xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/i915_drm.h>
37 
38 #include "i915_drv.h"
39 #include "i915_vgpu.h"
40 #include "i915_reset.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
136 static int ppgtt_bind_vma(struct i915_vma *vma,
137 			  enum i915_cache_level cache_level,
138 			  u32 unused)
139 {
140 	u32 pte_flags;
141 	int err;
142 
143 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
144 		err = vma->vm->allocate_va_range(vma->vm,
145 						 vma->node.start, vma->size);
146 		if (err)
147 			return err;
148 	}
149 
150 	/* Applicable to VLV, and gen8+ */
151 	pte_flags = 0;
152 	if (i915_gem_object_is_readonly(vma->obj))
153 		pte_flags |= PTE_READ_ONLY;
154 
155 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 
157 	return 0;
158 }
159 
160 static void ppgtt_unbind_vma(struct i915_vma *vma)
161 {
162 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163 }
164 
165 static int ppgtt_set_pages(struct i915_vma *vma)
166 {
167 	GEM_BUG_ON(vma->pages);
168 
169 	vma->pages = vma->obj->mm.pages;
170 
171 	vma->page_sizes = vma->obj->mm.page_sizes;
172 
173 	return 0;
174 }
175 
176 static void clear_pages(struct i915_vma *vma)
177 {
178 	GEM_BUG_ON(!vma->pages);
179 
180 	if (vma->pages != vma->obj->mm.pages) {
181 		sg_free_table(vma->pages);
182 		kfree(vma->pages);
183 	}
184 	vma->pages = NULL;
185 
186 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 }
188 
189 static u64 gen8_pte_encode(dma_addr_t addr,
190 			   enum i915_cache_level level,
191 			   u32 flags)
192 {
193 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
194 
195 	if (unlikely(flags & PTE_READ_ONLY))
196 		pte &= ~_PAGE_RW;
197 
198 	switch (level) {
199 	case I915_CACHE_NONE:
200 		pte |= PPAT_UNCACHED;
201 		break;
202 	case I915_CACHE_WT:
203 		pte |= PPAT_DISPLAY_ELLC;
204 		break;
205 	default:
206 		pte |= PPAT_CACHED;
207 		break;
208 	}
209 
210 	return pte;
211 }
212 
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 				  const enum i915_cache_level level)
215 {
216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 	pde |= addr;
218 	if (level != I915_CACHE_NONE)
219 		pde |= PPAT_CACHED_PDE;
220 	else
221 		pde |= PPAT_UNCACHED;
222 	return pde;
223 }
224 
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227 
228 static u64 snb_pte_encode(dma_addr_t addr,
229 			  enum i915_cache_level level,
230 			  u32 flags)
231 {
232 	gen6_pte_t pte = GEN6_PTE_VALID;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	switch (level) {
236 	case I915_CACHE_L3_LLC:
237 	case I915_CACHE_LLC:
238 		pte |= GEN6_PTE_CACHE_LLC;
239 		break;
240 	case I915_CACHE_NONE:
241 		pte |= GEN6_PTE_UNCACHED;
242 		break;
243 	default:
244 		MISSING_CASE(level);
245 	}
246 
247 	return pte;
248 }
249 
250 static u64 ivb_pte_encode(dma_addr_t addr,
251 			  enum i915_cache_level level,
252 			  u32 flags)
253 {
254 	gen6_pte_t pte = GEN6_PTE_VALID;
255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
256 
257 	switch (level) {
258 	case I915_CACHE_L3_LLC:
259 		pte |= GEN7_PTE_CACHE_L3_LLC;
260 		break;
261 	case I915_CACHE_LLC:
262 		pte |= GEN6_PTE_CACHE_LLC;
263 		break;
264 	case I915_CACHE_NONE:
265 		pte |= GEN6_PTE_UNCACHED;
266 		break;
267 	default:
268 		MISSING_CASE(level);
269 	}
270 
271 	return pte;
272 }
273 
274 static u64 byt_pte_encode(dma_addr_t addr,
275 			  enum i915_cache_level level,
276 			  u32 flags)
277 {
278 	gen6_pte_t pte = GEN6_PTE_VALID;
279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
280 
281 	if (!(flags & PTE_READ_ONLY))
282 		pte |= BYT_PTE_WRITEABLE;
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286 
287 	return pte;
288 }
289 
290 static u64 hsw_pte_encode(dma_addr_t addr,
291 			  enum i915_cache_level level,
292 			  u32 flags)
293 {
294 	gen6_pte_t pte = GEN6_PTE_VALID;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	if (level != I915_CACHE_NONE)
298 		pte |= HSW_WB_LLC_AGE3;
299 
300 	return pte;
301 }
302 
303 static u64 iris_pte_encode(dma_addr_t addr,
304 			   enum i915_cache_level level,
305 			   u32 flags)
306 {
307 	gen6_pte_t pte = GEN6_PTE_VALID;
308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_NONE:
312 		break;
313 	case I915_CACHE_WT:
314 		pte |= HSW_WT_ELLC_LLC_AGE3;
315 		break;
316 	default:
317 		pte |= HSW_WB_ELLC_LLC_AGE3;
318 		break;
319 	}
320 
321 	return pte;
322 }
323 
324 static void stash_init(struct pagestash *stash)
325 {
326 	pagevec_init(&stash->pvec);
327 	spin_lock_init(&stash->lock);
328 }
329 
330 static struct page *stash_pop_page(struct pagestash *stash)
331 {
332 	struct page *page = NULL;
333 
334 	spin_lock(&stash->lock);
335 	if (likely(stash->pvec.nr))
336 		page = stash->pvec.pages[--stash->pvec.nr];
337 	spin_unlock(&stash->lock);
338 
339 	return page;
340 }
341 
342 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
343 {
344 	int nr;
345 
346 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
347 
348 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
349 	memcpy(stash->pvec.pages + stash->pvec.nr,
350 	       pvec->pages + pvec->nr - nr,
351 	       sizeof(pvec->pages[0]) * nr);
352 	stash->pvec.nr += nr;
353 
354 	spin_unlock(&stash->lock);
355 
356 	pvec->nr -= nr;
357 }
358 
359 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360 {
361 	struct pagevec stack;
362 	struct page *page;
363 
364 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
365 		i915_gem_shrink_all(vm->i915);
366 
367 	page = stash_pop_page(&vm->free_pages);
368 	if (page)
369 		return page;
370 
371 	if (!vm->pt_kmap_wc)
372 		return alloc_page(gfp);
373 
374 	/* Look in our global stash of WC pages... */
375 	page = stash_pop_page(&vm->i915->mm.wc_stash);
376 	if (page)
377 		return page;
378 
379 	/*
380 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 	 *
382 	 * We have to be careful as page allocation may trigger the shrinker
383 	 * (via direct reclaim) which will fill up the WC stash underneath us.
384 	 * So we add our WB pages into a temporary pvec on the stack and merge
385 	 * them into the WC stash after all the allocations are complete.
386 	 */
387 	pagevec_init(&stack);
388 	do {
389 		struct page *page;
390 
391 		page = alloc_page(gfp);
392 		if (unlikely(!page))
393 			break;
394 
395 		stack.pages[stack.nr++] = page;
396 	} while (pagevec_space(&stack));
397 
398 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
399 		page = stack.pages[--stack.nr];
400 
401 		/* Merge spare WC pages to the global stash */
402 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403 
404 		/* Push any surplus WC pages onto the local VM stash */
405 		if (stack.nr)
406 			stash_push_pagevec(&vm->free_pages, &stack);
407 	}
408 
409 	/* Return unwanted leftovers */
410 	if (unlikely(stack.nr)) {
411 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
412 		__pagevec_release(&stack);
413 	}
414 
415 	return page;
416 }
417 
418 static void vm_free_pages_release(struct i915_address_space *vm,
419 				  bool immediate)
420 {
421 	struct pagevec *pvec = &vm->free_pages.pvec;
422 	struct pagevec stack;
423 
424 	lockdep_assert_held(&vm->free_pages.lock);
425 	GEM_BUG_ON(!pagevec_count(pvec));
426 
427 	if (vm->pt_kmap_wc) {
428 		/*
429 		 * When we use WC, first fill up the global stash and then
430 		 * only if full immediately free the overflow.
431 		 */
432 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433 
434 		/*
435 		 * As we have made some room in the VM's free_pages,
436 		 * we can wait for it to fill again. Unless we are
437 		 * inside i915_address_space_fini() and must
438 		 * immediately release the pages!
439 		 */
440 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
441 			return;
442 
443 		/*
444 		 * We have to drop the lock to allow ourselves to sleep,
445 		 * so take a copy of the pvec and clear the stash for
446 		 * others to use it as we sleep.
447 		 */
448 		stack = *pvec;
449 		pagevec_reinit(pvec);
450 		spin_unlock(&vm->free_pages.lock);
451 
452 		pvec = &stack;
453 		set_pages_array_wb(pvec->pages, pvec->nr);
454 
455 		spin_lock(&vm->free_pages.lock);
456 	}
457 
458 	__pagevec_release(pvec);
459 }
460 
461 static void vm_free_page(struct i915_address_space *vm, struct page *page)
462 {
463 	/*
464 	 * On !llc, we need to change the pages back to WB. We only do so
465 	 * in bulk, so we rarely need to change the page attributes here,
466 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
467 	 * To make detection of the possible sleep more likely, use an
468 	 * unconditional might_sleep() for everybody.
469 	 */
470 	might_sleep();
471 	spin_lock(&vm->free_pages.lock);
472 	if (!pagevec_add(&vm->free_pages.pvec, page))
473 		vm_free_pages_release(vm, false);
474 	spin_unlock(&vm->free_pages.lock);
475 }
476 
477 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
478 {
479 	/*
480 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
481 	 * Do a dummy acquire now under fs_reclaim so that any allocation
482 	 * attempt holding the lock is immediately reported by lockdep.
483 	 */
484 	mutex_init(&vm->mutex);
485 	lockdep_set_subclass(&vm->mutex, subclass);
486 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
487 
488 	GEM_BUG_ON(!vm->total);
489 	drm_mm_init(&vm->mm, 0, vm->total);
490 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
491 
492 	stash_init(&vm->free_pages);
493 
494 	INIT_LIST_HEAD(&vm->unbound_list);
495 	INIT_LIST_HEAD(&vm->bound_list);
496 }
497 
498 static void i915_address_space_fini(struct i915_address_space *vm)
499 {
500 	spin_lock(&vm->free_pages.lock);
501 	if (pagevec_count(&vm->free_pages.pvec))
502 		vm_free_pages_release(vm, true);
503 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
504 	spin_unlock(&vm->free_pages.lock);
505 
506 	drm_mm_takedown(&vm->mm);
507 
508 	mutex_destroy(&vm->mutex);
509 }
510 
511 static int __setup_page_dma(struct i915_address_space *vm,
512 			    struct i915_page_dma *p,
513 			    gfp_t gfp)
514 {
515 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
516 	if (unlikely(!p->page))
517 		return -ENOMEM;
518 
519 	p->daddr = dma_map_page_attrs(vm->dma,
520 				      p->page, 0, PAGE_SIZE,
521 				      PCI_DMA_BIDIRECTIONAL,
522 				      DMA_ATTR_SKIP_CPU_SYNC |
523 				      DMA_ATTR_NO_WARN);
524 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
525 		vm_free_page(vm, p->page);
526 		return -ENOMEM;
527 	}
528 
529 	return 0;
530 }
531 
532 static int setup_page_dma(struct i915_address_space *vm,
533 			  struct i915_page_dma *p)
534 {
535 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
536 }
537 
538 static void cleanup_page_dma(struct i915_address_space *vm,
539 			     struct i915_page_dma *p)
540 {
541 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
542 	vm_free_page(vm, p->page);
543 }
544 
545 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
546 
547 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
548 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
549 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
550 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
551 
552 static void fill_page_dma(struct i915_address_space *vm,
553 			  struct i915_page_dma *p,
554 			  const u64 val)
555 {
556 	u64 * const vaddr = kmap_atomic(p->page);
557 
558 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
559 
560 	kunmap_atomic(vaddr);
561 }
562 
563 static void fill_page_dma_32(struct i915_address_space *vm,
564 			     struct i915_page_dma *p,
565 			     const u32 v)
566 {
567 	fill_page_dma(vm, p, (u64)v << 32 | v);
568 }
569 
570 static int
571 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
572 {
573 	unsigned long size;
574 
575 	/*
576 	 * In order to utilize 64K pages for an object with a size < 2M, we will
577 	 * need to support a 64K scratch page, given that every 16th entry for a
578 	 * page-table operating in 64K mode must point to a properly aligned 64K
579 	 * region, including any PTEs which happen to point to scratch.
580 	 *
581 	 * This is only relevant for the 48b PPGTT where we support
582 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
583 	 * scratch (read-only) between all vm, we create one 64k scratch page
584 	 * for all.
585 	 */
586 	size = I915_GTT_PAGE_SIZE_4K;
587 	if (i915_vm_is_48bit(vm) &&
588 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
589 		size = I915_GTT_PAGE_SIZE_64K;
590 		gfp |= __GFP_NOWARN;
591 	}
592 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
593 
594 	do {
595 		int order = get_order(size);
596 		struct page *page;
597 		dma_addr_t addr;
598 
599 		page = alloc_pages(gfp, order);
600 		if (unlikely(!page))
601 			goto skip;
602 
603 		addr = dma_map_page_attrs(vm->dma,
604 					  page, 0, size,
605 					  PCI_DMA_BIDIRECTIONAL,
606 					  DMA_ATTR_SKIP_CPU_SYNC |
607 					  DMA_ATTR_NO_WARN);
608 		if (unlikely(dma_mapping_error(vm->dma, addr)))
609 			goto free_page;
610 
611 		if (unlikely(!IS_ALIGNED(addr, size)))
612 			goto unmap_page;
613 
614 		vm->scratch_page.page = page;
615 		vm->scratch_page.daddr = addr;
616 		vm->scratch_page.order = order;
617 		return 0;
618 
619 unmap_page:
620 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
621 free_page:
622 		__free_pages(page, order);
623 skip:
624 		if (size == I915_GTT_PAGE_SIZE_4K)
625 			return -ENOMEM;
626 
627 		size = I915_GTT_PAGE_SIZE_4K;
628 		gfp &= ~__GFP_NOWARN;
629 	} while (1);
630 }
631 
632 static void cleanup_scratch_page(struct i915_address_space *vm)
633 {
634 	struct i915_page_dma *p = &vm->scratch_page;
635 
636 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
637 		       PCI_DMA_BIDIRECTIONAL);
638 	__free_pages(p->page, p->order);
639 }
640 
641 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
642 {
643 	struct i915_page_table *pt;
644 
645 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
646 	if (unlikely(!pt))
647 		return ERR_PTR(-ENOMEM);
648 
649 	if (unlikely(setup_px(vm, pt))) {
650 		kfree(pt);
651 		return ERR_PTR(-ENOMEM);
652 	}
653 
654 	pt->used_ptes = 0;
655 	return pt;
656 }
657 
658 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
659 {
660 	cleanup_px(vm, pt);
661 	kfree(pt);
662 }
663 
664 static void gen8_initialize_pt(struct i915_address_space *vm,
665 			       struct i915_page_table *pt)
666 {
667 	fill_px(vm, pt, vm->scratch_pte);
668 }
669 
670 static void gen6_initialize_pt(struct i915_address_space *vm,
671 			       struct i915_page_table *pt)
672 {
673 	fill32_px(vm, pt, vm->scratch_pte);
674 }
675 
676 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
677 {
678 	struct i915_page_directory *pd;
679 
680 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
681 	if (unlikely(!pd))
682 		return ERR_PTR(-ENOMEM);
683 
684 	if (unlikely(setup_px(vm, pd))) {
685 		kfree(pd);
686 		return ERR_PTR(-ENOMEM);
687 	}
688 
689 	pd->used_pdes = 0;
690 	return pd;
691 }
692 
693 static void free_pd(struct i915_address_space *vm,
694 		    struct i915_page_directory *pd)
695 {
696 	cleanup_px(vm, pd);
697 	kfree(pd);
698 }
699 
700 static void gen8_initialize_pd(struct i915_address_space *vm,
701 			       struct i915_page_directory *pd)
702 {
703 	fill_px(vm, pd,
704 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
705 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
706 }
707 
708 static int __pdp_init(struct i915_address_space *vm,
709 		      struct i915_page_directory_pointer *pdp)
710 {
711 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
712 
713 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
714 					    I915_GFP_ALLOW_FAIL);
715 	if (unlikely(!pdp->page_directory))
716 		return -ENOMEM;
717 
718 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
719 
720 	return 0;
721 }
722 
723 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
724 {
725 	kfree(pdp->page_directory);
726 	pdp->page_directory = NULL;
727 }
728 
729 static inline bool use_4lvl(const struct i915_address_space *vm)
730 {
731 	return i915_vm_is_48bit(vm);
732 }
733 
734 static struct i915_page_directory_pointer *
735 alloc_pdp(struct i915_address_space *vm)
736 {
737 	struct i915_page_directory_pointer *pdp;
738 	int ret = -ENOMEM;
739 
740 	GEM_BUG_ON(!use_4lvl(vm));
741 
742 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
743 	if (!pdp)
744 		return ERR_PTR(-ENOMEM);
745 
746 	ret = __pdp_init(vm, pdp);
747 	if (ret)
748 		goto fail_bitmap;
749 
750 	ret = setup_px(vm, pdp);
751 	if (ret)
752 		goto fail_page_m;
753 
754 	return pdp;
755 
756 fail_page_m:
757 	__pdp_fini(pdp);
758 fail_bitmap:
759 	kfree(pdp);
760 
761 	return ERR_PTR(ret);
762 }
763 
764 static void free_pdp(struct i915_address_space *vm,
765 		     struct i915_page_directory_pointer *pdp)
766 {
767 	__pdp_fini(pdp);
768 
769 	if (!use_4lvl(vm))
770 		return;
771 
772 	cleanup_px(vm, pdp);
773 	kfree(pdp);
774 }
775 
776 static void gen8_initialize_pdp(struct i915_address_space *vm,
777 				struct i915_page_directory_pointer *pdp)
778 {
779 	gen8_ppgtt_pdpe_t scratch_pdpe;
780 
781 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
782 
783 	fill_px(vm, pdp, scratch_pdpe);
784 }
785 
786 static void gen8_initialize_pml4(struct i915_address_space *vm,
787 				 struct i915_pml4 *pml4)
788 {
789 	fill_px(vm, pml4,
790 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
791 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
792 }
793 
794 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
795  * the page table structures, we mark them dirty so that
796  * context switching/execlist queuing code takes extra steps
797  * to ensure that tlbs are flushed.
798  */
799 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
800 {
801 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
802 }
803 
804 /* Removes entries from a single page table, releasing it if it's empty.
805  * Caller can use the return value to update higher-level entries.
806  */
807 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
808 				struct i915_page_table *pt,
809 				u64 start, u64 length)
810 {
811 	unsigned int num_entries = gen8_pte_count(start, length);
812 	unsigned int pte = gen8_pte_index(start);
813 	unsigned int pte_end = pte + num_entries;
814 	gen8_pte_t *vaddr;
815 
816 	GEM_BUG_ON(num_entries > pt->used_ptes);
817 
818 	pt->used_ptes -= num_entries;
819 	if (!pt->used_ptes)
820 		return true;
821 
822 	vaddr = kmap_atomic_px(pt);
823 	while (pte < pte_end)
824 		vaddr[pte++] = vm->scratch_pte;
825 	kunmap_atomic(vaddr);
826 
827 	return false;
828 }
829 
830 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
831 			       struct i915_page_directory *pd,
832 			       struct i915_page_table *pt,
833 			       unsigned int pde)
834 {
835 	gen8_pde_t *vaddr;
836 
837 	pd->page_table[pde] = pt;
838 
839 	vaddr = kmap_atomic_px(pd);
840 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
841 	kunmap_atomic(vaddr);
842 }
843 
844 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
845 				struct i915_page_directory *pd,
846 				u64 start, u64 length)
847 {
848 	struct i915_page_table *pt;
849 	u32 pde;
850 
851 	gen8_for_each_pde(pt, pd, start, length, pde) {
852 		GEM_BUG_ON(pt == vm->scratch_pt);
853 
854 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
855 			continue;
856 
857 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
858 		GEM_BUG_ON(!pd->used_pdes);
859 		pd->used_pdes--;
860 
861 		free_pt(vm, pt);
862 	}
863 
864 	return !pd->used_pdes;
865 }
866 
867 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
868 				struct i915_page_directory_pointer *pdp,
869 				struct i915_page_directory *pd,
870 				unsigned int pdpe)
871 {
872 	gen8_ppgtt_pdpe_t *vaddr;
873 
874 	pdp->page_directory[pdpe] = pd;
875 	if (!use_4lvl(vm))
876 		return;
877 
878 	vaddr = kmap_atomic_px(pdp);
879 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
880 	kunmap_atomic(vaddr);
881 }
882 
883 /* Removes entries from a single page dir pointer, releasing it if it's empty.
884  * Caller can use the return value to update higher-level entries
885  */
886 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
887 				 struct i915_page_directory_pointer *pdp,
888 				 u64 start, u64 length)
889 {
890 	struct i915_page_directory *pd;
891 	unsigned int pdpe;
892 
893 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
894 		GEM_BUG_ON(pd == vm->scratch_pd);
895 
896 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
897 			continue;
898 
899 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
900 		GEM_BUG_ON(!pdp->used_pdpes);
901 		pdp->used_pdpes--;
902 
903 		free_pd(vm, pd);
904 	}
905 
906 	return !pdp->used_pdpes;
907 }
908 
909 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
910 				  u64 start, u64 length)
911 {
912 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
913 }
914 
915 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
916 				 struct i915_page_directory_pointer *pdp,
917 				 unsigned int pml4e)
918 {
919 	gen8_ppgtt_pml4e_t *vaddr;
920 
921 	pml4->pdps[pml4e] = pdp;
922 
923 	vaddr = kmap_atomic_px(pml4);
924 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
925 	kunmap_atomic(vaddr);
926 }
927 
928 /* Removes entries from a single pml4.
929  * This is the top-level structure in 4-level page tables used on gen8+.
930  * Empty entries are always scratch pml4e.
931  */
932 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
933 				  u64 start, u64 length)
934 {
935 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936 	struct i915_pml4 *pml4 = &ppgtt->pml4;
937 	struct i915_page_directory_pointer *pdp;
938 	unsigned int pml4e;
939 
940 	GEM_BUG_ON(!use_4lvl(vm));
941 
942 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
943 		GEM_BUG_ON(pdp == vm->scratch_pdp);
944 
945 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
946 			continue;
947 
948 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
949 
950 		free_pdp(vm, pdp);
951 	}
952 }
953 
954 static inline struct sgt_dma {
955 	struct scatterlist *sg;
956 	dma_addr_t dma, max;
957 } sgt_dma(struct i915_vma *vma) {
958 	struct scatterlist *sg = vma->pages->sgl;
959 	dma_addr_t addr = sg_dma_address(sg);
960 	return (struct sgt_dma) { sg, addr, addr + sg->length };
961 }
962 
963 struct gen8_insert_pte {
964 	u16 pml4e;
965 	u16 pdpe;
966 	u16 pde;
967 	u16 pte;
968 };
969 
970 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
971 {
972 	return (struct gen8_insert_pte) {
973 		 gen8_pml4e_index(start),
974 		 gen8_pdpe_index(start),
975 		 gen8_pde_index(start),
976 		 gen8_pte_index(start),
977 	};
978 }
979 
980 static __always_inline bool
981 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
982 			      struct i915_page_directory_pointer *pdp,
983 			      struct sgt_dma *iter,
984 			      struct gen8_insert_pte *idx,
985 			      enum i915_cache_level cache_level,
986 			      u32 flags)
987 {
988 	struct i915_page_directory *pd;
989 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
990 	gen8_pte_t *vaddr;
991 	bool ret;
992 
993 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
994 	pd = pdp->page_directory[idx->pdpe];
995 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
996 	do {
997 		vaddr[idx->pte] = pte_encode | iter->dma;
998 
999 		iter->dma += I915_GTT_PAGE_SIZE;
1000 		if (iter->dma >= iter->max) {
1001 			iter->sg = __sg_next(iter->sg);
1002 			if (!iter->sg) {
1003 				ret = false;
1004 				break;
1005 			}
1006 
1007 			iter->dma = sg_dma_address(iter->sg);
1008 			iter->max = iter->dma + iter->sg->length;
1009 		}
1010 
1011 		if (++idx->pte == GEN8_PTES) {
1012 			idx->pte = 0;
1013 
1014 			if (++idx->pde == I915_PDES) {
1015 				idx->pde = 0;
1016 
1017 				/* Limited by sg length for 3lvl */
1018 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1019 					idx->pdpe = 0;
1020 					ret = true;
1021 					break;
1022 				}
1023 
1024 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1025 				pd = pdp->page_directory[idx->pdpe];
1026 			}
1027 
1028 			kunmap_atomic(vaddr);
1029 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1030 		}
1031 	} while (1);
1032 	kunmap_atomic(vaddr);
1033 
1034 	return ret;
1035 }
1036 
1037 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1038 				   struct i915_vma *vma,
1039 				   enum i915_cache_level cache_level,
1040 				   u32 flags)
1041 {
1042 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1043 	struct sgt_dma iter = sgt_dma(vma);
1044 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1045 
1046 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1047 				      cache_level, flags);
1048 
1049 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1050 }
1051 
1052 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1053 					   struct i915_page_directory_pointer **pdps,
1054 					   struct sgt_dma *iter,
1055 					   enum i915_cache_level cache_level,
1056 					   u32 flags)
1057 {
1058 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1059 	u64 start = vma->node.start;
1060 	dma_addr_t rem = iter->sg->length;
1061 
1062 	do {
1063 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1064 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1065 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1066 		unsigned int page_size;
1067 		bool maybe_64K = false;
1068 		gen8_pte_t encode = pte_encode;
1069 		gen8_pte_t *vaddr;
1070 		u16 index, max;
1071 
1072 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1073 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1074 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1075 			index = idx.pde;
1076 			max = I915_PDES;
1077 			page_size = I915_GTT_PAGE_SIZE_2M;
1078 
1079 			encode |= GEN8_PDE_PS_2M;
1080 
1081 			vaddr = kmap_atomic_px(pd);
1082 		} else {
1083 			struct i915_page_table *pt = pd->page_table[idx.pde];
1084 
1085 			index = idx.pte;
1086 			max = GEN8_PTES;
1087 			page_size = I915_GTT_PAGE_SIZE;
1088 
1089 			if (!index &&
1090 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1091 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1092 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1093 			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1094 				maybe_64K = true;
1095 
1096 			vaddr = kmap_atomic_px(pt);
1097 		}
1098 
1099 		do {
1100 			GEM_BUG_ON(iter->sg->length < page_size);
1101 			vaddr[index++] = encode | iter->dma;
1102 
1103 			start += page_size;
1104 			iter->dma += page_size;
1105 			rem -= page_size;
1106 			if (iter->dma >= iter->max) {
1107 				iter->sg = __sg_next(iter->sg);
1108 				if (!iter->sg)
1109 					break;
1110 
1111 				rem = iter->sg->length;
1112 				iter->dma = sg_dma_address(iter->sg);
1113 				iter->max = iter->dma + rem;
1114 
1115 				if (maybe_64K && index < max &&
1116 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1117 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1118 				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1119 					maybe_64K = false;
1120 
1121 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1122 					break;
1123 			}
1124 		} while (rem >= page_size && index < max);
1125 
1126 		kunmap_atomic(vaddr);
1127 
1128 		/*
1129 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1130 		 * filled whole page-table with 64K entries, or filled part of
1131 		 * it and have reached the end of the sg table and we have
1132 		 * enough padding.
1133 		 */
1134 		if (maybe_64K &&
1135 		    (index == max ||
1136 		     (i915_vm_has_scratch_64K(vma->vm) &&
1137 		      !iter->sg && IS_ALIGNED(vma->node.start +
1138 					      vma->node.size,
1139 					      I915_GTT_PAGE_SIZE_2M)))) {
1140 			vaddr = kmap_atomic_px(pd);
1141 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1142 			kunmap_atomic(vaddr);
1143 			page_size = I915_GTT_PAGE_SIZE_64K;
1144 
1145 			/*
1146 			 * We write all 4K page entries, even when using 64K
1147 			 * pages. In order to verify that the HW isn't cheating
1148 			 * by using the 4K PTE instead of the 64K PTE, we want
1149 			 * to remove all the surplus entries. If the HW skipped
1150 			 * the 64K PTE, it will read/write into the scratch page
1151 			 * instead - which we detect as missing results during
1152 			 * selftests.
1153 			 */
1154 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1155 				u16 i;
1156 
1157 				encode = vma->vm->scratch_pte;
1158 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1159 
1160 				for (i = 1; i < index; i += 16)
1161 					memset64(vaddr + i, encode, 15);
1162 
1163 				kunmap_atomic(vaddr);
1164 			}
1165 		}
1166 
1167 		vma->page_sizes.gtt |= page_size;
1168 	} while (iter->sg);
1169 }
1170 
1171 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1172 				   struct i915_vma *vma,
1173 				   enum i915_cache_level cache_level,
1174 				   u32 flags)
1175 {
1176 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1177 	struct sgt_dma iter = sgt_dma(vma);
1178 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1179 
1180 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1181 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1182 					       flags);
1183 	} else {
1184 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1185 
1186 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1187 						     &iter, &idx, cache_level,
1188 						     flags))
1189 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1190 
1191 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1192 	}
1193 }
1194 
1195 static void gen8_free_page_tables(struct i915_address_space *vm,
1196 				  struct i915_page_directory *pd)
1197 {
1198 	int i;
1199 
1200 	for (i = 0; i < I915_PDES; i++) {
1201 		if (pd->page_table[i] != vm->scratch_pt)
1202 			free_pt(vm, pd->page_table[i]);
1203 	}
1204 }
1205 
1206 static int gen8_init_scratch(struct i915_address_space *vm)
1207 {
1208 	int ret;
1209 
1210 	/*
1211 	 * If everybody agrees to not to write into the scratch page,
1212 	 * we can reuse it for all vm, keeping contexts and processes separate.
1213 	 */
1214 	if (vm->has_read_only &&
1215 	    vm->i915->kernel_context &&
1216 	    vm->i915->kernel_context->ppgtt) {
1217 		struct i915_address_space *clone =
1218 			&vm->i915->kernel_context->ppgtt->vm;
1219 
1220 		GEM_BUG_ON(!clone->has_read_only);
1221 
1222 		vm->scratch_page.order = clone->scratch_page.order;
1223 		vm->scratch_pte = clone->scratch_pte;
1224 		vm->scratch_pt  = clone->scratch_pt;
1225 		vm->scratch_pd  = clone->scratch_pd;
1226 		vm->scratch_pdp = clone->scratch_pdp;
1227 		return 0;
1228 	}
1229 
1230 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1231 	if (ret)
1232 		return ret;
1233 
1234 	vm->scratch_pte =
1235 		gen8_pte_encode(vm->scratch_page.daddr,
1236 				I915_CACHE_LLC,
1237 				PTE_READ_ONLY);
1238 
1239 	vm->scratch_pt = alloc_pt(vm);
1240 	if (IS_ERR(vm->scratch_pt)) {
1241 		ret = PTR_ERR(vm->scratch_pt);
1242 		goto free_scratch_page;
1243 	}
1244 
1245 	vm->scratch_pd = alloc_pd(vm);
1246 	if (IS_ERR(vm->scratch_pd)) {
1247 		ret = PTR_ERR(vm->scratch_pd);
1248 		goto free_pt;
1249 	}
1250 
1251 	if (use_4lvl(vm)) {
1252 		vm->scratch_pdp = alloc_pdp(vm);
1253 		if (IS_ERR(vm->scratch_pdp)) {
1254 			ret = PTR_ERR(vm->scratch_pdp);
1255 			goto free_pd;
1256 		}
1257 	}
1258 
1259 	gen8_initialize_pt(vm, vm->scratch_pt);
1260 	gen8_initialize_pd(vm, vm->scratch_pd);
1261 	if (use_4lvl(vm))
1262 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1263 
1264 	return 0;
1265 
1266 free_pd:
1267 	free_pd(vm, vm->scratch_pd);
1268 free_pt:
1269 	free_pt(vm, vm->scratch_pt);
1270 free_scratch_page:
1271 	cleanup_scratch_page(vm);
1272 
1273 	return ret;
1274 }
1275 
1276 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1277 {
1278 	struct i915_address_space *vm = &ppgtt->vm;
1279 	struct drm_i915_private *dev_priv = vm->i915;
1280 	enum vgt_g2v_type msg;
1281 	int i;
1282 
1283 	if (use_4lvl(vm)) {
1284 		const u64 daddr = px_dma(&ppgtt->pml4);
1285 
1286 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1287 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1288 
1289 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1290 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1291 	} else {
1292 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1293 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1294 
1295 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1296 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1297 		}
1298 
1299 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1300 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1301 	}
1302 
1303 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1304 
1305 	return 0;
1306 }
1307 
1308 static void gen8_free_scratch(struct i915_address_space *vm)
1309 {
1310 	if (!vm->scratch_page.daddr)
1311 		return;
1312 
1313 	if (use_4lvl(vm))
1314 		free_pdp(vm, vm->scratch_pdp);
1315 	free_pd(vm, vm->scratch_pd);
1316 	free_pt(vm, vm->scratch_pt);
1317 	cleanup_scratch_page(vm);
1318 }
1319 
1320 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1321 				    struct i915_page_directory_pointer *pdp)
1322 {
1323 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1324 	int i;
1325 
1326 	for (i = 0; i < pdpes; i++) {
1327 		if (pdp->page_directory[i] == vm->scratch_pd)
1328 			continue;
1329 
1330 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1331 		free_pd(vm, pdp->page_directory[i]);
1332 	}
1333 
1334 	free_pdp(vm, pdp);
1335 }
1336 
1337 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1338 {
1339 	int i;
1340 
1341 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1342 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1343 			continue;
1344 
1345 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1346 	}
1347 
1348 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1349 }
1350 
1351 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1352 {
1353 	struct drm_i915_private *dev_priv = vm->i915;
1354 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1355 
1356 	if (intel_vgpu_active(dev_priv))
1357 		gen8_ppgtt_notify_vgt(ppgtt, false);
1358 
1359 	if (use_4lvl(vm))
1360 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1361 	else
1362 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1363 
1364 	gen8_free_scratch(vm);
1365 }
1366 
1367 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1368 			       struct i915_page_directory *pd,
1369 			       u64 start, u64 length)
1370 {
1371 	struct i915_page_table *pt;
1372 	u64 from = start;
1373 	unsigned int pde;
1374 
1375 	gen8_for_each_pde(pt, pd, start, length, pde) {
1376 		int count = gen8_pte_count(start, length);
1377 
1378 		if (pt == vm->scratch_pt) {
1379 			pd->used_pdes++;
1380 
1381 			pt = alloc_pt(vm);
1382 			if (IS_ERR(pt)) {
1383 				pd->used_pdes--;
1384 				goto unwind;
1385 			}
1386 
1387 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1388 				gen8_initialize_pt(vm, pt);
1389 
1390 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1391 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1392 		}
1393 
1394 		pt->used_ptes += count;
1395 	}
1396 	return 0;
1397 
1398 unwind:
1399 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1400 	return -ENOMEM;
1401 }
1402 
1403 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1404 				struct i915_page_directory_pointer *pdp,
1405 				u64 start, u64 length)
1406 {
1407 	struct i915_page_directory *pd;
1408 	u64 from = start;
1409 	unsigned int pdpe;
1410 	int ret;
1411 
1412 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1413 		if (pd == vm->scratch_pd) {
1414 			pdp->used_pdpes++;
1415 
1416 			pd = alloc_pd(vm);
1417 			if (IS_ERR(pd)) {
1418 				pdp->used_pdpes--;
1419 				goto unwind;
1420 			}
1421 
1422 			gen8_initialize_pd(vm, pd);
1423 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1424 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1425 		}
1426 
1427 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1428 		if (unlikely(ret))
1429 			goto unwind_pd;
1430 	}
1431 
1432 	return 0;
1433 
1434 unwind_pd:
1435 	if (!pd->used_pdes) {
1436 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1437 		GEM_BUG_ON(!pdp->used_pdpes);
1438 		pdp->used_pdpes--;
1439 		free_pd(vm, pd);
1440 	}
1441 unwind:
1442 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1443 	return -ENOMEM;
1444 }
1445 
1446 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1447 				 u64 start, u64 length)
1448 {
1449 	return gen8_ppgtt_alloc_pdp(vm,
1450 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1451 }
1452 
1453 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1454 				 u64 start, u64 length)
1455 {
1456 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1457 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1458 	struct i915_page_directory_pointer *pdp;
1459 	u64 from = start;
1460 	u32 pml4e;
1461 	int ret;
1462 
1463 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1464 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1465 			pdp = alloc_pdp(vm);
1466 			if (IS_ERR(pdp))
1467 				goto unwind;
1468 
1469 			gen8_initialize_pdp(vm, pdp);
1470 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1471 		}
1472 
1473 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1474 		if (unlikely(ret))
1475 			goto unwind_pdp;
1476 	}
1477 
1478 	return 0;
1479 
1480 unwind_pdp:
1481 	if (!pdp->used_pdpes) {
1482 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1483 		free_pdp(vm, pdp);
1484 	}
1485 unwind:
1486 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1487 	return -ENOMEM;
1488 }
1489 
1490 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1491 {
1492 	struct i915_address_space *vm = &ppgtt->vm;
1493 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1494 	struct i915_page_directory *pd;
1495 	u64 start = 0, length = ppgtt->vm.total;
1496 	u64 from = start;
1497 	unsigned int pdpe;
1498 
1499 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1500 		pd = alloc_pd(vm);
1501 		if (IS_ERR(pd))
1502 			goto unwind;
1503 
1504 		gen8_initialize_pd(vm, pd);
1505 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1506 		pdp->used_pdpes++;
1507 	}
1508 
1509 	pdp->used_pdpes++; /* never remove */
1510 	return 0;
1511 
1512 unwind:
1513 	start -= from;
1514 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1515 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1516 		free_pd(vm, pd);
1517 	}
1518 	pdp->used_pdpes = 0;
1519 	return -ENOMEM;
1520 }
1521 
1522 /*
1523  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1524  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1525  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1526  * space.
1527  *
1528  */
1529 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1530 {
1531 	struct i915_hw_ppgtt *ppgtt;
1532 	int err;
1533 
1534 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1535 	if (!ppgtt)
1536 		return ERR_PTR(-ENOMEM);
1537 
1538 	kref_init(&ppgtt->ref);
1539 
1540 	ppgtt->vm.i915 = i915;
1541 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1542 
1543 	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1544 		1ULL << 48 :
1545 		1ULL << 32;
1546 
1547 	/* From bdw, there is support for read-only pages in the PPGTT. */
1548 	ppgtt->vm.has_read_only = true;
1549 
1550 	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1551 
1552 	/* There are only few exceptions for gen >=6. chv and bxt.
1553 	 * And we are not sure about the latter so play safe for now.
1554 	 */
1555 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1556 		ppgtt->vm.pt_kmap_wc = true;
1557 
1558 	err = gen8_init_scratch(&ppgtt->vm);
1559 	if (err)
1560 		goto err_free;
1561 
1562 	if (use_4lvl(&ppgtt->vm)) {
1563 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1564 		if (err)
1565 			goto err_scratch;
1566 
1567 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1568 
1569 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1570 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1571 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1572 	} else {
1573 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1574 		if (err)
1575 			goto err_scratch;
1576 
1577 		if (intel_vgpu_active(i915)) {
1578 			err = gen8_preallocate_top_level_pdp(ppgtt);
1579 			if (err) {
1580 				__pdp_fini(&ppgtt->pdp);
1581 				goto err_scratch;
1582 			}
1583 		}
1584 
1585 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1586 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1587 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1588 	}
1589 
1590 	if (intel_vgpu_active(i915))
1591 		gen8_ppgtt_notify_vgt(ppgtt, true);
1592 
1593 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1594 
1595 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1596 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1597 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1598 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1599 
1600 	return ppgtt;
1601 
1602 err_scratch:
1603 	gen8_free_scratch(&ppgtt->vm);
1604 err_free:
1605 	kfree(ppgtt);
1606 	return ERR_PTR(err);
1607 }
1608 
1609 /* Write pde (index) from the page directory @pd to the page table @pt */
1610 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1611 				  const unsigned int pde,
1612 				  const struct i915_page_table *pt)
1613 {
1614 	/* Caller needs to make sure the write completes if necessary */
1615 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1616 		  ppgtt->pd_addr + pde);
1617 }
1618 
1619 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1620 {
1621 	struct intel_engine_cs *engine;
1622 	u32 ecochk, ecobits;
1623 	enum intel_engine_id id;
1624 
1625 	ecobits = I915_READ(GAC_ECO_BITS);
1626 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1627 
1628 	ecochk = I915_READ(GAM_ECOCHK);
1629 	if (IS_HASWELL(dev_priv)) {
1630 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1631 	} else {
1632 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1633 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1634 	}
1635 	I915_WRITE(GAM_ECOCHK, ecochk);
1636 
1637 	for_each_engine(engine, dev_priv, id) {
1638 		/* GFX_MODE is per-ring on gen7+ */
1639 		I915_WRITE(RING_MODE_GEN7(engine),
1640 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1641 	}
1642 }
1643 
1644 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1645 {
1646 	u32 ecochk, gab_ctl, ecobits;
1647 
1648 	ecobits = I915_READ(GAC_ECO_BITS);
1649 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1650 		   ECOBITS_PPGTT_CACHE64B);
1651 
1652 	gab_ctl = I915_READ(GAB_CTL);
1653 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1654 
1655 	ecochk = I915_READ(GAM_ECOCHK);
1656 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1657 
1658 	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
1659 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1660 }
1661 
1662 /* PPGTT support for Sandybdrige/Gen6 and later */
1663 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1664 				   u64 start, u64 length)
1665 {
1666 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1667 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1668 	unsigned int pde = first_entry / GEN6_PTES;
1669 	unsigned int pte = first_entry % GEN6_PTES;
1670 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1671 	const gen6_pte_t scratch_pte = vm->scratch_pte;
1672 
1673 	while (num_entries) {
1674 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1675 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1676 		const unsigned int count = end - pte;
1677 		gen6_pte_t *vaddr;
1678 
1679 		GEM_BUG_ON(pt == vm->scratch_pt);
1680 
1681 		num_entries -= count;
1682 
1683 		GEM_BUG_ON(count > pt->used_ptes);
1684 		pt->used_ptes -= count;
1685 		if (!pt->used_ptes)
1686 			ppgtt->scan_for_unused_pt = true;
1687 
1688 		/*
1689 		 * Note that the hw doesn't support removing PDE on the fly
1690 		 * (they are cached inside the context with no means to
1691 		 * invalidate the cache), so we can only reset the PTE
1692 		 * entries back to scratch.
1693 		 */
1694 
1695 		vaddr = kmap_atomic_px(pt);
1696 		do {
1697 			vaddr[pte++] = scratch_pte;
1698 		} while (pte < end);
1699 		kunmap_atomic(vaddr);
1700 
1701 		pte = 0;
1702 	}
1703 }
1704 
1705 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1706 				      struct i915_vma *vma,
1707 				      enum i915_cache_level cache_level,
1708 				      u32 flags)
1709 {
1710 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1711 	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1712 	unsigned act_pt = first_entry / GEN6_PTES;
1713 	unsigned act_pte = first_entry % GEN6_PTES;
1714 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1715 	struct sgt_dma iter = sgt_dma(vma);
1716 	gen6_pte_t *vaddr;
1717 
1718 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1719 
1720 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1721 	do {
1722 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1723 
1724 		iter.dma += I915_GTT_PAGE_SIZE;
1725 		if (iter.dma == iter.max) {
1726 			iter.sg = __sg_next(iter.sg);
1727 			if (!iter.sg)
1728 				break;
1729 
1730 			iter.dma = sg_dma_address(iter.sg);
1731 			iter.max = iter.dma + iter.sg->length;
1732 		}
1733 
1734 		if (++act_pte == GEN6_PTES) {
1735 			kunmap_atomic(vaddr);
1736 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1737 			act_pte = 0;
1738 		}
1739 	} while (1);
1740 	kunmap_atomic(vaddr);
1741 
1742 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1743 }
1744 
1745 static int gen6_alloc_va_range(struct i915_address_space *vm,
1746 			       u64 start, u64 length)
1747 {
1748 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1749 	struct i915_page_table *pt;
1750 	u64 from = start;
1751 	unsigned int pde;
1752 	bool flush = false;
1753 
1754 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1755 		const unsigned int count = gen6_pte_count(start, length);
1756 
1757 		if (pt == vm->scratch_pt) {
1758 			pt = alloc_pt(vm);
1759 			if (IS_ERR(pt))
1760 				goto unwind_out;
1761 
1762 			gen6_initialize_pt(vm, pt);
1763 			ppgtt->base.pd.page_table[pde] = pt;
1764 
1765 			if (i915_vma_is_bound(ppgtt->vma,
1766 					      I915_VMA_GLOBAL_BIND)) {
1767 				gen6_write_pde(ppgtt, pde, pt);
1768 				flush = true;
1769 			}
1770 
1771 			GEM_BUG_ON(pt->used_ptes);
1772 		}
1773 
1774 		pt->used_ptes += count;
1775 	}
1776 
1777 	if (flush) {
1778 		mark_tlbs_dirty(&ppgtt->base);
1779 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1780 	}
1781 
1782 	return 0;
1783 
1784 unwind_out:
1785 	gen6_ppgtt_clear_range(vm, from, start - from);
1786 	return -ENOMEM;
1787 }
1788 
1789 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1790 {
1791 	struct i915_address_space * const vm = &ppgtt->base.vm;
1792 	struct i915_page_table *unused;
1793 	u32 pde;
1794 	int ret;
1795 
1796 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1797 	if (ret)
1798 		return ret;
1799 
1800 	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1801 					 I915_CACHE_NONE,
1802 					 PTE_READ_ONLY);
1803 
1804 	vm->scratch_pt = alloc_pt(vm);
1805 	if (IS_ERR(vm->scratch_pt)) {
1806 		cleanup_scratch_page(vm);
1807 		return PTR_ERR(vm->scratch_pt);
1808 	}
1809 
1810 	gen6_initialize_pt(vm, vm->scratch_pt);
1811 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1812 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1813 
1814 	return 0;
1815 }
1816 
1817 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1818 {
1819 	free_pt(vm, vm->scratch_pt);
1820 	cleanup_scratch_page(vm);
1821 }
1822 
1823 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1824 {
1825 	struct i915_page_table *pt;
1826 	u32 pde;
1827 
1828 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1829 		if (pt != ppgtt->base.vm.scratch_pt)
1830 			free_pt(&ppgtt->base.vm, pt);
1831 }
1832 
1833 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1834 {
1835 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1836 
1837 	i915_vma_destroy(ppgtt->vma);
1838 
1839 	gen6_ppgtt_free_pd(ppgtt);
1840 	gen6_ppgtt_free_scratch(vm);
1841 }
1842 
1843 static int pd_vma_set_pages(struct i915_vma *vma)
1844 {
1845 	vma->pages = ERR_PTR(-ENODEV);
1846 	return 0;
1847 }
1848 
1849 static void pd_vma_clear_pages(struct i915_vma *vma)
1850 {
1851 	GEM_BUG_ON(!vma->pages);
1852 
1853 	vma->pages = NULL;
1854 }
1855 
1856 static int pd_vma_bind(struct i915_vma *vma,
1857 		       enum i915_cache_level cache_level,
1858 		       u32 unused)
1859 {
1860 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1861 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1862 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1863 	struct i915_page_table *pt;
1864 	unsigned int pde;
1865 
1866 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1867 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1868 
1869 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1870 		gen6_write_pde(ppgtt, pde, pt);
1871 
1872 	mark_tlbs_dirty(&ppgtt->base);
1873 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1874 
1875 	return 0;
1876 }
1877 
1878 static void pd_vma_unbind(struct i915_vma *vma)
1879 {
1880 	struct gen6_hw_ppgtt *ppgtt = vma->private;
1881 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
1882 	struct i915_page_table *pt;
1883 	unsigned int pde;
1884 
1885 	if (!ppgtt->scan_for_unused_pt)
1886 		return;
1887 
1888 	/* Free all no longer used page tables */
1889 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
1890 		if (pt->used_ptes || pt == scratch_pt)
1891 			continue;
1892 
1893 		free_pt(&ppgtt->base.vm, pt);
1894 		ppgtt->base.pd.page_table[pde] = scratch_pt;
1895 	}
1896 
1897 	ppgtt->scan_for_unused_pt = false;
1898 }
1899 
1900 static const struct i915_vma_ops pd_vma_ops = {
1901 	.set_pages = pd_vma_set_pages,
1902 	.clear_pages = pd_vma_clear_pages,
1903 	.bind_vma = pd_vma_bind,
1904 	.unbind_vma = pd_vma_unbind,
1905 };
1906 
1907 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
1908 {
1909 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1910 	struct i915_ggtt *ggtt = &i915->ggtt;
1911 	struct i915_vma *vma;
1912 
1913 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1914 	GEM_BUG_ON(size > ggtt->vm.total);
1915 
1916 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
1917 	if (!vma)
1918 		return ERR_PTR(-ENOMEM);
1919 
1920 	i915_active_init(i915, &vma->active, NULL);
1921 	INIT_ACTIVE_REQUEST(&vma->last_fence);
1922 
1923 	vma->vm = &ggtt->vm;
1924 	vma->ops = &pd_vma_ops;
1925 	vma->private = ppgtt;
1926 
1927 	vma->size = size;
1928 	vma->fence_size = size;
1929 	vma->flags = I915_VMA_GGTT;
1930 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1931 
1932 	INIT_LIST_HEAD(&vma->obj_link);
1933 
1934 	mutex_lock(&vma->vm->mutex);
1935 	list_add(&vma->vm_link, &vma->vm->unbound_list);
1936 	mutex_unlock(&vma->vm->mutex);
1937 
1938 	return vma;
1939 }
1940 
1941 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1942 {
1943 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1944 	int err;
1945 
1946 	/*
1947 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1948 	 * which will be pinned into every active context.
1949 	 * (When vma->pin_count becomes atomic, I expect we will naturally
1950 	 * need a larger, unpacked, type and kill this redundancy.)
1951 	 */
1952 	if (ppgtt->pin_count++)
1953 		return 0;
1954 
1955 	/*
1956 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1957 	 * allocator works in address space sizes, so it's multiplied by page
1958 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1959 	 */
1960 	err = i915_vma_pin(ppgtt->vma,
1961 			   0, GEN6_PD_ALIGN,
1962 			   PIN_GLOBAL | PIN_HIGH);
1963 	if (err)
1964 		goto unpin;
1965 
1966 	return 0;
1967 
1968 unpin:
1969 	ppgtt->pin_count = 0;
1970 	return err;
1971 }
1972 
1973 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
1974 {
1975 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1976 
1977 	GEM_BUG_ON(!ppgtt->pin_count);
1978 	if (--ppgtt->pin_count)
1979 		return;
1980 
1981 	i915_vma_unpin(ppgtt->vma);
1982 }
1983 
1984 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1985 {
1986 	struct i915_ggtt * const ggtt = &i915->ggtt;
1987 	struct gen6_hw_ppgtt *ppgtt;
1988 	int err;
1989 
1990 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1991 	if (!ppgtt)
1992 		return ERR_PTR(-ENOMEM);
1993 
1994 	kref_init(&ppgtt->base.ref);
1995 
1996 	ppgtt->base.vm.i915 = i915;
1997 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
1998 
1999 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2000 
2001 	i915_address_space_init(&ppgtt->base.vm, VM_CLASS_PPGTT);
2002 
2003 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2004 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2005 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2006 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2007 
2008 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2009 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2010 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2011 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2012 
2013 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2014 
2015 	err = gen6_ppgtt_init_scratch(ppgtt);
2016 	if (err)
2017 		goto err_free;
2018 
2019 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2020 	if (IS_ERR(ppgtt->vma)) {
2021 		err = PTR_ERR(ppgtt->vma);
2022 		goto err_scratch;
2023 	}
2024 
2025 	return &ppgtt->base;
2026 
2027 err_scratch:
2028 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2029 err_free:
2030 	kfree(ppgtt);
2031 	return ERR_PTR(err);
2032 }
2033 
2034 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2035 {
2036 	/* This function is for gtt related workarounds. This function is
2037 	 * called on driver load and after a GPU reset, so you can place
2038 	 * workarounds here even if they get overwritten by GPU reset.
2039 	 */
2040 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2041 	if (IS_BROADWELL(dev_priv))
2042 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2043 	else if (IS_CHERRYVIEW(dev_priv))
2044 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2045 	else if (IS_GEN9_LP(dev_priv))
2046 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2047 	else if (INTEL_GEN(dev_priv) >= 9)
2048 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2049 
2050 	/*
2051 	 * To support 64K PTEs we need to first enable the use of the
2052 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2053 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2054 	 * shouldn't be needed after GEN10.
2055 	 *
2056 	 * 64K pages were first introduced from BDW+, although technically they
2057 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2058 	 * 32K pages, but we don't currently have any support for it in our
2059 	 * driver.
2060 	 */
2061 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2062 	    INTEL_GEN(dev_priv) <= 10)
2063 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2064 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2065 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2066 }
2067 
2068 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2069 {
2070 	gtt_write_workarounds(dev_priv);
2071 
2072 	if (IS_GEN(dev_priv, 6))
2073 		gen6_ppgtt_enable(dev_priv);
2074 	else if (IS_GEN(dev_priv, 7))
2075 		gen7_ppgtt_enable(dev_priv);
2076 
2077 	return 0;
2078 }
2079 
2080 static struct i915_hw_ppgtt *
2081 __hw_ppgtt_create(struct drm_i915_private *i915)
2082 {
2083 	if (INTEL_GEN(i915) < 8)
2084 		return gen6_ppgtt_create(i915);
2085 	else
2086 		return gen8_ppgtt_create(i915);
2087 }
2088 
2089 struct i915_hw_ppgtt *
2090 i915_ppgtt_create(struct drm_i915_private *i915,
2091 		  struct drm_i915_file_private *fpriv)
2092 {
2093 	struct i915_hw_ppgtt *ppgtt;
2094 
2095 	ppgtt = __hw_ppgtt_create(i915);
2096 	if (IS_ERR(ppgtt))
2097 		return ppgtt;
2098 
2099 	ppgtt->vm.file = fpriv;
2100 
2101 	trace_i915_ppgtt_create(&ppgtt->vm);
2102 
2103 	return ppgtt;
2104 }
2105 
2106 void i915_ppgtt_close(struct i915_address_space *vm)
2107 {
2108 	GEM_BUG_ON(vm->closed);
2109 	vm->closed = true;
2110 }
2111 
2112 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2113 {
2114 	struct list_head *phases[] = {
2115 		&vm->bound_list,
2116 		&vm->unbound_list,
2117 		NULL,
2118 	}, **phase;
2119 
2120 	vm->closed = true;
2121 	for (phase = phases; *phase; phase++) {
2122 		struct i915_vma *vma, *vn;
2123 
2124 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2125 			i915_vma_destroy(vma);
2126 	}
2127 }
2128 
2129 void i915_ppgtt_release(struct kref *kref)
2130 {
2131 	struct i915_hw_ppgtt *ppgtt =
2132 		container_of(kref, struct i915_hw_ppgtt, ref);
2133 
2134 	trace_i915_ppgtt_release(&ppgtt->vm);
2135 
2136 	ppgtt_destroy_vma(&ppgtt->vm);
2137 
2138 	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2139 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2140 
2141 	ppgtt->vm.cleanup(&ppgtt->vm);
2142 	i915_address_space_fini(&ppgtt->vm);
2143 	kfree(ppgtt);
2144 }
2145 
2146 /* Certain Gen5 chipsets require require idling the GPU before
2147  * unmapping anything from the GTT when VT-d is enabled.
2148  */
2149 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2150 {
2151 	/* Query intel_iommu to see if we need the workaround. Presumably that
2152 	 * was loaded first.
2153 	 */
2154 	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2155 }
2156 
2157 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2158 {
2159 	struct intel_engine_cs *engine;
2160 	enum intel_engine_id id;
2161 	u32 fault;
2162 
2163 	for_each_engine(engine, dev_priv, id) {
2164 		fault = I915_READ(RING_FAULT_REG(engine));
2165 		if (fault & RING_FAULT_VALID) {
2166 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2167 					 "\tAddr: 0x%08lx\n"
2168 					 "\tAddress space: %s\n"
2169 					 "\tSource ID: %d\n"
2170 					 "\tType: %d\n",
2171 					 fault & PAGE_MASK,
2172 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2173 					 RING_FAULT_SRCID(fault),
2174 					 RING_FAULT_FAULT_TYPE(fault));
2175 		}
2176 	}
2177 }
2178 
2179 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2180 {
2181 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2182 
2183 	if (fault & RING_FAULT_VALID) {
2184 		u32 fault_data0, fault_data1;
2185 		u64 fault_addr;
2186 
2187 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2188 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2189 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2190 			     ((u64)fault_data0 << 12);
2191 
2192 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2193 				 "\tAddr: 0x%08x_%08x\n"
2194 				 "\tAddress space: %s\n"
2195 				 "\tEngine ID: %d\n"
2196 				 "\tSource ID: %d\n"
2197 				 "\tType: %d\n",
2198 				 upper_32_bits(fault_addr),
2199 				 lower_32_bits(fault_addr),
2200 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2201 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2202 				 RING_FAULT_SRCID(fault),
2203 				 RING_FAULT_FAULT_TYPE(fault));
2204 	}
2205 }
2206 
2207 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2208 {
2209 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2210 	if (INTEL_GEN(dev_priv) >= 8)
2211 		gen8_check_faults(dev_priv);
2212 	else if (INTEL_GEN(dev_priv) >= 6)
2213 		gen6_check_faults(dev_priv);
2214 	else
2215 		return;
2216 
2217 	i915_clear_error_registers(dev_priv);
2218 }
2219 
2220 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2221 {
2222 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2223 
2224 	/* Don't bother messing with faults pre GEN6 as we have little
2225 	 * documentation supporting that it's a good idea.
2226 	 */
2227 	if (INTEL_GEN(dev_priv) < 6)
2228 		return;
2229 
2230 	i915_check_and_clear_faults(dev_priv);
2231 
2232 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2233 
2234 	i915_ggtt_invalidate(dev_priv);
2235 }
2236 
2237 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2238 			       struct sg_table *pages)
2239 {
2240 	do {
2241 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2242 				     pages->sgl, pages->nents,
2243 				     PCI_DMA_BIDIRECTIONAL,
2244 				     DMA_ATTR_NO_WARN))
2245 			return 0;
2246 
2247 		/*
2248 		 * If the DMA remap fails, one cause can be that we have
2249 		 * too many objects pinned in a small remapping table,
2250 		 * such as swiotlb. Incrementally purge all other objects and
2251 		 * try again - if there are no more pages to remove from
2252 		 * the DMA remapper, i915_gem_shrink will return 0.
2253 		 */
2254 		GEM_BUG_ON(obj->mm.pages == pages);
2255 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2256 				 obj->base.size >> PAGE_SHIFT, NULL,
2257 				 I915_SHRINK_BOUND |
2258 				 I915_SHRINK_UNBOUND));
2259 
2260 	return -ENOSPC;
2261 }
2262 
2263 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2264 {
2265 	writeq(pte, addr);
2266 }
2267 
2268 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2269 				  dma_addr_t addr,
2270 				  u64 offset,
2271 				  enum i915_cache_level level,
2272 				  u32 unused)
2273 {
2274 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2275 	gen8_pte_t __iomem *pte =
2276 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2277 
2278 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2279 
2280 	ggtt->invalidate(vm->i915);
2281 }
2282 
2283 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2284 				     struct i915_vma *vma,
2285 				     enum i915_cache_level level,
2286 				     u32 flags)
2287 {
2288 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2289 	struct sgt_iter sgt_iter;
2290 	gen8_pte_t __iomem *gtt_entries;
2291 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2292 	dma_addr_t addr;
2293 
2294 	/*
2295 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2296 	 * not to allow the user to override access to a read only page.
2297 	 */
2298 
2299 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2300 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2301 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2302 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2303 
2304 	/*
2305 	 * We want to flush the TLBs only after we're certain all the PTE
2306 	 * updates have finished.
2307 	 */
2308 	ggtt->invalidate(vm->i915);
2309 }
2310 
2311 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2312 				  dma_addr_t addr,
2313 				  u64 offset,
2314 				  enum i915_cache_level level,
2315 				  u32 flags)
2316 {
2317 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2318 	gen6_pte_t __iomem *pte =
2319 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2320 
2321 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2322 
2323 	ggtt->invalidate(vm->i915);
2324 }
2325 
2326 /*
2327  * Binds an object into the global gtt with the specified cache level. The object
2328  * will be accessible to the GPU via commands whose operands reference offsets
2329  * within the global GTT as well as accessible by the GPU through the GMADR
2330  * mapped BAR (dev_priv->mm.gtt->gtt).
2331  */
2332 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2333 				     struct i915_vma *vma,
2334 				     enum i915_cache_level level,
2335 				     u32 flags)
2336 {
2337 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2338 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2339 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2340 	struct sgt_iter iter;
2341 	dma_addr_t addr;
2342 	for_each_sgt_dma(addr, iter, vma->pages)
2343 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2344 
2345 	/*
2346 	 * We want to flush the TLBs only after we're certain all the PTE
2347 	 * updates have finished.
2348 	 */
2349 	ggtt->invalidate(vm->i915);
2350 }
2351 
2352 static void nop_clear_range(struct i915_address_space *vm,
2353 			    u64 start, u64 length)
2354 {
2355 }
2356 
2357 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2358 				  u64 start, u64 length)
2359 {
2360 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2361 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2362 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2363 	const gen8_pte_t scratch_pte = vm->scratch_pte;
2364 	gen8_pte_t __iomem *gtt_base =
2365 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2366 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2367 	int i;
2368 
2369 	if (WARN(num_entries > max_entries,
2370 		 "First entry = %d; Num entries = %d (max=%d)\n",
2371 		 first_entry, num_entries, max_entries))
2372 		num_entries = max_entries;
2373 
2374 	for (i = 0; i < num_entries; i++)
2375 		gen8_set_pte(&gtt_base[i], scratch_pte);
2376 }
2377 
2378 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2379 {
2380 	struct drm_i915_private *dev_priv = vm->i915;
2381 
2382 	/*
2383 	 * Make sure the internal GAM fifo has been cleared of all GTT
2384 	 * writes before exiting stop_machine(). This guarantees that
2385 	 * any aperture accesses waiting to start in another process
2386 	 * cannot back up behind the GTT writes causing a hang.
2387 	 * The register can be any arbitrary GAM register.
2388 	 */
2389 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2390 }
2391 
2392 struct insert_page {
2393 	struct i915_address_space *vm;
2394 	dma_addr_t addr;
2395 	u64 offset;
2396 	enum i915_cache_level level;
2397 };
2398 
2399 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2400 {
2401 	struct insert_page *arg = _arg;
2402 
2403 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2404 	bxt_vtd_ggtt_wa(arg->vm);
2405 
2406 	return 0;
2407 }
2408 
2409 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2410 					  dma_addr_t addr,
2411 					  u64 offset,
2412 					  enum i915_cache_level level,
2413 					  u32 unused)
2414 {
2415 	struct insert_page arg = { vm, addr, offset, level };
2416 
2417 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2418 }
2419 
2420 struct insert_entries {
2421 	struct i915_address_space *vm;
2422 	struct i915_vma *vma;
2423 	enum i915_cache_level level;
2424 	u32 flags;
2425 };
2426 
2427 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2428 {
2429 	struct insert_entries *arg = _arg;
2430 
2431 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2432 	bxt_vtd_ggtt_wa(arg->vm);
2433 
2434 	return 0;
2435 }
2436 
2437 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2438 					     struct i915_vma *vma,
2439 					     enum i915_cache_level level,
2440 					     u32 flags)
2441 {
2442 	struct insert_entries arg = { vm, vma, level, flags };
2443 
2444 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2445 }
2446 
2447 struct clear_range {
2448 	struct i915_address_space *vm;
2449 	u64 start;
2450 	u64 length;
2451 };
2452 
2453 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2454 {
2455 	struct clear_range *arg = _arg;
2456 
2457 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2458 	bxt_vtd_ggtt_wa(arg->vm);
2459 
2460 	return 0;
2461 }
2462 
2463 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2464 					  u64 start,
2465 					  u64 length)
2466 {
2467 	struct clear_range arg = { vm, start, length };
2468 
2469 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2470 }
2471 
2472 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2473 				  u64 start, u64 length)
2474 {
2475 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2476 	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2477 	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2478 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2479 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2480 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2481 	int i;
2482 
2483 	if (WARN(num_entries > max_entries,
2484 		 "First entry = %d; Num entries = %d (max=%d)\n",
2485 		 first_entry, num_entries, max_entries))
2486 		num_entries = max_entries;
2487 
2488 	scratch_pte = vm->scratch_pte;
2489 
2490 	for (i = 0; i < num_entries; i++)
2491 		iowrite32(scratch_pte, &gtt_base[i]);
2492 }
2493 
2494 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2495 				  dma_addr_t addr,
2496 				  u64 offset,
2497 				  enum i915_cache_level cache_level,
2498 				  u32 unused)
2499 {
2500 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2501 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2502 
2503 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2504 }
2505 
2506 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2507 				     struct i915_vma *vma,
2508 				     enum i915_cache_level cache_level,
2509 				     u32 unused)
2510 {
2511 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2512 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2513 
2514 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2515 				    flags);
2516 }
2517 
2518 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2519 				  u64 start, u64 length)
2520 {
2521 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2522 }
2523 
2524 static int ggtt_bind_vma(struct i915_vma *vma,
2525 			 enum i915_cache_level cache_level,
2526 			 u32 flags)
2527 {
2528 	struct drm_i915_private *i915 = vma->vm->i915;
2529 	struct drm_i915_gem_object *obj = vma->obj;
2530 	intel_wakeref_t wakeref;
2531 	u32 pte_flags;
2532 
2533 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2534 	pte_flags = 0;
2535 	if (i915_gem_object_is_readonly(obj))
2536 		pte_flags |= PTE_READ_ONLY;
2537 
2538 	with_intel_runtime_pm(i915, wakeref)
2539 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2540 
2541 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2542 
2543 	/*
2544 	 * Without aliasing PPGTT there's no difference between
2545 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2546 	 * upgrade to both bound if we bind either to avoid double-binding.
2547 	 */
2548 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2549 
2550 	return 0;
2551 }
2552 
2553 static void ggtt_unbind_vma(struct i915_vma *vma)
2554 {
2555 	struct drm_i915_private *i915 = vma->vm->i915;
2556 	intel_wakeref_t wakeref;
2557 
2558 	with_intel_runtime_pm(i915, wakeref)
2559 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2560 }
2561 
2562 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2563 				 enum i915_cache_level cache_level,
2564 				 u32 flags)
2565 {
2566 	struct drm_i915_private *i915 = vma->vm->i915;
2567 	u32 pte_flags;
2568 	int ret;
2569 
2570 	/* Currently applicable only to VLV */
2571 	pte_flags = 0;
2572 	if (i915_gem_object_is_readonly(vma->obj))
2573 		pte_flags |= PTE_READ_ONLY;
2574 
2575 	if (flags & I915_VMA_LOCAL_BIND) {
2576 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2577 
2578 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2579 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2580 							   vma->node.start,
2581 							   vma->size);
2582 			if (ret)
2583 				return ret;
2584 		}
2585 
2586 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2587 					  pte_flags);
2588 	}
2589 
2590 	if (flags & I915_VMA_GLOBAL_BIND) {
2591 		intel_wakeref_t wakeref;
2592 
2593 		with_intel_runtime_pm(i915, wakeref) {
2594 			vma->vm->insert_entries(vma->vm, vma,
2595 						cache_level, pte_flags);
2596 		}
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2603 {
2604 	struct drm_i915_private *i915 = vma->vm->i915;
2605 
2606 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2607 		struct i915_address_space *vm = vma->vm;
2608 		intel_wakeref_t wakeref;
2609 
2610 		with_intel_runtime_pm(i915, wakeref)
2611 			vm->clear_range(vm, vma->node.start, vma->size);
2612 	}
2613 
2614 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2615 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2616 
2617 		vm->clear_range(vm, vma->node.start, vma->size);
2618 	}
2619 }
2620 
2621 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2622 			       struct sg_table *pages)
2623 {
2624 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2625 	struct device *kdev = &dev_priv->drm.pdev->dev;
2626 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2627 
2628 	if (unlikely(ggtt->do_idle_maps)) {
2629 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2630 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2631 			/* Wait a bit, in hopes it avoids the hang */
2632 			udelay(10);
2633 		}
2634 	}
2635 
2636 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2637 }
2638 
2639 static int ggtt_set_pages(struct i915_vma *vma)
2640 {
2641 	int ret;
2642 
2643 	GEM_BUG_ON(vma->pages);
2644 
2645 	ret = i915_get_ggtt_vma_pages(vma);
2646 	if (ret)
2647 		return ret;
2648 
2649 	vma->page_sizes = vma->obj->mm.page_sizes;
2650 
2651 	return 0;
2652 }
2653 
2654 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2655 				  unsigned long color,
2656 				  u64 *start,
2657 				  u64 *end)
2658 {
2659 	if (node->allocated && node->color != color)
2660 		*start += I915_GTT_PAGE_SIZE;
2661 
2662 	/* Also leave a space between the unallocated reserved node after the
2663 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2664 	 * to insert a guard page to prevent prefetches crossing over the
2665 	 * GTT boundary.
2666 	 */
2667 	node = list_next_entry(node, node_list);
2668 	if (node->color != color)
2669 		*end -= I915_GTT_PAGE_SIZE;
2670 }
2671 
2672 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2673 {
2674 	struct i915_ggtt *ggtt = &i915->ggtt;
2675 	struct i915_hw_ppgtt *ppgtt;
2676 	int err;
2677 
2678 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2679 	if (IS_ERR(ppgtt))
2680 		return PTR_ERR(ppgtt);
2681 
2682 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2683 		err = -ENODEV;
2684 		goto err_ppgtt;
2685 	}
2686 
2687 	/*
2688 	 * Note we only pre-allocate as far as the end of the global
2689 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2690 	 * very significant! We have to preallocate as GVT/vgpu does
2691 	 * not like the page directory disappearing.
2692 	 */
2693 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2694 	if (err)
2695 		goto err_ppgtt;
2696 
2697 	i915->mm.aliasing_ppgtt = ppgtt;
2698 
2699 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2700 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2701 
2702 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2703 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2704 
2705 	return 0;
2706 
2707 err_ppgtt:
2708 	i915_ppgtt_put(ppgtt);
2709 	return err;
2710 }
2711 
2712 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2713 {
2714 	struct i915_ggtt *ggtt = &i915->ggtt;
2715 	struct i915_hw_ppgtt *ppgtt;
2716 
2717 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2718 	if (!ppgtt)
2719 		return;
2720 
2721 	i915_ppgtt_put(ppgtt);
2722 
2723 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2724 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2725 }
2726 
2727 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2728 {
2729 	/* Let GEM Manage all of the aperture.
2730 	 *
2731 	 * However, leave one page at the end still bound to the scratch page.
2732 	 * There are a number of places where the hardware apparently prefetches
2733 	 * past the end of the object, and we've seen multiple hangs with the
2734 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2735 	 * aperture.  One page should be enough to keep any prefetching inside
2736 	 * of the aperture.
2737 	 */
2738 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2739 	unsigned long hole_start, hole_end;
2740 	struct drm_mm_node *entry;
2741 	int ret;
2742 
2743 	/*
2744 	 * GuC requires all resources that we're sharing with it to be placed in
2745 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
2746 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2747 	 * why.
2748 	 */
2749 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2750 			       intel_guc_reserved_gtt_size(&dev_priv->guc));
2751 
2752 	ret = intel_vgt_balloon(dev_priv);
2753 	if (ret)
2754 		return ret;
2755 
2756 	/* Reserve a mappable slot for our lockless error capture */
2757 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2758 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2759 					  0, ggtt->mappable_end,
2760 					  DRM_MM_INSERT_LOW);
2761 	if (ret)
2762 		return ret;
2763 
2764 	/* Clear any non-preallocated blocks */
2765 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2766 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767 			      hole_start, hole_end);
2768 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2769 				     hole_end - hole_start);
2770 	}
2771 
2772 	/* And finally clear the reserved guard page */
2773 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2774 
2775 	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2776 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2777 		if (ret)
2778 			goto err;
2779 	}
2780 
2781 	return 0;
2782 
2783 err:
2784 	drm_mm_remove_node(&ggtt->error_capture);
2785 	return ret;
2786 }
2787 
2788 /**
2789  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2790  * @dev_priv: i915 device
2791  */
2792 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2793 {
2794 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2795 	struct i915_vma *vma, *vn;
2796 	struct pagevec *pvec;
2797 
2798 	ggtt->vm.closed = true;
2799 
2800 	mutex_lock(&dev_priv->drm.struct_mutex);
2801 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2802 
2803 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2804 		WARN_ON(i915_vma_unbind(vma));
2805 
2806 	if (drm_mm_node_allocated(&ggtt->error_capture))
2807 		drm_mm_remove_node(&ggtt->error_capture);
2808 
2809 	if (drm_mm_initialized(&ggtt->vm.mm)) {
2810 		intel_vgt_deballoon(dev_priv);
2811 		i915_address_space_fini(&ggtt->vm);
2812 	}
2813 
2814 	ggtt->vm.cleanup(&ggtt->vm);
2815 
2816 	pvec = &dev_priv->mm.wc_stash.pvec;
2817 	if (pvec->nr) {
2818 		set_pages_array_wb(pvec->pages, pvec->nr);
2819 		__pagevec_release(pvec);
2820 	}
2821 
2822 	mutex_unlock(&dev_priv->drm.struct_mutex);
2823 
2824 	arch_phys_wc_del(ggtt->mtrr);
2825 	io_mapping_fini(&ggtt->iomap);
2826 
2827 	i915_gem_cleanup_stolen(dev_priv);
2828 }
2829 
2830 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2831 {
2832 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2833 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2834 	return snb_gmch_ctl << 20;
2835 }
2836 
2837 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2838 {
2839 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2840 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2841 	if (bdw_gmch_ctl)
2842 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2843 
2844 #ifdef CONFIG_X86_32
2845 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2846 	if (bdw_gmch_ctl > 4)
2847 		bdw_gmch_ctl = 4;
2848 #endif
2849 
2850 	return bdw_gmch_ctl << 20;
2851 }
2852 
2853 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2854 {
2855 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2856 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2857 
2858 	if (gmch_ctrl)
2859 		return 1 << (20 + gmch_ctrl);
2860 
2861 	return 0;
2862 }
2863 
2864 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2865 {
2866 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2867 	struct pci_dev *pdev = dev_priv->drm.pdev;
2868 	phys_addr_t phys_addr;
2869 	int ret;
2870 
2871 	/* For Modern GENs the PTEs and register space are split in the BAR */
2872 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2873 
2874 	/*
2875 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2876 	 * will be dropped. For WC mappings in general we have 64 byte burst
2877 	 * writes when the WC buffer is flushed, so we can't use it, but have to
2878 	 * resort to an uncached mapping. The WC issue is easily caught by the
2879 	 * readback check when writing GTT PTE entries.
2880 	 */
2881 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2882 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2883 	else
2884 		ggtt->gsm = ioremap_wc(phys_addr, size);
2885 	if (!ggtt->gsm) {
2886 		DRM_ERROR("Failed to map the ggtt page table\n");
2887 		return -ENOMEM;
2888 	}
2889 
2890 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2891 	if (ret) {
2892 		DRM_ERROR("Scratch setup failed\n");
2893 		/* iounmap will also get called at remove, but meh */
2894 		iounmap(ggtt->gsm);
2895 		return ret;
2896 	}
2897 
2898 	ggtt->vm.scratch_pte =
2899 		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
2900 				    I915_CACHE_NONE, 0);
2901 
2902 	return 0;
2903 }
2904 
2905 static struct intel_ppat_entry *
2906 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
2907 {
2908 	struct intel_ppat_entry *entry = &ppat->entries[index];
2909 
2910 	GEM_BUG_ON(index >= ppat->max_entries);
2911 	GEM_BUG_ON(test_bit(index, ppat->used));
2912 
2913 	entry->ppat = ppat;
2914 	entry->value = value;
2915 	kref_init(&entry->ref);
2916 	set_bit(index, ppat->used);
2917 	set_bit(index, ppat->dirty);
2918 
2919 	return entry;
2920 }
2921 
2922 static void __free_ppat_entry(struct intel_ppat_entry *entry)
2923 {
2924 	struct intel_ppat *ppat = entry->ppat;
2925 	unsigned int index = entry - ppat->entries;
2926 
2927 	GEM_BUG_ON(index >= ppat->max_entries);
2928 	GEM_BUG_ON(!test_bit(index, ppat->used));
2929 
2930 	entry->value = ppat->clear_value;
2931 	clear_bit(index, ppat->used);
2932 	set_bit(index, ppat->dirty);
2933 }
2934 
2935 /**
2936  * intel_ppat_get - get a usable PPAT entry
2937  * @i915: i915 device instance
2938  * @value: the PPAT value required by the caller
2939  *
2940  * The function tries to search if there is an existing PPAT entry which
2941  * matches with the required value. If perfectly matched, the existing PPAT
2942  * entry will be used. If only partially matched, it will try to check if
2943  * there is any available PPAT index. If yes, it will allocate a new PPAT
2944  * index for the required entry and update the HW. If not, the partially
2945  * matched entry will be used.
2946  */
2947 const struct intel_ppat_entry *
2948 intel_ppat_get(struct drm_i915_private *i915, u8 value)
2949 {
2950 	struct intel_ppat *ppat = &i915->ppat;
2951 	struct intel_ppat_entry *entry = NULL;
2952 	unsigned int scanned, best_score;
2953 	int i;
2954 
2955 	GEM_BUG_ON(!ppat->max_entries);
2956 
2957 	scanned = best_score = 0;
2958 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
2959 		unsigned int score;
2960 
2961 		score = ppat->match(ppat->entries[i].value, value);
2962 		if (score > best_score) {
2963 			entry = &ppat->entries[i];
2964 			if (score == INTEL_PPAT_PERFECT_MATCH) {
2965 				kref_get(&entry->ref);
2966 				return entry;
2967 			}
2968 			best_score = score;
2969 		}
2970 		scanned++;
2971 	}
2972 
2973 	if (scanned == ppat->max_entries) {
2974 		if (!entry)
2975 			return ERR_PTR(-ENOSPC);
2976 
2977 		kref_get(&entry->ref);
2978 		return entry;
2979 	}
2980 
2981 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
2982 	entry = __alloc_ppat_entry(ppat, i, value);
2983 	ppat->update_hw(i915);
2984 	return entry;
2985 }
2986 
2987 static void release_ppat(struct kref *kref)
2988 {
2989 	struct intel_ppat_entry *entry =
2990 		container_of(kref, struct intel_ppat_entry, ref);
2991 	struct drm_i915_private *i915 = entry->ppat->i915;
2992 
2993 	__free_ppat_entry(entry);
2994 	entry->ppat->update_hw(i915);
2995 }
2996 
2997 /**
2998  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
2999  * @entry: an intel PPAT entry
3000  *
3001  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3002  * entry is dynamically allocated, its reference count will be decreased. Once
3003  * the reference count becomes into zero, the PPAT index becomes free again.
3004  */
3005 void intel_ppat_put(const struct intel_ppat_entry *entry)
3006 {
3007 	struct intel_ppat *ppat = entry->ppat;
3008 	unsigned int index = entry - ppat->entries;
3009 
3010 	GEM_BUG_ON(!ppat->max_entries);
3011 
3012 	kref_put(&ppat->entries[index].ref, release_ppat);
3013 }
3014 
3015 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3016 {
3017 	struct intel_ppat *ppat = &dev_priv->ppat;
3018 	int i;
3019 
3020 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3021 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3022 		clear_bit(i, ppat->dirty);
3023 	}
3024 }
3025 
3026 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3027 {
3028 	struct intel_ppat *ppat = &dev_priv->ppat;
3029 	u64 pat = 0;
3030 	int i;
3031 
3032 	for (i = 0; i < ppat->max_entries; i++)
3033 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3034 
3035 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3036 
3037 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3038 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3039 }
3040 
3041 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3042 {
3043 	unsigned int score = 0;
3044 	enum {
3045 		AGE_MATCH = BIT(0),
3046 		TC_MATCH = BIT(1),
3047 		CA_MATCH = BIT(2),
3048 	};
3049 
3050 	/* Cache attribute has to be matched. */
3051 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3052 		return 0;
3053 
3054 	score |= CA_MATCH;
3055 
3056 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3057 		score |= TC_MATCH;
3058 
3059 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3060 		score |= AGE_MATCH;
3061 
3062 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3063 		return INTEL_PPAT_PERFECT_MATCH;
3064 
3065 	return score;
3066 }
3067 
3068 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3069 {
3070 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3071 		INTEL_PPAT_PERFECT_MATCH : 0;
3072 }
3073 
3074 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3075 {
3076 	ppat->max_entries = 8;
3077 	ppat->update_hw = cnl_private_pat_update_hw;
3078 	ppat->match = bdw_private_pat_match;
3079 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3080 
3081 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3082 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3083 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3084 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3085 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3086 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3087 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3088 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3089 }
3090 
3091 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3092  * bits. When using advanced contexts each context stores its own PAT, but
3093  * writing this data shouldn't be harmful even in those cases. */
3094 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3095 {
3096 	ppat->max_entries = 8;
3097 	ppat->update_hw = bdw_private_pat_update_hw;
3098 	ppat->match = bdw_private_pat_match;
3099 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3100 
3101 	if (!HAS_PPGTT(ppat->i915)) {
3102 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3103 		 * so RTL will always use the value corresponding to
3104 		 * pat_sel = 000".
3105 		 * So let's disable cache for GGTT to avoid screen corruptions.
3106 		 * MOCS still can be used though.
3107 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3108 		 * before this patch, i.e. the same uncached + snooping access
3109 		 * like on gen6/7 seems to be in effect.
3110 		 * - So this just fixes blitter/render access. Again it looks
3111 		 * like it's not just uncached access, but uncached + snooping.
3112 		 * So we can still hold onto all our assumptions wrt cpu
3113 		 * clflushing on LLC machines.
3114 		 */
3115 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3116 		return;
3117 	}
3118 
3119 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3120 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3121 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3122 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3123 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3124 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3125 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3126 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3127 }
3128 
3129 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3130 {
3131 	ppat->max_entries = 8;
3132 	ppat->update_hw = bdw_private_pat_update_hw;
3133 	ppat->match = chv_private_pat_match;
3134 	ppat->clear_value = CHV_PPAT_SNOOP;
3135 
3136 	/*
3137 	 * Map WB on BDW to snooped on CHV.
3138 	 *
3139 	 * Only the snoop bit has meaning for CHV, the rest is
3140 	 * ignored.
3141 	 *
3142 	 * The hardware will never snoop for certain types of accesses:
3143 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3144 	 * - PPGTT page tables
3145 	 * - some other special cycles
3146 	 *
3147 	 * As with BDW, we also need to consider the following for GT accesses:
3148 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3149 	 * so RTL will always use the value corresponding to
3150 	 * pat_sel = 000".
3151 	 * Which means we must set the snoop bit in PAT entry 0
3152 	 * in order to keep the global status page working.
3153 	 */
3154 
3155 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3156 	__alloc_ppat_entry(ppat, 1, 0);
3157 	__alloc_ppat_entry(ppat, 2, 0);
3158 	__alloc_ppat_entry(ppat, 3, 0);
3159 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3160 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3161 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3162 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3163 }
3164 
3165 static void gen6_gmch_remove(struct i915_address_space *vm)
3166 {
3167 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3168 
3169 	iounmap(ggtt->gsm);
3170 	cleanup_scratch_page(vm);
3171 }
3172 
3173 static void setup_private_pat(struct drm_i915_private *dev_priv)
3174 {
3175 	struct intel_ppat *ppat = &dev_priv->ppat;
3176 	int i;
3177 
3178 	ppat->i915 = dev_priv;
3179 
3180 	if (INTEL_GEN(dev_priv) >= 10)
3181 		cnl_setup_private_ppat(ppat);
3182 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3183 		chv_setup_private_ppat(ppat);
3184 	else
3185 		bdw_setup_private_ppat(ppat);
3186 
3187 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3188 
3189 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3190 		ppat->entries[i].value = ppat->clear_value;
3191 		ppat->entries[i].ppat = ppat;
3192 		set_bit(i, ppat->dirty);
3193 	}
3194 
3195 	ppat->update_hw(dev_priv);
3196 }
3197 
3198 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3199 {
3200 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3201 	struct pci_dev *pdev = dev_priv->drm.pdev;
3202 	unsigned int size;
3203 	u16 snb_gmch_ctl;
3204 	int err;
3205 
3206 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3207 	ggtt->gmadr =
3208 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3209 						 pci_resource_len(pdev, 2));
3210 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3211 
3212 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3213 	if (!err)
3214 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3215 	if (err)
3216 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3217 
3218 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3219 	if (IS_CHERRYVIEW(dev_priv))
3220 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3221 	else
3222 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3223 
3224 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3225 	ggtt->vm.cleanup = gen6_gmch_remove;
3226 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3227 	ggtt->vm.clear_range = nop_clear_range;
3228 	if (intel_scanout_needs_vtd_wa(dev_priv))
3229 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3230 
3231 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3232 
3233 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3234 	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3235 	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3236 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3237 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3238 		if (ggtt->vm.clear_range != nop_clear_range)
3239 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3240 
3241 		/* Prevent recursively calling stop_machine() and deadlocks. */
3242 		dev_info(dev_priv->drm.dev,
3243 			 "Disabling error capture for VT-d workaround\n");
3244 		i915_disable_error_state(dev_priv, -ENODEV);
3245 	}
3246 
3247 	ggtt->invalidate = gen6_ggtt_invalidate;
3248 
3249 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3250 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3251 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3252 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3253 
3254 	ggtt->vm.pte_encode = gen8_pte_encode;
3255 
3256 	setup_private_pat(dev_priv);
3257 
3258 	return ggtt_probe_common(ggtt, size);
3259 }
3260 
3261 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3262 {
3263 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3264 	struct pci_dev *pdev = dev_priv->drm.pdev;
3265 	unsigned int size;
3266 	u16 snb_gmch_ctl;
3267 	int err;
3268 
3269 	ggtt->gmadr =
3270 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3271 						 pci_resource_len(pdev, 2));
3272 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3273 
3274 	/* 64/512MB is the current min/max we actually know of, but this is just
3275 	 * a coarse sanity check.
3276 	 */
3277 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3278 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3279 		return -ENXIO;
3280 	}
3281 
3282 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3283 	if (!err)
3284 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3285 	if (err)
3286 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3287 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3288 
3289 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3290 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3291 
3292 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3293 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3294 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3295 	ggtt->vm.cleanup = gen6_gmch_remove;
3296 
3297 	ggtt->invalidate = gen6_ggtt_invalidate;
3298 
3299 	if (HAS_EDRAM(dev_priv))
3300 		ggtt->vm.pte_encode = iris_pte_encode;
3301 	else if (IS_HASWELL(dev_priv))
3302 		ggtt->vm.pte_encode = hsw_pte_encode;
3303 	else if (IS_VALLEYVIEW(dev_priv))
3304 		ggtt->vm.pte_encode = byt_pte_encode;
3305 	else if (INTEL_GEN(dev_priv) >= 7)
3306 		ggtt->vm.pte_encode = ivb_pte_encode;
3307 	else
3308 		ggtt->vm.pte_encode = snb_pte_encode;
3309 
3310 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3311 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3312 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3313 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3314 
3315 	return ggtt_probe_common(ggtt, size);
3316 }
3317 
3318 static void i915_gmch_remove(struct i915_address_space *vm)
3319 {
3320 	intel_gmch_remove();
3321 }
3322 
3323 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3324 {
3325 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3326 	phys_addr_t gmadr_base;
3327 	int ret;
3328 
3329 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3330 	if (!ret) {
3331 		DRM_ERROR("failed to set up gmch\n");
3332 		return -EIO;
3333 	}
3334 
3335 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3336 
3337 	ggtt->gmadr =
3338 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3339 						 ggtt->mappable_end);
3340 
3341 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3342 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3343 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3344 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3345 	ggtt->vm.cleanup = i915_gmch_remove;
3346 
3347 	ggtt->invalidate = gmch_ggtt_invalidate;
3348 
3349 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3350 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3351 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3352 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3353 
3354 	if (unlikely(ggtt->do_idle_maps))
3355 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3356 
3357 	return 0;
3358 }
3359 
3360 /**
3361  * i915_ggtt_probe_hw - Probe GGTT hardware location
3362  * @dev_priv: i915 device
3363  */
3364 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3365 {
3366 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3367 	int ret;
3368 
3369 	ggtt->vm.i915 = dev_priv;
3370 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3371 
3372 	if (INTEL_GEN(dev_priv) <= 5)
3373 		ret = i915_gmch_probe(ggtt);
3374 	else if (INTEL_GEN(dev_priv) < 8)
3375 		ret = gen6_gmch_probe(ggtt);
3376 	else
3377 		ret = gen8_gmch_probe(ggtt);
3378 	if (ret)
3379 		return ret;
3380 
3381 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3382 	 * This is easier than doing range restriction on the fly, as we
3383 	 * currently don't have any bits spare to pass in this upper
3384 	 * restriction!
3385 	 */
3386 	if (USES_GUC(dev_priv)) {
3387 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3388 		ggtt->mappable_end =
3389 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3390 	}
3391 
3392 	if ((ggtt->vm.total - 1) >> 32) {
3393 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3394 			  " of address space! Found %lldM!\n",
3395 			  ggtt->vm.total >> 20);
3396 		ggtt->vm.total = 1ULL << 32;
3397 		ggtt->mappable_end =
3398 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3399 	}
3400 
3401 	if (ggtt->mappable_end > ggtt->vm.total) {
3402 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3403 			  " aperture=%pa, total=%llx\n",
3404 			  &ggtt->mappable_end, ggtt->vm.total);
3405 		ggtt->mappable_end = ggtt->vm.total;
3406 	}
3407 
3408 	/* GMADR is the PCI mmio aperture into the global GTT. */
3409 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3410 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3411 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3412 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3413 	if (intel_vtd_active())
3414 		DRM_INFO("VT-d active for gfx access\n");
3415 
3416 	return 0;
3417 }
3418 
3419 /**
3420  * i915_ggtt_init_hw - Initialize GGTT hardware
3421  * @dev_priv: i915 device
3422  */
3423 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3424 {
3425 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3426 	int ret;
3427 
3428 	stash_init(&dev_priv->mm.wc_stash);
3429 
3430 	/* Note that we use page colouring to enforce a guard page at the
3431 	 * end of the address space. This is required as the CS may prefetch
3432 	 * beyond the end of the batch buffer, across the page boundary,
3433 	 * and beyond the end of the GTT if we do not provide a guard.
3434 	 */
3435 	mutex_lock(&dev_priv->drm.struct_mutex);
3436 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3437 
3438 	ggtt->vm.is_ggtt = true;
3439 
3440 	/* Only VLV supports read-only GGTT mappings */
3441 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3442 
3443 	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3444 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3445 	mutex_unlock(&dev_priv->drm.struct_mutex);
3446 
3447 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3448 				dev_priv->ggtt.gmadr.start,
3449 				dev_priv->ggtt.mappable_end)) {
3450 		ret = -EIO;
3451 		goto out_gtt_cleanup;
3452 	}
3453 
3454 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3455 
3456 	/*
3457 	 * Initialise stolen early so that we may reserve preallocated
3458 	 * objects for the BIOS to KMS transition.
3459 	 */
3460 	ret = i915_gem_init_stolen(dev_priv);
3461 	if (ret)
3462 		goto out_gtt_cleanup;
3463 
3464 	return 0;
3465 
3466 out_gtt_cleanup:
3467 	ggtt->vm.cleanup(&ggtt->vm);
3468 	return ret;
3469 }
3470 
3471 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3472 {
3473 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3474 		return -EIO;
3475 
3476 	return 0;
3477 }
3478 
3479 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3480 {
3481 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3482 
3483 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3484 
3485 	i915_ggtt_invalidate(i915);
3486 }
3487 
3488 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3489 {
3490 	/* XXX Temporary pardon for error unload */
3491 	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3492 		return;
3493 
3494 	/* We should only be called after i915_ggtt_enable_guc() */
3495 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3496 
3497 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3498 
3499 	i915_ggtt_invalidate(i915);
3500 }
3501 
3502 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3503 {
3504 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3505 	struct i915_vma *vma, *vn;
3506 
3507 	i915_check_and_clear_faults(dev_priv);
3508 
3509 	mutex_lock(&ggtt->vm.mutex);
3510 
3511 	/* First fill our portion of the GTT with scratch pages */
3512 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3513 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3514 
3515 	/* clflush objects bound into the GGTT and rebind them. */
3516 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3517 		struct drm_i915_gem_object *obj = vma->obj;
3518 
3519 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3520 			continue;
3521 
3522 		mutex_unlock(&ggtt->vm.mutex);
3523 
3524 		if (!i915_vma_unbind(vma))
3525 			goto lock;
3526 
3527 		WARN_ON(i915_vma_bind(vma,
3528 				      obj ? obj->cache_level : 0,
3529 				      PIN_UPDATE));
3530 		if (obj)
3531 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3532 
3533 lock:
3534 		mutex_lock(&ggtt->vm.mutex);
3535 	}
3536 
3537 	ggtt->vm.closed = false;
3538 	i915_ggtt_invalidate(dev_priv);
3539 
3540 	mutex_unlock(&ggtt->vm.mutex);
3541 
3542 	if (INTEL_GEN(dev_priv) >= 8) {
3543 		struct intel_ppat *ppat = &dev_priv->ppat;
3544 
3545 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3546 		dev_priv->ppat.update_hw(dev_priv);
3547 		return;
3548 	}
3549 }
3550 
3551 static struct scatterlist *
3552 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3553 	     unsigned int width, unsigned int height,
3554 	     unsigned int stride,
3555 	     struct sg_table *st, struct scatterlist *sg)
3556 {
3557 	unsigned int column, row;
3558 	unsigned int src_idx;
3559 
3560 	for (column = 0; column < width; column++) {
3561 		src_idx = stride * (height - 1) + column + offset;
3562 		for (row = 0; row < height; row++) {
3563 			st->nents++;
3564 			/* We don't need the pages, but need to initialize
3565 			 * the entries so the sg list can be happily traversed.
3566 			 * The only thing we need are DMA addresses.
3567 			 */
3568 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3569 			sg_dma_address(sg) =
3570 				i915_gem_object_get_dma_address(obj, src_idx);
3571 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3572 			sg = sg_next(sg);
3573 			src_idx -= stride;
3574 		}
3575 	}
3576 
3577 	return sg;
3578 }
3579 
3580 static noinline struct sg_table *
3581 intel_rotate_pages(struct intel_rotation_info *rot_info,
3582 		   struct drm_i915_gem_object *obj)
3583 {
3584 	unsigned int size = intel_rotation_info_size(rot_info);
3585 	struct sg_table *st;
3586 	struct scatterlist *sg;
3587 	int ret = -ENOMEM;
3588 	int i;
3589 
3590 	/* Allocate target SG list. */
3591 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3592 	if (!st)
3593 		goto err_st_alloc;
3594 
3595 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3596 	if (ret)
3597 		goto err_sg_alloc;
3598 
3599 	st->nents = 0;
3600 	sg = st->sgl;
3601 
3602 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3603 		sg = rotate_pages(obj, rot_info->plane[i].offset,
3604 				  rot_info->plane[i].width, rot_info->plane[i].height,
3605 				  rot_info->plane[i].stride, st, sg);
3606 	}
3607 
3608 	return st;
3609 
3610 err_sg_alloc:
3611 	kfree(st);
3612 err_st_alloc:
3613 
3614 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3615 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3616 
3617 	return ERR_PTR(ret);
3618 }
3619 
3620 static noinline struct sg_table *
3621 intel_partial_pages(const struct i915_ggtt_view *view,
3622 		    struct drm_i915_gem_object *obj)
3623 {
3624 	struct sg_table *st;
3625 	struct scatterlist *sg, *iter;
3626 	unsigned int count = view->partial.size;
3627 	unsigned int offset;
3628 	int ret = -ENOMEM;
3629 
3630 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3631 	if (!st)
3632 		goto err_st_alloc;
3633 
3634 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3635 	if (ret)
3636 		goto err_sg_alloc;
3637 
3638 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3639 	GEM_BUG_ON(!iter);
3640 
3641 	sg = st->sgl;
3642 	st->nents = 0;
3643 	do {
3644 		unsigned int len;
3645 
3646 		len = min(iter->length - (offset << PAGE_SHIFT),
3647 			  count << PAGE_SHIFT);
3648 		sg_set_page(sg, NULL, len, 0);
3649 		sg_dma_address(sg) =
3650 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3651 		sg_dma_len(sg) = len;
3652 
3653 		st->nents++;
3654 		count -= len >> PAGE_SHIFT;
3655 		if (count == 0) {
3656 			sg_mark_end(sg);
3657 			i915_sg_trim(st); /* Drop any unused tail entries. */
3658 
3659 			return st;
3660 		}
3661 
3662 		sg = __sg_next(sg);
3663 		iter = __sg_next(iter);
3664 		offset = 0;
3665 	} while (1);
3666 
3667 err_sg_alloc:
3668 	kfree(st);
3669 err_st_alloc:
3670 	return ERR_PTR(ret);
3671 }
3672 
3673 static int
3674 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3675 {
3676 	int ret;
3677 
3678 	/* The vma->pages are only valid within the lifespan of the borrowed
3679 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3680 	 * must be the vma->pages. A simple rule is that vma->pages must only
3681 	 * be accessed when the obj->mm.pages are pinned.
3682 	 */
3683 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3684 
3685 	switch (vma->ggtt_view.type) {
3686 	default:
3687 		GEM_BUG_ON(vma->ggtt_view.type);
3688 		/* fall through */
3689 	case I915_GGTT_VIEW_NORMAL:
3690 		vma->pages = vma->obj->mm.pages;
3691 		return 0;
3692 
3693 	case I915_GGTT_VIEW_ROTATED:
3694 		vma->pages =
3695 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3696 		break;
3697 
3698 	case I915_GGTT_VIEW_PARTIAL:
3699 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3700 		break;
3701 	}
3702 
3703 	ret = 0;
3704 	if (unlikely(IS_ERR(vma->pages))) {
3705 		ret = PTR_ERR(vma->pages);
3706 		vma->pages = NULL;
3707 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3708 			  vma->ggtt_view.type, ret);
3709 	}
3710 	return ret;
3711 }
3712 
3713 /**
3714  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3715  * @vm: the &struct i915_address_space
3716  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3717  * @size: how much space to allocate inside the GTT,
3718  *        must be #I915_GTT_PAGE_SIZE aligned
3719  * @offset: where to insert inside the GTT,
3720  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3721  *          (@offset + @size) must fit within the address space
3722  * @color: color to apply to node, if this node is not from a VMA,
3723  *         color must be #I915_COLOR_UNEVICTABLE
3724  * @flags: control search and eviction behaviour
3725  *
3726  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3727  * the address space (using @size and @color). If the @node does not fit, it
3728  * tries to evict any overlapping nodes from the GTT, including any
3729  * neighbouring nodes if the colors do not match (to ensure guard pages between
3730  * differing domains). See i915_gem_evict_for_node() for the gory details
3731  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3732  * evicting active overlapping objects, and any overlapping node that is pinned
3733  * or marked as unevictable will also result in failure.
3734  *
3735  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3736  * asked to wait for eviction and interrupted.
3737  */
3738 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3739 			 struct drm_mm_node *node,
3740 			 u64 size, u64 offset, unsigned long color,
3741 			 unsigned int flags)
3742 {
3743 	int err;
3744 
3745 	GEM_BUG_ON(!size);
3746 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3747 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3748 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3749 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3750 	GEM_BUG_ON(drm_mm_node_allocated(node));
3751 
3752 	node->size = size;
3753 	node->start = offset;
3754 	node->color = color;
3755 
3756 	err = drm_mm_reserve_node(&vm->mm, node);
3757 	if (err != -ENOSPC)
3758 		return err;
3759 
3760 	if (flags & PIN_NOEVICT)
3761 		return -ENOSPC;
3762 
3763 	err = i915_gem_evict_for_node(vm, node, flags);
3764 	if (err == 0)
3765 		err = drm_mm_reserve_node(&vm->mm, node);
3766 
3767 	return err;
3768 }
3769 
3770 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3771 {
3772 	u64 range, addr;
3773 
3774 	GEM_BUG_ON(range_overflows(start, len, end));
3775 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3776 
3777 	range = round_down(end - len, align) - round_up(start, align);
3778 	if (range) {
3779 		if (sizeof(unsigned long) == sizeof(u64)) {
3780 			addr = get_random_long();
3781 		} else {
3782 			addr = get_random_int();
3783 			if (range > U32_MAX) {
3784 				addr <<= 32;
3785 				addr |= get_random_int();
3786 			}
3787 		}
3788 		div64_u64_rem(addr, range, &addr);
3789 		start += addr;
3790 	}
3791 
3792 	return round_up(start, align);
3793 }
3794 
3795 /**
3796  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3797  * @vm: the &struct i915_address_space
3798  * @node: the &struct drm_mm_node (typically i915_vma.node)
3799  * @size: how much space to allocate inside the GTT,
3800  *        must be #I915_GTT_PAGE_SIZE aligned
3801  * @alignment: required alignment of starting offset, may be 0 but
3802  *             if specified, this must be a power-of-two and at least
3803  *             #I915_GTT_MIN_ALIGNMENT
3804  * @color: color to apply to node
3805  * @start: start of any range restriction inside GTT (0 for all),
3806  *         must be #I915_GTT_PAGE_SIZE aligned
3807  * @end: end of any range restriction inside GTT (U64_MAX for all),
3808  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3809  * @flags: control search and eviction behaviour
3810  *
3811  * i915_gem_gtt_insert() first searches for an available hole into which
3812  * is can insert the node. The hole address is aligned to @alignment and
3813  * its @size must then fit entirely within the [@start, @end] bounds. The
3814  * nodes on either side of the hole must match @color, or else a guard page
3815  * will be inserted between the two nodes (or the node evicted). If no
3816  * suitable hole is found, first a victim is randomly selected and tested
3817  * for eviction, otherwise then the LRU list of objects within the GTT
3818  * is scanned to find the first set of replacement nodes to create the hole.
3819  * Those old overlapping nodes are evicted from the GTT (and so must be
3820  * rebound before any future use). Any node that is currently pinned cannot
3821  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3822  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3823  * searching for an eviction candidate. See i915_gem_evict_something() for
3824  * the gory details on the eviction algorithm.
3825  *
3826  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3827  * asked to wait for eviction and interrupted.
3828  */
3829 int i915_gem_gtt_insert(struct i915_address_space *vm,
3830 			struct drm_mm_node *node,
3831 			u64 size, u64 alignment, unsigned long color,
3832 			u64 start, u64 end, unsigned int flags)
3833 {
3834 	enum drm_mm_insert_mode mode;
3835 	u64 offset;
3836 	int err;
3837 
3838 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3839 	GEM_BUG_ON(!size);
3840 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3841 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3842 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3843 	GEM_BUG_ON(start >= end);
3844 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3845 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3846 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3847 	GEM_BUG_ON(drm_mm_node_allocated(node));
3848 
3849 	if (unlikely(range_overflows(start, size, end)))
3850 		return -ENOSPC;
3851 
3852 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3853 		return -ENOSPC;
3854 
3855 	mode = DRM_MM_INSERT_BEST;
3856 	if (flags & PIN_HIGH)
3857 		mode = DRM_MM_INSERT_HIGHEST;
3858 	if (flags & PIN_MAPPABLE)
3859 		mode = DRM_MM_INSERT_LOW;
3860 
3861 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3862 	 * so we know that we always have a minimum alignment of 4096.
3863 	 * The drm_mm range manager is optimised to return results
3864 	 * with zero alignment, so where possible use the optimal
3865 	 * path.
3866 	 */
3867 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3868 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3869 		alignment = 0;
3870 
3871 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3872 					  size, alignment, color,
3873 					  start, end, mode);
3874 	if (err != -ENOSPC)
3875 		return err;
3876 
3877 	if (mode & DRM_MM_INSERT_ONCE) {
3878 		err = drm_mm_insert_node_in_range(&vm->mm, node,
3879 						  size, alignment, color,
3880 						  start, end,
3881 						  DRM_MM_INSERT_BEST);
3882 		if (err != -ENOSPC)
3883 			return err;
3884 	}
3885 
3886 	if (flags & PIN_NOEVICT)
3887 		return -ENOSPC;
3888 
3889 	/* No free space, pick a slot at random.
3890 	 *
3891 	 * There is a pathological case here using a GTT shared between
3892 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3893 	 *
3894 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3895 	 *         (64k objects)             (448k objects)
3896 	 *
3897 	 * Now imagine that the eviction LRU is ordered top-down (just because
3898 	 * pathology meets real life), and that we need to evict an object to
3899 	 * make room inside the aperture. The eviction scan then has to walk
3900 	 * the 448k list before it finds one within range. And now imagine that
3901 	 * it has to search for a new hole between every byte inside the memcpy,
3902 	 * for several simultaneous clients.
3903 	 *
3904 	 * On a full-ppgtt system, if we have run out of available space, there
3905 	 * will be lots and lots of objects in the eviction list! Again,
3906 	 * searching that LRU list may be slow if we are also applying any
3907 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3908 	 * simplicity and similarilty between different GTT, try the single
3909 	 * random replacement first.
3910 	 */
3911 	offset = random_offset(start, end,
3912 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3913 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3914 	if (err != -ENOSPC)
3915 		return err;
3916 
3917 	/* Randomly selected placement is pinned, do a search */
3918 	err = i915_gem_evict_something(vm, size, alignment, color,
3919 				       start, end, flags);
3920 	if (err)
3921 		return err;
3922 
3923 	return drm_mm_insert_node_in_range(&vm->mm, node,
3924 					   size, alignment, color,
3925 					   start, end, DRM_MM_INSERT_EVICT);
3926 }
3927 
3928 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3929 #include "selftests/mock_gtt.c"
3930 #include "selftests/i915_gem_gtt.c"
3931 #endif
3932