1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/seq_file.h> 27 #include <drm/drmP.h> 28 #include <drm/i915_drm.h> 29 #include "i915_drv.h" 30 #include "i915_vgpu.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 34 /** 35 * DOC: Global GTT views 36 * 37 * Background and previous state 38 * 39 * Historically objects could exists (be bound) in global GTT space only as 40 * singular instances with a view representing all of the object's backing pages 41 * in a linear fashion. This view will be called a normal view. 42 * 43 * To support multiple views of the same object, where the number of mapped 44 * pages is not equal to the backing store, or where the layout of the pages 45 * is not linear, concept of a GGTT view was added. 46 * 47 * One example of an alternative view is a stereo display driven by a single 48 * image. In this case we would have a framebuffer looking like this 49 * (2x2 pages): 50 * 51 * 12 52 * 34 53 * 54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 55 * rendering. In contrast, fed to the display engine would be an alternative 56 * view which could look something like this: 57 * 58 * 1212 59 * 3434 60 * 61 * In this example both the size and layout of pages in the alternative view is 62 * different from the normal view. 63 * 64 * Implementation and usage 65 * 66 * GGTT views are implemented using VMAs and are distinguished via enum 67 * i915_ggtt_view_type and struct i915_ggtt_view. 68 * 69 * A new flavour of core GEM functions which work with GGTT bound objects were 70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 71 * renaming in large amounts of code. They take the struct i915_ggtt_view 72 * parameter encapsulating all metadata required to implement a view. 73 * 74 * As a helper for callers which are only interested in the normal view, 75 * globally const i915_ggtt_view_normal singleton instance exists. All old core 76 * GEM API functions, the ones not taking the view parameter, are operating on, 77 * or with the normal GGTT view. 78 * 79 * Code wanting to add or use a new GGTT view needs to: 80 * 81 * 1. Add a new enum with a suitable name. 82 * 2. Extend the metadata in the i915_ggtt_view structure if required. 83 * 3. Add support to i915_get_vma_pages(). 84 * 85 * New views are required to build a scatter-gather table from within the 86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 87 * exists for the lifetime of an VMA. 88 * 89 * Core API is designed to have copy semantics which means that passed in 90 * struct i915_ggtt_view does not need to be persistent (left around after 91 * calling the core API functions). 92 * 93 */ 94 95 static int 96 i915_get_ggtt_vma_pages(struct i915_vma *vma); 97 98 const struct i915_ggtt_view i915_ggtt_view_normal; 99 const struct i915_ggtt_view i915_ggtt_view_rotated = { 100 .type = I915_GGTT_VIEW_ROTATED 101 }; 102 103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt) 104 { 105 bool has_aliasing_ppgtt; 106 bool has_full_ppgtt; 107 108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6; 109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7; 110 111 if (intel_vgpu_active(dev)) 112 has_full_ppgtt = false; /* emulation is too hard */ 113 114 /* 115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for 116 * execlists, the sole mechanism available to submit work. 117 */ 118 if (INTEL_INFO(dev)->gen < 9 && 119 (enable_ppgtt == 0 || !has_aliasing_ppgtt)) 120 return 0; 121 122 if (enable_ppgtt == 1) 123 return 1; 124 125 if (enable_ppgtt == 2 && has_full_ppgtt) 126 return 2; 127 128 #ifdef CONFIG_INTEL_IOMMU 129 /* Disable ppgtt on SNB if VT-d is on. */ 130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) { 131 DRM_INFO("Disabling PPGTT because VT-d is on\n"); 132 return 0; 133 } 134 #endif 135 136 /* Early VLV doesn't have this */ 137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && 138 dev->pdev->revision < 0xb) { 139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); 140 return 0; 141 } 142 143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists) 144 return 2; 145 else 146 return has_aliasing_ppgtt ? 1 : 0; 147 } 148 149 static int ppgtt_bind_vma(struct i915_vma *vma, 150 enum i915_cache_level cache_level, 151 u32 unused) 152 { 153 u32 pte_flags = 0; 154 155 /* Currently applicable only to VLV */ 156 if (vma->obj->gt_ro) 157 pte_flags |= PTE_READ_ONLY; 158 159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start, 160 cache_level, pte_flags); 161 162 return 0; 163 } 164 165 static void ppgtt_unbind_vma(struct i915_vma *vma) 166 { 167 vma->vm->clear_range(vma->vm, 168 vma->node.start, 169 vma->obj->base.size, 170 true); 171 } 172 173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr, 174 enum i915_cache_level level, 175 bool valid) 176 { 177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; 178 pte |= addr; 179 180 switch (level) { 181 case I915_CACHE_NONE: 182 pte |= PPAT_UNCACHED_INDEX; 183 break; 184 case I915_CACHE_WT: 185 pte |= PPAT_DISPLAY_ELLC_INDEX; 186 break; 187 default: 188 pte |= PPAT_CACHED_INDEX; 189 break; 190 } 191 192 return pte; 193 } 194 195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 196 const enum i915_cache_level level) 197 { 198 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 199 pde |= addr; 200 if (level != I915_CACHE_NONE) 201 pde |= PPAT_CACHED_PDE_INDEX; 202 else 203 pde |= PPAT_UNCACHED_INDEX; 204 return pde; 205 } 206 207 static gen6_pte_t snb_pte_encode(dma_addr_t addr, 208 enum i915_cache_level level, 209 bool valid, u32 unused) 210 { 211 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; 212 pte |= GEN6_PTE_ADDR_ENCODE(addr); 213 214 switch (level) { 215 case I915_CACHE_L3_LLC: 216 case I915_CACHE_LLC: 217 pte |= GEN6_PTE_CACHE_LLC; 218 break; 219 case I915_CACHE_NONE: 220 pte |= GEN6_PTE_UNCACHED; 221 break; 222 default: 223 MISSING_CASE(level); 224 } 225 226 return pte; 227 } 228 229 static gen6_pte_t ivb_pte_encode(dma_addr_t addr, 230 enum i915_cache_level level, 231 bool valid, u32 unused) 232 { 233 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; 234 pte |= GEN6_PTE_ADDR_ENCODE(addr); 235 236 switch (level) { 237 case I915_CACHE_L3_LLC: 238 pte |= GEN7_PTE_CACHE_L3_LLC; 239 break; 240 case I915_CACHE_LLC: 241 pte |= GEN6_PTE_CACHE_LLC; 242 break; 243 case I915_CACHE_NONE: 244 pte |= GEN6_PTE_UNCACHED; 245 break; 246 default: 247 MISSING_CASE(level); 248 } 249 250 return pte; 251 } 252 253 static gen6_pte_t byt_pte_encode(dma_addr_t addr, 254 enum i915_cache_level level, 255 bool valid, u32 flags) 256 { 257 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; 258 pte |= GEN6_PTE_ADDR_ENCODE(addr); 259 260 if (!(flags & PTE_READ_ONLY)) 261 pte |= BYT_PTE_WRITEABLE; 262 263 if (level != I915_CACHE_NONE) 264 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 265 266 return pte; 267 } 268 269 static gen6_pte_t hsw_pte_encode(dma_addr_t addr, 270 enum i915_cache_level level, 271 bool valid, u32 unused) 272 { 273 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; 274 pte |= HSW_PTE_ADDR_ENCODE(addr); 275 276 if (level != I915_CACHE_NONE) 277 pte |= HSW_WB_LLC_AGE3; 278 279 return pte; 280 } 281 282 static gen6_pte_t iris_pte_encode(dma_addr_t addr, 283 enum i915_cache_level level, 284 bool valid, u32 unused) 285 { 286 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; 287 pte |= HSW_PTE_ADDR_ENCODE(addr); 288 289 switch (level) { 290 case I915_CACHE_NONE: 291 break; 292 case I915_CACHE_WT: 293 pte |= HSW_WT_ELLC_LLC_AGE3; 294 break; 295 default: 296 pte |= HSW_WB_ELLC_LLC_AGE3; 297 break; 298 } 299 300 return pte; 301 } 302 303 static int __setup_page_dma(struct drm_device *dev, 304 struct i915_page_dma *p, gfp_t flags) 305 { 306 struct device *device = &dev->pdev->dev; 307 308 p->page = alloc_page(flags); 309 if (!p->page) 310 return -ENOMEM; 311 312 p->daddr = dma_map_page(device, 313 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL); 314 315 if (dma_mapping_error(device, p->daddr)) { 316 __free_page(p->page); 317 return -EINVAL; 318 } 319 320 return 0; 321 } 322 323 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p) 324 { 325 return __setup_page_dma(dev, p, GFP_KERNEL); 326 } 327 328 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p) 329 { 330 if (WARN_ON(!p->page)) 331 return; 332 333 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL); 334 __free_page(p->page); 335 memset(p, 0, sizeof(*p)); 336 } 337 338 static void *kmap_page_dma(struct i915_page_dma *p) 339 { 340 return kmap_atomic(p->page); 341 } 342 343 /* We use the flushing unmap only with ppgtt structures: 344 * page directories, page tables and scratch pages. 345 */ 346 static void kunmap_page_dma(struct drm_device *dev, void *vaddr) 347 { 348 /* There are only few exceptions for gen >=6. chv and bxt. 349 * And we are not sure about the latter so play safe for now. 350 */ 351 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) 352 drm_clflush_virt_range(vaddr, PAGE_SIZE); 353 354 kunmap_atomic(vaddr); 355 } 356 357 #define kmap_px(px) kmap_page_dma(px_base(px)) 358 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr)) 359 360 #define setup_px(dev, px) setup_page_dma((dev), px_base(px)) 361 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px)) 362 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v)) 363 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v)) 364 365 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p, 366 const uint64_t val) 367 { 368 int i; 369 uint64_t * const vaddr = kmap_page_dma(p); 370 371 for (i = 0; i < 512; i++) 372 vaddr[i] = val; 373 374 kunmap_page_dma(dev, vaddr); 375 } 376 377 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p, 378 const uint32_t val32) 379 { 380 uint64_t v = val32; 381 382 v = v << 32 | val32; 383 384 fill_page_dma(dev, p, v); 385 } 386 387 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev) 388 { 389 struct i915_page_scratch *sp; 390 int ret; 391 392 sp = kzalloc(sizeof(*sp), GFP_KERNEL); 393 if (sp == NULL) 394 return ERR_PTR(-ENOMEM); 395 396 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO); 397 if (ret) { 398 kfree(sp); 399 return ERR_PTR(ret); 400 } 401 402 set_pages_uc(px_page(sp), 1); 403 404 return sp; 405 } 406 407 static void free_scratch_page(struct drm_device *dev, 408 struct i915_page_scratch *sp) 409 { 410 set_pages_wb(px_page(sp), 1); 411 412 cleanup_px(dev, sp); 413 kfree(sp); 414 } 415 416 static struct i915_page_table *alloc_pt(struct drm_device *dev) 417 { 418 struct i915_page_table *pt; 419 const size_t count = INTEL_INFO(dev)->gen >= 8 ? 420 GEN8_PTES : GEN6_PTES; 421 int ret = -ENOMEM; 422 423 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 424 if (!pt) 425 return ERR_PTR(-ENOMEM); 426 427 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), 428 GFP_KERNEL); 429 430 if (!pt->used_ptes) 431 goto fail_bitmap; 432 433 ret = setup_px(dev, pt); 434 if (ret) 435 goto fail_page_m; 436 437 return pt; 438 439 fail_page_m: 440 kfree(pt->used_ptes); 441 fail_bitmap: 442 kfree(pt); 443 444 return ERR_PTR(ret); 445 } 446 447 static void free_pt(struct drm_device *dev, struct i915_page_table *pt) 448 { 449 cleanup_px(dev, pt); 450 kfree(pt->used_ptes); 451 kfree(pt); 452 } 453 454 static void gen8_initialize_pt(struct i915_address_space *vm, 455 struct i915_page_table *pt) 456 { 457 gen8_pte_t scratch_pte; 458 459 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page), 460 I915_CACHE_LLC, true); 461 462 fill_px(vm->dev, pt, scratch_pte); 463 } 464 465 static void gen6_initialize_pt(struct i915_address_space *vm, 466 struct i915_page_table *pt) 467 { 468 gen6_pte_t scratch_pte; 469 470 WARN_ON(px_dma(vm->scratch_page) == 0); 471 472 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), 473 I915_CACHE_LLC, true, 0); 474 475 fill32_px(vm->dev, pt, scratch_pte); 476 } 477 478 static struct i915_page_directory *alloc_pd(struct drm_device *dev) 479 { 480 struct i915_page_directory *pd; 481 int ret = -ENOMEM; 482 483 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 484 if (!pd) 485 return ERR_PTR(-ENOMEM); 486 487 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), 488 sizeof(*pd->used_pdes), GFP_KERNEL); 489 if (!pd->used_pdes) 490 goto fail_bitmap; 491 492 ret = setup_px(dev, pd); 493 if (ret) 494 goto fail_page_m; 495 496 return pd; 497 498 fail_page_m: 499 kfree(pd->used_pdes); 500 fail_bitmap: 501 kfree(pd); 502 503 return ERR_PTR(ret); 504 } 505 506 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd) 507 { 508 if (px_page(pd)) { 509 cleanup_px(dev, pd); 510 kfree(pd->used_pdes); 511 kfree(pd); 512 } 513 } 514 515 static void gen8_initialize_pd(struct i915_address_space *vm, 516 struct i915_page_directory *pd) 517 { 518 gen8_pde_t scratch_pde; 519 520 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC); 521 522 fill_px(vm->dev, pd, scratch_pde); 523 } 524 525 /* Broadwell Page Directory Pointer Descriptors */ 526 static int gen8_write_pdp(struct drm_i915_gem_request *req, 527 unsigned entry, 528 dma_addr_t addr) 529 { 530 struct intel_engine_cs *ring = req->ring; 531 int ret; 532 533 BUG_ON(entry >= 4); 534 535 ret = intel_ring_begin(req, 6); 536 if (ret) 537 return ret; 538 539 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 540 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); 541 intel_ring_emit(ring, upper_32_bits(addr)); 542 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 543 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); 544 intel_ring_emit(ring, lower_32_bits(addr)); 545 intel_ring_advance(ring); 546 547 return 0; 548 } 549 550 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt, 551 struct drm_i915_gem_request *req) 552 { 553 int i, ret; 554 555 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { 556 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 557 558 ret = gen8_write_pdp(req, i, pd_daddr); 559 if (ret) 560 return ret; 561 } 562 563 return 0; 564 } 565 566 static void gen8_ppgtt_clear_range(struct i915_address_space *vm, 567 uint64_t start, 568 uint64_t length, 569 bool use_scratch) 570 { 571 struct i915_hw_ppgtt *ppgtt = 572 container_of(vm, struct i915_hw_ppgtt, base); 573 gen8_pte_t *pt_vaddr, scratch_pte; 574 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; 575 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; 576 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; 577 unsigned num_entries = length >> PAGE_SHIFT; 578 unsigned last_pte, i; 579 580 scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page), 581 I915_CACHE_LLC, use_scratch); 582 583 while (num_entries) { 584 struct i915_page_directory *pd; 585 struct i915_page_table *pt; 586 587 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe])) 588 break; 589 590 pd = ppgtt->pdp.page_directory[pdpe]; 591 592 if (WARN_ON(!pd->page_table[pde])) 593 break; 594 595 pt = pd->page_table[pde]; 596 597 if (WARN_ON(!px_page(pt))) 598 break; 599 600 last_pte = pte + num_entries; 601 if (last_pte > GEN8_PTES) 602 last_pte = GEN8_PTES; 603 604 pt_vaddr = kmap_px(pt); 605 606 for (i = pte; i < last_pte; i++) { 607 pt_vaddr[i] = scratch_pte; 608 num_entries--; 609 } 610 611 kunmap_px(ppgtt, pt); 612 613 pte = 0; 614 if (++pde == I915_PDES) { 615 pdpe++; 616 pde = 0; 617 } 618 } 619 } 620 621 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, 622 struct sg_table *pages, 623 uint64_t start, 624 enum i915_cache_level cache_level, u32 unused) 625 { 626 struct i915_hw_ppgtt *ppgtt = 627 container_of(vm, struct i915_hw_ppgtt, base); 628 gen8_pte_t *pt_vaddr; 629 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; 630 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; 631 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; 632 struct sg_page_iter sg_iter; 633 634 pt_vaddr = NULL; 635 636 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { 637 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES)) 638 break; 639 640 if (pt_vaddr == NULL) { 641 struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe]; 642 struct i915_page_table *pt = pd->page_table[pde]; 643 pt_vaddr = kmap_px(pt); 644 } 645 646 pt_vaddr[pte] = 647 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), 648 cache_level, true); 649 if (++pte == GEN8_PTES) { 650 kunmap_px(ppgtt, pt_vaddr); 651 pt_vaddr = NULL; 652 if (++pde == I915_PDES) { 653 pdpe++; 654 pde = 0; 655 } 656 pte = 0; 657 } 658 } 659 660 if (pt_vaddr) 661 kunmap_px(ppgtt, pt_vaddr); 662 } 663 664 static void gen8_free_page_tables(struct drm_device *dev, 665 struct i915_page_directory *pd) 666 { 667 int i; 668 669 if (!px_page(pd)) 670 return; 671 672 for_each_set_bit(i, pd->used_pdes, I915_PDES) { 673 if (WARN_ON(!pd->page_table[i])) 674 continue; 675 676 free_pt(dev, pd->page_table[i]); 677 pd->page_table[i] = NULL; 678 } 679 } 680 681 static int gen8_init_scratch(struct i915_address_space *vm) 682 { 683 struct drm_device *dev = vm->dev; 684 685 vm->scratch_page = alloc_scratch_page(dev); 686 if (IS_ERR(vm->scratch_page)) 687 return PTR_ERR(vm->scratch_page); 688 689 vm->scratch_pt = alloc_pt(dev); 690 if (IS_ERR(vm->scratch_pt)) { 691 free_scratch_page(dev, vm->scratch_page); 692 return PTR_ERR(vm->scratch_pt); 693 } 694 695 vm->scratch_pd = alloc_pd(dev); 696 if (IS_ERR(vm->scratch_pd)) { 697 free_pt(dev, vm->scratch_pt); 698 free_scratch_page(dev, vm->scratch_page); 699 return PTR_ERR(vm->scratch_pd); 700 } 701 702 gen8_initialize_pt(vm, vm->scratch_pt); 703 gen8_initialize_pd(vm, vm->scratch_pd); 704 705 return 0; 706 } 707 708 static void gen8_free_scratch(struct i915_address_space *vm) 709 { 710 struct drm_device *dev = vm->dev; 711 712 free_pd(dev, vm->scratch_pd); 713 free_pt(dev, vm->scratch_pt); 714 free_scratch_page(dev, vm->scratch_page); 715 } 716 717 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 718 { 719 struct i915_hw_ppgtt *ppgtt = 720 container_of(vm, struct i915_hw_ppgtt, base); 721 int i; 722 723 for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) { 724 if (WARN_ON(!ppgtt->pdp.page_directory[i])) 725 continue; 726 727 gen8_free_page_tables(ppgtt->base.dev, 728 ppgtt->pdp.page_directory[i]); 729 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]); 730 } 731 732 gen8_free_scratch(vm); 733 } 734 735 /** 736 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. 737 * @ppgtt: Master ppgtt structure. 738 * @pd: Page directory for this address range. 739 * @start: Starting virtual address to begin allocations. 740 * @length Size of the allocations. 741 * @new_pts: Bitmap set by function with new allocations. Likely used by the 742 * caller to free on error. 743 * 744 * Allocate the required number of page tables. Extremely similar to 745 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by 746 * the page directory boundary (instead of the page directory pointer). That 747 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is 748 * possible, and likely that the caller will need to use multiple calls of this 749 * function to achieve the appropriate allocation. 750 * 751 * Return: 0 if success; negative error code otherwise. 752 */ 753 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt, 754 struct i915_page_directory *pd, 755 uint64_t start, 756 uint64_t length, 757 unsigned long *new_pts) 758 { 759 struct drm_device *dev = ppgtt->base.dev; 760 struct i915_page_table *pt; 761 uint64_t temp; 762 uint32_t pde; 763 764 gen8_for_each_pde(pt, pd, start, length, temp, pde) { 765 /* Don't reallocate page tables */ 766 if (pt) { 767 /* Scratch is never allocated this way */ 768 WARN_ON(pt == ppgtt->base.scratch_pt); 769 continue; 770 } 771 772 pt = alloc_pt(dev); 773 if (IS_ERR(pt)) 774 goto unwind_out; 775 776 gen8_initialize_pt(&ppgtt->base, pt); 777 pd->page_table[pde] = pt; 778 __set_bit(pde, new_pts); 779 } 780 781 return 0; 782 783 unwind_out: 784 for_each_set_bit(pde, new_pts, I915_PDES) 785 free_pt(dev, pd->page_table[pde]); 786 787 return -ENOMEM; 788 } 789 790 /** 791 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. 792 * @ppgtt: Master ppgtt structure. 793 * @pdp: Page directory pointer for this address range. 794 * @start: Starting virtual address to begin allocations. 795 * @length Size of the allocations. 796 * @new_pds Bitmap set by function with new allocations. Likely used by the 797 * caller to free on error. 798 * 799 * Allocate the required number of page directories starting at the pde index of 800 * @start, and ending at the pde index @start + @length. This function will skip 801 * over already allocated page directories within the range, and only allocate 802 * new ones, setting the appropriate pointer within the pdp as well as the 803 * correct position in the bitmap @new_pds. 804 * 805 * The function will only allocate the pages within the range for a give page 806 * directory pointer. In other words, if @start + @length straddles a virtually 807 * addressed PDP boundary (512GB for 4k pages), there will be more allocations 808 * required by the caller, This is not currently possible, and the BUG in the 809 * code will prevent it. 810 * 811 * Return: 0 if success; negative error code otherwise. 812 */ 813 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt, 814 struct i915_page_directory_pointer *pdp, 815 uint64_t start, 816 uint64_t length, 817 unsigned long *new_pds) 818 { 819 struct drm_device *dev = ppgtt->base.dev; 820 struct i915_page_directory *pd; 821 uint64_t temp; 822 uint32_t pdpe; 823 824 WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES)); 825 826 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) { 827 if (pd) 828 continue; 829 830 pd = alloc_pd(dev); 831 if (IS_ERR(pd)) 832 goto unwind_out; 833 834 gen8_initialize_pd(&ppgtt->base, pd); 835 pdp->page_directory[pdpe] = pd; 836 __set_bit(pdpe, new_pds); 837 } 838 839 return 0; 840 841 unwind_out: 842 for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES) 843 free_pd(dev, pdp->page_directory[pdpe]); 844 845 return -ENOMEM; 846 } 847 848 static void 849 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts) 850 { 851 int i; 852 853 for (i = 0; i < GEN8_LEGACY_PDPES; i++) 854 kfree(new_pts[i]); 855 kfree(new_pts); 856 kfree(new_pds); 857 } 858 859 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both 860 * of these are based on the number of PDPEs in the system. 861 */ 862 static 863 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, 864 unsigned long ***new_pts) 865 { 866 int i; 867 unsigned long *pds; 868 unsigned long **pts; 869 870 pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL); 871 if (!pds) 872 return -ENOMEM; 873 874 pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL); 875 if (!pts) { 876 kfree(pds); 877 return -ENOMEM; 878 } 879 880 for (i = 0; i < GEN8_LEGACY_PDPES; i++) { 881 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES), 882 sizeof(unsigned long), GFP_KERNEL); 883 if (!pts[i]) 884 goto err_out; 885 } 886 887 *new_pds = pds; 888 *new_pts = pts; 889 890 return 0; 891 892 err_out: 893 free_gen8_temp_bitmaps(pds, pts); 894 return -ENOMEM; 895 } 896 897 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify 898 * the page table structures, we mark them dirty so that 899 * context switching/execlist queuing code takes extra steps 900 * to ensure that tlbs are flushed. 901 */ 902 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 903 { 904 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask; 905 } 906 907 static int gen8_alloc_va_range(struct i915_address_space *vm, 908 uint64_t start, 909 uint64_t length) 910 { 911 struct i915_hw_ppgtt *ppgtt = 912 container_of(vm, struct i915_hw_ppgtt, base); 913 unsigned long *new_page_dirs, **new_page_tables; 914 struct i915_page_directory *pd; 915 const uint64_t orig_start = start; 916 const uint64_t orig_length = length; 917 uint64_t temp; 918 uint32_t pdpe; 919 int ret; 920 921 /* Wrap is never okay since we can only represent 48b, and we don't 922 * actually use the other side of the canonical address space. 923 */ 924 if (WARN_ON(start + length < start)) 925 return -ENODEV; 926 927 if (WARN_ON(start + length > ppgtt->base.total)) 928 return -ENODEV; 929 930 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables); 931 if (ret) 932 return ret; 933 934 /* Do the allocations first so we can easily bail out */ 935 ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length, 936 new_page_dirs); 937 if (ret) { 938 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); 939 return ret; 940 } 941 942 /* For every page directory referenced, allocate page tables */ 943 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { 944 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length, 945 new_page_tables[pdpe]); 946 if (ret) 947 goto err_out; 948 } 949 950 start = orig_start; 951 length = orig_length; 952 953 /* Allocations have completed successfully, so set the bitmaps, and do 954 * the mappings. */ 955 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { 956 gen8_pde_t *const page_directory = kmap_px(pd); 957 struct i915_page_table *pt; 958 uint64_t pd_len = gen8_clamp_pd(start, length); 959 uint64_t pd_start = start; 960 uint32_t pde; 961 962 /* Every pd should be allocated, we just did that above. */ 963 WARN_ON(!pd); 964 965 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) { 966 /* Same reasoning as pd */ 967 WARN_ON(!pt); 968 WARN_ON(!pd_len); 969 WARN_ON(!gen8_pte_count(pd_start, pd_len)); 970 971 /* Set our used ptes within the page table */ 972 bitmap_set(pt->used_ptes, 973 gen8_pte_index(pd_start), 974 gen8_pte_count(pd_start, pd_len)); 975 976 /* Our pde is now pointing to the pagetable, pt */ 977 __set_bit(pde, pd->used_pdes); 978 979 /* Map the PDE to the page table */ 980 page_directory[pde] = gen8_pde_encode(px_dma(pt), 981 I915_CACHE_LLC); 982 983 /* NB: We haven't yet mapped ptes to pages. At this 984 * point we're still relying on insert_entries() */ 985 } 986 987 kunmap_px(ppgtt, page_directory); 988 989 __set_bit(pdpe, ppgtt->pdp.used_pdpes); 990 } 991 992 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); 993 mark_tlbs_dirty(ppgtt); 994 return 0; 995 996 err_out: 997 while (pdpe--) { 998 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES) 999 free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]); 1000 } 1001 1002 for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES) 1003 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]); 1004 1005 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); 1006 mark_tlbs_dirty(ppgtt); 1007 return ret; 1008 } 1009 1010 /* 1011 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1012 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1013 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1014 * space. 1015 * 1016 */ 1017 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1018 { 1019 int ret; 1020 1021 ret = gen8_init_scratch(&ppgtt->base); 1022 if (ret) 1023 return ret; 1024 1025 ppgtt->base.start = 0; 1026 ppgtt->base.total = 1ULL << 32; 1027 if (IS_ENABLED(CONFIG_X86_32)) 1028 /* While we have a proliferation of size_t variables 1029 * we cannot represent the full ppgtt size on 32bit, 1030 * so limit it to the same size as the GGTT (currently 1031 * 2GiB). 1032 */ 1033 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total; 1034 ppgtt->base.cleanup = gen8_ppgtt_cleanup; 1035 ppgtt->base.allocate_va_range = gen8_alloc_va_range; 1036 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; 1037 ppgtt->base.clear_range = gen8_ppgtt_clear_range; 1038 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1039 ppgtt->base.bind_vma = ppgtt_bind_vma; 1040 1041 ppgtt->switch_mm = gen8_mm_switch; 1042 1043 return 0; 1044 } 1045 1046 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) 1047 { 1048 struct i915_address_space *vm = &ppgtt->base; 1049 struct i915_page_table *unused; 1050 gen6_pte_t scratch_pte; 1051 uint32_t pd_entry; 1052 uint32_t pte, pde, temp; 1053 uint32_t start = ppgtt->base.start, length = ppgtt->base.total; 1054 1055 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), 1056 I915_CACHE_LLC, true, 0); 1057 1058 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) { 1059 u32 expected; 1060 gen6_pte_t *pt_vaddr; 1061 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); 1062 pd_entry = readl(ppgtt->pd_addr + pde); 1063 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); 1064 1065 if (pd_entry != expected) 1066 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", 1067 pde, 1068 pd_entry, 1069 expected); 1070 seq_printf(m, "\tPDE: %x\n", pd_entry); 1071 1072 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]); 1073 1074 for (pte = 0; pte < GEN6_PTES; pte+=4) { 1075 unsigned long va = 1076 (pde * PAGE_SIZE * GEN6_PTES) + 1077 (pte * PAGE_SIZE); 1078 int i; 1079 bool found = false; 1080 for (i = 0; i < 4; i++) 1081 if (pt_vaddr[pte + i] != scratch_pte) 1082 found = true; 1083 if (!found) 1084 continue; 1085 1086 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); 1087 for (i = 0; i < 4; i++) { 1088 if (pt_vaddr[pte + i] != scratch_pte) 1089 seq_printf(m, " %08x", pt_vaddr[pte + i]); 1090 else 1091 seq_puts(m, " SCRATCH "); 1092 } 1093 seq_puts(m, "\n"); 1094 } 1095 kunmap_px(ppgtt, pt_vaddr); 1096 } 1097 } 1098 1099 /* Write pde (index) from the page directory @pd to the page table @pt */ 1100 static void gen6_write_pde(struct i915_page_directory *pd, 1101 const int pde, struct i915_page_table *pt) 1102 { 1103 /* Caller needs to make sure the write completes if necessary */ 1104 struct i915_hw_ppgtt *ppgtt = 1105 container_of(pd, struct i915_hw_ppgtt, pd); 1106 u32 pd_entry; 1107 1108 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt)); 1109 pd_entry |= GEN6_PDE_VALID; 1110 1111 writel(pd_entry, ppgtt->pd_addr + pde); 1112 } 1113 1114 /* Write all the page tables found in the ppgtt structure to incrementing page 1115 * directories. */ 1116 static void gen6_write_page_range(struct drm_i915_private *dev_priv, 1117 struct i915_page_directory *pd, 1118 uint32_t start, uint32_t length) 1119 { 1120 struct i915_page_table *pt; 1121 uint32_t pde, temp; 1122 1123 gen6_for_each_pde(pt, pd, start, length, temp, pde) 1124 gen6_write_pde(pd, pde, pt); 1125 1126 /* Make sure write is complete before other code can use this page 1127 * table. Also require for WC mapped PTEs */ 1128 readl(dev_priv->gtt.gsm); 1129 } 1130 1131 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) 1132 { 1133 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); 1134 1135 return (ppgtt->pd.base.ggtt_offset / 64) << 16; 1136 } 1137 1138 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, 1139 struct drm_i915_gem_request *req) 1140 { 1141 struct intel_engine_cs *ring = req->ring; 1142 int ret; 1143 1144 /* NB: TLBs must be flushed and invalidated before a switch */ 1145 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 1146 if (ret) 1147 return ret; 1148 1149 ret = intel_ring_begin(req, 6); 1150 if (ret) 1151 return ret; 1152 1153 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); 1154 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); 1155 intel_ring_emit(ring, PP_DIR_DCLV_2G); 1156 intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); 1157 intel_ring_emit(ring, get_pd_offset(ppgtt)); 1158 intel_ring_emit(ring, MI_NOOP); 1159 intel_ring_advance(ring); 1160 1161 return 0; 1162 } 1163 1164 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt, 1165 struct drm_i915_gem_request *req) 1166 { 1167 struct intel_engine_cs *ring = req->ring; 1168 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev); 1169 1170 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 1171 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); 1172 return 0; 1173 } 1174 1175 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, 1176 struct drm_i915_gem_request *req) 1177 { 1178 struct intel_engine_cs *ring = req->ring; 1179 int ret; 1180 1181 /* NB: TLBs must be flushed and invalidated before a switch */ 1182 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 1183 if (ret) 1184 return ret; 1185 1186 ret = intel_ring_begin(req, 6); 1187 if (ret) 1188 return ret; 1189 1190 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); 1191 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); 1192 intel_ring_emit(ring, PP_DIR_DCLV_2G); 1193 intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); 1194 intel_ring_emit(ring, get_pd_offset(ppgtt)); 1195 intel_ring_emit(ring, MI_NOOP); 1196 intel_ring_advance(ring); 1197 1198 /* XXX: RCS is the only one to auto invalidate the TLBs? */ 1199 if (ring->id != RCS) { 1200 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 1201 if (ret) 1202 return ret; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, 1209 struct drm_i915_gem_request *req) 1210 { 1211 struct intel_engine_cs *ring = req->ring; 1212 struct drm_device *dev = ppgtt->base.dev; 1213 struct drm_i915_private *dev_priv = dev->dev_private; 1214 1215 1216 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 1217 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); 1218 1219 POSTING_READ(RING_PP_DIR_DCLV(ring)); 1220 1221 return 0; 1222 } 1223 1224 static void gen8_ppgtt_enable(struct drm_device *dev) 1225 { 1226 struct drm_i915_private *dev_priv = dev->dev_private; 1227 struct intel_engine_cs *ring; 1228 int j; 1229 1230 for_each_ring(ring, dev_priv, j) { 1231 I915_WRITE(RING_MODE_GEN7(ring), 1232 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1233 } 1234 } 1235 1236 static void gen7_ppgtt_enable(struct drm_device *dev) 1237 { 1238 struct drm_i915_private *dev_priv = dev->dev_private; 1239 struct intel_engine_cs *ring; 1240 uint32_t ecochk, ecobits; 1241 int i; 1242 1243 ecobits = I915_READ(GAC_ECO_BITS); 1244 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1245 1246 ecochk = I915_READ(GAM_ECOCHK); 1247 if (IS_HASWELL(dev)) { 1248 ecochk |= ECOCHK_PPGTT_WB_HSW; 1249 } else { 1250 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1251 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1252 } 1253 I915_WRITE(GAM_ECOCHK, ecochk); 1254 1255 for_each_ring(ring, dev_priv, i) { 1256 /* GFX_MODE is per-ring on gen7+ */ 1257 I915_WRITE(RING_MODE_GEN7(ring), 1258 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1259 } 1260 } 1261 1262 static void gen6_ppgtt_enable(struct drm_device *dev) 1263 { 1264 struct drm_i915_private *dev_priv = dev->dev_private; 1265 uint32_t ecochk, gab_ctl, ecobits; 1266 1267 ecobits = I915_READ(GAC_ECO_BITS); 1268 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1269 ECOBITS_PPGTT_CACHE64B); 1270 1271 gab_ctl = I915_READ(GAB_CTL); 1272 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1273 1274 ecochk = I915_READ(GAM_ECOCHK); 1275 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1276 1277 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1278 } 1279 1280 /* PPGTT support for Sandybdrige/Gen6 and later */ 1281 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1282 uint64_t start, 1283 uint64_t length, 1284 bool use_scratch) 1285 { 1286 struct i915_hw_ppgtt *ppgtt = 1287 container_of(vm, struct i915_hw_ppgtt, base); 1288 gen6_pte_t *pt_vaddr, scratch_pte; 1289 unsigned first_entry = start >> PAGE_SHIFT; 1290 unsigned num_entries = length >> PAGE_SHIFT; 1291 unsigned act_pt = first_entry / GEN6_PTES; 1292 unsigned first_pte = first_entry % GEN6_PTES; 1293 unsigned last_pte, i; 1294 1295 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), 1296 I915_CACHE_LLC, true, 0); 1297 1298 while (num_entries) { 1299 last_pte = first_pte + num_entries; 1300 if (last_pte > GEN6_PTES) 1301 last_pte = GEN6_PTES; 1302 1303 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); 1304 1305 for (i = first_pte; i < last_pte; i++) 1306 pt_vaddr[i] = scratch_pte; 1307 1308 kunmap_px(ppgtt, pt_vaddr); 1309 1310 num_entries -= last_pte - first_pte; 1311 first_pte = 0; 1312 act_pt++; 1313 } 1314 } 1315 1316 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1317 struct sg_table *pages, 1318 uint64_t start, 1319 enum i915_cache_level cache_level, u32 flags) 1320 { 1321 struct i915_hw_ppgtt *ppgtt = 1322 container_of(vm, struct i915_hw_ppgtt, base); 1323 gen6_pte_t *pt_vaddr; 1324 unsigned first_entry = start >> PAGE_SHIFT; 1325 unsigned act_pt = first_entry / GEN6_PTES; 1326 unsigned act_pte = first_entry % GEN6_PTES; 1327 struct sg_page_iter sg_iter; 1328 1329 pt_vaddr = NULL; 1330 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { 1331 if (pt_vaddr == NULL) 1332 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); 1333 1334 pt_vaddr[act_pte] = 1335 vm->pte_encode(sg_page_iter_dma_address(&sg_iter), 1336 cache_level, true, flags); 1337 1338 if (++act_pte == GEN6_PTES) { 1339 kunmap_px(ppgtt, pt_vaddr); 1340 pt_vaddr = NULL; 1341 act_pt++; 1342 act_pte = 0; 1343 } 1344 } 1345 if (pt_vaddr) 1346 kunmap_px(ppgtt, pt_vaddr); 1347 } 1348 1349 static int gen6_alloc_va_range(struct i915_address_space *vm, 1350 uint64_t start_in, uint64_t length_in) 1351 { 1352 DECLARE_BITMAP(new_page_tables, I915_PDES); 1353 struct drm_device *dev = vm->dev; 1354 struct drm_i915_private *dev_priv = dev->dev_private; 1355 struct i915_hw_ppgtt *ppgtt = 1356 container_of(vm, struct i915_hw_ppgtt, base); 1357 struct i915_page_table *pt; 1358 uint32_t start, length, start_save, length_save; 1359 uint32_t pde, temp; 1360 int ret; 1361 1362 if (WARN_ON(start_in + length_in > ppgtt->base.total)) 1363 return -ENODEV; 1364 1365 start = start_save = start_in; 1366 length = length_save = length_in; 1367 1368 bitmap_zero(new_page_tables, I915_PDES); 1369 1370 /* The allocation is done in two stages so that we can bail out with 1371 * minimal amount of pain. The first stage finds new page tables that 1372 * need allocation. The second stage marks use ptes within the page 1373 * tables. 1374 */ 1375 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { 1376 if (pt != vm->scratch_pt) { 1377 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); 1378 continue; 1379 } 1380 1381 /* We've already allocated a page table */ 1382 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); 1383 1384 pt = alloc_pt(dev); 1385 if (IS_ERR(pt)) { 1386 ret = PTR_ERR(pt); 1387 goto unwind_out; 1388 } 1389 1390 gen6_initialize_pt(vm, pt); 1391 1392 ppgtt->pd.page_table[pde] = pt; 1393 __set_bit(pde, new_page_tables); 1394 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); 1395 } 1396 1397 start = start_save; 1398 length = length_save; 1399 1400 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { 1401 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); 1402 1403 bitmap_zero(tmp_bitmap, GEN6_PTES); 1404 bitmap_set(tmp_bitmap, gen6_pte_index(start), 1405 gen6_pte_count(start, length)); 1406 1407 if (__test_and_clear_bit(pde, new_page_tables)) 1408 gen6_write_pde(&ppgtt->pd, pde, pt); 1409 1410 trace_i915_page_table_entry_map(vm, pde, pt, 1411 gen6_pte_index(start), 1412 gen6_pte_count(start, length), 1413 GEN6_PTES); 1414 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, 1415 GEN6_PTES); 1416 } 1417 1418 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); 1419 1420 /* Make sure write is complete before other code can use this page 1421 * table. Also require for WC mapped PTEs */ 1422 readl(dev_priv->gtt.gsm); 1423 1424 mark_tlbs_dirty(ppgtt); 1425 return 0; 1426 1427 unwind_out: 1428 for_each_set_bit(pde, new_page_tables, I915_PDES) { 1429 struct i915_page_table *pt = ppgtt->pd.page_table[pde]; 1430 1431 ppgtt->pd.page_table[pde] = vm->scratch_pt; 1432 free_pt(vm->dev, pt); 1433 } 1434 1435 mark_tlbs_dirty(ppgtt); 1436 return ret; 1437 } 1438 1439 static int gen6_init_scratch(struct i915_address_space *vm) 1440 { 1441 struct drm_device *dev = vm->dev; 1442 1443 vm->scratch_page = alloc_scratch_page(dev); 1444 if (IS_ERR(vm->scratch_page)) 1445 return PTR_ERR(vm->scratch_page); 1446 1447 vm->scratch_pt = alloc_pt(dev); 1448 if (IS_ERR(vm->scratch_pt)) { 1449 free_scratch_page(dev, vm->scratch_page); 1450 return PTR_ERR(vm->scratch_pt); 1451 } 1452 1453 gen6_initialize_pt(vm, vm->scratch_pt); 1454 1455 return 0; 1456 } 1457 1458 static void gen6_free_scratch(struct i915_address_space *vm) 1459 { 1460 struct drm_device *dev = vm->dev; 1461 1462 free_pt(dev, vm->scratch_pt); 1463 free_scratch_page(dev, vm->scratch_page); 1464 } 1465 1466 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1467 { 1468 struct i915_hw_ppgtt *ppgtt = 1469 container_of(vm, struct i915_hw_ppgtt, base); 1470 struct i915_page_table *pt; 1471 uint32_t pde; 1472 1473 drm_mm_remove_node(&ppgtt->node); 1474 1475 gen6_for_all_pdes(pt, ppgtt, pde) { 1476 if (pt != vm->scratch_pt) 1477 free_pt(ppgtt->base.dev, pt); 1478 } 1479 1480 gen6_free_scratch(vm); 1481 } 1482 1483 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) 1484 { 1485 struct i915_address_space *vm = &ppgtt->base; 1486 struct drm_device *dev = ppgtt->base.dev; 1487 struct drm_i915_private *dev_priv = dev->dev_private; 1488 bool retried = false; 1489 int ret; 1490 1491 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The 1492 * allocator works in address space sizes, so it's multiplied by page 1493 * size. We allocate at the top of the GTT to avoid fragmentation. 1494 */ 1495 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm)); 1496 1497 ret = gen6_init_scratch(vm); 1498 if (ret) 1499 return ret; 1500 1501 alloc: 1502 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm, 1503 &ppgtt->node, GEN6_PD_SIZE, 1504 GEN6_PD_ALIGN, 0, 1505 0, dev_priv->gtt.base.total, 1506 DRM_MM_TOPDOWN); 1507 if (ret == -ENOSPC && !retried) { 1508 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base, 1509 GEN6_PD_SIZE, GEN6_PD_ALIGN, 1510 I915_CACHE_NONE, 1511 0, dev_priv->gtt.base.total, 1512 0); 1513 if (ret) 1514 goto err_out; 1515 1516 retried = true; 1517 goto alloc; 1518 } 1519 1520 if (ret) 1521 goto err_out; 1522 1523 1524 if (ppgtt->node.start < dev_priv->gtt.mappable_end) 1525 DRM_DEBUG("Forced to use aperture for PDEs\n"); 1526 1527 return 0; 1528 1529 err_out: 1530 gen6_free_scratch(vm); 1531 return ret; 1532 } 1533 1534 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) 1535 { 1536 return gen6_ppgtt_allocate_page_directories(ppgtt); 1537 } 1538 1539 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, 1540 uint64_t start, uint64_t length) 1541 { 1542 struct i915_page_table *unused; 1543 uint32_t pde, temp; 1544 1545 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) 1546 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; 1547 } 1548 1549 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) 1550 { 1551 struct drm_device *dev = ppgtt->base.dev; 1552 struct drm_i915_private *dev_priv = dev->dev_private; 1553 int ret; 1554 1555 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; 1556 if (IS_GEN6(dev)) { 1557 ppgtt->switch_mm = gen6_mm_switch; 1558 } else if (IS_HASWELL(dev)) { 1559 ppgtt->switch_mm = hsw_mm_switch; 1560 } else if (IS_GEN7(dev)) { 1561 ppgtt->switch_mm = gen7_mm_switch; 1562 } else 1563 BUG(); 1564 1565 if (intel_vgpu_active(dev)) 1566 ppgtt->switch_mm = vgpu_mm_switch; 1567 1568 ret = gen6_ppgtt_alloc(ppgtt); 1569 if (ret) 1570 return ret; 1571 1572 ppgtt->base.allocate_va_range = gen6_alloc_va_range; 1573 ppgtt->base.clear_range = gen6_ppgtt_clear_range; 1574 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; 1575 ppgtt->base.unbind_vma = ppgtt_unbind_vma; 1576 ppgtt->base.bind_vma = ppgtt_bind_vma; 1577 ppgtt->base.cleanup = gen6_ppgtt_cleanup; 1578 ppgtt->base.start = 0; 1579 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; 1580 ppgtt->debug_dump = gen6_dump_ppgtt; 1581 1582 ppgtt->pd.base.ggtt_offset = 1583 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); 1584 1585 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm + 1586 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); 1587 1588 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); 1589 1590 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); 1591 1592 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", 1593 ppgtt->node.size >> 20, 1594 ppgtt->node.start / PAGE_SIZE); 1595 1596 DRM_DEBUG("Adding PPGTT at offset %x\n", 1597 ppgtt->pd.base.ggtt_offset << 10); 1598 1599 return 0; 1600 } 1601 1602 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) 1603 { 1604 ppgtt->base.dev = dev; 1605 1606 if (INTEL_INFO(dev)->gen < 8) 1607 return gen6_ppgtt_init(ppgtt); 1608 else 1609 return gen8_ppgtt_init(ppgtt); 1610 } 1611 1612 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) 1613 { 1614 struct drm_i915_private *dev_priv = dev->dev_private; 1615 int ret = 0; 1616 1617 ret = __hw_ppgtt_init(dev, ppgtt); 1618 if (ret == 0) { 1619 kref_init(&ppgtt->ref); 1620 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, 1621 ppgtt->base.total); 1622 i915_init_vm(dev_priv, &ppgtt->base); 1623 } 1624 1625 return ret; 1626 } 1627 1628 int i915_ppgtt_init_hw(struct drm_device *dev) 1629 { 1630 /* In the case of execlists, PPGTT is enabled by the context descriptor 1631 * and the PDPs are contained within the context itself. We don't 1632 * need to do anything here. */ 1633 if (i915.enable_execlists) 1634 return 0; 1635 1636 if (!USES_PPGTT(dev)) 1637 return 0; 1638 1639 if (IS_GEN6(dev)) 1640 gen6_ppgtt_enable(dev); 1641 else if (IS_GEN7(dev)) 1642 gen7_ppgtt_enable(dev); 1643 else if (INTEL_INFO(dev)->gen >= 8) 1644 gen8_ppgtt_enable(dev); 1645 else 1646 MISSING_CASE(INTEL_INFO(dev)->gen); 1647 1648 return 0; 1649 } 1650 1651 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req) 1652 { 1653 struct drm_i915_private *dev_priv = req->ring->dev->dev_private; 1654 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 1655 1656 if (i915.enable_execlists) 1657 return 0; 1658 1659 if (!ppgtt) 1660 return 0; 1661 1662 return ppgtt->switch_mm(ppgtt, req); 1663 } 1664 1665 struct i915_hw_ppgtt * 1666 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv) 1667 { 1668 struct i915_hw_ppgtt *ppgtt; 1669 int ret; 1670 1671 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1672 if (!ppgtt) 1673 return ERR_PTR(-ENOMEM); 1674 1675 ret = i915_ppgtt_init(dev, ppgtt); 1676 if (ret) { 1677 kfree(ppgtt); 1678 return ERR_PTR(ret); 1679 } 1680 1681 ppgtt->file_priv = fpriv; 1682 1683 trace_i915_ppgtt_create(&ppgtt->base); 1684 1685 return ppgtt; 1686 } 1687 1688 void i915_ppgtt_release(struct kref *kref) 1689 { 1690 struct i915_hw_ppgtt *ppgtt = 1691 container_of(kref, struct i915_hw_ppgtt, ref); 1692 1693 trace_i915_ppgtt_release(&ppgtt->base); 1694 1695 /* vmas should already be unbound */ 1696 WARN_ON(!list_empty(&ppgtt->base.active_list)); 1697 WARN_ON(!list_empty(&ppgtt->base.inactive_list)); 1698 1699 list_del(&ppgtt->base.global_link); 1700 drm_mm_takedown(&ppgtt->base.mm); 1701 1702 ppgtt->base.cleanup(&ppgtt->base); 1703 kfree(ppgtt); 1704 } 1705 1706 extern int intel_iommu_gfx_mapped; 1707 /* Certain Gen5 chipsets require require idling the GPU before 1708 * unmapping anything from the GTT when VT-d is enabled. 1709 */ 1710 static bool needs_idle_maps(struct drm_device *dev) 1711 { 1712 #ifdef CONFIG_INTEL_IOMMU 1713 /* Query intel_iommu to see if we need the workaround. Presumably that 1714 * was loaded first. 1715 */ 1716 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) 1717 return true; 1718 #endif 1719 return false; 1720 } 1721 1722 static bool do_idling(struct drm_i915_private *dev_priv) 1723 { 1724 bool ret = dev_priv->mm.interruptible; 1725 1726 if (unlikely(dev_priv->gtt.do_idle_maps)) { 1727 dev_priv->mm.interruptible = false; 1728 if (i915_gpu_idle(dev_priv->dev)) { 1729 DRM_ERROR("Couldn't idle GPU\n"); 1730 /* Wait a bit, in hopes it avoids the hang */ 1731 udelay(10); 1732 } 1733 } 1734 1735 return ret; 1736 } 1737 1738 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) 1739 { 1740 if (unlikely(dev_priv->gtt.do_idle_maps)) 1741 dev_priv->mm.interruptible = interruptible; 1742 } 1743 1744 void i915_check_and_clear_faults(struct drm_device *dev) 1745 { 1746 struct drm_i915_private *dev_priv = dev->dev_private; 1747 struct intel_engine_cs *ring; 1748 int i; 1749 1750 if (INTEL_INFO(dev)->gen < 6) 1751 return; 1752 1753 for_each_ring(ring, dev_priv, i) { 1754 u32 fault_reg; 1755 fault_reg = I915_READ(RING_FAULT_REG(ring)); 1756 if (fault_reg & RING_FAULT_VALID) { 1757 DRM_DEBUG_DRIVER("Unexpected fault\n" 1758 "\tAddr: 0x%08lx\n" 1759 "\tAddress space: %s\n" 1760 "\tSource ID: %d\n" 1761 "\tType: %d\n", 1762 fault_reg & PAGE_MASK, 1763 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 1764 RING_FAULT_SRCID(fault_reg), 1765 RING_FAULT_FAULT_TYPE(fault_reg)); 1766 I915_WRITE(RING_FAULT_REG(ring), 1767 fault_reg & ~RING_FAULT_VALID); 1768 } 1769 } 1770 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); 1771 } 1772 1773 static void i915_ggtt_flush(struct drm_i915_private *dev_priv) 1774 { 1775 if (INTEL_INFO(dev_priv->dev)->gen < 6) { 1776 intel_gtt_chipset_flush(); 1777 } else { 1778 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 1779 POSTING_READ(GFX_FLSH_CNTL_GEN6); 1780 } 1781 } 1782 1783 void i915_gem_suspend_gtt_mappings(struct drm_device *dev) 1784 { 1785 struct drm_i915_private *dev_priv = dev->dev_private; 1786 1787 /* Don't bother messing with faults pre GEN6 as we have little 1788 * documentation supporting that it's a good idea. 1789 */ 1790 if (INTEL_INFO(dev)->gen < 6) 1791 return; 1792 1793 i915_check_and_clear_faults(dev); 1794 1795 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, 1796 dev_priv->gtt.base.start, 1797 dev_priv->gtt.base.total, 1798 true); 1799 1800 i915_ggtt_flush(dev_priv); 1801 } 1802 1803 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) 1804 { 1805 if (!dma_map_sg(&obj->base.dev->pdev->dev, 1806 obj->pages->sgl, obj->pages->nents, 1807 PCI_DMA_BIDIRECTIONAL)) 1808 return -ENOSPC; 1809 1810 return 0; 1811 } 1812 1813 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 1814 { 1815 #ifdef writeq 1816 writeq(pte, addr); 1817 #else 1818 iowrite32((u32)pte, addr); 1819 iowrite32(pte >> 32, addr + 4); 1820 #endif 1821 } 1822 1823 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 1824 struct sg_table *st, 1825 uint64_t start, 1826 enum i915_cache_level level, u32 unused) 1827 { 1828 struct drm_i915_private *dev_priv = vm->dev->dev_private; 1829 unsigned first_entry = start >> PAGE_SHIFT; 1830 gen8_pte_t __iomem *gtt_entries = 1831 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; 1832 int i = 0; 1833 struct sg_page_iter sg_iter; 1834 dma_addr_t addr = 0; /* shut up gcc */ 1835 1836 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { 1837 addr = sg_dma_address(sg_iter.sg) + 1838 (sg_iter.sg_pgoffset << PAGE_SHIFT); 1839 gen8_set_pte(>t_entries[i], 1840 gen8_pte_encode(addr, level, true)); 1841 i++; 1842 } 1843 1844 /* 1845 * XXX: This serves as a posting read to make sure that the PTE has 1846 * actually been updated. There is some concern that even though 1847 * registers and PTEs are within the same BAR that they are potentially 1848 * of NUMA access patterns. Therefore, even with the way we assume 1849 * hardware should work, we must keep this posting read for paranoia. 1850 */ 1851 if (i != 0) 1852 WARN_ON(readq(>t_entries[i-1]) 1853 != gen8_pte_encode(addr, level, true)); 1854 1855 /* This next bit makes the above posting read even more important. We 1856 * want to flush the TLBs only after we're certain all the PTE updates 1857 * have finished. 1858 */ 1859 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 1860 POSTING_READ(GFX_FLSH_CNTL_GEN6); 1861 } 1862 1863 /* 1864 * Binds an object into the global gtt with the specified cache level. The object 1865 * will be accessible to the GPU via commands whose operands reference offsets 1866 * within the global GTT as well as accessible by the GPU through the GMADR 1867 * mapped BAR (dev_priv->mm.gtt->gtt). 1868 */ 1869 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 1870 struct sg_table *st, 1871 uint64_t start, 1872 enum i915_cache_level level, u32 flags) 1873 { 1874 struct drm_i915_private *dev_priv = vm->dev->dev_private; 1875 unsigned first_entry = start >> PAGE_SHIFT; 1876 gen6_pte_t __iomem *gtt_entries = 1877 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; 1878 int i = 0; 1879 struct sg_page_iter sg_iter; 1880 dma_addr_t addr = 0; 1881 1882 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { 1883 addr = sg_page_iter_dma_address(&sg_iter); 1884 iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]); 1885 i++; 1886 } 1887 1888 /* XXX: This serves as a posting read to make sure that the PTE has 1889 * actually been updated. There is some concern that even though 1890 * registers and PTEs are within the same BAR that they are potentially 1891 * of NUMA access patterns. Therefore, even with the way we assume 1892 * hardware should work, we must keep this posting read for paranoia. 1893 */ 1894 if (i != 0) { 1895 unsigned long gtt = readl(>t_entries[i-1]); 1896 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags)); 1897 } 1898 1899 /* This next bit makes the above posting read even more important. We 1900 * want to flush the TLBs only after we're certain all the PTE updates 1901 * have finished. 1902 */ 1903 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 1904 POSTING_READ(GFX_FLSH_CNTL_GEN6); 1905 } 1906 1907 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 1908 uint64_t start, 1909 uint64_t length, 1910 bool use_scratch) 1911 { 1912 struct drm_i915_private *dev_priv = vm->dev->dev_private; 1913 unsigned first_entry = start >> PAGE_SHIFT; 1914 unsigned num_entries = length >> PAGE_SHIFT; 1915 gen8_pte_t scratch_pte, __iomem *gtt_base = 1916 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; 1917 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; 1918 int i; 1919 1920 if (WARN(num_entries > max_entries, 1921 "First entry = %d; Num entries = %d (max=%d)\n", 1922 first_entry, num_entries, max_entries)) 1923 num_entries = max_entries; 1924 1925 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page), 1926 I915_CACHE_LLC, 1927 use_scratch); 1928 for (i = 0; i < num_entries; i++) 1929 gen8_set_pte(>t_base[i], scratch_pte); 1930 readl(gtt_base); 1931 } 1932 1933 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 1934 uint64_t start, 1935 uint64_t length, 1936 bool use_scratch) 1937 { 1938 struct drm_i915_private *dev_priv = vm->dev->dev_private; 1939 unsigned first_entry = start >> PAGE_SHIFT; 1940 unsigned num_entries = length >> PAGE_SHIFT; 1941 gen6_pte_t scratch_pte, __iomem *gtt_base = 1942 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; 1943 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; 1944 int i; 1945 1946 if (WARN(num_entries > max_entries, 1947 "First entry = %d; Num entries = %d (max=%d)\n", 1948 first_entry, num_entries, max_entries)) 1949 num_entries = max_entries; 1950 1951 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), 1952 I915_CACHE_LLC, use_scratch, 0); 1953 1954 for (i = 0; i < num_entries; i++) 1955 iowrite32(scratch_pte, >t_base[i]); 1956 readl(gtt_base); 1957 } 1958 1959 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 1960 struct sg_table *pages, 1961 uint64_t start, 1962 enum i915_cache_level cache_level, u32 unused) 1963 { 1964 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 1965 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 1966 1967 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); 1968 1969 } 1970 1971 static void i915_ggtt_clear_range(struct i915_address_space *vm, 1972 uint64_t start, 1973 uint64_t length, 1974 bool unused) 1975 { 1976 unsigned first_entry = start >> PAGE_SHIFT; 1977 unsigned num_entries = length >> PAGE_SHIFT; 1978 intel_gtt_clear_range(first_entry, num_entries); 1979 } 1980 1981 static int ggtt_bind_vma(struct i915_vma *vma, 1982 enum i915_cache_level cache_level, 1983 u32 flags) 1984 { 1985 struct drm_device *dev = vma->vm->dev; 1986 struct drm_i915_private *dev_priv = dev->dev_private; 1987 struct drm_i915_gem_object *obj = vma->obj; 1988 struct sg_table *pages = obj->pages; 1989 u32 pte_flags = 0; 1990 int ret; 1991 1992 ret = i915_get_ggtt_vma_pages(vma); 1993 if (ret) 1994 return ret; 1995 pages = vma->ggtt_view.pages; 1996 1997 /* Currently applicable only to VLV */ 1998 if (obj->gt_ro) 1999 pte_flags |= PTE_READ_ONLY; 2000 2001 2002 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) { 2003 vma->vm->insert_entries(vma->vm, pages, 2004 vma->node.start, 2005 cache_level, pte_flags); 2006 2007 /* Note the inconsistency here is due to absence of the 2008 * aliasing ppgtt on gen4 and earlier. Though we always 2009 * request PIN_USER for execbuffer (translated to LOCAL_BIND), 2010 * without the appgtt, we cannot honour that request and so 2011 * must substitute it with a global binding. Since we do this 2012 * behind the upper layers back, we need to explicitly set 2013 * the bound flag ourselves. 2014 */ 2015 vma->bound |= GLOBAL_BIND; 2016 2017 } 2018 2019 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) { 2020 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; 2021 appgtt->base.insert_entries(&appgtt->base, pages, 2022 vma->node.start, 2023 cache_level, pte_flags); 2024 } 2025 2026 return 0; 2027 } 2028 2029 static void ggtt_unbind_vma(struct i915_vma *vma) 2030 { 2031 struct drm_device *dev = vma->vm->dev; 2032 struct drm_i915_private *dev_priv = dev->dev_private; 2033 struct drm_i915_gem_object *obj = vma->obj; 2034 const uint64_t size = min_t(uint64_t, 2035 obj->base.size, 2036 vma->node.size); 2037 2038 if (vma->bound & GLOBAL_BIND) { 2039 vma->vm->clear_range(vma->vm, 2040 vma->node.start, 2041 size, 2042 true); 2043 } 2044 2045 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) { 2046 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; 2047 2048 appgtt->base.clear_range(&appgtt->base, 2049 vma->node.start, 2050 size, 2051 true); 2052 } 2053 } 2054 2055 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) 2056 { 2057 struct drm_device *dev = obj->base.dev; 2058 struct drm_i915_private *dev_priv = dev->dev_private; 2059 bool interruptible; 2060 2061 interruptible = do_idling(dev_priv); 2062 2063 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents, 2064 PCI_DMA_BIDIRECTIONAL); 2065 2066 undo_idling(dev_priv, interruptible); 2067 } 2068 2069 static void i915_gtt_color_adjust(struct drm_mm_node *node, 2070 unsigned long color, 2071 u64 *start, 2072 u64 *end) 2073 { 2074 if (node->color != color) 2075 *start += 4096; 2076 2077 if (!list_empty(&node->node_list)) { 2078 node = list_entry(node->node_list.next, 2079 struct drm_mm_node, 2080 node_list); 2081 if (node->allocated && node->color != color) 2082 *end -= 4096; 2083 } 2084 } 2085 2086 static int i915_gem_setup_global_gtt(struct drm_device *dev, 2087 unsigned long start, 2088 unsigned long mappable_end, 2089 unsigned long end) 2090 { 2091 /* Let GEM Manage all of the aperture. 2092 * 2093 * However, leave one page at the end still bound to the scratch page. 2094 * There are a number of places where the hardware apparently prefetches 2095 * past the end of the object, and we've seen multiple hangs with the 2096 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2097 * aperture. One page should be enough to keep any prefetching inside 2098 * of the aperture. 2099 */ 2100 struct drm_i915_private *dev_priv = dev->dev_private; 2101 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; 2102 struct drm_mm_node *entry; 2103 struct drm_i915_gem_object *obj; 2104 unsigned long hole_start, hole_end; 2105 int ret; 2106 2107 BUG_ON(mappable_end > end); 2108 2109 /* Subtract the guard page ... */ 2110 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); 2111 2112 dev_priv->gtt.base.start = start; 2113 dev_priv->gtt.base.total = end - start; 2114 2115 if (intel_vgpu_active(dev)) { 2116 ret = intel_vgt_balloon(dev); 2117 if (ret) 2118 return ret; 2119 } 2120 2121 if (!HAS_LLC(dev)) 2122 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; 2123 2124 /* Mark any preallocated objects as occupied */ 2125 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 2126 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); 2127 2128 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", 2129 i915_gem_obj_ggtt_offset(obj), obj->base.size); 2130 2131 WARN_ON(i915_gem_obj_ggtt_bound(obj)); 2132 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); 2133 if (ret) { 2134 DRM_DEBUG_KMS("Reservation failed: %i\n", ret); 2135 return ret; 2136 } 2137 vma->bound |= GLOBAL_BIND; 2138 } 2139 2140 /* Clear any non-preallocated blocks */ 2141 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { 2142 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2143 hole_start, hole_end); 2144 ggtt_vm->clear_range(ggtt_vm, hole_start, 2145 hole_end - hole_start, true); 2146 } 2147 2148 /* And finally clear the reserved guard page */ 2149 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true); 2150 2151 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) { 2152 struct i915_hw_ppgtt *ppgtt; 2153 2154 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 2155 if (!ppgtt) 2156 return -ENOMEM; 2157 2158 ret = __hw_ppgtt_init(dev, ppgtt); 2159 if (ret) { 2160 ppgtt->base.cleanup(&ppgtt->base); 2161 kfree(ppgtt); 2162 return ret; 2163 } 2164 2165 if (ppgtt->base.allocate_va_range) 2166 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0, 2167 ppgtt->base.total); 2168 if (ret) { 2169 ppgtt->base.cleanup(&ppgtt->base); 2170 kfree(ppgtt); 2171 return ret; 2172 } 2173 2174 ppgtt->base.clear_range(&ppgtt->base, 2175 ppgtt->base.start, 2176 ppgtt->base.total, 2177 true); 2178 2179 dev_priv->mm.aliasing_ppgtt = ppgtt; 2180 } 2181 2182 return 0; 2183 } 2184 2185 void i915_gem_init_global_gtt(struct drm_device *dev) 2186 { 2187 struct drm_i915_private *dev_priv = dev->dev_private; 2188 u64 gtt_size, mappable_size; 2189 2190 gtt_size = dev_priv->gtt.base.total; 2191 mappable_size = dev_priv->gtt.mappable_end; 2192 2193 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); 2194 } 2195 2196 void i915_global_gtt_cleanup(struct drm_device *dev) 2197 { 2198 struct drm_i915_private *dev_priv = dev->dev_private; 2199 struct i915_address_space *vm = &dev_priv->gtt.base; 2200 2201 if (dev_priv->mm.aliasing_ppgtt) { 2202 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 2203 2204 ppgtt->base.cleanup(&ppgtt->base); 2205 } 2206 2207 if (drm_mm_initialized(&vm->mm)) { 2208 if (intel_vgpu_active(dev)) 2209 intel_vgt_deballoon(); 2210 2211 drm_mm_takedown(&vm->mm); 2212 list_del(&vm->global_link); 2213 } 2214 2215 vm->cleanup(vm); 2216 } 2217 2218 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2219 { 2220 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2221 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2222 return snb_gmch_ctl << 20; 2223 } 2224 2225 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2226 { 2227 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2228 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2229 if (bdw_gmch_ctl) 2230 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2231 2232 #ifdef CONFIG_X86_32 2233 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ 2234 if (bdw_gmch_ctl > 4) 2235 bdw_gmch_ctl = 4; 2236 #endif 2237 2238 return bdw_gmch_ctl << 20; 2239 } 2240 2241 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2242 { 2243 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2244 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2245 2246 if (gmch_ctrl) 2247 return 1 << (20 + gmch_ctrl); 2248 2249 return 0; 2250 } 2251 2252 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) 2253 { 2254 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; 2255 snb_gmch_ctl &= SNB_GMCH_GMS_MASK; 2256 return snb_gmch_ctl << 25; /* 32 MB units */ 2257 } 2258 2259 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) 2260 { 2261 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2262 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; 2263 return bdw_gmch_ctl << 25; /* 32 MB units */ 2264 } 2265 2266 static size_t chv_get_stolen_size(u16 gmch_ctrl) 2267 { 2268 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; 2269 gmch_ctrl &= SNB_GMCH_GMS_MASK; 2270 2271 /* 2272 * 0x0 to 0x10: 32MB increments starting at 0MB 2273 * 0x11 to 0x16: 4MB increments starting at 8MB 2274 * 0x17 to 0x1d: 4MB increments start at 36MB 2275 */ 2276 if (gmch_ctrl < 0x11) 2277 return gmch_ctrl << 25; 2278 else if (gmch_ctrl < 0x17) 2279 return (gmch_ctrl - 0x11 + 2) << 22; 2280 else 2281 return (gmch_ctrl - 0x17 + 9) << 22; 2282 } 2283 2284 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) 2285 { 2286 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; 2287 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; 2288 2289 if (gen9_gmch_ctl < 0xf0) 2290 return gen9_gmch_ctl << 25; /* 32 MB units */ 2291 else 2292 /* 4MB increments starting at 0xf0 for 4MB */ 2293 return (gen9_gmch_ctl - 0xf0 + 1) << 22; 2294 } 2295 2296 static int ggtt_probe_common(struct drm_device *dev, 2297 size_t gtt_size) 2298 { 2299 struct drm_i915_private *dev_priv = dev->dev_private; 2300 struct i915_page_scratch *scratch_page; 2301 phys_addr_t gtt_phys_addr; 2302 2303 /* For Modern GENs the PTEs and register space are split in the BAR */ 2304 gtt_phys_addr = pci_resource_start(dev->pdev, 0) + 2305 (pci_resource_len(dev->pdev, 0) / 2); 2306 2307 /* 2308 * On BXT writes larger than 64 bit to the GTT pagetable range will be 2309 * dropped. For WC mappings in general we have 64 byte burst writes 2310 * when the WC buffer is flushed, so we can't use it, but have to 2311 * resort to an uncached mapping. The WC issue is easily caught by the 2312 * readback check when writing GTT PTE entries. 2313 */ 2314 if (IS_BROXTON(dev)) 2315 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size); 2316 else 2317 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); 2318 if (!dev_priv->gtt.gsm) { 2319 DRM_ERROR("Failed to map the gtt page table\n"); 2320 return -ENOMEM; 2321 } 2322 2323 scratch_page = alloc_scratch_page(dev); 2324 if (IS_ERR(scratch_page)) { 2325 DRM_ERROR("Scratch setup failed\n"); 2326 /* iounmap will also get called at remove, but meh */ 2327 iounmap(dev_priv->gtt.gsm); 2328 return PTR_ERR(scratch_page); 2329 } 2330 2331 dev_priv->gtt.base.scratch_page = scratch_page; 2332 2333 return 0; 2334 } 2335 2336 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 2337 * bits. When using advanced contexts each context stores its own PAT, but 2338 * writing this data shouldn't be harmful even in those cases. */ 2339 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) 2340 { 2341 uint64_t pat; 2342 2343 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 2344 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 2345 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ 2346 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 2347 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 2348 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 2349 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 2350 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 2351 2352 if (!USES_PPGTT(dev_priv->dev)) 2353 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 2354 * so RTL will always use the value corresponding to 2355 * pat_sel = 000". 2356 * So let's disable cache for GGTT to avoid screen corruptions. 2357 * MOCS still can be used though. 2358 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 2359 * before this patch, i.e. the same uncached + snooping access 2360 * like on gen6/7 seems to be in effect. 2361 * - So this just fixes blitter/render access. Again it looks 2362 * like it's not just uncached access, but uncached + snooping. 2363 * So we can still hold onto all our assumptions wrt cpu 2364 * clflushing on LLC machines. 2365 */ 2366 pat = GEN8_PPAT(0, GEN8_PPAT_UC); 2367 2368 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b 2369 * write would work. */ 2370 I915_WRITE(GEN8_PRIVATE_PAT, pat); 2371 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); 2372 } 2373 2374 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) 2375 { 2376 uint64_t pat; 2377 2378 /* 2379 * Map WB on BDW to snooped on CHV. 2380 * 2381 * Only the snoop bit has meaning for CHV, the rest is 2382 * ignored. 2383 * 2384 * The hardware will never snoop for certain types of accesses: 2385 * - CPU GTT (GMADR->GGTT->no snoop->memory) 2386 * - PPGTT page tables 2387 * - some other special cycles 2388 * 2389 * As with BDW, we also need to consider the following for GT accesses: 2390 * "For GGTT, there is NO pat_sel[2:0] from the entry, 2391 * so RTL will always use the value corresponding to 2392 * pat_sel = 000". 2393 * Which means we must set the snoop bit in PAT entry 0 2394 * in order to keep the global status page working. 2395 */ 2396 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 2397 GEN8_PPAT(1, 0) | 2398 GEN8_PPAT(2, 0) | 2399 GEN8_PPAT(3, 0) | 2400 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 2401 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 2402 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 2403 GEN8_PPAT(7, CHV_PPAT_SNOOP); 2404 2405 I915_WRITE(GEN8_PRIVATE_PAT, pat); 2406 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); 2407 } 2408 2409 static int gen8_gmch_probe(struct drm_device *dev, 2410 u64 *gtt_total, 2411 size_t *stolen, 2412 phys_addr_t *mappable_base, 2413 u64 *mappable_end) 2414 { 2415 struct drm_i915_private *dev_priv = dev->dev_private; 2416 u64 gtt_size; 2417 u16 snb_gmch_ctl; 2418 int ret; 2419 2420 /* TODO: We're not aware of mappable constraints on gen8 yet */ 2421 *mappable_base = pci_resource_start(dev->pdev, 2); 2422 *mappable_end = pci_resource_len(dev->pdev, 2); 2423 2424 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) 2425 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); 2426 2427 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2428 2429 if (INTEL_INFO(dev)->gen >= 9) { 2430 *stolen = gen9_get_stolen_size(snb_gmch_ctl); 2431 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); 2432 } else if (IS_CHERRYVIEW(dev)) { 2433 *stolen = chv_get_stolen_size(snb_gmch_ctl); 2434 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl); 2435 } else { 2436 *stolen = gen8_get_stolen_size(snb_gmch_ctl); 2437 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); 2438 } 2439 2440 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT; 2441 2442 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) 2443 chv_setup_private_ppat(dev_priv); 2444 else 2445 bdw_setup_private_ppat(dev_priv); 2446 2447 ret = ggtt_probe_common(dev, gtt_size); 2448 2449 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; 2450 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; 2451 dev_priv->gtt.base.bind_vma = ggtt_bind_vma; 2452 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; 2453 2454 return ret; 2455 } 2456 2457 static int gen6_gmch_probe(struct drm_device *dev, 2458 u64 *gtt_total, 2459 size_t *stolen, 2460 phys_addr_t *mappable_base, 2461 u64 *mappable_end) 2462 { 2463 struct drm_i915_private *dev_priv = dev->dev_private; 2464 unsigned int gtt_size; 2465 u16 snb_gmch_ctl; 2466 int ret; 2467 2468 *mappable_base = pci_resource_start(dev->pdev, 2); 2469 *mappable_end = pci_resource_len(dev->pdev, 2); 2470 2471 /* 64/512MB is the current min/max we actually know of, but this is just 2472 * a coarse sanity check. 2473 */ 2474 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { 2475 DRM_ERROR("Unknown GMADR size (%llx)\n", 2476 dev_priv->gtt.mappable_end); 2477 return -ENXIO; 2478 } 2479 2480 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) 2481 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); 2482 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 2483 2484 *stolen = gen6_get_stolen_size(snb_gmch_ctl); 2485 2486 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); 2487 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT; 2488 2489 ret = ggtt_probe_common(dev, gtt_size); 2490 2491 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; 2492 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; 2493 dev_priv->gtt.base.bind_vma = ggtt_bind_vma; 2494 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; 2495 2496 return ret; 2497 } 2498 2499 static void gen6_gmch_remove(struct i915_address_space *vm) 2500 { 2501 2502 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); 2503 2504 iounmap(gtt->gsm); 2505 free_scratch_page(vm->dev, vm->scratch_page); 2506 } 2507 2508 static int i915_gmch_probe(struct drm_device *dev, 2509 u64 *gtt_total, 2510 size_t *stolen, 2511 phys_addr_t *mappable_base, 2512 u64 *mappable_end) 2513 { 2514 struct drm_i915_private *dev_priv = dev->dev_private; 2515 int ret; 2516 2517 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); 2518 if (!ret) { 2519 DRM_ERROR("failed to set up gmch\n"); 2520 return -EIO; 2521 } 2522 2523 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); 2524 2525 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); 2526 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries; 2527 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; 2528 dev_priv->gtt.base.bind_vma = ggtt_bind_vma; 2529 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; 2530 2531 if (unlikely(dev_priv->gtt.do_idle_maps)) 2532 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 2533 2534 return 0; 2535 } 2536 2537 static void i915_gmch_remove(struct i915_address_space *vm) 2538 { 2539 intel_gmch_remove(); 2540 } 2541 2542 int i915_gem_gtt_init(struct drm_device *dev) 2543 { 2544 struct drm_i915_private *dev_priv = dev->dev_private; 2545 struct i915_gtt *gtt = &dev_priv->gtt; 2546 int ret; 2547 2548 if (INTEL_INFO(dev)->gen <= 5) { 2549 gtt->gtt_probe = i915_gmch_probe; 2550 gtt->base.cleanup = i915_gmch_remove; 2551 } else if (INTEL_INFO(dev)->gen < 8) { 2552 gtt->gtt_probe = gen6_gmch_probe; 2553 gtt->base.cleanup = gen6_gmch_remove; 2554 if (IS_HASWELL(dev) && dev_priv->ellc_size) 2555 gtt->base.pte_encode = iris_pte_encode; 2556 else if (IS_HASWELL(dev)) 2557 gtt->base.pte_encode = hsw_pte_encode; 2558 else if (IS_VALLEYVIEW(dev)) 2559 gtt->base.pte_encode = byt_pte_encode; 2560 else if (INTEL_INFO(dev)->gen >= 7) 2561 gtt->base.pte_encode = ivb_pte_encode; 2562 else 2563 gtt->base.pte_encode = snb_pte_encode; 2564 } else { 2565 dev_priv->gtt.gtt_probe = gen8_gmch_probe; 2566 dev_priv->gtt.base.cleanup = gen6_gmch_remove; 2567 } 2568 2569 gtt->base.dev = dev; 2570 2571 ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, 2572 >t->mappable_base, >t->mappable_end); 2573 if (ret) 2574 return ret; 2575 2576 /* GMADR is the PCI mmio aperture into the global GTT. */ 2577 DRM_INFO("Memory usable by graphics device = %lluM\n", 2578 gtt->base.total >> 20); 2579 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20); 2580 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); 2581 #ifdef CONFIG_INTEL_IOMMU 2582 if (intel_iommu_gfx_mapped) 2583 DRM_INFO("VT-d active for gfx access\n"); 2584 #endif 2585 /* 2586 * i915.enable_ppgtt is read-only, so do an early pass to validate the 2587 * user's requested state against the hardware/driver capabilities. We 2588 * do this now so that we can print out any log messages once rather 2589 * than every time we check intel_enable_ppgtt(). 2590 */ 2591 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt); 2592 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt); 2593 2594 return 0; 2595 } 2596 2597 void i915_gem_restore_gtt_mappings(struct drm_device *dev) 2598 { 2599 struct drm_i915_private *dev_priv = dev->dev_private; 2600 struct drm_i915_gem_object *obj; 2601 struct i915_address_space *vm; 2602 struct i915_vma *vma; 2603 bool flush; 2604 2605 i915_check_and_clear_faults(dev); 2606 2607 /* First fill our portion of the GTT with scratch pages */ 2608 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, 2609 dev_priv->gtt.base.start, 2610 dev_priv->gtt.base.total, 2611 true); 2612 2613 /* Cache flush objects bound into GGTT and rebind them. */ 2614 vm = &dev_priv->gtt.base; 2615 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 2616 flush = false; 2617 list_for_each_entry(vma, &obj->vma_list, vma_link) { 2618 if (vma->vm != vm) 2619 continue; 2620 2621 WARN_ON(i915_vma_bind(vma, obj->cache_level, 2622 PIN_UPDATE)); 2623 2624 flush = true; 2625 } 2626 2627 if (flush) 2628 i915_gem_clflush_object(obj, obj->pin_display); 2629 } 2630 2631 if (INTEL_INFO(dev)->gen >= 8) { 2632 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) 2633 chv_setup_private_ppat(dev_priv); 2634 else 2635 bdw_setup_private_ppat(dev_priv); 2636 2637 return; 2638 } 2639 2640 if (USES_PPGTT(dev)) { 2641 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2642 /* TODO: Perhaps it shouldn't be gen6 specific */ 2643 2644 struct i915_hw_ppgtt *ppgtt = 2645 container_of(vm, struct i915_hw_ppgtt, 2646 base); 2647 2648 if (i915_is_ggtt(vm)) 2649 ppgtt = dev_priv->mm.aliasing_ppgtt; 2650 2651 gen6_write_page_range(dev_priv, &ppgtt->pd, 2652 0, ppgtt->base.total); 2653 } 2654 } 2655 2656 i915_ggtt_flush(dev_priv); 2657 } 2658 2659 static struct i915_vma * 2660 __i915_gem_vma_create(struct drm_i915_gem_object *obj, 2661 struct i915_address_space *vm, 2662 const struct i915_ggtt_view *ggtt_view) 2663 { 2664 struct i915_vma *vma; 2665 2666 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) 2667 return ERR_PTR(-EINVAL); 2668 2669 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL); 2670 if (vma == NULL) 2671 return ERR_PTR(-ENOMEM); 2672 2673 INIT_LIST_HEAD(&vma->vma_link); 2674 INIT_LIST_HEAD(&vma->mm_list); 2675 INIT_LIST_HEAD(&vma->exec_list); 2676 vma->vm = vm; 2677 vma->obj = obj; 2678 2679 if (i915_is_ggtt(vm)) 2680 vma->ggtt_view = *ggtt_view; 2681 2682 list_add_tail(&vma->vma_link, &obj->vma_list); 2683 if (!i915_is_ggtt(vm)) 2684 i915_ppgtt_get(i915_vm_to_ppgtt(vm)); 2685 2686 return vma; 2687 } 2688 2689 struct i915_vma * 2690 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 2691 struct i915_address_space *vm) 2692 { 2693 struct i915_vma *vma; 2694 2695 vma = i915_gem_obj_to_vma(obj, vm); 2696 if (!vma) 2697 vma = __i915_gem_vma_create(obj, vm, 2698 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL); 2699 2700 return vma; 2701 } 2702 2703 struct i915_vma * 2704 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 2705 const struct i915_ggtt_view *view) 2706 { 2707 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); 2708 struct i915_vma *vma; 2709 2710 if (WARN_ON(!view)) 2711 return ERR_PTR(-EINVAL); 2712 2713 vma = i915_gem_obj_to_ggtt_view(obj, view); 2714 2715 if (IS_ERR(vma)) 2716 return vma; 2717 2718 if (!vma) 2719 vma = __i915_gem_vma_create(obj, ggtt, view); 2720 2721 return vma; 2722 2723 } 2724 2725 static void 2726 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height, 2727 struct sg_table *st) 2728 { 2729 unsigned int column, row; 2730 unsigned int src_idx; 2731 struct scatterlist *sg = st->sgl; 2732 2733 st->nents = 0; 2734 2735 for (column = 0; column < width; column++) { 2736 src_idx = width * (height - 1) + column; 2737 for (row = 0; row < height; row++) { 2738 st->nents++; 2739 /* We don't need the pages, but need to initialize 2740 * the entries so the sg list can be happily traversed. 2741 * The only thing we need are DMA addresses. 2742 */ 2743 sg_set_page(sg, NULL, PAGE_SIZE, 0); 2744 sg_dma_address(sg) = in[src_idx]; 2745 sg_dma_len(sg) = PAGE_SIZE; 2746 sg = sg_next(sg); 2747 src_idx -= width; 2748 } 2749 } 2750 } 2751 2752 static struct sg_table * 2753 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view, 2754 struct drm_i915_gem_object *obj) 2755 { 2756 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info; 2757 unsigned int size_pages = rot_info->size >> PAGE_SHIFT; 2758 struct sg_page_iter sg_iter; 2759 unsigned long i; 2760 dma_addr_t *page_addr_list; 2761 struct sg_table *st; 2762 int ret = -ENOMEM; 2763 2764 /* Allocate a temporary list of source pages for random access. */ 2765 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE, 2766 sizeof(dma_addr_t)); 2767 if (!page_addr_list) 2768 return ERR_PTR(ret); 2769 2770 /* Allocate target SG list. */ 2771 st = kmalloc(sizeof(*st), GFP_KERNEL); 2772 if (!st) 2773 goto err_st_alloc; 2774 2775 ret = sg_alloc_table(st, size_pages, GFP_KERNEL); 2776 if (ret) 2777 goto err_sg_alloc; 2778 2779 /* Populate source page list from the object. */ 2780 i = 0; 2781 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 2782 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter); 2783 i++; 2784 } 2785 2786 /* Rotate the pages. */ 2787 rotate_pages(page_addr_list, 2788 rot_info->width_pages, rot_info->height_pages, 2789 st); 2790 2791 DRM_DEBUG_KMS( 2792 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n", 2793 obj->base.size, rot_info->pitch, rot_info->height, 2794 rot_info->pixel_format, rot_info->width_pages, 2795 rot_info->height_pages, size_pages); 2796 2797 drm_free_large(page_addr_list); 2798 2799 return st; 2800 2801 err_sg_alloc: 2802 kfree(st); 2803 err_st_alloc: 2804 drm_free_large(page_addr_list); 2805 2806 DRM_DEBUG_KMS( 2807 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n", 2808 obj->base.size, ret, rot_info->pitch, rot_info->height, 2809 rot_info->pixel_format, rot_info->width_pages, 2810 rot_info->height_pages, size_pages); 2811 return ERR_PTR(ret); 2812 } 2813 2814 static struct sg_table * 2815 intel_partial_pages(const struct i915_ggtt_view *view, 2816 struct drm_i915_gem_object *obj) 2817 { 2818 struct sg_table *st; 2819 struct scatterlist *sg; 2820 struct sg_page_iter obj_sg_iter; 2821 int ret = -ENOMEM; 2822 2823 st = kmalloc(sizeof(*st), GFP_KERNEL); 2824 if (!st) 2825 goto err_st_alloc; 2826 2827 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL); 2828 if (ret) 2829 goto err_sg_alloc; 2830 2831 sg = st->sgl; 2832 st->nents = 0; 2833 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents, 2834 view->params.partial.offset) 2835 { 2836 if (st->nents >= view->params.partial.size) 2837 break; 2838 2839 sg_set_page(sg, NULL, PAGE_SIZE, 0); 2840 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter); 2841 sg_dma_len(sg) = PAGE_SIZE; 2842 2843 sg = sg_next(sg); 2844 st->nents++; 2845 } 2846 2847 return st; 2848 2849 err_sg_alloc: 2850 kfree(st); 2851 err_st_alloc: 2852 return ERR_PTR(ret); 2853 } 2854 2855 static int 2856 i915_get_ggtt_vma_pages(struct i915_vma *vma) 2857 { 2858 int ret = 0; 2859 2860 if (vma->ggtt_view.pages) 2861 return 0; 2862 2863 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) 2864 vma->ggtt_view.pages = vma->obj->pages; 2865 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) 2866 vma->ggtt_view.pages = 2867 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj); 2868 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL) 2869 vma->ggtt_view.pages = 2870 intel_partial_pages(&vma->ggtt_view, vma->obj); 2871 else 2872 WARN_ONCE(1, "GGTT view %u not implemented!\n", 2873 vma->ggtt_view.type); 2874 2875 if (!vma->ggtt_view.pages) { 2876 DRM_ERROR("Failed to get pages for GGTT view type %u!\n", 2877 vma->ggtt_view.type); 2878 ret = -EINVAL; 2879 } else if (IS_ERR(vma->ggtt_view.pages)) { 2880 ret = PTR_ERR(vma->ggtt_view.pages); 2881 vma->ggtt_view.pages = NULL; 2882 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 2883 vma->ggtt_view.type, ret); 2884 } 2885 2886 return ret; 2887 } 2888 2889 /** 2890 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 2891 * @vma: VMA to map 2892 * @cache_level: mapping cache level 2893 * @flags: flags like global or local mapping 2894 * 2895 * DMA addresses are taken from the scatter-gather table of this object (or of 2896 * this VMA in case of non-default GGTT views) and PTE entries set up. 2897 * Note that DMA addresses are also the only part of the SG table we care about. 2898 */ 2899 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 2900 u32 flags) 2901 { 2902 int ret; 2903 u32 bind_flags; 2904 2905 if (WARN_ON(flags == 0)) 2906 return -EINVAL; 2907 2908 bind_flags = 0; 2909 if (flags & PIN_GLOBAL) 2910 bind_flags |= GLOBAL_BIND; 2911 if (flags & PIN_USER) 2912 bind_flags |= LOCAL_BIND; 2913 2914 if (flags & PIN_UPDATE) 2915 bind_flags |= vma->bound; 2916 else 2917 bind_flags &= ~vma->bound; 2918 2919 if (bind_flags == 0) 2920 return 0; 2921 2922 if (vma->bound == 0 && vma->vm->allocate_va_range) { 2923 trace_i915_va_alloc(vma->vm, 2924 vma->node.start, 2925 vma->node.size, 2926 VM_TO_TRACE_NAME(vma->vm)); 2927 2928 /* XXX: i915_vma_pin() will fix this +- hack */ 2929 vma->pin_count++; 2930 ret = vma->vm->allocate_va_range(vma->vm, 2931 vma->node.start, 2932 vma->node.size); 2933 vma->pin_count--; 2934 if (ret) 2935 return ret; 2936 } 2937 2938 ret = vma->vm->bind_vma(vma, cache_level, bind_flags); 2939 if (ret) 2940 return ret; 2941 2942 vma->bound |= bind_flags; 2943 2944 return 0; 2945 } 2946 2947 /** 2948 * i915_ggtt_view_size - Get the size of a GGTT view. 2949 * @obj: Object the view is of. 2950 * @view: The view in question. 2951 * 2952 * @return The size of the GGTT view in bytes. 2953 */ 2954 size_t 2955 i915_ggtt_view_size(struct drm_i915_gem_object *obj, 2956 const struct i915_ggtt_view *view) 2957 { 2958 if (view->type == I915_GGTT_VIEW_NORMAL) { 2959 return obj->base.size; 2960 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 2961 return view->rotation_info.size; 2962 } else if (view->type == I915_GGTT_VIEW_PARTIAL) { 2963 return view->params.partial.size << PAGE_SHIFT; 2964 } else { 2965 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type); 2966 return obj->base.size; 2967 } 2968 } 2969