xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/log2.h>
27 #include <linux/random.h>
28 #include <linux/seq_file.h>
29 #include <linux/stop_machine.h>
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 
34 #include "i915_drv.h"
35 #include "i915_vgpu.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38 #include "intel_frontbuffer.h"
39 
40 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
41 
42 /**
43  * DOC: Global GTT views
44  *
45  * Background and previous state
46  *
47  * Historically objects could exists (be bound) in global GTT space only as
48  * singular instances with a view representing all of the object's backing pages
49  * in a linear fashion. This view will be called a normal view.
50  *
51  * To support multiple views of the same object, where the number of mapped
52  * pages is not equal to the backing store, or where the layout of the pages
53  * is not linear, concept of a GGTT view was added.
54  *
55  * One example of an alternative view is a stereo display driven by a single
56  * image. In this case we would have a framebuffer looking like this
57  * (2x2 pages):
58  *
59  *    12
60  *    34
61  *
62  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
63  * rendering. In contrast, fed to the display engine would be an alternative
64  * view which could look something like this:
65  *
66  *   1212
67  *   3434
68  *
69  * In this example both the size and layout of pages in the alternative view is
70  * different from the normal view.
71  *
72  * Implementation and usage
73  *
74  * GGTT views are implemented using VMAs and are distinguished via enum
75  * i915_ggtt_view_type and struct i915_ggtt_view.
76  *
77  * A new flavour of core GEM functions which work with GGTT bound objects were
78  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
79  * renaming  in large amounts of code. They take the struct i915_ggtt_view
80  * parameter encapsulating all metadata required to implement a view.
81  *
82  * As a helper for callers which are only interested in the normal view,
83  * globally const i915_ggtt_view_normal singleton instance exists. All old core
84  * GEM API functions, the ones not taking the view parameter, are operating on,
85  * or with the normal GGTT view.
86  *
87  * Code wanting to add or use a new GGTT view needs to:
88  *
89  * 1. Add a new enum with a suitable name.
90  * 2. Extend the metadata in the i915_ggtt_view structure if required.
91  * 3. Add support to i915_get_vma_pages().
92  *
93  * New views are required to build a scatter-gather table from within the
94  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
95  * exists for the lifetime of an VMA.
96  *
97  * Core API is designed to have copy semantics which means that passed in
98  * struct i915_ggtt_view does not need to be persistent (left around after
99  * calling the core API functions).
100  *
101  */
102 
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105 
106 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
107 {
108 	/* Note that as an uncached mmio write, this should flush the
109 	 * WCB of the writes into the GGTT before it triggers the invalidate.
110 	 */
111 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
112 }
113 
114 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
115 {
116 	gen6_ggtt_invalidate(dev_priv);
117 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
118 }
119 
120 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	intel_gtt_chipset_flush();
123 }
124 
125 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
126 {
127 	i915->ggtt.invalidate(i915);
128 }
129 
130 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
131 			       	int enable_ppgtt)
132 {
133 	bool has_aliasing_ppgtt;
134 	bool has_full_ppgtt;
135 	bool has_full_48bit_ppgtt;
136 
137 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
138 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
139 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
140 
141 	if (intel_vgpu_active(dev_priv)) {
142 		/* emulation is too hard */
143 		has_full_ppgtt = false;
144 		has_full_48bit_ppgtt = false;
145 	}
146 
147 	if (!has_aliasing_ppgtt)
148 		return 0;
149 
150 	/*
151 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
152 	 * execlists, the sole mechanism available to submit work.
153 	 */
154 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
155 		return 0;
156 
157 	if (enable_ppgtt == 1)
158 		return 1;
159 
160 	if (enable_ppgtt == 2 && has_full_ppgtt)
161 		return 2;
162 
163 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
164 		return 3;
165 
166 #ifdef CONFIG_INTEL_IOMMU
167 	/* Disable ppgtt on SNB if VT-d is on. */
168 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
169 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
170 		return 0;
171 	}
172 #endif
173 
174 	/* Early VLV doesn't have this */
175 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
176 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
177 		return 0;
178 	}
179 
180 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
181 		return has_full_48bit_ppgtt ? 3 : 2;
182 	else
183 		return has_aliasing_ppgtt ? 1 : 0;
184 }
185 
186 static int ppgtt_bind_vma(struct i915_vma *vma,
187 			  enum i915_cache_level cache_level,
188 			  u32 unused)
189 {
190 	u32 pte_flags = 0;
191 
192 	vma->pages = vma->obj->mm.pages;
193 
194 	/* Currently applicable only to VLV */
195 	if (vma->obj->gt_ro)
196 		pte_flags |= PTE_READ_ONLY;
197 
198 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
199 				cache_level, pte_flags);
200 
201 	return 0;
202 }
203 
204 static void ppgtt_unbind_vma(struct i915_vma *vma)
205 {
206 	vma->vm->clear_range(vma->vm,
207 			     vma->node.start,
208 			     vma->size);
209 }
210 
211 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
212 				  enum i915_cache_level level)
213 {
214 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
215 	pte |= addr;
216 
217 	switch (level) {
218 	case I915_CACHE_NONE:
219 		pte |= PPAT_UNCACHED_INDEX;
220 		break;
221 	case I915_CACHE_WT:
222 		pte |= PPAT_DISPLAY_ELLC_INDEX;
223 		break;
224 	default:
225 		pte |= PPAT_CACHED_INDEX;
226 		break;
227 	}
228 
229 	return pte;
230 }
231 
232 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
233 				  const enum i915_cache_level level)
234 {
235 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
236 	pde |= addr;
237 	if (level != I915_CACHE_NONE)
238 		pde |= PPAT_CACHED_PDE_INDEX;
239 	else
240 		pde |= PPAT_UNCACHED_INDEX;
241 	return pde;
242 }
243 
244 #define gen8_pdpe_encode gen8_pde_encode
245 #define gen8_pml4e_encode gen8_pde_encode
246 
247 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
248 				 enum i915_cache_level level,
249 				 u32 unused)
250 {
251 	gen6_pte_t pte = GEN6_PTE_VALID;
252 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
253 
254 	switch (level) {
255 	case I915_CACHE_L3_LLC:
256 	case I915_CACHE_LLC:
257 		pte |= GEN6_PTE_CACHE_LLC;
258 		break;
259 	case I915_CACHE_NONE:
260 		pte |= GEN6_PTE_UNCACHED;
261 		break;
262 	default:
263 		MISSING_CASE(level);
264 	}
265 
266 	return pte;
267 }
268 
269 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
270 				 enum i915_cache_level level,
271 				 u32 unused)
272 {
273 	gen6_pte_t pte = GEN6_PTE_VALID;
274 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
275 
276 	switch (level) {
277 	case I915_CACHE_L3_LLC:
278 		pte |= GEN7_PTE_CACHE_L3_LLC;
279 		break;
280 	case I915_CACHE_LLC:
281 		pte |= GEN6_PTE_CACHE_LLC;
282 		break;
283 	case I915_CACHE_NONE:
284 		pte |= GEN6_PTE_UNCACHED;
285 		break;
286 	default:
287 		MISSING_CASE(level);
288 	}
289 
290 	return pte;
291 }
292 
293 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
294 				 enum i915_cache_level level,
295 				 u32 flags)
296 {
297 	gen6_pte_t pte = GEN6_PTE_VALID;
298 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
299 
300 	if (!(flags & PTE_READ_ONLY))
301 		pte |= BYT_PTE_WRITEABLE;
302 
303 	if (level != I915_CACHE_NONE)
304 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
305 
306 	return pte;
307 }
308 
309 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
310 				 enum i915_cache_level level,
311 				 u32 unused)
312 {
313 	gen6_pte_t pte = GEN6_PTE_VALID;
314 	pte |= HSW_PTE_ADDR_ENCODE(addr);
315 
316 	if (level != I915_CACHE_NONE)
317 		pte |= HSW_WB_LLC_AGE3;
318 
319 	return pte;
320 }
321 
322 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
323 				  enum i915_cache_level level,
324 				  u32 unused)
325 {
326 	gen6_pte_t pte = GEN6_PTE_VALID;
327 	pte |= HSW_PTE_ADDR_ENCODE(addr);
328 
329 	switch (level) {
330 	case I915_CACHE_NONE:
331 		break;
332 	case I915_CACHE_WT:
333 		pte |= HSW_WT_ELLC_LLC_AGE3;
334 		break;
335 	default:
336 		pte |= HSW_WB_ELLC_LLC_AGE3;
337 		break;
338 	}
339 
340 	return pte;
341 }
342 
343 static int __setup_page_dma(struct drm_i915_private *dev_priv,
344 			    struct i915_page_dma *p, gfp_t flags)
345 {
346 	struct device *kdev = &dev_priv->drm.pdev->dev;
347 
348 	p->page = alloc_page(flags);
349 	if (!p->page)
350 		return -ENOMEM;
351 
352 	p->daddr = dma_map_page(kdev,
353 				p->page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
354 
355 	if (dma_mapping_error(kdev, p->daddr)) {
356 		__free_page(p->page);
357 		return -EINVAL;
358 	}
359 
360 	return 0;
361 }
362 
363 static int setup_page_dma(struct drm_i915_private *dev_priv,
364 			  struct i915_page_dma *p)
365 {
366 	return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
367 }
368 
369 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
370 			     struct i915_page_dma *p)
371 {
372 	struct pci_dev *pdev = dev_priv->drm.pdev;
373 
374 	if (WARN_ON(!p->page))
375 		return;
376 
377 	dma_unmap_page(&pdev->dev, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
378 	__free_page(p->page);
379 	memset(p, 0, sizeof(*p));
380 }
381 
382 static void *kmap_page_dma(struct i915_page_dma *p)
383 {
384 	return kmap_atomic(p->page);
385 }
386 
387 /* We use the flushing unmap only with ppgtt structures:
388  * page directories, page tables and scratch pages.
389  */
390 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
391 {
392 	/* There are only few exceptions for gen >=6. chv and bxt.
393 	 * And we are not sure about the latter so play safe for now.
394 	 */
395 	if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
396 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
397 
398 	kunmap_atomic(vaddr);
399 }
400 
401 #define kmap_px(px) kmap_page_dma(px_base(px))
402 #define kunmap_px(ppgtt, vaddr) \
403 		kunmap_page_dma((ppgtt)->base.i915, (vaddr))
404 
405 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
406 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
407 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
408 #define fill32_px(dev_priv, px, v) \
409 		fill_page_dma_32((dev_priv), px_base(px), (v))
410 
411 static void fill_page_dma(struct drm_i915_private *dev_priv,
412 			  struct i915_page_dma *p, const uint64_t val)
413 {
414 	int i;
415 	uint64_t * const vaddr = kmap_page_dma(p);
416 
417 	for (i = 0; i < 512; i++)
418 		vaddr[i] = val;
419 
420 	kunmap_page_dma(dev_priv, vaddr);
421 }
422 
423 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
424 			     struct i915_page_dma *p, const uint32_t val32)
425 {
426 	uint64_t v = val32;
427 
428 	v = v << 32 | val32;
429 
430 	fill_page_dma(dev_priv, p, v);
431 }
432 
433 static int
434 setup_scratch_page(struct drm_i915_private *dev_priv,
435 		   struct i915_page_dma *scratch,
436 		   gfp_t gfp)
437 {
438 	return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
439 }
440 
441 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
442 				 struct i915_page_dma *scratch)
443 {
444 	cleanup_page_dma(dev_priv, scratch);
445 }
446 
447 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
448 {
449 	struct i915_page_table *pt;
450 	const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
451 	int ret = -ENOMEM;
452 
453 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
454 	if (!pt)
455 		return ERR_PTR(-ENOMEM);
456 
457 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
458 				GFP_KERNEL);
459 
460 	if (!pt->used_ptes)
461 		goto fail_bitmap;
462 
463 	ret = setup_px(dev_priv, pt);
464 	if (ret)
465 		goto fail_page_m;
466 
467 	return pt;
468 
469 fail_page_m:
470 	kfree(pt->used_ptes);
471 fail_bitmap:
472 	kfree(pt);
473 
474 	return ERR_PTR(ret);
475 }
476 
477 static void free_pt(struct drm_i915_private *dev_priv,
478 		    struct i915_page_table *pt)
479 {
480 	cleanup_px(dev_priv, pt);
481 	kfree(pt->used_ptes);
482 	kfree(pt);
483 }
484 
485 static void gen8_initialize_pt(struct i915_address_space *vm,
486 			       struct i915_page_table *pt)
487 {
488 	gen8_pte_t scratch_pte;
489 
490 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
491 				      I915_CACHE_LLC);
492 
493 	fill_px(vm->i915, pt, scratch_pte);
494 }
495 
496 static void gen6_initialize_pt(struct i915_address_space *vm,
497 			       struct i915_page_table *pt)
498 {
499 	gen6_pte_t scratch_pte;
500 
501 	WARN_ON(vm->scratch_page.daddr == 0);
502 
503 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
504 				     I915_CACHE_LLC, 0);
505 
506 	fill32_px(vm->i915, pt, scratch_pte);
507 }
508 
509 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
510 {
511 	struct i915_page_directory *pd;
512 	int ret = -ENOMEM;
513 
514 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
515 	if (!pd)
516 		return ERR_PTR(-ENOMEM);
517 
518 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
519 				sizeof(*pd->used_pdes), GFP_KERNEL);
520 	if (!pd->used_pdes)
521 		goto fail_bitmap;
522 
523 	ret = setup_px(dev_priv, pd);
524 	if (ret)
525 		goto fail_page_m;
526 
527 	return pd;
528 
529 fail_page_m:
530 	kfree(pd->used_pdes);
531 fail_bitmap:
532 	kfree(pd);
533 
534 	return ERR_PTR(ret);
535 }
536 
537 static void free_pd(struct drm_i915_private *dev_priv,
538 		    struct i915_page_directory *pd)
539 {
540 	if (px_page(pd)) {
541 		cleanup_px(dev_priv, pd);
542 		kfree(pd->used_pdes);
543 		kfree(pd);
544 	}
545 }
546 
547 static void gen8_initialize_pd(struct i915_address_space *vm,
548 			       struct i915_page_directory *pd)
549 {
550 	gen8_pde_t scratch_pde;
551 
552 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
553 
554 	fill_px(vm->i915, pd, scratch_pde);
555 }
556 
557 static int __pdp_init(struct drm_i915_private *dev_priv,
558 		      struct i915_page_directory_pointer *pdp)
559 {
560 	size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
561 
562 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
563 				  sizeof(unsigned long),
564 				  GFP_KERNEL);
565 	if (!pdp->used_pdpes)
566 		return -ENOMEM;
567 
568 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
569 				      GFP_KERNEL);
570 	if (!pdp->page_directory) {
571 		kfree(pdp->used_pdpes);
572 		/* the PDP might be the statically allocated top level. Keep it
573 		 * as clean as possible */
574 		pdp->used_pdpes = NULL;
575 		return -ENOMEM;
576 	}
577 
578 	return 0;
579 }
580 
581 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
582 {
583 	kfree(pdp->used_pdpes);
584 	kfree(pdp->page_directory);
585 	pdp->page_directory = NULL;
586 }
587 
588 static struct
589 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
590 {
591 	struct i915_page_directory_pointer *pdp;
592 	int ret = -ENOMEM;
593 
594 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
595 
596 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
597 	if (!pdp)
598 		return ERR_PTR(-ENOMEM);
599 
600 	ret = __pdp_init(dev_priv, pdp);
601 	if (ret)
602 		goto fail_bitmap;
603 
604 	ret = setup_px(dev_priv, pdp);
605 	if (ret)
606 		goto fail_page_m;
607 
608 	return pdp;
609 
610 fail_page_m:
611 	__pdp_fini(pdp);
612 fail_bitmap:
613 	kfree(pdp);
614 
615 	return ERR_PTR(ret);
616 }
617 
618 static void free_pdp(struct drm_i915_private *dev_priv,
619 		     struct i915_page_directory_pointer *pdp)
620 {
621 	__pdp_fini(pdp);
622 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
623 		cleanup_px(dev_priv, pdp);
624 		kfree(pdp);
625 	}
626 }
627 
628 static void gen8_initialize_pdp(struct i915_address_space *vm,
629 				struct i915_page_directory_pointer *pdp)
630 {
631 	gen8_ppgtt_pdpe_t scratch_pdpe;
632 
633 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
634 
635 	fill_px(vm->i915, pdp, scratch_pdpe);
636 }
637 
638 static void gen8_initialize_pml4(struct i915_address_space *vm,
639 				 struct i915_pml4 *pml4)
640 {
641 	gen8_ppgtt_pml4e_t scratch_pml4e;
642 
643 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
644 					  I915_CACHE_LLC);
645 
646 	fill_px(vm->i915, pml4, scratch_pml4e);
647 }
648 
649 static void
650 gen8_setup_pdpe(struct i915_hw_ppgtt *ppgtt,
651 		struct i915_page_directory_pointer *pdp,
652 		struct i915_page_directory *pd,
653 		int index)
654 {
655 	gen8_ppgtt_pdpe_t *page_directorypo;
656 
657 	if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
658 		return;
659 
660 	page_directorypo = kmap_px(pdp);
661 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
662 	kunmap_px(ppgtt, page_directorypo);
663 }
664 
665 static void
666 gen8_setup_pml4e(struct i915_hw_ppgtt *ppgtt,
667 		 struct i915_pml4 *pml4,
668 		 struct i915_page_directory_pointer *pdp,
669 		 int index)
670 {
671 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
672 
673 	WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
674 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
675 	kunmap_px(ppgtt, pagemap);
676 }
677 
678 /* Broadwell Page Directory Pointer Descriptors */
679 static int gen8_write_pdp(struct drm_i915_gem_request *req,
680 			  unsigned entry,
681 			  dma_addr_t addr)
682 {
683 	struct intel_ring *ring = req->ring;
684 	struct intel_engine_cs *engine = req->engine;
685 	int ret;
686 
687 	BUG_ON(entry >= 4);
688 
689 	ret = intel_ring_begin(req, 6);
690 	if (ret)
691 		return ret;
692 
693 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
694 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
695 	intel_ring_emit(ring, upper_32_bits(addr));
696 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
697 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
698 	intel_ring_emit(ring, lower_32_bits(addr));
699 	intel_ring_advance(ring);
700 
701 	return 0;
702 }
703 
704 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
705 				 struct drm_i915_gem_request *req)
706 {
707 	int i, ret;
708 
709 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
710 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
711 
712 		ret = gen8_write_pdp(req, i, pd_daddr);
713 		if (ret)
714 			return ret;
715 	}
716 
717 	return 0;
718 }
719 
720 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
721 			      struct drm_i915_gem_request *req)
722 {
723 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
724 }
725 
726 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
727  * the page table structures, we mark them dirty so that
728  * context switching/execlist queuing code takes extra steps
729  * to ensure that tlbs are flushed.
730  */
731 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
732 {
733 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
734 }
735 
736 /* Removes entries from a single page table, releasing it if it's empty.
737  * Caller can use the return value to update higher-level entries.
738  */
739 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
740 				struct i915_page_table *pt,
741 				uint64_t start,
742 				uint64_t length)
743 {
744 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
745 	unsigned int num_entries = gen8_pte_count(start, length);
746 	unsigned int pte = gen8_pte_index(start);
747 	unsigned int pte_end = pte + num_entries;
748 	gen8_pte_t *pt_vaddr;
749 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
750 						 I915_CACHE_LLC);
751 
752 	if (WARN_ON(!px_page(pt)))
753 		return false;
754 
755 	GEM_BUG_ON(pte_end > GEN8_PTES);
756 
757 	bitmap_clear(pt->used_ptes, pte, num_entries);
758 	if (USES_FULL_PPGTT(vm->i915)) {
759 		if (bitmap_empty(pt->used_ptes, GEN8_PTES))
760 			return true;
761 	}
762 
763 	pt_vaddr = kmap_px(pt);
764 
765 	while (pte < pte_end)
766 		pt_vaddr[pte++] = scratch_pte;
767 
768 	kunmap_px(ppgtt, pt_vaddr);
769 
770 	return false;
771 }
772 
773 /* Removes entries from a single page dir, releasing it if it's empty.
774  * Caller can use the return value to update higher-level entries
775  */
776 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
777 				struct i915_page_directory *pd,
778 				uint64_t start,
779 				uint64_t length)
780 {
781 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
782 	struct i915_page_table *pt;
783 	uint64_t pde;
784 	gen8_pde_t *pde_vaddr;
785 	gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
786 						 I915_CACHE_LLC);
787 
788 	gen8_for_each_pde(pt, pd, start, length, pde) {
789 		if (WARN_ON(!pd->page_table[pde]))
790 			break;
791 
792 		if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
793 			__clear_bit(pde, pd->used_pdes);
794 			pde_vaddr = kmap_px(pd);
795 			pde_vaddr[pde] = scratch_pde;
796 			kunmap_px(ppgtt, pde_vaddr);
797 			free_pt(vm->i915, pt);
798 		}
799 	}
800 
801 	if (bitmap_empty(pd->used_pdes, I915_PDES))
802 		return true;
803 
804 	return false;
805 }
806 
807 /* Removes entries from a single page dir pointer, releasing it if it's empty.
808  * Caller can use the return value to update higher-level entries
809  */
810 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
811 				 struct i915_page_directory_pointer *pdp,
812 				 uint64_t start,
813 				 uint64_t length)
814 {
815 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
816 	struct i915_page_directory *pd;
817 	uint64_t pdpe;
818 
819 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
820 		if (WARN_ON(!pdp->page_directory[pdpe]))
821 			break;
822 
823 		if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
824 			__clear_bit(pdpe, pdp->used_pdpes);
825 			gen8_setup_pdpe(ppgtt, pdp, vm->scratch_pd, pdpe);
826 			free_pd(vm->i915, pd);
827 		}
828 	}
829 
830 	mark_tlbs_dirty(ppgtt);
831 
832 	if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
833 		return true;
834 
835 	return false;
836 }
837 
838 /* Removes entries from a single pml4.
839  * This is the top-level structure in 4-level page tables used on gen8+.
840  * Empty entries are always scratch pml4e.
841  */
842 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
843 				  struct i915_pml4 *pml4,
844 				  uint64_t start,
845 				  uint64_t length)
846 {
847 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
848 	struct i915_page_directory_pointer *pdp;
849 	uint64_t pml4e;
850 
851 	GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915));
852 
853 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
854 		if (WARN_ON(!pml4->pdps[pml4e]))
855 			break;
856 
857 		if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
858 			__clear_bit(pml4e, pml4->used_pml4es);
859 			gen8_setup_pml4e(ppgtt, pml4, vm->scratch_pdp, pml4e);
860 			free_pdp(vm->i915, pdp);
861 		}
862 	}
863 }
864 
865 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
866 				   uint64_t start, uint64_t length)
867 {
868 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
869 
870 	if (USES_FULL_48BIT_PPGTT(vm->i915))
871 		gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
872 	else
873 		gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
874 }
875 
876 static void
877 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
878 			      struct i915_page_directory_pointer *pdp,
879 			      struct sg_page_iter *sg_iter,
880 			      uint64_t start,
881 			      enum i915_cache_level cache_level)
882 {
883 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
884 	gen8_pte_t *pt_vaddr;
885 	unsigned pdpe = gen8_pdpe_index(start);
886 	unsigned pde = gen8_pde_index(start);
887 	unsigned pte = gen8_pte_index(start);
888 
889 	pt_vaddr = NULL;
890 
891 	while (__sg_page_iter_next(sg_iter)) {
892 		if (pt_vaddr == NULL) {
893 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
894 			struct i915_page_table *pt = pd->page_table[pde];
895 			pt_vaddr = kmap_px(pt);
896 		}
897 
898 		pt_vaddr[pte] =
899 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
900 					cache_level);
901 		if (++pte == GEN8_PTES) {
902 			kunmap_px(ppgtt, pt_vaddr);
903 			pt_vaddr = NULL;
904 			if (++pde == I915_PDES) {
905 				if (++pdpe == I915_PDPES_PER_PDP(vm->i915))
906 					break;
907 				pde = 0;
908 			}
909 			pte = 0;
910 		}
911 	}
912 
913 	if (pt_vaddr)
914 		kunmap_px(ppgtt, pt_vaddr);
915 }
916 
917 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
918 				      struct sg_table *pages,
919 				      uint64_t start,
920 				      enum i915_cache_level cache_level,
921 				      u32 unused)
922 {
923 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
924 	struct sg_page_iter sg_iter;
925 
926 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
927 
928 	if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
929 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
930 					      cache_level);
931 	} else {
932 		struct i915_page_directory_pointer *pdp;
933 		uint64_t pml4e;
934 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
935 
936 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
937 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
938 						      start, cache_level);
939 		}
940 	}
941 }
942 
943 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
944 				  struct i915_page_directory *pd)
945 {
946 	int i;
947 
948 	if (!px_page(pd))
949 		return;
950 
951 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
952 		if (WARN_ON(!pd->page_table[i]))
953 			continue;
954 
955 		free_pt(dev_priv, pd->page_table[i]);
956 		pd->page_table[i] = NULL;
957 	}
958 }
959 
960 static int gen8_init_scratch(struct i915_address_space *vm)
961 {
962 	struct drm_i915_private *dev_priv = vm->i915;
963 	int ret;
964 
965 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
966 	if (ret)
967 		return ret;
968 
969 	vm->scratch_pt = alloc_pt(dev_priv);
970 	if (IS_ERR(vm->scratch_pt)) {
971 		ret = PTR_ERR(vm->scratch_pt);
972 		goto free_scratch_page;
973 	}
974 
975 	vm->scratch_pd = alloc_pd(dev_priv);
976 	if (IS_ERR(vm->scratch_pd)) {
977 		ret = PTR_ERR(vm->scratch_pd);
978 		goto free_pt;
979 	}
980 
981 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
982 		vm->scratch_pdp = alloc_pdp(dev_priv);
983 		if (IS_ERR(vm->scratch_pdp)) {
984 			ret = PTR_ERR(vm->scratch_pdp);
985 			goto free_pd;
986 		}
987 	}
988 
989 	gen8_initialize_pt(vm, vm->scratch_pt);
990 	gen8_initialize_pd(vm, vm->scratch_pd);
991 	if (USES_FULL_48BIT_PPGTT(dev_priv))
992 		gen8_initialize_pdp(vm, vm->scratch_pdp);
993 
994 	return 0;
995 
996 free_pd:
997 	free_pd(dev_priv, vm->scratch_pd);
998 free_pt:
999 	free_pt(dev_priv, vm->scratch_pt);
1000 free_scratch_page:
1001 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
1002 
1003 	return ret;
1004 }
1005 
1006 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1007 {
1008 	enum vgt_g2v_type msg;
1009 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1010 	int i;
1011 
1012 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1013 		u64 daddr = px_dma(&ppgtt->pml4);
1014 
1015 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1016 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1017 
1018 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1019 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1020 	} else {
1021 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1022 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1023 
1024 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1025 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1026 		}
1027 
1028 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1029 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1030 	}
1031 
1032 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1033 
1034 	return 0;
1035 }
1036 
1037 static void gen8_free_scratch(struct i915_address_space *vm)
1038 {
1039 	struct drm_i915_private *dev_priv = vm->i915;
1040 
1041 	if (USES_FULL_48BIT_PPGTT(dev_priv))
1042 		free_pdp(dev_priv, vm->scratch_pdp);
1043 	free_pd(dev_priv, vm->scratch_pd);
1044 	free_pt(dev_priv, vm->scratch_pt);
1045 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
1046 }
1047 
1048 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1049 				    struct i915_page_directory_pointer *pdp)
1050 {
1051 	int i;
1052 
1053 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1054 		if (WARN_ON(!pdp->page_directory[i]))
1055 			continue;
1056 
1057 		gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1058 		free_pd(dev_priv, pdp->page_directory[i]);
1059 	}
1060 
1061 	free_pdp(dev_priv, pdp);
1062 }
1063 
1064 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1065 {
1066 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1067 	int i;
1068 
1069 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1070 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
1071 			continue;
1072 
1073 		gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1074 	}
1075 
1076 	cleanup_px(dev_priv, &ppgtt->pml4);
1077 }
1078 
1079 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1080 {
1081 	struct drm_i915_private *dev_priv = vm->i915;
1082 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1083 
1084 	if (intel_vgpu_active(dev_priv))
1085 		gen8_ppgtt_notify_vgt(ppgtt, false);
1086 
1087 	if (!USES_FULL_48BIT_PPGTT(dev_priv))
1088 		gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1089 	else
1090 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1091 
1092 	gen8_free_scratch(vm);
1093 }
1094 
1095 /**
1096  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1097  * @vm:	Master vm structure.
1098  * @pd:	Page directory for this address range.
1099  * @start:	Starting virtual address to begin allocations.
1100  * @length:	Size of the allocations.
1101  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1102  *		caller to free on error.
1103  *
1104  * Allocate the required number of page tables. Extremely similar to
1105  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1106  * the page directory boundary (instead of the page directory pointer). That
1107  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1108  * possible, and likely that the caller will need to use multiple calls of this
1109  * function to achieve the appropriate allocation.
1110  *
1111  * Return: 0 if success; negative error code otherwise.
1112  */
1113 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1114 				     struct i915_page_directory *pd,
1115 				     uint64_t start,
1116 				     uint64_t length,
1117 				     unsigned long *new_pts)
1118 {
1119 	struct drm_i915_private *dev_priv = vm->i915;
1120 	struct i915_page_table *pt;
1121 	uint32_t pde;
1122 
1123 	gen8_for_each_pde(pt, pd, start, length, pde) {
1124 		/* Don't reallocate page tables */
1125 		if (test_bit(pde, pd->used_pdes)) {
1126 			/* Scratch is never allocated this way */
1127 			WARN_ON(pt == vm->scratch_pt);
1128 			continue;
1129 		}
1130 
1131 		pt = alloc_pt(dev_priv);
1132 		if (IS_ERR(pt))
1133 			goto unwind_out;
1134 
1135 		gen8_initialize_pt(vm, pt);
1136 		pd->page_table[pde] = pt;
1137 		__set_bit(pde, new_pts);
1138 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1139 	}
1140 
1141 	return 0;
1142 
1143 unwind_out:
1144 	for_each_set_bit(pde, new_pts, I915_PDES)
1145 		free_pt(dev_priv, pd->page_table[pde]);
1146 
1147 	return -ENOMEM;
1148 }
1149 
1150 /**
1151  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1152  * @vm:	Master vm structure.
1153  * @pdp:	Page directory pointer for this address range.
1154  * @start:	Starting virtual address to begin allocations.
1155  * @length:	Size of the allocations.
1156  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1157  *		caller to free on error.
1158  *
1159  * Allocate the required number of page directories starting at the pde index of
1160  * @start, and ending at the pde index @start + @length. This function will skip
1161  * over already allocated page directories within the range, and only allocate
1162  * new ones, setting the appropriate pointer within the pdp as well as the
1163  * correct position in the bitmap @new_pds.
1164  *
1165  * The function will only allocate the pages within the range for a give page
1166  * directory pointer. In other words, if @start + @length straddles a virtually
1167  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1168  * required by the caller, This is not currently possible, and the BUG in the
1169  * code will prevent it.
1170  *
1171  * Return: 0 if success; negative error code otherwise.
1172  */
1173 static int
1174 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1175 				  struct i915_page_directory_pointer *pdp,
1176 				  uint64_t start,
1177 				  uint64_t length,
1178 				  unsigned long *new_pds)
1179 {
1180 	struct drm_i915_private *dev_priv = vm->i915;
1181 	struct i915_page_directory *pd;
1182 	uint32_t pdpe;
1183 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1184 
1185 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1186 
1187 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1188 		if (test_bit(pdpe, pdp->used_pdpes))
1189 			continue;
1190 
1191 		pd = alloc_pd(dev_priv);
1192 		if (IS_ERR(pd))
1193 			goto unwind_out;
1194 
1195 		gen8_initialize_pd(vm, pd);
1196 		pdp->page_directory[pdpe] = pd;
1197 		__set_bit(pdpe, new_pds);
1198 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1199 	}
1200 
1201 	return 0;
1202 
1203 unwind_out:
1204 	for_each_set_bit(pdpe, new_pds, pdpes)
1205 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1206 
1207 	return -ENOMEM;
1208 }
1209 
1210 /**
1211  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1212  * @vm:	Master vm structure.
1213  * @pml4:	Page map level 4 for this address range.
1214  * @start:	Starting virtual address to begin allocations.
1215  * @length:	Size of the allocations.
1216  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1217  *		caller to free on error.
1218  *
1219  * Allocate the required number of page directory pointers. Extremely similar to
1220  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1221  * The main difference is here we are limited by the pml4 boundary (instead of
1222  * the page directory pointer).
1223  *
1224  * Return: 0 if success; negative error code otherwise.
1225  */
1226 static int
1227 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1228 				  struct i915_pml4 *pml4,
1229 				  uint64_t start,
1230 				  uint64_t length,
1231 				  unsigned long *new_pdps)
1232 {
1233 	struct drm_i915_private *dev_priv = vm->i915;
1234 	struct i915_page_directory_pointer *pdp;
1235 	uint32_t pml4e;
1236 
1237 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1238 
1239 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1240 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1241 			pdp = alloc_pdp(dev_priv);
1242 			if (IS_ERR(pdp))
1243 				goto unwind_out;
1244 
1245 			gen8_initialize_pdp(vm, pdp);
1246 			pml4->pdps[pml4e] = pdp;
1247 			__set_bit(pml4e, new_pdps);
1248 			trace_i915_page_directory_pointer_entry_alloc(vm,
1249 								      pml4e,
1250 								      start,
1251 								      GEN8_PML4E_SHIFT);
1252 		}
1253 	}
1254 
1255 	return 0;
1256 
1257 unwind_out:
1258 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1259 		free_pdp(dev_priv, pml4->pdps[pml4e]);
1260 
1261 	return -ENOMEM;
1262 }
1263 
1264 static void
1265 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1266 {
1267 	kfree(new_pts);
1268 	kfree(new_pds);
1269 }
1270 
1271 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1272  * of these are based on the number of PDPEs in the system.
1273  */
1274 static
1275 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1276 					 unsigned long **new_pts,
1277 					 uint32_t pdpes)
1278 {
1279 	unsigned long *pds;
1280 	unsigned long *pts;
1281 
1282 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1283 	if (!pds)
1284 		return -ENOMEM;
1285 
1286 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1287 		      GFP_TEMPORARY);
1288 	if (!pts)
1289 		goto err_out;
1290 
1291 	*new_pds = pds;
1292 	*new_pts = pts;
1293 
1294 	return 0;
1295 
1296 err_out:
1297 	free_gen8_temp_bitmaps(pds, pts);
1298 	return -ENOMEM;
1299 }
1300 
1301 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1302 				    struct i915_page_directory_pointer *pdp,
1303 				    uint64_t start,
1304 				    uint64_t length)
1305 {
1306 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1307 	unsigned long *new_page_dirs, *new_page_tables;
1308 	struct drm_i915_private *dev_priv = vm->i915;
1309 	struct i915_page_directory *pd;
1310 	const uint64_t orig_start = start;
1311 	const uint64_t orig_length = length;
1312 	uint32_t pdpe;
1313 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1314 	int ret;
1315 
1316 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* Do the allocations first so we can easily bail out */
1321 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1322 						new_page_dirs);
1323 	if (ret) {
1324 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1325 		return ret;
1326 	}
1327 
1328 	/* For every page directory referenced, allocate page tables */
1329 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1330 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1331 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1332 		if (ret)
1333 			goto err_out;
1334 	}
1335 
1336 	start = orig_start;
1337 	length = orig_length;
1338 
1339 	/* Allocations have completed successfully, so set the bitmaps, and do
1340 	 * the mappings. */
1341 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1342 		gen8_pde_t *const page_directory = kmap_px(pd);
1343 		struct i915_page_table *pt;
1344 		uint64_t pd_len = length;
1345 		uint64_t pd_start = start;
1346 		uint32_t pde;
1347 
1348 		/* Every pd should be allocated, we just did that above. */
1349 		WARN_ON(!pd);
1350 
1351 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1352 			/* Same reasoning as pd */
1353 			WARN_ON(!pt);
1354 			WARN_ON(!pd_len);
1355 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1356 
1357 			/* Set our used ptes within the page table */
1358 			bitmap_set(pt->used_ptes,
1359 				   gen8_pte_index(pd_start),
1360 				   gen8_pte_count(pd_start, pd_len));
1361 
1362 			/* Our pde is now pointing to the pagetable, pt */
1363 			__set_bit(pde, pd->used_pdes);
1364 
1365 			/* Map the PDE to the page table */
1366 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1367 							      I915_CACHE_LLC);
1368 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1369 							gen8_pte_index(start),
1370 							gen8_pte_count(start, length),
1371 							GEN8_PTES);
1372 
1373 			/* NB: We haven't yet mapped ptes to pages. At this
1374 			 * point we're still relying on insert_entries() */
1375 		}
1376 
1377 		kunmap_px(ppgtt, page_directory);
1378 		__set_bit(pdpe, pdp->used_pdpes);
1379 		gen8_setup_pdpe(ppgtt, pdp, pd, pdpe);
1380 	}
1381 
1382 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1383 	mark_tlbs_dirty(ppgtt);
1384 	return 0;
1385 
1386 err_out:
1387 	while (pdpe--) {
1388 		unsigned long temp;
1389 
1390 		for_each_set_bit(temp, new_page_tables + pdpe *
1391 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1392 			free_pt(dev_priv,
1393 				pdp->page_directory[pdpe]->page_table[temp]);
1394 	}
1395 
1396 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1397 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1398 
1399 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1400 	mark_tlbs_dirty(ppgtt);
1401 	return ret;
1402 }
1403 
1404 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1405 				    struct i915_pml4 *pml4,
1406 				    uint64_t start,
1407 				    uint64_t length)
1408 {
1409 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1410 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1411 	struct i915_page_directory_pointer *pdp;
1412 	uint64_t pml4e;
1413 	int ret = 0;
1414 
1415 	/* Do the pml4 allocations first, so we don't need to track the newly
1416 	 * allocated tables below the pdp */
1417 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1418 
1419 	/* The pagedirectory and pagetable allocations are done in the shared 3
1420 	 * and 4 level code. Just allocate the pdps.
1421 	 */
1422 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1423 						new_pdps);
1424 	if (ret)
1425 		return ret;
1426 
1427 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1428 	     "The allocation has spanned more than 512GB. "
1429 	     "It is highly likely this is incorrect.");
1430 
1431 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1432 		WARN_ON(!pdp);
1433 
1434 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1435 		if (ret)
1436 			goto err_out;
1437 
1438 		gen8_setup_pml4e(ppgtt, pml4, pdp, pml4e);
1439 	}
1440 
1441 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1442 		  GEN8_PML4ES_PER_PML4);
1443 
1444 	return 0;
1445 
1446 err_out:
1447 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1448 		gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]);
1449 
1450 	return ret;
1451 }
1452 
1453 static int gen8_alloc_va_range(struct i915_address_space *vm,
1454 			       uint64_t start, uint64_t length)
1455 {
1456 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1457 
1458 	if (USES_FULL_48BIT_PPGTT(vm->i915))
1459 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1460 	else
1461 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1462 }
1463 
1464 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1465 			  uint64_t start, uint64_t length,
1466 			  gen8_pte_t scratch_pte,
1467 			  struct seq_file *m)
1468 {
1469 	struct i915_page_directory *pd;
1470 	uint32_t pdpe;
1471 
1472 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1473 		struct i915_page_table *pt;
1474 		uint64_t pd_len = length;
1475 		uint64_t pd_start = start;
1476 		uint32_t pde;
1477 
1478 		if (!test_bit(pdpe, pdp->used_pdpes))
1479 			continue;
1480 
1481 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1482 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1483 			uint32_t  pte;
1484 			gen8_pte_t *pt_vaddr;
1485 
1486 			if (!test_bit(pde, pd->used_pdes))
1487 				continue;
1488 
1489 			pt_vaddr = kmap_px(pt);
1490 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1491 				uint64_t va =
1492 					(pdpe << GEN8_PDPE_SHIFT) |
1493 					(pde << GEN8_PDE_SHIFT) |
1494 					(pte << GEN8_PTE_SHIFT);
1495 				int i;
1496 				bool found = false;
1497 
1498 				for (i = 0; i < 4; i++)
1499 					if (pt_vaddr[pte + i] != scratch_pte)
1500 						found = true;
1501 				if (!found)
1502 					continue;
1503 
1504 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1505 				for (i = 0; i < 4; i++) {
1506 					if (pt_vaddr[pte + i] != scratch_pte)
1507 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1508 					else
1509 						seq_puts(m, "  SCRATCH ");
1510 				}
1511 				seq_puts(m, "\n");
1512 			}
1513 			/* don't use kunmap_px, it could trigger
1514 			 * an unnecessary flush.
1515 			 */
1516 			kunmap_atomic(pt_vaddr);
1517 		}
1518 	}
1519 }
1520 
1521 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1522 {
1523 	struct i915_address_space *vm = &ppgtt->base;
1524 	uint64_t start = ppgtt->base.start;
1525 	uint64_t length = ppgtt->base.total;
1526 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1527 						 I915_CACHE_LLC);
1528 
1529 	if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
1530 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1531 	} else {
1532 		uint64_t pml4e;
1533 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1534 		struct i915_page_directory_pointer *pdp;
1535 
1536 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1537 			if (!test_bit(pml4e, pml4->used_pml4es))
1538 				continue;
1539 
1540 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1541 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1542 		}
1543 	}
1544 }
1545 
1546 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1547 {
1548 	unsigned long *new_page_dirs, *new_page_tables;
1549 	uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1550 	int ret;
1551 
1552 	/* We allocate temp bitmap for page tables for no gain
1553 	 * but as this is for init only, lets keep the things simple
1554 	 */
1555 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1556 	if (ret)
1557 		return ret;
1558 
1559 	/* Allocate for all pdps regardless of how the ppgtt
1560 	 * was defined.
1561 	 */
1562 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1563 						0, 1ULL << 32,
1564 						new_page_dirs);
1565 	if (!ret)
1566 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1567 
1568 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1569 
1570 	return ret;
1571 }
1572 
1573 /*
1574  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1575  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1576  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1577  * space.
1578  *
1579  */
1580 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1581 {
1582 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1583 	int ret;
1584 
1585 	ret = gen8_init_scratch(&ppgtt->base);
1586 	if (ret)
1587 		return ret;
1588 
1589 	ppgtt->base.start = 0;
1590 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1591 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1592 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1593 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1594 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1595 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1596 	ppgtt->debug_dump = gen8_dump_ppgtt;
1597 
1598 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1599 		ret = setup_px(dev_priv, &ppgtt->pml4);
1600 		if (ret)
1601 			goto free_scratch;
1602 
1603 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1604 
1605 		ppgtt->base.total = 1ULL << 48;
1606 		ppgtt->switch_mm = gen8_48b_mm_switch;
1607 	} else {
1608 		ret = __pdp_init(dev_priv, &ppgtt->pdp);
1609 		if (ret)
1610 			goto free_scratch;
1611 
1612 		ppgtt->base.total = 1ULL << 32;
1613 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1614 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1615 							      0, 0,
1616 							      GEN8_PML4E_SHIFT);
1617 
1618 		if (intel_vgpu_active(dev_priv)) {
1619 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1620 			if (ret)
1621 				goto free_scratch;
1622 		}
1623 	}
1624 
1625 	if (intel_vgpu_active(dev_priv))
1626 		gen8_ppgtt_notify_vgt(ppgtt, true);
1627 
1628 	return 0;
1629 
1630 free_scratch:
1631 	gen8_free_scratch(&ppgtt->base);
1632 	return ret;
1633 }
1634 
1635 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1636 {
1637 	struct i915_address_space *vm = &ppgtt->base;
1638 	struct i915_page_table *unused;
1639 	gen6_pte_t scratch_pte;
1640 	uint32_t pd_entry;
1641 	uint32_t  pte, pde;
1642 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1643 
1644 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1645 				     I915_CACHE_LLC, 0);
1646 
1647 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1648 		u32 expected;
1649 		gen6_pte_t *pt_vaddr;
1650 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1651 		pd_entry = readl(ppgtt->pd_addr + pde);
1652 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1653 
1654 		if (pd_entry != expected)
1655 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1656 				   pde,
1657 				   pd_entry,
1658 				   expected);
1659 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1660 
1661 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1662 
1663 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1664 			unsigned long va =
1665 				(pde * PAGE_SIZE * GEN6_PTES) +
1666 				(pte * PAGE_SIZE);
1667 			int i;
1668 			bool found = false;
1669 			for (i = 0; i < 4; i++)
1670 				if (pt_vaddr[pte + i] != scratch_pte)
1671 					found = true;
1672 			if (!found)
1673 				continue;
1674 
1675 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1676 			for (i = 0; i < 4; i++) {
1677 				if (pt_vaddr[pte + i] != scratch_pte)
1678 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1679 				else
1680 					seq_puts(m, "  SCRATCH ");
1681 			}
1682 			seq_puts(m, "\n");
1683 		}
1684 		kunmap_px(ppgtt, pt_vaddr);
1685 	}
1686 }
1687 
1688 /* Write pde (index) from the page directory @pd to the page table @pt */
1689 static void gen6_write_pde(struct i915_page_directory *pd,
1690 			    const int pde, struct i915_page_table *pt)
1691 {
1692 	/* Caller needs to make sure the write completes if necessary */
1693 	struct i915_hw_ppgtt *ppgtt =
1694 		container_of(pd, struct i915_hw_ppgtt, pd);
1695 	u32 pd_entry;
1696 
1697 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1698 	pd_entry |= GEN6_PDE_VALID;
1699 
1700 	writel(pd_entry, ppgtt->pd_addr + pde);
1701 }
1702 
1703 /* Write all the page tables found in the ppgtt structure to incrementing page
1704  * directories. */
1705 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1706 				  struct i915_page_directory *pd,
1707 				  uint32_t start, uint32_t length)
1708 {
1709 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1710 	struct i915_page_table *pt;
1711 	uint32_t pde;
1712 
1713 	gen6_for_each_pde(pt, pd, start, length, pde)
1714 		gen6_write_pde(pd, pde, pt);
1715 
1716 	/* Make sure write is complete before other code can use this page
1717 	 * table. Also require for WC mapped PTEs */
1718 	readl(ggtt->gsm);
1719 }
1720 
1721 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1722 {
1723 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1724 
1725 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1726 }
1727 
1728 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1729 			 struct drm_i915_gem_request *req)
1730 {
1731 	struct intel_ring *ring = req->ring;
1732 	struct intel_engine_cs *engine = req->engine;
1733 	int ret;
1734 
1735 	/* NB: TLBs must be flushed and invalidated before a switch */
1736 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1737 	if (ret)
1738 		return ret;
1739 
1740 	ret = intel_ring_begin(req, 6);
1741 	if (ret)
1742 		return ret;
1743 
1744 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1745 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1746 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1747 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1748 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1749 	intel_ring_emit(ring, MI_NOOP);
1750 	intel_ring_advance(ring);
1751 
1752 	return 0;
1753 }
1754 
1755 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1756 			  struct drm_i915_gem_request *req)
1757 {
1758 	struct intel_ring *ring = req->ring;
1759 	struct intel_engine_cs *engine = req->engine;
1760 	int ret;
1761 
1762 	/* NB: TLBs must be flushed and invalidated before a switch */
1763 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1764 	if (ret)
1765 		return ret;
1766 
1767 	ret = intel_ring_begin(req, 6);
1768 	if (ret)
1769 		return ret;
1770 
1771 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1772 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1773 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1774 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1775 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1776 	intel_ring_emit(ring, MI_NOOP);
1777 	intel_ring_advance(ring);
1778 
1779 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1780 	if (engine->id != RCS) {
1781 		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1782 		if (ret)
1783 			return ret;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1790 			  struct drm_i915_gem_request *req)
1791 {
1792 	struct intel_engine_cs *engine = req->engine;
1793 	struct drm_i915_private *dev_priv = req->i915;
1794 
1795 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1796 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1797 	return 0;
1798 }
1799 
1800 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1801 {
1802 	struct intel_engine_cs *engine;
1803 	enum intel_engine_id id;
1804 
1805 	for_each_engine(engine, dev_priv, id) {
1806 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1807 				 GEN8_GFX_PPGTT_48B : 0;
1808 		I915_WRITE(RING_MODE_GEN7(engine),
1809 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1810 	}
1811 }
1812 
1813 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1814 {
1815 	struct intel_engine_cs *engine;
1816 	uint32_t ecochk, ecobits;
1817 	enum intel_engine_id id;
1818 
1819 	ecobits = I915_READ(GAC_ECO_BITS);
1820 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1821 
1822 	ecochk = I915_READ(GAM_ECOCHK);
1823 	if (IS_HASWELL(dev_priv)) {
1824 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1825 	} else {
1826 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1827 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1828 	}
1829 	I915_WRITE(GAM_ECOCHK, ecochk);
1830 
1831 	for_each_engine(engine, dev_priv, id) {
1832 		/* GFX_MODE is per-ring on gen7+ */
1833 		I915_WRITE(RING_MODE_GEN7(engine),
1834 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1835 	}
1836 }
1837 
1838 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1839 {
1840 	uint32_t ecochk, gab_ctl, ecobits;
1841 
1842 	ecobits = I915_READ(GAC_ECO_BITS);
1843 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1844 		   ECOBITS_PPGTT_CACHE64B);
1845 
1846 	gab_ctl = I915_READ(GAB_CTL);
1847 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1848 
1849 	ecochk = I915_READ(GAM_ECOCHK);
1850 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1851 
1852 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1853 }
1854 
1855 /* PPGTT support for Sandybdrige/Gen6 and later */
1856 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1857 				   uint64_t start,
1858 				   uint64_t length)
1859 {
1860 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1861 	gen6_pte_t *pt_vaddr, scratch_pte;
1862 	unsigned first_entry = start >> PAGE_SHIFT;
1863 	unsigned num_entries = length >> PAGE_SHIFT;
1864 	unsigned act_pt = first_entry / GEN6_PTES;
1865 	unsigned first_pte = first_entry % GEN6_PTES;
1866 	unsigned last_pte, i;
1867 
1868 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1869 				     I915_CACHE_LLC, 0);
1870 
1871 	while (num_entries) {
1872 		last_pte = first_pte + num_entries;
1873 		if (last_pte > GEN6_PTES)
1874 			last_pte = GEN6_PTES;
1875 
1876 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1877 
1878 		for (i = first_pte; i < last_pte; i++)
1879 			pt_vaddr[i] = scratch_pte;
1880 
1881 		kunmap_px(ppgtt, pt_vaddr);
1882 
1883 		num_entries -= last_pte - first_pte;
1884 		first_pte = 0;
1885 		act_pt++;
1886 	}
1887 }
1888 
1889 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1890 				      struct sg_table *pages,
1891 				      uint64_t start,
1892 				      enum i915_cache_level cache_level, u32 flags)
1893 {
1894 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1895 	unsigned first_entry = start >> PAGE_SHIFT;
1896 	unsigned act_pt = first_entry / GEN6_PTES;
1897 	unsigned act_pte = first_entry % GEN6_PTES;
1898 	gen6_pte_t *pt_vaddr = NULL;
1899 	struct sgt_iter sgt_iter;
1900 	dma_addr_t addr;
1901 
1902 	for_each_sgt_dma(addr, sgt_iter, pages) {
1903 		if (pt_vaddr == NULL)
1904 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1905 
1906 		pt_vaddr[act_pte] =
1907 			vm->pte_encode(addr, cache_level, flags);
1908 
1909 		if (++act_pte == GEN6_PTES) {
1910 			kunmap_px(ppgtt, pt_vaddr);
1911 			pt_vaddr = NULL;
1912 			act_pt++;
1913 			act_pte = 0;
1914 		}
1915 	}
1916 
1917 	if (pt_vaddr)
1918 		kunmap_px(ppgtt, pt_vaddr);
1919 }
1920 
1921 static int gen6_alloc_va_range(struct i915_address_space *vm,
1922 			       uint64_t start_in, uint64_t length_in)
1923 {
1924 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1925 	struct drm_i915_private *dev_priv = vm->i915;
1926 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1927 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1928 	struct i915_page_table *pt;
1929 	uint32_t start, length, start_save, length_save;
1930 	uint32_t pde;
1931 	int ret;
1932 
1933 	start = start_save = start_in;
1934 	length = length_save = length_in;
1935 
1936 	bitmap_zero(new_page_tables, I915_PDES);
1937 
1938 	/* The allocation is done in two stages so that we can bail out with
1939 	 * minimal amount of pain. The first stage finds new page tables that
1940 	 * need allocation. The second stage marks use ptes within the page
1941 	 * tables.
1942 	 */
1943 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1944 		if (pt != vm->scratch_pt) {
1945 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1946 			continue;
1947 		}
1948 
1949 		/* We've already allocated a page table */
1950 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1951 
1952 		pt = alloc_pt(dev_priv);
1953 		if (IS_ERR(pt)) {
1954 			ret = PTR_ERR(pt);
1955 			goto unwind_out;
1956 		}
1957 
1958 		gen6_initialize_pt(vm, pt);
1959 
1960 		ppgtt->pd.page_table[pde] = pt;
1961 		__set_bit(pde, new_page_tables);
1962 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1963 	}
1964 
1965 	start = start_save;
1966 	length = length_save;
1967 
1968 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1969 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1970 
1971 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1972 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1973 			   gen6_pte_count(start, length));
1974 
1975 		if (__test_and_clear_bit(pde, new_page_tables))
1976 			gen6_write_pde(&ppgtt->pd, pde, pt);
1977 
1978 		trace_i915_page_table_entry_map(vm, pde, pt,
1979 					 gen6_pte_index(start),
1980 					 gen6_pte_count(start, length),
1981 					 GEN6_PTES);
1982 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1983 				GEN6_PTES);
1984 	}
1985 
1986 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1987 
1988 	/* Make sure write is complete before other code can use this page
1989 	 * table. Also require for WC mapped PTEs */
1990 	readl(ggtt->gsm);
1991 
1992 	mark_tlbs_dirty(ppgtt);
1993 	return 0;
1994 
1995 unwind_out:
1996 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1997 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1998 
1999 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
2000 		free_pt(dev_priv, pt);
2001 	}
2002 
2003 	mark_tlbs_dirty(ppgtt);
2004 	return ret;
2005 }
2006 
2007 static int gen6_init_scratch(struct i915_address_space *vm)
2008 {
2009 	struct drm_i915_private *dev_priv = vm->i915;
2010 	int ret;
2011 
2012 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2013 	if (ret)
2014 		return ret;
2015 
2016 	vm->scratch_pt = alloc_pt(dev_priv);
2017 	if (IS_ERR(vm->scratch_pt)) {
2018 		cleanup_scratch_page(dev_priv, &vm->scratch_page);
2019 		return PTR_ERR(vm->scratch_pt);
2020 	}
2021 
2022 	gen6_initialize_pt(vm, vm->scratch_pt);
2023 
2024 	return 0;
2025 }
2026 
2027 static void gen6_free_scratch(struct i915_address_space *vm)
2028 {
2029 	struct drm_i915_private *dev_priv = vm->i915;
2030 
2031 	free_pt(dev_priv, vm->scratch_pt);
2032 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
2033 }
2034 
2035 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2036 {
2037 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2038 	struct i915_page_directory *pd = &ppgtt->pd;
2039 	struct drm_i915_private *dev_priv = vm->i915;
2040 	struct i915_page_table *pt;
2041 	uint32_t pde;
2042 
2043 	drm_mm_remove_node(&ppgtt->node);
2044 
2045 	gen6_for_all_pdes(pt, pd, pde)
2046 		if (pt != vm->scratch_pt)
2047 			free_pt(dev_priv, pt);
2048 
2049 	gen6_free_scratch(vm);
2050 }
2051 
2052 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2053 {
2054 	struct i915_address_space *vm = &ppgtt->base;
2055 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2056 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2057 	int ret;
2058 
2059 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2060 	 * allocator works in address space sizes, so it's multiplied by page
2061 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2062 	 */
2063 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2064 
2065 	ret = gen6_init_scratch(vm);
2066 	if (ret)
2067 		return ret;
2068 
2069 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2070 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
2071 				  I915_COLOR_UNEVICTABLE,
2072 				  0, ggtt->base.total,
2073 				  PIN_HIGH);
2074 	if (ret)
2075 		goto err_out;
2076 
2077 	if (ppgtt->node.start < ggtt->mappable_end)
2078 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2079 
2080 	return 0;
2081 
2082 err_out:
2083 	gen6_free_scratch(vm);
2084 	return ret;
2085 }
2086 
2087 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2088 {
2089 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2090 }
2091 
2092 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2093 				  uint64_t start, uint64_t length)
2094 {
2095 	struct i915_page_table *unused;
2096 	uint32_t pde;
2097 
2098 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2099 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2100 }
2101 
2102 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2103 {
2104 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2105 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2106 	int ret;
2107 
2108 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2109 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2110 		ppgtt->switch_mm = gen6_mm_switch;
2111 	else if (IS_HASWELL(dev_priv))
2112 		ppgtt->switch_mm = hsw_mm_switch;
2113 	else if (IS_GEN7(dev_priv))
2114 		ppgtt->switch_mm = gen7_mm_switch;
2115 	else
2116 		BUG();
2117 
2118 	ret = gen6_ppgtt_alloc(ppgtt);
2119 	if (ret)
2120 		return ret;
2121 
2122 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2123 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2124 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2125 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2126 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2127 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2128 	ppgtt->base.start = 0;
2129 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2130 	ppgtt->debug_dump = gen6_dump_ppgtt;
2131 
2132 	ppgtt->pd.base.ggtt_offset =
2133 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2134 
2135 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2136 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2137 
2138 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2139 
2140 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2141 
2142 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2143 			 ppgtt->node.size >> 20,
2144 			 ppgtt->node.start / PAGE_SIZE);
2145 
2146 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2147 		  ppgtt->pd.base.ggtt_offset << 10);
2148 
2149 	return 0;
2150 }
2151 
2152 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2153 			   struct drm_i915_private *dev_priv)
2154 {
2155 	ppgtt->base.i915 = dev_priv;
2156 
2157 	if (INTEL_INFO(dev_priv)->gen < 8)
2158 		return gen6_ppgtt_init(ppgtt);
2159 	else
2160 		return gen8_ppgtt_init(ppgtt);
2161 }
2162 
2163 static void i915_address_space_init(struct i915_address_space *vm,
2164 				    struct drm_i915_private *dev_priv,
2165 				    const char *name)
2166 {
2167 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2168 	drm_mm_init(&vm->mm, vm->start, vm->total);
2169 	INIT_LIST_HEAD(&vm->active_list);
2170 	INIT_LIST_HEAD(&vm->inactive_list);
2171 	INIT_LIST_HEAD(&vm->unbound_list);
2172 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2173 }
2174 
2175 static void i915_address_space_fini(struct i915_address_space *vm)
2176 {
2177 	i915_gem_timeline_fini(&vm->timeline);
2178 	drm_mm_takedown(&vm->mm);
2179 	list_del(&vm->global_link);
2180 }
2181 
2182 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2183 {
2184 	/* This function is for gtt related workarounds. This function is
2185 	 * called on driver load and after a GPU reset, so you can place
2186 	 * workarounds here even if they get overwritten by GPU reset.
2187 	 */
2188 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2189 	if (IS_BROADWELL(dev_priv))
2190 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2191 	else if (IS_CHERRYVIEW(dev_priv))
2192 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2193 	else if (IS_SKYLAKE(dev_priv))
2194 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2195 	else if (IS_BROXTON(dev_priv))
2196 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2197 }
2198 
2199 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2200 			   struct drm_i915_private *dev_priv,
2201 			   struct drm_i915_file_private *file_priv,
2202 			   const char *name)
2203 {
2204 	int ret;
2205 
2206 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2207 	if (ret == 0) {
2208 		kref_init(&ppgtt->ref);
2209 		i915_address_space_init(&ppgtt->base, dev_priv, name);
2210 		ppgtt->base.file = file_priv;
2211 	}
2212 
2213 	return ret;
2214 }
2215 
2216 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2217 {
2218 	gtt_write_workarounds(dev_priv);
2219 
2220 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2221 	 * and the PDPs are contained within the context itself.  We don't
2222 	 * need to do anything here. */
2223 	if (i915.enable_execlists)
2224 		return 0;
2225 
2226 	if (!USES_PPGTT(dev_priv))
2227 		return 0;
2228 
2229 	if (IS_GEN6(dev_priv))
2230 		gen6_ppgtt_enable(dev_priv);
2231 	else if (IS_GEN7(dev_priv))
2232 		gen7_ppgtt_enable(dev_priv);
2233 	else if (INTEL_GEN(dev_priv) >= 8)
2234 		gen8_ppgtt_enable(dev_priv);
2235 	else
2236 		MISSING_CASE(INTEL_GEN(dev_priv));
2237 
2238 	return 0;
2239 }
2240 
2241 struct i915_hw_ppgtt *
2242 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2243 		  struct drm_i915_file_private *fpriv,
2244 		  const char *name)
2245 {
2246 	struct i915_hw_ppgtt *ppgtt;
2247 	int ret;
2248 
2249 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2250 	if (!ppgtt)
2251 		return ERR_PTR(-ENOMEM);
2252 
2253 	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2254 	if (ret) {
2255 		kfree(ppgtt);
2256 		return ERR_PTR(ret);
2257 	}
2258 
2259 	trace_i915_ppgtt_create(&ppgtt->base);
2260 
2261 	return ppgtt;
2262 }
2263 
2264 void i915_ppgtt_close(struct i915_address_space *vm)
2265 {
2266 	struct list_head *phases[] = {
2267 		&vm->active_list,
2268 		&vm->inactive_list,
2269 		&vm->unbound_list,
2270 		NULL,
2271 	}, **phase;
2272 
2273 	GEM_BUG_ON(vm->closed);
2274 	vm->closed = true;
2275 
2276 	for (phase = phases; *phase; phase++) {
2277 		struct i915_vma *vma, *vn;
2278 
2279 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2280 			if (!i915_vma_is_closed(vma))
2281 				i915_vma_close(vma);
2282 	}
2283 }
2284 
2285 void i915_ppgtt_release(struct kref *kref)
2286 {
2287 	struct i915_hw_ppgtt *ppgtt =
2288 		container_of(kref, struct i915_hw_ppgtt, ref);
2289 
2290 	trace_i915_ppgtt_release(&ppgtt->base);
2291 
2292 	/* vmas should already be unbound and destroyed */
2293 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2294 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2295 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2296 
2297 	i915_address_space_fini(&ppgtt->base);
2298 
2299 	ppgtt->base.cleanup(&ppgtt->base);
2300 	kfree(ppgtt);
2301 }
2302 
2303 /* Certain Gen5 chipsets require require idling the GPU before
2304  * unmapping anything from the GTT when VT-d is enabled.
2305  */
2306 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2307 {
2308 #ifdef CONFIG_INTEL_IOMMU
2309 	/* Query intel_iommu to see if we need the workaround. Presumably that
2310 	 * was loaded first.
2311 	 */
2312 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2313 		return true;
2314 #endif
2315 	return false;
2316 }
2317 
2318 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2319 {
2320 	struct intel_engine_cs *engine;
2321 	enum intel_engine_id id;
2322 
2323 	if (INTEL_INFO(dev_priv)->gen < 6)
2324 		return;
2325 
2326 	for_each_engine(engine, dev_priv, id) {
2327 		u32 fault_reg;
2328 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2329 		if (fault_reg & RING_FAULT_VALID) {
2330 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2331 					 "\tAddr: 0x%08lx\n"
2332 					 "\tAddress space: %s\n"
2333 					 "\tSource ID: %d\n"
2334 					 "\tType: %d\n",
2335 					 fault_reg & PAGE_MASK,
2336 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2337 					 RING_FAULT_SRCID(fault_reg),
2338 					 RING_FAULT_FAULT_TYPE(fault_reg));
2339 			I915_WRITE(RING_FAULT_REG(engine),
2340 				   fault_reg & ~RING_FAULT_VALID);
2341 		}
2342 	}
2343 
2344 	/* Engine specific init may not have been done till this point. */
2345 	if (dev_priv->engine[RCS])
2346 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2347 }
2348 
2349 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2350 {
2351 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2352 
2353 	/* Don't bother messing with faults pre GEN6 as we have little
2354 	 * documentation supporting that it's a good idea.
2355 	 */
2356 	if (INTEL_GEN(dev_priv) < 6)
2357 		return;
2358 
2359 	i915_check_and_clear_faults(dev_priv);
2360 
2361 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2362 
2363 	i915_ggtt_invalidate(dev_priv);
2364 }
2365 
2366 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2367 			       struct sg_table *pages)
2368 {
2369 	do {
2370 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2371 			       pages->sgl, pages->nents,
2372 			       PCI_DMA_BIDIRECTIONAL))
2373 			return 0;
2374 
2375 		/* If the DMA remap fails, one cause can be that we have
2376 		 * too many objects pinned in a small remapping table,
2377 		 * such as swiotlb. Incrementally purge all other objects and
2378 		 * try again - if there are no more pages to remove from
2379 		 * the DMA remapper, i915_gem_shrink will return 0.
2380 		 */
2381 		GEM_BUG_ON(obj->mm.pages == pages);
2382 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2383 				 obj->base.size >> PAGE_SHIFT,
2384 				 I915_SHRINK_BOUND |
2385 				 I915_SHRINK_UNBOUND |
2386 				 I915_SHRINK_ACTIVE));
2387 
2388 	return -ENOSPC;
2389 }
2390 
2391 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2392 {
2393 	writeq(pte, addr);
2394 }
2395 
2396 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2397 				  dma_addr_t addr,
2398 				  uint64_t offset,
2399 				  enum i915_cache_level level,
2400 				  u32 unused)
2401 {
2402 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2403 	gen8_pte_t __iomem *pte =
2404 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2405 
2406 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2407 
2408 	ggtt->invalidate(vm->i915);
2409 }
2410 
2411 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2412 				     struct sg_table *st,
2413 				     uint64_t start,
2414 				     enum i915_cache_level level, u32 unused)
2415 {
2416 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2417 	struct sgt_iter sgt_iter;
2418 	gen8_pte_t __iomem *gtt_entries;
2419 	gen8_pte_t gtt_entry;
2420 	dma_addr_t addr;
2421 	int i = 0;
2422 
2423 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2424 
2425 	for_each_sgt_dma(addr, sgt_iter, st) {
2426 		gtt_entry = gen8_pte_encode(addr, level);
2427 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2428 	}
2429 
2430 	/*
2431 	 * XXX: This serves as a posting read to make sure that the PTE has
2432 	 * actually been updated. There is some concern that even though
2433 	 * registers and PTEs are within the same BAR that they are potentially
2434 	 * of NUMA access patterns. Therefore, even with the way we assume
2435 	 * hardware should work, we must keep this posting read for paranoia.
2436 	 */
2437 	if (i != 0)
2438 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2439 
2440 	/* This next bit makes the above posting read even more important. We
2441 	 * want to flush the TLBs only after we're certain all the PTE updates
2442 	 * have finished.
2443 	 */
2444 	ggtt->invalidate(vm->i915);
2445 }
2446 
2447 struct insert_entries {
2448 	struct i915_address_space *vm;
2449 	struct sg_table *st;
2450 	uint64_t start;
2451 	enum i915_cache_level level;
2452 	u32 flags;
2453 };
2454 
2455 static int gen8_ggtt_insert_entries__cb(void *_arg)
2456 {
2457 	struct insert_entries *arg = _arg;
2458 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2459 				 arg->start, arg->level, arg->flags);
2460 	return 0;
2461 }
2462 
2463 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2464 					  struct sg_table *st,
2465 					  uint64_t start,
2466 					  enum i915_cache_level level,
2467 					  u32 flags)
2468 {
2469 	struct insert_entries arg = { vm, st, start, level, flags };
2470 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2471 }
2472 
2473 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2474 				  dma_addr_t addr,
2475 				  uint64_t offset,
2476 				  enum i915_cache_level level,
2477 				  u32 flags)
2478 {
2479 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2480 	gen6_pte_t __iomem *pte =
2481 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2482 
2483 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2484 
2485 	ggtt->invalidate(vm->i915);
2486 }
2487 
2488 /*
2489  * Binds an object into the global gtt with the specified cache level. The object
2490  * will be accessible to the GPU via commands whose operands reference offsets
2491  * within the global GTT as well as accessible by the GPU through the GMADR
2492  * mapped BAR (dev_priv->mm.gtt->gtt).
2493  */
2494 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2495 				     struct sg_table *st,
2496 				     uint64_t start,
2497 				     enum i915_cache_level level, u32 flags)
2498 {
2499 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2500 	struct sgt_iter sgt_iter;
2501 	gen6_pte_t __iomem *gtt_entries;
2502 	gen6_pte_t gtt_entry;
2503 	dma_addr_t addr;
2504 	int i = 0;
2505 
2506 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2507 
2508 	for_each_sgt_dma(addr, sgt_iter, st) {
2509 		gtt_entry = vm->pte_encode(addr, level, flags);
2510 		iowrite32(gtt_entry, &gtt_entries[i++]);
2511 	}
2512 
2513 	/* XXX: This serves as a posting read to make sure that the PTE has
2514 	 * actually been updated. There is some concern that even though
2515 	 * registers and PTEs are within the same BAR that they are potentially
2516 	 * of NUMA access patterns. Therefore, even with the way we assume
2517 	 * hardware should work, we must keep this posting read for paranoia.
2518 	 */
2519 	if (i != 0)
2520 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2521 
2522 	/* This next bit makes the above posting read even more important. We
2523 	 * want to flush the TLBs only after we're certain all the PTE updates
2524 	 * have finished.
2525 	 */
2526 	ggtt->invalidate(vm->i915);
2527 }
2528 
2529 static void nop_clear_range(struct i915_address_space *vm,
2530 			    uint64_t start, uint64_t length)
2531 {
2532 }
2533 
2534 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2535 				  uint64_t start, uint64_t length)
2536 {
2537 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2538 	unsigned first_entry = start >> PAGE_SHIFT;
2539 	unsigned num_entries = length >> PAGE_SHIFT;
2540 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2541 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2542 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2543 	int i;
2544 
2545 	if (WARN(num_entries > max_entries,
2546 		 "First entry = %d; Num entries = %d (max=%d)\n",
2547 		 first_entry, num_entries, max_entries))
2548 		num_entries = max_entries;
2549 
2550 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2551 				      I915_CACHE_LLC);
2552 	for (i = 0; i < num_entries; i++)
2553 		gen8_set_pte(&gtt_base[i], scratch_pte);
2554 	readl(gtt_base);
2555 }
2556 
2557 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2558 				  uint64_t start,
2559 				  uint64_t length)
2560 {
2561 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2562 	unsigned first_entry = start >> PAGE_SHIFT;
2563 	unsigned num_entries = length >> PAGE_SHIFT;
2564 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2565 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2566 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2567 	int i;
2568 
2569 	if (WARN(num_entries > max_entries,
2570 		 "First entry = %d; Num entries = %d (max=%d)\n",
2571 		 first_entry, num_entries, max_entries))
2572 		num_entries = max_entries;
2573 
2574 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2575 				     I915_CACHE_LLC, 0);
2576 
2577 	for (i = 0; i < num_entries; i++)
2578 		iowrite32(scratch_pte, &gtt_base[i]);
2579 	readl(gtt_base);
2580 }
2581 
2582 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2583 				  dma_addr_t addr,
2584 				  uint64_t offset,
2585 				  enum i915_cache_level cache_level,
2586 				  u32 unused)
2587 {
2588 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2589 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2590 
2591 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2592 }
2593 
2594 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2595 				     struct sg_table *pages,
2596 				     uint64_t start,
2597 				     enum i915_cache_level cache_level, u32 unused)
2598 {
2599 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2600 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2601 
2602 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2603 
2604 }
2605 
2606 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2607 				  uint64_t start,
2608 				  uint64_t length)
2609 {
2610 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2611 }
2612 
2613 static int ggtt_bind_vma(struct i915_vma *vma,
2614 			 enum i915_cache_level cache_level,
2615 			 u32 flags)
2616 {
2617 	struct drm_i915_private *i915 = vma->vm->i915;
2618 	struct drm_i915_gem_object *obj = vma->obj;
2619 	u32 pte_flags = 0;
2620 	int ret;
2621 
2622 	ret = i915_get_ggtt_vma_pages(vma);
2623 	if (ret)
2624 		return ret;
2625 
2626 	/* Currently applicable only to VLV */
2627 	if (obj->gt_ro)
2628 		pte_flags |= PTE_READ_ONLY;
2629 
2630 	intel_runtime_pm_get(i915);
2631 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2632 				cache_level, pte_flags);
2633 	intel_runtime_pm_put(i915);
2634 
2635 	/*
2636 	 * Without aliasing PPGTT there's no difference between
2637 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2638 	 * upgrade to both bound if we bind either to avoid double-binding.
2639 	 */
2640 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2641 
2642 	return 0;
2643 }
2644 
2645 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2646 				 enum i915_cache_level cache_level,
2647 				 u32 flags)
2648 {
2649 	struct drm_i915_private *i915 = vma->vm->i915;
2650 	u32 pte_flags;
2651 	int ret;
2652 
2653 	ret = i915_get_ggtt_vma_pages(vma);
2654 	if (ret)
2655 		return ret;
2656 
2657 	/* Currently applicable only to VLV */
2658 	pte_flags = 0;
2659 	if (vma->obj->gt_ro)
2660 		pte_flags |= PTE_READ_ONLY;
2661 
2662 
2663 	if (flags & I915_VMA_GLOBAL_BIND) {
2664 		intel_runtime_pm_get(i915);
2665 		vma->vm->insert_entries(vma->vm,
2666 					vma->pages, vma->node.start,
2667 					cache_level, pte_flags);
2668 		intel_runtime_pm_put(i915);
2669 	}
2670 
2671 	if (flags & I915_VMA_LOCAL_BIND) {
2672 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2673 		appgtt->base.insert_entries(&appgtt->base,
2674 					    vma->pages, vma->node.start,
2675 					    cache_level, pte_flags);
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 static void ggtt_unbind_vma(struct i915_vma *vma)
2682 {
2683 	struct drm_i915_private *i915 = vma->vm->i915;
2684 	struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2685 	const u64 size = min(vma->size, vma->node.size);
2686 
2687 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2688 		intel_runtime_pm_get(i915);
2689 		vma->vm->clear_range(vma->vm,
2690 				     vma->node.start, size);
2691 		intel_runtime_pm_put(i915);
2692 	}
2693 
2694 	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2695 		appgtt->base.clear_range(&appgtt->base,
2696 					 vma->node.start, size);
2697 }
2698 
2699 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2700 			       struct sg_table *pages)
2701 {
2702 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2703 	struct device *kdev = &dev_priv->drm.pdev->dev;
2704 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2705 
2706 	if (unlikely(ggtt->do_idle_maps)) {
2707 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2708 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2709 			/* Wait a bit, in hopes it avoids the hang */
2710 			udelay(10);
2711 		}
2712 	}
2713 
2714 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2715 }
2716 
2717 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2718 				  unsigned long color,
2719 				  u64 *start,
2720 				  u64 *end)
2721 {
2722 	if (node->color != color)
2723 		*start += I915_GTT_PAGE_SIZE;
2724 
2725 	node = list_next_entry(node, node_list);
2726 	if (node->allocated && node->color != color)
2727 		*end -= I915_GTT_PAGE_SIZE;
2728 }
2729 
2730 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2731 {
2732 	/* Let GEM Manage all of the aperture.
2733 	 *
2734 	 * However, leave one page at the end still bound to the scratch page.
2735 	 * There are a number of places where the hardware apparently prefetches
2736 	 * past the end of the object, and we've seen multiple hangs with the
2737 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2738 	 * aperture.  One page should be enough to keep any prefetching inside
2739 	 * of the aperture.
2740 	 */
2741 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2742 	unsigned long hole_start, hole_end;
2743 	struct i915_hw_ppgtt *ppgtt;
2744 	struct drm_mm_node *entry;
2745 	int ret;
2746 
2747 	ret = intel_vgt_balloon(dev_priv);
2748 	if (ret)
2749 		return ret;
2750 
2751 	/* Reserve a mappable slot for our lockless error capture */
2752 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2753 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2754 					  0, ggtt->mappable_end,
2755 					  DRM_MM_INSERT_LOW);
2756 	if (ret)
2757 		return ret;
2758 
2759 	/* Clear any non-preallocated blocks */
2760 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2761 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2762 			      hole_start, hole_end);
2763 		ggtt->base.clear_range(&ggtt->base, hole_start,
2764 				       hole_end - hole_start);
2765 	}
2766 
2767 	/* And finally clear the reserved guard page */
2768 	ggtt->base.clear_range(&ggtt->base,
2769 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2770 
2771 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2772 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2773 		if (!ppgtt) {
2774 			ret = -ENOMEM;
2775 			goto err;
2776 		}
2777 
2778 		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2779 		if (ret)
2780 			goto err_ppgtt;
2781 
2782 		if (ppgtt->base.allocate_va_range) {
2783 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2784 							    ppgtt->base.total);
2785 			if (ret)
2786 				goto err_ppgtt_cleanup;
2787 		}
2788 
2789 		ppgtt->base.clear_range(&ppgtt->base,
2790 					ppgtt->base.start,
2791 					ppgtt->base.total);
2792 
2793 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2794 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2795 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2796 	}
2797 
2798 	return 0;
2799 
2800 err_ppgtt_cleanup:
2801 	ppgtt->base.cleanup(&ppgtt->base);
2802 err_ppgtt:
2803 	kfree(ppgtt);
2804 err:
2805 	drm_mm_remove_node(&ggtt->error_capture);
2806 	return ret;
2807 }
2808 
2809 /**
2810  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2811  * @dev_priv: i915 device
2812  */
2813 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2814 {
2815 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2816 
2817 	if (dev_priv->mm.aliasing_ppgtt) {
2818 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2819 		ppgtt->base.cleanup(&ppgtt->base);
2820 		kfree(ppgtt);
2821 	}
2822 
2823 	i915_gem_cleanup_stolen(&dev_priv->drm);
2824 
2825 	if (drm_mm_node_allocated(&ggtt->error_capture))
2826 		drm_mm_remove_node(&ggtt->error_capture);
2827 
2828 	if (drm_mm_initialized(&ggtt->base.mm)) {
2829 		intel_vgt_deballoon(dev_priv);
2830 
2831 		mutex_lock(&dev_priv->drm.struct_mutex);
2832 		i915_address_space_fini(&ggtt->base);
2833 		mutex_unlock(&dev_priv->drm.struct_mutex);
2834 	}
2835 
2836 	ggtt->base.cleanup(&ggtt->base);
2837 
2838 	arch_phys_wc_del(ggtt->mtrr);
2839 	io_mapping_fini(&ggtt->mappable);
2840 }
2841 
2842 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2843 {
2844 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2845 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2846 	return snb_gmch_ctl << 20;
2847 }
2848 
2849 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2850 {
2851 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2852 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2853 	if (bdw_gmch_ctl)
2854 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2855 
2856 #ifdef CONFIG_X86_32
2857 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2858 	if (bdw_gmch_ctl > 4)
2859 		bdw_gmch_ctl = 4;
2860 #endif
2861 
2862 	return bdw_gmch_ctl << 20;
2863 }
2864 
2865 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2866 {
2867 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2868 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2869 
2870 	if (gmch_ctrl)
2871 		return 1 << (20 + gmch_ctrl);
2872 
2873 	return 0;
2874 }
2875 
2876 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2877 {
2878 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2879 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2880 	return snb_gmch_ctl << 25; /* 32 MB units */
2881 }
2882 
2883 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2884 {
2885 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2886 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2887 	return bdw_gmch_ctl << 25; /* 32 MB units */
2888 }
2889 
2890 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2891 {
2892 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2893 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2894 
2895 	/*
2896 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2897 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2898 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2899 	 */
2900 	if (gmch_ctrl < 0x11)
2901 		return gmch_ctrl << 25;
2902 	else if (gmch_ctrl < 0x17)
2903 		return (gmch_ctrl - 0x11 + 2) << 22;
2904 	else
2905 		return (gmch_ctrl - 0x17 + 9) << 22;
2906 }
2907 
2908 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2909 {
2910 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2911 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2912 
2913 	if (gen9_gmch_ctl < 0xf0)
2914 		return gen9_gmch_ctl << 25; /* 32 MB units */
2915 	else
2916 		/* 4MB increments starting at 0xf0 for 4MB */
2917 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2918 }
2919 
2920 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2921 {
2922 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2923 	struct pci_dev *pdev = dev_priv->drm.pdev;
2924 	phys_addr_t phys_addr;
2925 	int ret;
2926 
2927 	/* For Modern GENs the PTEs and register space are split in the BAR */
2928 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2929 
2930 	/*
2931 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2932 	 * dropped. For WC mappings in general we have 64 byte burst writes
2933 	 * when the WC buffer is flushed, so we can't use it, but have to
2934 	 * resort to an uncached mapping. The WC issue is easily caught by the
2935 	 * readback check when writing GTT PTE entries.
2936 	 */
2937 	if (IS_GEN9_LP(dev_priv))
2938 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2939 	else
2940 		ggtt->gsm = ioremap_wc(phys_addr, size);
2941 	if (!ggtt->gsm) {
2942 		DRM_ERROR("Failed to map the ggtt page table\n");
2943 		return -ENOMEM;
2944 	}
2945 
2946 	ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2947 	if (ret) {
2948 		DRM_ERROR("Scratch setup failed\n");
2949 		/* iounmap will also get called at remove, but meh */
2950 		iounmap(ggtt->gsm);
2951 		return ret;
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2958  * bits. When using advanced contexts each context stores its own PAT, but
2959  * writing this data shouldn't be harmful even in those cases. */
2960 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2961 {
2962 	uint64_t pat;
2963 
2964 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2965 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2966 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2967 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2968 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2969 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2970 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2971 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2972 
2973 	if (!USES_PPGTT(dev_priv))
2974 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2975 		 * so RTL will always use the value corresponding to
2976 		 * pat_sel = 000".
2977 		 * So let's disable cache for GGTT to avoid screen corruptions.
2978 		 * MOCS still can be used though.
2979 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2980 		 * before this patch, i.e. the same uncached + snooping access
2981 		 * like on gen6/7 seems to be in effect.
2982 		 * - So this just fixes blitter/render access. Again it looks
2983 		 * like it's not just uncached access, but uncached + snooping.
2984 		 * So we can still hold onto all our assumptions wrt cpu
2985 		 * clflushing on LLC machines.
2986 		 */
2987 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2988 
2989 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2990 	 * write would work. */
2991 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2992 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2993 }
2994 
2995 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2996 {
2997 	uint64_t pat;
2998 
2999 	/*
3000 	 * Map WB on BDW to snooped on CHV.
3001 	 *
3002 	 * Only the snoop bit has meaning for CHV, the rest is
3003 	 * ignored.
3004 	 *
3005 	 * The hardware will never snoop for certain types of accesses:
3006 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3007 	 * - PPGTT page tables
3008 	 * - some other special cycles
3009 	 *
3010 	 * As with BDW, we also need to consider the following for GT accesses:
3011 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3012 	 * so RTL will always use the value corresponding to
3013 	 * pat_sel = 000".
3014 	 * Which means we must set the snoop bit in PAT entry 0
3015 	 * in order to keep the global status page working.
3016 	 */
3017 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3018 	      GEN8_PPAT(1, 0) |
3019 	      GEN8_PPAT(2, 0) |
3020 	      GEN8_PPAT(3, 0) |
3021 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3022 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3023 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3024 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3025 
3026 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3027 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3028 }
3029 
3030 static void gen6_gmch_remove(struct i915_address_space *vm)
3031 {
3032 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3033 
3034 	iounmap(ggtt->gsm);
3035 	cleanup_scratch_page(vm->i915, &vm->scratch_page);
3036 }
3037 
3038 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3039 {
3040 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3041 	struct pci_dev *pdev = dev_priv->drm.pdev;
3042 	unsigned int size;
3043 	u16 snb_gmch_ctl;
3044 
3045 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3046 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3047 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3048 
3049 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3050 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3051 
3052 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3053 
3054 	if (INTEL_GEN(dev_priv) >= 9) {
3055 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3056 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3057 	} else if (IS_CHERRYVIEW(dev_priv)) {
3058 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3059 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3060 	} else {
3061 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3062 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3063 	}
3064 
3065 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3066 
3067 	if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3068 		chv_setup_private_ppat(dev_priv);
3069 	else
3070 		bdw_setup_private_ppat(dev_priv);
3071 
3072 	ggtt->base.cleanup = gen6_gmch_remove;
3073 	ggtt->base.bind_vma = ggtt_bind_vma;
3074 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3075 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3076 	ggtt->base.clear_range = nop_clear_range;
3077 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3078 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3079 
3080 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3081 	if (IS_CHERRYVIEW(dev_priv))
3082 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3083 
3084 	ggtt->invalidate = gen6_ggtt_invalidate;
3085 
3086 	return ggtt_probe_common(ggtt, size);
3087 }
3088 
3089 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3090 {
3091 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3092 	struct pci_dev *pdev = dev_priv->drm.pdev;
3093 	unsigned int size;
3094 	u16 snb_gmch_ctl;
3095 
3096 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3097 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3098 
3099 	/* 64/512MB is the current min/max we actually know of, but this is just
3100 	 * a coarse sanity check.
3101 	 */
3102 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3103 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3104 		return -ENXIO;
3105 	}
3106 
3107 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3108 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3109 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3110 
3111 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3112 
3113 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3114 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3115 
3116 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3117 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3118 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3119 	ggtt->base.bind_vma = ggtt_bind_vma;
3120 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3121 	ggtt->base.cleanup = gen6_gmch_remove;
3122 
3123 	ggtt->invalidate = gen6_ggtt_invalidate;
3124 
3125 	if (HAS_EDRAM(dev_priv))
3126 		ggtt->base.pte_encode = iris_pte_encode;
3127 	else if (IS_HASWELL(dev_priv))
3128 		ggtt->base.pte_encode = hsw_pte_encode;
3129 	else if (IS_VALLEYVIEW(dev_priv))
3130 		ggtt->base.pte_encode = byt_pte_encode;
3131 	else if (INTEL_GEN(dev_priv) >= 7)
3132 		ggtt->base.pte_encode = ivb_pte_encode;
3133 	else
3134 		ggtt->base.pte_encode = snb_pte_encode;
3135 
3136 	return ggtt_probe_common(ggtt, size);
3137 }
3138 
3139 static void i915_gmch_remove(struct i915_address_space *vm)
3140 {
3141 	intel_gmch_remove();
3142 }
3143 
3144 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3145 {
3146 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3147 	int ret;
3148 
3149 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3150 	if (!ret) {
3151 		DRM_ERROR("failed to set up gmch\n");
3152 		return -EIO;
3153 	}
3154 
3155 	intel_gtt_get(&ggtt->base.total,
3156 		      &ggtt->stolen_size,
3157 		      &ggtt->mappable_base,
3158 		      &ggtt->mappable_end);
3159 
3160 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3161 	ggtt->base.insert_page = i915_ggtt_insert_page;
3162 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3163 	ggtt->base.clear_range = i915_ggtt_clear_range;
3164 	ggtt->base.bind_vma = ggtt_bind_vma;
3165 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3166 	ggtt->base.cleanup = i915_gmch_remove;
3167 
3168 	ggtt->invalidate = gmch_ggtt_invalidate;
3169 
3170 	if (unlikely(ggtt->do_idle_maps))
3171 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3172 
3173 	return 0;
3174 }
3175 
3176 /**
3177  * i915_ggtt_probe_hw - Probe GGTT hardware location
3178  * @dev_priv: i915 device
3179  */
3180 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3181 {
3182 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3183 	int ret;
3184 
3185 	ggtt->base.i915 = dev_priv;
3186 
3187 	if (INTEL_GEN(dev_priv) <= 5)
3188 		ret = i915_gmch_probe(ggtt);
3189 	else if (INTEL_GEN(dev_priv) < 8)
3190 		ret = gen6_gmch_probe(ggtt);
3191 	else
3192 		ret = gen8_gmch_probe(ggtt);
3193 	if (ret)
3194 		return ret;
3195 
3196 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3197 	 * This is easier than doing range restriction on the fly, as we
3198 	 * currently don't have any bits spare to pass in this upper
3199 	 * restriction!
3200 	 */
3201 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3202 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3203 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3204 	}
3205 
3206 	if ((ggtt->base.total - 1) >> 32) {
3207 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3208 			  " of address space! Found %lldM!\n",
3209 			  ggtt->base.total >> 20);
3210 		ggtt->base.total = 1ULL << 32;
3211 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3212 	}
3213 
3214 	if (ggtt->mappable_end > ggtt->base.total) {
3215 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3216 			  " aperture=%llx, total=%llx\n",
3217 			  ggtt->mappable_end, ggtt->base.total);
3218 		ggtt->mappable_end = ggtt->base.total;
3219 	}
3220 
3221 	/* GMADR is the PCI mmio aperture into the global GTT. */
3222 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3223 		 ggtt->base.total >> 20);
3224 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3225 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3226 #ifdef CONFIG_INTEL_IOMMU
3227 	if (intel_iommu_gfx_mapped)
3228 		DRM_INFO("VT-d active for gfx access\n");
3229 #endif
3230 
3231 	return 0;
3232 }
3233 
3234 /**
3235  * i915_ggtt_init_hw - Initialize GGTT hardware
3236  * @dev_priv: i915 device
3237  */
3238 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3239 {
3240 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3241 	int ret;
3242 
3243 	INIT_LIST_HEAD(&dev_priv->vm_list);
3244 
3245 	/* Subtract the guard page before address space initialization to
3246 	 * shrink the range used by drm_mm.
3247 	 */
3248 	mutex_lock(&dev_priv->drm.struct_mutex);
3249 	ggtt->base.total -= PAGE_SIZE;
3250 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3251 	ggtt->base.total += PAGE_SIZE;
3252 	if (!HAS_LLC(dev_priv))
3253 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3254 	mutex_unlock(&dev_priv->drm.struct_mutex);
3255 
3256 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3257 				dev_priv->ggtt.mappable_base,
3258 				dev_priv->ggtt.mappable_end)) {
3259 		ret = -EIO;
3260 		goto out_gtt_cleanup;
3261 	}
3262 
3263 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3264 
3265 	/*
3266 	 * Initialise stolen early so that we may reserve preallocated
3267 	 * objects for the BIOS to KMS transition.
3268 	 */
3269 	ret = i915_gem_init_stolen(dev_priv);
3270 	if (ret)
3271 		goto out_gtt_cleanup;
3272 
3273 	return 0;
3274 
3275 out_gtt_cleanup:
3276 	ggtt->base.cleanup(&ggtt->base);
3277 	return ret;
3278 }
3279 
3280 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3281 {
3282 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3283 		return -EIO;
3284 
3285 	return 0;
3286 }
3287 
3288 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3289 {
3290 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3291 }
3292 
3293 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3294 {
3295 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3296 }
3297 
3298 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3299 {
3300 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3301 	struct drm_i915_gem_object *obj, *on;
3302 
3303 	i915_check_and_clear_faults(dev_priv);
3304 
3305 	/* First fill our portion of the GTT with scratch pages */
3306 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3307 
3308 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3309 
3310 	/* clflush objects bound into the GGTT and rebind them. */
3311 	list_for_each_entry_safe(obj, on,
3312 				 &dev_priv->mm.bound_list, global_link) {
3313 		bool ggtt_bound = false;
3314 		struct i915_vma *vma;
3315 
3316 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3317 			if (vma->vm != &ggtt->base)
3318 				continue;
3319 
3320 			if (!i915_vma_unbind(vma))
3321 				continue;
3322 
3323 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3324 					      PIN_UPDATE));
3325 			ggtt_bound = true;
3326 		}
3327 
3328 		if (ggtt_bound)
3329 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3330 	}
3331 
3332 	ggtt->base.closed = false;
3333 
3334 	if (INTEL_GEN(dev_priv) >= 8) {
3335 		if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3336 			chv_setup_private_ppat(dev_priv);
3337 		else
3338 			bdw_setup_private_ppat(dev_priv);
3339 
3340 		return;
3341 	}
3342 
3343 	if (USES_PPGTT(dev_priv)) {
3344 		struct i915_address_space *vm;
3345 
3346 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3347 			/* TODO: Perhaps it shouldn't be gen6 specific */
3348 
3349 			struct i915_hw_ppgtt *ppgtt;
3350 
3351 			if (i915_is_ggtt(vm))
3352 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3353 			else
3354 				ppgtt = i915_vm_to_ppgtt(vm);
3355 
3356 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3357 					      0, ppgtt->base.total);
3358 		}
3359 	}
3360 
3361 	i915_ggtt_invalidate(dev_priv);
3362 }
3363 
3364 static struct scatterlist *
3365 rotate_pages(const dma_addr_t *in, unsigned int offset,
3366 	     unsigned int width, unsigned int height,
3367 	     unsigned int stride,
3368 	     struct sg_table *st, struct scatterlist *sg)
3369 {
3370 	unsigned int column, row;
3371 	unsigned int src_idx;
3372 
3373 	for (column = 0; column < width; column++) {
3374 		src_idx = stride * (height - 1) + column;
3375 		for (row = 0; row < height; row++) {
3376 			st->nents++;
3377 			/* We don't need the pages, but need to initialize
3378 			 * the entries so the sg list can be happily traversed.
3379 			 * The only thing we need are DMA addresses.
3380 			 */
3381 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3382 			sg_dma_address(sg) = in[offset + src_idx];
3383 			sg_dma_len(sg) = PAGE_SIZE;
3384 			sg = sg_next(sg);
3385 			src_idx -= stride;
3386 		}
3387 	}
3388 
3389 	return sg;
3390 }
3391 
3392 static struct sg_table *
3393 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3394 			  struct drm_i915_gem_object *obj)
3395 {
3396 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3397 	unsigned int size = intel_rotation_info_size(rot_info);
3398 	struct sgt_iter sgt_iter;
3399 	dma_addr_t dma_addr;
3400 	unsigned long i;
3401 	dma_addr_t *page_addr_list;
3402 	struct sg_table *st;
3403 	struct scatterlist *sg;
3404 	int ret = -ENOMEM;
3405 
3406 	/* Allocate a temporary list of source pages for random access. */
3407 	page_addr_list = drm_malloc_gfp(n_pages,
3408 					sizeof(dma_addr_t),
3409 					GFP_TEMPORARY);
3410 	if (!page_addr_list)
3411 		return ERR_PTR(ret);
3412 
3413 	/* Allocate target SG list. */
3414 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3415 	if (!st)
3416 		goto err_st_alloc;
3417 
3418 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3419 	if (ret)
3420 		goto err_sg_alloc;
3421 
3422 	/* Populate source page list from the object. */
3423 	i = 0;
3424 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3425 		page_addr_list[i++] = dma_addr;
3426 
3427 	GEM_BUG_ON(i != n_pages);
3428 	st->nents = 0;
3429 	sg = st->sgl;
3430 
3431 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3432 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3433 				  rot_info->plane[i].width, rot_info->plane[i].height,
3434 				  rot_info->plane[i].stride, st, sg);
3435 	}
3436 
3437 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3438 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3439 
3440 	drm_free_large(page_addr_list);
3441 
3442 	return st;
3443 
3444 err_sg_alloc:
3445 	kfree(st);
3446 err_st_alloc:
3447 	drm_free_large(page_addr_list);
3448 
3449 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3450 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3451 
3452 	return ERR_PTR(ret);
3453 }
3454 
3455 static struct sg_table *
3456 intel_partial_pages(const struct i915_ggtt_view *view,
3457 		    struct drm_i915_gem_object *obj)
3458 {
3459 	struct sg_table *st;
3460 	struct scatterlist *sg, *iter;
3461 	unsigned int count = view->partial.size;
3462 	unsigned int offset;
3463 	int ret = -ENOMEM;
3464 
3465 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3466 	if (!st)
3467 		goto err_st_alloc;
3468 
3469 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3470 	if (ret)
3471 		goto err_sg_alloc;
3472 
3473 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3474 	GEM_BUG_ON(!iter);
3475 
3476 	sg = st->sgl;
3477 	st->nents = 0;
3478 	do {
3479 		unsigned int len;
3480 
3481 		len = min(iter->length - (offset << PAGE_SHIFT),
3482 			  count << PAGE_SHIFT);
3483 		sg_set_page(sg, NULL, len, 0);
3484 		sg_dma_address(sg) =
3485 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3486 		sg_dma_len(sg) = len;
3487 
3488 		st->nents++;
3489 		count -= len >> PAGE_SHIFT;
3490 		if (count == 0) {
3491 			sg_mark_end(sg);
3492 			return st;
3493 		}
3494 
3495 		sg = __sg_next(sg);
3496 		iter = __sg_next(iter);
3497 		offset = 0;
3498 	} while (1);
3499 
3500 err_sg_alloc:
3501 	kfree(st);
3502 err_st_alloc:
3503 	return ERR_PTR(ret);
3504 }
3505 
3506 static int
3507 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3508 {
3509 	int ret = 0;
3510 
3511 	/* The vma->pages are only valid within the lifespan of the borrowed
3512 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3513 	 * must be the vma->pages. A simple rule is that vma->pages must only
3514 	 * be accessed when the obj->mm.pages are pinned.
3515 	 */
3516 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3517 
3518 	if (vma->pages)
3519 		return 0;
3520 
3521 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3522 		vma->pages = vma->obj->mm.pages;
3523 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3524 		vma->pages =
3525 			intel_rotate_fb_obj_pages(&vma->ggtt_view.rotated,
3526 						  vma->obj);
3527 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3528 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3529 	else
3530 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3531 			  vma->ggtt_view.type);
3532 
3533 	if (!vma->pages) {
3534 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3535 			  vma->ggtt_view.type);
3536 		ret = -EINVAL;
3537 	} else if (IS_ERR(vma->pages)) {
3538 		ret = PTR_ERR(vma->pages);
3539 		vma->pages = NULL;
3540 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3541 			  vma->ggtt_view.type, ret);
3542 	}
3543 
3544 	return ret;
3545 }
3546 
3547 /**
3548  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3549  * @vm: the &struct i915_address_space
3550  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3551  * @size: how much space to allocate inside the GTT,
3552  *        must be #I915_GTT_PAGE_SIZE aligned
3553  * @offset: where to insert inside the GTT,
3554  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3555  *          (@offset + @size) must fit within the address space
3556  * @color: color to apply to node, if this node is not from a VMA,
3557  *         color must be #I915_COLOR_UNEVICTABLE
3558  * @flags: control search and eviction behaviour
3559  *
3560  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3561  * the address space (using @size and @color). If the @node does not fit, it
3562  * tries to evict any overlapping nodes from the GTT, including any
3563  * neighbouring nodes if the colors do not match (to ensure guard pages between
3564  * differing domains). See i915_gem_evict_for_node() for the gory details
3565  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3566  * evicting active overlapping objects, and any overlapping node that is pinned
3567  * or marked as unevictable will also result in failure.
3568  *
3569  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3570  * asked to wait for eviction and interrupted.
3571  */
3572 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3573 			 struct drm_mm_node *node,
3574 			 u64 size, u64 offset, unsigned long color,
3575 			 unsigned int flags)
3576 {
3577 	int err;
3578 
3579 	GEM_BUG_ON(!size);
3580 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3581 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3582 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3583 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3584 	GEM_BUG_ON(drm_mm_node_allocated(node));
3585 
3586 	node->size = size;
3587 	node->start = offset;
3588 	node->color = color;
3589 
3590 	err = drm_mm_reserve_node(&vm->mm, node);
3591 	if (err != -ENOSPC)
3592 		return err;
3593 
3594 	err = i915_gem_evict_for_node(vm, node, flags);
3595 	if (err == 0)
3596 		err = drm_mm_reserve_node(&vm->mm, node);
3597 
3598 	return err;
3599 }
3600 
3601 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3602 {
3603 	u64 range, addr;
3604 
3605 	GEM_BUG_ON(range_overflows(start, len, end));
3606 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3607 
3608 	range = round_down(end - len, align) - round_up(start, align);
3609 	if (range) {
3610 		if (sizeof(unsigned long) == sizeof(u64)) {
3611 			addr = get_random_long();
3612 		} else {
3613 			addr = get_random_int();
3614 			if (range > U32_MAX) {
3615 				addr <<= 32;
3616 				addr |= get_random_int();
3617 			}
3618 		}
3619 		div64_u64_rem(addr, range, &addr);
3620 		start += addr;
3621 	}
3622 
3623 	return round_up(start, align);
3624 }
3625 
3626 /**
3627  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3628  * @vm: the &struct i915_address_space
3629  * @node: the &struct drm_mm_node (typically i915_vma.node)
3630  * @size: how much space to allocate inside the GTT,
3631  *        must be #I915_GTT_PAGE_SIZE aligned
3632  * @alignment: required alignment of starting offset, may be 0 but
3633  *             if specified, this must be a power-of-two and at least
3634  *             #I915_GTT_MIN_ALIGNMENT
3635  * @color: color to apply to node
3636  * @start: start of any range restriction inside GTT (0 for all),
3637  *         must be #I915_GTT_PAGE_SIZE aligned
3638  * @end: end of any range restriction inside GTT (U64_MAX for all),
3639  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3640  * @flags: control search and eviction behaviour
3641  *
3642  * i915_gem_gtt_insert() first searches for an available hole into which
3643  * is can insert the node. The hole address is aligned to @alignment and
3644  * its @size must then fit entirely within the [@start, @end] bounds. The
3645  * nodes on either side of the hole must match @color, or else a guard page
3646  * will be inserted between the two nodes (or the node evicted). If no
3647  * suitable hole is found, first a victim is randomly selected and tested
3648  * for eviction, otherwise then the LRU list of objects within the GTT
3649  * is scanned to find the first set of replacement nodes to create the hole.
3650  * Those old overlapping nodes are evicted from the GTT (and so must be
3651  * rebound before any future use). Any node that is currently pinned cannot
3652  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3653  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3654  * searching for an eviction candidate. See i915_gem_evict_something() for
3655  * the gory details on the eviction algorithm.
3656  *
3657  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3658  * asked to wait for eviction and interrupted.
3659  */
3660 int i915_gem_gtt_insert(struct i915_address_space *vm,
3661 			struct drm_mm_node *node,
3662 			u64 size, u64 alignment, unsigned long color,
3663 			u64 start, u64 end, unsigned int flags)
3664 {
3665 	enum drm_mm_insert_mode mode;
3666 	u64 offset;
3667 	int err;
3668 
3669 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3670 	GEM_BUG_ON(!size);
3671 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3672 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3673 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3674 	GEM_BUG_ON(start >= end);
3675 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3676 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3677 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3678 	GEM_BUG_ON(drm_mm_node_allocated(node));
3679 
3680 	if (unlikely(range_overflows(start, size, end)))
3681 		return -ENOSPC;
3682 
3683 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3684 		return -ENOSPC;
3685 
3686 	mode = DRM_MM_INSERT_BEST;
3687 	if (flags & PIN_HIGH)
3688 		mode = DRM_MM_INSERT_HIGH;
3689 	if (flags & PIN_MAPPABLE)
3690 		mode = DRM_MM_INSERT_LOW;
3691 
3692 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3693 	 * so we know that we always have a minimum alignment of 4096.
3694 	 * The drm_mm range manager is optimised to return results
3695 	 * with zero alignment, so where possible use the optimal
3696 	 * path.
3697 	 */
3698 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3699 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3700 		alignment = 0;
3701 
3702 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3703 					  size, alignment, color,
3704 					  start, end, mode);
3705 	if (err != -ENOSPC)
3706 		return err;
3707 
3708 	/* No free space, pick a slot at random.
3709 	 *
3710 	 * There is a pathological case here using a GTT shared between
3711 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3712 	 *
3713 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3714 	 *         (64k objects)             (448k objects)
3715 	 *
3716 	 * Now imagine that the eviction LRU is ordered top-down (just because
3717 	 * pathology meets real life), and that we need to evict an object to
3718 	 * make room inside the aperture. The eviction scan then has to walk
3719 	 * the 448k list before it finds one within range. And now imagine that
3720 	 * it has to search for a new hole between every byte inside the memcpy,
3721 	 * for several simultaneous clients.
3722 	 *
3723 	 * On a full-ppgtt system, if we have run out of available space, there
3724 	 * will be lots and lots of objects in the eviction list! Again,
3725 	 * searching that LRU list may be slow if we are also applying any
3726 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3727 	 * simplicity and similarilty between different GTT, try the single
3728 	 * random replacement first.
3729 	 */
3730 	offset = random_offset(start, end,
3731 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3732 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3733 	if (err != -ENOSPC)
3734 		return err;
3735 
3736 	/* Randomly selected placement is pinned, do a search */
3737 	err = i915_gem_evict_something(vm, size, alignment, color,
3738 				       start, end, flags);
3739 	if (err)
3740 		return err;
3741 
3742 	return drm_mm_insert_node_in_range(&vm->mm, node,
3743 					   size, alignment, color,
3744 					   start, end, DRM_MM_INSERT_EVICT);
3745 }
3746