(&dev_priv->irq_lock);
3425 }
3426 
3427 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3428 {
3429 	GEN8_IRQ_RESET_NDX(GT, 0);
3430 	GEN8_IRQ_RESET_NDX(GT, 1);
3431 	GEN8_IRQ_RESET_NDX(GT, 2);
3432 	GEN8_IRQ_RESET_NDX(GT, 3);
3433 }
3434 
3435 static void gen8_irq_reset(struct drm_device *dev)
3436 {
3437 	struct drm_i915_private *dev_priv = dev->dev_private;
3438 	int pipe;
3439 
3440 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3441 	POSTING_READ(GEN8_MASTER_IRQ);
3442 
3443 	gen8_gt_irq_reset(dev_priv);
3444 
3445 	for_each_pipe(dev_priv, pipe)
3446 		if (intel_display_power_is_enabled(dev_priv,
3447 						   POWER_DOMAIN_PIPE(pipe)))
3448 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3449 
3450 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3451 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3452 	GEN5_IRQ_RESET(GEN8_PCU_);
3453 
3454 	if (HAS_PCH_SPLIT(dev))
3455 		ibx_irq_reset(dev);
3456 }
3457 
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3459 				     unsigned int pipe_mask)
3460 {
3461 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3462 	enum pipe pipe;
3463 
3464 	spin_lock_irq(&dev_priv->irq_lock);
3465 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3466 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3467 				  dev_priv->de_irq_mask[pipe],
3468 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3469 	spin_unlock_irq(&dev_priv->irq_lock);
3470 }
3471 
3472 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3473 				     unsigned int pipe_mask)
3474 {
3475 	enum pipe pipe;
3476 
3477 	spin_lock_irq(&dev_priv->irq_lock);
3478 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3479 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3480 	spin_unlock_irq(&dev_priv->irq_lock);
3481 
3482 	/* make sure we're done processing display irqs */
3483 	synchronize_irq(dev_priv->dev->irq);
3484 }
3485 
3486 static void cherryview_irq_preinstall(struct drm_device *dev)
3487 {
3488 	struct drm_i915_private *dev_priv = dev->dev_private;
3489 
3490 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3491 	POSTING_READ(GEN8_MASTER_IRQ);
3492 
3493 	gen8_gt_irq_reset(dev_priv);
3494 
3495 	GEN5_IRQ_RESET(GEN8_PCU_);
3496 
3497 	spin_lock_irq(&dev_priv->irq_lock);
3498 	if (dev_priv->display_irqs_enabled)
3499 		vlv_display_irq_reset(dev_priv);
3500 	spin_unlock_irq(&dev_priv->irq_lock);
3501 }
3502 
3503 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3504 				  const u32 hpd[HPD_NUM_PINS])
3505 {
3506 	struct drm_i915_private *dev_priv = to_i915(dev);
3507 	struct intel_encoder *encoder;
3508 	u32 enabled_irqs = 0;
3509 
3510 	for_each_intel_encoder(dev, encoder)
3511 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3512 			enabled_irqs |= hpd[encoder->hpd_pin];
3513 
3514 	return enabled_irqs;
3515 }
3516 
3517 static void ibx_hpd_irq_setup(struct drm_device *dev)
3518 {
3519 	struct drm_i915_private *dev_priv = dev->dev_private;
3520 	u32 hotplug_irqs, hotplug, enabled_irqs;
3521 
3522 	if (HAS_PCH_IBX(dev)) {
3523 		hotplug_irqs = SDE_HOTPLUG_MASK;
3524 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3525 	} else {
3526 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3527 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3528 	}
3529 
3530 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3531 
3532 	/*
3533 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3534 	 * duration to 2ms (which is the minimum in the Display Port spec).
3535 	 * The pulse duration bits are reserved on LPT+.
3536 	 */
3537 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3539 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3540 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3541 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3542 	/*
3543 	 * When CPU and PCH are on the same package, port A
3544 	 * HPD must be enabled in both north and south.
3545 	 */
3546 	if (HAS_PCH_LPT_LP(dev))
3547 		hotplug |= PORTA_HOTPLUG_ENABLE;
3548 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3549 }
3550 
3551 static void spt_hpd_irq_setup(struct drm_device *dev)
3552 {
3553 	struct drm_i915_private *dev_priv = dev->dev_private;
3554 	u32 hotplug_irqs, hotplug, enabled_irqs;
3555 
3556 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3557 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3558 
3559 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3560 
3561 	/* Enable digital hotplug on the PCH */
3562 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3563 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3564 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3565 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3566 
3567 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3568 	hotplug |= PORTE_HOTPLUG_ENABLE;
3569 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3570 }
3571 
3572 static void ilk_hpd_irq_setup(struct drm_device *dev)
3573 {
3574 	struct drm_i915_private *dev_priv = dev->dev_private;
3575 	u32 hotplug_irqs, hotplug, enabled_irqs;
3576 
3577 	if (INTEL_INFO(dev)->gen >= 8) {
3578 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3579 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3580 
3581 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3582 	} else if (INTEL_INFO(dev)->gen >= 7) {
3583 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3584 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3585 
3586 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3587 	} else {
3588 		hotplug_irqs = DE_DP_A_HOTPLUG;
3589 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3590 
3591 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3592 	}
3593 
3594 	/*
3595 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3596 	 * duration to 2ms (which is the minimum in the Display Port spec)
3597 	 * The pulse duration bits are reserved on HSW+.
3598 	 */
3599 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3600 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3601 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3602 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3603 
3604 	ibx_hpd_irq_setup(dev);
3605 }
3606 
3607 static void bxt_hpd_irq_setup(struct drm_device *dev)
3608 {
3609 	struct drm_i915_private *dev_priv = dev->dev_private;
3610 	u32 hotplug_irqs, hotplug, enabled_irqs;
3611 
3612 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3613 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3614 
3615 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3616 
3617 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3618 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3619 		PORTA_HOTPLUG_ENABLE;
3620 
3621 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3622 		      hotplug, enabled_irqs);
3623 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3624 
3625 	/*
3626 	 * For BXT invert bit has to be set based on AOB design
3627 	 * for HPD detection logic, update it based on VBT fields.
3628 	 */
3629 
3630 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3631 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3632 		hotplug |= BXT_DDIA_HPD_INVERT;
3633 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3634 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3635 		hotplug |= BXT_DDIB_HPD_INVERT;
3636 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3637 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3638 		hotplug |= BXT_DDIC_HPD_INVERT;
3639 
3640 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3641 }
3642 
3643 static void ibx_irq_postinstall(struct drm_device *dev)
3644 {
3645 	struct drm_i915_private *dev_priv = dev->dev_private;
3646 	u32 mask;
3647 
3648 	if (HAS_PCH_NOP(dev))
3649 		return;
3650 
3651 	if (HAS_PCH_IBX(dev))
3652 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3653 	else
3654 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3655 
3656 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3657 	I915_WRITE(SDEIMR, ~mask);
3658 }
3659 
3660 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3661 {
3662 	struct drm_i915_private *dev_priv = dev->dev_private;
3663 	u32 pm_irqs, gt_irqs;
3664 
3665 	pm_irqs = gt_irqs = 0;
3666 
3667 	dev_priv->gt_irq_mask = ~0;
3668 	if (HAS_L3_DPF(dev)) {
3669 		/* L3 parity interrupt is always unmasked. */
3670 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3671 		gt_irqs |= GT_PARITY_ERROR(dev);
3672 	}
3673 
3674 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3675 	if (IS_GEN5(dev)) {
3676 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3677 			   ILK_BSD_USER_INTERRUPT;
3678 	} else {
3679 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3680 	}
3681 
3682 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3683 
3684 	if (INTEL_INFO(dev)->gen >= 6) {
3685 		/*
3686 		 * RPS interrupts will get enabled/disabled on demand when RPS
3687 		 * itself is enabled/disabled.
3688 		 */
3689 		if (HAS_VEBOX(dev))
3690 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3691 
3692 		dev_priv->pm_irq_mask = 0xffffffff;
3693 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3694 	}
3695 }
3696 
3697 static int ironlake_irq_postinstall(struct drm_device *dev)
3698 {
3699 	struct drm_i915_private *dev_priv = dev->dev_private;
3700 	u32 display_mask, extra_mask;
3701 
3702 	if (INTEL_INFO(dev)->gen >= 7) {
3703 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3704 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3705 				DE_PLANEB_FLIP_DONE_IVB |
3706 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3707 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3708 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3709 			      DE_DP_A_HOTPLUG_IVB);
3710 	} else {
3711 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3712 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3713 				DE_AUX_CHANNEL_A |
3714 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3715 				DE_POISON);
3716 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3717 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3718 			      DE_DP_A_HOTPLUG);
3719 	}
3720 
3721 	dev_priv->irq_mask = ~display_mask;
3722 
3723 	I915_WRITE(HWSTAM, 0xeffe);
3724 
3725 	ibx_irq_pre_postinstall(dev);
3726 
3727 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3728 
3729 	gen5_gt_irq_postinstall(dev);
3730 
3731 	ibx_irq_postinstall(dev);
3732 
3733 	if (IS_IRONLAKE_M(dev)) {
3734 		/* Enable PCU event interrupts
3735 		 *
3736 		 * spinlocking not required here for correctness since interrupt
3737 		 * setup is guaranteed to run in single-threaded context. But we
3738 		 * need it to make the assert_spin_locked happy. */
3739 		spin_lock_irq(&dev_priv->irq_lock);
3740 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3741 		spin_unlock_irq(&dev_priv->irq_lock);
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3748 {
3749 	assert_spin_locked(&dev_priv->irq_lock);
3750 
3751 	if (dev_priv->display_irqs_enabled)
3752 		return;
3753 
3754 	dev_priv->display_irqs_enabled = true;
3755 
3756 	if (intel_irqs_enabled(dev_priv)) {
3757 		vlv_display_irq_reset(dev_priv);
3758 		vlv_display_irq_postinstall(dev_priv);
3759 	}
3760 }
3761 
3762 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3763 {
3764 	assert_spin_locked(&dev_priv->irq_lock);
3765 
3766 	if (!dev_priv->display_irqs_enabled)
3767 		return;
3768 
3769 	dev_priv->display_irqs_enabled = false;
3770 
3771 	if (intel_irqs_enabled(dev_priv))
3772 		vlv_display_irq_reset(dev_priv);
3773 }
3774 
3775 
3776 static int valleyview_irq_postinstall(struct drm_device *dev)
3777 {
3778 	struct drm_i915_private *dev_priv = dev->dev_private;
3779 
3780 	gen5_gt_irq_postinstall(dev);
3781 
3782 	spin_lock_irq(&dev_priv->irq_lock);
3783 	if (dev_priv->display_irqs_enabled)
3784 		vlv_display_irq_postinstall(dev_priv);
3785 	spin_unlock_irq(&dev_priv->irq_lock);
3786 
3787 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3788 	POSTING_READ(VLV_MASTER_IER);
3789 
3790 	return 0;
3791 }
3792 
3793 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795 	/* These are interrupts we'll toggle with the ring mask register */
3796 	uint32_t gt_interrupts[] = {
3797 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3798 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3799 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3800 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3801 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3802 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3803 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3804 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3805 		0,
3806 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3807 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3808 		};
3809 
3810 	if (HAS_L3_DPF(dev_priv))
3811 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3812 
3813 	dev_priv->pm_irq_mask = 0xffffffff;
3814 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3815 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3816 	/*
3817 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3818 	 * is enabled/disabled.
3819 	 */
3820 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3821 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3822 }
3823 
3824 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3825 {
3826 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3827 	uint32_t de_pipe_enables;
3828 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3829 	u32 de_port_enables;
3830 	enum pipe pipe;
3831 
3832 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3833 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3834 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3835 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3836 				  GEN9_AUX_CHANNEL_D;
3837 		if (IS_BROXTON(dev_priv))
3838 			de_port_masked |= BXT_DE_PORT_GMBUS;
3839 	} else {
3840 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3841 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3842 	}
3843 
3844 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3845 					   GEN8_PIPE_FIFO_UNDERRUN;
3846 
3847 	de_port_enables = de_port_masked;
3848 	if (IS_BROXTON(dev_priv))
3849 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3850 	else if (IS_BROADWELL(dev_priv))
3851 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3852 
3853 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3854 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3855 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3856 
3857 	for_each_pipe(dev_priv, pipe)
3858 		if (intel_display_power_is_enabled(dev_priv,
3859 				POWER_DOMAIN_PIPE(pipe)))
3860 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3861 					  dev_priv->de_irq_mask[pipe],
3862 					  de_pipe_enables);
3863 
3864 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3865 }
3866 
3867 static int gen8_irq_postinstall(struct drm_device *dev)
3868 {
3869 	struct drm_i915_private *dev_priv = dev->dev_private;
3870 
3871 	if (HAS_PCH_SPLIT(dev))
3872 		ibx_irq_pre_postinstall(dev);
3873 
3874 	gen8_gt_irq_postinstall(dev_priv);
3875 	gen8_de_irq_postinstall(dev_priv);
3876 
3877 	if (HAS_PCH_SPLIT(dev))
3878 		ibx_irq_postinstall(dev);
3879 
3880 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3881 	POSTING_READ(GEN8_MASTER_IRQ);
3882 
3883 	return 0;
3884 }
3885 
3886 static int cherryview_irq_postinstall(struct drm_device *dev)
3887 {
3888 	struct drm_i915_private *dev_priv = dev->dev_private;
3889 
3890 	gen8_gt_irq_postinstall(dev_priv);
3891 
3892 	spin_lock_irq(&dev_priv->irq_lock);
3893 	if (dev_priv->display_irqs_enabled)
3894 		vlv_display_irq_postinstall(dev_priv);
3895 	spin_unlock_irq(&dev_priv->irq_lock);
3896 
3897 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3898 	POSTING_READ(GEN8_MASTER_IRQ);
3899 
3900 	return 0;
3901 }
3902 
3903 static void gen8_irq_uninstall(struct drm_device *dev)
3904 {
3905 	struct drm_i915_private *dev_priv = dev->dev_private;
3906 
3907 	if (!dev_priv)
3908 		return;
3909 
3910 	gen8_irq_reset(dev);
3911 }
3912 
3913 static void valleyview_irq_uninstall(struct drm_device *dev)
3914 {
3915 	struct drm_i915_private *dev_priv = dev->dev_private;
3916 
3917 	if (!dev_priv)
3918 		return;
3919 
3920 	I915_WRITE(VLV_MASTER_IER, 0);
3921 	POSTING_READ(VLV_MASTER_IER);
3922 
3923 	gen5_gt_irq_reset(dev);
3924 
3925 	I915_WRITE(HWSTAM, 0xffffffff);
3926 
3927 	spin_lock_irq(&dev_priv->irq_lock);
3928 	if (dev_priv->display_irqs_enabled)
3929 		vlv_display_irq_reset(dev_priv);
3930 	spin_unlock_irq(&dev_priv->irq_lock);
3931 }
3932 
3933 static void cherryview_irq_uninstall(struct drm_device *dev)
3934 {
3935 	struct drm_i915_private *dev_priv = dev->dev_private;
3936 
3937 	if (!dev_priv)
3938 		return;
3939 
3940 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3941 	POSTING_READ(GEN8_MASTER_IRQ);
3942 
3943 	gen8_gt_irq_reset(dev_priv);
3944 
3945 	GEN5_IRQ_RESET(GEN8_PCU_);
3946 
3947 	spin_lock_irq(&dev_priv->irq_lock);
3948 	if (dev_priv->display_irqs_enabled)
3949 		vlv_display_irq_reset(dev_priv);
3950 	spin_unlock_irq(&dev_priv->irq_lock);
3951 }
3952 
3953 static void ironlake_irq_uninstall(struct drm_device *dev)
3954 {
3955 	struct drm_i915_private *dev_priv = dev->dev_private;
3956 
3957 	if (!dev_priv)
3958 		return;
3959 
3960 	ironlake_irq_reset(dev);
3961 }
3962 
3963 static void i8xx_irq_preinstall(struct drm_device * dev)
3964 {
3965 	struct drm_i915_private *dev_priv = dev->dev_private;
3966 	int pipe;
3967 
3968 	for_each_pipe(dev_priv, pipe)
3969 		I915_WRITE(PIPESTAT(pipe), 0);
3970 	I915_WRITE16(IMR, 0xffff);
3971 	I915_WRITE16(IER, 0x0);
3972 	POSTING_READ16(IER);
3973 }
3974 
3975 static int i8xx_irq_postinstall(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = dev->dev_private;
3978 
3979 	I915_WRITE16(EMR,
3980 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3981 
3982 	/* Unmask the interrupts that we always want on. */
3983 	dev_priv->irq_mask =
3984 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3985 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3986 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3987 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3988 	I915_WRITE16(IMR, dev_priv->irq_mask);
3989 
3990 	I915_WRITE16(IER,
3991 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3992 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3993 		     I915_USER_INTERRUPT);
3994 	POSTING_READ16(IER);
3995 
3996 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3997 	 * just to make the assert_spin_locked check happy. */
3998 	spin_lock_irq(&dev_priv->irq_lock);
3999 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4000 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4001 	spin_unlock_irq(&dev_priv->irq_lock);
4002 
4003 	return 0;
4004 }
4005 
4006 /*
4007  * Returns true when a page flip has completed.
4008  */
4009 static bool i8xx_handle_vblank(struct drm_device *dev,
4010 			       int plane, int pipe, u32 iir)
4011 {
4012 	struct drm_i915_private *dev_priv = dev->dev_private;
4013 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4014 
4015 	if (!intel_pipe_handle_vblank(dev, pipe))
4016 		return false;
4017 
4018 	if ((iir & flip_pending) == 0)
4019 		goto check_page_flip;
4020 
4021 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4022 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4023 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4024 	 * the flip is completed (no longer pending). Since this doesn't raise
4025 	 * an interrupt per se, we watch for the change at vblank.
4026 	 */
4027 	if (I915_READ16(ISR) & flip_pending)
4028 		goto check_page_flip;
4029 
4030 	intel_prepare_page_flip(dev, plane);
4031 	intel_finish_page_flip(dev, pipe);
4032 	return true;
4033 
4034 check_page_flip:
4035 	intel_check_page_flip(dev, pipe);
4036 	return false;
4037 }
4038 
4039 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4040 {
4041 	struct drm_device *dev = arg;
4042 	struct drm_i915_private *dev_priv = dev->dev_private;
4043 	u16 iir, new_iir;
4044 	u32 pipe_stats[2];
4045 	int pipe;
4046 	u16 flip_mask =
4047 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4048 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4049 	irqreturn_t ret;
4050 
4051 	if (!intel_irqs_enabled(dev_priv))
4052 		return IRQ_NONE;
4053 
4054 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4055 	disable_rpm_wakeref_asserts(dev_priv);
4056 
4057 	ret = IRQ_NONE;
4058 	iir = I915_READ16(IIR);
4059 	if (iir == 0)
4060 		goto out;
4061 
4062 	while (iir & ~flip_mask) {
4063 		/* Can't rely on pipestat interrupt bit in iir as it might
4064 		 * have been cleared after the pipestat interrupt was received.
4065 		 * It doesn't set the bit in iir again, but it still produces
4066 		 * interrupts (for non-MSI).
4067 		 */
4068 		spin_lock(&dev_priv->irq_lock);
4069 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4070 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4071 
4072 		for_each_pipe(dev_priv, pipe) {
4073 			i915_reg_t reg = PIPESTAT(pipe);
4074 			pipe_stats[pipe] = I915_READ(reg);
4075 
4076 			/*
4077 			 * Clear the PIPE*STAT regs before the IIR
4078 			 */
4079 			if (pipe_stats[pipe] & 0x8000ffff)
4080 				I915_WRITE(reg, pipe_stats[pipe]);
4081 		}
4082 		spin_unlock(&dev_priv->irq_lock);
4083 
4084 		I915_WRITE16(IIR, iir & ~flip_mask);
4085 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4086 
4087 		if (iir & I915_USER_INTERRUPT)
4088 			notify_ring(&dev_priv->engine[RCS]);
4089 
4090 		for_each_pipe(dev_priv, pipe) {
4091 			int plane = pipe;
4092 			if (HAS_FBC(dev))
4093 				plane = !plane;
4094 
4095 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4096 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4097 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4098 
4099 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4100 				i9xx_pipe_crc_irq_handler(dev, pipe);
4101 
4102 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4103 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4104 								    pipe);
4105 		}
4106 
4107 		iir = new_iir;
4108 	}
4109 	ret = IRQ_HANDLED;
4110 
4111 out:
4112 	enable_rpm_wakeref_asserts(dev_priv);
4113 
4114 	return ret;
4115 }
4116 
4117 static void i8xx_irq_uninstall(struct drm_device * dev)
4118 {
4119 	struct drm_i915_private *dev_priv = dev->dev_private;
4120 	int pipe;
4121 
4122 	for_each_pipe(dev_priv, pipe) {
4123 		/* Clear enable bits; then clear status bits */
4124 		I915_WRITE(PIPESTAT(pipe), 0);
4125 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4126 	}
4127 	I915_WRITE16(IMR, 0xffff);
4128 	I915_WRITE16(IER, 0x0);
4129 	I915_WRITE16(IIR, I915_READ16(IIR));
4130 }
4131 
4132 static void i915_irq_preinstall(struct drm_device * dev)
4133 {
4134 	struct drm_i915_private *dev_priv = dev->dev_private;
4135 	int pipe;
4136 
4137 	if (I915_HAS_HOTPLUG(dev)) {
4138 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4139 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4140 	}
4141 
4142 	I915_WRITE16(HWSTAM, 0xeffe);
4143 	for_each_pipe(dev_priv, pipe)
4144 		I915_WRITE(PIPESTAT(pipe), 0);
4145 	I915_WRITE(IMR, 0xffffffff);
4146 	I915_WRITE(IER, 0x0);
4147 	POSTING_READ(IER);
4148 }
4149 
4150 static int i915_irq_postinstall(struct drm_device *dev)
4151 {
4152 	struct drm_i915_private *dev_priv = dev->dev_private;
4153 	u32 enable_mask;
4154 
4155 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4156 
4157 	/* Unmask the interrupts that we always want on. */
4158 	dev_priv->irq_mask =
4159 		~(I915_ASLE_INTERRUPT |
4160 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4161 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4162 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4163 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4164 
4165 	enable_mask =
4166 		I915_ASLE_INTERRUPT |
4167 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4168 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4169 		I915_USER_INTERRUPT;
4170 
4171 	if (I915_HAS_HOTPLUG(dev)) {
4172 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4173 		POSTING_READ(PORT_HOTPLUG_EN);
4174 
4175 		/* Enable in IER... */
4176 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4177 		/* and unmask in IMR */
4178 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4179 	}
4180 
4181 	I915_WRITE(IMR, dev_priv->irq_mask);
4182 	I915_WRITE(IER, enable_mask);
4183 	POSTING_READ(IER);
4184 
4185 	i915_enable_asle_pipestat(dev);
4186 
4187 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4188 	 * just to make the assert_spin_locked check happy. */
4189 	spin_lock_irq(&dev_priv->irq_lock);
4190 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192 	spin_unlock_irq(&dev_priv->irq_lock);
4193 
4194 	return 0;
4195 }
4196 
4197 /*
4198  * Returns true when a page flip has completed.
4199  */
4200 static bool i915_handle_vblank(struct drm_device *dev,
4201 			       int plane, int pipe, u32 iir)
4202 {
4203 	struct drm_i915_private *dev_priv = dev->dev_private;
4204 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4205 
4206 	if (!intel_pipe_handle_vblank(dev, pipe))
4207 		return false;
4208 
4209 	if ((iir & flip_pending) == 0)
4210 		goto check_page_flip;
4211 
4212 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4213 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4214 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4215 	 * the flip is completed (no longer pending). Since this doesn't raise
4216 	 * an interrupt per se, we watch for the change at vblank.
4217 	 */
4218 	if (I915_READ(ISR) & flip_pending)
4219 		goto check_page_flip;
4220 
4221 	intel_prepare_page_flip(dev, plane);
4222 	intel_finish_page_flip(dev, pipe);
4223 	return true;
4224 
4225 check_page_flip:
4226 	intel_check_page_flip(dev, pipe);
4227 	return false;
4228 }
4229 
4230 static irqreturn_t i915_irq_handler(int irq, void *arg)
4231 {
4232 	struct drm_device *dev = arg;
4233 	struct drm_i915_private *dev_priv = dev->dev_private;
4234 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4235 	u32 flip_mask =
4236 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4237 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4238 	int pipe, ret = IRQ_NONE;
4239 
4240 	if (!intel_irqs_enabled(dev_priv))
4241 		return IRQ_NONE;
4242 
4243 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4244 	disable_rpm_wakeref_asserts(dev_priv);
4245 
4246 	iir = I915_READ(IIR);
4247 	do {
4248 		bool irq_received = (iir & ~flip_mask) != 0;
4249 		bool blc_event = false;
4250 
4251 		/* Can't rely on pipestat interrupt bit in iir as it might
4252 		 * have been cleared after the pipestat interrupt was received.
4253 		 * It doesn't set the bit in iir again, but it still produces
4254 		 * interrupts (for non-MSI).
4255 		 */
4256 		spin_lock(&dev_priv->irq_lock);
4257 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4258 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4259 
4260 		for_each_pipe(dev_priv, pipe) {
4261 			i915_reg_t reg = PIPESTAT(pipe);
4262 			pipe_stats[pipe] = I915_READ(reg);
4263 
4264 			/* Clear the PIPE*STAT regs before the IIR */
4265 			if (pipe_stats[pipe] & 0x8000ffff) {
4266 				I915_WRITE(reg, pipe_stats[pipe]);
4267 				irq_received = true;
4268 			}
4269 		}
4270 		spin_unlock(&dev_priv->irq_lock);
4271 
4272 		if (!irq_received)
4273 			break;
4274 
4275 		/* Consume port.  Then clear IIR or we'll miss events */
4276 		if (I915_HAS_HOTPLUG(dev) &&
4277 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
4278 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4279 			if (hotplug_status)
4280 				i9xx_hpd_irq_handler(dev, hotplug_status);
4281 		}
4282 
4283 		I915_WRITE(IIR, iir & ~flip_mask);
4284 		new_iir = I915_READ(IIR); /* Flush posted writes */
4285 
4286 		if (iir & I915_USER_INTERRUPT)
4287 			notify_ring(&dev_priv->engine[RCS]);
4288 
4289 		for_each_pipe(dev_priv, pipe) {
4290 			int plane = pipe;
4291 			if (HAS_FBC(dev))
4292 				plane = !plane;
4293 
4294 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4295 			    i915_handle_vblank(dev, plane, pipe, iir))
4296 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4297 
4298 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4299 				blc_event = true;
4300 
4301 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4302 				i9xx_pipe_crc_irq_handler(dev, pipe);
4303 
4304 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4305 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4306 								    pipe);
4307 		}
4308 
4309 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4310 			intel_opregion_asle_intr(dev);
4311 
4312 		/* With MSI, interrupts are only generated when iir
4313 		 * transitions from zero to nonzero.  If another bit got
4314 		 * set while we were handling the existing iir bits, then
4315 		 * we would never get another interrupt.
4316 		 *
4317 		 * This is fine on non-MSI as well, as if we hit this path
4318 		 * we avoid exiting the interrupt handler only to generate
4319 		 * another one.
4320 		 *
4321 		 * Note that for MSI this could cause a stray interrupt report
4322 		 * if an interrupt landed in the time between writing IIR and
4323 		 * the posting read.  This should be rare enough to never
4324 		 * trigger the 99% of 100,000 interrupts test for disabling
4325 		 * stray interrupts.
4326 		 */
4327 		ret = IRQ_HANDLED;
4328 		iir = new_iir;
4329 	} while (iir & ~flip_mask);
4330 
4331 	enable_rpm_wakeref_asserts(dev_priv);
4332 
4333 	return ret;
4334 }
4335 
4336 static void i915_irq_uninstall(struct drm_device * dev)
4337 {
4338 	struct drm_i915_private *dev_priv = dev->dev_private;
4339 	int pipe;
4340 
4341 	if (I915_HAS_HOTPLUG(dev)) {
4342 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4343 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4344 	}
4345 
4346 	I915_WRITE16(HWSTAM, 0xffff);
4347 	for_each_pipe(dev_priv, pipe) {
4348 		/* Clear enable bits; then clear status bits */
4349 		I915_WRITE(PIPESTAT(pipe), 0);
4350 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4351 	}
4352 	I915_WRITE(IMR, 0xffffffff);
4353 	I915_WRITE(IER, 0x0);
4354 
4355 	I915_WRITE(IIR, I915_READ(IIR));
4356 }
4357 
4358 static void i965_irq_preinstall(struct drm_device * dev)
4359 {
4360 	struct drm_i915_private *dev_priv = dev->dev_private;
4361 	int pipe;
4362 
4363 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4364 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4365 
4366 	I915_WRITE(HWSTAM, 0xeffe);
4367 	for_each_pipe(dev_priv, pipe)
4368 		I915_WRITE(PIPESTAT(pipe), 0);
4369 	I915_WRITE(IMR, 0xffffffff);
4370 	I915_WRITE(IER, 0x0);
4371 	POSTING_READ(IER);
4372 }
4373 
4374 static int i965_irq_postinstall(struct drm_device *dev)
4375 {
4376 	struct drm_i915_private *dev_priv = dev->dev_private;
4377 	u32 enable_mask;
4378 	u32 error_mask;
4379 
4380 	/* Unmask the interrupts that we always want on. */
4381 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4382 			       I915_DISPLAY_PORT_INTERRUPT |
4383 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4384 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4385 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4386 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4387 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4388 
4389 	enable_mask = ~dev_priv->irq_mask;
4390 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4391 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4392 	enable_mask |= I915_USER_INTERRUPT;
4393 
4394 	if (IS_G4X(dev))
4395 		enable_mask |= I915_BSD_USER_INTERRUPT;
4396 
4397 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4398 	 * just to make the assert_spin_locked check happy. */
4399 	spin_lock_irq(&dev_priv->irq_lock);
4400 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4401 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4402 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4403 	spin_unlock_irq(&dev_priv->irq_lock);
4404 
4405 	/*
4406 	 * Enable some error detection, note the instruction error mask
4407 	 * bit is reserved, so we leave it masked.
4408 	 */
4409 	if (IS_G4X(dev)) {
4410 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4411 			       GM45_ERROR_MEM_PRIV |
4412 			       GM45_ERROR_CP_PRIV |
4413 			       I915_ERROR_MEMORY_REFRESH);
4414 	} else {
4415 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4416 			       I915_ERROR_MEMORY_REFRESH);
4417 	}
4418 	I915_WRITE(EMR, error_mask);
4419 
4420 	I915_WRITE(IMR, dev_priv->irq_mask);
4421 	I915_WRITE(IER, enable_mask);
4422 	POSTING_READ(IER);
4423 
4424 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4425 	POSTING_READ(PORT_HOTPLUG_EN);
4426 
4427 	i915_enable_asle_pipestat(dev);
4428 
4429 	return 0;
4430 }
4431 
4432 static void i915_hpd_irq_setup(struct drm_device *dev)
4433 {
4434 	struct drm_i915_private *dev_priv = dev->dev_private;
4435 	u32 hotplug_en;
4436 
4437 	assert_spin_locked(&dev_priv->irq_lock);
4438 
4439 	/* Note HDMI and DP share hotplug bits */
4440 	/* enable bits are the same for all generations */
4441 	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4442 	/* Programming the CRT detection parameters tends
4443 	   to generate a spurious hotplug event about three
4444 	   seconds later.  So just do it once.
4445 	*/
4446 	if (IS_G4X(dev))
4447 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4448 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4449 
4450 	/* Ignore TV since it's buggy */
4451 	i915_hotplug_interrupt_update_locked(dev_priv,
4452 					     HOTPLUG_INT_EN_MASK |
4453 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4454 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4455 					     hotplug_en);
4456 }
4457 
4458 static irqreturn_t i965_irq_handler(int irq, void *arg)
4459 {
4460 	struct drm_device *dev = arg;
4461 	struct drm_i915_private *dev_priv = dev->dev_private;
4462 	u32 iir, new_iir;
4463 	u32 pipe_stats[I915_MAX_PIPES];
4464 	int ret = IRQ_NONE, pipe;
4465 	u32 flip_mask =
4466 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4467 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4468 
4469 	if (!intel_irqs_enabled(dev_priv))
4470 		return IRQ_NONE;
4471 
4472 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4473 	disable_rpm_wakeref_asserts(dev_priv);
4474 
4475 	iir = I915_READ(IIR);
4476 
4477 	for (;;) {
4478 		bool irq_received = (iir & ~flip_mask) != 0;
4479 		bool blc_event = false;
4480 
4481 		/* Can't rely on pipestat interrupt bit in iir as it might
4482 		 * have been cleared after the pipestat interrupt was received.
4483 		 * It doesn't set the bit in iir again, but it still produces
4484 		 * interrupts (for non-MSI).
4485 		 */
4486 		spin_lock(&dev_priv->irq_lock);
4487 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4488 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4489 
4490 		for_each_pipe(dev_priv, pipe) {
4491 			i915_reg_t reg = PIPESTAT(pipe);
4492 			pipe_stats[pipe] = I915_READ(reg);
4493 
4494 			/*
4495 			 * Clear the PIPE*STAT regs before the IIR
4496 			 */
4497 			if (pipe_stats[pipe] & 0x8000ffff) {
4498 				I915_WRITE(reg, pipe_stats[pipe]);
4499 				irq_received = true;
4500 			}
4501 		}
4502 		spin_unlock(&dev_priv->irq_lock);
4503 
4504 		if (!irq_received)
4505 			break;
4506 
4507 		ret = IRQ_HANDLED;
4508 
4509 		/* Consume port.  Then clear IIR or we'll miss events */
4510 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4511 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4512 			if (hotplug_status)
4513 				i9xx_hpd_irq_handler(dev, hotplug_status);
4514 		}
4515 
4516 		I915_WRITE(IIR, iir & ~flip_mask);
4517 		new_iir = I915_READ(IIR); /* Flush posted writes */
4518 
4519 		if (iir & I915_USER_INTERRUPT)
4520 			notify_ring(&dev_priv->engine[RCS]);
4521 		if (iir & I915_BSD_USER_INTERRUPT)
4522 			notify_ring(&dev_priv->engine[VCS]);
4523 
4524 		for_each_pipe(dev_priv, pipe) {
4525 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4526 			    i915_handle_vblank(dev, pipe, pipe, iir))
4527 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4528 
4529 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4530 				blc_event = true;
4531 
4532 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4533 				i9xx_pipe_crc_irq_handler(dev, pipe);
4534 
4535 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4536 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4537 		}
4538 
4539 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4540 			intel_opregion_asle_intr(dev);
4541 
4542 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4543 			gmbus_irq_handler(dev);
4544 
4545 		/* With MSI, interrupts are only generated when iir
4546 		 * transitions from zero to nonzero.  If another bit got
4547 		 * set while we were handling the existing iir bits, then
4548 		 * we would never get another interrupt.
4549 		 *
4550 		 * This is fine on non-MSI as well, as if we hit this path
4551 		 * we avoid exiting the interrupt handler only to generate
4552 		 * another one.
4553 		 *
4554 		 * Note that for MSI this could cause a stray interrupt report
4555 		 * if an interrupt landed in the time between writing IIR and
4556 		 * the posting read.  This should be rare enough to never
4557 		 * trigger the 99% of 100,000 interrupts test for disabling
4558 		 * stray interrupts.
4559 		 */
4560 		iir = new_iir;
4561 	}
4562 
4563 	enable_rpm_wakeref_asserts(dev_priv);
4564 
4565 	return ret;
4566 }
4567 
4568 static void i965_irq_uninstall(struct drm_device * dev)
4569 {
4570 	struct drm_i915_private *dev_priv = dev->dev_private;
4571 	int pipe;
4572 
4573 	if (!dev_priv)
4574 		return;
4575 
4576 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4577 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4578 
4579 	I915_WRITE(HWSTAM, 0xffffffff);
4580 	for_each_pipe(dev_priv, pipe)
4581 		I915_WRITE(PIPESTAT(pipe), 0);
4582 	I915_WRITE(IMR, 0xffffffff);
4583 	I915_WRITE(IER, 0x0);
4584 
4585 	for_each_pipe(dev_priv, pipe)
4586 		I915_WRITE(PIPESTAT(pipe),
4587 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4588 	I915_WRITE(IIR, I915_READ(IIR));
4589 }
4590 
4591 /**
4592  * intel_irq_init - initializes irq support
4593  * @dev_priv: i915 device instance
4594  *
4595  * This function initializes all the irq support including work items, timers
4596  * and all the vtables. It does not setup the interrupt itself though.
4597  */
4598 void intel_irq_init(struct drm_i915_private *dev_priv)
4599 {
4600 	struct drm_device *dev = dev_priv->dev;
4601 
4602 	intel_hpd_init_work(dev_priv);
4603 
4604 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4605 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4606 
4607 	/* Let's track the enabled rps events */
4608 	if (IS_VALLEYVIEW(dev_priv))
4609 		/* WaGsvRC0ResidencyMethod:vlv */
4610 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4611 	else
4612 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4613 
4614 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4615 			  i915_hangcheck_elapsed);
4616 
4617 	if (IS_GEN2(dev_priv)) {
4618 		dev->max_vblank_count = 0;
4619 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4620 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4621 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4622 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4623 	} else {
4624 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4625 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4626 	}
4627 
4628 	/*
4629 	 * Opt out of the vblank disable timer on everything except gen2.
4630 	 * Gen2 doesn't have a hardware frame counter and so depends on
4631 	 * vblank interrupts to produce sane vblank seuquence numbers.
4632 	 */
4633 	if (!IS_GEN2(dev_priv))
4634 		dev->vblank_disable_immediate = true;
4635 
4636 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4637 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4638 
4639 	if (IS_CHERRYVIEW(dev_priv)) {
4640 		dev->driver->irq_handler = cherryview_irq_handler;
4641 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4642 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4643 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4644 		dev->driver->enable_vblank = valleyview_enable_vblank;
4645 		dev->driver->disable_vblank = valleyview_disable_vblank;
4646 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4647 	} else if (IS_VALLEYVIEW(dev_priv)) {
4648 		dev->driver->irq_handler = valleyview_irq_handler;
4649 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4650 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4651 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4652 		dev->driver->enable_vblank = valleyview_enable_vblank;
4653 		dev->driver->disable_vblank = valleyview_disable_vblank;
4654 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4655 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4656 		dev->driver->irq_handler = gen8_irq_handler;
4657 		dev->driver->irq_preinstall = gen8_irq_reset;
4658 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4659 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4660 		dev->driver->enable_vblank = gen8_enable_vblank;
4661 		dev->driver->disable_vblank = gen8_disable_vblank;
4662 		if (IS_BROXTON(dev))
4663 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4664 		else if (HAS_PCH_SPT(dev))
4665 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4666 		else
4667 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4668 	} else if (HAS_PCH_SPLIT(dev)) {
4669 		dev->driver->irq_handler = ironlake_irq_handler;
4670 		dev->driver->irq_preinstall = ironlake_irq_reset;
4671 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4672 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4673 		dev->driver->enable_vblank = ironlake_enable_vblank;
4674 		dev->driver->disable_vblank = ironlake_disable_vblank;
4675 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4676 	} else {
4677 		if (INTEL_INFO(dev_priv)->gen == 2) {
4678 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4679 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4680 			dev->driver->irq_handler = i8xx_irq_handler;
4681 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4682 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4683 			dev->driver->irq_preinstall = i915_irq_preinstall;
4684 			dev->driver->irq_postinstall = i915_irq_postinstall;
4685 			dev->driver->irq_uninstall = i915_irq_uninstall;
4686 			dev->driver->irq_handler = i915_irq_handler;
4687 		} else {
4688 			dev->driver->irq_preinstall = i965_irq_preinstall;
4689 			dev->driver->irq_postinstall = i965_irq_postinstall;
4690 			dev->driver->irq_uninstall = i965_irq_uninstall;
4691 			dev->driver->irq_handler = i965_irq_handler;
4692 		}
4693 		if (I915_HAS_HOTPLUG(dev_priv))
4694 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4695 		dev->driver->enable_vblank = i915_enable_vblank;
4696 		dev->driver->disable_vblank = i915_disable_vblank;
4697 	}
4698 }
4699 
4700 /**
4701  * intel_irq_install - enables the hardware interrupt
4702  * @dev_priv: i915 device instance
4703  *
4704  * This function enables the hardware interrupt handling, but leaves the hotplug
4705  * handling still disabled. It is called after intel_irq_init().
4706  *
4707  * In the driver load and resume code we need working interrupts in a few places
4708  * but don't want to deal with the hassle of concurrent probe and hotplug
4709  * workers. Hence the split into this two-stage approach.
4710  */
4711 int intel_irq_install(struct drm_i915_private *dev_priv)
4712 {
4713 	/*
4714 	 * We enable some interrupt sources in our postinstall hooks, so mark
4715 	 * interrupts as enabled _before_ actually enabling them to avoid
4716 	 * special cases in our ordering checks.
4717 	 */
4718 	dev_priv->pm.irqs_enabled = true;
4719 
4720 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4721 }
4722 
4723 /**
4724  * intel_irq_uninstall - finilizes all irq handling
4725  * @dev_priv: i915 device instance
4726  *
4727  * This stops interrupt and hotplug handling and unregisters and frees all
4728  * resources acquired in the init functions.
4729  */
4730 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4731 {
4732 	drm_irq_uninstall(dev_priv->dev);
4733 	intel_hpd_cancel_work(dev_priv);
4734 	dev_priv->pm.irqs_enabled = false;
4735 }
4736 
4737 /**
4738  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4739  * @dev_priv: i915 device instance
4740  *
4741  * This function is used to disable interrupts at runtime, both in the runtime
4742  * pm and the system suspend/resume code.
4743  */
4744 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4745 {
4746 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4747 	dev_priv->pm.irqs_enabled = false;
4748 	synchronize_irq(dev_priv->dev->irq);
4749 }
4750 
4751 /**
4752  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4753  * @dev_priv: i915 device instance
4754  *
4755  * This function is used to enable interrupts at runtime, both in the runtime
4756  * pm and the system suspend/resume code.
4757  */
4758 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4759 {
4760 	dev_priv->pm.irqs_enabled = true;
4761 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4762 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4763 }
4764