1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Please try to maintain the following order within this file unless it makes 24 * sense to do otherwise. From top to bottom: 25 * 1. typedefs 26 * 2. #defines, and macros 27 * 3. structure definitions 28 * 4. function prototypes 29 * 30 * Within each section, please try to order by generation in ascending order, 31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom). 32 */ 33 34 #ifndef __I915_GEM_GTT_H__ 35 #define __I915_GEM_GTT_H__ 36 37 struct drm_i915_file_private; 38 39 typedef uint32_t gen6_pte_t; 40 typedef uint64_t gen8_pte_t; 41 typedef uint64_t gen8_pde_t; 42 43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT) 44 45 46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ 47 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) 48 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 49 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 50 #define GEN6_PTE_CACHE_LLC (2 << 1) 51 #define GEN6_PTE_UNCACHED (1 << 1) 52 #define GEN6_PTE_VALID (1 << 0) 53 54 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len)) 55 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) 56 #define I915_PDES 512 57 #define I915_PDE_MASK (I915_PDES - 1) 58 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) 59 60 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) 61 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) 62 #define GEN6_PD_ALIGN (PAGE_SIZE * 16) 63 #define GEN6_PDE_SHIFT 22 64 #define GEN6_PDE_VALID (1 << 0) 65 66 #define GEN7_PTE_CACHE_L3_LLC (3 << 1) 67 68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) 69 #define BYT_PTE_WRITEABLE (1 << 1) 70 71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits 72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. 73 */ 74 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ 75 (((bits) & 0x8) << (11 - 3))) 76 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) 77 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) 78 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) 79 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) 80 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) 81 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) 82 #define HSW_PTE_UNCACHED (0) 83 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) 84 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) 85 86 /* GEN8 legacy style address is defined as a 3 level page table: 87 * 31:30 | 29:21 | 20:12 | 11:0 88 * PDPE | PDE | PTE | offset 89 * The difference as compared to normal x86 3 level page table is the PDPEs are 90 * programmed via register. 91 */ 92 #define GEN8_PDPE_SHIFT 30 93 #define GEN8_PDPE_MASK 0x3 94 #define GEN8_PDE_SHIFT 21 95 #define GEN8_PDE_MASK 0x1ff 96 #define GEN8_PTE_SHIFT 12 97 #define GEN8_PTE_MASK 0x1ff 98 #define GEN8_LEGACY_PDPES 4 99 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t)) 100 101 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD) 102 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */ 103 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */ 104 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */ 105 106 #define CHV_PPAT_SNOOP (1<<6) 107 #define GEN8_PPAT_AGE(x) (x<<4) 108 #define GEN8_PPAT_LLCeLLC (3<<2) 109 #define GEN8_PPAT_LLCELLC (2<<2) 110 #define GEN8_PPAT_LLC (1<<2) 111 #define GEN8_PPAT_WB (3<<0) 112 #define GEN8_PPAT_WT (2<<0) 113 #define GEN8_PPAT_WC (1<<0) 114 #define GEN8_PPAT_UC (0<<0) 115 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) 116 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8)) 117 118 enum i915_ggtt_view_type { 119 I915_GGTT_VIEW_NORMAL = 0, 120 I915_GGTT_VIEW_ROTATED, 121 I915_GGTT_VIEW_PARTIAL, 122 }; 123 124 struct intel_rotation_info { 125 unsigned int height; 126 unsigned int pitch; 127 uint32_t pixel_format; 128 uint64_t fb_modifier; 129 unsigned int width_pages, height_pages; 130 uint64_t size; 131 }; 132 133 struct i915_ggtt_view { 134 enum i915_ggtt_view_type type; 135 136 union { 137 struct { 138 unsigned long offset; 139 unsigned int size; 140 } partial; 141 } params; 142 143 struct sg_table *pages; 144 145 union { 146 struct intel_rotation_info rotation_info; 147 }; 148 }; 149 150 extern const struct i915_ggtt_view i915_ggtt_view_normal; 151 extern const struct i915_ggtt_view i915_ggtt_view_rotated; 152 153 enum i915_cache_level; 154 155 /** 156 * A VMA represents a GEM BO that is bound into an address space. Therefore, a 157 * VMA's presence cannot be guaranteed before binding, or after unbinding the 158 * object into/from the address space. 159 * 160 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime 161 * will always be <= an objects lifetime. So object refcounting should cover us. 162 */ 163 struct i915_vma { 164 struct drm_mm_node node; 165 struct drm_i915_gem_object *obj; 166 struct i915_address_space *vm; 167 168 /** Flags and address space this VMA is bound to */ 169 #define GLOBAL_BIND (1<<0) 170 #define LOCAL_BIND (1<<1) 171 unsigned int bound : 4; 172 173 /** 174 * Support different GGTT views into the same object. 175 * This means there can be multiple VMA mappings per object and per VM. 176 * i915_ggtt_view_type is used to distinguish between those entries. 177 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also 178 * assumed in GEM functions which take no ggtt view parameter. 179 */ 180 struct i915_ggtt_view ggtt_view; 181 182 /** This object's place on the active/inactive lists */ 183 struct list_head mm_list; 184 185 struct list_head vma_link; /* Link in the object's VMA list */ 186 187 /** This vma's place in the batchbuffer or on the eviction list */ 188 struct list_head exec_list; 189 190 /** 191 * Used for performing relocations during execbuffer insertion. 192 */ 193 struct hlist_node exec_node; 194 unsigned long exec_handle; 195 struct drm_i915_gem_exec_object2 *exec_entry; 196 197 /** 198 * How many users have pinned this object in GTT space. The following 199 * users can each hold at most one reference: pwrite/pread, execbuffer 200 * (objects are not allowed multiple times for the same batchbuffer), 201 * and the framebuffer code. When switching/pageflipping, the 202 * framebuffer code has at most two buffers pinned per crtc. 203 * 204 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3 205 * bits with absolutely no headroom. So use 4 bits. */ 206 unsigned int pin_count:4; 207 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf 208 }; 209 210 struct i915_page_dma { 211 struct page *page; 212 union { 213 dma_addr_t daddr; 214 215 /* For gen6/gen7 only. This is the offset in the GGTT 216 * where the page directory entries for PPGTT begin 217 */ 218 uint32_t ggtt_offset; 219 }; 220 }; 221 222 #define px_base(px) (&(px)->base) 223 #define px_page(px) (px_base(px)->page) 224 #define px_dma(px) (px_base(px)->daddr) 225 226 struct i915_page_scratch { 227 struct i915_page_dma base; 228 }; 229 230 struct i915_page_table { 231 struct i915_page_dma base; 232 233 unsigned long *used_ptes; 234 }; 235 236 struct i915_page_directory { 237 struct i915_page_dma base; 238 239 unsigned long *used_pdes; 240 struct i915_page_table *page_table[I915_PDES]; /* PDEs */ 241 }; 242 243 struct i915_page_directory_pointer { 244 /* struct page *page; */ 245 DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES); 246 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES]; 247 }; 248 249 struct i915_address_space { 250 struct drm_mm mm; 251 struct drm_device *dev; 252 struct list_head global_link; 253 u64 start; /* Start offset always 0 for dri2 */ 254 u64 total; /* size addr space maps (ex. 2GB for ggtt) */ 255 256 struct i915_page_scratch *scratch_page; 257 struct i915_page_table *scratch_pt; 258 struct i915_page_directory *scratch_pd; 259 260 /** 261 * List of objects currently involved in rendering. 262 * 263 * Includes buffers having the contents of their GPU caches 264 * flushed, not necessarily primitives. last_read_req 265 * represents when the rendering involved will be completed. 266 * 267 * A reference is held on the buffer while on this list. 268 */ 269 struct list_head active_list; 270 271 /** 272 * LRU list of objects which are not in the ringbuffer and 273 * are ready to unbind, but are still in the GTT. 274 * 275 * last_read_req is NULL while an object is in this list. 276 * 277 * A reference is not held on the buffer while on this list, 278 * as merely being GTT-bound shouldn't prevent its being 279 * freed, and we'll pull it off the list in the free path. 280 */ 281 struct list_head inactive_list; 282 283 /* FIXME: Need a more generic return type */ 284 gen6_pte_t (*pte_encode)(dma_addr_t addr, 285 enum i915_cache_level level, 286 bool valid, u32 flags); /* Create a valid PTE */ 287 /* flags for pte_encode */ 288 #define PTE_READ_ONLY (1<<0) 289 int (*allocate_va_range)(struct i915_address_space *vm, 290 uint64_t start, 291 uint64_t length); 292 void (*clear_range)(struct i915_address_space *vm, 293 uint64_t start, 294 uint64_t length, 295 bool use_scratch); 296 void (*insert_entries)(struct i915_address_space *vm, 297 struct sg_table *st, 298 uint64_t start, 299 enum i915_cache_level cache_level, u32 flags); 300 void (*cleanup)(struct i915_address_space *vm); 301 /** Unmap an object from an address space. This usually consists of 302 * setting the valid PTE entries to a reserved scratch page. */ 303 void (*unbind_vma)(struct i915_vma *vma); 304 /* Map an object into an address space with the given cache flags. */ 305 int (*bind_vma)(struct i915_vma *vma, 306 enum i915_cache_level cache_level, 307 u32 flags); 308 }; 309 310 /* The Graphics Translation Table is the way in which GEN hardware translates a 311 * Graphics Virtual Address into a Physical Address. In addition to the normal 312 * collateral associated with any va->pa translations GEN hardware also has a 313 * portion of the GTT which can be mapped by the CPU and remain both coherent 314 * and correct (in cases like swizzling). That region is referred to as GMADR in 315 * the spec. 316 */ 317 struct i915_gtt { 318 struct i915_address_space base; 319 320 size_t stolen_size; /* Total size of stolen memory */ 321 u64 mappable_end; /* End offset that we can CPU map */ 322 struct io_mapping *mappable; /* Mapping to our CPU mappable region */ 323 phys_addr_t mappable_base; /* PA of our GMADR */ 324 325 /** "Graphics Stolen Memory" holds the global PTEs */ 326 void __iomem *gsm; 327 328 bool do_idle_maps; 329 330 int mtrr; 331 332 /* global gtt ops */ 333 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total, 334 size_t *stolen, phys_addr_t *mappable_base, 335 u64 *mappable_end); 336 }; 337 338 struct i915_hw_ppgtt { 339 struct i915_address_space base; 340 struct kref ref; 341 struct drm_mm_node node; 342 unsigned long pd_dirty_rings; 343 union { 344 struct i915_page_directory_pointer pdp; 345 struct i915_page_directory pd; 346 }; 347 348 struct drm_i915_file_private *file_priv; 349 350 gen6_pte_t __iomem *pd_addr; 351 352 int (*enable)(struct i915_hw_ppgtt *ppgtt); 353 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt, 354 struct drm_i915_gem_request *req); 355 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m); 356 }; 357 358 /* For each pde iterates over every pde between from start until start + length. 359 * If start, and start+length are not perfectly divisible, the macro will round 360 * down, and up as needed. The macro modifies pde, start, and length. Dev is 361 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0, 362 * and length = 2G effectively iterates over every PDE in the system. 363 * 364 * XXX: temp is not actually needed, but it saves doing the ALIGN operation. 365 */ 366 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \ 367 for (iter = gen6_pde_index(start); \ 368 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \ 369 iter++, \ 370 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \ 371 temp = min_t(unsigned, temp, length), \ 372 start += temp, length -= temp) 373 374 #define gen6_for_all_pdes(pt, ppgtt, iter) \ 375 for (iter = 0; \ 376 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \ 377 iter++) 378 379 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift) 380 { 381 const uint32_t mask = NUM_PTE(pde_shift) - 1; 382 383 return (address >> PAGE_SHIFT) & mask; 384 } 385 386 /* Helper to counts the number of PTEs within the given length. This count 387 * does not cross a page table boundary, so the max value would be 388 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. 389 */ 390 static inline uint32_t i915_pte_count(uint64_t addr, size_t length, 391 uint32_t pde_shift) 392 { 393 const uint64_t mask = ~((1 << pde_shift) - 1); 394 uint64_t end; 395 396 WARN_ON(length == 0); 397 WARN_ON(offset_in_page(addr|length)); 398 399 end = addr + length; 400 401 if ((addr & mask) != (end & mask)) 402 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); 403 404 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); 405 } 406 407 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift) 408 { 409 return (addr >> shift) & I915_PDE_MASK; 410 } 411 412 static inline uint32_t gen6_pte_index(uint32_t addr) 413 { 414 return i915_pte_index(addr, GEN6_PDE_SHIFT); 415 } 416 417 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length) 418 { 419 return i915_pte_count(addr, length, GEN6_PDE_SHIFT); 420 } 421 422 static inline uint32_t gen6_pde_index(uint32_t addr) 423 { 424 return i915_pde_index(addr, GEN6_PDE_SHIFT); 425 } 426 427 /* Equivalent to the gen6 version, For each pde iterates over every pde 428 * between from start until start + length. On gen8+ it simply iterates 429 * over every page directory entry in a page directory. 430 */ 431 #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \ 432 for (iter = gen8_pde_index(start); \ 433 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \ 434 iter++, \ 435 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \ 436 temp = min(temp, length), \ 437 start += temp, length -= temp) 438 439 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \ 440 for (iter = gen8_pdpe_index(start); \ 441 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \ 442 iter++, \ 443 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \ 444 temp = min(temp, length), \ 445 start += temp, length -= temp) 446 447 /* Clamp length to the next page_directory boundary */ 448 static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length) 449 { 450 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT); 451 452 if (next_pd > (start + length)) 453 return length; 454 455 return next_pd - start; 456 } 457 458 static inline uint32_t gen8_pte_index(uint64_t address) 459 { 460 return i915_pte_index(address, GEN8_PDE_SHIFT); 461 } 462 463 static inline uint32_t gen8_pde_index(uint64_t address) 464 { 465 return i915_pde_index(address, GEN8_PDE_SHIFT); 466 } 467 468 static inline uint32_t gen8_pdpe_index(uint64_t address) 469 { 470 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK; 471 } 472 473 static inline uint32_t gen8_pml4e_index(uint64_t address) 474 { 475 WARN_ON(1); /* For 64B */ 476 return 0; 477 } 478 479 static inline size_t gen8_pte_count(uint64_t address, uint64_t length) 480 { 481 return i915_pte_count(address, length, GEN8_PDE_SHIFT); 482 } 483 484 static inline dma_addr_t 485 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n) 486 { 487 return test_bit(n, ppgtt->pdp.used_pdpes) ? 488 px_dma(ppgtt->pdp.page_directory[n]) : 489 px_dma(ppgtt->base.scratch_pd); 490 } 491 492 int i915_gem_gtt_init(struct drm_device *dev); 493 void i915_gem_init_global_gtt(struct drm_device *dev); 494 void i915_global_gtt_cleanup(struct drm_device *dev); 495 496 497 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt); 498 int i915_ppgtt_init_hw(struct drm_device *dev); 499 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req); 500 void i915_ppgtt_release(struct kref *kref); 501 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev, 502 struct drm_i915_file_private *fpriv); 503 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt) 504 { 505 if (ppgtt) 506 kref_get(&ppgtt->ref); 507 } 508 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt) 509 { 510 if (ppgtt) 511 kref_put(&ppgtt->ref, i915_ppgtt_release); 512 } 513 514 void i915_check_and_clear_faults(struct drm_device *dev); 515 void i915_gem_suspend_gtt_mappings(struct drm_device *dev); 516 void i915_gem_restore_gtt_mappings(struct drm_device *dev); 517 518 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj); 519 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj); 520 521 static inline bool 522 i915_ggtt_view_equal(const struct i915_ggtt_view *a, 523 const struct i915_ggtt_view *b) 524 { 525 if (WARN_ON(!a || !b)) 526 return false; 527 528 if (a->type != b->type) 529 return false; 530 if (a->type == I915_GGTT_VIEW_PARTIAL) 531 return !memcmp(&a->params, &b->params, sizeof(a->params)); 532 return true; 533 } 534 535 size_t 536 i915_ggtt_view_size(struct drm_i915_gem_object *obj, 537 const struct i915_ggtt_view *view); 538 539 #endif 540