xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36 
37 #include <drm/i915_drm.h>
38 
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41 #include "gt/intel_gt_requests.h"
42 
43 #include "i915_drv.h"
44 #include "i915_scatterlist.h"
45 #include "i915_trace.h"
46 #include "i915_vgpu.h"
47 
48 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
49 
50 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
51 #define DBG(...) trace_printk(__VA_ARGS__)
52 #else
53 #define DBG(...)
54 #endif
55 
56 /**
57  * DOC: Global GTT views
58  *
59  * Background and previous state
60  *
61  * Historically objects could exists (be bound) in global GTT space only as
62  * singular instances with a view representing all of the object's backing pages
63  * in a linear fashion. This view will be called a normal view.
64  *
65  * To support multiple views of the same object, where the number of mapped
66  * pages is not equal to the backing store, or where the layout of the pages
67  * is not linear, concept of a GGTT view was added.
68  *
69  * One example of an alternative view is a stereo display driven by a single
70  * image. In this case we would have a framebuffer looking like this
71  * (2x2 pages):
72  *
73  *    12
74  *    34
75  *
76  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
77  * rendering. In contrast, fed to the display engine would be an alternative
78  * view which could look something like this:
79  *
80  *   1212
81  *   3434
82  *
83  * In this example both the size and layout of pages in the alternative view is
84  * different from the normal view.
85  *
86  * Implementation and usage
87  *
88  * GGTT views are implemented using VMAs and are distinguished via enum
89  * i915_ggtt_view_type and struct i915_ggtt_view.
90  *
91  * A new flavour of core GEM functions which work with GGTT bound objects were
92  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
93  * renaming  in large amounts of code. They take the struct i915_ggtt_view
94  * parameter encapsulating all metadata required to implement a view.
95  *
96  * As a helper for callers which are only interested in the normal view,
97  * globally const i915_ggtt_view_normal singleton instance exists. All old core
98  * GEM API functions, the ones not taking the view parameter, are operating on,
99  * or with the normal GGTT view.
100  *
101  * Code wanting to add or use a new GGTT view needs to:
102  *
103  * 1. Add a new enum with a suitable name.
104  * 2. Extend the metadata in the i915_ggtt_view structure if required.
105  * 3. Add support to i915_get_vma_pages().
106  *
107  * New views are required to build a scatter-gather table from within the
108  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
109  * exists for the lifetime of an VMA.
110  *
111  * Core API is designed to have copy semantics which means that passed in
112  * struct i915_ggtt_view does not need to be persistent (left around after
113  * calling the core API functions).
114  *
115  */
116 
117 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
118 
119 static int
120 i915_get_ggtt_vma_pages(struct i915_vma *vma);
121 
122 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
123 {
124 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
125 
126 	/*
127 	 * Note that as an uncached mmio write, this will flush the
128 	 * WCB of the writes into the GGTT before it triggers the invalidate.
129 	 */
130 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
131 }
132 
133 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
134 {
135 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
136 	struct drm_i915_private *i915 = ggtt->vm.i915;
137 
138 	gen6_ggtt_invalidate(ggtt);
139 
140 	if (INTEL_GEN(i915) >= 12)
141 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
142 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
143 	else
144 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
145 }
146 
147 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
148 {
149 	intel_gtt_chipset_flush();
150 }
151 
152 static int ppgtt_bind_vma(struct i915_vma *vma,
153 			  enum i915_cache_level cache_level,
154 			  u32 flags)
155 {
156 	u32 pte_flags;
157 	int err;
158 
159 	if (flags & I915_VMA_ALLOC) {
160 		err = vma->vm->allocate_va_range(vma->vm,
161 						 vma->node.start, vma->size);
162 		if (err)
163 			return err;
164 
165 		set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
166 	}
167 
168 	/* Applicable to VLV, and gen8+ */
169 	pte_flags = 0;
170 	if (i915_gem_object_is_readonly(vma->obj))
171 		pte_flags |= PTE_READ_ONLY;
172 
173 	GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)));
174 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
175 	wmb();
176 
177 	return 0;
178 }
179 
180 static void ppgtt_unbind_vma(struct i915_vma *vma)
181 {
182 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)))
183 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
184 }
185 
186 static int ppgtt_set_pages(struct i915_vma *vma)
187 {
188 	GEM_BUG_ON(vma->pages);
189 
190 	vma->pages = vma->obj->mm.pages;
191 
192 	vma->page_sizes = vma->obj->mm.page_sizes;
193 
194 	return 0;
195 }
196 
197 static void clear_pages(struct i915_vma *vma)
198 {
199 	GEM_BUG_ON(!vma->pages);
200 
201 	if (vma->pages != vma->obj->mm.pages) {
202 		sg_free_table(vma->pages);
203 		kfree(vma->pages);
204 	}
205 	vma->pages = NULL;
206 
207 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
208 }
209 
210 static u64 gen8_pte_encode(dma_addr_t addr,
211 			   enum i915_cache_level level,
212 			   u32 flags)
213 {
214 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
215 
216 	if (unlikely(flags & PTE_READ_ONLY))
217 		pte &= ~_PAGE_RW;
218 
219 	switch (level) {
220 	case I915_CACHE_NONE:
221 		pte |= PPAT_UNCACHED;
222 		break;
223 	case I915_CACHE_WT:
224 		pte |= PPAT_DISPLAY_ELLC;
225 		break;
226 	default:
227 		pte |= PPAT_CACHED;
228 		break;
229 	}
230 
231 	return pte;
232 }
233 
234 static u64 gen8_pde_encode(const dma_addr_t addr,
235 			   const enum i915_cache_level level)
236 {
237 	u64 pde = _PAGE_PRESENT | _PAGE_RW;
238 	pde |= addr;
239 	if (level != I915_CACHE_NONE)
240 		pde |= PPAT_CACHED_PDE;
241 	else
242 		pde |= PPAT_UNCACHED;
243 	return pde;
244 }
245 
246 static u64 snb_pte_encode(dma_addr_t addr,
247 			  enum i915_cache_level level,
248 			  u32 flags)
249 {
250 	gen6_pte_t pte = GEN6_PTE_VALID;
251 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
252 
253 	switch (level) {
254 	case I915_CACHE_L3_LLC:
255 	case I915_CACHE_LLC:
256 		pte |= GEN6_PTE_CACHE_LLC;
257 		break;
258 	case I915_CACHE_NONE:
259 		pte |= GEN6_PTE_UNCACHED;
260 		break;
261 	default:
262 		MISSING_CASE(level);
263 	}
264 
265 	return pte;
266 }
267 
268 static u64 ivb_pte_encode(dma_addr_t addr,
269 			  enum i915_cache_level level,
270 			  u32 flags)
271 {
272 	gen6_pte_t pte = GEN6_PTE_VALID;
273 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
274 
275 	switch (level) {
276 	case I915_CACHE_L3_LLC:
277 		pte |= GEN7_PTE_CACHE_L3_LLC;
278 		break;
279 	case I915_CACHE_LLC:
280 		pte |= GEN6_PTE_CACHE_LLC;
281 		break;
282 	case I915_CACHE_NONE:
283 		pte |= GEN6_PTE_UNCACHED;
284 		break;
285 	default:
286 		MISSING_CASE(level);
287 	}
288 
289 	return pte;
290 }
291 
292 static u64 byt_pte_encode(dma_addr_t addr,
293 			  enum i915_cache_level level,
294 			  u32 flags)
295 {
296 	gen6_pte_t pte = GEN6_PTE_VALID;
297 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
298 
299 	if (!(flags & PTE_READ_ONLY))
300 		pte |= BYT_PTE_WRITEABLE;
301 
302 	if (level != I915_CACHE_NONE)
303 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
304 
305 	return pte;
306 }
307 
308 static u64 hsw_pte_encode(dma_addr_t addr,
309 			  enum i915_cache_level level,
310 			  u32 flags)
311 {
312 	gen6_pte_t pte = GEN6_PTE_VALID;
313 	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 
315 	if (level != I915_CACHE_NONE)
316 		pte |= HSW_WB_LLC_AGE3;
317 
318 	return pte;
319 }
320 
321 static u64 iris_pte_encode(dma_addr_t addr,
322 			   enum i915_cache_level level,
323 			   u32 flags)
324 {
325 	gen6_pte_t pte = GEN6_PTE_VALID;
326 	pte |= HSW_PTE_ADDR_ENCODE(addr);
327 
328 	switch (level) {
329 	case I915_CACHE_NONE:
330 		break;
331 	case I915_CACHE_WT:
332 		pte |= HSW_WT_ELLC_LLC_AGE3;
333 		break;
334 	default:
335 		pte |= HSW_WB_ELLC_LLC_AGE3;
336 		break;
337 	}
338 
339 	return pte;
340 }
341 
342 static void stash_init(struct pagestash *stash)
343 {
344 	pagevec_init(&stash->pvec);
345 	spin_lock_init(&stash->lock);
346 }
347 
348 static struct page *stash_pop_page(struct pagestash *stash)
349 {
350 	struct page *page = NULL;
351 
352 	spin_lock(&stash->lock);
353 	if (likely(stash->pvec.nr))
354 		page = stash->pvec.pages[--stash->pvec.nr];
355 	spin_unlock(&stash->lock);
356 
357 	return page;
358 }
359 
360 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
361 {
362 	unsigned int nr;
363 
364 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
365 
366 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
367 	memcpy(stash->pvec.pages + stash->pvec.nr,
368 	       pvec->pages + pvec->nr - nr,
369 	       sizeof(pvec->pages[0]) * nr);
370 	stash->pvec.nr += nr;
371 
372 	spin_unlock(&stash->lock);
373 
374 	pvec->nr -= nr;
375 }
376 
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379 	struct pagevec stack;
380 	struct page *page;
381 
382 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383 		i915_gem_shrink_all(vm->i915);
384 
385 	page = stash_pop_page(&vm->free_pages);
386 	if (page)
387 		return page;
388 
389 	if (!vm->pt_kmap_wc)
390 		return alloc_page(gfp);
391 
392 	/* Look in our global stash of WC pages... */
393 	page = stash_pop_page(&vm->i915->mm.wc_stash);
394 	if (page)
395 		return page;
396 
397 	/*
398 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
399 	 *
400 	 * We have to be careful as page allocation may trigger the shrinker
401 	 * (via direct reclaim) which will fill up the WC stash underneath us.
402 	 * So we add our WB pages into a temporary pvec on the stack and merge
403 	 * them into the WC stash after all the allocations are complete.
404 	 */
405 	pagevec_init(&stack);
406 	do {
407 		struct page *page;
408 
409 		page = alloc_page(gfp);
410 		if (unlikely(!page))
411 			break;
412 
413 		stack.pages[stack.nr++] = page;
414 	} while (pagevec_space(&stack));
415 
416 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
417 		page = stack.pages[--stack.nr];
418 
419 		/* Merge spare WC pages to the global stash */
420 		if (stack.nr)
421 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
422 
423 		/* Push any surplus WC pages onto the local VM stash */
424 		if (stack.nr)
425 			stash_push_pagevec(&vm->free_pages, &stack);
426 	}
427 
428 	/* Return unwanted leftovers */
429 	if (unlikely(stack.nr)) {
430 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
431 		__pagevec_release(&stack);
432 	}
433 
434 	return page;
435 }
436 
437 static void vm_free_pages_release(struct i915_address_space *vm,
438 				  bool immediate)
439 {
440 	struct pagevec *pvec = &vm->free_pages.pvec;
441 	struct pagevec stack;
442 
443 	lockdep_assert_held(&vm->free_pages.lock);
444 	GEM_BUG_ON(!pagevec_count(pvec));
445 
446 	if (vm->pt_kmap_wc) {
447 		/*
448 		 * When we use WC, first fill up the global stash and then
449 		 * only if full immediately free the overflow.
450 		 */
451 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
452 
453 		/*
454 		 * As we have made some room in the VM's free_pages,
455 		 * we can wait for it to fill again. Unless we are
456 		 * inside i915_address_space_fini() and must
457 		 * immediately release the pages!
458 		 */
459 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
460 			return;
461 
462 		/*
463 		 * We have to drop the lock to allow ourselves to sleep,
464 		 * so take a copy of the pvec and clear the stash for
465 		 * others to use it as we sleep.
466 		 */
467 		stack = *pvec;
468 		pagevec_reinit(pvec);
469 		spin_unlock(&vm->free_pages.lock);
470 
471 		pvec = &stack;
472 		set_pages_array_wb(pvec->pages, pvec->nr);
473 
474 		spin_lock(&vm->free_pages.lock);
475 	}
476 
477 	__pagevec_release(pvec);
478 }
479 
480 static void vm_free_page(struct i915_address_space *vm, struct page *page)
481 {
482 	/*
483 	 * On !llc, we need to change the pages back to WB. We only do so
484 	 * in bulk, so we rarely need to change the page attributes here,
485 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
486 	 * To make detection of the possible sleep more likely, use an
487 	 * unconditional might_sleep() for everybody.
488 	 */
489 	might_sleep();
490 	spin_lock(&vm->free_pages.lock);
491 	while (!pagevec_space(&vm->free_pages.pvec))
492 		vm_free_pages_release(vm, false);
493 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
494 	pagevec_add(&vm->free_pages.pvec, page);
495 	spin_unlock(&vm->free_pages.lock);
496 }
497 
498 static void i915_address_space_fini(struct i915_address_space *vm)
499 {
500 	spin_lock(&vm->free_pages.lock);
501 	if (pagevec_count(&vm->free_pages.pvec))
502 		vm_free_pages_release(vm, true);
503 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
504 	spin_unlock(&vm->free_pages.lock);
505 
506 	drm_mm_takedown(&vm->mm);
507 
508 	mutex_destroy(&vm->mutex);
509 }
510 
511 void __i915_vm_close(struct i915_address_space *vm)
512 {
513 	struct i915_vma *vma, *vn;
514 
515 	mutex_lock(&vm->mutex);
516 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
517 		struct drm_i915_gem_object *obj = vma->obj;
518 
519 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
520 		if (!kref_get_unless_zero(&obj->base.refcount))
521 			continue;
522 
523 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
524 		WARN_ON(__i915_vma_unbind(vma));
525 		i915_vma_destroy(vma);
526 
527 		i915_gem_object_put(obj);
528 	}
529 	GEM_BUG_ON(!list_empty(&vm->bound_list));
530 	mutex_unlock(&vm->mutex);
531 }
532 
533 static void __i915_vm_release(struct work_struct *work)
534 {
535 	struct i915_address_space *vm =
536 		container_of(work, struct i915_address_space, rcu.work);
537 
538 	vm->cleanup(vm);
539 	i915_address_space_fini(vm);
540 
541 	kfree(vm);
542 }
543 
544 void i915_vm_release(struct kref *kref)
545 {
546 	struct i915_address_space *vm =
547 		container_of(kref, struct i915_address_space, ref);
548 
549 	GEM_BUG_ON(i915_is_ggtt(vm));
550 	trace_i915_ppgtt_release(vm);
551 
552 	queue_rcu_work(vm->i915->wq, &vm->rcu);
553 }
554 
555 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
556 {
557 	kref_init(&vm->ref);
558 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
559 	atomic_set(&vm->open, 1);
560 
561 	/*
562 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
563 	 * Do a dummy acquire now under fs_reclaim so that any allocation
564 	 * attempt holding the lock is immediately reported by lockdep.
565 	 */
566 	mutex_init(&vm->mutex);
567 	lockdep_set_subclass(&vm->mutex, subclass);
568 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
569 
570 	GEM_BUG_ON(!vm->total);
571 	drm_mm_init(&vm->mm, 0, vm->total);
572 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
573 
574 	stash_init(&vm->free_pages);
575 
576 	INIT_LIST_HEAD(&vm->bound_list);
577 }
578 
579 static int __setup_page_dma(struct i915_address_space *vm,
580 			    struct i915_page_dma *p,
581 			    gfp_t gfp)
582 {
583 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
584 	if (unlikely(!p->page))
585 		return -ENOMEM;
586 
587 	p->daddr = dma_map_page_attrs(vm->dma,
588 				      p->page, 0, PAGE_SIZE,
589 				      PCI_DMA_BIDIRECTIONAL,
590 				      DMA_ATTR_SKIP_CPU_SYNC |
591 				      DMA_ATTR_NO_WARN);
592 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
593 		vm_free_page(vm, p->page);
594 		return -ENOMEM;
595 	}
596 
597 	return 0;
598 }
599 
600 static int setup_page_dma(struct i915_address_space *vm,
601 			  struct i915_page_dma *p)
602 {
603 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
604 }
605 
606 static void cleanup_page_dma(struct i915_address_space *vm,
607 			     struct i915_page_dma *p)
608 {
609 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
610 	vm_free_page(vm, p->page);
611 }
612 
613 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
614 
615 static void
616 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
617 {
618 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
619 }
620 
621 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
622 #define fill32_px(px, v) do {						\
623 	u64 v__ = lower_32_bits(v);					\
624 	fill_px((px), v__ << 32 | v__);					\
625 } while (0)
626 
627 static int
628 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
629 {
630 	unsigned long size;
631 
632 	/*
633 	 * In order to utilize 64K pages for an object with a size < 2M, we will
634 	 * need to support a 64K scratch page, given that every 16th entry for a
635 	 * page-table operating in 64K mode must point to a properly aligned 64K
636 	 * region, including any PTEs which happen to point to scratch.
637 	 *
638 	 * This is only relevant for the 48b PPGTT where we support
639 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
640 	 * scratch (read-only) between all vm, we create one 64k scratch page
641 	 * for all.
642 	 */
643 	size = I915_GTT_PAGE_SIZE_4K;
644 	if (i915_vm_is_4lvl(vm) &&
645 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
646 		size = I915_GTT_PAGE_SIZE_64K;
647 		gfp |= __GFP_NOWARN;
648 	}
649 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
650 
651 	do {
652 		unsigned int order = get_order(size);
653 		struct page *page;
654 		dma_addr_t addr;
655 
656 		page = alloc_pages(gfp, order);
657 		if (unlikely(!page))
658 			goto skip;
659 
660 		addr = dma_map_page_attrs(vm->dma,
661 					  page, 0, size,
662 					  PCI_DMA_BIDIRECTIONAL,
663 					  DMA_ATTR_SKIP_CPU_SYNC |
664 					  DMA_ATTR_NO_WARN);
665 		if (unlikely(dma_mapping_error(vm->dma, addr)))
666 			goto free_page;
667 
668 		if (unlikely(!IS_ALIGNED(addr, size)))
669 			goto unmap_page;
670 
671 		vm->scratch[0].base.page = page;
672 		vm->scratch[0].base.daddr = addr;
673 		vm->scratch_order = order;
674 		return 0;
675 
676 unmap_page:
677 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
678 free_page:
679 		__free_pages(page, order);
680 skip:
681 		if (size == I915_GTT_PAGE_SIZE_4K)
682 			return -ENOMEM;
683 
684 		size = I915_GTT_PAGE_SIZE_4K;
685 		gfp &= ~__GFP_NOWARN;
686 	} while (1);
687 }
688 
689 static void cleanup_scratch_page(struct i915_address_space *vm)
690 {
691 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
692 	unsigned int order = vm->scratch_order;
693 
694 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
695 		       PCI_DMA_BIDIRECTIONAL);
696 	__free_pages(p->page, order);
697 }
698 
699 static void free_scratch(struct i915_address_space *vm)
700 {
701 	int i;
702 
703 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
704 		return;
705 
706 	for (i = 1; i <= vm->top; i++) {
707 		if (!px_dma(&vm->scratch[i]))
708 			break;
709 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
710 	}
711 
712 	cleanup_scratch_page(vm);
713 }
714 
715 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
716 {
717 	struct i915_page_table *pt;
718 
719 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
720 	if (unlikely(!pt))
721 		return ERR_PTR(-ENOMEM);
722 
723 	if (unlikely(setup_page_dma(vm, &pt->base))) {
724 		kfree(pt);
725 		return ERR_PTR(-ENOMEM);
726 	}
727 
728 	atomic_set(&pt->used, 0);
729 	return pt;
730 }
731 
732 static struct i915_page_directory *__alloc_pd(size_t sz)
733 {
734 	struct i915_page_directory *pd;
735 
736 	pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
737 	if (unlikely(!pd))
738 		return NULL;
739 
740 	spin_lock_init(&pd->lock);
741 	return pd;
742 }
743 
744 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
745 {
746 	struct i915_page_directory *pd;
747 
748 	pd = __alloc_pd(sizeof(*pd));
749 	if (unlikely(!pd))
750 		return ERR_PTR(-ENOMEM);
751 
752 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
753 		kfree(pd);
754 		return ERR_PTR(-ENOMEM);
755 	}
756 
757 	return pd;
758 }
759 
760 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
761 {
762 	cleanup_page_dma(vm, pd);
763 	kfree(pd);
764 }
765 
766 #define free_px(vm, px) free_pd(vm, px_base(px))
767 
768 static inline void
769 write_dma_entry(struct i915_page_dma * const pdma,
770 		const unsigned short idx,
771 		const u64 encoded_entry)
772 {
773 	u64 * const vaddr = kmap_atomic(pdma->page);
774 
775 	vaddr[idx] = encoded_entry;
776 	kunmap_atomic(vaddr);
777 }
778 
779 static inline void
780 __set_pd_entry(struct i915_page_directory * const pd,
781 	       const unsigned short idx,
782 	       struct i915_page_dma * const to,
783 	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
784 {
785 	/* Each thread pre-pins the pd, and we may have a thread per pde. */
786 	GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
787 
788 	atomic_inc(px_used(pd));
789 	pd->entry[idx] = to;
790 	write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
791 }
792 
793 #define set_pd_entry(pd, idx, to) \
794 	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
795 
796 static inline void
797 clear_pd_entry(struct i915_page_directory * const pd,
798 	       const unsigned short idx,
799 	       const struct i915_page_scratch * const scratch)
800 {
801 	GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
802 
803 	write_dma_entry(px_base(pd), idx, scratch->encode);
804 	pd->entry[idx] = NULL;
805 	atomic_dec(px_used(pd));
806 }
807 
808 static bool
809 release_pd_entry(struct i915_page_directory * const pd,
810 		 const unsigned short idx,
811 		 struct i915_page_table * const pt,
812 		 const struct i915_page_scratch * const scratch)
813 {
814 	bool free = false;
815 
816 	if (atomic_add_unless(&pt->used, -1, 1))
817 		return false;
818 
819 	spin_lock(&pd->lock);
820 	if (atomic_dec_and_test(&pt->used)) {
821 		clear_pd_entry(pd, idx, scratch);
822 		free = true;
823 	}
824 	spin_unlock(&pd->lock);
825 
826 	return free;
827 }
828 
829 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
830 {
831 	struct drm_i915_private *dev_priv = ppgtt->vm.i915;
832 	enum vgt_g2v_type msg;
833 	int i;
834 
835 	if (create)
836 		atomic_inc(px_used(ppgtt->pd)); /* never remove */
837 	else
838 		atomic_dec(px_used(ppgtt->pd));
839 
840 	mutex_lock(&dev_priv->vgpu.lock);
841 
842 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
843 		const u64 daddr = px_dma(ppgtt->pd);
844 
845 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
846 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
847 
848 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
849 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
850 	} else {
851 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
852 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
853 
854 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
855 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
856 		}
857 
858 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
859 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
860 	}
861 
862 	/* g2v_notify atomically (via hv trap) consumes the message packet. */
863 	I915_WRITE(vgtif_reg(g2v_notify), msg);
864 
865 	mutex_unlock(&dev_priv->vgpu.lock);
866 }
867 
868 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
869 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
870 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
871 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
872 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
873 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
874 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
875 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
876 
877 static inline unsigned int
878 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
879 {
880 	const int shift = gen8_pd_shift(lvl);
881 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
882 
883 	GEM_BUG_ON(start >= end);
884 	end += ~mask >> gen8_pd_shift(1);
885 
886 	*idx = i915_pde_index(start, shift);
887 	if ((start ^ end) & mask)
888 		return GEN8_PDES - *idx;
889 	else
890 		return i915_pde_index(end, shift) - *idx;
891 }
892 
893 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
894 {
895 	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
896 
897 	GEM_BUG_ON(start >= end);
898 	return (start ^ end) & mask && (start & ~mask) == 0;
899 }
900 
901 static inline unsigned int gen8_pt_count(u64 start, u64 end)
902 {
903 	GEM_BUG_ON(start >= end);
904 	if ((start ^ end) >> gen8_pd_shift(1))
905 		return GEN8_PDES - (start & (GEN8_PDES - 1));
906 	else
907 		return end - start;
908 }
909 
910 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
911 {
912 	unsigned int shift = __gen8_pte_shift(vm->top);
913 	return (vm->total + (1ull << shift) - 1) >> shift;
914 }
915 
916 static inline struct i915_page_directory *
917 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
918 {
919 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
920 
921 	if (vm->top == 2)
922 		return ppgtt->pd;
923 	else
924 		return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
925 }
926 
927 static inline struct i915_page_directory *
928 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
929 {
930 	return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
931 }
932 
933 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
934 				 struct i915_page_directory *pd,
935 				 int count, int lvl)
936 {
937 	if (lvl) {
938 		void **pde = pd->entry;
939 
940 		do {
941 			if (!*pde)
942 				continue;
943 
944 			__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
945 		} while (pde++, --count);
946 	}
947 
948 	free_px(vm, pd);
949 }
950 
951 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
952 {
953 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
954 
955 	if (intel_vgpu_active(vm->i915))
956 		gen8_ppgtt_notify_vgt(ppgtt, false);
957 
958 	__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
959 	free_scratch(vm);
960 }
961 
962 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
963 			      struct i915_page_directory * const pd,
964 			      u64 start, const u64 end, int lvl)
965 {
966 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
967 	unsigned int idx, len;
968 
969 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
970 
971 	len = gen8_pd_range(start, end, lvl--, &idx);
972 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
973 	    __func__, vm, lvl + 1, start, end,
974 	    idx, len, atomic_read(px_used(pd)));
975 	GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
976 
977 	do {
978 		struct i915_page_table *pt = pd->entry[idx];
979 
980 		if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
981 		    gen8_pd_contains(start, end, lvl)) {
982 			DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
983 			    __func__, vm, lvl + 1, idx, start, end);
984 			clear_pd_entry(pd, idx, scratch);
985 			__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
986 			start += (u64)I915_PDES << gen8_pd_shift(lvl);
987 			continue;
988 		}
989 
990 		if (lvl) {
991 			start = __gen8_ppgtt_clear(vm, as_pd(pt),
992 						   start, end, lvl);
993 		} else {
994 			unsigned int count;
995 			u64 *vaddr;
996 
997 			count = gen8_pt_count(start, end);
998 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
999 			    __func__, vm, lvl, start, end,
1000 			    gen8_pd_index(start, 0), count,
1001 			    atomic_read(&pt->used));
1002 			GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1003 
1004 			vaddr = kmap_atomic_px(pt);
1005 			memset64(vaddr + gen8_pd_index(start, 0),
1006 				 vm->scratch[0].encode,
1007 				 count);
1008 			kunmap_atomic(vaddr);
1009 
1010 			atomic_sub(count, &pt->used);
1011 			start += count;
1012 		}
1013 
1014 		if (release_pd_entry(pd, idx, pt, scratch))
1015 			free_px(vm, pt);
1016 	} while (idx++, --len);
1017 
1018 	return start;
1019 }
1020 
1021 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1022 			     u64 start, u64 length)
1023 {
1024 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1025 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1026 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1027 
1028 	start >>= GEN8_PTE_SHIFT;
1029 	length >>= GEN8_PTE_SHIFT;
1030 	GEM_BUG_ON(length == 0);
1031 
1032 	__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1033 			   start, start + length, vm->top);
1034 }
1035 
1036 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1037 			      struct i915_page_directory * const pd,
1038 			      u64 * const start, const u64 end, int lvl)
1039 {
1040 	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1041 	struct i915_page_table *alloc = NULL;
1042 	unsigned int idx, len;
1043 	int ret = 0;
1044 
1045 	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1046 
1047 	len = gen8_pd_range(*start, end, lvl--, &idx);
1048 	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1049 	    __func__, vm, lvl + 1, *start, end,
1050 	    idx, len, atomic_read(px_used(pd)));
1051 	GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1052 
1053 	spin_lock(&pd->lock);
1054 	GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1055 	do {
1056 		struct i915_page_table *pt = pd->entry[idx];
1057 
1058 		if (!pt) {
1059 			spin_unlock(&pd->lock);
1060 
1061 			DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1062 			    __func__, vm, lvl + 1, idx);
1063 
1064 			pt = fetch_and_zero(&alloc);
1065 			if (lvl) {
1066 				if (!pt) {
1067 					pt = &alloc_pd(vm)->pt;
1068 					if (IS_ERR(pt)) {
1069 						ret = PTR_ERR(pt);
1070 						goto out;
1071 					}
1072 				}
1073 
1074 				fill_px(pt, vm->scratch[lvl].encode);
1075 			} else {
1076 				if (!pt) {
1077 					pt = alloc_pt(vm);
1078 					if (IS_ERR(pt)) {
1079 						ret = PTR_ERR(pt);
1080 						goto out;
1081 					}
1082 				}
1083 
1084 				if (intel_vgpu_active(vm->i915) ||
1085 				    gen8_pt_count(*start, end) < I915_PDES)
1086 					fill_px(pt, vm->scratch[lvl].encode);
1087 			}
1088 
1089 			spin_lock(&pd->lock);
1090 			if (likely(!pd->entry[idx]))
1091 				set_pd_entry(pd, idx, pt);
1092 			else
1093 				alloc = pt, pt = pd->entry[idx];
1094 		}
1095 
1096 		if (lvl) {
1097 			atomic_inc(&pt->used);
1098 			spin_unlock(&pd->lock);
1099 
1100 			ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1101 						 start, end, lvl);
1102 			if (unlikely(ret)) {
1103 				if (release_pd_entry(pd, idx, pt, scratch))
1104 					free_px(vm, pt);
1105 				goto out;
1106 			}
1107 
1108 			spin_lock(&pd->lock);
1109 			atomic_dec(&pt->used);
1110 			GEM_BUG_ON(!atomic_read(&pt->used));
1111 		} else {
1112 			unsigned int count = gen8_pt_count(*start, end);
1113 
1114 			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1115 			    __func__, vm, lvl, *start, end,
1116 			    gen8_pd_index(*start, 0), count,
1117 			    atomic_read(&pt->used));
1118 
1119 			atomic_add(count, &pt->used);
1120 			/* All other pdes may be simultaneously removed */
1121 			GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1122 			*start += count;
1123 		}
1124 	} while (idx++, --len);
1125 	spin_unlock(&pd->lock);
1126 out:
1127 	if (alloc)
1128 		free_px(vm, alloc);
1129 	return ret;
1130 }
1131 
1132 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1133 			    u64 start, u64 length)
1134 {
1135 	u64 from;
1136 	int err;
1137 
1138 	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1139 	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1140 	GEM_BUG_ON(range_overflows(start, length, vm->total));
1141 
1142 	start >>= GEN8_PTE_SHIFT;
1143 	length >>= GEN8_PTE_SHIFT;
1144 	GEM_BUG_ON(length == 0);
1145 	from = start;
1146 
1147 	err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1148 				 &start, start + length, vm->top);
1149 	if (unlikely(err && from != start))
1150 		__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1151 				   from, start, vm->top);
1152 
1153 	return err;
1154 }
1155 
1156 static inline struct sgt_dma {
1157 	struct scatterlist *sg;
1158 	dma_addr_t dma, max;
1159 } sgt_dma(struct i915_vma *vma) {
1160 	struct scatterlist *sg = vma->pages->sgl;
1161 	dma_addr_t addr = sg_dma_address(sg);
1162 	return (struct sgt_dma) { sg, addr, addr + sg->length };
1163 }
1164 
1165 static __always_inline u64
1166 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1167 		      struct i915_page_directory *pdp,
1168 		      struct sgt_dma *iter,
1169 		      u64 idx,
1170 		      enum i915_cache_level cache_level,
1171 		      u32 flags)
1172 {
1173 	struct i915_page_directory *pd;
1174 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1175 	gen8_pte_t *vaddr;
1176 
1177 	pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1178 	vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1179 	do {
1180 		vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1181 
1182 		iter->dma += I915_GTT_PAGE_SIZE;
1183 		if (iter->dma >= iter->max) {
1184 			iter->sg = __sg_next(iter->sg);
1185 			if (!iter->sg) {
1186 				idx = 0;
1187 				break;
1188 			}
1189 
1190 			iter->dma = sg_dma_address(iter->sg);
1191 			iter->max = iter->dma + iter->sg->length;
1192 		}
1193 
1194 		if (gen8_pd_index(++idx, 0) == 0) {
1195 			if (gen8_pd_index(idx, 1) == 0) {
1196 				/* Limited by sg length for 3lvl */
1197 				if (gen8_pd_index(idx, 2) == 0)
1198 					break;
1199 
1200 				pd = pdp->entry[gen8_pd_index(idx, 2)];
1201 			}
1202 
1203 			kunmap_atomic(vaddr);
1204 			vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1205 		}
1206 	} while (1);
1207 	kunmap_atomic(vaddr);
1208 
1209 	return idx;
1210 }
1211 
1212 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1213 				   struct sgt_dma *iter,
1214 				   enum i915_cache_level cache_level,
1215 				   u32 flags)
1216 {
1217 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1218 	u64 start = vma->node.start;
1219 	dma_addr_t rem = iter->sg->length;
1220 
1221 	GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1222 
1223 	do {
1224 		struct i915_page_directory * const pdp =
1225 			gen8_pdp_for_page_address(vma->vm, start);
1226 		struct i915_page_directory * const pd =
1227 			i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1228 		gen8_pte_t encode = pte_encode;
1229 		unsigned int maybe_64K = -1;
1230 		unsigned int page_size;
1231 		gen8_pte_t *vaddr;
1232 		u16 index;
1233 
1234 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1235 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1236 		    rem >= I915_GTT_PAGE_SIZE_2M &&
1237 		    !__gen8_pte_index(start, 0)) {
1238 			index = __gen8_pte_index(start, 1);
1239 			encode |= GEN8_PDE_PS_2M;
1240 			page_size = I915_GTT_PAGE_SIZE_2M;
1241 
1242 			vaddr = kmap_atomic_px(pd);
1243 		} else {
1244 			struct i915_page_table *pt =
1245 				i915_pt_entry(pd, __gen8_pte_index(start, 1));
1246 
1247 			index = __gen8_pte_index(start, 0);
1248 			page_size = I915_GTT_PAGE_SIZE;
1249 
1250 			if (!index &&
1251 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1252 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1253 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1254 			     rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1255 				maybe_64K = __gen8_pte_index(start, 1);
1256 
1257 			vaddr = kmap_atomic_px(pt);
1258 		}
1259 
1260 		do {
1261 			GEM_BUG_ON(iter->sg->length < page_size);
1262 			vaddr[index++] = encode | iter->dma;
1263 
1264 			start += page_size;
1265 			iter->dma += page_size;
1266 			rem -= page_size;
1267 			if (iter->dma >= iter->max) {
1268 				iter->sg = __sg_next(iter->sg);
1269 				if (!iter->sg)
1270 					break;
1271 
1272 				rem = iter->sg->length;
1273 				iter->dma = sg_dma_address(iter->sg);
1274 				iter->max = iter->dma + rem;
1275 
1276 				if (maybe_64K != -1 && index < I915_PDES &&
1277 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1278 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1279 				       rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1280 					maybe_64K = -1;
1281 
1282 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1283 					break;
1284 			}
1285 		} while (rem >= page_size && index < I915_PDES);
1286 
1287 		kunmap_atomic(vaddr);
1288 
1289 		/*
1290 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1291 		 * filled whole page-table with 64K entries, or filled part of
1292 		 * it and have reached the end of the sg table and we have
1293 		 * enough padding.
1294 		 */
1295 		if (maybe_64K != -1 &&
1296 		    (index == I915_PDES ||
1297 		     (i915_vm_has_scratch_64K(vma->vm) &&
1298 		      !iter->sg && IS_ALIGNED(vma->node.start +
1299 					      vma->node.size,
1300 					      I915_GTT_PAGE_SIZE_2M)))) {
1301 			vaddr = kmap_atomic_px(pd);
1302 			vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1303 			kunmap_atomic(vaddr);
1304 			page_size = I915_GTT_PAGE_SIZE_64K;
1305 
1306 			/*
1307 			 * We write all 4K page entries, even when using 64K
1308 			 * pages. In order to verify that the HW isn't cheating
1309 			 * by using the 4K PTE instead of the 64K PTE, we want
1310 			 * to remove all the surplus entries. If the HW skipped
1311 			 * the 64K PTE, it will read/write into the scratch page
1312 			 * instead - which we detect as missing results during
1313 			 * selftests.
1314 			 */
1315 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1316 				u16 i;
1317 
1318 				encode = vma->vm->scratch[0].encode;
1319 				vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1320 
1321 				for (i = 1; i < index; i += 16)
1322 					memset64(vaddr + i, encode, 15);
1323 
1324 				kunmap_atomic(vaddr);
1325 			}
1326 		}
1327 
1328 		vma->page_sizes.gtt |= page_size;
1329 	} while (iter->sg);
1330 }
1331 
1332 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1333 			      struct i915_vma *vma,
1334 			      enum i915_cache_level cache_level,
1335 			      u32 flags)
1336 {
1337 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1338 	struct sgt_dma iter = sgt_dma(vma);
1339 
1340 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1341 		gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1342 	} else  {
1343 		u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1344 
1345 		do {
1346 			struct i915_page_directory * const pdp =
1347 				gen8_pdp_for_page_index(vm, idx);
1348 
1349 			idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1350 						    cache_level, flags);
1351 		} while (idx);
1352 
1353 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1354 	}
1355 }
1356 
1357 static int gen8_init_scratch(struct i915_address_space *vm)
1358 {
1359 	int ret;
1360 	int i;
1361 
1362 	/*
1363 	 * If everybody agrees to not to write into the scratch page,
1364 	 * we can reuse it for all vm, keeping contexts and processes separate.
1365 	 */
1366 	if (vm->has_read_only &&
1367 	    vm->i915->kernel_context &&
1368 	    vm->i915->kernel_context->vm) {
1369 		struct i915_address_space *clone =
1370 			rcu_dereference_protected(vm->i915->kernel_context->vm,
1371 						  true); /* static */
1372 
1373 		GEM_BUG_ON(!clone->has_read_only);
1374 
1375 		vm->scratch_order = clone->scratch_order;
1376 		memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1377 		px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1378 		return 0;
1379 	}
1380 
1381 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1382 	if (ret)
1383 		return ret;
1384 
1385 	vm->scratch[0].encode =
1386 		gen8_pte_encode(px_dma(&vm->scratch[0]),
1387 				I915_CACHE_LLC, vm->has_read_only);
1388 
1389 	for (i = 1; i <= vm->top; i++) {
1390 		if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1391 			goto free_scratch;
1392 
1393 		fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1394 		vm->scratch[i].encode =
1395 			gen8_pde_encode(px_dma(&vm->scratch[i]),
1396 					I915_CACHE_LLC);
1397 	}
1398 
1399 	return 0;
1400 
1401 free_scratch:
1402 	free_scratch(vm);
1403 	return -ENOMEM;
1404 }
1405 
1406 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1407 {
1408 	struct i915_address_space *vm = &ppgtt->vm;
1409 	struct i915_page_directory *pd = ppgtt->pd;
1410 	unsigned int idx;
1411 
1412 	GEM_BUG_ON(vm->top != 2);
1413 	GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1414 
1415 	for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1416 		struct i915_page_directory *pde;
1417 
1418 		pde = alloc_pd(vm);
1419 		if (IS_ERR(pde))
1420 			return PTR_ERR(pde);
1421 
1422 		fill_px(pde, vm->scratch[1].encode);
1423 		set_pd_entry(pd, idx, pde);
1424 		atomic_inc(px_used(pde)); /* keep pinned */
1425 	}
1426 	wmb();
1427 
1428 	return 0;
1429 }
1430 
1431 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1432 {
1433 	struct drm_i915_private *i915 = gt->i915;
1434 
1435 	ppgtt->vm.gt = gt;
1436 	ppgtt->vm.i915 = i915;
1437 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1438 	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1439 
1440 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1441 
1442 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1443 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1444 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1445 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1446 }
1447 
1448 static struct i915_page_directory *
1449 gen8_alloc_top_pd(struct i915_address_space *vm)
1450 {
1451 	const unsigned int count = gen8_pd_top_count(vm);
1452 	struct i915_page_directory *pd;
1453 
1454 	GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1455 
1456 	pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1457 	if (unlikely(!pd))
1458 		return ERR_PTR(-ENOMEM);
1459 
1460 	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1461 		kfree(pd);
1462 		return ERR_PTR(-ENOMEM);
1463 	}
1464 
1465 	fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1466 	atomic_inc(px_used(pd)); /* mark as pinned */
1467 	return pd;
1468 }
1469 
1470 /*
1471  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1472  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1473  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1474  * space.
1475  *
1476  */
1477 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1478 {
1479 	struct i915_ppgtt *ppgtt;
1480 	int err;
1481 
1482 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1483 	if (!ppgtt)
1484 		return ERR_PTR(-ENOMEM);
1485 
1486 	ppgtt_init(ppgtt, &i915->gt);
1487 	ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1488 
1489 	/*
1490 	 * From bdw, there is hw support for read-only pages in the PPGTT.
1491 	 *
1492 	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1493 	 * for now.
1494 	 *
1495 	 * Gen12 has inherited the same read-only fault issue from gen11.
1496 	 */
1497 	ppgtt->vm.has_read_only = !IS_GEN_RANGE(i915, 11, 12);
1498 
1499 	/* There are only few exceptions for gen >=6. chv and bxt.
1500 	 * And we are not sure about the latter so play safe for now.
1501 	 */
1502 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1503 		ppgtt->vm.pt_kmap_wc = true;
1504 
1505 	err = gen8_init_scratch(&ppgtt->vm);
1506 	if (err)
1507 		goto err_free;
1508 
1509 	ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1510 	if (IS_ERR(ppgtt->pd)) {
1511 		err = PTR_ERR(ppgtt->pd);
1512 		goto err_free_scratch;
1513 	}
1514 
1515 	if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1516 		err = gen8_preallocate_top_level_pdp(ppgtt);
1517 		if (err)
1518 			goto err_free_pd;
1519 	}
1520 
1521 	ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1522 	ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1523 	ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1524 	ppgtt->vm.clear_range = gen8_ppgtt_clear;
1525 
1526 	if (intel_vgpu_active(i915))
1527 		gen8_ppgtt_notify_vgt(ppgtt, true);
1528 
1529 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1530 
1531 	return ppgtt;
1532 
1533 err_free_pd:
1534 	__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1535 			     gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1536 err_free_scratch:
1537 	free_scratch(&ppgtt->vm);
1538 err_free:
1539 	kfree(ppgtt);
1540 	return ERR_PTR(err);
1541 }
1542 
1543 /* Write pde (index) from the page directory @pd to the page table @pt */
1544 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1545 				  const unsigned int pde,
1546 				  const struct i915_page_table *pt)
1547 {
1548 	/* Caller needs to make sure the write completes if necessary */
1549 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1550 		  ppgtt->pd_addr + pde);
1551 }
1552 
1553 static void gen7_ppgtt_enable(struct intel_gt *gt)
1554 {
1555 	struct drm_i915_private *i915 = gt->i915;
1556 	struct intel_uncore *uncore = gt->uncore;
1557 	struct intel_engine_cs *engine;
1558 	enum intel_engine_id id;
1559 	u32 ecochk;
1560 
1561 	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1562 
1563 	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1564 	if (IS_HASWELL(i915)) {
1565 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1566 	} else {
1567 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1568 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1569 	}
1570 	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1571 
1572 	for_each_engine(engine, gt, id) {
1573 		/* GFX_MODE is per-ring on gen7+ */
1574 		ENGINE_WRITE(engine,
1575 			     RING_MODE_GEN7,
1576 			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1577 	}
1578 }
1579 
1580 static void gen6_ppgtt_enable(struct intel_gt *gt)
1581 {
1582 	struct intel_uncore *uncore = gt->uncore;
1583 
1584 	intel_uncore_rmw(uncore,
1585 			 GAC_ECO_BITS,
1586 			 0,
1587 			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1588 
1589 	intel_uncore_rmw(uncore,
1590 			 GAB_CTL,
1591 			 0,
1592 			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1593 
1594 	intel_uncore_rmw(uncore,
1595 			 GAM_ECOCHK,
1596 			 0,
1597 			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1598 
1599 	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1600 		intel_uncore_write(uncore,
1601 				   GFX_MODE,
1602 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1603 }
1604 
1605 /* PPGTT support for Sandybdrige/Gen6 and later */
1606 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1607 				   u64 start, u64 length)
1608 {
1609 	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1610 	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1611 	const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1612 	unsigned int pde = first_entry / GEN6_PTES;
1613 	unsigned int pte = first_entry % GEN6_PTES;
1614 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1615 
1616 	while (num_entries) {
1617 		struct i915_page_table * const pt =
1618 			i915_pt_entry(ppgtt->base.pd, pde++);
1619 		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1620 		gen6_pte_t *vaddr;
1621 
1622 		GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1623 
1624 		num_entries -= count;
1625 
1626 		GEM_BUG_ON(count > atomic_read(&pt->used));
1627 		if (!atomic_sub_return(count, &pt->used))
1628 			ppgtt->scan_for_unused_pt = true;
1629 
1630 		/*
1631 		 * Note that the hw doesn't support removing PDE on the fly
1632 		 * (they are cached inside the context with no means to
1633 		 * invalidate the cache), so we can only reset the PTE
1634 		 * entries back to scratch.
1635 		 */
1636 
1637 		vaddr = kmap_atomic_px(pt);
1638 		memset32(vaddr + pte, scratch_pte, count);
1639 		kunmap_atomic(vaddr);
1640 
1641 		pte = 0;
1642 	}
1643 }
1644 
1645 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1646 				      struct i915_vma *vma,
1647 				      enum i915_cache_level cache_level,
1648 				      u32 flags)
1649 {
1650 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1651 	struct i915_page_directory * const pd = ppgtt->pd;
1652 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1653 	unsigned act_pt = first_entry / GEN6_PTES;
1654 	unsigned act_pte = first_entry % GEN6_PTES;
1655 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1656 	struct sgt_dma iter = sgt_dma(vma);
1657 	gen6_pte_t *vaddr;
1658 
1659 	GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1660 
1661 	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1662 	do {
1663 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1664 
1665 		iter.dma += I915_GTT_PAGE_SIZE;
1666 		if (iter.dma == iter.max) {
1667 			iter.sg = __sg_next(iter.sg);
1668 			if (!iter.sg)
1669 				break;
1670 
1671 			iter.dma = sg_dma_address(iter.sg);
1672 			iter.max = iter.dma + iter.sg->length;
1673 		}
1674 
1675 		if (++act_pte == GEN6_PTES) {
1676 			kunmap_atomic(vaddr);
1677 			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1678 			act_pte = 0;
1679 		}
1680 	} while (1);
1681 	kunmap_atomic(vaddr);
1682 
1683 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1684 }
1685 
1686 static int gen6_alloc_va_range(struct i915_address_space *vm,
1687 			       u64 start, u64 length)
1688 {
1689 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1690 	struct i915_page_directory * const pd = ppgtt->base.pd;
1691 	struct i915_page_table *pt, *alloc = NULL;
1692 	intel_wakeref_t wakeref;
1693 	u64 from = start;
1694 	unsigned int pde;
1695 	bool flush = false;
1696 	int ret = 0;
1697 
1698 	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1699 
1700 	spin_lock(&pd->lock);
1701 	gen6_for_each_pde(pt, pd, start, length, pde) {
1702 		const unsigned int count = gen6_pte_count(start, length);
1703 
1704 		if (px_base(pt) == px_base(&vm->scratch[1])) {
1705 			spin_unlock(&pd->lock);
1706 
1707 			pt = fetch_and_zero(&alloc);
1708 			if (!pt)
1709 				pt = alloc_pt(vm);
1710 			if (IS_ERR(pt)) {
1711 				ret = PTR_ERR(pt);
1712 				goto unwind_out;
1713 			}
1714 
1715 			fill32_px(pt, vm->scratch[0].encode);
1716 
1717 			spin_lock(&pd->lock);
1718 			if (pd->entry[pde] == &vm->scratch[1]) {
1719 				pd->entry[pde] = pt;
1720 				if (i915_vma_is_bound(ppgtt->vma,
1721 						      I915_VMA_GLOBAL_BIND)) {
1722 					gen6_write_pde(ppgtt, pde, pt);
1723 					flush = true;
1724 				}
1725 			} else {
1726 				alloc = pt;
1727 				pt = pd->entry[pde];
1728 			}
1729 		}
1730 
1731 		atomic_add(count, &pt->used);
1732 	}
1733 	spin_unlock(&pd->lock);
1734 
1735 	if (flush)
1736 		gen6_ggtt_invalidate(vm->gt->ggtt);
1737 
1738 	goto out;
1739 
1740 unwind_out:
1741 	gen6_ppgtt_clear_range(vm, from, start - from);
1742 out:
1743 	if (alloc)
1744 		free_px(vm, alloc);
1745 	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1746 	return ret;
1747 }
1748 
1749 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1750 {
1751 	struct i915_address_space * const vm = &ppgtt->base.vm;
1752 	struct i915_page_directory * const pd = ppgtt->base.pd;
1753 	int ret;
1754 
1755 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1756 	if (ret)
1757 		return ret;
1758 
1759 	vm->scratch[0].encode =
1760 		vm->pte_encode(px_dma(&vm->scratch[0]),
1761 			       I915_CACHE_NONE, PTE_READ_ONLY);
1762 
1763 	if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1764 		cleanup_scratch_page(vm);
1765 		return -ENOMEM;
1766 	}
1767 
1768 	fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1769 	memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1770 
1771 	return 0;
1772 }
1773 
1774 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1775 {
1776 	struct i915_page_directory * const pd = ppgtt->base.pd;
1777 	struct i915_page_dma * const scratch =
1778 		px_base(&ppgtt->base.vm.scratch[1]);
1779 	struct i915_page_table *pt;
1780 	u32 pde;
1781 
1782 	gen6_for_all_pdes(pt, pd, pde)
1783 		if (px_base(pt) != scratch)
1784 			free_px(&ppgtt->base.vm, pt);
1785 }
1786 
1787 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1788 {
1789 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1790 
1791 	i915_vma_destroy(ppgtt->vma);
1792 
1793 	gen6_ppgtt_free_pd(ppgtt);
1794 	free_scratch(vm);
1795 
1796 	mutex_destroy(&ppgtt->pin_mutex);
1797 	kfree(ppgtt->base.pd);
1798 }
1799 
1800 static int pd_vma_set_pages(struct i915_vma *vma)
1801 {
1802 	vma->pages = ERR_PTR(-ENODEV);
1803 	return 0;
1804 }
1805 
1806 static void pd_vma_clear_pages(struct i915_vma *vma)
1807 {
1808 	GEM_BUG_ON(!vma->pages);
1809 
1810 	vma->pages = NULL;
1811 }
1812 
1813 static int pd_vma_bind(struct i915_vma *vma,
1814 		       enum i915_cache_level cache_level,
1815 		       u32 unused)
1816 {
1817 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1818 	struct gen6_ppgtt *ppgtt = vma->private;
1819 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1820 	struct i915_page_table *pt;
1821 	unsigned int pde;
1822 
1823 	px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1824 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1825 
1826 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1827 		gen6_write_pde(ppgtt, pde, pt);
1828 
1829 	gen6_ggtt_invalidate(ggtt);
1830 
1831 	return 0;
1832 }
1833 
1834 static void pd_vma_unbind(struct i915_vma *vma)
1835 {
1836 	struct gen6_ppgtt *ppgtt = vma->private;
1837 	struct i915_page_directory * const pd = ppgtt->base.pd;
1838 	struct i915_page_dma * const scratch =
1839 		px_base(&ppgtt->base.vm.scratch[1]);
1840 	struct i915_page_table *pt;
1841 	unsigned int pde;
1842 
1843 	if (!ppgtt->scan_for_unused_pt)
1844 		return;
1845 
1846 	/* Free all no longer used page tables */
1847 	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1848 		if (px_base(pt) == scratch || atomic_read(&pt->used))
1849 			continue;
1850 
1851 		free_px(&ppgtt->base.vm, pt);
1852 		pd->entry[pde] = scratch;
1853 	}
1854 
1855 	ppgtt->scan_for_unused_pt = false;
1856 }
1857 
1858 static const struct i915_vma_ops pd_vma_ops = {
1859 	.set_pages = pd_vma_set_pages,
1860 	.clear_pages = pd_vma_clear_pages,
1861 	.bind_vma = pd_vma_bind,
1862 	.unbind_vma = pd_vma_unbind,
1863 };
1864 
1865 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1866 {
1867 	struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1868 	struct i915_vma *vma;
1869 
1870 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1871 	GEM_BUG_ON(size > ggtt->vm.total);
1872 
1873 	vma = i915_vma_alloc();
1874 	if (!vma)
1875 		return ERR_PTR(-ENOMEM);
1876 
1877 	i915_active_init(&vma->active, NULL, NULL);
1878 
1879 	mutex_init(&vma->pages_mutex);
1880 	vma->vm = i915_vm_get(&ggtt->vm);
1881 	vma->ops = &pd_vma_ops;
1882 	vma->private = ppgtt;
1883 
1884 	vma->size = size;
1885 	vma->fence_size = size;
1886 	atomic_set(&vma->flags, I915_VMA_GGTT);
1887 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1888 
1889 	INIT_LIST_HEAD(&vma->obj_link);
1890 	INIT_LIST_HEAD(&vma->closed_link);
1891 
1892 	return vma;
1893 }
1894 
1895 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1896 {
1897 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1898 	int err = 0;
1899 
1900 	GEM_BUG_ON(!atomic_read(&ppgtt->base.vm.open));
1901 
1902 	/*
1903 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1904 	 * which will be pinned into every active context.
1905 	 * (When vma->pin_count becomes atomic, I expect we will naturally
1906 	 * need a larger, unpacked, type and kill this redundancy.)
1907 	 */
1908 	if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
1909 		return 0;
1910 
1911 	if (mutex_lock_interruptible(&ppgtt->pin_mutex))
1912 		return -EINTR;
1913 
1914 	/*
1915 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1916 	 * allocator works in address space sizes, so it's multiplied by page
1917 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1918 	 */
1919 	if (!atomic_read(&ppgtt->pin_count)) {
1920 		err = i915_vma_pin(ppgtt->vma,
1921 				   0, GEN6_PD_ALIGN,
1922 				   PIN_GLOBAL | PIN_HIGH);
1923 	}
1924 	if (!err)
1925 		atomic_inc(&ppgtt->pin_count);
1926 	mutex_unlock(&ppgtt->pin_mutex);
1927 
1928 	return err;
1929 }
1930 
1931 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1932 {
1933 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1934 
1935 	GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
1936 	if (atomic_dec_and_test(&ppgtt->pin_count))
1937 		i915_vma_unpin(ppgtt->vma);
1938 }
1939 
1940 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1941 {
1942 	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1943 
1944 	if (!atomic_read(&ppgtt->pin_count))
1945 		return;
1946 
1947 	i915_vma_unpin(ppgtt->vma);
1948 	atomic_set(&ppgtt->pin_count, 0);
1949 }
1950 
1951 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1952 {
1953 	struct i915_ggtt * const ggtt = &i915->ggtt;
1954 	struct gen6_ppgtt *ppgtt;
1955 	int err;
1956 
1957 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1958 	if (!ppgtt)
1959 		return ERR_PTR(-ENOMEM);
1960 
1961 	mutex_init(&ppgtt->pin_mutex);
1962 
1963 	ppgtt_init(&ppgtt->base, &i915->gt);
1964 	ppgtt->base.vm.top = 1;
1965 
1966 	ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1967 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1968 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1969 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1970 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1971 
1972 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1973 
1974 	ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1975 	if (!ppgtt->base.pd) {
1976 		err = -ENOMEM;
1977 		goto err_free;
1978 	}
1979 
1980 	err = gen6_ppgtt_init_scratch(ppgtt);
1981 	if (err)
1982 		goto err_pd;
1983 
1984 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1985 	if (IS_ERR(ppgtt->vma)) {
1986 		err = PTR_ERR(ppgtt->vma);
1987 		goto err_scratch;
1988 	}
1989 
1990 	return &ppgtt->base;
1991 
1992 err_scratch:
1993 	free_scratch(&ppgtt->base.vm);
1994 err_pd:
1995 	kfree(ppgtt->base.pd);
1996 err_free:
1997 	kfree(ppgtt);
1998 	return ERR_PTR(err);
1999 }
2000 
2001 static void gtt_write_workarounds(struct intel_gt *gt)
2002 {
2003 	struct drm_i915_private *i915 = gt->i915;
2004 	struct intel_uncore *uncore = gt->uncore;
2005 
2006 	/* This function is for gtt related workarounds. This function is
2007 	 * called on driver load and after a GPU reset, so you can place
2008 	 * workarounds here even if they get overwritten by GPU reset.
2009 	 */
2010 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2011 	if (IS_BROADWELL(i915))
2012 		intel_uncore_write(uncore,
2013 				   GEN8_L3_LRA_1_GPGPU,
2014 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2015 	else if (IS_CHERRYVIEW(i915))
2016 		intel_uncore_write(uncore,
2017 				   GEN8_L3_LRA_1_GPGPU,
2018 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2019 	else if (IS_GEN9_LP(i915))
2020 		intel_uncore_write(uncore,
2021 				   GEN8_L3_LRA_1_GPGPU,
2022 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2023 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
2024 		intel_uncore_write(uncore,
2025 				   GEN8_L3_LRA_1_GPGPU,
2026 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2027 
2028 	/*
2029 	 * To support 64K PTEs we need to first enable the use of the
2030 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2031 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2032 	 * shouldn't be needed after GEN10.
2033 	 *
2034 	 * 64K pages were first introduced from BDW+, although technically they
2035 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2036 	 * 32K pages, but we don't currently have any support for it in our
2037 	 * driver.
2038 	 */
2039 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2040 	    INTEL_GEN(i915) <= 10)
2041 		intel_uncore_rmw(uncore,
2042 				 GEN8_GAMW_ECO_DEV_RW_IA,
2043 				 0,
2044 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2045 
2046 	if (IS_GEN_RANGE(i915, 8, 11)) {
2047 		bool can_use_gtt_cache = true;
2048 
2049 		/*
2050 		 * According to the BSpec if we use 2M/1G pages then we also
2051 		 * need to disable the GTT cache. At least on BDW we can see
2052 		 * visual corruption when using 2M pages, and not disabling the
2053 		 * GTT cache.
2054 		 */
2055 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2056 			can_use_gtt_cache = false;
2057 
2058 		/* WaGttCachingOffByDefault */
2059 		intel_uncore_write(uncore,
2060 				   HSW_GTT_CACHE_EN,
2061 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2062 		WARN_ON_ONCE(can_use_gtt_cache &&
2063 			     intel_uncore_read(uncore,
2064 					       HSW_GTT_CACHE_EN) == 0);
2065 	}
2066 }
2067 
2068 int i915_ppgtt_init_hw(struct intel_gt *gt)
2069 {
2070 	struct drm_i915_private *i915 = gt->i915;
2071 
2072 	gtt_write_workarounds(gt);
2073 
2074 	if (IS_GEN(i915, 6))
2075 		gen6_ppgtt_enable(gt);
2076 	else if (IS_GEN(i915, 7))
2077 		gen7_ppgtt_enable(gt);
2078 
2079 	return 0;
2080 }
2081 
2082 static struct i915_ppgtt *
2083 __ppgtt_create(struct drm_i915_private *i915)
2084 {
2085 	if (INTEL_GEN(i915) < 8)
2086 		return gen6_ppgtt_create(i915);
2087 	else
2088 		return gen8_ppgtt_create(i915);
2089 }
2090 
2091 struct i915_ppgtt *
2092 i915_ppgtt_create(struct drm_i915_private *i915)
2093 {
2094 	struct i915_ppgtt *ppgtt;
2095 
2096 	ppgtt = __ppgtt_create(i915);
2097 	if (IS_ERR(ppgtt))
2098 		return ppgtt;
2099 
2100 	trace_i915_ppgtt_create(&ppgtt->vm);
2101 
2102 	return ppgtt;
2103 }
2104 
2105 /* Certain Gen5 chipsets require require idling the GPU before
2106  * unmapping anything from the GTT when VT-d is enabled.
2107  */
2108 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2109 {
2110 	/* Query intel_iommu to see if we need the workaround. Presumably that
2111 	 * was loaded first.
2112 	 */
2113 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2114 }
2115 
2116 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2117 {
2118 	struct drm_i915_private *i915 = ggtt->vm.i915;
2119 
2120 	/* Don't bother messing with faults pre GEN6 as we have little
2121 	 * documentation supporting that it's a good idea.
2122 	 */
2123 	if (INTEL_GEN(i915) < 6)
2124 		return;
2125 
2126 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
2127 
2128 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2129 
2130 	ggtt->invalidate(ggtt);
2131 }
2132 
2133 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2134 {
2135 	ggtt_suspend_mappings(&i915->ggtt);
2136 }
2137 
2138 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2139 			       struct sg_table *pages)
2140 {
2141 	do {
2142 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2143 				     pages->sgl, pages->nents,
2144 				     PCI_DMA_BIDIRECTIONAL,
2145 				     DMA_ATTR_NO_WARN))
2146 			return 0;
2147 
2148 		/*
2149 		 * If the DMA remap fails, one cause can be that we have
2150 		 * too many objects pinned in a small remapping table,
2151 		 * such as swiotlb. Incrementally purge all other objects and
2152 		 * try again - if there are no more pages to remove from
2153 		 * the DMA remapper, i915_gem_shrink will return 0.
2154 		 */
2155 		GEM_BUG_ON(obj->mm.pages == pages);
2156 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2157 				 obj->base.size >> PAGE_SHIFT, NULL,
2158 				 I915_SHRINK_BOUND |
2159 				 I915_SHRINK_UNBOUND));
2160 
2161 	return -ENOSPC;
2162 }
2163 
2164 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2165 {
2166 	writeq(pte, addr);
2167 }
2168 
2169 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2170 				  dma_addr_t addr,
2171 				  u64 offset,
2172 				  enum i915_cache_level level,
2173 				  u32 unused)
2174 {
2175 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2176 	gen8_pte_t __iomem *pte =
2177 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2178 
2179 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2180 
2181 	ggtt->invalidate(ggtt);
2182 }
2183 
2184 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2185 				     struct i915_vma *vma,
2186 				     enum i915_cache_level level,
2187 				     u32 flags)
2188 {
2189 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2190 	struct sgt_iter sgt_iter;
2191 	gen8_pte_t __iomem *gtt_entries;
2192 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2193 	dma_addr_t addr;
2194 
2195 	/*
2196 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2197 	 * not to allow the user to override access to a read only page.
2198 	 */
2199 
2200 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2201 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2202 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
2203 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2204 
2205 	/*
2206 	 * We want to flush the TLBs only after we're certain all the PTE
2207 	 * updates have finished.
2208 	 */
2209 	ggtt->invalidate(ggtt);
2210 }
2211 
2212 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2213 				  dma_addr_t addr,
2214 				  u64 offset,
2215 				  enum i915_cache_level level,
2216 				  u32 flags)
2217 {
2218 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2219 	gen6_pte_t __iomem *pte =
2220 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2221 
2222 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2223 
2224 	ggtt->invalidate(ggtt);
2225 }
2226 
2227 /*
2228  * Binds an object into the global gtt with the specified cache level. The object
2229  * will be accessible to the GPU via commands whose operands reference offsets
2230  * within the global GTT as well as accessible by the GPU through the GMADR
2231  * mapped BAR (dev_priv->mm.gtt->gtt).
2232  */
2233 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2234 				     struct i915_vma *vma,
2235 				     enum i915_cache_level level,
2236 				     u32 flags)
2237 {
2238 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2239 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2240 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2241 	struct sgt_iter iter;
2242 	dma_addr_t addr;
2243 	for_each_sgt_daddr(addr, iter, vma->pages)
2244 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2245 
2246 	/*
2247 	 * We want to flush the TLBs only after we're certain all the PTE
2248 	 * updates have finished.
2249 	 */
2250 	ggtt->invalidate(ggtt);
2251 }
2252 
2253 static void nop_clear_range(struct i915_address_space *vm,
2254 			    u64 start, u64 length)
2255 {
2256 }
2257 
2258 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2259 				  u64 start, u64 length)
2260 {
2261 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2262 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2263 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2264 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2265 	gen8_pte_t __iomem *gtt_base =
2266 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2267 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2268 	int i;
2269 
2270 	if (WARN(num_entries > max_entries,
2271 		 "First entry = %d; Num entries = %d (max=%d)\n",
2272 		 first_entry, num_entries, max_entries))
2273 		num_entries = max_entries;
2274 
2275 	for (i = 0; i < num_entries; i++)
2276 		gen8_set_pte(&gtt_base[i], scratch_pte);
2277 }
2278 
2279 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2280 {
2281 	struct drm_i915_private *dev_priv = vm->i915;
2282 
2283 	/*
2284 	 * Make sure the internal GAM fifo has been cleared of all GTT
2285 	 * writes before exiting stop_machine(). This guarantees that
2286 	 * any aperture accesses waiting to start in another process
2287 	 * cannot back up behind the GTT writes causing a hang.
2288 	 * The register can be any arbitrary GAM register.
2289 	 */
2290 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2291 }
2292 
2293 struct insert_page {
2294 	struct i915_address_space *vm;
2295 	dma_addr_t addr;
2296 	u64 offset;
2297 	enum i915_cache_level level;
2298 };
2299 
2300 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2301 {
2302 	struct insert_page *arg = _arg;
2303 
2304 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2305 	bxt_vtd_ggtt_wa(arg->vm);
2306 
2307 	return 0;
2308 }
2309 
2310 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2311 					  dma_addr_t addr,
2312 					  u64 offset,
2313 					  enum i915_cache_level level,
2314 					  u32 unused)
2315 {
2316 	struct insert_page arg = { vm, addr, offset, level };
2317 
2318 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2319 }
2320 
2321 struct insert_entries {
2322 	struct i915_address_space *vm;
2323 	struct i915_vma *vma;
2324 	enum i915_cache_level level;
2325 	u32 flags;
2326 };
2327 
2328 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2329 {
2330 	struct insert_entries *arg = _arg;
2331 
2332 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2333 	bxt_vtd_ggtt_wa(arg->vm);
2334 
2335 	return 0;
2336 }
2337 
2338 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2339 					     struct i915_vma *vma,
2340 					     enum i915_cache_level level,
2341 					     u32 flags)
2342 {
2343 	struct insert_entries arg = { vm, vma, level, flags };
2344 
2345 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2346 }
2347 
2348 struct clear_range {
2349 	struct i915_address_space *vm;
2350 	u64 start;
2351 	u64 length;
2352 };
2353 
2354 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2355 {
2356 	struct clear_range *arg = _arg;
2357 
2358 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2359 	bxt_vtd_ggtt_wa(arg->vm);
2360 
2361 	return 0;
2362 }
2363 
2364 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2365 					  u64 start,
2366 					  u64 length)
2367 {
2368 	struct clear_range arg = { vm, start, length };
2369 
2370 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2371 }
2372 
2373 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2374 				  u64 start, u64 length)
2375 {
2376 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2377 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2378 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2379 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2380 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2381 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2382 	int i;
2383 
2384 	if (WARN(num_entries > max_entries,
2385 		 "First entry = %d; Num entries = %d (max=%d)\n",
2386 		 first_entry, num_entries, max_entries))
2387 		num_entries = max_entries;
2388 
2389 	scratch_pte = vm->scratch[0].encode;
2390 	for (i = 0; i < num_entries; i++)
2391 		iowrite32(scratch_pte, &gtt_base[i]);
2392 }
2393 
2394 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2395 				  dma_addr_t addr,
2396 				  u64 offset,
2397 				  enum i915_cache_level cache_level,
2398 				  u32 unused)
2399 {
2400 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2401 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2402 
2403 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2404 }
2405 
2406 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2407 				     struct i915_vma *vma,
2408 				     enum i915_cache_level cache_level,
2409 				     u32 unused)
2410 {
2411 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2412 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2413 
2414 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2415 				    flags);
2416 }
2417 
2418 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2419 				  u64 start, u64 length)
2420 {
2421 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2422 }
2423 
2424 static int ggtt_bind_vma(struct i915_vma *vma,
2425 			 enum i915_cache_level cache_level,
2426 			 u32 flags)
2427 {
2428 	struct drm_i915_private *i915 = vma->vm->i915;
2429 	struct drm_i915_gem_object *obj = vma->obj;
2430 	intel_wakeref_t wakeref;
2431 	u32 pte_flags;
2432 
2433 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2434 	pte_flags = 0;
2435 	if (i915_gem_object_is_readonly(obj))
2436 		pte_flags |= PTE_READ_ONLY;
2437 
2438 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2439 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2440 
2441 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2442 
2443 	/*
2444 	 * Without aliasing PPGTT there's no difference between
2445 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2446 	 * upgrade to both bound if we bind either to avoid double-binding.
2447 	 */
2448 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
2449 
2450 	return 0;
2451 }
2452 
2453 static void ggtt_unbind_vma(struct i915_vma *vma)
2454 {
2455 	struct drm_i915_private *i915 = vma->vm->i915;
2456 	intel_wakeref_t wakeref;
2457 
2458 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2459 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2460 }
2461 
2462 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2463 				 enum i915_cache_level cache_level,
2464 				 u32 flags)
2465 {
2466 	struct drm_i915_private *i915 = vma->vm->i915;
2467 	u32 pte_flags;
2468 	int ret;
2469 
2470 	/* Currently applicable only to VLV */
2471 	pte_flags = 0;
2472 	if (i915_gem_object_is_readonly(vma->obj))
2473 		pte_flags |= PTE_READ_ONLY;
2474 
2475 	if (flags & I915_VMA_LOCAL_BIND) {
2476 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2477 
2478 		if (flags & I915_VMA_ALLOC) {
2479 			ret = alias->vm.allocate_va_range(&alias->vm,
2480 							  vma->node.start,
2481 							  vma->size);
2482 			if (ret)
2483 				return ret;
2484 
2485 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
2486 		}
2487 
2488 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
2489 				     __i915_vma_flags(vma)));
2490 		alias->vm.insert_entries(&alias->vm, vma,
2491 					 cache_level, pte_flags);
2492 	}
2493 
2494 	if (flags & I915_VMA_GLOBAL_BIND) {
2495 		intel_wakeref_t wakeref;
2496 
2497 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2498 			vma->vm->insert_entries(vma->vm, vma,
2499 						cache_level, pte_flags);
2500 		}
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2507 {
2508 	struct drm_i915_private *i915 = vma->vm->i915;
2509 
2510 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
2511 		struct i915_address_space *vm = vma->vm;
2512 		intel_wakeref_t wakeref;
2513 
2514 		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2515 			vm->clear_range(vm, vma->node.start, vma->size);
2516 	}
2517 
2518 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
2519 		struct i915_address_space *vm =
2520 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
2521 
2522 		vm->clear_range(vm, vma->node.start, vma->size);
2523 	}
2524 }
2525 
2526 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2527 			       struct sg_table *pages)
2528 {
2529 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2530 	struct device *kdev = &dev_priv->drm.pdev->dev;
2531 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2532 
2533 	if (unlikely(ggtt->do_idle_maps)) {
2534 		/* XXX This does not prevent more requests being submitted! */
2535 		if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
2536 						     -MAX_SCHEDULE_TIMEOUT)) {
2537 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2538 			/* Wait a bit, in hopes it avoids the hang */
2539 			udelay(10);
2540 		}
2541 	}
2542 
2543 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2544 }
2545 
2546 static int ggtt_set_pages(struct i915_vma *vma)
2547 {
2548 	int ret;
2549 
2550 	GEM_BUG_ON(vma->pages);
2551 
2552 	ret = i915_get_ggtt_vma_pages(vma);
2553 	if (ret)
2554 		return ret;
2555 
2556 	vma->page_sizes = vma->obj->mm.page_sizes;
2557 
2558 	return 0;
2559 }
2560 
2561 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
2562 				   unsigned long color,
2563 				   u64 *start,
2564 				   u64 *end)
2565 {
2566 	if (i915_node_color_differs(node, color))
2567 		*start += I915_GTT_PAGE_SIZE;
2568 
2569 	/* Also leave a space between the unallocated reserved node after the
2570 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2571 	 * to insert a guard page to prevent prefetches crossing over the
2572 	 * GTT boundary.
2573 	 */
2574 	node = list_next_entry(node, node_list);
2575 	if (node->color != color)
2576 		*end -= I915_GTT_PAGE_SIZE;
2577 }
2578 
2579 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2580 {
2581 	struct i915_ppgtt *ppgtt;
2582 	int err;
2583 
2584 	ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2585 	if (IS_ERR(ppgtt))
2586 		return PTR_ERR(ppgtt);
2587 
2588 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2589 		err = -ENODEV;
2590 		goto err_ppgtt;
2591 	}
2592 
2593 	/*
2594 	 * Note we only pre-allocate as far as the end of the global
2595 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2596 	 * very significant! We have to preallocate as GVT/vgpu does
2597 	 * not like the page directory disappearing.
2598 	 */
2599 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2600 	if (err)
2601 		goto err_ppgtt;
2602 
2603 	ggtt->alias = ppgtt;
2604 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
2605 
2606 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2607 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2608 
2609 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2610 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2611 
2612 	return 0;
2613 
2614 err_ppgtt:
2615 	i915_vm_put(&ppgtt->vm);
2616 	return err;
2617 }
2618 
2619 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2620 {
2621 	struct i915_ppgtt *ppgtt;
2622 
2623 	ppgtt = fetch_and_zero(&ggtt->alias);
2624 	if (!ppgtt)
2625 		return;
2626 
2627 	i915_vm_put(&ppgtt->vm);
2628 
2629 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2630 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2631 }
2632 
2633 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2634 {
2635 	u64 size;
2636 	int ret;
2637 
2638 	if (!USES_GUC(ggtt->vm.i915))
2639 		return 0;
2640 
2641 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2642 	size = ggtt->vm.total - GUC_GGTT_TOP;
2643 
2644 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2645 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2646 				   PIN_NOEVICT);
2647 	if (ret)
2648 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2649 
2650 	return ret;
2651 }
2652 
2653 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2654 {
2655 	if (drm_mm_node_allocated(&ggtt->uc_fw))
2656 		drm_mm_remove_node(&ggtt->uc_fw);
2657 }
2658 
2659 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2660 {
2661 	ggtt_release_guc_top(ggtt);
2662 	if (drm_mm_node_allocated(&ggtt->error_capture))
2663 		drm_mm_remove_node(&ggtt->error_capture);
2664 }
2665 
2666 static int init_ggtt(struct i915_ggtt *ggtt)
2667 {
2668 	/* Let GEM Manage all of the aperture.
2669 	 *
2670 	 * However, leave one page at the end still bound to the scratch page.
2671 	 * There are a number of places where the hardware apparently prefetches
2672 	 * past the end of the object, and we've seen multiple hangs with the
2673 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2674 	 * aperture.  One page should be enough to keep any prefetching inside
2675 	 * of the aperture.
2676 	 */
2677 	unsigned long hole_start, hole_end;
2678 	struct drm_mm_node *entry;
2679 	int ret;
2680 
2681 	/*
2682 	 * GuC requires all resources that we're sharing with it to be placed in
2683 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2684 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2685 	 * why.
2686 	 */
2687 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2688 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2689 
2690 	ret = intel_vgt_balloon(ggtt);
2691 	if (ret)
2692 		return ret;
2693 
2694 	if (ggtt->mappable_end) {
2695 		/* Reserve a mappable slot for our lockless error capture */
2696 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2697 						  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2698 						  0, ggtt->mappable_end,
2699 						  DRM_MM_INSERT_LOW);
2700 		if (ret)
2701 			return ret;
2702 	}
2703 
2704 	/*
2705 	 * The upper portion of the GuC address space has a sizeable hole
2706 	 * (several MB) that is inaccessible by GuC. Reserve this range within
2707 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
2708 	 */
2709 	ret = ggtt_reserve_guc_top(ggtt);
2710 	if (ret)
2711 		goto err;
2712 
2713 	/* Clear any non-preallocated blocks */
2714 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2715 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2716 			      hole_start, hole_end);
2717 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2718 				     hole_end - hole_start);
2719 	}
2720 
2721 	/* And finally clear the reserved guard page */
2722 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2723 
2724 	return 0;
2725 
2726 err:
2727 	cleanup_init_ggtt(ggtt);
2728 	return ret;
2729 }
2730 
2731 int i915_init_ggtt(struct drm_i915_private *i915)
2732 {
2733 	int ret;
2734 
2735 	ret = init_ggtt(&i915->ggtt);
2736 	if (ret)
2737 		return ret;
2738 
2739 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2740 		ret = init_aliasing_ppgtt(&i915->ggtt);
2741 		if (ret)
2742 			cleanup_init_ggtt(&i915->ggtt);
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2749 {
2750 	struct i915_vma *vma, *vn;
2751 
2752 	atomic_set(&ggtt->vm.open, 0);
2753 
2754 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755 	flush_workqueue(ggtt->vm.i915->wq);
2756 
2757 	mutex_lock(&ggtt->vm.mutex);
2758 
2759 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760 		WARN_ON(__i915_vma_unbind(vma));
2761 
2762 	if (drm_mm_node_allocated(&ggtt->error_capture))
2763 		drm_mm_remove_node(&ggtt->error_capture);
2764 
2765 	ggtt_release_guc_top(ggtt);
2766 	intel_vgt_deballoon(ggtt);
2767 
2768 	ggtt->vm.cleanup(&ggtt->vm);
2769 
2770 	mutex_unlock(&ggtt->vm.mutex);
2771 	i915_address_space_fini(&ggtt->vm);
2772 
2773 	arch_phys_wc_del(ggtt->mtrr);
2774 
2775 	if (ggtt->iomap.size)
2776 		io_mapping_fini(&ggtt->iomap);
2777 }
2778 
2779 /**
2780  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2781  * @i915: i915 device
2782  */
2783 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2784 {
2785 	struct pagevec *pvec;
2786 
2787 	fini_aliasing_ppgtt(&i915->ggtt);
2788 
2789 	ggtt_cleanup_hw(&i915->ggtt);
2790 
2791 	pvec = &i915->mm.wc_stash.pvec;
2792 	if (pvec->nr) {
2793 		set_pages_array_wb(pvec->pages, pvec->nr);
2794 		__pagevec_release(pvec);
2795 	}
2796 }
2797 
2798 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2799 {
2800 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2801 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2802 	return snb_gmch_ctl << 20;
2803 }
2804 
2805 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2806 {
2807 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2808 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2809 	if (bdw_gmch_ctl)
2810 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2811 
2812 #ifdef CONFIG_X86_32
2813 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2814 	if (bdw_gmch_ctl > 4)
2815 		bdw_gmch_ctl = 4;
2816 #endif
2817 
2818 	return bdw_gmch_ctl << 20;
2819 }
2820 
2821 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2822 {
2823 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2824 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2825 
2826 	if (gmch_ctrl)
2827 		return 1 << (20 + gmch_ctrl);
2828 
2829 	return 0;
2830 }
2831 
2832 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2833 {
2834 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2835 	struct pci_dev *pdev = dev_priv->drm.pdev;
2836 	phys_addr_t phys_addr;
2837 	int ret;
2838 
2839 	/* For Modern GENs the PTEs and register space are split in the BAR */
2840 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2841 
2842 	/*
2843 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2844 	 * will be dropped. For WC mappings in general we have 64 byte burst
2845 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2846 	 * resort to an uncached mapping. The WC issue is easily caught by the
2847 	 * readback check when writing GTT PTE entries.
2848 	 */
2849 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2850 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2851 	else
2852 		ggtt->gsm = ioremap_wc(phys_addr, size);
2853 	if (!ggtt->gsm) {
2854 		DRM_ERROR("Failed to map the ggtt page table\n");
2855 		return -ENOMEM;
2856 	}
2857 
2858 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2859 	if (ret) {
2860 		DRM_ERROR("Scratch setup failed\n");
2861 		/* iounmap will also get called at remove, but meh */
2862 		iounmap(ggtt->gsm);
2863 		return ret;
2864 	}
2865 
2866 	ggtt->vm.scratch[0].encode =
2867 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2868 				    I915_CACHE_NONE, 0);
2869 
2870 	return 0;
2871 }
2872 
2873 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
2874 {
2875 	/* TGL doesn't support LLC or AGE settings */
2876 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2877 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2878 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2879 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2880 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2881 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2882 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2883 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2884 }
2885 
2886 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
2887 {
2888 	intel_uncore_write(uncore,
2889 			   GEN10_PAT_INDEX(0),
2890 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
2891 	intel_uncore_write(uncore,
2892 			   GEN10_PAT_INDEX(1),
2893 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2894 	intel_uncore_write(uncore,
2895 			   GEN10_PAT_INDEX(2),
2896 			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2897 	intel_uncore_write(uncore,
2898 			   GEN10_PAT_INDEX(3),
2899 			   GEN8_PPAT_UC);
2900 	intel_uncore_write(uncore,
2901 			   GEN10_PAT_INDEX(4),
2902 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2903 	intel_uncore_write(uncore,
2904 			   GEN10_PAT_INDEX(5),
2905 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2906 	intel_uncore_write(uncore,
2907 			   GEN10_PAT_INDEX(6),
2908 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2909 	intel_uncore_write(uncore,
2910 			   GEN10_PAT_INDEX(7),
2911 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2912 }
2913 
2914 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2915  * bits. When using advanced contexts each context stores its own PAT, but
2916  * writing this data shouldn't be harmful even in those cases. */
2917 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
2918 {
2919 	u64 pat;
2920 
2921 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
2922 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
2923 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
2924 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
2925 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2926 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2927 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2928 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2929 
2930 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2931 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2932 }
2933 
2934 static void chv_setup_private_ppat(struct intel_uncore *uncore)
2935 {
2936 	u64 pat;
2937 
2938 	/*
2939 	 * Map WB on BDW to snooped on CHV.
2940 	 *
2941 	 * Only the snoop bit has meaning for CHV, the rest is
2942 	 * ignored.
2943 	 *
2944 	 * The hardware will never snoop for certain types of accesses:
2945 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2946 	 * - PPGTT page tables
2947 	 * - some other special cycles
2948 	 *
2949 	 * As with BDW, we also need to consider the following for GT accesses:
2950 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2951 	 * so RTL will always use the value corresponding to
2952 	 * pat_sel = 000".
2953 	 * Which means we must set the snoop bit in PAT entry 0
2954 	 * in order to keep the global status page working.
2955 	 */
2956 
2957 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2958 	      GEN8_PPAT(1, 0) |
2959 	      GEN8_PPAT(2, 0) |
2960 	      GEN8_PPAT(3, 0) |
2961 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2962 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2963 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2964 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2965 
2966 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2967 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2968 }
2969 
2970 static void gen6_gmch_remove(struct i915_address_space *vm)
2971 {
2972 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2973 
2974 	iounmap(ggtt->gsm);
2975 	cleanup_scratch_page(vm);
2976 }
2977 
2978 static void setup_private_pat(struct intel_uncore *uncore)
2979 {
2980 	struct drm_i915_private *i915 = uncore->i915;
2981 
2982 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
2983 
2984 	if (INTEL_GEN(i915) >= 12)
2985 		tgl_setup_private_ppat(uncore);
2986 	else if (INTEL_GEN(i915) >= 10)
2987 		cnl_setup_private_ppat(uncore);
2988 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
2989 		chv_setup_private_ppat(uncore);
2990 	else
2991 		bdw_setup_private_ppat(uncore);
2992 }
2993 
2994 static struct resource pci_resource(struct pci_dev *pdev, int bar)
2995 {
2996 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
2997 					       pci_resource_len(pdev, bar));
2998 }
2999 
3000 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3001 {
3002 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3003 	struct pci_dev *pdev = dev_priv->drm.pdev;
3004 	unsigned int size;
3005 	u16 snb_gmch_ctl;
3006 	int err;
3007 
3008 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3009 	if (!IS_DGFX(dev_priv)) {
3010 		ggtt->gmadr = pci_resource(pdev, 2);
3011 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
3012 	}
3013 
3014 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3015 	if (!err)
3016 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3017 	if (err)
3018 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3019 
3020 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3021 	if (IS_CHERRYVIEW(dev_priv))
3022 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3023 	else
3024 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3025 
3026 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3027 	ggtt->vm.cleanup = gen6_gmch_remove;
3028 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3029 	ggtt->vm.clear_range = nop_clear_range;
3030 	if (intel_scanout_needs_vtd_wa(dev_priv))
3031 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3032 
3033 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3034 
3035 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3036 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3037 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3038 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3039 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3040 		if (ggtt->vm.clear_range != nop_clear_range)
3041 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3042 	}
3043 
3044 	ggtt->invalidate = gen6_ggtt_invalidate;
3045 
3046 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3047 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3048 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3049 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3050 
3051 	ggtt->vm.pte_encode = gen8_pte_encode;
3052 
3053 	setup_private_pat(ggtt->vm.gt->uncore);
3054 
3055 	return ggtt_probe_common(ggtt, size);
3056 }
3057 
3058 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3059 {
3060 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3061 	struct pci_dev *pdev = dev_priv->drm.pdev;
3062 	unsigned int size;
3063 	u16 snb_gmch_ctl;
3064 	int err;
3065 
3066 	ggtt->gmadr =
3067 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3068 						 pci_resource_len(pdev, 2));
3069 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3070 
3071 	/* 64/512MB is the current min/max we actually know of, but this is just
3072 	 * a coarse sanity check.
3073 	 */
3074 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3075 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3076 		return -ENXIO;
3077 	}
3078 
3079 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3080 	if (!err)
3081 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3082 	if (err)
3083 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3084 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3085 
3086 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3087 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3088 
3089 	ggtt->vm.clear_range = nop_clear_range;
3090 	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3091 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3092 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3093 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3094 	ggtt->vm.cleanup = gen6_gmch_remove;
3095 
3096 	ggtt->invalidate = gen6_ggtt_invalidate;
3097 
3098 	if (HAS_EDRAM(dev_priv))
3099 		ggtt->vm.pte_encode = iris_pte_encode;
3100 	else if (IS_HASWELL(dev_priv))
3101 		ggtt->vm.pte_encode = hsw_pte_encode;
3102 	else if (IS_VALLEYVIEW(dev_priv))
3103 		ggtt->vm.pte_encode = byt_pte_encode;
3104 	else if (INTEL_GEN(dev_priv) >= 7)
3105 		ggtt->vm.pte_encode = ivb_pte_encode;
3106 	else
3107 		ggtt->vm.pte_encode = snb_pte_encode;
3108 
3109 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3110 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3111 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3112 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3113 
3114 	return ggtt_probe_common(ggtt, size);
3115 }
3116 
3117 static void i915_gmch_remove(struct i915_address_space *vm)
3118 {
3119 	intel_gmch_remove();
3120 }
3121 
3122 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3123 {
3124 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3125 	phys_addr_t gmadr_base;
3126 	int ret;
3127 
3128 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3129 	if (!ret) {
3130 		DRM_ERROR("failed to set up gmch\n");
3131 		return -EIO;
3132 	}
3133 
3134 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3135 
3136 	ggtt->gmadr =
3137 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3138 						 ggtt->mappable_end);
3139 
3140 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3141 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3142 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3143 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3144 	ggtt->vm.cleanup = i915_gmch_remove;
3145 
3146 	ggtt->invalidate = gmch_ggtt_invalidate;
3147 
3148 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3149 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3150 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3151 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3152 
3153 	if (unlikely(ggtt->do_idle_maps))
3154 		dev_notice(dev_priv->drm.dev,
3155 			   "Applying Ironlake quirks for intel_iommu\n");
3156 
3157 	return 0;
3158 }
3159 
3160 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3161 {
3162 	struct drm_i915_private *i915 = gt->i915;
3163 	int ret;
3164 
3165 	ggtt->vm.gt = gt;
3166 	ggtt->vm.i915 = i915;
3167 	ggtt->vm.dma = &i915->drm.pdev->dev;
3168 
3169 	if (INTEL_GEN(i915) <= 5)
3170 		ret = i915_gmch_probe(ggtt);
3171 	else if (INTEL_GEN(i915) < 8)
3172 		ret = gen6_gmch_probe(ggtt);
3173 	else
3174 		ret = gen8_gmch_probe(ggtt);
3175 	if (ret)
3176 		return ret;
3177 
3178 	if ((ggtt->vm.total - 1) >> 32) {
3179 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3180 			  " of address space! Found %lldM!\n",
3181 			  ggtt->vm.total >> 20);
3182 		ggtt->vm.total = 1ULL << 32;
3183 		ggtt->mappable_end =
3184 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3185 	}
3186 
3187 	if (ggtt->mappable_end > ggtt->vm.total) {
3188 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3189 			  " aperture=%pa, total=%llx\n",
3190 			  &ggtt->mappable_end, ggtt->vm.total);
3191 		ggtt->mappable_end = ggtt->vm.total;
3192 	}
3193 
3194 	/* GMADR is the PCI mmio aperture into the global GTT. */
3195 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3196 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3197 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3198 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * i915_ggtt_probe_hw - Probe GGTT hardware location
3205  * @i915: i915 device
3206  */
3207 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3208 {
3209 	int ret;
3210 
3211 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3212 	if (ret)
3213 		return ret;
3214 
3215 	if (intel_vtd_active())
3216 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3217 
3218 	return 0;
3219 }
3220 
3221 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3222 {
3223 	struct drm_i915_private *i915 = ggtt->vm.i915;
3224 
3225 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3226 
3227 	ggtt->vm.is_ggtt = true;
3228 
3229 	/* Only VLV supports read-only GGTT mappings */
3230 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3231 
3232 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3233 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
3234 
3235 	if (ggtt->mappable_end) {
3236 		if (!io_mapping_init_wc(&ggtt->iomap,
3237 					ggtt->gmadr.start,
3238 					ggtt->mappable_end)) {
3239 			ggtt->vm.cleanup(&ggtt->vm);
3240 			return -EIO;
3241 		}
3242 
3243 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
3244 					      ggtt->mappable_end);
3245 	}
3246 
3247 	i915_ggtt_init_fences(ggtt);
3248 
3249 	return 0;
3250 }
3251 
3252 /**
3253  * i915_ggtt_init_hw - Initialize GGTT hardware
3254  * @dev_priv: i915 device
3255  */
3256 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3257 {
3258 	int ret;
3259 
3260 	stash_init(&dev_priv->mm.wc_stash);
3261 
3262 	/* Note that we use page colouring to enforce a guard page at the
3263 	 * end of the address space. This is required as the CS may prefetch
3264 	 * beyond the end of the batch buffer, across the page boundary,
3265 	 * and beyond the end of the GTT if we do not provide a guard.
3266 	 */
3267 	ret = ggtt_init_hw(&dev_priv->ggtt);
3268 	if (ret)
3269 		return ret;
3270 
3271 	return 0;
3272 }
3273 
3274 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3275 {
3276 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3277 		return -EIO;
3278 
3279 	return 0;
3280 }
3281 
3282 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3283 {
3284 	GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3285 
3286 	ggtt->invalidate = guc_ggtt_invalidate;
3287 
3288 	ggtt->invalidate(ggtt);
3289 }
3290 
3291 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3292 {
3293 	/* XXX Temporary pardon for error unload */
3294 	if (ggtt->invalidate == gen6_ggtt_invalidate)
3295 		return;
3296 
3297 	/* We should only be called after i915_ggtt_enable_guc() */
3298 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3299 
3300 	ggtt->invalidate = gen6_ggtt_invalidate;
3301 
3302 	ggtt->invalidate(ggtt);
3303 }
3304 
3305 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3306 {
3307 	struct i915_vma *vma, *vn;
3308 	bool flush = false;
3309 	int open;
3310 
3311 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
3312 
3313 	mutex_lock(&ggtt->vm.mutex);
3314 
3315 	/* First fill our portion of the GTT with scratch pages */
3316 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3317 
3318 	/* Skip rewriting PTE on VMA unbind. */
3319 	open = atomic_xchg(&ggtt->vm.open, 0);
3320 
3321 	/* clflush objects bound into the GGTT and rebind them. */
3322 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3323 		struct drm_i915_gem_object *obj = vma->obj;
3324 
3325 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
3326 			continue;
3327 
3328 		if (!__i915_vma_unbind(vma))
3329 			continue;
3330 
3331 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
3332 		WARN_ON(i915_vma_bind(vma,
3333 				      obj ? obj->cache_level : 0,
3334 				      PIN_GLOBAL, NULL));
3335 		if (obj) { /* only used during resume => exclusive access */
3336 			flush |= fetch_and_zero(&obj->write_domain);
3337 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
3338 		}
3339 	}
3340 
3341 	atomic_set(&ggtt->vm.open, open);
3342 	ggtt->invalidate(ggtt);
3343 
3344 	mutex_unlock(&ggtt->vm.mutex);
3345 
3346 	if (flush)
3347 		wbinvd_on_all_cpus();
3348 }
3349 
3350 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3351 {
3352 	struct i915_ggtt *ggtt = &i915->ggtt;
3353 
3354 	ggtt_restore_mappings(ggtt);
3355 
3356 	if (INTEL_GEN(i915) >= 8)
3357 		setup_private_pat(ggtt->vm.gt->uncore);
3358 }
3359 
3360 static struct scatterlist *
3361 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3362 	     unsigned int width, unsigned int height,
3363 	     unsigned int stride,
3364 	     struct sg_table *st, struct scatterlist *sg)
3365 {
3366 	unsigned int column, row;
3367 	unsigned int src_idx;
3368 
3369 	for (column = 0; column < width; column++) {
3370 		src_idx = stride * (height - 1) + column + offset;
3371 		for (row = 0; row < height; row++) {
3372 			st->nents++;
3373 			/* We don't need the pages, but need to initialize
3374 			 * the entries so the sg list can be happily traversed.
3375 			 * The only thing we need are DMA addresses.
3376 			 */
3377 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3378 			sg_dma_address(sg) =
3379 				i915_gem_object_get_dma_address(obj, src_idx);
3380 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3381 			sg = sg_next(sg);
3382 			src_idx -= stride;
3383 		}
3384 	}
3385 
3386 	return sg;
3387 }
3388 
3389 static noinline struct sg_table *
3390 intel_rotate_pages(struct intel_rotation_info *rot_info,
3391 		   struct drm_i915_gem_object *obj)
3392 {
3393 	unsigned int size = intel_rotation_info_size(rot_info);
3394 	struct sg_table *st;
3395 	struct scatterlist *sg;
3396 	int ret = -ENOMEM;
3397 	int i;
3398 
3399 	/* Allocate target SG list. */
3400 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3401 	if (!st)
3402 		goto err_st_alloc;
3403 
3404 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3405 	if (ret)
3406 		goto err_sg_alloc;
3407 
3408 	st->nents = 0;
3409 	sg = st->sgl;
3410 
3411 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3412 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3413 				  rot_info->plane[i].width, rot_info->plane[i].height,
3414 				  rot_info->plane[i].stride, st, sg);
3415 	}
3416 
3417 	return st;
3418 
3419 err_sg_alloc:
3420 	kfree(st);
3421 err_st_alloc:
3422 
3423 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3424 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3425 
3426 	return ERR_PTR(ret);
3427 }
3428 
3429 static struct scatterlist *
3430 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3431 	    unsigned int width, unsigned int height,
3432 	    unsigned int stride,
3433 	    struct sg_table *st, struct scatterlist *sg)
3434 {
3435 	unsigned int row;
3436 
3437 	for (row = 0; row < height; row++) {
3438 		unsigned int left = width * I915_GTT_PAGE_SIZE;
3439 
3440 		while (left) {
3441 			dma_addr_t addr;
3442 			unsigned int length;
3443 
3444 			/* We don't need the pages, but need to initialize
3445 			 * the entries so the sg list can be happily traversed.
3446 			 * The only thing we need are DMA addresses.
3447 			 */
3448 
3449 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3450 
3451 			length = min(left, length);
3452 
3453 			st->nents++;
3454 
3455 			sg_set_page(sg, NULL, length, 0);
3456 			sg_dma_address(sg) = addr;
3457 			sg_dma_len(sg) = length;
3458 			sg = sg_next(sg);
3459 
3460 			offset += length / I915_GTT_PAGE_SIZE;
3461 			left -= length;
3462 		}
3463 
3464 		offset += stride - width;
3465 	}
3466 
3467 	return sg;
3468 }
3469 
3470 static noinline struct sg_table *
3471 intel_remap_pages(struct intel_remapped_info *rem_info,
3472 		  struct drm_i915_gem_object *obj)
3473 {
3474 	unsigned int size = intel_remapped_info_size(rem_info);
3475 	struct sg_table *st;
3476 	struct scatterlist *sg;
3477 	int ret = -ENOMEM;
3478 	int i;
3479 
3480 	/* Allocate target SG list. */
3481 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3482 	if (!st)
3483 		goto err_st_alloc;
3484 
3485 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3486 	if (ret)
3487 		goto err_sg_alloc;
3488 
3489 	st->nents = 0;
3490 	sg = st->sgl;
3491 
3492 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3493 		sg = remap_pages(obj, rem_info->plane[i].offset,
3494 				 rem_info->plane[i].width, rem_info->plane[i].height,
3495 				 rem_info->plane[i].stride, st, sg);
3496 	}
3497 
3498 	i915_sg_trim(st);
3499 
3500 	return st;
3501 
3502 err_sg_alloc:
3503 	kfree(st);
3504 err_st_alloc:
3505 
3506 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3507 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3508 
3509 	return ERR_PTR(ret);
3510 }
3511 
3512 static noinline struct sg_table *
3513 intel_partial_pages(const struct i915_ggtt_view *view,
3514 		    struct drm_i915_gem_object *obj)
3515 {
3516 	struct sg_table *st;
3517 	struct scatterlist *sg, *iter;
3518 	unsigned int count = view->partial.size;
3519 	unsigned int offset;
3520 	int ret = -ENOMEM;
3521 
3522 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3523 	if (!st)
3524 		goto err_st_alloc;
3525 
3526 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3527 	if (ret)
3528 		goto err_sg_alloc;
3529 
3530 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3531 	GEM_BUG_ON(!iter);
3532 
3533 	sg = st->sgl;
3534 	st->nents = 0;
3535 	do {
3536 		unsigned int len;
3537 
3538 		len = min(iter->length - (offset << PAGE_SHIFT),
3539 			  count << PAGE_SHIFT);
3540 		sg_set_page(sg, NULL, len, 0);
3541 		sg_dma_address(sg) =
3542 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3543 		sg_dma_len(sg) = len;
3544 
3545 		st->nents++;
3546 		count -= len >> PAGE_SHIFT;
3547 		if (count == 0) {
3548 			sg_mark_end(sg);
3549 			i915_sg_trim(st); /* Drop any unused tail entries. */
3550 
3551 			return st;
3552 		}
3553 
3554 		sg = __sg_next(sg);
3555 		iter = __sg_next(iter);
3556 		offset = 0;
3557 	} while (1);
3558 
3559 err_sg_alloc:
3560 	kfree(st);
3561 err_st_alloc:
3562 	return ERR_PTR(ret);
3563 }
3564 
3565 static int
3566 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3567 {
3568 	int ret;
3569 
3570 	/* The vma->pages are only valid within the lifespan of the borrowed
3571 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3572 	 * must be the vma->pages. A simple rule is that vma->pages must only
3573 	 * be accessed when the obj->mm.pages are pinned.
3574 	 */
3575 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3576 
3577 	switch (vma->ggtt_view.type) {
3578 	default:
3579 		GEM_BUG_ON(vma->ggtt_view.type);
3580 		/* fall through */
3581 	case I915_GGTT_VIEW_NORMAL:
3582 		vma->pages = vma->obj->mm.pages;
3583 		return 0;
3584 
3585 	case I915_GGTT_VIEW_ROTATED:
3586 		vma->pages =
3587 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3588 		break;
3589 
3590 	case I915_GGTT_VIEW_REMAPPED:
3591 		vma->pages =
3592 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3593 		break;
3594 
3595 	case I915_GGTT_VIEW_PARTIAL:
3596 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597 		break;
3598 	}
3599 
3600 	ret = 0;
3601 	if (IS_ERR(vma->pages)) {
3602 		ret = PTR_ERR(vma->pages);
3603 		vma->pages = NULL;
3604 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3605 			  vma->ggtt_view.type, ret);
3606 	}
3607 	return ret;
3608 }
3609 
3610 /**
3611  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3612  * @vm: the &struct i915_address_space
3613  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3614  * @size: how much space to allocate inside the GTT,
3615  *        must be #I915_GTT_PAGE_SIZE aligned
3616  * @offset: where to insert inside the GTT,
3617  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3618  *          (@offset + @size) must fit within the address space
3619  * @color: color to apply to node, if this node is not from a VMA,
3620  *         color must be #I915_COLOR_UNEVICTABLE
3621  * @flags: control search and eviction behaviour
3622  *
3623  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3624  * the address space (using @size and @color). If the @node does not fit, it
3625  * tries to evict any overlapping nodes from the GTT, including any
3626  * neighbouring nodes if the colors do not match (to ensure guard pages between
3627  * differing domains). See i915_gem_evict_for_node() for the gory details
3628  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3629  * evicting active overlapping objects, and any overlapping node that is pinned
3630  * or marked as unevictable will also result in failure.
3631  *
3632  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3633  * asked to wait for eviction and interrupted.
3634  */
3635 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3636 			 struct drm_mm_node *node,
3637 			 u64 size, u64 offset, unsigned long color,
3638 			 unsigned int flags)
3639 {
3640 	int err;
3641 
3642 	GEM_BUG_ON(!size);
3643 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3644 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3645 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3646 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3647 	GEM_BUG_ON(drm_mm_node_allocated(node));
3648 
3649 	node->size = size;
3650 	node->start = offset;
3651 	node->color = color;
3652 
3653 	err = drm_mm_reserve_node(&vm->mm, node);
3654 	if (err != -ENOSPC)
3655 		return err;
3656 
3657 	if (flags & PIN_NOEVICT)
3658 		return -ENOSPC;
3659 
3660 	err = i915_gem_evict_for_node(vm, node, flags);
3661 	if (err == 0)
3662 		err = drm_mm_reserve_node(&vm->mm, node);
3663 
3664 	return err;
3665 }
3666 
3667 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3668 {
3669 	u64 range, addr;
3670 
3671 	GEM_BUG_ON(range_overflows(start, len, end));
3672 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3673 
3674 	range = round_down(end - len, align) - round_up(start, align);
3675 	if (range) {
3676 		if (sizeof(unsigned long) == sizeof(u64)) {
3677 			addr = get_random_long();
3678 		} else {
3679 			addr = get_random_int();
3680 			if (range > U32_MAX) {
3681 				addr <<= 32;
3682 				addr |= get_random_int();
3683 			}
3684 		}
3685 		div64_u64_rem(addr, range, &addr);
3686 		start += addr;
3687 	}
3688 
3689 	return round_up(start, align);
3690 }
3691 
3692 /**
3693  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3694  * @vm: the &struct i915_address_space
3695  * @node: the &struct drm_mm_node (typically i915_vma.node)
3696  * @size: how much space to allocate inside the GTT,
3697  *        must be #I915_GTT_PAGE_SIZE aligned
3698  * @alignment: required alignment of starting offset, may be 0 but
3699  *             if specified, this must be a power-of-two and at least
3700  *             #I915_GTT_MIN_ALIGNMENT
3701  * @color: color to apply to node
3702  * @start: start of any range restriction inside GTT (0 for all),
3703  *         must be #I915_GTT_PAGE_SIZE aligned
3704  * @end: end of any range restriction inside GTT (U64_MAX for all),
3705  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3706  * @flags: control search and eviction behaviour
3707  *
3708  * i915_gem_gtt_insert() first searches for an available hole into which
3709  * is can insert the node. The hole address is aligned to @alignment and
3710  * its @size must then fit entirely within the [@start, @end] bounds. The
3711  * nodes on either side of the hole must match @color, or else a guard page
3712  * will be inserted between the two nodes (or the node evicted). If no
3713  * suitable hole is found, first a victim is randomly selected and tested
3714  * for eviction, otherwise then the LRU list of objects within the GTT
3715  * is scanned to find the first set of replacement nodes to create the hole.
3716  * Those old overlapping nodes are evicted from the GTT (and so must be
3717  * rebound before any future use). Any node that is currently pinned cannot
3718  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3719  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3720  * searching for an eviction candidate. See i915_gem_evict_something() for
3721  * the gory details on the eviction algorithm.
3722  *
3723  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3724  * asked to wait for eviction and interrupted.
3725  */
3726 int i915_gem_gtt_insert(struct i915_address_space *vm,
3727 			struct drm_mm_node *node,
3728 			u64 size, u64 alignment, unsigned long color,
3729 			u64 start, u64 end, unsigned int flags)
3730 {
3731 	enum drm_mm_insert_mode mode;
3732 	u64 offset;
3733 	int err;
3734 
3735 	lockdep_assert_held(&vm->mutex);
3736 
3737 	GEM_BUG_ON(!size);
3738 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3739 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3740 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3741 	GEM_BUG_ON(start >= end);
3742 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3743 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3744 	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3745 	GEM_BUG_ON(drm_mm_node_allocated(node));
3746 
3747 	if (unlikely(range_overflows(start, size, end)))
3748 		return -ENOSPC;
3749 
3750 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3751 		return -ENOSPC;
3752 
3753 	mode = DRM_MM_INSERT_BEST;
3754 	if (flags & PIN_HIGH)
3755 		mode = DRM_MM_INSERT_HIGHEST;
3756 	if (flags & PIN_MAPPABLE)
3757 		mode = DRM_MM_INSERT_LOW;
3758 
3759 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3760 	 * so we know that we always have a minimum alignment of 4096.
3761 	 * The drm_mm range manager is optimised to return results
3762 	 * with zero alignment, so where possible use the optimal
3763 	 * path.
3764 	 */
3765 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3766 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3767 		alignment = 0;
3768 
3769 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3770 					  size, alignment, color,
3771 					  start, end, mode);
3772 	if (err != -ENOSPC)
3773 		return err;
3774 
3775 	if (mode & DRM_MM_INSERT_ONCE) {
3776 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3777 						  size, alignment, color,
3778 						  start, end,
3779 						  DRM_MM_INSERT_BEST);
3780 		if (err != -ENOSPC)
3781 			return err;
3782 	}
3783 
3784 	if (flags & PIN_NOEVICT)
3785 		return -ENOSPC;
3786 
3787 	/*
3788 	 * No free space, pick a slot at random.
3789 	 *
3790 	 * There is a pathological case here using a GTT shared between
3791 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3792 	 *
3793 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3794 	 *         (64k objects)             (448k objects)
3795 	 *
3796 	 * Now imagine that the eviction LRU is ordered top-down (just because
3797 	 * pathology meets real life), and that we need to evict an object to
3798 	 * make room inside the aperture. The eviction scan then has to walk
3799 	 * the 448k list before it finds one within range. And now imagine that
3800 	 * it has to search for a new hole between every byte inside the memcpy,
3801 	 * for several simultaneous clients.
3802 	 *
3803 	 * On a full-ppgtt system, if we have run out of available space, there
3804 	 * will be lots and lots of objects in the eviction list! Again,
3805 	 * searching that LRU list may be slow if we are also applying any
3806 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3807 	 * simplicity and similarilty between different GTT, try the single
3808 	 * random replacement first.
3809 	 */
3810 	offset = random_offset(start, end,
3811 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3812 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3813 	if (err != -ENOSPC)
3814 		return err;
3815 
3816 	if (flags & PIN_NOSEARCH)
3817 		return -ENOSPC;
3818 
3819 	/* Randomly selected placement is pinned, do a search */
3820 	err = i915_gem_evict_something(vm, size, alignment, color,
3821 				       start, end, flags);
3822 	if (err)
3823 		return err;
3824 
3825 	return drm_mm_insert_node_in_range(&vm->mm, node,
3826 					   size, alignment, color,
3827 					   start, end, DRM_MM_INSERT_EVICT);
3828 }
3829 
3830 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3831 #include "selftests/mock_gtt.c"
3832 #include "selftests/i915_gem_gtt.c"
3833 #endif
3834