xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 7aacf86b75bc5523d20fd9127104384fce51ce9c)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_aliasing_ppgtt;
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145 
146 	if (intel_vgpu_active(dev_priv)) {
147 		/* emulation is too hard */
148 		has_full_ppgtt = false;
149 		has_full_48bit_ppgtt = false;
150 	}
151 
152 	if (!has_aliasing_ppgtt)
153 		return 0;
154 
155 	/*
156 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 	 * execlists, the sole mechanism available to submit work.
158 	 */
159 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 		return 0;
161 
162 	if (enable_ppgtt == 1)
163 		return 1;
164 
165 	if (enable_ppgtt == 2 && has_full_ppgtt)
166 		return 2;
167 
168 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 		return 3;
170 
171 	/* Disable ppgtt on SNB if VT-d is on. */
172 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 		return 0;
175 	}
176 
177 	/* Early VLV doesn't have this */
178 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 		return 0;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
184 		return has_full_48bit_ppgtt ? 3 : 2;
185 	else
186 		return has_aliasing_ppgtt ? 1 : 0;
187 }
188 
189 static int ppgtt_bind_vma(struct i915_vma *vma,
190 			  enum i915_cache_level cache_level,
191 			  u32 unused)
192 {
193 	u32 pte_flags;
194 	int ret;
195 
196 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
197 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
198 						 vma->size);
199 		if (ret)
200 			return ret;
201 	}
202 
203 	vma->pages = vma->obj->mm.pages;
204 
205 	/* Currently applicable only to VLV */
206 	pte_flags = 0;
207 	if (vma->obj->gt_ro)
208 		pte_flags |= PTE_READ_ONLY;
209 
210 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
211 				cache_level, pte_flags);
212 
213 	return 0;
214 }
215 
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220 
221 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
222 				  enum i915_cache_level level)
223 {
224 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
225 	pte |= addr;
226 
227 	switch (level) {
228 	case I915_CACHE_NONE:
229 		pte |= PPAT_UNCACHED_INDEX;
230 		break;
231 	case I915_CACHE_WT:
232 		pte |= PPAT_DISPLAY_ELLC_INDEX;
233 		break;
234 	default:
235 		pte |= PPAT_CACHED_INDEX;
236 		break;
237 	}
238 
239 	return pte;
240 }
241 
242 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
243 				  const enum i915_cache_level level)
244 {
245 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
246 	pde |= addr;
247 	if (level != I915_CACHE_NONE)
248 		pde |= PPAT_CACHED_PDE_INDEX;
249 	else
250 		pde |= PPAT_UNCACHED_INDEX;
251 	return pde;
252 }
253 
254 #define gen8_pdpe_encode gen8_pde_encode
255 #define gen8_pml4e_encode gen8_pde_encode
256 
257 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
258 				 enum i915_cache_level level,
259 				 u32 unused)
260 {
261 	gen6_pte_t pte = GEN6_PTE_VALID;
262 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
263 
264 	switch (level) {
265 	case I915_CACHE_L3_LLC:
266 	case I915_CACHE_LLC:
267 		pte |= GEN6_PTE_CACHE_LLC;
268 		break;
269 	case I915_CACHE_NONE:
270 		pte |= GEN6_PTE_UNCACHED;
271 		break;
272 	default:
273 		MISSING_CASE(level);
274 	}
275 
276 	return pte;
277 }
278 
279 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
280 				 enum i915_cache_level level,
281 				 u32 unused)
282 {
283 	gen6_pte_t pte = GEN6_PTE_VALID;
284 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
285 
286 	switch (level) {
287 	case I915_CACHE_L3_LLC:
288 		pte |= GEN7_PTE_CACHE_L3_LLC;
289 		break;
290 	case I915_CACHE_LLC:
291 		pte |= GEN6_PTE_CACHE_LLC;
292 		break;
293 	case I915_CACHE_NONE:
294 		pte |= GEN6_PTE_UNCACHED;
295 		break;
296 	default:
297 		MISSING_CASE(level);
298 	}
299 
300 	return pte;
301 }
302 
303 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
304 				 enum i915_cache_level level,
305 				 u32 flags)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
309 
310 	if (!(flags & PTE_READ_ONLY))
311 		pte |= BYT_PTE_WRITEABLE;
312 
313 	if (level != I915_CACHE_NONE)
314 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
315 
316 	return pte;
317 }
318 
319 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
320 				 enum i915_cache_level level,
321 				 u32 unused)
322 {
323 	gen6_pte_t pte = GEN6_PTE_VALID;
324 	pte |= HSW_PTE_ADDR_ENCODE(addr);
325 
326 	if (level != I915_CACHE_NONE)
327 		pte |= HSW_WB_LLC_AGE3;
328 
329 	return pte;
330 }
331 
332 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
333 				  enum i915_cache_level level,
334 				  u32 unused)
335 {
336 	gen6_pte_t pte = GEN6_PTE_VALID;
337 	pte |= HSW_PTE_ADDR_ENCODE(addr);
338 
339 	switch (level) {
340 	case I915_CACHE_NONE:
341 		break;
342 	case I915_CACHE_WT:
343 		pte |= HSW_WT_ELLC_LLC_AGE3;
344 		break;
345 	default:
346 		pte |= HSW_WB_ELLC_LLC_AGE3;
347 		break;
348 	}
349 
350 	return pte;
351 }
352 
353 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
354 {
355 	struct page *page;
356 
357 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
358 		i915_gem_shrink_all(vm->i915);
359 
360 	if (vm->free_pages.nr)
361 		return vm->free_pages.pages[--vm->free_pages.nr];
362 
363 	page = alloc_page(gfp);
364 	if (!page)
365 		return NULL;
366 
367 	if (vm->pt_kmap_wc)
368 		set_pages_array_wc(&page, 1);
369 
370 	return page;
371 }
372 
373 static void vm_free_pages_release(struct i915_address_space *vm)
374 {
375 	GEM_BUG_ON(!pagevec_count(&vm->free_pages));
376 
377 	if (vm->pt_kmap_wc)
378 		set_pages_array_wb(vm->free_pages.pages,
379 				   pagevec_count(&vm->free_pages));
380 
381 	__pagevec_release(&vm->free_pages);
382 }
383 
384 static void vm_free_page(struct i915_address_space *vm, struct page *page)
385 {
386 	if (!pagevec_add(&vm->free_pages, page))
387 		vm_free_pages_release(vm);
388 }
389 
390 static int __setup_page_dma(struct i915_address_space *vm,
391 			    struct i915_page_dma *p,
392 			    gfp_t gfp)
393 {
394 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
395 	if (unlikely(!p->page))
396 		return -ENOMEM;
397 
398 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
399 				PCI_DMA_BIDIRECTIONAL);
400 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
401 		vm_free_page(vm, p->page);
402 		return -ENOMEM;
403 	}
404 
405 	return 0;
406 }
407 
408 static int setup_page_dma(struct i915_address_space *vm,
409 			  struct i915_page_dma *p)
410 {
411 	return __setup_page_dma(vm, p, I915_GFP_DMA);
412 }
413 
414 static void cleanup_page_dma(struct i915_address_space *vm,
415 			     struct i915_page_dma *p)
416 {
417 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
418 	vm_free_page(vm, p->page);
419 }
420 
421 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
422 
423 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
424 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
425 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
426 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
427 
428 static void fill_page_dma(struct i915_address_space *vm,
429 			  struct i915_page_dma *p,
430 			  const u64 val)
431 {
432 	u64 * const vaddr = kmap_atomic(p->page);
433 	int i;
434 
435 	for (i = 0; i < 512; i++)
436 		vaddr[i] = val;
437 
438 	kunmap_atomic(vaddr);
439 }
440 
441 static void fill_page_dma_32(struct i915_address_space *vm,
442 			     struct i915_page_dma *p,
443 			     const u32 v)
444 {
445 	fill_page_dma(vm, p, (u64)v << 32 | v);
446 }
447 
448 static int
449 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
450 {
451 	return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
452 }
453 
454 static void cleanup_scratch_page(struct i915_address_space *vm)
455 {
456 	cleanup_page_dma(vm, &vm->scratch_page);
457 }
458 
459 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
460 {
461 	struct i915_page_table *pt;
462 
463 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
464 	if (unlikely(!pt))
465 		return ERR_PTR(-ENOMEM);
466 
467 	if (unlikely(setup_px(vm, pt))) {
468 		kfree(pt);
469 		return ERR_PTR(-ENOMEM);
470 	}
471 
472 	pt->used_ptes = 0;
473 	return pt;
474 }
475 
476 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
477 {
478 	cleanup_px(vm, pt);
479 	kfree(pt);
480 }
481 
482 static void gen8_initialize_pt(struct i915_address_space *vm,
483 			       struct i915_page_table *pt)
484 {
485 	fill_px(vm, pt,
486 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
487 }
488 
489 static void gen6_initialize_pt(struct i915_address_space *vm,
490 			       struct i915_page_table *pt)
491 {
492 	fill32_px(vm, pt,
493 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
494 }
495 
496 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
497 {
498 	struct i915_page_directory *pd;
499 
500 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
501 	if (unlikely(!pd))
502 		return ERR_PTR(-ENOMEM);
503 
504 	if (unlikely(setup_px(vm, pd))) {
505 		kfree(pd);
506 		return ERR_PTR(-ENOMEM);
507 	}
508 
509 	pd->used_pdes = 0;
510 	return pd;
511 }
512 
513 static void free_pd(struct i915_address_space *vm,
514 		    struct i915_page_directory *pd)
515 {
516 	cleanup_px(vm, pd);
517 	kfree(pd);
518 }
519 
520 static void gen8_initialize_pd(struct i915_address_space *vm,
521 			       struct i915_page_directory *pd)
522 {
523 	unsigned int i;
524 
525 	fill_px(vm, pd,
526 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
527 	for (i = 0; i < I915_PDES; i++)
528 		pd->page_table[i] = vm->scratch_pt;
529 }
530 
531 static int __pdp_init(struct i915_address_space *vm,
532 		      struct i915_page_directory_pointer *pdp)
533 {
534 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
535 	unsigned int i;
536 
537 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
538 					    GFP_KERNEL | __GFP_NOWARN);
539 	if (unlikely(!pdp->page_directory))
540 		return -ENOMEM;
541 
542 	for (i = 0; i < pdpes; i++)
543 		pdp->page_directory[i] = vm->scratch_pd;
544 
545 	return 0;
546 }
547 
548 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
549 {
550 	kfree(pdp->page_directory);
551 	pdp->page_directory = NULL;
552 }
553 
554 static inline bool use_4lvl(const struct i915_address_space *vm)
555 {
556 	return i915_vm_is_48bit(vm);
557 }
558 
559 static struct i915_page_directory_pointer *
560 alloc_pdp(struct i915_address_space *vm)
561 {
562 	struct i915_page_directory_pointer *pdp;
563 	int ret = -ENOMEM;
564 
565 	WARN_ON(!use_4lvl(vm));
566 
567 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568 	if (!pdp)
569 		return ERR_PTR(-ENOMEM);
570 
571 	ret = __pdp_init(vm, pdp);
572 	if (ret)
573 		goto fail_bitmap;
574 
575 	ret = setup_px(vm, pdp);
576 	if (ret)
577 		goto fail_page_m;
578 
579 	return pdp;
580 
581 fail_page_m:
582 	__pdp_fini(pdp);
583 fail_bitmap:
584 	kfree(pdp);
585 
586 	return ERR_PTR(ret);
587 }
588 
589 static void free_pdp(struct i915_address_space *vm,
590 		     struct i915_page_directory_pointer *pdp)
591 {
592 	__pdp_fini(pdp);
593 
594 	if (!use_4lvl(vm))
595 		return;
596 
597 	cleanup_px(vm, pdp);
598 	kfree(pdp);
599 }
600 
601 static void gen8_initialize_pdp(struct i915_address_space *vm,
602 				struct i915_page_directory_pointer *pdp)
603 {
604 	gen8_ppgtt_pdpe_t scratch_pdpe;
605 
606 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
607 
608 	fill_px(vm, pdp, scratch_pdpe);
609 }
610 
611 static void gen8_initialize_pml4(struct i915_address_space *vm,
612 				 struct i915_pml4 *pml4)
613 {
614 	unsigned int i;
615 
616 	fill_px(vm, pml4,
617 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
618 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
619 		pml4->pdps[i] = vm->scratch_pdp;
620 }
621 
622 /* Broadwell Page Directory Pointer Descriptors */
623 static int gen8_write_pdp(struct drm_i915_gem_request *req,
624 			  unsigned entry,
625 			  dma_addr_t addr)
626 {
627 	struct intel_engine_cs *engine = req->engine;
628 	u32 *cs;
629 
630 	BUG_ON(entry >= 4);
631 
632 	cs = intel_ring_begin(req, 6);
633 	if (IS_ERR(cs))
634 		return PTR_ERR(cs);
635 
636 	*cs++ = MI_LOAD_REGISTER_IMM(1);
637 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
638 	*cs++ = upper_32_bits(addr);
639 	*cs++ = MI_LOAD_REGISTER_IMM(1);
640 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
641 	*cs++ = lower_32_bits(addr);
642 	intel_ring_advance(req, cs);
643 
644 	return 0;
645 }
646 
647 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
648 			       struct drm_i915_gem_request *req)
649 {
650 	int i, ret;
651 
652 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
653 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
654 
655 		ret = gen8_write_pdp(req, i, pd_daddr);
656 		if (ret)
657 			return ret;
658 	}
659 
660 	return 0;
661 }
662 
663 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
664 			       struct drm_i915_gem_request *req)
665 {
666 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
667 }
668 
669 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
670  * the page table structures, we mark them dirty so that
671  * context switching/execlist queuing code takes extra steps
672  * to ensure that tlbs are flushed.
673  */
674 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
675 {
676 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
677 }
678 
679 /* Removes entries from a single page table, releasing it if it's empty.
680  * Caller can use the return value to update higher-level entries.
681  */
682 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
683 				struct i915_page_table *pt,
684 				u64 start, u64 length)
685 {
686 	unsigned int num_entries = gen8_pte_count(start, length);
687 	unsigned int pte = gen8_pte_index(start);
688 	unsigned int pte_end = pte + num_entries;
689 	const gen8_pte_t scratch_pte =
690 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
691 	gen8_pte_t *vaddr;
692 
693 	GEM_BUG_ON(num_entries > pt->used_ptes);
694 
695 	pt->used_ptes -= num_entries;
696 	if (!pt->used_ptes)
697 		return true;
698 
699 	vaddr = kmap_atomic_px(pt);
700 	while (pte < pte_end)
701 		vaddr[pte++] = scratch_pte;
702 	kunmap_atomic(vaddr);
703 
704 	return false;
705 }
706 
707 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
708 			       struct i915_page_directory *pd,
709 			       struct i915_page_table *pt,
710 			       unsigned int pde)
711 {
712 	gen8_pde_t *vaddr;
713 
714 	pd->page_table[pde] = pt;
715 
716 	vaddr = kmap_atomic_px(pd);
717 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
718 	kunmap_atomic(vaddr);
719 }
720 
721 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
722 				struct i915_page_directory *pd,
723 				u64 start, u64 length)
724 {
725 	struct i915_page_table *pt;
726 	u32 pde;
727 
728 	gen8_for_each_pde(pt, pd, start, length, pde) {
729 		GEM_BUG_ON(pt == vm->scratch_pt);
730 
731 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
732 			continue;
733 
734 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
735 		GEM_BUG_ON(!pd->used_pdes);
736 		pd->used_pdes--;
737 
738 		free_pt(vm, pt);
739 	}
740 
741 	return !pd->used_pdes;
742 }
743 
744 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
745 				struct i915_page_directory_pointer *pdp,
746 				struct i915_page_directory *pd,
747 				unsigned int pdpe)
748 {
749 	gen8_ppgtt_pdpe_t *vaddr;
750 
751 	pdp->page_directory[pdpe] = pd;
752 	if (!use_4lvl(vm))
753 		return;
754 
755 	vaddr = kmap_atomic_px(pdp);
756 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
757 	kunmap_atomic(vaddr);
758 }
759 
760 /* Removes entries from a single page dir pointer, releasing it if it's empty.
761  * Caller can use the return value to update higher-level entries
762  */
763 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
764 				 struct i915_page_directory_pointer *pdp,
765 				 u64 start, u64 length)
766 {
767 	struct i915_page_directory *pd;
768 	unsigned int pdpe;
769 
770 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
771 		GEM_BUG_ON(pd == vm->scratch_pd);
772 
773 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
774 			continue;
775 
776 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
777 		GEM_BUG_ON(!pdp->used_pdpes);
778 		pdp->used_pdpes--;
779 
780 		free_pd(vm, pd);
781 	}
782 
783 	return !pdp->used_pdpes;
784 }
785 
786 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
787 				  u64 start, u64 length)
788 {
789 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
790 }
791 
792 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
793 				 struct i915_page_directory_pointer *pdp,
794 				 unsigned int pml4e)
795 {
796 	gen8_ppgtt_pml4e_t *vaddr;
797 
798 	pml4->pdps[pml4e] = pdp;
799 
800 	vaddr = kmap_atomic_px(pml4);
801 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
802 	kunmap_atomic(vaddr);
803 }
804 
805 /* Removes entries from a single pml4.
806  * This is the top-level structure in 4-level page tables used on gen8+.
807  * Empty entries are always scratch pml4e.
808  */
809 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
810 				  u64 start, u64 length)
811 {
812 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
813 	struct i915_pml4 *pml4 = &ppgtt->pml4;
814 	struct i915_page_directory_pointer *pdp;
815 	unsigned int pml4e;
816 
817 	GEM_BUG_ON(!use_4lvl(vm));
818 
819 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
820 		GEM_BUG_ON(pdp == vm->scratch_pdp);
821 
822 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
823 			continue;
824 
825 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
826 
827 		free_pdp(vm, pdp);
828 	}
829 }
830 
831 struct sgt_dma {
832 	struct scatterlist *sg;
833 	dma_addr_t dma, max;
834 };
835 
836 struct gen8_insert_pte {
837 	u16 pml4e;
838 	u16 pdpe;
839 	u16 pde;
840 	u16 pte;
841 };
842 
843 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
844 {
845 	return (struct gen8_insert_pte) {
846 		 gen8_pml4e_index(start),
847 		 gen8_pdpe_index(start),
848 		 gen8_pde_index(start),
849 		 gen8_pte_index(start),
850 	};
851 }
852 
853 static __always_inline bool
854 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
855 			      struct i915_page_directory_pointer *pdp,
856 			      struct sgt_dma *iter,
857 			      struct gen8_insert_pte *idx,
858 			      enum i915_cache_level cache_level)
859 {
860 	struct i915_page_directory *pd;
861 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
862 	gen8_pte_t *vaddr;
863 	bool ret;
864 
865 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
866 	pd = pdp->page_directory[idx->pdpe];
867 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
868 	do {
869 		vaddr[idx->pte] = pte_encode | iter->dma;
870 
871 		iter->dma += PAGE_SIZE;
872 		if (iter->dma >= iter->max) {
873 			iter->sg = __sg_next(iter->sg);
874 			if (!iter->sg) {
875 				ret = false;
876 				break;
877 			}
878 
879 			iter->dma = sg_dma_address(iter->sg);
880 			iter->max = iter->dma + iter->sg->length;
881 		}
882 
883 		if (++idx->pte == GEN8_PTES) {
884 			idx->pte = 0;
885 
886 			if (++idx->pde == I915_PDES) {
887 				idx->pde = 0;
888 
889 				/* Limited by sg length for 3lvl */
890 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
891 					idx->pdpe = 0;
892 					ret = true;
893 					break;
894 				}
895 
896 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
897 				pd = pdp->page_directory[idx->pdpe];
898 			}
899 
900 			kunmap_atomic(vaddr);
901 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
902 		}
903 	} while (1);
904 	kunmap_atomic(vaddr);
905 
906 	return ret;
907 }
908 
909 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
910 				   struct sg_table *pages,
911 				   u64 start,
912 				   enum i915_cache_level cache_level,
913 				   u32 unused)
914 {
915 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
916 	struct sgt_dma iter = {
917 		.sg = pages->sgl,
918 		.dma = sg_dma_address(iter.sg),
919 		.max = iter.dma + iter.sg->length,
920 	};
921 	struct gen8_insert_pte idx = gen8_insert_pte(start);
922 
923 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
924 				      cache_level);
925 }
926 
927 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
928 				   struct sg_table *pages,
929 				   u64 start,
930 				   enum i915_cache_level cache_level,
931 				   u32 unused)
932 {
933 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
934 	struct sgt_dma iter = {
935 		.sg = pages->sgl,
936 		.dma = sg_dma_address(iter.sg),
937 		.max = iter.dma + iter.sg->length,
938 	};
939 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
940 	struct gen8_insert_pte idx = gen8_insert_pte(start);
941 
942 	while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
943 					     &idx, cache_level))
944 		GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
945 }
946 
947 static void gen8_free_page_tables(struct i915_address_space *vm,
948 				  struct i915_page_directory *pd)
949 {
950 	int i;
951 
952 	if (!px_page(pd))
953 		return;
954 
955 	for (i = 0; i < I915_PDES; i++) {
956 		if (pd->page_table[i] != vm->scratch_pt)
957 			free_pt(vm, pd->page_table[i]);
958 	}
959 }
960 
961 static int gen8_init_scratch(struct i915_address_space *vm)
962 {
963 	int ret;
964 
965 	ret = setup_scratch_page(vm, I915_GFP_DMA);
966 	if (ret)
967 		return ret;
968 
969 	vm->scratch_pt = alloc_pt(vm);
970 	if (IS_ERR(vm->scratch_pt)) {
971 		ret = PTR_ERR(vm->scratch_pt);
972 		goto free_scratch_page;
973 	}
974 
975 	vm->scratch_pd = alloc_pd(vm);
976 	if (IS_ERR(vm->scratch_pd)) {
977 		ret = PTR_ERR(vm->scratch_pd);
978 		goto free_pt;
979 	}
980 
981 	if (use_4lvl(vm)) {
982 		vm->scratch_pdp = alloc_pdp(vm);
983 		if (IS_ERR(vm->scratch_pdp)) {
984 			ret = PTR_ERR(vm->scratch_pdp);
985 			goto free_pd;
986 		}
987 	}
988 
989 	gen8_initialize_pt(vm, vm->scratch_pt);
990 	gen8_initialize_pd(vm, vm->scratch_pd);
991 	if (use_4lvl(vm))
992 		gen8_initialize_pdp(vm, vm->scratch_pdp);
993 
994 	return 0;
995 
996 free_pd:
997 	free_pd(vm, vm->scratch_pd);
998 free_pt:
999 	free_pt(vm, vm->scratch_pt);
1000 free_scratch_page:
1001 	cleanup_scratch_page(vm);
1002 
1003 	return ret;
1004 }
1005 
1006 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1007 {
1008 	struct i915_address_space *vm = &ppgtt->base;
1009 	struct drm_i915_private *dev_priv = vm->i915;
1010 	enum vgt_g2v_type msg;
1011 	int i;
1012 
1013 	if (use_4lvl(vm)) {
1014 		const u64 daddr = px_dma(&ppgtt->pml4);
1015 
1016 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1017 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1018 
1019 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1020 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1021 	} else {
1022 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1023 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1024 
1025 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1026 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1027 		}
1028 
1029 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1030 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1031 	}
1032 
1033 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1034 
1035 	return 0;
1036 }
1037 
1038 static void gen8_free_scratch(struct i915_address_space *vm)
1039 {
1040 	if (use_4lvl(vm))
1041 		free_pdp(vm, vm->scratch_pdp);
1042 	free_pd(vm, vm->scratch_pd);
1043 	free_pt(vm, vm->scratch_pt);
1044 	cleanup_scratch_page(vm);
1045 }
1046 
1047 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1048 				    struct i915_page_directory_pointer *pdp)
1049 {
1050 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1051 	int i;
1052 
1053 	for (i = 0; i < pdpes; i++) {
1054 		if (pdp->page_directory[i] == vm->scratch_pd)
1055 			continue;
1056 
1057 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1058 		free_pd(vm, pdp->page_directory[i]);
1059 	}
1060 
1061 	free_pdp(vm, pdp);
1062 }
1063 
1064 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1065 {
1066 	int i;
1067 
1068 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1069 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1070 			continue;
1071 
1072 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1073 	}
1074 
1075 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1076 }
1077 
1078 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1079 {
1080 	struct drm_i915_private *dev_priv = vm->i915;
1081 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1082 
1083 	if (intel_vgpu_active(dev_priv))
1084 		gen8_ppgtt_notify_vgt(ppgtt, false);
1085 
1086 	if (use_4lvl(vm))
1087 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1088 	else
1089 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1090 
1091 	gen8_free_scratch(vm);
1092 }
1093 
1094 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1095 			       struct i915_page_directory *pd,
1096 			       u64 start, u64 length)
1097 {
1098 	struct i915_page_table *pt;
1099 	u64 from = start;
1100 	unsigned int pde;
1101 
1102 	gen8_for_each_pde(pt, pd, start, length, pde) {
1103 		if (pt == vm->scratch_pt) {
1104 			pt = alloc_pt(vm);
1105 			if (IS_ERR(pt))
1106 				goto unwind;
1107 
1108 			gen8_initialize_pt(vm, pt);
1109 
1110 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1111 			pd->used_pdes++;
1112 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1113 		}
1114 
1115 		pt->used_ptes += gen8_pte_count(start, length);
1116 	}
1117 	return 0;
1118 
1119 unwind:
1120 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1121 	return -ENOMEM;
1122 }
1123 
1124 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1125 				struct i915_page_directory_pointer *pdp,
1126 				u64 start, u64 length)
1127 {
1128 	struct i915_page_directory *pd;
1129 	u64 from = start;
1130 	unsigned int pdpe;
1131 	int ret;
1132 
1133 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1134 		if (pd == vm->scratch_pd) {
1135 			pd = alloc_pd(vm);
1136 			if (IS_ERR(pd))
1137 				goto unwind;
1138 
1139 			gen8_initialize_pd(vm, pd);
1140 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1141 			pdp->used_pdpes++;
1142 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1143 
1144 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1145 		}
1146 
1147 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1148 		if (unlikely(ret))
1149 			goto unwind_pd;
1150 	}
1151 
1152 	return 0;
1153 
1154 unwind_pd:
1155 	if (!pd->used_pdes) {
1156 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1157 		GEM_BUG_ON(!pdp->used_pdpes);
1158 		pdp->used_pdpes--;
1159 		free_pd(vm, pd);
1160 	}
1161 unwind:
1162 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1163 	return -ENOMEM;
1164 }
1165 
1166 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1167 				 u64 start, u64 length)
1168 {
1169 	return gen8_ppgtt_alloc_pdp(vm,
1170 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1171 }
1172 
1173 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1174 				 u64 start, u64 length)
1175 {
1176 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1177 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1178 	struct i915_page_directory_pointer *pdp;
1179 	u64 from = start;
1180 	u32 pml4e;
1181 	int ret;
1182 
1183 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1184 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1185 			pdp = alloc_pdp(vm);
1186 			if (IS_ERR(pdp))
1187 				goto unwind;
1188 
1189 			gen8_initialize_pdp(vm, pdp);
1190 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1191 		}
1192 
1193 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1194 		if (unlikely(ret))
1195 			goto unwind_pdp;
1196 	}
1197 
1198 	return 0;
1199 
1200 unwind_pdp:
1201 	if (!pdp->used_pdpes) {
1202 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1203 		free_pdp(vm, pdp);
1204 	}
1205 unwind:
1206 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1207 	return -ENOMEM;
1208 }
1209 
1210 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1211 			  struct i915_page_directory_pointer *pdp,
1212 			  u64 start, u64 length,
1213 			  gen8_pte_t scratch_pte,
1214 			  struct seq_file *m)
1215 {
1216 	struct i915_address_space *vm = &ppgtt->base;
1217 	struct i915_page_directory *pd;
1218 	u32 pdpe;
1219 
1220 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1221 		struct i915_page_table *pt;
1222 		u64 pd_len = length;
1223 		u64 pd_start = start;
1224 		u32 pde;
1225 
1226 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1227 			continue;
1228 
1229 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1230 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1231 			u32 pte;
1232 			gen8_pte_t *pt_vaddr;
1233 
1234 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1235 				continue;
1236 
1237 			pt_vaddr = kmap_atomic_px(pt);
1238 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1239 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1240 					  pde << GEN8_PDE_SHIFT |
1241 					  pte << GEN8_PTE_SHIFT);
1242 				int i;
1243 				bool found = false;
1244 
1245 				for (i = 0; i < 4; i++)
1246 					if (pt_vaddr[pte + i] != scratch_pte)
1247 						found = true;
1248 				if (!found)
1249 					continue;
1250 
1251 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1252 				for (i = 0; i < 4; i++) {
1253 					if (pt_vaddr[pte + i] != scratch_pte)
1254 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1255 					else
1256 						seq_puts(m, "  SCRATCH ");
1257 				}
1258 				seq_puts(m, "\n");
1259 			}
1260 			kunmap_atomic(pt_vaddr);
1261 		}
1262 	}
1263 }
1264 
1265 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1266 {
1267 	struct i915_address_space *vm = &ppgtt->base;
1268 	const gen8_pte_t scratch_pte =
1269 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1270 	u64 start = 0, length = ppgtt->base.total;
1271 
1272 	if (use_4lvl(vm)) {
1273 		u64 pml4e;
1274 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1275 		struct i915_page_directory_pointer *pdp;
1276 
1277 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1278 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1279 				continue;
1280 
1281 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1282 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1283 		}
1284 	} else {
1285 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1286 	}
1287 }
1288 
1289 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1290 {
1291 	struct i915_address_space *vm = &ppgtt->base;
1292 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1293 	struct i915_page_directory *pd;
1294 	u64 start = 0, length = ppgtt->base.total;
1295 	u64 from = start;
1296 	unsigned int pdpe;
1297 
1298 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1299 		pd = alloc_pd(vm);
1300 		if (IS_ERR(pd))
1301 			goto unwind;
1302 
1303 		gen8_initialize_pd(vm, pd);
1304 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1305 		pdp->used_pdpes++;
1306 	}
1307 
1308 	pdp->used_pdpes++; /* never remove */
1309 	return 0;
1310 
1311 unwind:
1312 	start -= from;
1313 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1314 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1315 		free_pd(vm, pd);
1316 	}
1317 	pdp->used_pdpes = 0;
1318 	return -ENOMEM;
1319 }
1320 
1321 /*
1322  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1323  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1324  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1325  * space.
1326  *
1327  */
1328 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1329 {
1330 	struct i915_address_space *vm = &ppgtt->base;
1331 	struct drm_i915_private *dev_priv = vm->i915;
1332 	int ret;
1333 
1334 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1335 		1ULL << 48 :
1336 		1ULL << 32;
1337 
1338 	ret = gen8_init_scratch(&ppgtt->base);
1339 	if (ret) {
1340 		ppgtt->base.total = 0;
1341 		return ret;
1342 	}
1343 
1344 	/* There are only few exceptions for gen >=6. chv and bxt.
1345 	 * And we are not sure about the latter so play safe for now.
1346 	 */
1347 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1348 		ppgtt->base.pt_kmap_wc = true;
1349 
1350 	if (use_4lvl(vm)) {
1351 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1352 		if (ret)
1353 			goto free_scratch;
1354 
1355 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1356 
1357 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1358 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1359 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1360 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1361 	} else {
1362 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1363 		if (ret)
1364 			goto free_scratch;
1365 
1366 		if (intel_vgpu_active(dev_priv)) {
1367 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1368 			if (ret) {
1369 				__pdp_fini(&ppgtt->pdp);
1370 				goto free_scratch;
1371 			}
1372 		}
1373 
1374 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1375 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1376 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1377 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1378 	}
1379 
1380 	if (intel_vgpu_active(dev_priv))
1381 		gen8_ppgtt_notify_vgt(ppgtt, true);
1382 
1383 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1384 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1385 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1386 	ppgtt->debug_dump = gen8_dump_ppgtt;
1387 
1388 	return 0;
1389 
1390 free_scratch:
1391 	gen8_free_scratch(&ppgtt->base);
1392 	return ret;
1393 }
1394 
1395 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1396 {
1397 	struct i915_address_space *vm = &ppgtt->base;
1398 	struct i915_page_table *unused;
1399 	gen6_pte_t scratch_pte;
1400 	u32 pd_entry, pte, pde;
1401 	u32 start = 0, length = ppgtt->base.total;
1402 
1403 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1404 				     I915_CACHE_LLC, 0);
1405 
1406 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1407 		u32 expected;
1408 		gen6_pte_t *pt_vaddr;
1409 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1410 		pd_entry = readl(ppgtt->pd_addr + pde);
1411 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1412 
1413 		if (pd_entry != expected)
1414 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1415 				   pde,
1416 				   pd_entry,
1417 				   expected);
1418 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1419 
1420 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1421 
1422 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1423 			unsigned long va =
1424 				(pde * PAGE_SIZE * GEN6_PTES) +
1425 				(pte * PAGE_SIZE);
1426 			int i;
1427 			bool found = false;
1428 			for (i = 0; i < 4; i++)
1429 				if (pt_vaddr[pte + i] != scratch_pte)
1430 					found = true;
1431 			if (!found)
1432 				continue;
1433 
1434 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1435 			for (i = 0; i < 4; i++) {
1436 				if (pt_vaddr[pte + i] != scratch_pte)
1437 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1438 				else
1439 					seq_puts(m, "  SCRATCH ");
1440 			}
1441 			seq_puts(m, "\n");
1442 		}
1443 		kunmap_atomic(pt_vaddr);
1444 	}
1445 }
1446 
1447 /* Write pde (index) from the page directory @pd to the page table @pt */
1448 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1449 				  const unsigned int pde,
1450 				  const struct i915_page_table *pt)
1451 {
1452 	/* Caller needs to make sure the write completes if necessary */
1453 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1454 		       ppgtt->pd_addr + pde);
1455 }
1456 
1457 /* Write all the page tables found in the ppgtt structure to incrementing page
1458  * directories. */
1459 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1460 				  u32 start, u32 length)
1461 {
1462 	struct i915_page_table *pt;
1463 	unsigned int pde;
1464 
1465 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1466 		gen6_write_pde(ppgtt, pde, pt);
1467 
1468 	mark_tlbs_dirty(ppgtt);
1469 	wmb();
1470 }
1471 
1472 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1473 {
1474 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1475 	return ppgtt->pd.base.ggtt_offset << 10;
1476 }
1477 
1478 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1479 			 struct drm_i915_gem_request *req)
1480 {
1481 	struct intel_engine_cs *engine = req->engine;
1482 	u32 *cs;
1483 
1484 	/* NB: TLBs must be flushed and invalidated before a switch */
1485 	cs = intel_ring_begin(req, 6);
1486 	if (IS_ERR(cs))
1487 		return PTR_ERR(cs);
1488 
1489 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1490 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1491 	*cs++ = PP_DIR_DCLV_2G;
1492 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1493 	*cs++ = get_pd_offset(ppgtt);
1494 	*cs++ = MI_NOOP;
1495 	intel_ring_advance(req, cs);
1496 
1497 	return 0;
1498 }
1499 
1500 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1501 			  struct drm_i915_gem_request *req)
1502 {
1503 	struct intel_engine_cs *engine = req->engine;
1504 	u32 *cs;
1505 
1506 	/* NB: TLBs must be flushed and invalidated before a switch */
1507 	cs = intel_ring_begin(req, 6);
1508 	if (IS_ERR(cs))
1509 		return PTR_ERR(cs);
1510 
1511 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1512 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1513 	*cs++ = PP_DIR_DCLV_2G;
1514 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1515 	*cs++ = get_pd_offset(ppgtt);
1516 	*cs++ = MI_NOOP;
1517 	intel_ring_advance(req, cs);
1518 
1519 	return 0;
1520 }
1521 
1522 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1523 			  struct drm_i915_gem_request *req)
1524 {
1525 	struct intel_engine_cs *engine = req->engine;
1526 	struct drm_i915_private *dev_priv = req->i915;
1527 
1528 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1529 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1530 	return 0;
1531 }
1532 
1533 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1534 {
1535 	struct intel_engine_cs *engine;
1536 	enum intel_engine_id id;
1537 
1538 	for_each_engine(engine, dev_priv, id) {
1539 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1540 				 GEN8_GFX_PPGTT_48B : 0;
1541 		I915_WRITE(RING_MODE_GEN7(engine),
1542 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1543 	}
1544 }
1545 
1546 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1547 {
1548 	struct intel_engine_cs *engine;
1549 	u32 ecochk, ecobits;
1550 	enum intel_engine_id id;
1551 
1552 	ecobits = I915_READ(GAC_ECO_BITS);
1553 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1554 
1555 	ecochk = I915_READ(GAM_ECOCHK);
1556 	if (IS_HASWELL(dev_priv)) {
1557 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1558 	} else {
1559 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1560 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1561 	}
1562 	I915_WRITE(GAM_ECOCHK, ecochk);
1563 
1564 	for_each_engine(engine, dev_priv, id) {
1565 		/* GFX_MODE is per-ring on gen7+ */
1566 		I915_WRITE(RING_MODE_GEN7(engine),
1567 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1568 	}
1569 }
1570 
1571 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1572 {
1573 	u32 ecochk, gab_ctl, ecobits;
1574 
1575 	ecobits = I915_READ(GAC_ECO_BITS);
1576 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1577 		   ECOBITS_PPGTT_CACHE64B);
1578 
1579 	gab_ctl = I915_READ(GAB_CTL);
1580 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1581 
1582 	ecochk = I915_READ(GAM_ECOCHK);
1583 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1584 
1585 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1586 }
1587 
1588 /* PPGTT support for Sandybdrige/Gen6 and later */
1589 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1590 				   u64 start, u64 length)
1591 {
1592 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1593 	unsigned int first_entry = start >> PAGE_SHIFT;
1594 	unsigned int pde = first_entry / GEN6_PTES;
1595 	unsigned int pte = first_entry % GEN6_PTES;
1596 	unsigned int num_entries = length >> PAGE_SHIFT;
1597 	gen6_pte_t scratch_pte =
1598 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1599 
1600 	while (num_entries) {
1601 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1602 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1603 		gen6_pte_t *vaddr;
1604 
1605 		num_entries -= end - pte;
1606 
1607 		/* Note that the hw doesn't support removing PDE on the fly
1608 		 * (they are cached inside the context with no means to
1609 		 * invalidate the cache), so we can only reset the PTE
1610 		 * entries back to scratch.
1611 		 */
1612 
1613 		vaddr = kmap_atomic_px(pt);
1614 		do {
1615 			vaddr[pte++] = scratch_pte;
1616 		} while (pte < end);
1617 		kunmap_atomic(vaddr);
1618 
1619 		pte = 0;
1620 	}
1621 }
1622 
1623 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1624 				      struct sg_table *pages,
1625 				      u64 start,
1626 				      enum i915_cache_level cache_level,
1627 				      u32 flags)
1628 {
1629 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1630 	unsigned first_entry = start >> PAGE_SHIFT;
1631 	unsigned act_pt = first_entry / GEN6_PTES;
1632 	unsigned act_pte = first_entry % GEN6_PTES;
1633 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1634 	struct sgt_dma iter;
1635 	gen6_pte_t *vaddr;
1636 
1637 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1638 	iter.sg = pages->sgl;
1639 	iter.dma = sg_dma_address(iter.sg);
1640 	iter.max = iter.dma + iter.sg->length;
1641 	do {
1642 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1643 
1644 		iter.dma += PAGE_SIZE;
1645 		if (iter.dma == iter.max) {
1646 			iter.sg = __sg_next(iter.sg);
1647 			if (!iter.sg)
1648 				break;
1649 
1650 			iter.dma = sg_dma_address(iter.sg);
1651 			iter.max = iter.dma + iter.sg->length;
1652 		}
1653 
1654 		if (++act_pte == GEN6_PTES) {
1655 			kunmap_atomic(vaddr);
1656 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1657 			act_pte = 0;
1658 		}
1659 	} while (1);
1660 	kunmap_atomic(vaddr);
1661 }
1662 
1663 static int gen6_alloc_va_range(struct i915_address_space *vm,
1664 			       u64 start, u64 length)
1665 {
1666 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1667 	struct i915_page_table *pt;
1668 	u64 from = start;
1669 	unsigned int pde;
1670 	bool flush = false;
1671 
1672 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1673 		if (pt == vm->scratch_pt) {
1674 			pt = alloc_pt(vm);
1675 			if (IS_ERR(pt))
1676 				goto unwind_out;
1677 
1678 			gen6_initialize_pt(vm, pt);
1679 			ppgtt->pd.page_table[pde] = pt;
1680 			gen6_write_pde(ppgtt, pde, pt);
1681 			flush = true;
1682 		}
1683 	}
1684 
1685 	if (flush) {
1686 		mark_tlbs_dirty(ppgtt);
1687 		wmb();
1688 	}
1689 
1690 	return 0;
1691 
1692 unwind_out:
1693 	gen6_ppgtt_clear_range(vm, from, start);
1694 	return -ENOMEM;
1695 }
1696 
1697 static int gen6_init_scratch(struct i915_address_space *vm)
1698 {
1699 	int ret;
1700 
1701 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1702 	if (ret)
1703 		return ret;
1704 
1705 	vm->scratch_pt = alloc_pt(vm);
1706 	if (IS_ERR(vm->scratch_pt)) {
1707 		cleanup_scratch_page(vm);
1708 		return PTR_ERR(vm->scratch_pt);
1709 	}
1710 
1711 	gen6_initialize_pt(vm, vm->scratch_pt);
1712 
1713 	return 0;
1714 }
1715 
1716 static void gen6_free_scratch(struct i915_address_space *vm)
1717 {
1718 	free_pt(vm, vm->scratch_pt);
1719 	cleanup_scratch_page(vm);
1720 }
1721 
1722 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1723 {
1724 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1725 	struct i915_page_directory *pd = &ppgtt->pd;
1726 	struct i915_page_table *pt;
1727 	u32 pde;
1728 
1729 	drm_mm_remove_node(&ppgtt->node);
1730 
1731 	gen6_for_all_pdes(pt, pd, pde)
1732 		if (pt != vm->scratch_pt)
1733 			free_pt(vm, pt);
1734 
1735 	gen6_free_scratch(vm);
1736 }
1737 
1738 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1739 {
1740 	struct i915_address_space *vm = &ppgtt->base;
1741 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1742 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1743 	int ret;
1744 
1745 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1746 	 * allocator works in address space sizes, so it's multiplied by page
1747 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1748 	 */
1749 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1750 
1751 	ret = gen6_init_scratch(vm);
1752 	if (ret)
1753 		return ret;
1754 
1755 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1756 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1757 				  I915_COLOR_UNEVICTABLE,
1758 				  0, ggtt->base.total,
1759 				  PIN_HIGH);
1760 	if (ret)
1761 		goto err_out;
1762 
1763 	if (ppgtt->node.start < ggtt->mappable_end)
1764 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1765 
1766 	ppgtt->pd.base.ggtt_offset =
1767 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1768 
1769 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1770 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1771 
1772 	return 0;
1773 
1774 err_out:
1775 	gen6_free_scratch(vm);
1776 	return ret;
1777 }
1778 
1779 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1780 {
1781 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1782 }
1783 
1784 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1785 				  u64 start, u64 length)
1786 {
1787 	struct i915_page_table *unused;
1788 	u32 pde;
1789 
1790 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1791 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1792 }
1793 
1794 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1795 {
1796 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1797 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1798 	int ret;
1799 
1800 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
1801 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1802 		ppgtt->switch_mm = gen6_mm_switch;
1803 	else if (IS_HASWELL(dev_priv))
1804 		ppgtt->switch_mm = hsw_mm_switch;
1805 	else if (IS_GEN7(dev_priv))
1806 		ppgtt->switch_mm = gen7_mm_switch;
1807 	else
1808 		BUG();
1809 
1810 	ret = gen6_ppgtt_alloc(ppgtt);
1811 	if (ret)
1812 		return ret;
1813 
1814 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1815 
1816 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1817 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1818 
1819 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1820 	if (ret) {
1821 		gen6_ppgtt_cleanup(&ppgtt->base);
1822 		return ret;
1823 	}
1824 
1825 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1826 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1827 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1828 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1829 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1830 	ppgtt->debug_dump = gen6_dump_ppgtt;
1831 
1832 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1833 			 ppgtt->node.size >> 20,
1834 			 ppgtt->node.start / PAGE_SIZE);
1835 
1836 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1837 			 ppgtt->pd.base.ggtt_offset << 10);
1838 
1839 	return 0;
1840 }
1841 
1842 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1843 			   struct drm_i915_private *dev_priv)
1844 {
1845 	ppgtt->base.i915 = dev_priv;
1846 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1847 
1848 	if (INTEL_INFO(dev_priv)->gen < 8)
1849 		return gen6_ppgtt_init(ppgtt);
1850 	else
1851 		return gen8_ppgtt_init(ppgtt);
1852 }
1853 
1854 static void i915_address_space_init(struct i915_address_space *vm,
1855 				    struct drm_i915_private *dev_priv,
1856 				    const char *name)
1857 {
1858 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1859 
1860 	drm_mm_init(&vm->mm, 0, vm->total);
1861 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1862 
1863 	INIT_LIST_HEAD(&vm->active_list);
1864 	INIT_LIST_HEAD(&vm->inactive_list);
1865 	INIT_LIST_HEAD(&vm->unbound_list);
1866 
1867 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
1868 	pagevec_init(&vm->free_pages, false);
1869 }
1870 
1871 static void i915_address_space_fini(struct i915_address_space *vm)
1872 {
1873 	if (pagevec_count(&vm->free_pages))
1874 		vm_free_pages_release(vm);
1875 
1876 	i915_gem_timeline_fini(&vm->timeline);
1877 	drm_mm_takedown(&vm->mm);
1878 	list_del(&vm->global_link);
1879 }
1880 
1881 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1882 {
1883 	/* This function is for gtt related workarounds. This function is
1884 	 * called on driver load and after a GPU reset, so you can place
1885 	 * workarounds here even if they get overwritten by GPU reset.
1886 	 */
1887 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1888 	if (IS_BROADWELL(dev_priv))
1889 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1890 	else if (IS_CHERRYVIEW(dev_priv))
1891 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1892 	else if (IS_GEN9_BC(dev_priv))
1893 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1894 	else if (IS_GEN9_LP(dev_priv))
1895 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1896 }
1897 
1898 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1899 {
1900 	gtt_write_workarounds(dev_priv);
1901 
1902 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1903 	 * and the PDPs are contained within the context itself.  We don't
1904 	 * need to do anything here. */
1905 	if (i915.enable_execlists)
1906 		return 0;
1907 
1908 	if (!USES_PPGTT(dev_priv))
1909 		return 0;
1910 
1911 	if (IS_GEN6(dev_priv))
1912 		gen6_ppgtt_enable(dev_priv);
1913 	else if (IS_GEN7(dev_priv))
1914 		gen7_ppgtt_enable(dev_priv);
1915 	else if (INTEL_GEN(dev_priv) >= 8)
1916 		gen8_ppgtt_enable(dev_priv);
1917 	else
1918 		MISSING_CASE(INTEL_GEN(dev_priv));
1919 
1920 	return 0;
1921 }
1922 
1923 struct i915_hw_ppgtt *
1924 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1925 		  struct drm_i915_file_private *fpriv,
1926 		  const char *name)
1927 {
1928 	struct i915_hw_ppgtt *ppgtt;
1929 	int ret;
1930 
1931 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1932 	if (!ppgtt)
1933 		return ERR_PTR(-ENOMEM);
1934 
1935 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
1936 	if (ret) {
1937 		kfree(ppgtt);
1938 		return ERR_PTR(ret);
1939 	}
1940 
1941 	kref_init(&ppgtt->ref);
1942 	i915_address_space_init(&ppgtt->base, dev_priv, name);
1943 	ppgtt->base.file = fpriv;
1944 
1945 	trace_i915_ppgtt_create(&ppgtt->base);
1946 
1947 	return ppgtt;
1948 }
1949 
1950 void i915_ppgtt_close(struct i915_address_space *vm)
1951 {
1952 	struct list_head *phases[] = {
1953 		&vm->active_list,
1954 		&vm->inactive_list,
1955 		&vm->unbound_list,
1956 		NULL,
1957 	}, **phase;
1958 
1959 	GEM_BUG_ON(vm->closed);
1960 	vm->closed = true;
1961 
1962 	for (phase = phases; *phase; phase++) {
1963 		struct i915_vma *vma, *vn;
1964 
1965 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
1966 			if (!i915_vma_is_closed(vma))
1967 				i915_vma_close(vma);
1968 	}
1969 }
1970 
1971 void i915_ppgtt_release(struct kref *kref)
1972 {
1973 	struct i915_hw_ppgtt *ppgtt =
1974 		container_of(kref, struct i915_hw_ppgtt, ref);
1975 
1976 	trace_i915_ppgtt_release(&ppgtt->base);
1977 
1978 	/* vmas should already be unbound and destroyed */
1979 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1980 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1981 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1982 
1983 	ppgtt->base.cleanup(&ppgtt->base);
1984 	i915_address_space_fini(&ppgtt->base);
1985 	kfree(ppgtt);
1986 }
1987 
1988 /* Certain Gen5 chipsets require require idling the GPU before
1989  * unmapping anything from the GTT when VT-d is enabled.
1990  */
1991 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1992 {
1993 	/* Query intel_iommu to see if we need the workaround. Presumably that
1994 	 * was loaded first.
1995 	 */
1996 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1997 }
1998 
1999 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2000 {
2001 	struct intel_engine_cs *engine;
2002 	enum intel_engine_id id;
2003 
2004 	if (INTEL_INFO(dev_priv)->gen < 6)
2005 		return;
2006 
2007 	for_each_engine(engine, dev_priv, id) {
2008 		u32 fault_reg;
2009 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2010 		if (fault_reg & RING_FAULT_VALID) {
2011 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2012 					 "\tAddr: 0x%08lx\n"
2013 					 "\tAddress space: %s\n"
2014 					 "\tSource ID: %d\n"
2015 					 "\tType: %d\n",
2016 					 fault_reg & PAGE_MASK,
2017 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2018 					 RING_FAULT_SRCID(fault_reg),
2019 					 RING_FAULT_FAULT_TYPE(fault_reg));
2020 			I915_WRITE(RING_FAULT_REG(engine),
2021 				   fault_reg & ~RING_FAULT_VALID);
2022 		}
2023 	}
2024 
2025 	/* Engine specific init may not have been done till this point. */
2026 	if (dev_priv->engine[RCS])
2027 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2028 }
2029 
2030 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2031 {
2032 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2033 
2034 	/* Don't bother messing with faults pre GEN6 as we have little
2035 	 * documentation supporting that it's a good idea.
2036 	 */
2037 	if (INTEL_GEN(dev_priv) < 6)
2038 		return;
2039 
2040 	i915_check_and_clear_faults(dev_priv);
2041 
2042 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2043 
2044 	i915_ggtt_invalidate(dev_priv);
2045 }
2046 
2047 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2048 			       struct sg_table *pages)
2049 {
2050 	do {
2051 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2052 			       pages->sgl, pages->nents,
2053 			       PCI_DMA_BIDIRECTIONAL))
2054 			return 0;
2055 
2056 		/* If the DMA remap fails, one cause can be that we have
2057 		 * too many objects pinned in a small remapping table,
2058 		 * such as swiotlb. Incrementally purge all other objects and
2059 		 * try again - if there are no more pages to remove from
2060 		 * the DMA remapper, i915_gem_shrink will return 0.
2061 		 */
2062 		GEM_BUG_ON(obj->mm.pages == pages);
2063 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2064 				 obj->base.size >> PAGE_SHIFT,
2065 				 I915_SHRINK_BOUND |
2066 				 I915_SHRINK_UNBOUND |
2067 				 I915_SHRINK_ACTIVE));
2068 
2069 	return -ENOSPC;
2070 }
2071 
2072 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2073 {
2074 	writeq(pte, addr);
2075 }
2076 
2077 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2078 				  dma_addr_t addr,
2079 				  u64 offset,
2080 				  enum i915_cache_level level,
2081 				  u32 unused)
2082 {
2083 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2084 	gen8_pte_t __iomem *pte =
2085 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2086 
2087 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2088 
2089 	ggtt->invalidate(vm->i915);
2090 }
2091 
2092 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2093 				     struct sg_table *st,
2094 				     u64 start,
2095 				     enum i915_cache_level level,
2096 				     u32 unused)
2097 {
2098 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099 	struct sgt_iter sgt_iter;
2100 	gen8_pte_t __iomem *gtt_entries;
2101 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102 	dma_addr_t addr;
2103 
2104 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105 	gtt_entries += start >> PAGE_SHIFT;
2106 	for_each_sgt_dma(addr, sgt_iter, st)
2107 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2108 
2109 	wmb();
2110 
2111 	/* This next bit makes the above posting read even more important. We
2112 	 * want to flush the TLBs only after we're certain all the PTE updates
2113 	 * have finished.
2114 	 */
2115 	ggtt->invalidate(vm->i915);
2116 }
2117 
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119 				  dma_addr_t addr,
2120 				  u64 offset,
2121 				  enum i915_cache_level level,
2122 				  u32 flags)
2123 {
2124 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125 	gen6_pte_t __iomem *pte =
2126 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127 
2128 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2129 
2130 	ggtt->invalidate(vm->i915);
2131 }
2132 
2133 /*
2134  * Binds an object into the global gtt with the specified cache level. The object
2135  * will be accessible to the GPU via commands whose operands reference offsets
2136  * within the global GTT as well as accessible by the GPU through the GMADR
2137  * mapped BAR (dev_priv->mm.gtt->gtt).
2138  */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140 				     struct sg_table *st,
2141 				     u64 start,
2142 				     enum i915_cache_level level,
2143 				     u32 flags)
2144 {
2145 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2146 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2147 	unsigned int i = start >> PAGE_SHIFT;
2148 	struct sgt_iter iter;
2149 	dma_addr_t addr;
2150 	for_each_sgt_dma(addr, iter, st)
2151 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2152 	wmb();
2153 
2154 	/* This next bit makes the above posting read even more important. We
2155 	 * want to flush the TLBs only after we're certain all the PTE updates
2156 	 * have finished.
2157 	 */
2158 	ggtt->invalidate(vm->i915);
2159 }
2160 
2161 static void nop_clear_range(struct i915_address_space *vm,
2162 			    u64 start, u64 length)
2163 {
2164 }
2165 
2166 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2167 				  u64 start, u64 length)
2168 {
2169 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2170 	unsigned first_entry = start >> PAGE_SHIFT;
2171 	unsigned num_entries = length >> PAGE_SHIFT;
2172 	const gen8_pte_t scratch_pte =
2173 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2174 	gen8_pte_t __iomem *gtt_base =
2175 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2176 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2177 	int i;
2178 
2179 	if (WARN(num_entries > max_entries,
2180 		 "First entry = %d; Num entries = %d (max=%d)\n",
2181 		 first_entry, num_entries, max_entries))
2182 		num_entries = max_entries;
2183 
2184 	for (i = 0; i < num_entries; i++)
2185 		gen8_set_pte(&gtt_base[i], scratch_pte);
2186 }
2187 
2188 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2189 {
2190 	struct drm_i915_private *dev_priv = vm->i915;
2191 
2192 	/*
2193 	 * Make sure the internal GAM fifo has been cleared of all GTT
2194 	 * writes before exiting stop_machine(). This guarantees that
2195 	 * any aperture accesses waiting to start in another process
2196 	 * cannot back up behind the GTT writes causing a hang.
2197 	 * The register can be any arbitrary GAM register.
2198 	 */
2199 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2200 }
2201 
2202 struct insert_page {
2203 	struct i915_address_space *vm;
2204 	dma_addr_t addr;
2205 	u64 offset;
2206 	enum i915_cache_level level;
2207 };
2208 
2209 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2210 {
2211 	struct insert_page *arg = _arg;
2212 
2213 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2214 	bxt_vtd_ggtt_wa(arg->vm);
2215 
2216 	return 0;
2217 }
2218 
2219 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2220 					  dma_addr_t addr,
2221 					  u64 offset,
2222 					  enum i915_cache_level level,
2223 					  u32 unused)
2224 {
2225 	struct insert_page arg = { vm, addr, offset, level };
2226 
2227 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2228 }
2229 
2230 struct insert_entries {
2231 	struct i915_address_space *vm;
2232 	struct sg_table *st;
2233 	u64 start;
2234 	enum i915_cache_level level;
2235 };
2236 
2237 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2238 {
2239 	struct insert_entries *arg = _arg;
2240 
2241 	gen8_ggtt_insert_entries(arg->vm, arg->st, arg->start, arg->level, 0);
2242 	bxt_vtd_ggtt_wa(arg->vm);
2243 
2244 	return 0;
2245 }
2246 
2247 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2248 					     struct sg_table *st,
2249 					     u64 start,
2250 					     enum i915_cache_level level,
2251 					     u32 unused)
2252 {
2253 	struct insert_entries arg = { vm, st, start, level };
2254 
2255 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2256 }
2257 
2258 struct clear_range {
2259 	struct i915_address_space *vm;
2260 	u64 start;
2261 	u64 length;
2262 };
2263 
2264 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2265 {
2266 	struct clear_range *arg = _arg;
2267 
2268 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2269 	bxt_vtd_ggtt_wa(arg->vm);
2270 
2271 	return 0;
2272 }
2273 
2274 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2275 					  u64 start,
2276 					  u64 length)
2277 {
2278 	struct clear_range arg = { vm, start, length };
2279 
2280 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2281 }
2282 
2283 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2284 				  u64 start, u64 length)
2285 {
2286 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2287 	unsigned first_entry = start >> PAGE_SHIFT;
2288 	unsigned num_entries = length >> PAGE_SHIFT;
2289 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2290 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2291 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2292 	int i;
2293 
2294 	if (WARN(num_entries > max_entries,
2295 		 "First entry = %d; Num entries = %d (max=%d)\n",
2296 		 first_entry, num_entries, max_entries))
2297 		num_entries = max_entries;
2298 
2299 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2300 				     I915_CACHE_LLC, 0);
2301 
2302 	for (i = 0; i < num_entries; i++)
2303 		iowrite32(scratch_pte, &gtt_base[i]);
2304 }
2305 
2306 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2307 				  dma_addr_t addr,
2308 				  u64 offset,
2309 				  enum i915_cache_level cache_level,
2310 				  u32 unused)
2311 {
2312 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2313 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2314 
2315 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2316 }
2317 
2318 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2319 				     struct sg_table *pages,
2320 				     u64 start,
2321 				     enum i915_cache_level cache_level,
2322 				     u32 unused)
2323 {
2324 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2325 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2326 
2327 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2328 }
2329 
2330 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2331 				  u64 start, u64 length)
2332 {
2333 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2334 }
2335 
2336 static int ggtt_bind_vma(struct i915_vma *vma,
2337 			 enum i915_cache_level cache_level,
2338 			 u32 flags)
2339 {
2340 	struct drm_i915_private *i915 = vma->vm->i915;
2341 	struct drm_i915_gem_object *obj = vma->obj;
2342 	u32 pte_flags;
2343 
2344 	if (unlikely(!vma->pages)) {
2345 		int ret = i915_get_ggtt_vma_pages(vma);
2346 		if (ret)
2347 			return ret;
2348 	}
2349 
2350 	/* Currently applicable only to VLV */
2351 	pte_flags = 0;
2352 	if (obj->gt_ro)
2353 		pte_flags |= PTE_READ_ONLY;
2354 
2355 	intel_runtime_pm_get(i915);
2356 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2357 				cache_level, pte_flags);
2358 	intel_runtime_pm_put(i915);
2359 
2360 	/*
2361 	 * Without aliasing PPGTT there's no difference between
2362 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2363 	 * upgrade to both bound if we bind either to avoid double-binding.
2364 	 */
2365 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2366 
2367 	return 0;
2368 }
2369 
2370 static void ggtt_unbind_vma(struct i915_vma *vma)
2371 {
2372 	struct drm_i915_private *i915 = vma->vm->i915;
2373 
2374 	intel_runtime_pm_get(i915);
2375 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2376 	intel_runtime_pm_put(i915);
2377 }
2378 
2379 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2380 				 enum i915_cache_level cache_level,
2381 				 u32 flags)
2382 {
2383 	struct drm_i915_private *i915 = vma->vm->i915;
2384 	u32 pte_flags;
2385 	int ret;
2386 
2387 	if (unlikely(!vma->pages)) {
2388 		ret = i915_get_ggtt_vma_pages(vma);
2389 		if (ret)
2390 			return ret;
2391 	}
2392 
2393 	/* Currently applicable only to VLV */
2394 	pte_flags = 0;
2395 	if (vma->obj->gt_ro)
2396 		pte_flags |= PTE_READ_ONLY;
2397 
2398 	if (flags & I915_VMA_LOCAL_BIND) {
2399 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2400 
2401 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2402 		    appgtt->base.allocate_va_range) {
2403 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2404 							     vma->node.start,
2405 							     vma->size);
2406 			if (ret)
2407 				goto err_pages;
2408 		}
2409 
2410 		appgtt->base.insert_entries(&appgtt->base,
2411 					    vma->pages, vma->node.start,
2412 					    cache_level, pte_flags);
2413 	}
2414 
2415 	if (flags & I915_VMA_GLOBAL_BIND) {
2416 		intel_runtime_pm_get(i915);
2417 		vma->vm->insert_entries(vma->vm,
2418 					vma->pages, vma->node.start,
2419 					cache_level, pte_flags);
2420 		intel_runtime_pm_put(i915);
2421 	}
2422 
2423 	return 0;
2424 
2425 err_pages:
2426 	if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2427 		if (vma->pages != vma->obj->mm.pages) {
2428 			GEM_BUG_ON(!vma->pages);
2429 			sg_free_table(vma->pages);
2430 			kfree(vma->pages);
2431 		}
2432 		vma->pages = NULL;
2433 	}
2434 	return ret;
2435 }
2436 
2437 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2438 {
2439 	struct drm_i915_private *i915 = vma->vm->i915;
2440 
2441 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2442 		intel_runtime_pm_get(i915);
2443 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2444 		intel_runtime_pm_put(i915);
2445 	}
2446 
2447 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2448 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2449 
2450 		vm->clear_range(vm, vma->node.start, vma->size);
2451 	}
2452 }
2453 
2454 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2455 			       struct sg_table *pages)
2456 {
2457 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2458 	struct device *kdev = &dev_priv->drm.pdev->dev;
2459 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2460 
2461 	if (unlikely(ggtt->do_idle_maps)) {
2462 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2463 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2464 			/* Wait a bit, in hopes it avoids the hang */
2465 			udelay(10);
2466 		}
2467 	}
2468 
2469 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2470 }
2471 
2472 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2473 				  unsigned long color,
2474 				  u64 *start,
2475 				  u64 *end)
2476 {
2477 	if (node->allocated && node->color != color)
2478 		*start += I915_GTT_PAGE_SIZE;
2479 
2480 	/* Also leave a space between the unallocated reserved node after the
2481 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2482 	 * to insert a guard page to prevent prefetches crossing over the
2483 	 * GTT boundary.
2484 	 */
2485 	node = list_next_entry(node, node_list);
2486 	if (node->color != color)
2487 		*end -= I915_GTT_PAGE_SIZE;
2488 }
2489 
2490 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2491 {
2492 	struct i915_ggtt *ggtt = &i915->ggtt;
2493 	struct i915_hw_ppgtt *ppgtt;
2494 	int err;
2495 
2496 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2497 	if (IS_ERR(ppgtt))
2498 		return PTR_ERR(ppgtt);
2499 
2500 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2501 		err = -ENODEV;
2502 		goto err_ppgtt;
2503 	}
2504 
2505 	if (ppgtt->base.allocate_va_range) {
2506 		/* Note we only pre-allocate as far as the end of the global
2507 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2508 		 * very significant! We have to preallocate as GVT/vgpu does
2509 		 * not like the page directory disappearing.
2510 		 */
2511 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2512 						    0, ggtt->base.total);
2513 		if (err)
2514 			goto err_ppgtt;
2515 	}
2516 
2517 	i915->mm.aliasing_ppgtt = ppgtt;
2518 
2519 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2520 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2521 
2522 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2523 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2524 
2525 	return 0;
2526 
2527 err_ppgtt:
2528 	i915_ppgtt_put(ppgtt);
2529 	return err;
2530 }
2531 
2532 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2533 {
2534 	struct i915_ggtt *ggtt = &i915->ggtt;
2535 	struct i915_hw_ppgtt *ppgtt;
2536 
2537 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2538 	if (!ppgtt)
2539 		return;
2540 
2541 	i915_ppgtt_put(ppgtt);
2542 
2543 	ggtt->base.bind_vma = ggtt_bind_vma;
2544 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2545 }
2546 
2547 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2548 {
2549 	/* Let GEM Manage all of the aperture.
2550 	 *
2551 	 * However, leave one page at the end still bound to the scratch page.
2552 	 * There are a number of places where the hardware apparently prefetches
2553 	 * past the end of the object, and we've seen multiple hangs with the
2554 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2555 	 * aperture.  One page should be enough to keep any prefetching inside
2556 	 * of the aperture.
2557 	 */
2558 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2559 	unsigned long hole_start, hole_end;
2560 	struct drm_mm_node *entry;
2561 	int ret;
2562 
2563 	ret = intel_vgt_balloon(dev_priv);
2564 	if (ret)
2565 		return ret;
2566 
2567 	/* Reserve a mappable slot for our lockless error capture */
2568 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2569 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2570 					  0, ggtt->mappable_end,
2571 					  DRM_MM_INSERT_LOW);
2572 	if (ret)
2573 		return ret;
2574 
2575 	/* Clear any non-preallocated blocks */
2576 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2577 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2578 			      hole_start, hole_end);
2579 		ggtt->base.clear_range(&ggtt->base, hole_start,
2580 				       hole_end - hole_start);
2581 	}
2582 
2583 	/* And finally clear the reserved guard page */
2584 	ggtt->base.clear_range(&ggtt->base,
2585 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2586 
2587 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2588 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2589 		if (ret)
2590 			goto err;
2591 	}
2592 
2593 	return 0;
2594 
2595 err:
2596 	drm_mm_remove_node(&ggtt->error_capture);
2597 	return ret;
2598 }
2599 
2600 /**
2601  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2602  * @dev_priv: i915 device
2603  */
2604 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2605 {
2606 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2607 	struct i915_vma *vma, *vn;
2608 
2609 	ggtt->base.closed = true;
2610 
2611 	mutex_lock(&dev_priv->drm.struct_mutex);
2612 	WARN_ON(!list_empty(&ggtt->base.active_list));
2613 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2614 		WARN_ON(i915_vma_unbind(vma));
2615 	mutex_unlock(&dev_priv->drm.struct_mutex);
2616 
2617 	i915_gem_cleanup_stolen(&dev_priv->drm);
2618 
2619 	mutex_lock(&dev_priv->drm.struct_mutex);
2620 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2621 
2622 	if (drm_mm_node_allocated(&ggtt->error_capture))
2623 		drm_mm_remove_node(&ggtt->error_capture);
2624 
2625 	if (drm_mm_initialized(&ggtt->base.mm)) {
2626 		intel_vgt_deballoon(dev_priv);
2627 		i915_address_space_fini(&ggtt->base);
2628 	}
2629 
2630 	ggtt->base.cleanup(&ggtt->base);
2631 	mutex_unlock(&dev_priv->drm.struct_mutex);
2632 
2633 	arch_phys_wc_del(ggtt->mtrr);
2634 	io_mapping_fini(&ggtt->mappable);
2635 }
2636 
2637 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2638 {
2639 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2640 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2641 	return snb_gmch_ctl << 20;
2642 }
2643 
2644 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2645 {
2646 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2647 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2648 	if (bdw_gmch_ctl)
2649 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2650 
2651 #ifdef CONFIG_X86_32
2652 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2653 	if (bdw_gmch_ctl > 4)
2654 		bdw_gmch_ctl = 4;
2655 #endif
2656 
2657 	return bdw_gmch_ctl << 20;
2658 }
2659 
2660 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2661 {
2662 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2663 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2664 
2665 	if (gmch_ctrl)
2666 		return 1 << (20 + gmch_ctrl);
2667 
2668 	return 0;
2669 }
2670 
2671 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2672 {
2673 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2674 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2675 	return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2676 }
2677 
2678 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2679 {
2680 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2681 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2682 	return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2683 }
2684 
2685 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2686 {
2687 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2688 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2689 
2690 	/*
2691 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2692 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2693 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2694 	 */
2695 	if (gmch_ctrl < 0x11)
2696 		return (size_t)gmch_ctrl << 25;
2697 	else if (gmch_ctrl < 0x17)
2698 		return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2699 	else
2700 		return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2701 }
2702 
2703 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2704 {
2705 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2706 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2707 
2708 	if (gen9_gmch_ctl < 0xf0)
2709 		return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2710 	else
2711 		/* 4MB increments starting at 0xf0 for 4MB */
2712 		return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2713 }
2714 
2715 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2716 {
2717 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2718 	struct pci_dev *pdev = dev_priv->drm.pdev;
2719 	phys_addr_t phys_addr;
2720 	int ret;
2721 
2722 	/* For Modern GENs the PTEs and register space are split in the BAR */
2723 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2724 
2725 	/*
2726 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2727 	 * dropped. For WC mappings in general we have 64 byte burst writes
2728 	 * when the WC buffer is flushed, so we can't use it, but have to
2729 	 * resort to an uncached mapping. The WC issue is easily caught by the
2730 	 * readback check when writing GTT PTE entries.
2731 	 */
2732 	if (IS_GEN9_LP(dev_priv))
2733 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2734 	else
2735 		ggtt->gsm = ioremap_wc(phys_addr, size);
2736 	if (!ggtt->gsm) {
2737 		DRM_ERROR("Failed to map the ggtt page table\n");
2738 		return -ENOMEM;
2739 	}
2740 
2741 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2742 	if (ret) {
2743 		DRM_ERROR("Scratch setup failed\n");
2744 		/* iounmap will also get called at remove, but meh */
2745 		iounmap(ggtt->gsm);
2746 		return ret;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2753  * bits. When using advanced contexts each context stores its own PAT, but
2754  * writing this data shouldn't be harmful even in those cases. */
2755 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2756 {
2757 	u64 pat;
2758 
2759 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2760 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2761 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2762 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2763 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2764 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2765 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2766 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2767 
2768 	if (!USES_PPGTT(dev_priv))
2769 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2770 		 * so RTL will always use the value corresponding to
2771 		 * pat_sel = 000".
2772 		 * So let's disable cache for GGTT to avoid screen corruptions.
2773 		 * MOCS still can be used though.
2774 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2775 		 * before this patch, i.e. the same uncached + snooping access
2776 		 * like on gen6/7 seems to be in effect.
2777 		 * - So this just fixes blitter/render access. Again it looks
2778 		 * like it's not just uncached access, but uncached + snooping.
2779 		 * So we can still hold onto all our assumptions wrt cpu
2780 		 * clflushing on LLC machines.
2781 		 */
2782 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2783 
2784 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2785 	 * write would work. */
2786 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2787 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2788 }
2789 
2790 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2791 {
2792 	u64 pat;
2793 
2794 	/*
2795 	 * Map WB on BDW to snooped on CHV.
2796 	 *
2797 	 * Only the snoop bit has meaning for CHV, the rest is
2798 	 * ignored.
2799 	 *
2800 	 * The hardware will never snoop for certain types of accesses:
2801 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2802 	 * - PPGTT page tables
2803 	 * - some other special cycles
2804 	 *
2805 	 * As with BDW, we also need to consider the following for GT accesses:
2806 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2807 	 * so RTL will always use the value corresponding to
2808 	 * pat_sel = 000".
2809 	 * Which means we must set the snoop bit in PAT entry 0
2810 	 * in order to keep the global status page working.
2811 	 */
2812 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2813 	      GEN8_PPAT(1, 0) |
2814 	      GEN8_PPAT(2, 0) |
2815 	      GEN8_PPAT(3, 0) |
2816 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2817 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2818 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2819 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2820 
2821 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2822 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2823 }
2824 
2825 static void gen6_gmch_remove(struct i915_address_space *vm)
2826 {
2827 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2828 
2829 	iounmap(ggtt->gsm);
2830 	cleanup_scratch_page(vm);
2831 }
2832 
2833 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2834 {
2835 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2836 	struct pci_dev *pdev = dev_priv->drm.pdev;
2837 	unsigned int size;
2838 	u16 snb_gmch_ctl;
2839 	int err;
2840 
2841 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2842 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2843 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2844 
2845 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2846 	if (!err)
2847 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2848 	if (err)
2849 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2850 
2851 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2852 
2853 	if (INTEL_GEN(dev_priv) >= 9) {
2854 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2855 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2856 	} else if (IS_CHERRYVIEW(dev_priv)) {
2857 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2858 		size = chv_get_total_gtt_size(snb_gmch_ctl);
2859 	} else {
2860 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2861 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2862 	}
2863 
2864 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2865 
2866 	if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2867 		chv_setup_private_ppat(dev_priv);
2868 	else
2869 		bdw_setup_private_ppat(dev_priv);
2870 
2871 	ggtt->base.cleanup = gen6_gmch_remove;
2872 	ggtt->base.bind_vma = ggtt_bind_vma;
2873 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2874 	ggtt->base.insert_page = gen8_ggtt_insert_page;
2875 	ggtt->base.clear_range = nop_clear_range;
2876 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2877 		ggtt->base.clear_range = gen8_ggtt_clear_range;
2878 
2879 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2880 
2881 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2882 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2883 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2884 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2885 		if (ggtt->base.clear_range != nop_clear_range)
2886 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2887 	}
2888 
2889 	ggtt->invalidate = gen6_ggtt_invalidate;
2890 
2891 	return ggtt_probe_common(ggtt, size);
2892 }
2893 
2894 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2895 {
2896 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2897 	struct pci_dev *pdev = dev_priv->drm.pdev;
2898 	unsigned int size;
2899 	u16 snb_gmch_ctl;
2900 	int err;
2901 
2902 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2903 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2904 
2905 	/* 64/512MB is the current min/max we actually know of, but this is just
2906 	 * a coarse sanity check.
2907 	 */
2908 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2909 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2910 		return -ENXIO;
2911 	}
2912 
2913 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2914 	if (!err)
2915 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2916 	if (err)
2917 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2918 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2919 
2920 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2921 
2922 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
2923 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2924 
2925 	ggtt->base.clear_range = gen6_ggtt_clear_range;
2926 	ggtt->base.insert_page = gen6_ggtt_insert_page;
2927 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2928 	ggtt->base.bind_vma = ggtt_bind_vma;
2929 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2930 	ggtt->base.cleanup = gen6_gmch_remove;
2931 
2932 	ggtt->invalidate = gen6_ggtt_invalidate;
2933 
2934 	if (HAS_EDRAM(dev_priv))
2935 		ggtt->base.pte_encode = iris_pte_encode;
2936 	else if (IS_HASWELL(dev_priv))
2937 		ggtt->base.pte_encode = hsw_pte_encode;
2938 	else if (IS_VALLEYVIEW(dev_priv))
2939 		ggtt->base.pte_encode = byt_pte_encode;
2940 	else if (INTEL_GEN(dev_priv) >= 7)
2941 		ggtt->base.pte_encode = ivb_pte_encode;
2942 	else
2943 		ggtt->base.pte_encode = snb_pte_encode;
2944 
2945 	return ggtt_probe_common(ggtt, size);
2946 }
2947 
2948 static void i915_gmch_remove(struct i915_address_space *vm)
2949 {
2950 	intel_gmch_remove();
2951 }
2952 
2953 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2954 {
2955 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2956 	int ret;
2957 
2958 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2959 	if (!ret) {
2960 		DRM_ERROR("failed to set up gmch\n");
2961 		return -EIO;
2962 	}
2963 
2964 	intel_gtt_get(&ggtt->base.total,
2965 		      &ggtt->stolen_size,
2966 		      &ggtt->mappable_base,
2967 		      &ggtt->mappable_end);
2968 
2969 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2970 	ggtt->base.insert_page = i915_ggtt_insert_page;
2971 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
2972 	ggtt->base.clear_range = i915_ggtt_clear_range;
2973 	ggtt->base.bind_vma = ggtt_bind_vma;
2974 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2975 	ggtt->base.cleanup = i915_gmch_remove;
2976 
2977 	ggtt->invalidate = gmch_ggtt_invalidate;
2978 
2979 	if (unlikely(ggtt->do_idle_maps))
2980 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2981 
2982 	return 0;
2983 }
2984 
2985 /**
2986  * i915_ggtt_probe_hw - Probe GGTT hardware location
2987  * @dev_priv: i915 device
2988  */
2989 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2990 {
2991 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2992 	int ret;
2993 
2994 	ggtt->base.i915 = dev_priv;
2995 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
2996 
2997 	if (INTEL_GEN(dev_priv) <= 5)
2998 		ret = i915_gmch_probe(ggtt);
2999 	else if (INTEL_GEN(dev_priv) < 8)
3000 		ret = gen6_gmch_probe(ggtt);
3001 	else
3002 		ret = gen8_gmch_probe(ggtt);
3003 	if (ret)
3004 		return ret;
3005 
3006 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3007 	 * This is easier than doing range restriction on the fly, as we
3008 	 * currently don't have any bits spare to pass in this upper
3009 	 * restriction!
3010 	 */
3011 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3012 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3013 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3014 	}
3015 
3016 	if ((ggtt->base.total - 1) >> 32) {
3017 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3018 			  " of address space! Found %lldM!\n",
3019 			  ggtt->base.total >> 20);
3020 		ggtt->base.total = 1ULL << 32;
3021 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3022 	}
3023 
3024 	if (ggtt->mappable_end > ggtt->base.total) {
3025 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3026 			  " aperture=%llx, total=%llx\n",
3027 			  ggtt->mappable_end, ggtt->base.total);
3028 		ggtt->mappable_end = ggtt->base.total;
3029 	}
3030 
3031 	/* GMADR is the PCI mmio aperture into the global GTT. */
3032 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3033 		 ggtt->base.total >> 20);
3034 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3035 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3036 	if (intel_vtd_active())
3037 		DRM_INFO("VT-d active for gfx access\n");
3038 
3039 	return 0;
3040 }
3041 
3042 /**
3043  * i915_ggtt_init_hw - Initialize GGTT hardware
3044  * @dev_priv: i915 device
3045  */
3046 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3047 {
3048 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3049 	int ret;
3050 
3051 	INIT_LIST_HEAD(&dev_priv->vm_list);
3052 
3053 	/* Note that we use page colouring to enforce a guard page at the
3054 	 * end of the address space. This is required as the CS may prefetch
3055 	 * beyond the end of the batch buffer, across the page boundary,
3056 	 * and beyond the end of the GTT if we do not provide a guard.
3057 	 */
3058 	mutex_lock(&dev_priv->drm.struct_mutex);
3059 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3060 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3061 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3062 	mutex_unlock(&dev_priv->drm.struct_mutex);
3063 
3064 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3065 				dev_priv->ggtt.mappable_base,
3066 				dev_priv->ggtt.mappable_end)) {
3067 		ret = -EIO;
3068 		goto out_gtt_cleanup;
3069 	}
3070 
3071 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3072 
3073 	/*
3074 	 * Initialise stolen early so that we may reserve preallocated
3075 	 * objects for the BIOS to KMS transition.
3076 	 */
3077 	ret = i915_gem_init_stolen(dev_priv);
3078 	if (ret)
3079 		goto out_gtt_cleanup;
3080 
3081 	return 0;
3082 
3083 out_gtt_cleanup:
3084 	ggtt->base.cleanup(&ggtt->base);
3085 	return ret;
3086 }
3087 
3088 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3089 {
3090 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3091 		return -EIO;
3092 
3093 	return 0;
3094 }
3095 
3096 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3097 {
3098 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3099 
3100 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3101 }
3102 
3103 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3104 {
3105 	/* We should only be called after i915_ggtt_enable_guc() */
3106 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3107 
3108 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3109 }
3110 
3111 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3112 {
3113 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3114 	struct drm_i915_gem_object *obj, *on;
3115 
3116 	i915_check_and_clear_faults(dev_priv);
3117 
3118 	/* First fill our portion of the GTT with scratch pages */
3119 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3120 
3121 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3122 
3123 	/* clflush objects bound into the GGTT and rebind them. */
3124 	list_for_each_entry_safe(obj, on,
3125 				 &dev_priv->mm.bound_list, global_link) {
3126 		bool ggtt_bound = false;
3127 		struct i915_vma *vma;
3128 
3129 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3130 			if (vma->vm != &ggtt->base)
3131 				continue;
3132 
3133 			if (!i915_vma_unbind(vma))
3134 				continue;
3135 
3136 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3137 					      PIN_UPDATE));
3138 			ggtt_bound = true;
3139 		}
3140 
3141 		if (ggtt_bound)
3142 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3143 	}
3144 
3145 	ggtt->base.closed = false;
3146 
3147 	if (INTEL_GEN(dev_priv) >= 8) {
3148 		if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3149 			chv_setup_private_ppat(dev_priv);
3150 		else
3151 			bdw_setup_private_ppat(dev_priv);
3152 
3153 		return;
3154 	}
3155 
3156 	if (USES_PPGTT(dev_priv)) {
3157 		struct i915_address_space *vm;
3158 
3159 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3160 			struct i915_hw_ppgtt *ppgtt;
3161 
3162 			if (i915_is_ggtt(vm))
3163 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3164 			else
3165 				ppgtt = i915_vm_to_ppgtt(vm);
3166 
3167 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3168 		}
3169 	}
3170 
3171 	i915_ggtt_invalidate(dev_priv);
3172 }
3173 
3174 static struct scatterlist *
3175 rotate_pages(const dma_addr_t *in, unsigned int offset,
3176 	     unsigned int width, unsigned int height,
3177 	     unsigned int stride,
3178 	     struct sg_table *st, struct scatterlist *sg)
3179 {
3180 	unsigned int column, row;
3181 	unsigned int src_idx;
3182 
3183 	for (column = 0; column < width; column++) {
3184 		src_idx = stride * (height - 1) + column;
3185 		for (row = 0; row < height; row++) {
3186 			st->nents++;
3187 			/* We don't need the pages, but need to initialize
3188 			 * the entries so the sg list can be happily traversed.
3189 			 * The only thing we need are DMA addresses.
3190 			 */
3191 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3192 			sg_dma_address(sg) = in[offset + src_idx];
3193 			sg_dma_len(sg) = PAGE_SIZE;
3194 			sg = sg_next(sg);
3195 			src_idx -= stride;
3196 		}
3197 	}
3198 
3199 	return sg;
3200 }
3201 
3202 static noinline struct sg_table *
3203 intel_rotate_pages(struct intel_rotation_info *rot_info,
3204 		   struct drm_i915_gem_object *obj)
3205 {
3206 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3207 	unsigned int size = intel_rotation_info_size(rot_info);
3208 	struct sgt_iter sgt_iter;
3209 	dma_addr_t dma_addr;
3210 	unsigned long i;
3211 	dma_addr_t *page_addr_list;
3212 	struct sg_table *st;
3213 	struct scatterlist *sg;
3214 	int ret = -ENOMEM;
3215 
3216 	/* Allocate a temporary list of source pages for random access. */
3217 	page_addr_list = kvmalloc_array(n_pages,
3218 					sizeof(dma_addr_t),
3219 					GFP_TEMPORARY);
3220 	if (!page_addr_list)
3221 		return ERR_PTR(ret);
3222 
3223 	/* Allocate target SG list. */
3224 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3225 	if (!st)
3226 		goto err_st_alloc;
3227 
3228 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3229 	if (ret)
3230 		goto err_sg_alloc;
3231 
3232 	/* Populate source page list from the object. */
3233 	i = 0;
3234 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3235 		page_addr_list[i++] = dma_addr;
3236 
3237 	GEM_BUG_ON(i != n_pages);
3238 	st->nents = 0;
3239 	sg = st->sgl;
3240 
3241 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3242 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3243 				  rot_info->plane[i].width, rot_info->plane[i].height,
3244 				  rot_info->plane[i].stride, st, sg);
3245 	}
3246 
3247 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3248 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3249 
3250 	kvfree(page_addr_list);
3251 
3252 	return st;
3253 
3254 err_sg_alloc:
3255 	kfree(st);
3256 err_st_alloc:
3257 	kvfree(page_addr_list);
3258 
3259 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3260 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3261 
3262 	return ERR_PTR(ret);
3263 }
3264 
3265 static noinline struct sg_table *
3266 intel_partial_pages(const struct i915_ggtt_view *view,
3267 		    struct drm_i915_gem_object *obj)
3268 {
3269 	struct sg_table *st;
3270 	struct scatterlist *sg, *iter;
3271 	unsigned int count = view->partial.size;
3272 	unsigned int offset;
3273 	int ret = -ENOMEM;
3274 
3275 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3276 	if (!st)
3277 		goto err_st_alloc;
3278 
3279 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3280 	if (ret)
3281 		goto err_sg_alloc;
3282 
3283 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3284 	GEM_BUG_ON(!iter);
3285 
3286 	sg = st->sgl;
3287 	st->nents = 0;
3288 	do {
3289 		unsigned int len;
3290 
3291 		len = min(iter->length - (offset << PAGE_SHIFT),
3292 			  count << PAGE_SHIFT);
3293 		sg_set_page(sg, NULL, len, 0);
3294 		sg_dma_address(sg) =
3295 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3296 		sg_dma_len(sg) = len;
3297 
3298 		st->nents++;
3299 		count -= len >> PAGE_SHIFT;
3300 		if (count == 0) {
3301 			sg_mark_end(sg);
3302 			return st;
3303 		}
3304 
3305 		sg = __sg_next(sg);
3306 		iter = __sg_next(iter);
3307 		offset = 0;
3308 	} while (1);
3309 
3310 err_sg_alloc:
3311 	kfree(st);
3312 err_st_alloc:
3313 	return ERR_PTR(ret);
3314 }
3315 
3316 static int
3317 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3318 {
3319 	int ret;
3320 
3321 	/* The vma->pages are only valid within the lifespan of the borrowed
3322 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3323 	 * must be the vma->pages. A simple rule is that vma->pages must only
3324 	 * be accessed when the obj->mm.pages are pinned.
3325 	 */
3326 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3327 
3328 	switch (vma->ggtt_view.type) {
3329 	case I915_GGTT_VIEW_NORMAL:
3330 		vma->pages = vma->obj->mm.pages;
3331 		return 0;
3332 
3333 	case I915_GGTT_VIEW_ROTATED:
3334 		vma->pages =
3335 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3336 		break;
3337 
3338 	case I915_GGTT_VIEW_PARTIAL:
3339 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3340 		break;
3341 
3342 	default:
3343 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3344 			  vma->ggtt_view.type);
3345 		return -EINVAL;
3346 	}
3347 
3348 	ret = 0;
3349 	if (unlikely(IS_ERR(vma->pages))) {
3350 		ret = PTR_ERR(vma->pages);
3351 		vma->pages = NULL;
3352 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3353 			  vma->ggtt_view.type, ret);
3354 	}
3355 	return ret;
3356 }
3357 
3358 /**
3359  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3360  * @vm: the &struct i915_address_space
3361  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3362  * @size: how much space to allocate inside the GTT,
3363  *        must be #I915_GTT_PAGE_SIZE aligned
3364  * @offset: where to insert inside the GTT,
3365  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3366  *          (@offset + @size) must fit within the address space
3367  * @color: color to apply to node, if this node is not from a VMA,
3368  *         color must be #I915_COLOR_UNEVICTABLE
3369  * @flags: control search and eviction behaviour
3370  *
3371  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3372  * the address space (using @size and @color). If the @node does not fit, it
3373  * tries to evict any overlapping nodes from the GTT, including any
3374  * neighbouring nodes if the colors do not match (to ensure guard pages between
3375  * differing domains). See i915_gem_evict_for_node() for the gory details
3376  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3377  * evicting active overlapping objects, and any overlapping node that is pinned
3378  * or marked as unevictable will also result in failure.
3379  *
3380  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3381  * asked to wait for eviction and interrupted.
3382  */
3383 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3384 			 struct drm_mm_node *node,
3385 			 u64 size, u64 offset, unsigned long color,
3386 			 unsigned int flags)
3387 {
3388 	int err;
3389 
3390 	GEM_BUG_ON(!size);
3391 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3392 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3393 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3394 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3395 	GEM_BUG_ON(drm_mm_node_allocated(node));
3396 
3397 	node->size = size;
3398 	node->start = offset;
3399 	node->color = color;
3400 
3401 	err = drm_mm_reserve_node(&vm->mm, node);
3402 	if (err != -ENOSPC)
3403 		return err;
3404 
3405 	if (flags & PIN_NOEVICT)
3406 		return -ENOSPC;
3407 
3408 	err = i915_gem_evict_for_node(vm, node, flags);
3409 	if (err == 0)
3410 		err = drm_mm_reserve_node(&vm->mm, node);
3411 
3412 	return err;
3413 }
3414 
3415 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3416 {
3417 	u64 range, addr;
3418 
3419 	GEM_BUG_ON(range_overflows(start, len, end));
3420 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3421 
3422 	range = round_down(end - len, align) - round_up(start, align);
3423 	if (range) {
3424 		if (sizeof(unsigned long) == sizeof(u64)) {
3425 			addr = get_random_long();
3426 		} else {
3427 			addr = get_random_int();
3428 			if (range > U32_MAX) {
3429 				addr <<= 32;
3430 				addr |= get_random_int();
3431 			}
3432 		}
3433 		div64_u64_rem(addr, range, &addr);
3434 		start += addr;
3435 	}
3436 
3437 	return round_up(start, align);
3438 }
3439 
3440 /**
3441  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3442  * @vm: the &struct i915_address_space
3443  * @node: the &struct drm_mm_node (typically i915_vma.node)
3444  * @size: how much space to allocate inside the GTT,
3445  *        must be #I915_GTT_PAGE_SIZE aligned
3446  * @alignment: required alignment of starting offset, may be 0 but
3447  *             if specified, this must be a power-of-two and at least
3448  *             #I915_GTT_MIN_ALIGNMENT
3449  * @color: color to apply to node
3450  * @start: start of any range restriction inside GTT (0 for all),
3451  *         must be #I915_GTT_PAGE_SIZE aligned
3452  * @end: end of any range restriction inside GTT (U64_MAX for all),
3453  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3454  * @flags: control search and eviction behaviour
3455  *
3456  * i915_gem_gtt_insert() first searches for an available hole into which
3457  * is can insert the node. The hole address is aligned to @alignment and
3458  * its @size must then fit entirely within the [@start, @end] bounds. The
3459  * nodes on either side of the hole must match @color, or else a guard page
3460  * will be inserted between the two nodes (or the node evicted). If no
3461  * suitable hole is found, first a victim is randomly selected and tested
3462  * for eviction, otherwise then the LRU list of objects within the GTT
3463  * is scanned to find the first set of replacement nodes to create the hole.
3464  * Those old overlapping nodes are evicted from the GTT (and so must be
3465  * rebound before any future use). Any node that is currently pinned cannot
3466  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3467  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3468  * searching for an eviction candidate. See i915_gem_evict_something() for
3469  * the gory details on the eviction algorithm.
3470  *
3471  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3472  * asked to wait for eviction and interrupted.
3473  */
3474 int i915_gem_gtt_insert(struct i915_address_space *vm,
3475 			struct drm_mm_node *node,
3476 			u64 size, u64 alignment, unsigned long color,
3477 			u64 start, u64 end, unsigned int flags)
3478 {
3479 	enum drm_mm_insert_mode mode;
3480 	u64 offset;
3481 	int err;
3482 
3483 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3484 	GEM_BUG_ON(!size);
3485 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3486 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3487 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3488 	GEM_BUG_ON(start >= end);
3489 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3490 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3491 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3492 	GEM_BUG_ON(drm_mm_node_allocated(node));
3493 
3494 	if (unlikely(range_overflows(start, size, end)))
3495 		return -ENOSPC;
3496 
3497 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3498 		return -ENOSPC;
3499 
3500 	mode = DRM_MM_INSERT_BEST;
3501 	if (flags & PIN_HIGH)
3502 		mode = DRM_MM_INSERT_HIGH;
3503 	if (flags & PIN_MAPPABLE)
3504 		mode = DRM_MM_INSERT_LOW;
3505 
3506 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3507 	 * so we know that we always have a minimum alignment of 4096.
3508 	 * The drm_mm range manager is optimised to return results
3509 	 * with zero alignment, so where possible use the optimal
3510 	 * path.
3511 	 */
3512 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3513 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3514 		alignment = 0;
3515 
3516 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3517 					  size, alignment, color,
3518 					  start, end, mode);
3519 	if (err != -ENOSPC)
3520 		return err;
3521 
3522 	if (flags & PIN_NOEVICT)
3523 		return -ENOSPC;
3524 
3525 	/* No free space, pick a slot at random.
3526 	 *
3527 	 * There is a pathological case here using a GTT shared between
3528 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3529 	 *
3530 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3531 	 *         (64k objects)             (448k objects)
3532 	 *
3533 	 * Now imagine that the eviction LRU is ordered top-down (just because
3534 	 * pathology meets real life), and that we need to evict an object to
3535 	 * make room inside the aperture. The eviction scan then has to walk
3536 	 * the 448k list before it finds one within range. And now imagine that
3537 	 * it has to search for a new hole between every byte inside the memcpy,
3538 	 * for several simultaneous clients.
3539 	 *
3540 	 * On a full-ppgtt system, if we have run out of available space, there
3541 	 * will be lots and lots of objects in the eviction list! Again,
3542 	 * searching that LRU list may be slow if we are also applying any
3543 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3544 	 * simplicity and similarilty between different GTT, try the single
3545 	 * random replacement first.
3546 	 */
3547 	offset = random_offset(start, end,
3548 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3549 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3550 	if (err != -ENOSPC)
3551 		return err;
3552 
3553 	/* Randomly selected placement is pinned, do a search */
3554 	err = i915_gem_evict_something(vm, size, alignment, color,
3555 				       start, end, flags);
3556 	if (err)
3557 		return err;
3558 
3559 	return drm_mm_insert_node_in_range(&vm->mm, node,
3560 					   size, alignment, color,
3561 					   start, end, DRM_MM_INSERT_EVICT);
3562 }
3563 
3564 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3565 #include "selftests/mock_gtt.c"
3566 #include "selftests/i915_gem_gtt.c"
3567 #endif
3568