xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 33dea5aae0320345af26ae9aba0894a930e0d4ec)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_aliasing_ppgtt;
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145 
146 	if (intel_vgpu_active(dev_priv)) {
147 		/* GVT-g has no support for 32bit ppgtt */
148 		has_full_ppgtt = false;
149 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
150 	}
151 
152 	if (!has_aliasing_ppgtt)
153 		return 0;
154 
155 	/*
156 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 	 * execlists, the sole mechanism available to submit work.
158 	 */
159 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 		return 0;
161 
162 	if (enable_ppgtt == 1)
163 		return 1;
164 
165 	if (enable_ppgtt == 2 && has_full_ppgtt)
166 		return 2;
167 
168 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 		return 3;
170 
171 	/* Disable ppgtt on SNB if VT-d is on. */
172 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 		return 0;
175 	}
176 
177 	/* Early VLV doesn't have this */
178 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 		return 0;
181 	}
182 
183 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists) {
184 		if (has_full_48bit_ppgtt)
185 			return 3;
186 
187 		if (has_full_ppgtt)
188 			return 2;
189 	}
190 
191 	return has_aliasing_ppgtt ? 1 : 0;
192 }
193 
194 static int ppgtt_bind_vma(struct i915_vma *vma,
195 			  enum i915_cache_level cache_level,
196 			  u32 unused)
197 {
198 	u32 pte_flags;
199 	int ret;
200 
201 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
203 						 vma->size);
204 		if (ret)
205 			return ret;
206 	}
207 
208 	vma->pages = vma->obj->mm.pages;
209 
210 	/* Currently applicable only to VLV */
211 	pte_flags = 0;
212 	if (vma->obj->gt_ro)
213 		pte_flags |= PTE_READ_ONLY;
214 
215 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
216 
217 	return 0;
218 }
219 
220 static void ppgtt_unbind_vma(struct i915_vma *vma)
221 {
222 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
223 }
224 
225 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
226 				  enum i915_cache_level level)
227 {
228 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
229 	pte |= addr;
230 
231 	switch (level) {
232 	case I915_CACHE_NONE:
233 		pte |= PPAT_UNCACHED_INDEX;
234 		break;
235 	case I915_CACHE_WT:
236 		pte |= PPAT_DISPLAY_ELLC_INDEX;
237 		break;
238 	default:
239 		pte |= PPAT_CACHED_INDEX;
240 		break;
241 	}
242 
243 	return pte;
244 }
245 
246 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
247 				  const enum i915_cache_level level)
248 {
249 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
250 	pde |= addr;
251 	if (level != I915_CACHE_NONE)
252 		pde |= PPAT_CACHED_PDE_INDEX;
253 	else
254 		pde |= PPAT_UNCACHED_INDEX;
255 	return pde;
256 }
257 
258 #define gen8_pdpe_encode gen8_pde_encode
259 #define gen8_pml4e_encode gen8_pde_encode
260 
261 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
262 				 enum i915_cache_level level,
263 				 u32 unused)
264 {
265 	gen6_pte_t pte = GEN6_PTE_VALID;
266 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
267 
268 	switch (level) {
269 	case I915_CACHE_L3_LLC:
270 	case I915_CACHE_LLC:
271 		pte |= GEN6_PTE_CACHE_LLC;
272 		break;
273 	case I915_CACHE_NONE:
274 		pte |= GEN6_PTE_UNCACHED;
275 		break;
276 	default:
277 		MISSING_CASE(level);
278 	}
279 
280 	return pte;
281 }
282 
283 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
284 				 enum i915_cache_level level,
285 				 u32 unused)
286 {
287 	gen6_pte_t pte = GEN6_PTE_VALID;
288 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
289 
290 	switch (level) {
291 	case I915_CACHE_L3_LLC:
292 		pte |= GEN7_PTE_CACHE_L3_LLC;
293 		break;
294 	case I915_CACHE_LLC:
295 		pte |= GEN6_PTE_CACHE_LLC;
296 		break;
297 	case I915_CACHE_NONE:
298 		pte |= GEN6_PTE_UNCACHED;
299 		break;
300 	default:
301 		MISSING_CASE(level);
302 	}
303 
304 	return pte;
305 }
306 
307 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
308 				 enum i915_cache_level level,
309 				 u32 flags)
310 {
311 	gen6_pte_t pte = GEN6_PTE_VALID;
312 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
313 
314 	if (!(flags & PTE_READ_ONLY))
315 		pte |= BYT_PTE_WRITEABLE;
316 
317 	if (level != I915_CACHE_NONE)
318 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
319 
320 	return pte;
321 }
322 
323 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
324 				 enum i915_cache_level level,
325 				 u32 unused)
326 {
327 	gen6_pte_t pte = GEN6_PTE_VALID;
328 	pte |= HSW_PTE_ADDR_ENCODE(addr);
329 
330 	if (level != I915_CACHE_NONE)
331 		pte |= HSW_WB_LLC_AGE3;
332 
333 	return pte;
334 }
335 
336 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
337 				  enum i915_cache_level level,
338 				  u32 unused)
339 {
340 	gen6_pte_t pte = GEN6_PTE_VALID;
341 	pte |= HSW_PTE_ADDR_ENCODE(addr);
342 
343 	switch (level) {
344 	case I915_CACHE_NONE:
345 		break;
346 	case I915_CACHE_WT:
347 		pte |= HSW_WT_ELLC_LLC_AGE3;
348 		break;
349 	default:
350 		pte |= HSW_WB_ELLC_LLC_AGE3;
351 		break;
352 	}
353 
354 	return pte;
355 }
356 
357 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
358 {
359 	struct page *page;
360 
361 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
362 		i915_gem_shrink_all(vm->i915);
363 
364 	if (vm->free_pages.nr)
365 		return vm->free_pages.pages[--vm->free_pages.nr];
366 
367 	page = alloc_page(gfp);
368 	if (!page)
369 		return NULL;
370 
371 	if (vm->pt_kmap_wc)
372 		set_pages_array_wc(&page, 1);
373 
374 	return page;
375 }
376 
377 static void vm_free_pages_release(struct i915_address_space *vm)
378 {
379 	GEM_BUG_ON(!pagevec_count(&vm->free_pages));
380 
381 	if (vm->pt_kmap_wc)
382 		set_pages_array_wb(vm->free_pages.pages,
383 				   pagevec_count(&vm->free_pages));
384 
385 	__pagevec_release(&vm->free_pages);
386 }
387 
388 static void vm_free_page(struct i915_address_space *vm, struct page *page)
389 {
390 	if (!pagevec_add(&vm->free_pages, page))
391 		vm_free_pages_release(vm);
392 }
393 
394 static int __setup_page_dma(struct i915_address_space *vm,
395 			    struct i915_page_dma *p,
396 			    gfp_t gfp)
397 {
398 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
399 	if (unlikely(!p->page))
400 		return -ENOMEM;
401 
402 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
403 				PCI_DMA_BIDIRECTIONAL);
404 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
405 		vm_free_page(vm, p->page);
406 		return -ENOMEM;
407 	}
408 
409 	return 0;
410 }
411 
412 static int setup_page_dma(struct i915_address_space *vm,
413 			  struct i915_page_dma *p)
414 {
415 	return __setup_page_dma(vm, p, I915_GFP_DMA);
416 }
417 
418 static void cleanup_page_dma(struct i915_address_space *vm,
419 			     struct i915_page_dma *p)
420 {
421 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
422 	vm_free_page(vm, p->page);
423 }
424 
425 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
426 
427 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
428 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
429 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
430 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
431 
432 static void fill_page_dma(struct i915_address_space *vm,
433 			  struct i915_page_dma *p,
434 			  const u64 val)
435 {
436 	u64 * const vaddr = kmap_atomic(p->page);
437 	int i;
438 
439 	for (i = 0; i < 512; i++)
440 		vaddr[i] = val;
441 
442 	kunmap_atomic(vaddr);
443 }
444 
445 static void fill_page_dma_32(struct i915_address_space *vm,
446 			     struct i915_page_dma *p,
447 			     const u32 v)
448 {
449 	fill_page_dma(vm, p, (u64)v << 32 | v);
450 }
451 
452 static int
453 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
454 {
455 	return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
456 }
457 
458 static void cleanup_scratch_page(struct i915_address_space *vm)
459 {
460 	cleanup_page_dma(vm, &vm->scratch_page);
461 }
462 
463 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
464 {
465 	struct i915_page_table *pt;
466 
467 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
468 	if (unlikely(!pt))
469 		return ERR_PTR(-ENOMEM);
470 
471 	if (unlikely(setup_px(vm, pt))) {
472 		kfree(pt);
473 		return ERR_PTR(-ENOMEM);
474 	}
475 
476 	pt->used_ptes = 0;
477 	return pt;
478 }
479 
480 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
481 {
482 	cleanup_px(vm, pt);
483 	kfree(pt);
484 }
485 
486 static void gen8_initialize_pt(struct i915_address_space *vm,
487 			       struct i915_page_table *pt)
488 {
489 	fill_px(vm, pt,
490 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
491 }
492 
493 static void gen6_initialize_pt(struct i915_address_space *vm,
494 			       struct i915_page_table *pt)
495 {
496 	fill32_px(vm, pt,
497 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
498 }
499 
500 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
501 {
502 	struct i915_page_directory *pd;
503 
504 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
505 	if (unlikely(!pd))
506 		return ERR_PTR(-ENOMEM);
507 
508 	if (unlikely(setup_px(vm, pd))) {
509 		kfree(pd);
510 		return ERR_PTR(-ENOMEM);
511 	}
512 
513 	pd->used_pdes = 0;
514 	return pd;
515 }
516 
517 static void free_pd(struct i915_address_space *vm,
518 		    struct i915_page_directory *pd)
519 {
520 	cleanup_px(vm, pd);
521 	kfree(pd);
522 }
523 
524 static void gen8_initialize_pd(struct i915_address_space *vm,
525 			       struct i915_page_directory *pd)
526 {
527 	unsigned int i;
528 
529 	fill_px(vm, pd,
530 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
531 	for (i = 0; i < I915_PDES; i++)
532 		pd->page_table[i] = vm->scratch_pt;
533 }
534 
535 static int __pdp_init(struct i915_address_space *vm,
536 		      struct i915_page_directory_pointer *pdp)
537 {
538 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
539 	unsigned int i;
540 
541 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
542 					    GFP_KERNEL | __GFP_NOWARN);
543 	if (unlikely(!pdp->page_directory))
544 		return -ENOMEM;
545 
546 	for (i = 0; i < pdpes; i++)
547 		pdp->page_directory[i] = vm->scratch_pd;
548 
549 	return 0;
550 }
551 
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 	kfree(pdp->page_directory);
555 	pdp->page_directory = NULL;
556 }
557 
558 static inline bool use_4lvl(const struct i915_address_space *vm)
559 {
560 	return i915_vm_is_48bit(vm);
561 }
562 
563 static struct i915_page_directory_pointer *
564 alloc_pdp(struct i915_address_space *vm)
565 {
566 	struct i915_page_directory_pointer *pdp;
567 	int ret = -ENOMEM;
568 
569 	WARN_ON(!use_4lvl(vm));
570 
571 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
572 	if (!pdp)
573 		return ERR_PTR(-ENOMEM);
574 
575 	ret = __pdp_init(vm, pdp);
576 	if (ret)
577 		goto fail_bitmap;
578 
579 	ret = setup_px(vm, pdp);
580 	if (ret)
581 		goto fail_page_m;
582 
583 	return pdp;
584 
585 fail_page_m:
586 	__pdp_fini(pdp);
587 fail_bitmap:
588 	kfree(pdp);
589 
590 	return ERR_PTR(ret);
591 }
592 
593 static void free_pdp(struct i915_address_space *vm,
594 		     struct i915_page_directory_pointer *pdp)
595 {
596 	__pdp_fini(pdp);
597 
598 	if (!use_4lvl(vm))
599 		return;
600 
601 	cleanup_px(vm, pdp);
602 	kfree(pdp);
603 }
604 
605 static void gen8_initialize_pdp(struct i915_address_space *vm,
606 				struct i915_page_directory_pointer *pdp)
607 {
608 	gen8_ppgtt_pdpe_t scratch_pdpe;
609 
610 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
611 
612 	fill_px(vm, pdp, scratch_pdpe);
613 }
614 
615 static void gen8_initialize_pml4(struct i915_address_space *vm,
616 				 struct i915_pml4 *pml4)
617 {
618 	unsigned int i;
619 
620 	fill_px(vm, pml4,
621 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
622 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
623 		pml4->pdps[i] = vm->scratch_pdp;
624 }
625 
626 /* Broadwell Page Directory Pointer Descriptors */
627 static int gen8_write_pdp(struct drm_i915_gem_request *req,
628 			  unsigned entry,
629 			  dma_addr_t addr)
630 {
631 	struct intel_engine_cs *engine = req->engine;
632 	u32 *cs;
633 
634 	BUG_ON(entry >= 4);
635 
636 	cs = intel_ring_begin(req, 6);
637 	if (IS_ERR(cs))
638 		return PTR_ERR(cs);
639 
640 	*cs++ = MI_LOAD_REGISTER_IMM(1);
641 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
642 	*cs++ = upper_32_bits(addr);
643 	*cs++ = MI_LOAD_REGISTER_IMM(1);
644 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
645 	*cs++ = lower_32_bits(addr);
646 	intel_ring_advance(req, cs);
647 
648 	return 0;
649 }
650 
651 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
652 			       struct drm_i915_gem_request *req)
653 {
654 	int i, ret;
655 
656 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
657 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
658 
659 		ret = gen8_write_pdp(req, i, pd_daddr);
660 		if (ret)
661 			return ret;
662 	}
663 
664 	return 0;
665 }
666 
667 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
668 			       struct drm_i915_gem_request *req)
669 {
670 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
671 }
672 
673 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
674  * the page table structures, we mark them dirty so that
675  * context switching/execlist queuing code takes extra steps
676  * to ensure that tlbs are flushed.
677  */
678 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
679 {
680 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
681 }
682 
683 /* Removes entries from a single page table, releasing it if it's empty.
684  * Caller can use the return value to update higher-level entries.
685  */
686 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
687 				struct i915_page_table *pt,
688 				u64 start, u64 length)
689 {
690 	unsigned int num_entries = gen8_pte_count(start, length);
691 	unsigned int pte = gen8_pte_index(start);
692 	unsigned int pte_end = pte + num_entries;
693 	const gen8_pte_t scratch_pte =
694 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
695 	gen8_pte_t *vaddr;
696 
697 	GEM_BUG_ON(num_entries > pt->used_ptes);
698 
699 	pt->used_ptes -= num_entries;
700 	if (!pt->used_ptes)
701 		return true;
702 
703 	vaddr = kmap_atomic_px(pt);
704 	while (pte < pte_end)
705 		vaddr[pte++] = scratch_pte;
706 	kunmap_atomic(vaddr);
707 
708 	return false;
709 }
710 
711 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
712 			       struct i915_page_directory *pd,
713 			       struct i915_page_table *pt,
714 			       unsigned int pde)
715 {
716 	gen8_pde_t *vaddr;
717 
718 	pd->page_table[pde] = pt;
719 
720 	vaddr = kmap_atomic_px(pd);
721 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
722 	kunmap_atomic(vaddr);
723 }
724 
725 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
726 				struct i915_page_directory *pd,
727 				u64 start, u64 length)
728 {
729 	struct i915_page_table *pt;
730 	u32 pde;
731 
732 	gen8_for_each_pde(pt, pd, start, length, pde) {
733 		GEM_BUG_ON(pt == vm->scratch_pt);
734 
735 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
736 			continue;
737 
738 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
739 		GEM_BUG_ON(!pd->used_pdes);
740 		pd->used_pdes--;
741 
742 		free_pt(vm, pt);
743 	}
744 
745 	return !pd->used_pdes;
746 }
747 
748 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
749 				struct i915_page_directory_pointer *pdp,
750 				struct i915_page_directory *pd,
751 				unsigned int pdpe)
752 {
753 	gen8_ppgtt_pdpe_t *vaddr;
754 
755 	pdp->page_directory[pdpe] = pd;
756 	if (!use_4lvl(vm))
757 		return;
758 
759 	vaddr = kmap_atomic_px(pdp);
760 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
761 	kunmap_atomic(vaddr);
762 }
763 
764 /* Removes entries from a single page dir pointer, releasing it if it's empty.
765  * Caller can use the return value to update higher-level entries
766  */
767 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
768 				 struct i915_page_directory_pointer *pdp,
769 				 u64 start, u64 length)
770 {
771 	struct i915_page_directory *pd;
772 	unsigned int pdpe;
773 
774 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
775 		GEM_BUG_ON(pd == vm->scratch_pd);
776 
777 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
778 			continue;
779 
780 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
781 		GEM_BUG_ON(!pdp->used_pdpes);
782 		pdp->used_pdpes--;
783 
784 		free_pd(vm, pd);
785 	}
786 
787 	return !pdp->used_pdpes;
788 }
789 
790 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
791 				  u64 start, u64 length)
792 {
793 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
794 }
795 
796 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
797 				 struct i915_page_directory_pointer *pdp,
798 				 unsigned int pml4e)
799 {
800 	gen8_ppgtt_pml4e_t *vaddr;
801 
802 	pml4->pdps[pml4e] = pdp;
803 
804 	vaddr = kmap_atomic_px(pml4);
805 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
806 	kunmap_atomic(vaddr);
807 }
808 
809 /* Removes entries from a single pml4.
810  * This is the top-level structure in 4-level page tables used on gen8+.
811  * Empty entries are always scratch pml4e.
812  */
813 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
814 				  u64 start, u64 length)
815 {
816 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
817 	struct i915_pml4 *pml4 = &ppgtt->pml4;
818 	struct i915_page_directory_pointer *pdp;
819 	unsigned int pml4e;
820 
821 	GEM_BUG_ON(!use_4lvl(vm));
822 
823 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
824 		GEM_BUG_ON(pdp == vm->scratch_pdp);
825 
826 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
827 			continue;
828 
829 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
830 
831 		free_pdp(vm, pdp);
832 	}
833 }
834 
835 static inline struct sgt_dma {
836 	struct scatterlist *sg;
837 	dma_addr_t dma, max;
838 } sgt_dma(struct i915_vma *vma) {
839 	struct scatterlist *sg = vma->pages->sgl;
840 	dma_addr_t addr = sg_dma_address(sg);
841 	return (struct sgt_dma) { sg, addr, addr + sg->length };
842 }
843 
844 struct gen8_insert_pte {
845 	u16 pml4e;
846 	u16 pdpe;
847 	u16 pde;
848 	u16 pte;
849 };
850 
851 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
852 {
853 	return (struct gen8_insert_pte) {
854 		 gen8_pml4e_index(start),
855 		 gen8_pdpe_index(start),
856 		 gen8_pde_index(start),
857 		 gen8_pte_index(start),
858 	};
859 }
860 
861 static __always_inline bool
862 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
863 			      struct i915_page_directory_pointer *pdp,
864 			      struct sgt_dma *iter,
865 			      struct gen8_insert_pte *idx,
866 			      enum i915_cache_level cache_level)
867 {
868 	struct i915_page_directory *pd;
869 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
870 	gen8_pte_t *vaddr;
871 	bool ret;
872 
873 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
874 	pd = pdp->page_directory[idx->pdpe];
875 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
876 	do {
877 		vaddr[idx->pte] = pte_encode | iter->dma;
878 
879 		iter->dma += PAGE_SIZE;
880 		if (iter->dma >= iter->max) {
881 			iter->sg = __sg_next(iter->sg);
882 			if (!iter->sg) {
883 				ret = false;
884 				break;
885 			}
886 
887 			iter->dma = sg_dma_address(iter->sg);
888 			iter->max = iter->dma + iter->sg->length;
889 		}
890 
891 		if (++idx->pte == GEN8_PTES) {
892 			idx->pte = 0;
893 
894 			if (++idx->pde == I915_PDES) {
895 				idx->pde = 0;
896 
897 				/* Limited by sg length for 3lvl */
898 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
899 					idx->pdpe = 0;
900 					ret = true;
901 					break;
902 				}
903 
904 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
905 				pd = pdp->page_directory[idx->pdpe];
906 			}
907 
908 			kunmap_atomic(vaddr);
909 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
910 		}
911 	} while (1);
912 	kunmap_atomic(vaddr);
913 
914 	return ret;
915 }
916 
917 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
918 				   struct i915_vma *vma,
919 				   enum i915_cache_level cache_level,
920 				   u32 unused)
921 {
922 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
923 	struct sgt_dma iter = sgt_dma(vma);
924 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
925 
926 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
927 				      cache_level);
928 }
929 
930 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
931 				   struct i915_vma *vma,
932 				   enum i915_cache_level cache_level,
933 				   u32 unused)
934 {
935 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936 	struct sgt_dma iter = sgt_dma(vma);
937 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
938 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
939 
940 	while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
941 					     &idx, cache_level))
942 		GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
943 }
944 
945 static void gen8_free_page_tables(struct i915_address_space *vm,
946 				  struct i915_page_directory *pd)
947 {
948 	int i;
949 
950 	if (!px_page(pd))
951 		return;
952 
953 	for (i = 0; i < I915_PDES; i++) {
954 		if (pd->page_table[i] != vm->scratch_pt)
955 			free_pt(vm, pd->page_table[i]);
956 	}
957 }
958 
959 static int gen8_init_scratch(struct i915_address_space *vm)
960 {
961 	int ret;
962 
963 	ret = setup_scratch_page(vm, I915_GFP_DMA);
964 	if (ret)
965 		return ret;
966 
967 	vm->scratch_pt = alloc_pt(vm);
968 	if (IS_ERR(vm->scratch_pt)) {
969 		ret = PTR_ERR(vm->scratch_pt);
970 		goto free_scratch_page;
971 	}
972 
973 	vm->scratch_pd = alloc_pd(vm);
974 	if (IS_ERR(vm->scratch_pd)) {
975 		ret = PTR_ERR(vm->scratch_pd);
976 		goto free_pt;
977 	}
978 
979 	if (use_4lvl(vm)) {
980 		vm->scratch_pdp = alloc_pdp(vm);
981 		if (IS_ERR(vm->scratch_pdp)) {
982 			ret = PTR_ERR(vm->scratch_pdp);
983 			goto free_pd;
984 		}
985 	}
986 
987 	gen8_initialize_pt(vm, vm->scratch_pt);
988 	gen8_initialize_pd(vm, vm->scratch_pd);
989 	if (use_4lvl(vm))
990 		gen8_initialize_pdp(vm, vm->scratch_pdp);
991 
992 	return 0;
993 
994 free_pd:
995 	free_pd(vm, vm->scratch_pd);
996 free_pt:
997 	free_pt(vm, vm->scratch_pt);
998 free_scratch_page:
999 	cleanup_scratch_page(vm);
1000 
1001 	return ret;
1002 }
1003 
1004 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1005 {
1006 	struct i915_address_space *vm = &ppgtt->base;
1007 	struct drm_i915_private *dev_priv = vm->i915;
1008 	enum vgt_g2v_type msg;
1009 	int i;
1010 
1011 	if (use_4lvl(vm)) {
1012 		const u64 daddr = px_dma(&ppgtt->pml4);
1013 
1014 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1015 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1016 
1017 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1018 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1019 	} else {
1020 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1021 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1022 
1023 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1024 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1025 		}
1026 
1027 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1028 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1029 	}
1030 
1031 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1032 
1033 	return 0;
1034 }
1035 
1036 static void gen8_free_scratch(struct i915_address_space *vm)
1037 {
1038 	if (use_4lvl(vm))
1039 		free_pdp(vm, vm->scratch_pdp);
1040 	free_pd(vm, vm->scratch_pd);
1041 	free_pt(vm, vm->scratch_pt);
1042 	cleanup_scratch_page(vm);
1043 }
1044 
1045 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1046 				    struct i915_page_directory_pointer *pdp)
1047 {
1048 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1049 	int i;
1050 
1051 	for (i = 0; i < pdpes; i++) {
1052 		if (pdp->page_directory[i] == vm->scratch_pd)
1053 			continue;
1054 
1055 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1056 		free_pd(vm, pdp->page_directory[i]);
1057 	}
1058 
1059 	free_pdp(vm, pdp);
1060 }
1061 
1062 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1063 {
1064 	int i;
1065 
1066 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1067 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1068 			continue;
1069 
1070 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1071 	}
1072 
1073 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1074 }
1075 
1076 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1077 {
1078 	struct drm_i915_private *dev_priv = vm->i915;
1079 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1080 
1081 	if (intel_vgpu_active(dev_priv))
1082 		gen8_ppgtt_notify_vgt(ppgtt, false);
1083 
1084 	if (use_4lvl(vm))
1085 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1086 	else
1087 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1088 
1089 	gen8_free_scratch(vm);
1090 }
1091 
1092 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1093 			       struct i915_page_directory *pd,
1094 			       u64 start, u64 length)
1095 {
1096 	struct i915_page_table *pt;
1097 	u64 from = start;
1098 	unsigned int pde;
1099 
1100 	gen8_for_each_pde(pt, pd, start, length, pde) {
1101 		if (pt == vm->scratch_pt) {
1102 			pt = alloc_pt(vm);
1103 			if (IS_ERR(pt))
1104 				goto unwind;
1105 
1106 			gen8_initialize_pt(vm, pt);
1107 
1108 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1109 			pd->used_pdes++;
1110 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1111 		}
1112 
1113 		pt->used_ptes += gen8_pte_count(start, length);
1114 	}
1115 	return 0;
1116 
1117 unwind:
1118 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1119 	return -ENOMEM;
1120 }
1121 
1122 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1123 				struct i915_page_directory_pointer *pdp,
1124 				u64 start, u64 length)
1125 {
1126 	struct i915_page_directory *pd;
1127 	u64 from = start;
1128 	unsigned int pdpe;
1129 	int ret;
1130 
1131 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1132 		if (pd == vm->scratch_pd) {
1133 			pd = alloc_pd(vm);
1134 			if (IS_ERR(pd))
1135 				goto unwind;
1136 
1137 			gen8_initialize_pd(vm, pd);
1138 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1139 			pdp->used_pdpes++;
1140 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1141 
1142 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1143 		}
1144 
1145 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1146 		if (unlikely(ret))
1147 			goto unwind_pd;
1148 	}
1149 
1150 	return 0;
1151 
1152 unwind_pd:
1153 	if (!pd->used_pdes) {
1154 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1155 		GEM_BUG_ON(!pdp->used_pdpes);
1156 		pdp->used_pdpes--;
1157 		free_pd(vm, pd);
1158 	}
1159 unwind:
1160 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1161 	return -ENOMEM;
1162 }
1163 
1164 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1165 				 u64 start, u64 length)
1166 {
1167 	return gen8_ppgtt_alloc_pdp(vm,
1168 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1169 }
1170 
1171 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1172 				 u64 start, u64 length)
1173 {
1174 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1175 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1176 	struct i915_page_directory_pointer *pdp;
1177 	u64 from = start;
1178 	u32 pml4e;
1179 	int ret;
1180 
1181 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1182 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1183 			pdp = alloc_pdp(vm);
1184 			if (IS_ERR(pdp))
1185 				goto unwind;
1186 
1187 			gen8_initialize_pdp(vm, pdp);
1188 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1189 		}
1190 
1191 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1192 		if (unlikely(ret))
1193 			goto unwind_pdp;
1194 	}
1195 
1196 	return 0;
1197 
1198 unwind_pdp:
1199 	if (!pdp->used_pdpes) {
1200 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1201 		free_pdp(vm, pdp);
1202 	}
1203 unwind:
1204 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1205 	return -ENOMEM;
1206 }
1207 
1208 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1209 			  struct i915_page_directory_pointer *pdp,
1210 			  u64 start, u64 length,
1211 			  gen8_pte_t scratch_pte,
1212 			  struct seq_file *m)
1213 {
1214 	struct i915_address_space *vm = &ppgtt->base;
1215 	struct i915_page_directory *pd;
1216 	u32 pdpe;
1217 
1218 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1219 		struct i915_page_table *pt;
1220 		u64 pd_len = length;
1221 		u64 pd_start = start;
1222 		u32 pde;
1223 
1224 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1225 			continue;
1226 
1227 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1228 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1229 			u32 pte;
1230 			gen8_pte_t *pt_vaddr;
1231 
1232 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1233 				continue;
1234 
1235 			pt_vaddr = kmap_atomic_px(pt);
1236 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1237 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1238 					  pde << GEN8_PDE_SHIFT |
1239 					  pte << GEN8_PTE_SHIFT);
1240 				int i;
1241 				bool found = false;
1242 
1243 				for (i = 0; i < 4; i++)
1244 					if (pt_vaddr[pte + i] != scratch_pte)
1245 						found = true;
1246 				if (!found)
1247 					continue;
1248 
1249 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1250 				for (i = 0; i < 4; i++) {
1251 					if (pt_vaddr[pte + i] != scratch_pte)
1252 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1253 					else
1254 						seq_puts(m, "  SCRATCH ");
1255 				}
1256 				seq_puts(m, "\n");
1257 			}
1258 			kunmap_atomic(pt_vaddr);
1259 		}
1260 	}
1261 }
1262 
1263 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1264 {
1265 	struct i915_address_space *vm = &ppgtt->base;
1266 	const gen8_pte_t scratch_pte =
1267 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1268 	u64 start = 0, length = ppgtt->base.total;
1269 
1270 	if (use_4lvl(vm)) {
1271 		u64 pml4e;
1272 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1273 		struct i915_page_directory_pointer *pdp;
1274 
1275 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1276 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1277 				continue;
1278 
1279 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1280 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1281 		}
1282 	} else {
1283 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1284 	}
1285 }
1286 
1287 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1288 {
1289 	struct i915_address_space *vm = &ppgtt->base;
1290 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1291 	struct i915_page_directory *pd;
1292 	u64 start = 0, length = ppgtt->base.total;
1293 	u64 from = start;
1294 	unsigned int pdpe;
1295 
1296 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1297 		pd = alloc_pd(vm);
1298 		if (IS_ERR(pd))
1299 			goto unwind;
1300 
1301 		gen8_initialize_pd(vm, pd);
1302 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1303 		pdp->used_pdpes++;
1304 	}
1305 
1306 	pdp->used_pdpes++; /* never remove */
1307 	return 0;
1308 
1309 unwind:
1310 	start -= from;
1311 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1312 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1313 		free_pd(vm, pd);
1314 	}
1315 	pdp->used_pdpes = 0;
1316 	return -ENOMEM;
1317 }
1318 
1319 /*
1320  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1321  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1322  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1323  * space.
1324  *
1325  */
1326 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1327 {
1328 	struct i915_address_space *vm = &ppgtt->base;
1329 	struct drm_i915_private *dev_priv = vm->i915;
1330 	int ret;
1331 
1332 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1333 		1ULL << 48 :
1334 		1ULL << 32;
1335 
1336 	ret = gen8_init_scratch(&ppgtt->base);
1337 	if (ret) {
1338 		ppgtt->base.total = 0;
1339 		return ret;
1340 	}
1341 
1342 	/* There are only few exceptions for gen >=6. chv and bxt.
1343 	 * And we are not sure about the latter so play safe for now.
1344 	 */
1345 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1346 		ppgtt->base.pt_kmap_wc = true;
1347 
1348 	if (use_4lvl(vm)) {
1349 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1350 		if (ret)
1351 			goto free_scratch;
1352 
1353 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1354 
1355 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1356 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1357 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1358 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1359 	} else {
1360 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1361 		if (ret)
1362 			goto free_scratch;
1363 
1364 		if (intel_vgpu_active(dev_priv)) {
1365 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1366 			if (ret) {
1367 				__pdp_fini(&ppgtt->pdp);
1368 				goto free_scratch;
1369 			}
1370 		}
1371 
1372 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1373 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1374 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1375 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1376 	}
1377 
1378 	if (intel_vgpu_active(dev_priv))
1379 		gen8_ppgtt_notify_vgt(ppgtt, true);
1380 
1381 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1382 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1383 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1384 	ppgtt->debug_dump = gen8_dump_ppgtt;
1385 
1386 	return 0;
1387 
1388 free_scratch:
1389 	gen8_free_scratch(&ppgtt->base);
1390 	return ret;
1391 }
1392 
1393 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1394 {
1395 	struct i915_address_space *vm = &ppgtt->base;
1396 	struct i915_page_table *unused;
1397 	gen6_pte_t scratch_pte;
1398 	u32 pd_entry, pte, pde;
1399 	u32 start = 0, length = ppgtt->base.total;
1400 
1401 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1402 				     I915_CACHE_LLC, 0);
1403 
1404 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1405 		u32 expected;
1406 		gen6_pte_t *pt_vaddr;
1407 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1408 		pd_entry = readl(ppgtt->pd_addr + pde);
1409 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1410 
1411 		if (pd_entry != expected)
1412 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1413 				   pde,
1414 				   pd_entry,
1415 				   expected);
1416 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1417 
1418 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1419 
1420 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1421 			unsigned long va =
1422 				(pde * PAGE_SIZE * GEN6_PTES) +
1423 				(pte * PAGE_SIZE);
1424 			int i;
1425 			bool found = false;
1426 			for (i = 0; i < 4; i++)
1427 				if (pt_vaddr[pte + i] != scratch_pte)
1428 					found = true;
1429 			if (!found)
1430 				continue;
1431 
1432 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1433 			for (i = 0; i < 4; i++) {
1434 				if (pt_vaddr[pte + i] != scratch_pte)
1435 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1436 				else
1437 					seq_puts(m, "  SCRATCH ");
1438 			}
1439 			seq_puts(m, "\n");
1440 		}
1441 		kunmap_atomic(pt_vaddr);
1442 	}
1443 }
1444 
1445 /* Write pde (index) from the page directory @pd to the page table @pt */
1446 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1447 				  const unsigned int pde,
1448 				  const struct i915_page_table *pt)
1449 {
1450 	/* Caller needs to make sure the write completes if necessary */
1451 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1452 		       ppgtt->pd_addr + pde);
1453 }
1454 
1455 /* Write all the page tables found in the ppgtt structure to incrementing page
1456  * directories. */
1457 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1458 				  u32 start, u32 length)
1459 {
1460 	struct i915_page_table *pt;
1461 	unsigned int pde;
1462 
1463 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1464 		gen6_write_pde(ppgtt, pde, pt);
1465 
1466 	mark_tlbs_dirty(ppgtt);
1467 	wmb();
1468 }
1469 
1470 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1473 	return ppgtt->pd.base.ggtt_offset << 10;
1474 }
1475 
1476 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1477 			 struct drm_i915_gem_request *req)
1478 {
1479 	struct intel_engine_cs *engine = req->engine;
1480 	u32 *cs;
1481 
1482 	/* NB: TLBs must be flushed and invalidated before a switch */
1483 	cs = intel_ring_begin(req, 6);
1484 	if (IS_ERR(cs))
1485 		return PTR_ERR(cs);
1486 
1487 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1488 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1489 	*cs++ = PP_DIR_DCLV_2G;
1490 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1491 	*cs++ = get_pd_offset(ppgtt);
1492 	*cs++ = MI_NOOP;
1493 	intel_ring_advance(req, cs);
1494 
1495 	return 0;
1496 }
1497 
1498 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1499 			  struct drm_i915_gem_request *req)
1500 {
1501 	struct intel_engine_cs *engine = req->engine;
1502 	u32 *cs;
1503 
1504 	/* NB: TLBs must be flushed and invalidated before a switch */
1505 	cs = intel_ring_begin(req, 6);
1506 	if (IS_ERR(cs))
1507 		return PTR_ERR(cs);
1508 
1509 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1510 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1511 	*cs++ = PP_DIR_DCLV_2G;
1512 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1513 	*cs++ = get_pd_offset(ppgtt);
1514 	*cs++ = MI_NOOP;
1515 	intel_ring_advance(req, cs);
1516 
1517 	return 0;
1518 }
1519 
1520 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1521 			  struct drm_i915_gem_request *req)
1522 {
1523 	struct intel_engine_cs *engine = req->engine;
1524 	struct drm_i915_private *dev_priv = req->i915;
1525 
1526 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1527 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1528 	return 0;
1529 }
1530 
1531 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1532 {
1533 	struct intel_engine_cs *engine;
1534 	enum intel_engine_id id;
1535 
1536 	for_each_engine(engine, dev_priv, id) {
1537 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1538 				 GEN8_GFX_PPGTT_48B : 0;
1539 		I915_WRITE(RING_MODE_GEN7(engine),
1540 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1541 	}
1542 }
1543 
1544 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1545 {
1546 	struct intel_engine_cs *engine;
1547 	u32 ecochk, ecobits;
1548 	enum intel_engine_id id;
1549 
1550 	ecobits = I915_READ(GAC_ECO_BITS);
1551 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1552 
1553 	ecochk = I915_READ(GAM_ECOCHK);
1554 	if (IS_HASWELL(dev_priv)) {
1555 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1556 	} else {
1557 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1558 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1559 	}
1560 	I915_WRITE(GAM_ECOCHK, ecochk);
1561 
1562 	for_each_engine(engine, dev_priv, id) {
1563 		/* GFX_MODE is per-ring on gen7+ */
1564 		I915_WRITE(RING_MODE_GEN7(engine),
1565 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1566 	}
1567 }
1568 
1569 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1570 {
1571 	u32 ecochk, gab_ctl, ecobits;
1572 
1573 	ecobits = I915_READ(GAC_ECO_BITS);
1574 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1575 		   ECOBITS_PPGTT_CACHE64B);
1576 
1577 	gab_ctl = I915_READ(GAB_CTL);
1578 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1579 
1580 	ecochk = I915_READ(GAM_ECOCHK);
1581 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1582 
1583 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1584 }
1585 
1586 /* PPGTT support for Sandybdrige/Gen6 and later */
1587 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1588 				   u64 start, u64 length)
1589 {
1590 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1591 	unsigned int first_entry = start >> PAGE_SHIFT;
1592 	unsigned int pde = first_entry / GEN6_PTES;
1593 	unsigned int pte = first_entry % GEN6_PTES;
1594 	unsigned int num_entries = length >> PAGE_SHIFT;
1595 	gen6_pte_t scratch_pte =
1596 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1597 
1598 	while (num_entries) {
1599 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1600 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1601 		gen6_pte_t *vaddr;
1602 
1603 		num_entries -= end - pte;
1604 
1605 		/* Note that the hw doesn't support removing PDE on the fly
1606 		 * (they are cached inside the context with no means to
1607 		 * invalidate the cache), so we can only reset the PTE
1608 		 * entries back to scratch.
1609 		 */
1610 
1611 		vaddr = kmap_atomic_px(pt);
1612 		do {
1613 			vaddr[pte++] = scratch_pte;
1614 		} while (pte < end);
1615 		kunmap_atomic(vaddr);
1616 
1617 		pte = 0;
1618 	}
1619 }
1620 
1621 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1622 				      struct i915_vma *vma,
1623 				      enum i915_cache_level cache_level,
1624 				      u32 flags)
1625 {
1626 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1627 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1628 	unsigned act_pt = first_entry / GEN6_PTES;
1629 	unsigned act_pte = first_entry % GEN6_PTES;
1630 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1631 	struct sgt_dma iter = sgt_dma(vma);
1632 	gen6_pte_t *vaddr;
1633 
1634 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1635 	do {
1636 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1637 
1638 		iter.dma += PAGE_SIZE;
1639 		if (iter.dma == iter.max) {
1640 			iter.sg = __sg_next(iter.sg);
1641 			if (!iter.sg)
1642 				break;
1643 
1644 			iter.dma = sg_dma_address(iter.sg);
1645 			iter.max = iter.dma + iter.sg->length;
1646 		}
1647 
1648 		if (++act_pte == GEN6_PTES) {
1649 			kunmap_atomic(vaddr);
1650 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1651 			act_pte = 0;
1652 		}
1653 	} while (1);
1654 	kunmap_atomic(vaddr);
1655 }
1656 
1657 static int gen6_alloc_va_range(struct i915_address_space *vm,
1658 			       u64 start, u64 length)
1659 {
1660 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1661 	struct i915_page_table *pt;
1662 	u64 from = start;
1663 	unsigned int pde;
1664 	bool flush = false;
1665 
1666 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1667 		if (pt == vm->scratch_pt) {
1668 			pt = alloc_pt(vm);
1669 			if (IS_ERR(pt))
1670 				goto unwind_out;
1671 
1672 			gen6_initialize_pt(vm, pt);
1673 			ppgtt->pd.page_table[pde] = pt;
1674 			gen6_write_pde(ppgtt, pde, pt);
1675 			flush = true;
1676 		}
1677 	}
1678 
1679 	if (flush) {
1680 		mark_tlbs_dirty(ppgtt);
1681 		wmb();
1682 	}
1683 
1684 	return 0;
1685 
1686 unwind_out:
1687 	gen6_ppgtt_clear_range(vm, from, start);
1688 	return -ENOMEM;
1689 }
1690 
1691 static int gen6_init_scratch(struct i915_address_space *vm)
1692 {
1693 	int ret;
1694 
1695 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1696 	if (ret)
1697 		return ret;
1698 
1699 	vm->scratch_pt = alloc_pt(vm);
1700 	if (IS_ERR(vm->scratch_pt)) {
1701 		cleanup_scratch_page(vm);
1702 		return PTR_ERR(vm->scratch_pt);
1703 	}
1704 
1705 	gen6_initialize_pt(vm, vm->scratch_pt);
1706 
1707 	return 0;
1708 }
1709 
1710 static void gen6_free_scratch(struct i915_address_space *vm)
1711 {
1712 	free_pt(vm, vm->scratch_pt);
1713 	cleanup_scratch_page(vm);
1714 }
1715 
1716 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1717 {
1718 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1719 	struct i915_page_directory *pd = &ppgtt->pd;
1720 	struct i915_page_table *pt;
1721 	u32 pde;
1722 
1723 	drm_mm_remove_node(&ppgtt->node);
1724 
1725 	gen6_for_all_pdes(pt, pd, pde)
1726 		if (pt != vm->scratch_pt)
1727 			free_pt(vm, pt);
1728 
1729 	gen6_free_scratch(vm);
1730 }
1731 
1732 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1733 {
1734 	struct i915_address_space *vm = &ppgtt->base;
1735 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1736 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1737 	int ret;
1738 
1739 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1740 	 * allocator works in address space sizes, so it's multiplied by page
1741 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1742 	 */
1743 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1744 
1745 	ret = gen6_init_scratch(vm);
1746 	if (ret)
1747 		return ret;
1748 
1749 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1750 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1751 				  I915_COLOR_UNEVICTABLE,
1752 				  0, ggtt->base.total,
1753 				  PIN_HIGH);
1754 	if (ret)
1755 		goto err_out;
1756 
1757 	if (ppgtt->node.start < ggtt->mappable_end)
1758 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1759 
1760 	ppgtt->pd.base.ggtt_offset =
1761 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1762 
1763 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1764 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1765 
1766 	return 0;
1767 
1768 err_out:
1769 	gen6_free_scratch(vm);
1770 	return ret;
1771 }
1772 
1773 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1774 {
1775 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1776 }
1777 
1778 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1779 				  u64 start, u64 length)
1780 {
1781 	struct i915_page_table *unused;
1782 	u32 pde;
1783 
1784 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1785 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1786 }
1787 
1788 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1789 {
1790 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1791 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1792 	int ret;
1793 
1794 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
1795 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1796 		ppgtt->switch_mm = gen6_mm_switch;
1797 	else if (IS_HASWELL(dev_priv))
1798 		ppgtt->switch_mm = hsw_mm_switch;
1799 	else if (IS_GEN7(dev_priv))
1800 		ppgtt->switch_mm = gen7_mm_switch;
1801 	else
1802 		BUG();
1803 
1804 	ret = gen6_ppgtt_alloc(ppgtt);
1805 	if (ret)
1806 		return ret;
1807 
1808 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1809 
1810 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1811 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1812 
1813 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1814 	if (ret) {
1815 		gen6_ppgtt_cleanup(&ppgtt->base);
1816 		return ret;
1817 	}
1818 
1819 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1820 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1821 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1822 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1823 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1824 	ppgtt->debug_dump = gen6_dump_ppgtt;
1825 
1826 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1827 			 ppgtt->node.size >> 20,
1828 			 ppgtt->node.start / PAGE_SIZE);
1829 
1830 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1831 			 ppgtt->pd.base.ggtt_offset << 10);
1832 
1833 	return 0;
1834 }
1835 
1836 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1837 			   struct drm_i915_private *dev_priv)
1838 {
1839 	ppgtt->base.i915 = dev_priv;
1840 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1841 
1842 	if (INTEL_INFO(dev_priv)->gen < 8)
1843 		return gen6_ppgtt_init(ppgtt);
1844 	else
1845 		return gen8_ppgtt_init(ppgtt);
1846 }
1847 
1848 static void i915_address_space_init(struct i915_address_space *vm,
1849 				    struct drm_i915_private *dev_priv,
1850 				    const char *name)
1851 {
1852 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1853 
1854 	drm_mm_init(&vm->mm, 0, vm->total);
1855 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1856 
1857 	INIT_LIST_HEAD(&vm->active_list);
1858 	INIT_LIST_HEAD(&vm->inactive_list);
1859 	INIT_LIST_HEAD(&vm->unbound_list);
1860 
1861 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
1862 	pagevec_init(&vm->free_pages, false);
1863 }
1864 
1865 static void i915_address_space_fini(struct i915_address_space *vm)
1866 {
1867 	if (pagevec_count(&vm->free_pages))
1868 		vm_free_pages_release(vm);
1869 
1870 	i915_gem_timeline_fini(&vm->timeline);
1871 	drm_mm_takedown(&vm->mm);
1872 	list_del(&vm->global_link);
1873 }
1874 
1875 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1876 {
1877 	/* This function is for gtt related workarounds. This function is
1878 	 * called on driver load and after a GPU reset, so you can place
1879 	 * workarounds here even if they get overwritten by GPU reset.
1880 	 */
1881 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1882 	if (IS_BROADWELL(dev_priv))
1883 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1884 	else if (IS_CHERRYVIEW(dev_priv))
1885 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1886 	else if (IS_GEN9_BC(dev_priv))
1887 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1888 	else if (IS_GEN9_LP(dev_priv))
1889 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1890 }
1891 
1892 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1893 {
1894 	gtt_write_workarounds(dev_priv);
1895 
1896 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1897 	 * and the PDPs are contained within the context itself.  We don't
1898 	 * need to do anything here. */
1899 	if (i915.enable_execlists)
1900 		return 0;
1901 
1902 	if (!USES_PPGTT(dev_priv))
1903 		return 0;
1904 
1905 	if (IS_GEN6(dev_priv))
1906 		gen6_ppgtt_enable(dev_priv);
1907 	else if (IS_GEN7(dev_priv))
1908 		gen7_ppgtt_enable(dev_priv);
1909 	else if (INTEL_GEN(dev_priv) >= 8)
1910 		gen8_ppgtt_enable(dev_priv);
1911 	else
1912 		MISSING_CASE(INTEL_GEN(dev_priv));
1913 
1914 	return 0;
1915 }
1916 
1917 struct i915_hw_ppgtt *
1918 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1919 		  struct drm_i915_file_private *fpriv,
1920 		  const char *name)
1921 {
1922 	struct i915_hw_ppgtt *ppgtt;
1923 	int ret;
1924 
1925 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1926 	if (!ppgtt)
1927 		return ERR_PTR(-ENOMEM);
1928 
1929 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
1930 	if (ret) {
1931 		kfree(ppgtt);
1932 		return ERR_PTR(ret);
1933 	}
1934 
1935 	kref_init(&ppgtt->ref);
1936 	i915_address_space_init(&ppgtt->base, dev_priv, name);
1937 	ppgtt->base.file = fpriv;
1938 
1939 	trace_i915_ppgtt_create(&ppgtt->base);
1940 
1941 	return ppgtt;
1942 }
1943 
1944 void i915_ppgtt_close(struct i915_address_space *vm)
1945 {
1946 	struct list_head *phases[] = {
1947 		&vm->active_list,
1948 		&vm->inactive_list,
1949 		&vm->unbound_list,
1950 		NULL,
1951 	}, **phase;
1952 
1953 	GEM_BUG_ON(vm->closed);
1954 	vm->closed = true;
1955 
1956 	for (phase = phases; *phase; phase++) {
1957 		struct i915_vma *vma, *vn;
1958 
1959 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
1960 			if (!i915_vma_is_closed(vma))
1961 				i915_vma_close(vma);
1962 	}
1963 }
1964 
1965 void i915_ppgtt_release(struct kref *kref)
1966 {
1967 	struct i915_hw_ppgtt *ppgtt =
1968 		container_of(kref, struct i915_hw_ppgtt, ref);
1969 
1970 	trace_i915_ppgtt_release(&ppgtt->base);
1971 
1972 	/* vmas should already be unbound and destroyed */
1973 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1974 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1975 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1976 
1977 	ppgtt->base.cleanup(&ppgtt->base);
1978 	i915_address_space_fini(&ppgtt->base);
1979 	kfree(ppgtt);
1980 }
1981 
1982 /* Certain Gen5 chipsets require require idling the GPU before
1983  * unmapping anything from the GTT when VT-d is enabled.
1984  */
1985 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1986 {
1987 	/* Query intel_iommu to see if we need the workaround. Presumably that
1988 	 * was loaded first.
1989 	 */
1990 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1991 }
1992 
1993 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
1994 {
1995 	struct intel_engine_cs *engine;
1996 	enum intel_engine_id id;
1997 
1998 	if (INTEL_INFO(dev_priv)->gen < 6)
1999 		return;
2000 
2001 	for_each_engine(engine, dev_priv, id) {
2002 		u32 fault_reg;
2003 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2004 		if (fault_reg & RING_FAULT_VALID) {
2005 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2006 					 "\tAddr: 0x%08lx\n"
2007 					 "\tAddress space: %s\n"
2008 					 "\tSource ID: %d\n"
2009 					 "\tType: %d\n",
2010 					 fault_reg & PAGE_MASK,
2011 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2012 					 RING_FAULT_SRCID(fault_reg),
2013 					 RING_FAULT_FAULT_TYPE(fault_reg));
2014 			I915_WRITE(RING_FAULT_REG(engine),
2015 				   fault_reg & ~RING_FAULT_VALID);
2016 		}
2017 	}
2018 
2019 	/* Engine specific init may not have been done till this point. */
2020 	if (dev_priv->engine[RCS])
2021 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2022 }
2023 
2024 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2025 {
2026 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2027 
2028 	/* Don't bother messing with faults pre GEN6 as we have little
2029 	 * documentation supporting that it's a good idea.
2030 	 */
2031 	if (INTEL_GEN(dev_priv) < 6)
2032 		return;
2033 
2034 	i915_check_and_clear_faults(dev_priv);
2035 
2036 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2037 
2038 	i915_ggtt_invalidate(dev_priv);
2039 }
2040 
2041 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2042 			       struct sg_table *pages)
2043 {
2044 	do {
2045 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2046 			       pages->sgl, pages->nents,
2047 			       PCI_DMA_BIDIRECTIONAL))
2048 			return 0;
2049 
2050 		/* If the DMA remap fails, one cause can be that we have
2051 		 * too many objects pinned in a small remapping table,
2052 		 * such as swiotlb. Incrementally purge all other objects and
2053 		 * try again - if there are no more pages to remove from
2054 		 * the DMA remapper, i915_gem_shrink will return 0.
2055 		 */
2056 		GEM_BUG_ON(obj->mm.pages == pages);
2057 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2058 				 obj->base.size >> PAGE_SHIFT, NULL,
2059 				 I915_SHRINK_BOUND |
2060 				 I915_SHRINK_UNBOUND |
2061 				 I915_SHRINK_ACTIVE));
2062 
2063 	return -ENOSPC;
2064 }
2065 
2066 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2067 {
2068 	writeq(pte, addr);
2069 }
2070 
2071 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2072 				  dma_addr_t addr,
2073 				  u64 offset,
2074 				  enum i915_cache_level level,
2075 				  u32 unused)
2076 {
2077 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2078 	gen8_pte_t __iomem *pte =
2079 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2080 
2081 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2082 
2083 	ggtt->invalidate(vm->i915);
2084 }
2085 
2086 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2087 				     struct i915_vma *vma,
2088 				     enum i915_cache_level level,
2089 				     u32 unused)
2090 {
2091 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2092 	struct sgt_iter sgt_iter;
2093 	gen8_pte_t __iomem *gtt_entries;
2094 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2095 	dma_addr_t addr;
2096 
2097 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2098 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2099 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2100 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2101 
2102 	wmb();
2103 
2104 	/* This next bit makes the above posting read even more important. We
2105 	 * want to flush the TLBs only after we're certain all the PTE updates
2106 	 * have finished.
2107 	 */
2108 	ggtt->invalidate(vm->i915);
2109 }
2110 
2111 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2112 				  dma_addr_t addr,
2113 				  u64 offset,
2114 				  enum i915_cache_level level,
2115 				  u32 flags)
2116 {
2117 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2118 	gen6_pte_t __iomem *pte =
2119 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2120 
2121 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2122 
2123 	ggtt->invalidate(vm->i915);
2124 }
2125 
2126 /*
2127  * Binds an object into the global gtt with the specified cache level. The object
2128  * will be accessible to the GPU via commands whose operands reference offsets
2129  * within the global GTT as well as accessible by the GPU through the GMADR
2130  * mapped BAR (dev_priv->mm.gtt->gtt).
2131  */
2132 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2133 				     struct i915_vma *vma,
2134 				     enum i915_cache_level level,
2135 				     u32 flags)
2136 {
2137 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2138 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2139 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2140 	struct sgt_iter iter;
2141 	dma_addr_t addr;
2142 	for_each_sgt_dma(addr, iter, vma->pages)
2143 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2144 	wmb();
2145 
2146 	/* This next bit makes the above posting read even more important. We
2147 	 * want to flush the TLBs only after we're certain all the PTE updates
2148 	 * have finished.
2149 	 */
2150 	ggtt->invalidate(vm->i915);
2151 }
2152 
2153 static void nop_clear_range(struct i915_address_space *vm,
2154 			    u64 start, u64 length)
2155 {
2156 }
2157 
2158 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2159 				  u64 start, u64 length)
2160 {
2161 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2162 	unsigned first_entry = start >> PAGE_SHIFT;
2163 	unsigned num_entries = length >> PAGE_SHIFT;
2164 	const gen8_pte_t scratch_pte =
2165 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2166 	gen8_pte_t __iomem *gtt_base =
2167 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2168 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2169 	int i;
2170 
2171 	if (WARN(num_entries > max_entries,
2172 		 "First entry = %d; Num entries = %d (max=%d)\n",
2173 		 first_entry, num_entries, max_entries))
2174 		num_entries = max_entries;
2175 
2176 	for (i = 0; i < num_entries; i++)
2177 		gen8_set_pte(&gtt_base[i], scratch_pte);
2178 }
2179 
2180 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2181 {
2182 	struct drm_i915_private *dev_priv = vm->i915;
2183 
2184 	/*
2185 	 * Make sure the internal GAM fifo has been cleared of all GTT
2186 	 * writes before exiting stop_machine(). This guarantees that
2187 	 * any aperture accesses waiting to start in another process
2188 	 * cannot back up behind the GTT writes causing a hang.
2189 	 * The register can be any arbitrary GAM register.
2190 	 */
2191 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2192 }
2193 
2194 struct insert_page {
2195 	struct i915_address_space *vm;
2196 	dma_addr_t addr;
2197 	u64 offset;
2198 	enum i915_cache_level level;
2199 };
2200 
2201 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2202 {
2203 	struct insert_page *arg = _arg;
2204 
2205 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2206 	bxt_vtd_ggtt_wa(arg->vm);
2207 
2208 	return 0;
2209 }
2210 
2211 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2212 					  dma_addr_t addr,
2213 					  u64 offset,
2214 					  enum i915_cache_level level,
2215 					  u32 unused)
2216 {
2217 	struct insert_page arg = { vm, addr, offset, level };
2218 
2219 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2220 }
2221 
2222 struct insert_entries {
2223 	struct i915_address_space *vm;
2224 	struct i915_vma *vma;
2225 	enum i915_cache_level level;
2226 };
2227 
2228 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2229 {
2230 	struct insert_entries *arg = _arg;
2231 
2232 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2233 	bxt_vtd_ggtt_wa(arg->vm);
2234 
2235 	return 0;
2236 }
2237 
2238 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2239 					     struct i915_vma *vma,
2240 					     enum i915_cache_level level,
2241 					     u32 unused)
2242 {
2243 	struct insert_entries arg = { vm, vma, level };
2244 
2245 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2246 }
2247 
2248 struct clear_range {
2249 	struct i915_address_space *vm;
2250 	u64 start;
2251 	u64 length;
2252 };
2253 
2254 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2255 {
2256 	struct clear_range *arg = _arg;
2257 
2258 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2259 	bxt_vtd_ggtt_wa(arg->vm);
2260 
2261 	return 0;
2262 }
2263 
2264 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2265 					  u64 start,
2266 					  u64 length)
2267 {
2268 	struct clear_range arg = { vm, start, length };
2269 
2270 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2271 }
2272 
2273 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2274 				  u64 start, u64 length)
2275 {
2276 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2277 	unsigned first_entry = start >> PAGE_SHIFT;
2278 	unsigned num_entries = length >> PAGE_SHIFT;
2279 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2280 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2281 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2282 	int i;
2283 
2284 	if (WARN(num_entries > max_entries,
2285 		 "First entry = %d; Num entries = %d (max=%d)\n",
2286 		 first_entry, num_entries, max_entries))
2287 		num_entries = max_entries;
2288 
2289 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2290 				     I915_CACHE_LLC, 0);
2291 
2292 	for (i = 0; i < num_entries; i++)
2293 		iowrite32(scratch_pte, &gtt_base[i]);
2294 }
2295 
2296 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2297 				  dma_addr_t addr,
2298 				  u64 offset,
2299 				  enum i915_cache_level cache_level,
2300 				  u32 unused)
2301 {
2302 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2303 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2304 
2305 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2306 }
2307 
2308 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2309 				     struct i915_vma *vma,
2310 				     enum i915_cache_level cache_level,
2311 				     u32 unused)
2312 {
2313 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2314 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2315 
2316 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2317 				    flags);
2318 }
2319 
2320 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2321 				  u64 start, u64 length)
2322 {
2323 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2324 }
2325 
2326 static int ggtt_bind_vma(struct i915_vma *vma,
2327 			 enum i915_cache_level cache_level,
2328 			 u32 flags)
2329 {
2330 	struct drm_i915_private *i915 = vma->vm->i915;
2331 	struct drm_i915_gem_object *obj = vma->obj;
2332 	u32 pte_flags;
2333 
2334 	if (unlikely(!vma->pages)) {
2335 		int ret = i915_get_ggtt_vma_pages(vma);
2336 		if (ret)
2337 			return ret;
2338 	}
2339 
2340 	/* Currently applicable only to VLV */
2341 	pte_flags = 0;
2342 	if (obj->gt_ro)
2343 		pte_flags |= PTE_READ_ONLY;
2344 
2345 	intel_runtime_pm_get(i915);
2346 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2347 	intel_runtime_pm_put(i915);
2348 
2349 	/*
2350 	 * Without aliasing PPGTT there's no difference between
2351 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2352 	 * upgrade to both bound if we bind either to avoid double-binding.
2353 	 */
2354 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2355 
2356 	return 0;
2357 }
2358 
2359 static void ggtt_unbind_vma(struct i915_vma *vma)
2360 {
2361 	struct drm_i915_private *i915 = vma->vm->i915;
2362 
2363 	intel_runtime_pm_get(i915);
2364 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2365 	intel_runtime_pm_put(i915);
2366 }
2367 
2368 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2369 				 enum i915_cache_level cache_level,
2370 				 u32 flags)
2371 {
2372 	struct drm_i915_private *i915 = vma->vm->i915;
2373 	u32 pte_flags;
2374 	int ret;
2375 
2376 	if (unlikely(!vma->pages)) {
2377 		ret = i915_get_ggtt_vma_pages(vma);
2378 		if (ret)
2379 			return ret;
2380 	}
2381 
2382 	/* Currently applicable only to VLV */
2383 	pte_flags = 0;
2384 	if (vma->obj->gt_ro)
2385 		pte_flags |= PTE_READ_ONLY;
2386 
2387 	if (flags & I915_VMA_LOCAL_BIND) {
2388 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2389 
2390 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2391 		    appgtt->base.allocate_va_range) {
2392 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2393 							     vma->node.start,
2394 							     vma->size);
2395 			if (ret)
2396 				goto err_pages;
2397 		}
2398 
2399 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2400 					    pte_flags);
2401 	}
2402 
2403 	if (flags & I915_VMA_GLOBAL_BIND) {
2404 		intel_runtime_pm_get(i915);
2405 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2406 		intel_runtime_pm_put(i915);
2407 	}
2408 
2409 	return 0;
2410 
2411 err_pages:
2412 	if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2413 		if (vma->pages != vma->obj->mm.pages) {
2414 			GEM_BUG_ON(!vma->pages);
2415 			sg_free_table(vma->pages);
2416 			kfree(vma->pages);
2417 		}
2418 		vma->pages = NULL;
2419 	}
2420 	return ret;
2421 }
2422 
2423 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2424 {
2425 	struct drm_i915_private *i915 = vma->vm->i915;
2426 
2427 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2428 		intel_runtime_pm_get(i915);
2429 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2430 		intel_runtime_pm_put(i915);
2431 	}
2432 
2433 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2434 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2435 
2436 		vm->clear_range(vm, vma->node.start, vma->size);
2437 	}
2438 }
2439 
2440 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2441 			       struct sg_table *pages)
2442 {
2443 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2444 	struct device *kdev = &dev_priv->drm.pdev->dev;
2445 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2446 
2447 	if (unlikely(ggtt->do_idle_maps)) {
2448 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2449 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2450 			/* Wait a bit, in hopes it avoids the hang */
2451 			udelay(10);
2452 		}
2453 	}
2454 
2455 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2456 }
2457 
2458 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2459 				  unsigned long color,
2460 				  u64 *start,
2461 				  u64 *end)
2462 {
2463 	if (node->allocated && node->color != color)
2464 		*start += I915_GTT_PAGE_SIZE;
2465 
2466 	/* Also leave a space between the unallocated reserved node after the
2467 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2468 	 * to insert a guard page to prevent prefetches crossing over the
2469 	 * GTT boundary.
2470 	 */
2471 	node = list_next_entry(node, node_list);
2472 	if (node->color != color)
2473 		*end -= I915_GTT_PAGE_SIZE;
2474 }
2475 
2476 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2477 {
2478 	struct i915_ggtt *ggtt = &i915->ggtt;
2479 	struct i915_hw_ppgtt *ppgtt;
2480 	int err;
2481 
2482 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2483 	if (IS_ERR(ppgtt))
2484 		return PTR_ERR(ppgtt);
2485 
2486 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2487 		err = -ENODEV;
2488 		goto err_ppgtt;
2489 	}
2490 
2491 	if (ppgtt->base.allocate_va_range) {
2492 		/* Note we only pre-allocate as far as the end of the global
2493 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2494 		 * very significant! We have to preallocate as GVT/vgpu does
2495 		 * not like the page directory disappearing.
2496 		 */
2497 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2498 						    0, ggtt->base.total);
2499 		if (err)
2500 			goto err_ppgtt;
2501 	}
2502 
2503 	i915->mm.aliasing_ppgtt = ppgtt;
2504 
2505 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2506 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2507 
2508 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2509 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2510 
2511 	return 0;
2512 
2513 err_ppgtt:
2514 	i915_ppgtt_put(ppgtt);
2515 	return err;
2516 }
2517 
2518 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2519 {
2520 	struct i915_ggtt *ggtt = &i915->ggtt;
2521 	struct i915_hw_ppgtt *ppgtt;
2522 
2523 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2524 	if (!ppgtt)
2525 		return;
2526 
2527 	i915_ppgtt_put(ppgtt);
2528 
2529 	ggtt->base.bind_vma = ggtt_bind_vma;
2530 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2531 }
2532 
2533 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2534 {
2535 	/* Let GEM Manage all of the aperture.
2536 	 *
2537 	 * However, leave one page at the end still bound to the scratch page.
2538 	 * There are a number of places where the hardware apparently prefetches
2539 	 * past the end of the object, and we've seen multiple hangs with the
2540 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2541 	 * aperture.  One page should be enough to keep any prefetching inside
2542 	 * of the aperture.
2543 	 */
2544 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2545 	unsigned long hole_start, hole_end;
2546 	struct drm_mm_node *entry;
2547 	int ret;
2548 
2549 	ret = intel_vgt_balloon(dev_priv);
2550 	if (ret)
2551 		return ret;
2552 
2553 	/* Reserve a mappable slot for our lockless error capture */
2554 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2555 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2556 					  0, ggtt->mappable_end,
2557 					  DRM_MM_INSERT_LOW);
2558 	if (ret)
2559 		return ret;
2560 
2561 	/* Clear any non-preallocated blocks */
2562 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2563 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2564 			      hole_start, hole_end);
2565 		ggtt->base.clear_range(&ggtt->base, hole_start,
2566 				       hole_end - hole_start);
2567 	}
2568 
2569 	/* And finally clear the reserved guard page */
2570 	ggtt->base.clear_range(&ggtt->base,
2571 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2572 
2573 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2574 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2575 		if (ret)
2576 			goto err;
2577 	}
2578 
2579 	return 0;
2580 
2581 err:
2582 	drm_mm_remove_node(&ggtt->error_capture);
2583 	return ret;
2584 }
2585 
2586 /**
2587  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2588  * @dev_priv: i915 device
2589  */
2590 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2591 {
2592 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2593 	struct i915_vma *vma, *vn;
2594 
2595 	ggtt->base.closed = true;
2596 
2597 	mutex_lock(&dev_priv->drm.struct_mutex);
2598 	WARN_ON(!list_empty(&ggtt->base.active_list));
2599 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2600 		WARN_ON(i915_vma_unbind(vma));
2601 	mutex_unlock(&dev_priv->drm.struct_mutex);
2602 
2603 	i915_gem_cleanup_stolen(&dev_priv->drm);
2604 
2605 	mutex_lock(&dev_priv->drm.struct_mutex);
2606 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2607 
2608 	if (drm_mm_node_allocated(&ggtt->error_capture))
2609 		drm_mm_remove_node(&ggtt->error_capture);
2610 
2611 	if (drm_mm_initialized(&ggtt->base.mm)) {
2612 		intel_vgt_deballoon(dev_priv);
2613 		i915_address_space_fini(&ggtt->base);
2614 	}
2615 
2616 	ggtt->base.cleanup(&ggtt->base);
2617 	mutex_unlock(&dev_priv->drm.struct_mutex);
2618 
2619 	arch_phys_wc_del(ggtt->mtrr);
2620 	io_mapping_fini(&ggtt->mappable);
2621 }
2622 
2623 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2624 {
2625 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2626 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2627 	return snb_gmch_ctl << 20;
2628 }
2629 
2630 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2631 {
2632 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2633 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2634 	if (bdw_gmch_ctl)
2635 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2636 
2637 #ifdef CONFIG_X86_32
2638 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2639 	if (bdw_gmch_ctl > 4)
2640 		bdw_gmch_ctl = 4;
2641 #endif
2642 
2643 	return bdw_gmch_ctl << 20;
2644 }
2645 
2646 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2647 {
2648 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2649 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2650 
2651 	if (gmch_ctrl)
2652 		return 1 << (20 + gmch_ctrl);
2653 
2654 	return 0;
2655 }
2656 
2657 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2658 {
2659 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2660 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2661 	return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2662 }
2663 
2664 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2665 {
2666 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2667 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2668 	return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2669 }
2670 
2671 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2672 {
2673 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2674 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2675 
2676 	/*
2677 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2678 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2679 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2680 	 */
2681 	if (gmch_ctrl < 0x11)
2682 		return (size_t)gmch_ctrl << 25;
2683 	else if (gmch_ctrl < 0x17)
2684 		return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2685 	else
2686 		return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2687 }
2688 
2689 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2690 {
2691 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2692 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2693 
2694 	if (gen9_gmch_ctl < 0xf0)
2695 		return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2696 	else
2697 		/* 4MB increments starting at 0xf0 for 4MB */
2698 		return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2699 }
2700 
2701 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2702 {
2703 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2704 	struct pci_dev *pdev = dev_priv->drm.pdev;
2705 	phys_addr_t phys_addr;
2706 	int ret;
2707 
2708 	/* For Modern GENs the PTEs and register space are split in the BAR */
2709 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2710 
2711 	/*
2712 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2713 	 * dropped. For WC mappings in general we have 64 byte burst writes
2714 	 * when the WC buffer is flushed, so we can't use it, but have to
2715 	 * resort to an uncached mapping. The WC issue is easily caught by the
2716 	 * readback check when writing GTT PTE entries.
2717 	 */
2718 	if (IS_GEN9_LP(dev_priv))
2719 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2720 	else
2721 		ggtt->gsm = ioremap_wc(phys_addr, size);
2722 	if (!ggtt->gsm) {
2723 		DRM_ERROR("Failed to map the ggtt page table\n");
2724 		return -ENOMEM;
2725 	}
2726 
2727 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2728 	if (ret) {
2729 		DRM_ERROR("Scratch setup failed\n");
2730 		/* iounmap will also get called at remove, but meh */
2731 		iounmap(ggtt->gsm);
2732 		return ret;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2739 {
2740 	/* XXX: spec is unclear if this is still needed for CNL+ */
2741 	if (!USES_PPGTT(dev_priv)) {
2742 		I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_UC);
2743 		return;
2744 	}
2745 
2746 	I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2747 	I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2748 	I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2749 	I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2750 	I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2751 	I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2752 	I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2753 	I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2754 }
2755 
2756 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2757  * bits. When using advanced contexts each context stores its own PAT, but
2758  * writing this data shouldn't be harmful even in those cases. */
2759 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2760 {
2761 	u64 pat;
2762 
2763 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2764 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2765 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2766 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2767 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2768 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2769 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2770 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2771 
2772 	if (!USES_PPGTT(dev_priv))
2773 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2774 		 * so RTL will always use the value corresponding to
2775 		 * pat_sel = 000".
2776 		 * So let's disable cache for GGTT to avoid screen corruptions.
2777 		 * MOCS still can be used though.
2778 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2779 		 * before this patch, i.e. the same uncached + snooping access
2780 		 * like on gen6/7 seems to be in effect.
2781 		 * - So this just fixes blitter/render access. Again it looks
2782 		 * like it's not just uncached access, but uncached + snooping.
2783 		 * So we can still hold onto all our assumptions wrt cpu
2784 		 * clflushing on LLC machines.
2785 		 */
2786 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2787 
2788 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2789 	 * write would work. */
2790 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2791 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2792 }
2793 
2794 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2795 {
2796 	u64 pat;
2797 
2798 	/*
2799 	 * Map WB on BDW to snooped on CHV.
2800 	 *
2801 	 * Only the snoop bit has meaning for CHV, the rest is
2802 	 * ignored.
2803 	 *
2804 	 * The hardware will never snoop for certain types of accesses:
2805 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2806 	 * - PPGTT page tables
2807 	 * - some other special cycles
2808 	 *
2809 	 * As with BDW, we also need to consider the following for GT accesses:
2810 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2811 	 * so RTL will always use the value corresponding to
2812 	 * pat_sel = 000".
2813 	 * Which means we must set the snoop bit in PAT entry 0
2814 	 * in order to keep the global status page working.
2815 	 */
2816 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2817 	      GEN8_PPAT(1, 0) |
2818 	      GEN8_PPAT(2, 0) |
2819 	      GEN8_PPAT(3, 0) |
2820 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2821 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2822 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2823 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2824 
2825 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2826 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2827 }
2828 
2829 static void gen6_gmch_remove(struct i915_address_space *vm)
2830 {
2831 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2832 
2833 	iounmap(ggtt->gsm);
2834 	cleanup_scratch_page(vm);
2835 }
2836 
2837 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2838 {
2839 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2840 	struct pci_dev *pdev = dev_priv->drm.pdev;
2841 	unsigned int size;
2842 	u16 snb_gmch_ctl;
2843 	int err;
2844 
2845 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2846 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2847 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2848 
2849 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2850 	if (!err)
2851 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2852 	if (err)
2853 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2854 
2855 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2856 
2857 	if (INTEL_GEN(dev_priv) >= 9) {
2858 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2859 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2860 	} else if (IS_CHERRYVIEW(dev_priv)) {
2861 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2862 		size = chv_get_total_gtt_size(snb_gmch_ctl);
2863 	} else {
2864 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2865 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2866 	}
2867 
2868 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2869 
2870 	if (INTEL_GEN(dev_priv) >= 10)
2871 		cnl_setup_private_ppat(dev_priv);
2872 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2873 		chv_setup_private_ppat(dev_priv);
2874 	else
2875 		bdw_setup_private_ppat(dev_priv);
2876 
2877 	ggtt->base.cleanup = gen6_gmch_remove;
2878 	ggtt->base.bind_vma = ggtt_bind_vma;
2879 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2880 	ggtt->base.insert_page = gen8_ggtt_insert_page;
2881 	ggtt->base.clear_range = nop_clear_range;
2882 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2883 		ggtt->base.clear_range = gen8_ggtt_clear_range;
2884 
2885 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2886 
2887 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2888 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2889 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2890 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2891 		if (ggtt->base.clear_range != nop_clear_range)
2892 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2893 	}
2894 
2895 	ggtt->invalidate = gen6_ggtt_invalidate;
2896 
2897 	return ggtt_probe_common(ggtt, size);
2898 }
2899 
2900 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2901 {
2902 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2903 	struct pci_dev *pdev = dev_priv->drm.pdev;
2904 	unsigned int size;
2905 	u16 snb_gmch_ctl;
2906 	int err;
2907 
2908 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2909 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2910 
2911 	/* 64/512MB is the current min/max we actually know of, but this is just
2912 	 * a coarse sanity check.
2913 	 */
2914 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2915 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2916 		return -ENXIO;
2917 	}
2918 
2919 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2920 	if (!err)
2921 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2922 	if (err)
2923 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2924 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2925 
2926 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2927 
2928 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
2929 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2930 
2931 	ggtt->base.clear_range = gen6_ggtt_clear_range;
2932 	ggtt->base.insert_page = gen6_ggtt_insert_page;
2933 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2934 	ggtt->base.bind_vma = ggtt_bind_vma;
2935 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2936 	ggtt->base.cleanup = gen6_gmch_remove;
2937 
2938 	ggtt->invalidate = gen6_ggtt_invalidate;
2939 
2940 	if (HAS_EDRAM(dev_priv))
2941 		ggtt->base.pte_encode = iris_pte_encode;
2942 	else if (IS_HASWELL(dev_priv))
2943 		ggtt->base.pte_encode = hsw_pte_encode;
2944 	else if (IS_VALLEYVIEW(dev_priv))
2945 		ggtt->base.pte_encode = byt_pte_encode;
2946 	else if (INTEL_GEN(dev_priv) >= 7)
2947 		ggtt->base.pte_encode = ivb_pte_encode;
2948 	else
2949 		ggtt->base.pte_encode = snb_pte_encode;
2950 
2951 	return ggtt_probe_common(ggtt, size);
2952 }
2953 
2954 static void i915_gmch_remove(struct i915_address_space *vm)
2955 {
2956 	intel_gmch_remove();
2957 }
2958 
2959 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2960 {
2961 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2962 	int ret;
2963 
2964 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2965 	if (!ret) {
2966 		DRM_ERROR("failed to set up gmch\n");
2967 		return -EIO;
2968 	}
2969 
2970 	intel_gtt_get(&ggtt->base.total,
2971 		      &ggtt->stolen_size,
2972 		      &ggtt->mappable_base,
2973 		      &ggtt->mappable_end);
2974 
2975 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2976 	ggtt->base.insert_page = i915_ggtt_insert_page;
2977 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
2978 	ggtt->base.clear_range = i915_ggtt_clear_range;
2979 	ggtt->base.bind_vma = ggtt_bind_vma;
2980 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2981 	ggtt->base.cleanup = i915_gmch_remove;
2982 
2983 	ggtt->invalidate = gmch_ggtt_invalidate;
2984 
2985 	if (unlikely(ggtt->do_idle_maps))
2986 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * i915_ggtt_probe_hw - Probe GGTT hardware location
2993  * @dev_priv: i915 device
2994  */
2995 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2996 {
2997 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2998 	int ret;
2999 
3000 	ggtt->base.i915 = dev_priv;
3001 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3002 
3003 	if (INTEL_GEN(dev_priv) <= 5)
3004 		ret = i915_gmch_probe(ggtt);
3005 	else if (INTEL_GEN(dev_priv) < 8)
3006 		ret = gen6_gmch_probe(ggtt);
3007 	else
3008 		ret = gen8_gmch_probe(ggtt);
3009 	if (ret)
3010 		return ret;
3011 
3012 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3013 	 * This is easier than doing range restriction on the fly, as we
3014 	 * currently don't have any bits spare to pass in this upper
3015 	 * restriction!
3016 	 */
3017 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3018 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3019 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3020 	}
3021 
3022 	if ((ggtt->base.total - 1) >> 32) {
3023 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3024 			  " of address space! Found %lldM!\n",
3025 			  ggtt->base.total >> 20);
3026 		ggtt->base.total = 1ULL << 32;
3027 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3028 	}
3029 
3030 	if (ggtt->mappable_end > ggtt->base.total) {
3031 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3032 			  " aperture=%llx, total=%llx\n",
3033 			  ggtt->mappable_end, ggtt->base.total);
3034 		ggtt->mappable_end = ggtt->base.total;
3035 	}
3036 
3037 	/* GMADR is the PCI mmio aperture into the global GTT. */
3038 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3039 		 ggtt->base.total >> 20);
3040 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3041 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3042 	if (intel_vtd_active())
3043 		DRM_INFO("VT-d active for gfx access\n");
3044 
3045 	return 0;
3046 }
3047 
3048 /**
3049  * i915_ggtt_init_hw - Initialize GGTT hardware
3050  * @dev_priv: i915 device
3051  */
3052 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3053 {
3054 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3055 	int ret;
3056 
3057 	INIT_LIST_HEAD(&dev_priv->vm_list);
3058 
3059 	/* Note that we use page colouring to enforce a guard page at the
3060 	 * end of the address space. This is required as the CS may prefetch
3061 	 * beyond the end of the batch buffer, across the page boundary,
3062 	 * and beyond the end of the GTT if we do not provide a guard.
3063 	 */
3064 	mutex_lock(&dev_priv->drm.struct_mutex);
3065 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3066 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3067 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3068 	mutex_unlock(&dev_priv->drm.struct_mutex);
3069 
3070 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3071 				dev_priv->ggtt.mappable_base,
3072 				dev_priv->ggtt.mappable_end)) {
3073 		ret = -EIO;
3074 		goto out_gtt_cleanup;
3075 	}
3076 
3077 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3078 
3079 	/*
3080 	 * Initialise stolen early so that we may reserve preallocated
3081 	 * objects for the BIOS to KMS transition.
3082 	 */
3083 	ret = i915_gem_init_stolen(dev_priv);
3084 	if (ret)
3085 		goto out_gtt_cleanup;
3086 
3087 	return 0;
3088 
3089 out_gtt_cleanup:
3090 	ggtt->base.cleanup(&ggtt->base);
3091 	return ret;
3092 }
3093 
3094 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3095 {
3096 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3097 		return -EIO;
3098 
3099 	return 0;
3100 }
3101 
3102 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3103 {
3104 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3105 
3106 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3107 }
3108 
3109 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3110 {
3111 	/* We should only be called after i915_ggtt_enable_guc() */
3112 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3113 
3114 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3115 }
3116 
3117 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3118 {
3119 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3120 	struct drm_i915_gem_object *obj, *on;
3121 
3122 	i915_check_and_clear_faults(dev_priv);
3123 
3124 	/* First fill our portion of the GTT with scratch pages */
3125 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3126 
3127 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3128 
3129 	/* clflush objects bound into the GGTT and rebind them. */
3130 	list_for_each_entry_safe(obj, on,
3131 				 &dev_priv->mm.bound_list, global_link) {
3132 		bool ggtt_bound = false;
3133 		struct i915_vma *vma;
3134 
3135 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3136 			if (vma->vm != &ggtt->base)
3137 				continue;
3138 
3139 			if (!i915_vma_unbind(vma))
3140 				continue;
3141 
3142 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3143 					      PIN_UPDATE));
3144 			ggtt_bound = true;
3145 		}
3146 
3147 		if (ggtt_bound)
3148 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3149 	}
3150 
3151 	ggtt->base.closed = false;
3152 
3153 	if (INTEL_GEN(dev_priv) >= 8) {
3154 		if (INTEL_GEN(dev_priv) >= 10)
3155 			cnl_setup_private_ppat(dev_priv);
3156 		else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3157 			chv_setup_private_ppat(dev_priv);
3158 		else
3159 			bdw_setup_private_ppat(dev_priv);
3160 
3161 		return;
3162 	}
3163 
3164 	if (USES_PPGTT(dev_priv)) {
3165 		struct i915_address_space *vm;
3166 
3167 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3168 			struct i915_hw_ppgtt *ppgtt;
3169 
3170 			if (i915_is_ggtt(vm))
3171 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3172 			else
3173 				ppgtt = i915_vm_to_ppgtt(vm);
3174 
3175 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3176 		}
3177 	}
3178 
3179 	i915_ggtt_invalidate(dev_priv);
3180 }
3181 
3182 static struct scatterlist *
3183 rotate_pages(const dma_addr_t *in, unsigned int offset,
3184 	     unsigned int width, unsigned int height,
3185 	     unsigned int stride,
3186 	     struct sg_table *st, struct scatterlist *sg)
3187 {
3188 	unsigned int column, row;
3189 	unsigned int src_idx;
3190 
3191 	for (column = 0; column < width; column++) {
3192 		src_idx = stride * (height - 1) + column;
3193 		for (row = 0; row < height; row++) {
3194 			st->nents++;
3195 			/* We don't need the pages, but need to initialize
3196 			 * the entries so the sg list can be happily traversed.
3197 			 * The only thing we need are DMA addresses.
3198 			 */
3199 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3200 			sg_dma_address(sg) = in[offset + src_idx];
3201 			sg_dma_len(sg) = PAGE_SIZE;
3202 			sg = sg_next(sg);
3203 			src_idx -= stride;
3204 		}
3205 	}
3206 
3207 	return sg;
3208 }
3209 
3210 static noinline struct sg_table *
3211 intel_rotate_pages(struct intel_rotation_info *rot_info,
3212 		   struct drm_i915_gem_object *obj)
3213 {
3214 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3215 	unsigned int size = intel_rotation_info_size(rot_info);
3216 	struct sgt_iter sgt_iter;
3217 	dma_addr_t dma_addr;
3218 	unsigned long i;
3219 	dma_addr_t *page_addr_list;
3220 	struct sg_table *st;
3221 	struct scatterlist *sg;
3222 	int ret = -ENOMEM;
3223 
3224 	/* Allocate a temporary list of source pages for random access. */
3225 	page_addr_list = kvmalloc_array(n_pages,
3226 					sizeof(dma_addr_t),
3227 					GFP_KERNEL);
3228 	if (!page_addr_list)
3229 		return ERR_PTR(ret);
3230 
3231 	/* Allocate target SG list. */
3232 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3233 	if (!st)
3234 		goto err_st_alloc;
3235 
3236 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3237 	if (ret)
3238 		goto err_sg_alloc;
3239 
3240 	/* Populate source page list from the object. */
3241 	i = 0;
3242 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3243 		page_addr_list[i++] = dma_addr;
3244 
3245 	GEM_BUG_ON(i != n_pages);
3246 	st->nents = 0;
3247 	sg = st->sgl;
3248 
3249 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3250 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3251 				  rot_info->plane[i].width, rot_info->plane[i].height,
3252 				  rot_info->plane[i].stride, st, sg);
3253 	}
3254 
3255 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3256 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3257 
3258 	kvfree(page_addr_list);
3259 
3260 	return st;
3261 
3262 err_sg_alloc:
3263 	kfree(st);
3264 err_st_alloc:
3265 	kvfree(page_addr_list);
3266 
3267 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3268 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3269 
3270 	return ERR_PTR(ret);
3271 }
3272 
3273 static noinline struct sg_table *
3274 intel_partial_pages(const struct i915_ggtt_view *view,
3275 		    struct drm_i915_gem_object *obj)
3276 {
3277 	struct sg_table *st;
3278 	struct scatterlist *sg, *iter;
3279 	unsigned int count = view->partial.size;
3280 	unsigned int offset;
3281 	int ret = -ENOMEM;
3282 
3283 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3284 	if (!st)
3285 		goto err_st_alloc;
3286 
3287 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3288 	if (ret)
3289 		goto err_sg_alloc;
3290 
3291 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3292 	GEM_BUG_ON(!iter);
3293 
3294 	sg = st->sgl;
3295 	st->nents = 0;
3296 	do {
3297 		unsigned int len;
3298 
3299 		len = min(iter->length - (offset << PAGE_SHIFT),
3300 			  count << PAGE_SHIFT);
3301 		sg_set_page(sg, NULL, len, 0);
3302 		sg_dma_address(sg) =
3303 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3304 		sg_dma_len(sg) = len;
3305 
3306 		st->nents++;
3307 		count -= len >> PAGE_SHIFT;
3308 		if (count == 0) {
3309 			sg_mark_end(sg);
3310 			return st;
3311 		}
3312 
3313 		sg = __sg_next(sg);
3314 		iter = __sg_next(iter);
3315 		offset = 0;
3316 	} while (1);
3317 
3318 err_sg_alloc:
3319 	kfree(st);
3320 err_st_alloc:
3321 	return ERR_PTR(ret);
3322 }
3323 
3324 static int
3325 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3326 {
3327 	int ret;
3328 
3329 	/* The vma->pages are only valid within the lifespan of the borrowed
3330 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3331 	 * must be the vma->pages. A simple rule is that vma->pages must only
3332 	 * be accessed when the obj->mm.pages are pinned.
3333 	 */
3334 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3335 
3336 	switch (vma->ggtt_view.type) {
3337 	case I915_GGTT_VIEW_NORMAL:
3338 		vma->pages = vma->obj->mm.pages;
3339 		return 0;
3340 
3341 	case I915_GGTT_VIEW_ROTATED:
3342 		vma->pages =
3343 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3344 		break;
3345 
3346 	case I915_GGTT_VIEW_PARTIAL:
3347 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3348 		break;
3349 
3350 	default:
3351 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3352 			  vma->ggtt_view.type);
3353 		return -EINVAL;
3354 	}
3355 
3356 	ret = 0;
3357 	if (unlikely(IS_ERR(vma->pages))) {
3358 		ret = PTR_ERR(vma->pages);
3359 		vma->pages = NULL;
3360 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3361 			  vma->ggtt_view.type, ret);
3362 	}
3363 	return ret;
3364 }
3365 
3366 /**
3367  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3368  * @vm: the &struct i915_address_space
3369  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3370  * @size: how much space to allocate inside the GTT,
3371  *        must be #I915_GTT_PAGE_SIZE aligned
3372  * @offset: where to insert inside the GTT,
3373  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3374  *          (@offset + @size) must fit within the address space
3375  * @color: color to apply to node, if this node is not from a VMA,
3376  *         color must be #I915_COLOR_UNEVICTABLE
3377  * @flags: control search and eviction behaviour
3378  *
3379  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3380  * the address space (using @size and @color). If the @node does not fit, it
3381  * tries to evict any overlapping nodes from the GTT, including any
3382  * neighbouring nodes if the colors do not match (to ensure guard pages between
3383  * differing domains). See i915_gem_evict_for_node() for the gory details
3384  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3385  * evicting active overlapping objects, and any overlapping node that is pinned
3386  * or marked as unevictable will also result in failure.
3387  *
3388  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3389  * asked to wait for eviction and interrupted.
3390  */
3391 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3392 			 struct drm_mm_node *node,
3393 			 u64 size, u64 offset, unsigned long color,
3394 			 unsigned int flags)
3395 {
3396 	int err;
3397 
3398 	GEM_BUG_ON(!size);
3399 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3400 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3401 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3402 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3403 	GEM_BUG_ON(drm_mm_node_allocated(node));
3404 
3405 	node->size = size;
3406 	node->start = offset;
3407 	node->color = color;
3408 
3409 	err = drm_mm_reserve_node(&vm->mm, node);
3410 	if (err != -ENOSPC)
3411 		return err;
3412 
3413 	if (flags & PIN_NOEVICT)
3414 		return -ENOSPC;
3415 
3416 	err = i915_gem_evict_for_node(vm, node, flags);
3417 	if (err == 0)
3418 		err = drm_mm_reserve_node(&vm->mm, node);
3419 
3420 	return err;
3421 }
3422 
3423 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3424 {
3425 	u64 range, addr;
3426 
3427 	GEM_BUG_ON(range_overflows(start, len, end));
3428 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3429 
3430 	range = round_down(end - len, align) - round_up(start, align);
3431 	if (range) {
3432 		if (sizeof(unsigned long) == sizeof(u64)) {
3433 			addr = get_random_long();
3434 		} else {
3435 			addr = get_random_int();
3436 			if (range > U32_MAX) {
3437 				addr <<= 32;
3438 				addr |= get_random_int();
3439 			}
3440 		}
3441 		div64_u64_rem(addr, range, &addr);
3442 		start += addr;
3443 	}
3444 
3445 	return round_up(start, align);
3446 }
3447 
3448 /**
3449  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3450  * @vm: the &struct i915_address_space
3451  * @node: the &struct drm_mm_node (typically i915_vma.node)
3452  * @size: how much space to allocate inside the GTT,
3453  *        must be #I915_GTT_PAGE_SIZE aligned
3454  * @alignment: required alignment of starting offset, may be 0 but
3455  *             if specified, this must be a power-of-two and at least
3456  *             #I915_GTT_MIN_ALIGNMENT
3457  * @color: color to apply to node
3458  * @start: start of any range restriction inside GTT (0 for all),
3459  *         must be #I915_GTT_PAGE_SIZE aligned
3460  * @end: end of any range restriction inside GTT (U64_MAX for all),
3461  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3462  * @flags: control search and eviction behaviour
3463  *
3464  * i915_gem_gtt_insert() first searches for an available hole into which
3465  * is can insert the node. The hole address is aligned to @alignment and
3466  * its @size must then fit entirely within the [@start, @end] bounds. The
3467  * nodes on either side of the hole must match @color, or else a guard page
3468  * will be inserted between the two nodes (or the node evicted). If no
3469  * suitable hole is found, first a victim is randomly selected and tested
3470  * for eviction, otherwise then the LRU list of objects within the GTT
3471  * is scanned to find the first set of replacement nodes to create the hole.
3472  * Those old overlapping nodes are evicted from the GTT (and so must be
3473  * rebound before any future use). Any node that is currently pinned cannot
3474  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3475  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3476  * searching for an eviction candidate. See i915_gem_evict_something() for
3477  * the gory details on the eviction algorithm.
3478  *
3479  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3480  * asked to wait for eviction and interrupted.
3481  */
3482 int i915_gem_gtt_insert(struct i915_address_space *vm,
3483 			struct drm_mm_node *node,
3484 			u64 size, u64 alignment, unsigned long color,
3485 			u64 start, u64 end, unsigned int flags)
3486 {
3487 	enum drm_mm_insert_mode mode;
3488 	u64 offset;
3489 	int err;
3490 
3491 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3492 	GEM_BUG_ON(!size);
3493 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3494 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3495 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3496 	GEM_BUG_ON(start >= end);
3497 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3498 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3499 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3500 	GEM_BUG_ON(drm_mm_node_allocated(node));
3501 
3502 	if (unlikely(range_overflows(start, size, end)))
3503 		return -ENOSPC;
3504 
3505 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3506 		return -ENOSPC;
3507 
3508 	mode = DRM_MM_INSERT_BEST;
3509 	if (flags & PIN_HIGH)
3510 		mode = DRM_MM_INSERT_HIGH;
3511 	if (flags & PIN_MAPPABLE)
3512 		mode = DRM_MM_INSERT_LOW;
3513 
3514 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3515 	 * so we know that we always have a minimum alignment of 4096.
3516 	 * The drm_mm range manager is optimised to return results
3517 	 * with zero alignment, so where possible use the optimal
3518 	 * path.
3519 	 */
3520 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3521 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3522 		alignment = 0;
3523 
3524 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3525 					  size, alignment, color,
3526 					  start, end, mode);
3527 	if (err != -ENOSPC)
3528 		return err;
3529 
3530 	if (flags & PIN_NOEVICT)
3531 		return -ENOSPC;
3532 
3533 	/* No free space, pick a slot at random.
3534 	 *
3535 	 * There is a pathological case here using a GTT shared between
3536 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3537 	 *
3538 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3539 	 *         (64k objects)             (448k objects)
3540 	 *
3541 	 * Now imagine that the eviction LRU is ordered top-down (just because
3542 	 * pathology meets real life), and that we need to evict an object to
3543 	 * make room inside the aperture. The eviction scan then has to walk
3544 	 * the 448k list before it finds one within range. And now imagine that
3545 	 * it has to search for a new hole between every byte inside the memcpy,
3546 	 * for several simultaneous clients.
3547 	 *
3548 	 * On a full-ppgtt system, if we have run out of available space, there
3549 	 * will be lots and lots of objects in the eviction list! Again,
3550 	 * searching that LRU list may be slow if we are also applying any
3551 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3552 	 * simplicity and similarilty between different GTT, try the single
3553 	 * random replacement first.
3554 	 */
3555 	offset = random_offset(start, end,
3556 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3557 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3558 	if (err != -ENOSPC)
3559 		return err;
3560 
3561 	/* Randomly selected placement is pinned, do a search */
3562 	err = i915_gem_evict_something(vm, size, alignment, color,
3563 				       start, end, flags);
3564 	if (err)
3565 		return err;
3566 
3567 	return drm_mm_insert_node_in_range(&vm->mm, node,
3568 					   size, alignment, color,
3569 					   start, end, DRM_MM_INSERT_EVICT);
3570 }
3571 
3572 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3573 #include "selftests/mock_gtt.c"
3574 #include "selftests/i915_gem_gtt.c"
3575 #endif
3576