xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_full_ppgtt;
139 	bool has_full_48bit_ppgtt;
140 
141 	if (!dev_priv->info.has_aliasing_ppgtt)
142 		return 0;
143 
144 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
146 
147 	if (intel_vgpu_active(dev_priv)) {
148 		/* GVT-g has no support for 32bit ppgtt */
149 		has_full_ppgtt = false;
150 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
151 	}
152 
153 	/*
154 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155 	 * execlists, the sole mechanism available to submit work.
156 	 */
157 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158 		return 0;
159 
160 	if (enable_ppgtt == 1)
161 		return 1;
162 
163 	if (enable_ppgtt == 2 && has_full_ppgtt)
164 		return 2;
165 
166 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167 		return 3;
168 
169 	/* Disable ppgtt on SNB if VT-d is on. */
170 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
172 		return 0;
173 	}
174 
175 	/* Early VLV doesn't have this */
176 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178 		return 0;
179 	}
180 
181 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
182 		if (has_full_48bit_ppgtt)
183 			return 3;
184 
185 		if (has_full_ppgtt)
186 			return 2;
187 	}
188 
189 	return 1;
190 }
191 
192 static int ppgtt_bind_vma(struct i915_vma *vma,
193 			  enum i915_cache_level cache_level,
194 			  u32 unused)
195 {
196 	u32 pte_flags;
197 	int ret;
198 
199 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201 						 vma->size);
202 		if (ret)
203 			return ret;
204 	}
205 
206 	/* Currently applicable only to VLV */
207 	pte_flags = 0;
208 	if (vma->obj->gt_ro)
209 		pte_flags |= PTE_READ_ONLY;
210 
211 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
212 
213 	return 0;
214 }
215 
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220 
221 static int ppgtt_set_pages(struct i915_vma *vma)
222 {
223 	GEM_BUG_ON(vma->pages);
224 
225 	vma->pages = vma->obj->mm.pages;
226 
227 	vma->page_sizes = vma->obj->mm.page_sizes;
228 
229 	return 0;
230 }
231 
232 static void clear_pages(struct i915_vma *vma)
233 {
234 	GEM_BUG_ON(!vma->pages);
235 
236 	if (vma->pages != vma->obj->mm.pages) {
237 		sg_free_table(vma->pages);
238 		kfree(vma->pages);
239 	}
240 	vma->pages = NULL;
241 
242 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
243 }
244 
245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246 				  enum i915_cache_level level)
247 {
248 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249 	pte |= addr;
250 
251 	switch (level) {
252 	case I915_CACHE_NONE:
253 		pte |= PPAT_UNCACHED;
254 		break;
255 	case I915_CACHE_WT:
256 		pte |= PPAT_DISPLAY_ELLC;
257 		break;
258 	default:
259 		pte |= PPAT_CACHED;
260 		break;
261 	}
262 
263 	return pte;
264 }
265 
266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267 				  const enum i915_cache_level level)
268 {
269 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270 	pde |= addr;
271 	if (level != I915_CACHE_NONE)
272 		pde |= PPAT_CACHED_PDE;
273 	else
274 		pde |= PPAT_UNCACHED;
275 	return pde;
276 }
277 
278 #define gen8_pdpe_encode gen8_pde_encode
279 #define gen8_pml4e_encode gen8_pde_encode
280 
281 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282 				 enum i915_cache_level level,
283 				 u32 unused)
284 {
285 	gen6_pte_t pte = GEN6_PTE_VALID;
286 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
287 
288 	switch (level) {
289 	case I915_CACHE_L3_LLC:
290 	case I915_CACHE_LLC:
291 		pte |= GEN6_PTE_CACHE_LLC;
292 		break;
293 	case I915_CACHE_NONE:
294 		pte |= GEN6_PTE_UNCACHED;
295 		break;
296 	default:
297 		MISSING_CASE(level);
298 	}
299 
300 	return pte;
301 }
302 
303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304 				 enum i915_cache_level level,
305 				 u32 unused)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_L3_LLC:
312 		pte |= GEN7_PTE_CACHE_L3_LLC;
313 		break;
314 	case I915_CACHE_LLC:
315 		pte |= GEN6_PTE_CACHE_LLC;
316 		break;
317 	case I915_CACHE_NONE:
318 		pte |= GEN6_PTE_UNCACHED;
319 		break;
320 	default:
321 		MISSING_CASE(level);
322 	}
323 
324 	return pte;
325 }
326 
327 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328 				 enum i915_cache_level level,
329 				 u32 flags)
330 {
331 	gen6_pte_t pte = GEN6_PTE_VALID;
332 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
333 
334 	if (!(flags & PTE_READ_ONLY))
335 		pte |= BYT_PTE_WRITEABLE;
336 
337 	if (level != I915_CACHE_NONE)
338 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339 
340 	return pte;
341 }
342 
343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344 				 enum i915_cache_level level,
345 				 u32 unused)
346 {
347 	gen6_pte_t pte = GEN6_PTE_VALID;
348 	pte |= HSW_PTE_ADDR_ENCODE(addr);
349 
350 	if (level != I915_CACHE_NONE)
351 		pte |= HSW_WB_LLC_AGE3;
352 
353 	return pte;
354 }
355 
356 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357 				  enum i915_cache_level level,
358 				  u32 unused)
359 {
360 	gen6_pte_t pte = GEN6_PTE_VALID;
361 	pte |= HSW_PTE_ADDR_ENCODE(addr);
362 
363 	switch (level) {
364 	case I915_CACHE_NONE:
365 		break;
366 	case I915_CACHE_WT:
367 		pte |= HSW_WT_ELLC_LLC_AGE3;
368 		break;
369 	default:
370 		pte |= HSW_WB_ELLC_LLC_AGE3;
371 		break;
372 	}
373 
374 	return pte;
375 }
376 
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379 	struct pagevec *pvec = &vm->free_pages;
380 
381 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
382 		i915_gem_shrink_all(vm->i915);
383 
384 	if (likely(pvec->nr))
385 		return pvec->pages[--pvec->nr];
386 
387 	if (!vm->pt_kmap_wc)
388 		return alloc_page(gfp);
389 
390 	/* A placeholder for a specific mutex to guard the WC stash */
391 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
392 
393 	/* Look in our global stash of WC pages... */
394 	pvec = &vm->i915->mm.wc_stash;
395 	if (likely(pvec->nr))
396 		return pvec->pages[--pvec->nr];
397 
398 	/* Otherwise batch allocate pages to amoritize cost of set_pages_wc. */
399 	do {
400 		struct page *page;
401 
402 		page = alloc_page(gfp);
403 		if (unlikely(!page))
404 			break;
405 
406 		pvec->pages[pvec->nr++] = page;
407 	} while (pagevec_space(pvec));
408 
409 	if (unlikely(!pvec->nr))
410 		return NULL;
411 
412 	set_pages_array_wc(pvec->pages, pvec->nr);
413 
414 	return pvec->pages[--pvec->nr];
415 }
416 
417 static void vm_free_pages_release(struct i915_address_space *vm,
418 				  bool immediate)
419 {
420 	struct pagevec *pvec = &vm->free_pages;
421 
422 	GEM_BUG_ON(!pagevec_count(pvec));
423 
424 	if (vm->pt_kmap_wc) {
425 		struct pagevec *stash = &vm->i915->mm.wc_stash;
426 
427 		/* When we use WC, first fill up the global stash and then
428 		 * only if full immediately free the overflow.
429 		 */
430 
431 		lockdep_assert_held(&vm->i915->drm.struct_mutex);
432 		if (pagevec_space(stash)) {
433 			do {
434 				stash->pages[stash->nr++] =
435 					pvec->pages[--pvec->nr];
436 				if (!pvec->nr)
437 					return;
438 			} while (pagevec_space(stash));
439 
440 			/* As we have made some room in the VM's free_pages,
441 			 * we can wait for it to fill again. Unless we are
442 			 * inside i915_address_space_fini() and must
443 			 * immediately release the pages!
444 			 */
445 			if (!immediate)
446 				return;
447 		}
448 
449 		set_pages_array_wb(pvec->pages, pvec->nr);
450 	}
451 
452 	__pagevec_release(pvec);
453 }
454 
455 static void vm_free_page(struct i915_address_space *vm, struct page *page)
456 {
457 	/*
458 	 * On !llc, we need to change the pages back to WB. We only do so
459 	 * in bulk, so we rarely need to change the page attributes here,
460 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
461 	 * To make detection of the possible sleep more likely, use an
462 	 * unconditional might_sleep() for everybody.
463 	 */
464 	might_sleep();
465 	if (!pagevec_add(&vm->free_pages, page))
466 		vm_free_pages_release(vm, false);
467 }
468 
469 static int __setup_page_dma(struct i915_address_space *vm,
470 			    struct i915_page_dma *p,
471 			    gfp_t gfp)
472 {
473 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
474 	if (unlikely(!p->page))
475 		return -ENOMEM;
476 
477 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
478 				PCI_DMA_BIDIRECTIONAL);
479 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
480 		vm_free_page(vm, p->page);
481 		return -ENOMEM;
482 	}
483 
484 	return 0;
485 }
486 
487 static int setup_page_dma(struct i915_address_space *vm,
488 			  struct i915_page_dma *p)
489 {
490 	return __setup_page_dma(vm, p, I915_GFP_DMA);
491 }
492 
493 static void cleanup_page_dma(struct i915_address_space *vm,
494 			     struct i915_page_dma *p)
495 {
496 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
497 	vm_free_page(vm, p->page);
498 }
499 
500 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
501 
502 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
503 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
504 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
505 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
506 
507 static void fill_page_dma(struct i915_address_space *vm,
508 			  struct i915_page_dma *p,
509 			  const u64 val)
510 {
511 	u64 * const vaddr = kmap_atomic(p->page);
512 
513 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
514 
515 	kunmap_atomic(vaddr);
516 }
517 
518 static void fill_page_dma_32(struct i915_address_space *vm,
519 			     struct i915_page_dma *p,
520 			     const u32 v)
521 {
522 	fill_page_dma(vm, p, (u64)v << 32 | v);
523 }
524 
525 static int
526 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
527 {
528 	struct page *page = NULL;
529 	dma_addr_t addr;
530 	int order;
531 
532 	/*
533 	 * In order to utilize 64K pages for an object with a size < 2M, we will
534 	 * need to support a 64K scratch page, given that every 16th entry for a
535 	 * page-table operating in 64K mode must point to a properly aligned 64K
536 	 * region, including any PTEs which happen to point to scratch.
537 	 *
538 	 * This is only relevant for the 48b PPGTT where we support
539 	 * huge-gtt-pages, see also i915_vma_insert().
540 	 *
541 	 * TODO: we should really consider write-protecting the scratch-page and
542 	 * sharing between ppgtt
543 	 */
544 	if (i915_vm_is_48bit(vm) &&
545 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
546 		order = get_order(I915_GTT_PAGE_SIZE_64K);
547 		page = alloc_pages(gfp | __GFP_ZERO | __GFP_NOWARN, order);
548 		if (page) {
549 			addr = dma_map_page(vm->dma, page, 0,
550 					    I915_GTT_PAGE_SIZE_64K,
551 					    PCI_DMA_BIDIRECTIONAL);
552 			if (unlikely(dma_mapping_error(vm->dma, addr))) {
553 				__free_pages(page, order);
554 				page = NULL;
555 			}
556 
557 			if (!IS_ALIGNED(addr, I915_GTT_PAGE_SIZE_64K)) {
558 				dma_unmap_page(vm->dma, addr,
559 					       I915_GTT_PAGE_SIZE_64K,
560 					       PCI_DMA_BIDIRECTIONAL);
561 				__free_pages(page, order);
562 				page = NULL;
563 			}
564 		}
565 	}
566 
567 	if (!page) {
568 		order = 0;
569 		page = alloc_page(gfp | __GFP_ZERO);
570 		if (unlikely(!page))
571 			return -ENOMEM;
572 
573 		addr = dma_map_page(vm->dma, page, 0, PAGE_SIZE,
574 				    PCI_DMA_BIDIRECTIONAL);
575 		if (unlikely(dma_mapping_error(vm->dma, addr))) {
576 			__free_page(page);
577 			return -ENOMEM;
578 		}
579 	}
580 
581 	vm->scratch_page.page = page;
582 	vm->scratch_page.daddr = addr;
583 	vm->scratch_page.order = order;
584 
585 	return 0;
586 }
587 
588 static void cleanup_scratch_page(struct i915_address_space *vm)
589 {
590 	struct i915_page_dma *p = &vm->scratch_page;
591 
592 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
593 		       PCI_DMA_BIDIRECTIONAL);
594 	__free_pages(p->page, p->order);
595 }
596 
597 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
598 {
599 	struct i915_page_table *pt;
600 
601 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
602 	if (unlikely(!pt))
603 		return ERR_PTR(-ENOMEM);
604 
605 	if (unlikely(setup_px(vm, pt))) {
606 		kfree(pt);
607 		return ERR_PTR(-ENOMEM);
608 	}
609 
610 	pt->used_ptes = 0;
611 	return pt;
612 }
613 
614 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
615 {
616 	cleanup_px(vm, pt);
617 	kfree(pt);
618 }
619 
620 static void gen8_initialize_pt(struct i915_address_space *vm,
621 			       struct i915_page_table *pt)
622 {
623 	fill_px(vm, pt,
624 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
625 }
626 
627 static void gen6_initialize_pt(struct i915_address_space *vm,
628 			       struct i915_page_table *pt)
629 {
630 	fill32_px(vm, pt,
631 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
632 }
633 
634 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
635 {
636 	struct i915_page_directory *pd;
637 
638 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
639 	if (unlikely(!pd))
640 		return ERR_PTR(-ENOMEM);
641 
642 	if (unlikely(setup_px(vm, pd))) {
643 		kfree(pd);
644 		return ERR_PTR(-ENOMEM);
645 	}
646 
647 	pd->used_pdes = 0;
648 	return pd;
649 }
650 
651 static void free_pd(struct i915_address_space *vm,
652 		    struct i915_page_directory *pd)
653 {
654 	cleanup_px(vm, pd);
655 	kfree(pd);
656 }
657 
658 static void gen8_initialize_pd(struct i915_address_space *vm,
659 			       struct i915_page_directory *pd)
660 {
661 	unsigned int i;
662 
663 	fill_px(vm, pd,
664 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
665 	for (i = 0; i < I915_PDES; i++)
666 		pd->page_table[i] = vm->scratch_pt;
667 }
668 
669 static int __pdp_init(struct i915_address_space *vm,
670 		      struct i915_page_directory_pointer *pdp)
671 {
672 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
673 	unsigned int i;
674 
675 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
676 					    GFP_KERNEL | __GFP_NOWARN);
677 	if (unlikely(!pdp->page_directory))
678 		return -ENOMEM;
679 
680 	for (i = 0; i < pdpes; i++)
681 		pdp->page_directory[i] = vm->scratch_pd;
682 
683 	return 0;
684 }
685 
686 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
687 {
688 	kfree(pdp->page_directory);
689 	pdp->page_directory = NULL;
690 }
691 
692 static inline bool use_4lvl(const struct i915_address_space *vm)
693 {
694 	return i915_vm_is_48bit(vm);
695 }
696 
697 static struct i915_page_directory_pointer *
698 alloc_pdp(struct i915_address_space *vm)
699 {
700 	struct i915_page_directory_pointer *pdp;
701 	int ret = -ENOMEM;
702 
703 	WARN_ON(!use_4lvl(vm));
704 
705 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
706 	if (!pdp)
707 		return ERR_PTR(-ENOMEM);
708 
709 	ret = __pdp_init(vm, pdp);
710 	if (ret)
711 		goto fail_bitmap;
712 
713 	ret = setup_px(vm, pdp);
714 	if (ret)
715 		goto fail_page_m;
716 
717 	return pdp;
718 
719 fail_page_m:
720 	__pdp_fini(pdp);
721 fail_bitmap:
722 	kfree(pdp);
723 
724 	return ERR_PTR(ret);
725 }
726 
727 static void free_pdp(struct i915_address_space *vm,
728 		     struct i915_page_directory_pointer *pdp)
729 {
730 	__pdp_fini(pdp);
731 
732 	if (!use_4lvl(vm))
733 		return;
734 
735 	cleanup_px(vm, pdp);
736 	kfree(pdp);
737 }
738 
739 static void gen8_initialize_pdp(struct i915_address_space *vm,
740 				struct i915_page_directory_pointer *pdp)
741 {
742 	gen8_ppgtt_pdpe_t scratch_pdpe;
743 
744 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
745 
746 	fill_px(vm, pdp, scratch_pdpe);
747 }
748 
749 static void gen8_initialize_pml4(struct i915_address_space *vm,
750 				 struct i915_pml4 *pml4)
751 {
752 	unsigned int i;
753 
754 	fill_px(vm, pml4,
755 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
756 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
757 		pml4->pdps[i] = vm->scratch_pdp;
758 }
759 
760 /* Broadwell Page Directory Pointer Descriptors */
761 static int gen8_write_pdp(struct drm_i915_gem_request *req,
762 			  unsigned entry,
763 			  dma_addr_t addr)
764 {
765 	struct intel_engine_cs *engine = req->engine;
766 	u32 *cs;
767 
768 	BUG_ON(entry >= 4);
769 
770 	cs = intel_ring_begin(req, 6);
771 	if (IS_ERR(cs))
772 		return PTR_ERR(cs);
773 
774 	*cs++ = MI_LOAD_REGISTER_IMM(1);
775 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
776 	*cs++ = upper_32_bits(addr);
777 	*cs++ = MI_LOAD_REGISTER_IMM(1);
778 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
779 	*cs++ = lower_32_bits(addr);
780 	intel_ring_advance(req, cs);
781 
782 	return 0;
783 }
784 
785 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
786 			       struct drm_i915_gem_request *req)
787 {
788 	int i, ret;
789 
790 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
791 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
792 
793 		ret = gen8_write_pdp(req, i, pd_daddr);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	return 0;
799 }
800 
801 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
802 			       struct drm_i915_gem_request *req)
803 {
804 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
805 }
806 
807 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
808  * the page table structures, we mark them dirty so that
809  * context switching/execlist queuing code takes extra steps
810  * to ensure that tlbs are flushed.
811  */
812 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
813 {
814 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
815 }
816 
817 /* Removes entries from a single page table, releasing it if it's empty.
818  * Caller can use the return value to update higher-level entries.
819  */
820 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
821 				struct i915_page_table *pt,
822 				u64 start, u64 length)
823 {
824 	unsigned int num_entries = gen8_pte_count(start, length);
825 	unsigned int pte = gen8_pte_index(start);
826 	unsigned int pte_end = pte + num_entries;
827 	const gen8_pte_t scratch_pte =
828 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
829 	gen8_pte_t *vaddr;
830 
831 	GEM_BUG_ON(num_entries > pt->used_ptes);
832 
833 	pt->used_ptes -= num_entries;
834 	if (!pt->used_ptes)
835 		return true;
836 
837 	vaddr = kmap_atomic_px(pt);
838 	while (pte < pte_end)
839 		vaddr[pte++] = scratch_pte;
840 	kunmap_atomic(vaddr);
841 
842 	return false;
843 }
844 
845 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
846 			       struct i915_page_directory *pd,
847 			       struct i915_page_table *pt,
848 			       unsigned int pde)
849 {
850 	gen8_pde_t *vaddr;
851 
852 	pd->page_table[pde] = pt;
853 
854 	vaddr = kmap_atomic_px(pd);
855 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
856 	kunmap_atomic(vaddr);
857 }
858 
859 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
860 				struct i915_page_directory *pd,
861 				u64 start, u64 length)
862 {
863 	struct i915_page_table *pt;
864 	u32 pde;
865 
866 	gen8_for_each_pde(pt, pd, start, length, pde) {
867 		GEM_BUG_ON(pt == vm->scratch_pt);
868 
869 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
870 			continue;
871 
872 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
873 		GEM_BUG_ON(!pd->used_pdes);
874 		pd->used_pdes--;
875 
876 		free_pt(vm, pt);
877 	}
878 
879 	return !pd->used_pdes;
880 }
881 
882 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
883 				struct i915_page_directory_pointer *pdp,
884 				struct i915_page_directory *pd,
885 				unsigned int pdpe)
886 {
887 	gen8_ppgtt_pdpe_t *vaddr;
888 
889 	pdp->page_directory[pdpe] = pd;
890 	if (!use_4lvl(vm))
891 		return;
892 
893 	vaddr = kmap_atomic_px(pdp);
894 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
895 	kunmap_atomic(vaddr);
896 }
897 
898 /* Removes entries from a single page dir pointer, releasing it if it's empty.
899  * Caller can use the return value to update higher-level entries
900  */
901 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
902 				 struct i915_page_directory_pointer *pdp,
903 				 u64 start, u64 length)
904 {
905 	struct i915_page_directory *pd;
906 	unsigned int pdpe;
907 
908 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
909 		GEM_BUG_ON(pd == vm->scratch_pd);
910 
911 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
912 			continue;
913 
914 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
915 		GEM_BUG_ON(!pdp->used_pdpes);
916 		pdp->used_pdpes--;
917 
918 		free_pd(vm, pd);
919 	}
920 
921 	return !pdp->used_pdpes;
922 }
923 
924 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
925 				  u64 start, u64 length)
926 {
927 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
928 }
929 
930 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
931 				 struct i915_page_directory_pointer *pdp,
932 				 unsigned int pml4e)
933 {
934 	gen8_ppgtt_pml4e_t *vaddr;
935 
936 	pml4->pdps[pml4e] = pdp;
937 
938 	vaddr = kmap_atomic_px(pml4);
939 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
940 	kunmap_atomic(vaddr);
941 }
942 
943 /* Removes entries from a single pml4.
944  * This is the top-level structure in 4-level page tables used on gen8+.
945  * Empty entries are always scratch pml4e.
946  */
947 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
948 				  u64 start, u64 length)
949 {
950 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
951 	struct i915_pml4 *pml4 = &ppgtt->pml4;
952 	struct i915_page_directory_pointer *pdp;
953 	unsigned int pml4e;
954 
955 	GEM_BUG_ON(!use_4lvl(vm));
956 
957 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
958 		GEM_BUG_ON(pdp == vm->scratch_pdp);
959 
960 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
961 			continue;
962 
963 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
964 
965 		free_pdp(vm, pdp);
966 	}
967 }
968 
969 static inline struct sgt_dma {
970 	struct scatterlist *sg;
971 	dma_addr_t dma, max;
972 } sgt_dma(struct i915_vma *vma) {
973 	struct scatterlist *sg = vma->pages->sgl;
974 	dma_addr_t addr = sg_dma_address(sg);
975 	return (struct sgt_dma) { sg, addr, addr + sg->length };
976 }
977 
978 struct gen8_insert_pte {
979 	u16 pml4e;
980 	u16 pdpe;
981 	u16 pde;
982 	u16 pte;
983 };
984 
985 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
986 {
987 	return (struct gen8_insert_pte) {
988 		 gen8_pml4e_index(start),
989 		 gen8_pdpe_index(start),
990 		 gen8_pde_index(start),
991 		 gen8_pte_index(start),
992 	};
993 }
994 
995 static __always_inline bool
996 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
997 			      struct i915_page_directory_pointer *pdp,
998 			      struct sgt_dma *iter,
999 			      struct gen8_insert_pte *idx,
1000 			      enum i915_cache_level cache_level)
1001 {
1002 	struct i915_page_directory *pd;
1003 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1004 	gen8_pte_t *vaddr;
1005 	bool ret;
1006 
1007 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1008 	pd = pdp->page_directory[idx->pdpe];
1009 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1010 	do {
1011 		vaddr[idx->pte] = pte_encode | iter->dma;
1012 
1013 		iter->dma += PAGE_SIZE;
1014 		if (iter->dma >= iter->max) {
1015 			iter->sg = __sg_next(iter->sg);
1016 			if (!iter->sg) {
1017 				ret = false;
1018 				break;
1019 			}
1020 
1021 			iter->dma = sg_dma_address(iter->sg);
1022 			iter->max = iter->dma + iter->sg->length;
1023 		}
1024 
1025 		if (++idx->pte == GEN8_PTES) {
1026 			idx->pte = 0;
1027 
1028 			if (++idx->pde == I915_PDES) {
1029 				idx->pde = 0;
1030 
1031 				/* Limited by sg length for 3lvl */
1032 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1033 					idx->pdpe = 0;
1034 					ret = true;
1035 					break;
1036 				}
1037 
1038 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1039 				pd = pdp->page_directory[idx->pdpe];
1040 			}
1041 
1042 			kunmap_atomic(vaddr);
1043 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1044 		}
1045 	} while (1);
1046 	kunmap_atomic(vaddr);
1047 
1048 	return ret;
1049 }
1050 
1051 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1052 				   struct i915_vma *vma,
1053 				   enum i915_cache_level cache_level,
1054 				   u32 unused)
1055 {
1056 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1057 	struct sgt_dma iter = sgt_dma(vma);
1058 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1059 
1060 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1061 				      cache_level);
1062 
1063 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1064 }
1065 
1066 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1067 					   struct i915_page_directory_pointer **pdps,
1068 					   struct sgt_dma *iter,
1069 					   enum i915_cache_level cache_level)
1070 {
1071 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1072 	u64 start = vma->node.start;
1073 	dma_addr_t rem = iter->sg->length;
1074 
1075 	do {
1076 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1077 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1078 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1079 		unsigned int page_size;
1080 		bool maybe_64K = false;
1081 		gen8_pte_t encode = pte_encode;
1082 		gen8_pte_t *vaddr;
1083 		u16 index, max;
1084 
1085 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1086 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1087 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1088 			index = idx.pde;
1089 			max = I915_PDES;
1090 			page_size = I915_GTT_PAGE_SIZE_2M;
1091 
1092 			encode |= GEN8_PDE_PS_2M;
1093 
1094 			vaddr = kmap_atomic_px(pd);
1095 		} else {
1096 			struct i915_page_table *pt = pd->page_table[idx.pde];
1097 
1098 			index = idx.pte;
1099 			max = GEN8_PTES;
1100 			page_size = I915_GTT_PAGE_SIZE;
1101 
1102 			if (!index &&
1103 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1104 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1105 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1106 			     rem >= (max - index) << PAGE_SHIFT))
1107 				maybe_64K = true;
1108 
1109 			vaddr = kmap_atomic_px(pt);
1110 		}
1111 
1112 		do {
1113 			GEM_BUG_ON(iter->sg->length < page_size);
1114 			vaddr[index++] = encode | iter->dma;
1115 
1116 			start += page_size;
1117 			iter->dma += page_size;
1118 			rem -= page_size;
1119 			if (iter->dma >= iter->max) {
1120 				iter->sg = __sg_next(iter->sg);
1121 				if (!iter->sg)
1122 					break;
1123 
1124 				rem = iter->sg->length;
1125 				iter->dma = sg_dma_address(iter->sg);
1126 				iter->max = iter->dma + rem;
1127 
1128 				if (maybe_64K && index < max &&
1129 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1130 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1131 				       rem >= (max - index) << PAGE_SHIFT)))
1132 					maybe_64K = false;
1133 
1134 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1135 					break;
1136 			}
1137 		} while (rem >= page_size && index < max);
1138 
1139 		kunmap_atomic(vaddr);
1140 
1141 		/*
1142 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1143 		 * filled whole page-table with 64K entries, or filled part of
1144 		 * it and have reached the end of the sg table and we have
1145 		 * enough padding.
1146 		 */
1147 		if (maybe_64K &&
1148 		    (index == max ||
1149 		     (i915_vm_has_scratch_64K(vma->vm) &&
1150 		      !iter->sg && IS_ALIGNED(vma->node.start +
1151 					      vma->node.size,
1152 					      I915_GTT_PAGE_SIZE_2M)))) {
1153 			vaddr = kmap_atomic_px(pd);
1154 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1155 			kunmap_atomic(vaddr);
1156 			page_size = I915_GTT_PAGE_SIZE_64K;
1157 		}
1158 
1159 		vma->page_sizes.gtt |= page_size;
1160 	} while (iter->sg);
1161 }
1162 
1163 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1164 				   struct i915_vma *vma,
1165 				   enum i915_cache_level cache_level,
1166 				   u32 unused)
1167 {
1168 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1169 	struct sgt_dma iter = sgt_dma(vma);
1170 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1171 
1172 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1173 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1174 	} else {
1175 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1176 
1177 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1178 						     &iter, &idx, cache_level))
1179 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1180 
1181 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1182 	}
1183 }
1184 
1185 static void gen8_free_page_tables(struct i915_address_space *vm,
1186 				  struct i915_page_directory *pd)
1187 {
1188 	int i;
1189 
1190 	if (!px_page(pd))
1191 		return;
1192 
1193 	for (i = 0; i < I915_PDES; i++) {
1194 		if (pd->page_table[i] != vm->scratch_pt)
1195 			free_pt(vm, pd->page_table[i]);
1196 	}
1197 }
1198 
1199 static int gen8_init_scratch(struct i915_address_space *vm)
1200 {
1201 	int ret;
1202 
1203 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1204 	if (ret)
1205 		return ret;
1206 
1207 	vm->scratch_pt = alloc_pt(vm);
1208 	if (IS_ERR(vm->scratch_pt)) {
1209 		ret = PTR_ERR(vm->scratch_pt);
1210 		goto free_scratch_page;
1211 	}
1212 
1213 	vm->scratch_pd = alloc_pd(vm);
1214 	if (IS_ERR(vm->scratch_pd)) {
1215 		ret = PTR_ERR(vm->scratch_pd);
1216 		goto free_pt;
1217 	}
1218 
1219 	if (use_4lvl(vm)) {
1220 		vm->scratch_pdp = alloc_pdp(vm);
1221 		if (IS_ERR(vm->scratch_pdp)) {
1222 			ret = PTR_ERR(vm->scratch_pdp);
1223 			goto free_pd;
1224 		}
1225 	}
1226 
1227 	gen8_initialize_pt(vm, vm->scratch_pt);
1228 	gen8_initialize_pd(vm, vm->scratch_pd);
1229 	if (use_4lvl(vm))
1230 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1231 
1232 	return 0;
1233 
1234 free_pd:
1235 	free_pd(vm, vm->scratch_pd);
1236 free_pt:
1237 	free_pt(vm, vm->scratch_pt);
1238 free_scratch_page:
1239 	cleanup_scratch_page(vm);
1240 
1241 	return ret;
1242 }
1243 
1244 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1245 {
1246 	struct i915_address_space *vm = &ppgtt->base;
1247 	struct drm_i915_private *dev_priv = vm->i915;
1248 	enum vgt_g2v_type msg;
1249 	int i;
1250 
1251 	if (use_4lvl(vm)) {
1252 		const u64 daddr = px_dma(&ppgtt->pml4);
1253 
1254 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1255 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1256 
1257 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1258 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1259 	} else {
1260 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1261 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1262 
1263 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1264 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1265 		}
1266 
1267 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1268 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1269 	}
1270 
1271 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1272 
1273 	return 0;
1274 }
1275 
1276 static void gen8_free_scratch(struct i915_address_space *vm)
1277 {
1278 	if (use_4lvl(vm))
1279 		free_pdp(vm, vm->scratch_pdp);
1280 	free_pd(vm, vm->scratch_pd);
1281 	free_pt(vm, vm->scratch_pt);
1282 	cleanup_scratch_page(vm);
1283 }
1284 
1285 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1286 				    struct i915_page_directory_pointer *pdp)
1287 {
1288 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1289 	int i;
1290 
1291 	for (i = 0; i < pdpes; i++) {
1292 		if (pdp->page_directory[i] == vm->scratch_pd)
1293 			continue;
1294 
1295 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1296 		free_pd(vm, pdp->page_directory[i]);
1297 	}
1298 
1299 	free_pdp(vm, pdp);
1300 }
1301 
1302 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1303 {
1304 	int i;
1305 
1306 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1307 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1308 			continue;
1309 
1310 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1311 	}
1312 
1313 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1314 }
1315 
1316 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1317 {
1318 	struct drm_i915_private *dev_priv = vm->i915;
1319 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1320 
1321 	if (intel_vgpu_active(dev_priv))
1322 		gen8_ppgtt_notify_vgt(ppgtt, false);
1323 
1324 	if (use_4lvl(vm))
1325 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1326 	else
1327 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1328 
1329 	gen8_free_scratch(vm);
1330 }
1331 
1332 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1333 			       struct i915_page_directory *pd,
1334 			       u64 start, u64 length)
1335 {
1336 	struct i915_page_table *pt;
1337 	u64 from = start;
1338 	unsigned int pde;
1339 
1340 	gen8_for_each_pde(pt, pd, start, length, pde) {
1341 		int count = gen8_pte_count(start, length);
1342 
1343 		if (pt == vm->scratch_pt) {
1344 			pt = alloc_pt(vm);
1345 			if (IS_ERR(pt))
1346 				goto unwind;
1347 
1348 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1349 				gen8_initialize_pt(vm, pt);
1350 
1351 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1352 			pd->used_pdes++;
1353 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1354 		}
1355 
1356 		pt->used_ptes += count;
1357 	}
1358 	return 0;
1359 
1360 unwind:
1361 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1362 	return -ENOMEM;
1363 }
1364 
1365 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1366 				struct i915_page_directory_pointer *pdp,
1367 				u64 start, u64 length)
1368 {
1369 	struct i915_page_directory *pd;
1370 	u64 from = start;
1371 	unsigned int pdpe;
1372 	int ret;
1373 
1374 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1375 		if (pd == vm->scratch_pd) {
1376 			pd = alloc_pd(vm);
1377 			if (IS_ERR(pd))
1378 				goto unwind;
1379 
1380 			gen8_initialize_pd(vm, pd);
1381 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1382 			pdp->used_pdpes++;
1383 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1384 
1385 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1386 		}
1387 
1388 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1389 		if (unlikely(ret))
1390 			goto unwind_pd;
1391 	}
1392 
1393 	return 0;
1394 
1395 unwind_pd:
1396 	if (!pd->used_pdes) {
1397 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1398 		GEM_BUG_ON(!pdp->used_pdpes);
1399 		pdp->used_pdpes--;
1400 		free_pd(vm, pd);
1401 	}
1402 unwind:
1403 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1404 	return -ENOMEM;
1405 }
1406 
1407 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1408 				 u64 start, u64 length)
1409 {
1410 	return gen8_ppgtt_alloc_pdp(vm,
1411 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1412 }
1413 
1414 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1415 				 u64 start, u64 length)
1416 {
1417 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1418 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1419 	struct i915_page_directory_pointer *pdp;
1420 	u64 from = start;
1421 	u32 pml4e;
1422 	int ret;
1423 
1424 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1425 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1426 			pdp = alloc_pdp(vm);
1427 			if (IS_ERR(pdp))
1428 				goto unwind;
1429 
1430 			gen8_initialize_pdp(vm, pdp);
1431 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1432 		}
1433 
1434 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1435 		if (unlikely(ret))
1436 			goto unwind_pdp;
1437 	}
1438 
1439 	return 0;
1440 
1441 unwind_pdp:
1442 	if (!pdp->used_pdpes) {
1443 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1444 		free_pdp(vm, pdp);
1445 	}
1446 unwind:
1447 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1448 	return -ENOMEM;
1449 }
1450 
1451 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1452 			  struct i915_page_directory_pointer *pdp,
1453 			  u64 start, u64 length,
1454 			  gen8_pte_t scratch_pte,
1455 			  struct seq_file *m)
1456 {
1457 	struct i915_address_space *vm = &ppgtt->base;
1458 	struct i915_page_directory *pd;
1459 	u32 pdpe;
1460 
1461 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1462 		struct i915_page_table *pt;
1463 		u64 pd_len = length;
1464 		u64 pd_start = start;
1465 		u32 pde;
1466 
1467 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1468 			continue;
1469 
1470 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1471 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1472 			u32 pte;
1473 			gen8_pte_t *pt_vaddr;
1474 
1475 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1476 				continue;
1477 
1478 			pt_vaddr = kmap_atomic_px(pt);
1479 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1480 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1481 					  pde << GEN8_PDE_SHIFT |
1482 					  pte << GEN8_PTE_SHIFT);
1483 				int i;
1484 				bool found = false;
1485 
1486 				for (i = 0; i < 4; i++)
1487 					if (pt_vaddr[pte + i] != scratch_pte)
1488 						found = true;
1489 				if (!found)
1490 					continue;
1491 
1492 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1493 				for (i = 0; i < 4; i++) {
1494 					if (pt_vaddr[pte + i] != scratch_pte)
1495 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1496 					else
1497 						seq_puts(m, "  SCRATCH ");
1498 				}
1499 				seq_puts(m, "\n");
1500 			}
1501 			kunmap_atomic(pt_vaddr);
1502 		}
1503 	}
1504 }
1505 
1506 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1507 {
1508 	struct i915_address_space *vm = &ppgtt->base;
1509 	const gen8_pte_t scratch_pte =
1510 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1511 	u64 start = 0, length = ppgtt->base.total;
1512 
1513 	if (use_4lvl(vm)) {
1514 		u64 pml4e;
1515 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1516 		struct i915_page_directory_pointer *pdp;
1517 
1518 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1519 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1520 				continue;
1521 
1522 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1523 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1524 		}
1525 	} else {
1526 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1527 	}
1528 }
1529 
1530 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1531 {
1532 	struct i915_address_space *vm = &ppgtt->base;
1533 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1534 	struct i915_page_directory *pd;
1535 	u64 start = 0, length = ppgtt->base.total;
1536 	u64 from = start;
1537 	unsigned int pdpe;
1538 
1539 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1540 		pd = alloc_pd(vm);
1541 		if (IS_ERR(pd))
1542 			goto unwind;
1543 
1544 		gen8_initialize_pd(vm, pd);
1545 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1546 		pdp->used_pdpes++;
1547 	}
1548 
1549 	pdp->used_pdpes++; /* never remove */
1550 	return 0;
1551 
1552 unwind:
1553 	start -= from;
1554 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1555 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1556 		free_pd(vm, pd);
1557 	}
1558 	pdp->used_pdpes = 0;
1559 	return -ENOMEM;
1560 }
1561 
1562 /*
1563  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1564  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1565  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1566  * space.
1567  *
1568  */
1569 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1570 {
1571 	struct i915_address_space *vm = &ppgtt->base;
1572 	struct drm_i915_private *dev_priv = vm->i915;
1573 	int ret;
1574 
1575 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1576 		1ULL << 48 :
1577 		1ULL << 32;
1578 
1579 	/* There are only few exceptions for gen >=6. chv and bxt.
1580 	 * And we are not sure about the latter so play safe for now.
1581 	 */
1582 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1583 		ppgtt->base.pt_kmap_wc = true;
1584 
1585 	ret = gen8_init_scratch(&ppgtt->base);
1586 	if (ret) {
1587 		ppgtt->base.total = 0;
1588 		return ret;
1589 	}
1590 
1591 	if (use_4lvl(vm)) {
1592 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1593 		if (ret)
1594 			goto free_scratch;
1595 
1596 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1597 
1598 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1599 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1600 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1601 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1602 	} else {
1603 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1604 		if (ret)
1605 			goto free_scratch;
1606 
1607 		if (intel_vgpu_active(dev_priv)) {
1608 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1609 			if (ret) {
1610 				__pdp_fini(&ppgtt->pdp);
1611 				goto free_scratch;
1612 			}
1613 		}
1614 
1615 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1616 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1617 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1618 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1619 	}
1620 
1621 	if (intel_vgpu_active(dev_priv))
1622 		gen8_ppgtt_notify_vgt(ppgtt, true);
1623 
1624 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1625 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1626 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1627 	ppgtt->base.set_pages = ppgtt_set_pages;
1628 	ppgtt->base.clear_pages = clear_pages;
1629 	ppgtt->debug_dump = gen8_dump_ppgtt;
1630 
1631 	return 0;
1632 
1633 free_scratch:
1634 	gen8_free_scratch(&ppgtt->base);
1635 	return ret;
1636 }
1637 
1638 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1639 {
1640 	struct i915_address_space *vm = &ppgtt->base;
1641 	struct i915_page_table *unused;
1642 	gen6_pte_t scratch_pte;
1643 	u32 pd_entry, pte, pde;
1644 	u32 start = 0, length = ppgtt->base.total;
1645 
1646 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1647 				     I915_CACHE_LLC, 0);
1648 
1649 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1650 		u32 expected;
1651 		gen6_pte_t *pt_vaddr;
1652 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1653 		pd_entry = readl(ppgtt->pd_addr + pde);
1654 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1655 
1656 		if (pd_entry != expected)
1657 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1658 				   pde,
1659 				   pd_entry,
1660 				   expected);
1661 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1662 
1663 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1664 
1665 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1666 			unsigned long va =
1667 				(pde * PAGE_SIZE * GEN6_PTES) +
1668 				(pte * PAGE_SIZE);
1669 			int i;
1670 			bool found = false;
1671 			for (i = 0; i < 4; i++)
1672 				if (pt_vaddr[pte + i] != scratch_pte)
1673 					found = true;
1674 			if (!found)
1675 				continue;
1676 
1677 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1678 			for (i = 0; i < 4; i++) {
1679 				if (pt_vaddr[pte + i] != scratch_pte)
1680 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1681 				else
1682 					seq_puts(m, "  SCRATCH ");
1683 			}
1684 			seq_puts(m, "\n");
1685 		}
1686 		kunmap_atomic(pt_vaddr);
1687 	}
1688 }
1689 
1690 /* Write pde (index) from the page directory @pd to the page table @pt */
1691 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1692 				  const unsigned int pde,
1693 				  const struct i915_page_table *pt)
1694 {
1695 	/* Caller needs to make sure the write completes if necessary */
1696 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1697 		       ppgtt->pd_addr + pde);
1698 }
1699 
1700 /* Write all the page tables found in the ppgtt structure to incrementing page
1701  * directories. */
1702 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1703 				  u32 start, u32 length)
1704 {
1705 	struct i915_page_table *pt;
1706 	unsigned int pde;
1707 
1708 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1709 		gen6_write_pde(ppgtt, pde, pt);
1710 
1711 	mark_tlbs_dirty(ppgtt);
1712 	wmb();
1713 }
1714 
1715 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1716 {
1717 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1718 	return ppgtt->pd.base.ggtt_offset << 10;
1719 }
1720 
1721 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1722 			 struct drm_i915_gem_request *req)
1723 {
1724 	struct intel_engine_cs *engine = req->engine;
1725 	u32 *cs;
1726 
1727 	/* NB: TLBs must be flushed and invalidated before a switch */
1728 	cs = intel_ring_begin(req, 6);
1729 	if (IS_ERR(cs))
1730 		return PTR_ERR(cs);
1731 
1732 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1733 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1734 	*cs++ = PP_DIR_DCLV_2G;
1735 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1736 	*cs++ = get_pd_offset(ppgtt);
1737 	*cs++ = MI_NOOP;
1738 	intel_ring_advance(req, cs);
1739 
1740 	return 0;
1741 }
1742 
1743 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1744 			  struct drm_i915_gem_request *req)
1745 {
1746 	struct intel_engine_cs *engine = req->engine;
1747 	u32 *cs;
1748 
1749 	/* NB: TLBs must be flushed and invalidated before a switch */
1750 	cs = intel_ring_begin(req, 6);
1751 	if (IS_ERR(cs))
1752 		return PTR_ERR(cs);
1753 
1754 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1755 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1756 	*cs++ = PP_DIR_DCLV_2G;
1757 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1758 	*cs++ = get_pd_offset(ppgtt);
1759 	*cs++ = MI_NOOP;
1760 	intel_ring_advance(req, cs);
1761 
1762 	return 0;
1763 }
1764 
1765 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1766 			  struct drm_i915_gem_request *req)
1767 {
1768 	struct intel_engine_cs *engine = req->engine;
1769 	struct drm_i915_private *dev_priv = req->i915;
1770 
1771 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1772 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1773 	return 0;
1774 }
1775 
1776 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1777 {
1778 	struct intel_engine_cs *engine;
1779 	enum intel_engine_id id;
1780 
1781 	for_each_engine(engine, dev_priv, id) {
1782 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1783 				 GEN8_GFX_PPGTT_48B : 0;
1784 		I915_WRITE(RING_MODE_GEN7(engine),
1785 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1786 	}
1787 }
1788 
1789 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1790 {
1791 	struct intel_engine_cs *engine;
1792 	u32 ecochk, ecobits;
1793 	enum intel_engine_id id;
1794 
1795 	ecobits = I915_READ(GAC_ECO_BITS);
1796 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1797 
1798 	ecochk = I915_READ(GAM_ECOCHK);
1799 	if (IS_HASWELL(dev_priv)) {
1800 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1801 	} else {
1802 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1803 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1804 	}
1805 	I915_WRITE(GAM_ECOCHK, ecochk);
1806 
1807 	for_each_engine(engine, dev_priv, id) {
1808 		/* GFX_MODE is per-ring on gen7+ */
1809 		I915_WRITE(RING_MODE_GEN7(engine),
1810 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1811 	}
1812 }
1813 
1814 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1815 {
1816 	u32 ecochk, gab_ctl, ecobits;
1817 
1818 	ecobits = I915_READ(GAC_ECO_BITS);
1819 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1820 		   ECOBITS_PPGTT_CACHE64B);
1821 
1822 	gab_ctl = I915_READ(GAB_CTL);
1823 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1824 
1825 	ecochk = I915_READ(GAM_ECOCHK);
1826 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1827 
1828 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1829 }
1830 
1831 /* PPGTT support for Sandybdrige/Gen6 and later */
1832 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1833 				   u64 start, u64 length)
1834 {
1835 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1836 	unsigned int first_entry = start >> PAGE_SHIFT;
1837 	unsigned int pde = first_entry / GEN6_PTES;
1838 	unsigned int pte = first_entry % GEN6_PTES;
1839 	unsigned int num_entries = length >> PAGE_SHIFT;
1840 	gen6_pte_t scratch_pte =
1841 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1842 
1843 	while (num_entries) {
1844 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1845 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1846 		gen6_pte_t *vaddr;
1847 
1848 		num_entries -= end - pte;
1849 
1850 		/* Note that the hw doesn't support removing PDE on the fly
1851 		 * (they are cached inside the context with no means to
1852 		 * invalidate the cache), so we can only reset the PTE
1853 		 * entries back to scratch.
1854 		 */
1855 
1856 		vaddr = kmap_atomic_px(pt);
1857 		do {
1858 			vaddr[pte++] = scratch_pte;
1859 		} while (pte < end);
1860 		kunmap_atomic(vaddr);
1861 
1862 		pte = 0;
1863 	}
1864 }
1865 
1866 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1867 				      struct i915_vma *vma,
1868 				      enum i915_cache_level cache_level,
1869 				      u32 flags)
1870 {
1871 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1872 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1873 	unsigned act_pt = first_entry / GEN6_PTES;
1874 	unsigned act_pte = first_entry % GEN6_PTES;
1875 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1876 	struct sgt_dma iter = sgt_dma(vma);
1877 	gen6_pte_t *vaddr;
1878 
1879 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1880 	do {
1881 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1882 
1883 		iter.dma += PAGE_SIZE;
1884 		if (iter.dma == iter.max) {
1885 			iter.sg = __sg_next(iter.sg);
1886 			if (!iter.sg)
1887 				break;
1888 
1889 			iter.dma = sg_dma_address(iter.sg);
1890 			iter.max = iter.dma + iter.sg->length;
1891 		}
1892 
1893 		if (++act_pte == GEN6_PTES) {
1894 			kunmap_atomic(vaddr);
1895 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1896 			act_pte = 0;
1897 		}
1898 	} while (1);
1899 	kunmap_atomic(vaddr);
1900 
1901 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1902 }
1903 
1904 static int gen6_alloc_va_range(struct i915_address_space *vm,
1905 			       u64 start, u64 length)
1906 {
1907 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1908 	struct i915_page_table *pt;
1909 	u64 from = start;
1910 	unsigned int pde;
1911 	bool flush = false;
1912 
1913 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1914 		if (pt == vm->scratch_pt) {
1915 			pt = alloc_pt(vm);
1916 			if (IS_ERR(pt))
1917 				goto unwind_out;
1918 
1919 			gen6_initialize_pt(vm, pt);
1920 			ppgtt->pd.page_table[pde] = pt;
1921 			gen6_write_pde(ppgtt, pde, pt);
1922 			flush = true;
1923 		}
1924 	}
1925 
1926 	if (flush) {
1927 		mark_tlbs_dirty(ppgtt);
1928 		wmb();
1929 	}
1930 
1931 	return 0;
1932 
1933 unwind_out:
1934 	gen6_ppgtt_clear_range(vm, from, start);
1935 	return -ENOMEM;
1936 }
1937 
1938 static int gen6_init_scratch(struct i915_address_space *vm)
1939 {
1940 	int ret;
1941 
1942 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1943 	if (ret)
1944 		return ret;
1945 
1946 	vm->scratch_pt = alloc_pt(vm);
1947 	if (IS_ERR(vm->scratch_pt)) {
1948 		cleanup_scratch_page(vm);
1949 		return PTR_ERR(vm->scratch_pt);
1950 	}
1951 
1952 	gen6_initialize_pt(vm, vm->scratch_pt);
1953 
1954 	return 0;
1955 }
1956 
1957 static void gen6_free_scratch(struct i915_address_space *vm)
1958 {
1959 	free_pt(vm, vm->scratch_pt);
1960 	cleanup_scratch_page(vm);
1961 }
1962 
1963 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1964 {
1965 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1966 	struct i915_page_directory *pd = &ppgtt->pd;
1967 	struct i915_page_table *pt;
1968 	u32 pde;
1969 
1970 	drm_mm_remove_node(&ppgtt->node);
1971 
1972 	gen6_for_all_pdes(pt, pd, pde)
1973 		if (pt != vm->scratch_pt)
1974 			free_pt(vm, pt);
1975 
1976 	gen6_free_scratch(vm);
1977 }
1978 
1979 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1980 {
1981 	struct i915_address_space *vm = &ppgtt->base;
1982 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1983 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1984 	int ret;
1985 
1986 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1987 	 * allocator works in address space sizes, so it's multiplied by page
1988 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1989 	 */
1990 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1991 
1992 	ret = gen6_init_scratch(vm);
1993 	if (ret)
1994 		return ret;
1995 
1996 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1997 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1998 				  I915_COLOR_UNEVICTABLE,
1999 				  0, ggtt->base.total,
2000 				  PIN_HIGH);
2001 	if (ret)
2002 		goto err_out;
2003 
2004 	if (ppgtt->node.start < ggtt->mappable_end)
2005 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2006 
2007 	ppgtt->pd.base.ggtt_offset =
2008 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2009 
2010 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2011 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2012 
2013 	return 0;
2014 
2015 err_out:
2016 	gen6_free_scratch(vm);
2017 	return ret;
2018 }
2019 
2020 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2021 {
2022 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2023 }
2024 
2025 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2026 				  u64 start, u64 length)
2027 {
2028 	struct i915_page_table *unused;
2029 	u32 pde;
2030 
2031 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2032 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2033 }
2034 
2035 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2036 {
2037 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
2038 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2039 	int ret;
2040 
2041 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2042 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2043 		ppgtt->switch_mm = gen6_mm_switch;
2044 	else if (IS_HASWELL(dev_priv))
2045 		ppgtt->switch_mm = hsw_mm_switch;
2046 	else if (IS_GEN7(dev_priv))
2047 		ppgtt->switch_mm = gen7_mm_switch;
2048 	else
2049 		BUG();
2050 
2051 	ret = gen6_ppgtt_alloc(ppgtt);
2052 	if (ret)
2053 		return ret;
2054 
2055 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2056 
2057 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2058 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2059 
2060 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2061 	if (ret) {
2062 		gen6_ppgtt_cleanup(&ppgtt->base);
2063 		return ret;
2064 	}
2065 
2066 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2067 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2068 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2069 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2070 	ppgtt->base.set_pages = ppgtt_set_pages;
2071 	ppgtt->base.clear_pages = clear_pages;
2072 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2073 	ppgtt->debug_dump = gen6_dump_ppgtt;
2074 
2075 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2076 			 ppgtt->node.size >> 20,
2077 			 ppgtt->node.start / PAGE_SIZE);
2078 
2079 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2080 			 ppgtt->pd.base.ggtt_offset << 10);
2081 
2082 	return 0;
2083 }
2084 
2085 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2086 			   struct drm_i915_private *dev_priv)
2087 {
2088 	ppgtt->base.i915 = dev_priv;
2089 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2090 
2091 	if (INTEL_INFO(dev_priv)->gen < 8)
2092 		return gen6_ppgtt_init(ppgtt);
2093 	else
2094 		return gen8_ppgtt_init(ppgtt);
2095 }
2096 
2097 static void i915_address_space_init(struct i915_address_space *vm,
2098 				    struct drm_i915_private *dev_priv,
2099 				    const char *name)
2100 {
2101 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2102 
2103 	drm_mm_init(&vm->mm, 0, vm->total);
2104 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2105 
2106 	INIT_LIST_HEAD(&vm->active_list);
2107 	INIT_LIST_HEAD(&vm->inactive_list);
2108 	INIT_LIST_HEAD(&vm->unbound_list);
2109 
2110 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2111 	pagevec_init(&vm->free_pages);
2112 }
2113 
2114 static void i915_address_space_fini(struct i915_address_space *vm)
2115 {
2116 	if (pagevec_count(&vm->free_pages))
2117 		vm_free_pages_release(vm, true);
2118 
2119 	i915_gem_timeline_fini(&vm->timeline);
2120 	drm_mm_takedown(&vm->mm);
2121 	list_del(&vm->global_link);
2122 }
2123 
2124 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2125 {
2126 	/* This function is for gtt related workarounds. This function is
2127 	 * called on driver load and after a GPU reset, so you can place
2128 	 * workarounds here even if they get overwritten by GPU reset.
2129 	 */
2130 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2131 	if (IS_BROADWELL(dev_priv))
2132 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2133 	else if (IS_CHERRYVIEW(dev_priv))
2134 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2135 	else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2136 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2137 	else if (IS_GEN9_LP(dev_priv))
2138 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2139 
2140 	/*
2141 	 * To support 64K PTEs we need to first enable the use of the
2142 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2143 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2144 	 * shouldn't be needed after GEN10.
2145 	 *
2146 	 * 64K pages were first introduced from BDW+, although technically they
2147 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2148 	 * 32K pages, but we don't currently have any support for it in our
2149 	 * driver.
2150 	 */
2151 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2152 	    INTEL_GEN(dev_priv) <= 10)
2153 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2154 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2155 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2156 }
2157 
2158 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2159 {
2160 	gtt_write_workarounds(dev_priv);
2161 
2162 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2163 	 * and the PDPs are contained within the context itself.  We don't
2164 	 * need to do anything here. */
2165 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2166 		return 0;
2167 
2168 	if (!USES_PPGTT(dev_priv))
2169 		return 0;
2170 
2171 	if (IS_GEN6(dev_priv))
2172 		gen6_ppgtt_enable(dev_priv);
2173 	else if (IS_GEN7(dev_priv))
2174 		gen7_ppgtt_enable(dev_priv);
2175 	else if (INTEL_GEN(dev_priv) >= 8)
2176 		gen8_ppgtt_enable(dev_priv);
2177 	else
2178 		MISSING_CASE(INTEL_GEN(dev_priv));
2179 
2180 	return 0;
2181 }
2182 
2183 struct i915_hw_ppgtt *
2184 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2185 		  struct drm_i915_file_private *fpriv,
2186 		  const char *name)
2187 {
2188 	struct i915_hw_ppgtt *ppgtt;
2189 	int ret;
2190 
2191 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2192 	if (!ppgtt)
2193 		return ERR_PTR(-ENOMEM);
2194 
2195 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2196 	if (ret) {
2197 		kfree(ppgtt);
2198 		return ERR_PTR(ret);
2199 	}
2200 
2201 	kref_init(&ppgtt->ref);
2202 	i915_address_space_init(&ppgtt->base, dev_priv, name);
2203 	ppgtt->base.file = fpriv;
2204 
2205 	trace_i915_ppgtt_create(&ppgtt->base);
2206 
2207 	return ppgtt;
2208 }
2209 
2210 void i915_ppgtt_close(struct i915_address_space *vm)
2211 {
2212 	struct list_head *phases[] = {
2213 		&vm->active_list,
2214 		&vm->inactive_list,
2215 		&vm->unbound_list,
2216 		NULL,
2217 	}, **phase;
2218 
2219 	GEM_BUG_ON(vm->closed);
2220 	vm->closed = true;
2221 
2222 	for (phase = phases; *phase; phase++) {
2223 		struct i915_vma *vma, *vn;
2224 
2225 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2226 			if (!i915_vma_is_closed(vma))
2227 				i915_vma_close(vma);
2228 	}
2229 }
2230 
2231 void i915_ppgtt_release(struct kref *kref)
2232 {
2233 	struct i915_hw_ppgtt *ppgtt =
2234 		container_of(kref, struct i915_hw_ppgtt, ref);
2235 
2236 	trace_i915_ppgtt_release(&ppgtt->base);
2237 
2238 	/* vmas should already be unbound and destroyed */
2239 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2240 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2241 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2242 
2243 	ppgtt->base.cleanup(&ppgtt->base);
2244 	i915_address_space_fini(&ppgtt->base);
2245 	kfree(ppgtt);
2246 }
2247 
2248 /* Certain Gen5 chipsets require require idling the GPU before
2249  * unmapping anything from the GTT when VT-d is enabled.
2250  */
2251 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2252 {
2253 	/* Query intel_iommu to see if we need the workaround. Presumably that
2254 	 * was loaded first.
2255 	 */
2256 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2257 }
2258 
2259 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2260 {
2261 	struct intel_engine_cs *engine;
2262 	enum intel_engine_id id;
2263 	u32 fault;
2264 
2265 	for_each_engine(engine, dev_priv, id) {
2266 		fault = I915_READ(RING_FAULT_REG(engine));
2267 		if (fault & RING_FAULT_VALID) {
2268 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2269 					 "\tAddr: 0x%08lx\n"
2270 					 "\tAddress space: %s\n"
2271 					 "\tSource ID: %d\n"
2272 					 "\tType: %d\n",
2273 					 fault & PAGE_MASK,
2274 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2275 					 RING_FAULT_SRCID(fault),
2276 					 RING_FAULT_FAULT_TYPE(fault));
2277 			I915_WRITE(RING_FAULT_REG(engine),
2278 				   fault & ~RING_FAULT_VALID);
2279 		}
2280 	}
2281 
2282 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2283 }
2284 
2285 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2286 {
2287 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2288 
2289 	if (fault & RING_FAULT_VALID) {
2290 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2291 				 "\tAddr: 0x%08lx\n"
2292 				 "\tEngine ID: %d\n"
2293 				 "\tSource ID: %d\n"
2294 				 "\tType: %d\n",
2295 				 fault & PAGE_MASK,
2296 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2297 				 RING_FAULT_SRCID(fault),
2298 				 RING_FAULT_FAULT_TYPE(fault));
2299 		I915_WRITE(GEN8_RING_FAULT_REG,
2300 			   fault & ~RING_FAULT_VALID);
2301 	}
2302 
2303 	POSTING_READ(GEN8_RING_FAULT_REG);
2304 }
2305 
2306 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2307 {
2308 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2309 	if (INTEL_GEN(dev_priv) >= 8)
2310 		gen8_check_and_clear_faults(dev_priv);
2311 	else if (INTEL_GEN(dev_priv) >= 6)
2312 		gen6_check_and_clear_faults(dev_priv);
2313 	else
2314 		return;
2315 }
2316 
2317 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2318 {
2319 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2320 
2321 	/* Don't bother messing with faults pre GEN6 as we have little
2322 	 * documentation supporting that it's a good idea.
2323 	 */
2324 	if (INTEL_GEN(dev_priv) < 6)
2325 		return;
2326 
2327 	i915_check_and_clear_faults(dev_priv);
2328 
2329 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2330 
2331 	i915_ggtt_invalidate(dev_priv);
2332 }
2333 
2334 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2335 			       struct sg_table *pages)
2336 {
2337 	do {
2338 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2339 			       pages->sgl, pages->nents,
2340 			       PCI_DMA_BIDIRECTIONAL))
2341 			return 0;
2342 
2343 		/* If the DMA remap fails, one cause can be that we have
2344 		 * too many objects pinned in a small remapping table,
2345 		 * such as swiotlb. Incrementally purge all other objects and
2346 		 * try again - if there are no more pages to remove from
2347 		 * the DMA remapper, i915_gem_shrink will return 0.
2348 		 */
2349 		GEM_BUG_ON(obj->mm.pages == pages);
2350 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2351 				 obj->base.size >> PAGE_SHIFT, NULL,
2352 				 I915_SHRINK_BOUND |
2353 				 I915_SHRINK_UNBOUND |
2354 				 I915_SHRINK_ACTIVE));
2355 
2356 	return -ENOSPC;
2357 }
2358 
2359 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2360 {
2361 	writeq(pte, addr);
2362 }
2363 
2364 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2365 				  dma_addr_t addr,
2366 				  u64 offset,
2367 				  enum i915_cache_level level,
2368 				  u32 unused)
2369 {
2370 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2371 	gen8_pte_t __iomem *pte =
2372 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2373 
2374 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2375 
2376 	ggtt->invalidate(vm->i915);
2377 }
2378 
2379 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2380 				     struct i915_vma *vma,
2381 				     enum i915_cache_level level,
2382 				     u32 unused)
2383 {
2384 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2385 	struct sgt_iter sgt_iter;
2386 	gen8_pte_t __iomem *gtt_entries;
2387 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2388 	dma_addr_t addr;
2389 
2390 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2391 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2392 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2393 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2394 
2395 	wmb();
2396 
2397 	/* This next bit makes the above posting read even more important. We
2398 	 * want to flush the TLBs only after we're certain all the PTE updates
2399 	 * have finished.
2400 	 */
2401 	ggtt->invalidate(vm->i915);
2402 }
2403 
2404 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2405 				  dma_addr_t addr,
2406 				  u64 offset,
2407 				  enum i915_cache_level level,
2408 				  u32 flags)
2409 {
2410 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2411 	gen6_pte_t __iomem *pte =
2412 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2413 
2414 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2415 
2416 	ggtt->invalidate(vm->i915);
2417 }
2418 
2419 /*
2420  * Binds an object into the global gtt with the specified cache level. The object
2421  * will be accessible to the GPU via commands whose operands reference offsets
2422  * within the global GTT as well as accessible by the GPU through the GMADR
2423  * mapped BAR (dev_priv->mm.gtt->gtt).
2424  */
2425 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2426 				     struct i915_vma *vma,
2427 				     enum i915_cache_level level,
2428 				     u32 flags)
2429 {
2430 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2431 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2432 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2433 	struct sgt_iter iter;
2434 	dma_addr_t addr;
2435 	for_each_sgt_dma(addr, iter, vma->pages)
2436 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2437 	wmb();
2438 
2439 	/* This next bit makes the above posting read even more important. We
2440 	 * want to flush the TLBs only after we're certain all the PTE updates
2441 	 * have finished.
2442 	 */
2443 	ggtt->invalidate(vm->i915);
2444 }
2445 
2446 static void nop_clear_range(struct i915_address_space *vm,
2447 			    u64 start, u64 length)
2448 {
2449 }
2450 
2451 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2452 				  u64 start, u64 length)
2453 {
2454 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2455 	unsigned first_entry = start >> PAGE_SHIFT;
2456 	unsigned num_entries = length >> PAGE_SHIFT;
2457 	const gen8_pte_t scratch_pte =
2458 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2459 	gen8_pte_t __iomem *gtt_base =
2460 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2461 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2462 	int i;
2463 
2464 	if (WARN(num_entries > max_entries,
2465 		 "First entry = %d; Num entries = %d (max=%d)\n",
2466 		 first_entry, num_entries, max_entries))
2467 		num_entries = max_entries;
2468 
2469 	for (i = 0; i < num_entries; i++)
2470 		gen8_set_pte(&gtt_base[i], scratch_pte);
2471 }
2472 
2473 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2474 {
2475 	struct drm_i915_private *dev_priv = vm->i915;
2476 
2477 	/*
2478 	 * Make sure the internal GAM fifo has been cleared of all GTT
2479 	 * writes before exiting stop_machine(). This guarantees that
2480 	 * any aperture accesses waiting to start in another process
2481 	 * cannot back up behind the GTT writes causing a hang.
2482 	 * The register can be any arbitrary GAM register.
2483 	 */
2484 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2485 }
2486 
2487 struct insert_page {
2488 	struct i915_address_space *vm;
2489 	dma_addr_t addr;
2490 	u64 offset;
2491 	enum i915_cache_level level;
2492 };
2493 
2494 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2495 {
2496 	struct insert_page *arg = _arg;
2497 
2498 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2499 	bxt_vtd_ggtt_wa(arg->vm);
2500 
2501 	return 0;
2502 }
2503 
2504 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2505 					  dma_addr_t addr,
2506 					  u64 offset,
2507 					  enum i915_cache_level level,
2508 					  u32 unused)
2509 {
2510 	struct insert_page arg = { vm, addr, offset, level };
2511 
2512 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2513 }
2514 
2515 struct insert_entries {
2516 	struct i915_address_space *vm;
2517 	struct i915_vma *vma;
2518 	enum i915_cache_level level;
2519 };
2520 
2521 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2522 {
2523 	struct insert_entries *arg = _arg;
2524 
2525 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2526 	bxt_vtd_ggtt_wa(arg->vm);
2527 
2528 	return 0;
2529 }
2530 
2531 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2532 					     struct i915_vma *vma,
2533 					     enum i915_cache_level level,
2534 					     u32 unused)
2535 {
2536 	struct insert_entries arg = { vm, vma, level };
2537 
2538 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2539 }
2540 
2541 struct clear_range {
2542 	struct i915_address_space *vm;
2543 	u64 start;
2544 	u64 length;
2545 };
2546 
2547 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2548 {
2549 	struct clear_range *arg = _arg;
2550 
2551 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2552 	bxt_vtd_ggtt_wa(arg->vm);
2553 
2554 	return 0;
2555 }
2556 
2557 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2558 					  u64 start,
2559 					  u64 length)
2560 {
2561 	struct clear_range arg = { vm, start, length };
2562 
2563 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2564 }
2565 
2566 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2567 				  u64 start, u64 length)
2568 {
2569 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2570 	unsigned first_entry = start >> PAGE_SHIFT;
2571 	unsigned num_entries = length >> PAGE_SHIFT;
2572 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2573 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2574 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2575 	int i;
2576 
2577 	if (WARN(num_entries > max_entries,
2578 		 "First entry = %d; Num entries = %d (max=%d)\n",
2579 		 first_entry, num_entries, max_entries))
2580 		num_entries = max_entries;
2581 
2582 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2583 				     I915_CACHE_LLC, 0);
2584 
2585 	for (i = 0; i < num_entries; i++)
2586 		iowrite32(scratch_pte, &gtt_base[i]);
2587 }
2588 
2589 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2590 				  dma_addr_t addr,
2591 				  u64 offset,
2592 				  enum i915_cache_level cache_level,
2593 				  u32 unused)
2594 {
2595 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2596 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2597 
2598 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2599 }
2600 
2601 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2602 				     struct i915_vma *vma,
2603 				     enum i915_cache_level cache_level,
2604 				     u32 unused)
2605 {
2606 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2607 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2608 
2609 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2610 				    flags);
2611 }
2612 
2613 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2614 				  u64 start, u64 length)
2615 {
2616 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2617 }
2618 
2619 static int ggtt_bind_vma(struct i915_vma *vma,
2620 			 enum i915_cache_level cache_level,
2621 			 u32 flags)
2622 {
2623 	struct drm_i915_private *i915 = vma->vm->i915;
2624 	struct drm_i915_gem_object *obj = vma->obj;
2625 	u32 pte_flags;
2626 
2627 	/* Currently applicable only to VLV */
2628 	pte_flags = 0;
2629 	if (obj->gt_ro)
2630 		pte_flags |= PTE_READ_ONLY;
2631 
2632 	intel_runtime_pm_get(i915);
2633 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2634 	intel_runtime_pm_put(i915);
2635 
2636 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2637 
2638 	/*
2639 	 * Without aliasing PPGTT there's no difference between
2640 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2641 	 * upgrade to both bound if we bind either to avoid double-binding.
2642 	 */
2643 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2644 
2645 	return 0;
2646 }
2647 
2648 static void ggtt_unbind_vma(struct i915_vma *vma)
2649 {
2650 	struct drm_i915_private *i915 = vma->vm->i915;
2651 
2652 	intel_runtime_pm_get(i915);
2653 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2654 	intel_runtime_pm_put(i915);
2655 }
2656 
2657 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2658 				 enum i915_cache_level cache_level,
2659 				 u32 flags)
2660 {
2661 	struct drm_i915_private *i915 = vma->vm->i915;
2662 	u32 pte_flags;
2663 	int ret;
2664 
2665 	/* Currently applicable only to VLV */
2666 	pte_flags = 0;
2667 	if (vma->obj->gt_ro)
2668 		pte_flags |= PTE_READ_ONLY;
2669 
2670 	if (flags & I915_VMA_LOCAL_BIND) {
2671 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2672 
2673 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2674 		    appgtt->base.allocate_va_range) {
2675 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2676 							     vma->node.start,
2677 							     vma->size);
2678 			if (ret)
2679 				return ret;
2680 		}
2681 
2682 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2683 					    pte_flags);
2684 	}
2685 
2686 	if (flags & I915_VMA_GLOBAL_BIND) {
2687 		intel_runtime_pm_get(i915);
2688 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2689 		intel_runtime_pm_put(i915);
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2696 {
2697 	struct drm_i915_private *i915 = vma->vm->i915;
2698 
2699 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2700 		intel_runtime_pm_get(i915);
2701 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2702 		intel_runtime_pm_put(i915);
2703 	}
2704 
2705 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2706 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2707 
2708 		vm->clear_range(vm, vma->node.start, vma->size);
2709 	}
2710 }
2711 
2712 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2713 			       struct sg_table *pages)
2714 {
2715 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2716 	struct device *kdev = &dev_priv->drm.pdev->dev;
2717 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2718 
2719 	if (unlikely(ggtt->do_idle_maps)) {
2720 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2721 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2722 			/* Wait a bit, in hopes it avoids the hang */
2723 			udelay(10);
2724 		}
2725 	}
2726 
2727 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2728 }
2729 
2730 static int ggtt_set_pages(struct i915_vma *vma)
2731 {
2732 	int ret;
2733 
2734 	GEM_BUG_ON(vma->pages);
2735 
2736 	ret = i915_get_ggtt_vma_pages(vma);
2737 	if (ret)
2738 		return ret;
2739 
2740 	vma->page_sizes = vma->obj->mm.page_sizes;
2741 
2742 	return 0;
2743 }
2744 
2745 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2746 				  unsigned long color,
2747 				  u64 *start,
2748 				  u64 *end)
2749 {
2750 	if (node->allocated && node->color != color)
2751 		*start += I915_GTT_PAGE_SIZE;
2752 
2753 	/* Also leave a space between the unallocated reserved node after the
2754 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2755 	 * to insert a guard page to prevent prefetches crossing over the
2756 	 * GTT boundary.
2757 	 */
2758 	node = list_next_entry(node, node_list);
2759 	if (node->color != color)
2760 		*end -= I915_GTT_PAGE_SIZE;
2761 }
2762 
2763 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2764 {
2765 	struct i915_ggtt *ggtt = &i915->ggtt;
2766 	struct i915_hw_ppgtt *ppgtt;
2767 	int err;
2768 
2769 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2770 	if (IS_ERR(ppgtt))
2771 		return PTR_ERR(ppgtt);
2772 
2773 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2774 		err = -ENODEV;
2775 		goto err_ppgtt;
2776 	}
2777 
2778 	if (ppgtt->base.allocate_va_range) {
2779 		/* Note we only pre-allocate as far as the end of the global
2780 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2781 		 * very significant! We have to preallocate as GVT/vgpu does
2782 		 * not like the page directory disappearing.
2783 		 */
2784 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2785 						    0, ggtt->base.total);
2786 		if (err)
2787 			goto err_ppgtt;
2788 	}
2789 
2790 	i915->mm.aliasing_ppgtt = ppgtt;
2791 
2792 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2793 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2794 
2795 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2796 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2797 
2798 	return 0;
2799 
2800 err_ppgtt:
2801 	i915_ppgtt_put(ppgtt);
2802 	return err;
2803 }
2804 
2805 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2806 {
2807 	struct i915_ggtt *ggtt = &i915->ggtt;
2808 	struct i915_hw_ppgtt *ppgtt;
2809 
2810 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2811 	if (!ppgtt)
2812 		return;
2813 
2814 	i915_ppgtt_put(ppgtt);
2815 
2816 	ggtt->base.bind_vma = ggtt_bind_vma;
2817 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2818 }
2819 
2820 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2821 {
2822 	/* Let GEM Manage all of the aperture.
2823 	 *
2824 	 * However, leave one page at the end still bound to the scratch page.
2825 	 * There are a number of places where the hardware apparently prefetches
2826 	 * past the end of the object, and we've seen multiple hangs with the
2827 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2828 	 * aperture.  One page should be enough to keep any prefetching inside
2829 	 * of the aperture.
2830 	 */
2831 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2832 	unsigned long hole_start, hole_end;
2833 	struct drm_mm_node *entry;
2834 	int ret;
2835 
2836 	ret = intel_vgt_balloon(dev_priv);
2837 	if (ret)
2838 		return ret;
2839 
2840 	/* Reserve a mappable slot for our lockless error capture */
2841 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2842 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2843 					  0, ggtt->mappable_end,
2844 					  DRM_MM_INSERT_LOW);
2845 	if (ret)
2846 		return ret;
2847 
2848 	/* Clear any non-preallocated blocks */
2849 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2850 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2851 			      hole_start, hole_end);
2852 		ggtt->base.clear_range(&ggtt->base, hole_start,
2853 				       hole_end - hole_start);
2854 	}
2855 
2856 	/* And finally clear the reserved guard page */
2857 	ggtt->base.clear_range(&ggtt->base,
2858 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2859 
2860 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2861 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2862 		if (ret)
2863 			goto err;
2864 	}
2865 
2866 	return 0;
2867 
2868 err:
2869 	drm_mm_remove_node(&ggtt->error_capture);
2870 	return ret;
2871 }
2872 
2873 /**
2874  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2875  * @dev_priv: i915 device
2876  */
2877 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2878 {
2879 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2880 	struct i915_vma *vma, *vn;
2881 	struct pagevec *pvec;
2882 
2883 	ggtt->base.closed = true;
2884 
2885 	mutex_lock(&dev_priv->drm.struct_mutex);
2886 	WARN_ON(!list_empty(&ggtt->base.active_list));
2887 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2888 		WARN_ON(i915_vma_unbind(vma));
2889 	mutex_unlock(&dev_priv->drm.struct_mutex);
2890 
2891 	i915_gem_cleanup_stolen(&dev_priv->drm);
2892 
2893 	mutex_lock(&dev_priv->drm.struct_mutex);
2894 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2895 
2896 	if (drm_mm_node_allocated(&ggtt->error_capture))
2897 		drm_mm_remove_node(&ggtt->error_capture);
2898 
2899 	if (drm_mm_initialized(&ggtt->base.mm)) {
2900 		intel_vgt_deballoon(dev_priv);
2901 		i915_address_space_fini(&ggtt->base);
2902 	}
2903 
2904 	ggtt->base.cleanup(&ggtt->base);
2905 
2906 	pvec = &dev_priv->mm.wc_stash;
2907 	if (pvec->nr) {
2908 		set_pages_array_wb(pvec->pages, pvec->nr);
2909 		__pagevec_release(pvec);
2910 	}
2911 
2912 	mutex_unlock(&dev_priv->drm.struct_mutex);
2913 
2914 	arch_phys_wc_del(ggtt->mtrr);
2915 	io_mapping_fini(&ggtt->iomap);
2916 }
2917 
2918 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2919 {
2920 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2921 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2922 	return snb_gmch_ctl << 20;
2923 }
2924 
2925 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2926 {
2927 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2928 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2929 	if (bdw_gmch_ctl)
2930 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2931 
2932 #ifdef CONFIG_X86_32
2933 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2934 	if (bdw_gmch_ctl > 4)
2935 		bdw_gmch_ctl = 4;
2936 #endif
2937 
2938 	return bdw_gmch_ctl << 20;
2939 }
2940 
2941 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2942 {
2943 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2944 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2945 
2946 	if (gmch_ctrl)
2947 		return 1 << (20 + gmch_ctrl);
2948 
2949 	return 0;
2950 }
2951 
2952 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2953 {
2954 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2955 	struct pci_dev *pdev = dev_priv->drm.pdev;
2956 	phys_addr_t phys_addr;
2957 	int ret;
2958 
2959 	/* For Modern GENs the PTEs and register space are split in the BAR */
2960 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2961 
2962 	/*
2963 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2964 	 * will be dropped. For WC mappings in general we have 64 byte burst
2965 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2966 	 * resort to an uncached mapping. The WC issue is easily caught by the
2967 	 * readback check when writing GTT PTE entries.
2968 	 */
2969 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2970 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2971 	else
2972 		ggtt->gsm = ioremap_wc(phys_addr, size);
2973 	if (!ggtt->gsm) {
2974 		DRM_ERROR("Failed to map the ggtt page table\n");
2975 		return -ENOMEM;
2976 	}
2977 
2978 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2979 	if (ret) {
2980 		DRM_ERROR("Scratch setup failed\n");
2981 		/* iounmap will also get called at remove, but meh */
2982 		iounmap(ggtt->gsm);
2983 		return ret;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static struct intel_ppat_entry *
2990 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
2991 {
2992 	struct intel_ppat_entry *entry = &ppat->entries[index];
2993 
2994 	GEM_BUG_ON(index >= ppat->max_entries);
2995 	GEM_BUG_ON(test_bit(index, ppat->used));
2996 
2997 	entry->ppat = ppat;
2998 	entry->value = value;
2999 	kref_init(&entry->ref);
3000 	set_bit(index, ppat->used);
3001 	set_bit(index, ppat->dirty);
3002 
3003 	return entry;
3004 }
3005 
3006 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3007 {
3008 	struct intel_ppat *ppat = entry->ppat;
3009 	unsigned int index = entry - ppat->entries;
3010 
3011 	GEM_BUG_ON(index >= ppat->max_entries);
3012 	GEM_BUG_ON(!test_bit(index, ppat->used));
3013 
3014 	entry->value = ppat->clear_value;
3015 	clear_bit(index, ppat->used);
3016 	set_bit(index, ppat->dirty);
3017 }
3018 
3019 /**
3020  * intel_ppat_get - get a usable PPAT entry
3021  * @i915: i915 device instance
3022  * @value: the PPAT value required by the caller
3023  *
3024  * The function tries to search if there is an existing PPAT entry which
3025  * matches with the required value. If perfectly matched, the existing PPAT
3026  * entry will be used. If only partially matched, it will try to check if
3027  * there is any available PPAT index. If yes, it will allocate a new PPAT
3028  * index for the required entry and update the HW. If not, the partially
3029  * matched entry will be used.
3030  */
3031 const struct intel_ppat_entry *
3032 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3033 {
3034 	struct intel_ppat *ppat = &i915->ppat;
3035 	struct intel_ppat_entry *entry = NULL;
3036 	unsigned int scanned, best_score;
3037 	int i;
3038 
3039 	GEM_BUG_ON(!ppat->max_entries);
3040 
3041 	scanned = best_score = 0;
3042 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3043 		unsigned int score;
3044 
3045 		score = ppat->match(ppat->entries[i].value, value);
3046 		if (score > best_score) {
3047 			entry = &ppat->entries[i];
3048 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3049 				kref_get(&entry->ref);
3050 				return entry;
3051 			}
3052 			best_score = score;
3053 		}
3054 		scanned++;
3055 	}
3056 
3057 	if (scanned == ppat->max_entries) {
3058 		if (!entry)
3059 			return ERR_PTR(-ENOSPC);
3060 
3061 		kref_get(&entry->ref);
3062 		return entry;
3063 	}
3064 
3065 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3066 	entry = __alloc_ppat_entry(ppat, i, value);
3067 	ppat->update_hw(i915);
3068 	return entry;
3069 }
3070 
3071 static void release_ppat(struct kref *kref)
3072 {
3073 	struct intel_ppat_entry *entry =
3074 		container_of(kref, struct intel_ppat_entry, ref);
3075 	struct drm_i915_private *i915 = entry->ppat->i915;
3076 
3077 	__free_ppat_entry(entry);
3078 	entry->ppat->update_hw(i915);
3079 }
3080 
3081 /**
3082  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3083  * @entry: an intel PPAT entry
3084  *
3085  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3086  * entry is dynamically allocated, its reference count will be decreased. Once
3087  * the reference count becomes into zero, the PPAT index becomes free again.
3088  */
3089 void intel_ppat_put(const struct intel_ppat_entry *entry)
3090 {
3091 	struct intel_ppat *ppat = entry->ppat;
3092 	unsigned int index = entry - ppat->entries;
3093 
3094 	GEM_BUG_ON(!ppat->max_entries);
3095 
3096 	kref_put(&ppat->entries[index].ref, release_ppat);
3097 }
3098 
3099 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3100 {
3101 	struct intel_ppat *ppat = &dev_priv->ppat;
3102 	int i;
3103 
3104 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3105 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3106 		clear_bit(i, ppat->dirty);
3107 	}
3108 }
3109 
3110 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3111 {
3112 	struct intel_ppat *ppat = &dev_priv->ppat;
3113 	u64 pat = 0;
3114 	int i;
3115 
3116 	for (i = 0; i < ppat->max_entries; i++)
3117 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3118 
3119 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3120 
3121 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3122 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3123 }
3124 
3125 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3126 {
3127 	unsigned int score = 0;
3128 	enum {
3129 		AGE_MATCH = BIT(0),
3130 		TC_MATCH = BIT(1),
3131 		CA_MATCH = BIT(2),
3132 	};
3133 
3134 	/* Cache attribute has to be matched. */
3135 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3136 		return 0;
3137 
3138 	score |= CA_MATCH;
3139 
3140 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3141 		score |= TC_MATCH;
3142 
3143 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3144 		score |= AGE_MATCH;
3145 
3146 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3147 		return INTEL_PPAT_PERFECT_MATCH;
3148 
3149 	return score;
3150 }
3151 
3152 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3153 {
3154 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3155 		INTEL_PPAT_PERFECT_MATCH : 0;
3156 }
3157 
3158 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3159 {
3160 	ppat->max_entries = 8;
3161 	ppat->update_hw = cnl_private_pat_update_hw;
3162 	ppat->match = bdw_private_pat_match;
3163 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3164 
3165 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3166 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3167 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3168 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3169 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3170 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3171 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3172 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3173 }
3174 
3175 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3176  * bits. When using advanced contexts each context stores its own PAT, but
3177  * writing this data shouldn't be harmful even in those cases. */
3178 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3179 {
3180 	ppat->max_entries = 8;
3181 	ppat->update_hw = bdw_private_pat_update_hw;
3182 	ppat->match = bdw_private_pat_match;
3183 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3184 
3185 	if (!USES_PPGTT(ppat->i915)) {
3186 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3187 		 * so RTL will always use the value corresponding to
3188 		 * pat_sel = 000".
3189 		 * So let's disable cache for GGTT to avoid screen corruptions.
3190 		 * MOCS still can be used though.
3191 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3192 		 * before this patch, i.e. the same uncached + snooping access
3193 		 * like on gen6/7 seems to be in effect.
3194 		 * - So this just fixes blitter/render access. Again it looks
3195 		 * like it's not just uncached access, but uncached + snooping.
3196 		 * So we can still hold onto all our assumptions wrt cpu
3197 		 * clflushing on LLC machines.
3198 		 */
3199 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3200 		return;
3201 	}
3202 
3203 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3204 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3205 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3206 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3207 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3208 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3209 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3210 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3211 }
3212 
3213 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3214 {
3215 	ppat->max_entries = 8;
3216 	ppat->update_hw = bdw_private_pat_update_hw;
3217 	ppat->match = chv_private_pat_match;
3218 	ppat->clear_value = CHV_PPAT_SNOOP;
3219 
3220 	/*
3221 	 * Map WB on BDW to snooped on CHV.
3222 	 *
3223 	 * Only the snoop bit has meaning for CHV, the rest is
3224 	 * ignored.
3225 	 *
3226 	 * The hardware will never snoop for certain types of accesses:
3227 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3228 	 * - PPGTT page tables
3229 	 * - some other special cycles
3230 	 *
3231 	 * As with BDW, we also need to consider the following for GT accesses:
3232 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3233 	 * so RTL will always use the value corresponding to
3234 	 * pat_sel = 000".
3235 	 * Which means we must set the snoop bit in PAT entry 0
3236 	 * in order to keep the global status page working.
3237 	 */
3238 
3239 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3240 	__alloc_ppat_entry(ppat, 1, 0);
3241 	__alloc_ppat_entry(ppat, 2, 0);
3242 	__alloc_ppat_entry(ppat, 3, 0);
3243 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3244 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3245 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3246 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3247 }
3248 
3249 static void gen6_gmch_remove(struct i915_address_space *vm)
3250 {
3251 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3252 
3253 	iounmap(ggtt->gsm);
3254 	cleanup_scratch_page(vm);
3255 }
3256 
3257 static void setup_private_pat(struct drm_i915_private *dev_priv)
3258 {
3259 	struct intel_ppat *ppat = &dev_priv->ppat;
3260 	int i;
3261 
3262 	ppat->i915 = dev_priv;
3263 
3264 	if (INTEL_GEN(dev_priv) >= 10)
3265 		cnl_setup_private_ppat(ppat);
3266 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3267 		chv_setup_private_ppat(ppat);
3268 	else
3269 		bdw_setup_private_ppat(ppat);
3270 
3271 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3272 
3273 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3274 		ppat->entries[i].value = ppat->clear_value;
3275 		ppat->entries[i].ppat = ppat;
3276 		set_bit(i, ppat->dirty);
3277 	}
3278 
3279 	ppat->update_hw(dev_priv);
3280 }
3281 
3282 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3283 {
3284 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3285 	struct pci_dev *pdev = dev_priv->drm.pdev;
3286 	unsigned int size;
3287 	u16 snb_gmch_ctl;
3288 	int err;
3289 
3290 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3291 	ggtt->gmadr =
3292 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3293 						 pci_resource_len(pdev, 2));
3294 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3295 
3296 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3297 	if (!err)
3298 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3299 	if (err)
3300 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3301 
3302 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3303 
3304 	if (INTEL_GEN(dev_priv) >= 9) {
3305 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3306 	} else if (IS_CHERRYVIEW(dev_priv)) {
3307 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3308 	} else {
3309 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3310 	}
3311 
3312 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3313 	ggtt->base.cleanup = gen6_gmch_remove;
3314 	ggtt->base.bind_vma = ggtt_bind_vma;
3315 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3316 	ggtt->base.set_pages = ggtt_set_pages;
3317 	ggtt->base.clear_pages = clear_pages;
3318 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3319 	ggtt->base.clear_range = nop_clear_range;
3320 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3321 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3322 
3323 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3324 
3325 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3326 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3327 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3328 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3329 		if (ggtt->base.clear_range != nop_clear_range)
3330 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3331 	}
3332 
3333 	ggtt->invalidate = gen6_ggtt_invalidate;
3334 
3335 	setup_private_pat(dev_priv);
3336 
3337 	return ggtt_probe_common(ggtt, size);
3338 }
3339 
3340 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3341 {
3342 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3343 	struct pci_dev *pdev = dev_priv->drm.pdev;
3344 	unsigned int size;
3345 	u16 snb_gmch_ctl;
3346 	int err;
3347 
3348 	ggtt->gmadr =
3349 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3350 						 pci_resource_len(pdev, 2));
3351 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3352 
3353 	/* 64/512MB is the current min/max we actually know of, but this is just
3354 	 * a coarse sanity check.
3355 	 */
3356 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3357 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3358 		return -ENXIO;
3359 	}
3360 
3361 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3362 	if (!err)
3363 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3364 	if (err)
3365 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3366 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3367 
3368 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3369 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3370 
3371 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3372 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3373 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3374 	ggtt->base.bind_vma = ggtt_bind_vma;
3375 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3376 	ggtt->base.set_pages = ggtt_set_pages;
3377 	ggtt->base.clear_pages = clear_pages;
3378 	ggtt->base.cleanup = gen6_gmch_remove;
3379 
3380 	ggtt->invalidate = gen6_ggtt_invalidate;
3381 
3382 	if (HAS_EDRAM(dev_priv))
3383 		ggtt->base.pte_encode = iris_pte_encode;
3384 	else if (IS_HASWELL(dev_priv))
3385 		ggtt->base.pte_encode = hsw_pte_encode;
3386 	else if (IS_VALLEYVIEW(dev_priv))
3387 		ggtt->base.pte_encode = byt_pte_encode;
3388 	else if (INTEL_GEN(dev_priv) >= 7)
3389 		ggtt->base.pte_encode = ivb_pte_encode;
3390 	else
3391 		ggtt->base.pte_encode = snb_pte_encode;
3392 
3393 	return ggtt_probe_common(ggtt, size);
3394 }
3395 
3396 static void i915_gmch_remove(struct i915_address_space *vm)
3397 {
3398 	intel_gmch_remove();
3399 }
3400 
3401 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3402 {
3403 	struct drm_i915_private *dev_priv = ggtt->base.i915;
3404 	phys_addr_t gmadr_base;
3405 	int ret;
3406 
3407 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3408 	if (!ret) {
3409 		DRM_ERROR("failed to set up gmch\n");
3410 		return -EIO;
3411 	}
3412 
3413 	intel_gtt_get(&ggtt->base.total,
3414 		      &gmadr_base,
3415 		      &ggtt->mappable_end);
3416 
3417 	ggtt->gmadr =
3418 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3419 						 ggtt->mappable_end);
3420 
3421 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3422 	ggtt->base.insert_page = i915_ggtt_insert_page;
3423 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3424 	ggtt->base.clear_range = i915_ggtt_clear_range;
3425 	ggtt->base.bind_vma = ggtt_bind_vma;
3426 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3427 	ggtt->base.set_pages = ggtt_set_pages;
3428 	ggtt->base.clear_pages = clear_pages;
3429 	ggtt->base.cleanup = i915_gmch_remove;
3430 
3431 	ggtt->invalidate = gmch_ggtt_invalidate;
3432 
3433 	if (unlikely(ggtt->do_idle_maps))
3434 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3435 
3436 	return 0;
3437 }
3438 
3439 /**
3440  * i915_ggtt_probe_hw - Probe GGTT hardware location
3441  * @dev_priv: i915 device
3442  */
3443 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3444 {
3445 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3446 	int ret;
3447 
3448 	ggtt->base.i915 = dev_priv;
3449 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3450 
3451 	if (INTEL_GEN(dev_priv) <= 5)
3452 		ret = i915_gmch_probe(ggtt);
3453 	else if (INTEL_GEN(dev_priv) < 8)
3454 		ret = gen6_gmch_probe(ggtt);
3455 	else
3456 		ret = gen8_gmch_probe(ggtt);
3457 	if (ret)
3458 		return ret;
3459 
3460 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3461 	 * This is easier than doing range restriction on the fly, as we
3462 	 * currently don't have any bits spare to pass in this upper
3463 	 * restriction!
3464 	 */
3465 	if (USES_GUC(dev_priv)) {
3466 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3467 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3468 	}
3469 
3470 	if ((ggtt->base.total - 1) >> 32) {
3471 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3472 			  " of address space! Found %lldM!\n",
3473 			  ggtt->base.total >> 20);
3474 		ggtt->base.total = 1ULL << 32;
3475 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3476 	}
3477 
3478 	if (ggtt->mappable_end > ggtt->base.total) {
3479 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3480 			  " aperture=%pa, total=%llx\n",
3481 			  &ggtt->mappable_end, ggtt->base.total);
3482 		ggtt->mappable_end = ggtt->base.total;
3483 	}
3484 
3485 	/* GMADR is the PCI mmio aperture into the global GTT. */
3486 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3487 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3488 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3489 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3490 	if (intel_vtd_active())
3491 		DRM_INFO("VT-d active for gfx access\n");
3492 
3493 	return 0;
3494 }
3495 
3496 /**
3497  * i915_ggtt_init_hw - Initialize GGTT hardware
3498  * @dev_priv: i915 device
3499  */
3500 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3501 {
3502 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3503 	int ret;
3504 
3505 	INIT_LIST_HEAD(&dev_priv->vm_list);
3506 
3507 	/* Note that we use page colouring to enforce a guard page at the
3508 	 * end of the address space. This is required as the CS may prefetch
3509 	 * beyond the end of the batch buffer, across the page boundary,
3510 	 * and beyond the end of the GTT if we do not provide a guard.
3511 	 */
3512 	mutex_lock(&dev_priv->drm.struct_mutex);
3513 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3514 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3515 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3516 	mutex_unlock(&dev_priv->drm.struct_mutex);
3517 
3518 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3519 				dev_priv->ggtt.gmadr.start,
3520 				dev_priv->ggtt.mappable_end)) {
3521 		ret = -EIO;
3522 		goto out_gtt_cleanup;
3523 	}
3524 
3525 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3526 
3527 	/*
3528 	 * Initialise stolen early so that we may reserve preallocated
3529 	 * objects for the BIOS to KMS transition.
3530 	 */
3531 	ret = i915_gem_init_stolen(dev_priv);
3532 	if (ret)
3533 		goto out_gtt_cleanup;
3534 
3535 	return 0;
3536 
3537 out_gtt_cleanup:
3538 	ggtt->base.cleanup(&ggtt->base);
3539 	return ret;
3540 }
3541 
3542 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3543 {
3544 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3545 		return -EIO;
3546 
3547 	return 0;
3548 }
3549 
3550 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3551 {
3552 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3553 
3554 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3555 
3556 	i915_ggtt_invalidate(i915);
3557 }
3558 
3559 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3560 {
3561 	/* We should only be called after i915_ggtt_enable_guc() */
3562 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3563 
3564 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3565 
3566 	i915_ggtt_invalidate(i915);
3567 }
3568 
3569 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3570 {
3571 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3572 	struct drm_i915_gem_object *obj, *on;
3573 
3574 	i915_check_and_clear_faults(dev_priv);
3575 
3576 	/* First fill our portion of the GTT with scratch pages */
3577 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3578 
3579 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3580 
3581 	/* clflush objects bound into the GGTT and rebind them. */
3582 	list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3583 		bool ggtt_bound = false;
3584 		struct i915_vma *vma;
3585 
3586 		for_each_ggtt_vma(vma, obj) {
3587 			if (!i915_vma_unbind(vma))
3588 				continue;
3589 
3590 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3591 					      PIN_UPDATE));
3592 			ggtt_bound = true;
3593 		}
3594 
3595 		if (ggtt_bound)
3596 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3597 	}
3598 
3599 	ggtt->base.closed = false;
3600 
3601 	if (INTEL_GEN(dev_priv) >= 8) {
3602 		struct intel_ppat *ppat = &dev_priv->ppat;
3603 
3604 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3605 		dev_priv->ppat.update_hw(dev_priv);
3606 		return;
3607 	}
3608 
3609 	if (USES_PPGTT(dev_priv)) {
3610 		struct i915_address_space *vm;
3611 
3612 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3613 			struct i915_hw_ppgtt *ppgtt;
3614 
3615 			if (i915_is_ggtt(vm))
3616 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3617 			else
3618 				ppgtt = i915_vm_to_ppgtt(vm);
3619 
3620 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3621 		}
3622 	}
3623 
3624 	i915_ggtt_invalidate(dev_priv);
3625 }
3626 
3627 static struct scatterlist *
3628 rotate_pages(const dma_addr_t *in, unsigned int offset,
3629 	     unsigned int width, unsigned int height,
3630 	     unsigned int stride,
3631 	     struct sg_table *st, struct scatterlist *sg)
3632 {
3633 	unsigned int column, row;
3634 	unsigned int src_idx;
3635 
3636 	for (column = 0; column < width; column++) {
3637 		src_idx = stride * (height - 1) + column;
3638 		for (row = 0; row < height; row++) {
3639 			st->nents++;
3640 			/* We don't need the pages, but need to initialize
3641 			 * the entries so the sg list can be happily traversed.
3642 			 * The only thing we need are DMA addresses.
3643 			 */
3644 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3645 			sg_dma_address(sg) = in[offset + src_idx];
3646 			sg_dma_len(sg) = PAGE_SIZE;
3647 			sg = sg_next(sg);
3648 			src_idx -= stride;
3649 		}
3650 	}
3651 
3652 	return sg;
3653 }
3654 
3655 static noinline struct sg_table *
3656 intel_rotate_pages(struct intel_rotation_info *rot_info,
3657 		   struct drm_i915_gem_object *obj)
3658 {
3659 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3660 	unsigned int size = intel_rotation_info_size(rot_info);
3661 	struct sgt_iter sgt_iter;
3662 	dma_addr_t dma_addr;
3663 	unsigned long i;
3664 	dma_addr_t *page_addr_list;
3665 	struct sg_table *st;
3666 	struct scatterlist *sg;
3667 	int ret = -ENOMEM;
3668 
3669 	/* Allocate a temporary list of source pages for random access. */
3670 	page_addr_list = kvmalloc_array(n_pages,
3671 					sizeof(dma_addr_t),
3672 					GFP_KERNEL);
3673 	if (!page_addr_list)
3674 		return ERR_PTR(ret);
3675 
3676 	/* Allocate target SG list. */
3677 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3678 	if (!st)
3679 		goto err_st_alloc;
3680 
3681 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3682 	if (ret)
3683 		goto err_sg_alloc;
3684 
3685 	/* Populate source page list from the object. */
3686 	i = 0;
3687 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3688 		page_addr_list[i++] = dma_addr;
3689 
3690 	GEM_BUG_ON(i != n_pages);
3691 	st->nents = 0;
3692 	sg = st->sgl;
3693 
3694 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3695 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3696 				  rot_info->plane[i].width, rot_info->plane[i].height,
3697 				  rot_info->plane[i].stride, st, sg);
3698 	}
3699 
3700 	kvfree(page_addr_list);
3701 
3702 	return st;
3703 
3704 err_sg_alloc:
3705 	kfree(st);
3706 err_st_alloc:
3707 	kvfree(page_addr_list);
3708 
3709 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3710 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3711 
3712 	return ERR_PTR(ret);
3713 }
3714 
3715 static noinline struct sg_table *
3716 intel_partial_pages(const struct i915_ggtt_view *view,
3717 		    struct drm_i915_gem_object *obj)
3718 {
3719 	struct sg_table *st;
3720 	struct scatterlist *sg, *iter;
3721 	unsigned int count = view->partial.size;
3722 	unsigned int offset;
3723 	int ret = -ENOMEM;
3724 
3725 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3726 	if (!st)
3727 		goto err_st_alloc;
3728 
3729 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3730 	if (ret)
3731 		goto err_sg_alloc;
3732 
3733 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3734 	GEM_BUG_ON(!iter);
3735 
3736 	sg = st->sgl;
3737 	st->nents = 0;
3738 	do {
3739 		unsigned int len;
3740 
3741 		len = min(iter->length - (offset << PAGE_SHIFT),
3742 			  count << PAGE_SHIFT);
3743 		sg_set_page(sg, NULL, len, 0);
3744 		sg_dma_address(sg) =
3745 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3746 		sg_dma_len(sg) = len;
3747 
3748 		st->nents++;
3749 		count -= len >> PAGE_SHIFT;
3750 		if (count == 0) {
3751 			sg_mark_end(sg);
3752 			return st;
3753 		}
3754 
3755 		sg = __sg_next(sg);
3756 		iter = __sg_next(iter);
3757 		offset = 0;
3758 	} while (1);
3759 
3760 err_sg_alloc:
3761 	kfree(st);
3762 err_st_alloc:
3763 	return ERR_PTR(ret);
3764 }
3765 
3766 static int
3767 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3768 {
3769 	int ret;
3770 
3771 	/* The vma->pages are only valid within the lifespan of the borrowed
3772 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3773 	 * must be the vma->pages. A simple rule is that vma->pages must only
3774 	 * be accessed when the obj->mm.pages are pinned.
3775 	 */
3776 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3777 
3778 	switch (vma->ggtt_view.type) {
3779 	case I915_GGTT_VIEW_NORMAL:
3780 		vma->pages = vma->obj->mm.pages;
3781 		return 0;
3782 
3783 	case I915_GGTT_VIEW_ROTATED:
3784 		vma->pages =
3785 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3786 		break;
3787 
3788 	case I915_GGTT_VIEW_PARTIAL:
3789 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3790 		break;
3791 
3792 	default:
3793 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3794 			  vma->ggtt_view.type);
3795 		return -EINVAL;
3796 	}
3797 
3798 	ret = 0;
3799 	if (unlikely(IS_ERR(vma->pages))) {
3800 		ret = PTR_ERR(vma->pages);
3801 		vma->pages = NULL;
3802 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3803 			  vma->ggtt_view.type, ret);
3804 	}
3805 	return ret;
3806 }
3807 
3808 /**
3809  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3810  * @vm: the &struct i915_address_space
3811  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3812  * @size: how much space to allocate inside the GTT,
3813  *        must be #I915_GTT_PAGE_SIZE aligned
3814  * @offset: where to insert inside the GTT,
3815  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3816  *          (@offset + @size) must fit within the address space
3817  * @color: color to apply to node, if this node is not from a VMA,
3818  *         color must be #I915_COLOR_UNEVICTABLE
3819  * @flags: control search and eviction behaviour
3820  *
3821  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3822  * the address space (using @size and @color). If the @node does not fit, it
3823  * tries to evict any overlapping nodes from the GTT, including any
3824  * neighbouring nodes if the colors do not match (to ensure guard pages between
3825  * differing domains). See i915_gem_evict_for_node() for the gory details
3826  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3827  * evicting active overlapping objects, and any overlapping node that is pinned
3828  * or marked as unevictable will also result in failure.
3829  *
3830  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3831  * asked to wait for eviction and interrupted.
3832  */
3833 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3834 			 struct drm_mm_node *node,
3835 			 u64 size, u64 offset, unsigned long color,
3836 			 unsigned int flags)
3837 {
3838 	int err;
3839 
3840 	GEM_BUG_ON(!size);
3841 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3842 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3843 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3844 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3845 	GEM_BUG_ON(drm_mm_node_allocated(node));
3846 
3847 	node->size = size;
3848 	node->start = offset;
3849 	node->color = color;
3850 
3851 	err = drm_mm_reserve_node(&vm->mm, node);
3852 	if (err != -ENOSPC)
3853 		return err;
3854 
3855 	if (flags & PIN_NOEVICT)
3856 		return -ENOSPC;
3857 
3858 	err = i915_gem_evict_for_node(vm, node, flags);
3859 	if (err == 0)
3860 		err = drm_mm_reserve_node(&vm->mm, node);
3861 
3862 	return err;
3863 }
3864 
3865 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3866 {
3867 	u64 range, addr;
3868 
3869 	GEM_BUG_ON(range_overflows(start, len, end));
3870 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3871 
3872 	range = round_down(end - len, align) - round_up(start, align);
3873 	if (range) {
3874 		if (sizeof(unsigned long) == sizeof(u64)) {
3875 			addr = get_random_long();
3876 		} else {
3877 			addr = get_random_int();
3878 			if (range > U32_MAX) {
3879 				addr <<= 32;
3880 				addr |= get_random_int();
3881 			}
3882 		}
3883 		div64_u64_rem(addr, range, &addr);
3884 		start += addr;
3885 	}
3886 
3887 	return round_up(start, align);
3888 }
3889 
3890 /**
3891  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3892  * @vm: the &struct i915_address_space
3893  * @node: the &struct drm_mm_node (typically i915_vma.node)
3894  * @size: how much space to allocate inside the GTT,
3895  *        must be #I915_GTT_PAGE_SIZE aligned
3896  * @alignment: required alignment of starting offset, may be 0 but
3897  *             if specified, this must be a power-of-two and at least
3898  *             #I915_GTT_MIN_ALIGNMENT
3899  * @color: color to apply to node
3900  * @start: start of any range restriction inside GTT (0 for all),
3901  *         must be #I915_GTT_PAGE_SIZE aligned
3902  * @end: end of any range restriction inside GTT (U64_MAX for all),
3903  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3904  * @flags: control search and eviction behaviour
3905  *
3906  * i915_gem_gtt_insert() first searches for an available hole into which
3907  * is can insert the node. The hole address is aligned to @alignment and
3908  * its @size must then fit entirely within the [@start, @end] bounds. The
3909  * nodes on either side of the hole must match @color, or else a guard page
3910  * will be inserted between the two nodes (or the node evicted). If no
3911  * suitable hole is found, first a victim is randomly selected and tested
3912  * for eviction, otherwise then the LRU list of objects within the GTT
3913  * is scanned to find the first set of replacement nodes to create the hole.
3914  * Those old overlapping nodes are evicted from the GTT (and so must be
3915  * rebound before any future use). Any node that is currently pinned cannot
3916  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3917  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3918  * searching for an eviction candidate. See i915_gem_evict_something() for
3919  * the gory details on the eviction algorithm.
3920  *
3921  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3922  * asked to wait for eviction and interrupted.
3923  */
3924 int i915_gem_gtt_insert(struct i915_address_space *vm,
3925 			struct drm_mm_node *node,
3926 			u64 size, u64 alignment, unsigned long color,
3927 			u64 start, u64 end, unsigned int flags)
3928 {
3929 	enum drm_mm_insert_mode mode;
3930 	u64 offset;
3931 	int err;
3932 
3933 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3934 	GEM_BUG_ON(!size);
3935 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3936 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3937 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3938 	GEM_BUG_ON(start >= end);
3939 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3940 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3941 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3942 	GEM_BUG_ON(drm_mm_node_allocated(node));
3943 
3944 	if (unlikely(range_overflows(start, size, end)))
3945 		return -ENOSPC;
3946 
3947 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3948 		return -ENOSPC;
3949 
3950 	mode = DRM_MM_INSERT_BEST;
3951 	if (flags & PIN_HIGH)
3952 		mode = DRM_MM_INSERT_HIGH;
3953 	if (flags & PIN_MAPPABLE)
3954 		mode = DRM_MM_INSERT_LOW;
3955 
3956 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3957 	 * so we know that we always have a minimum alignment of 4096.
3958 	 * The drm_mm range manager is optimised to return results
3959 	 * with zero alignment, so where possible use the optimal
3960 	 * path.
3961 	 */
3962 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3963 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3964 		alignment = 0;
3965 
3966 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3967 					  size, alignment, color,
3968 					  start, end, mode);
3969 	if (err != -ENOSPC)
3970 		return err;
3971 
3972 	if (flags & PIN_NOEVICT)
3973 		return -ENOSPC;
3974 
3975 	/* No free space, pick a slot at random.
3976 	 *
3977 	 * There is a pathological case here using a GTT shared between
3978 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3979 	 *
3980 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3981 	 *         (64k objects)             (448k objects)
3982 	 *
3983 	 * Now imagine that the eviction LRU is ordered top-down (just because
3984 	 * pathology meets real life), and that we need to evict an object to
3985 	 * make room inside the aperture. The eviction scan then has to walk
3986 	 * the 448k list before it finds one within range. And now imagine that
3987 	 * it has to search for a new hole between every byte inside the memcpy,
3988 	 * for several simultaneous clients.
3989 	 *
3990 	 * On a full-ppgtt system, if we have run out of available space, there
3991 	 * will be lots and lots of objects in the eviction list! Again,
3992 	 * searching that LRU list may be slow if we are also applying any
3993 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3994 	 * simplicity and similarilty between different GTT, try the single
3995 	 * random replacement first.
3996 	 */
3997 	offset = random_offset(start, end,
3998 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3999 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4000 	if (err != -ENOSPC)
4001 		return err;
4002 
4003 	/* Randomly selected placement is pinned, do a search */
4004 	err = i915_gem_evict_something(vm, size, alignment, color,
4005 				       start, end, flags);
4006 	if (err)
4007 		return err;
4008 
4009 	return drm_mm_insert_node_in_range(&vm->mm, node,
4010 					   size, alignment, color,
4011 					   start, end, DRM_MM_INSERT_EVICT);
4012 }
4013 
4014 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4015 #include "selftests/mock_gtt.c"
4016 #include "selftests/i915_gem_gtt.c"
4017 #endif
4018