1 /* 2 * Copyright © 2010 Daniel Vetter 3 * Copyright © 2011-2014 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 27 28 #include <linux/fault-inject.h> 29 #include <linux/log2.h> 30 #include <linux/random.h> 31 #include <linux/seq_file.h> 32 #include <linux/stop_machine.h> 33 34 #include <asm/set_memory.h> 35 36 #include <drm/i915_drm.h> 37 38 #include "i915_drv.h" 39 #include "i915_vgpu.h" 40 #include "i915_reset.h" 41 #include "i915_trace.h" 42 #include "intel_drv.h" 43 #include "intel_frontbuffer.h" 44 45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 46 47 /** 48 * DOC: Global GTT views 49 * 50 * Background and previous state 51 * 52 * Historically objects could exists (be bound) in global GTT space only as 53 * singular instances with a view representing all of the object's backing pages 54 * in a linear fashion. This view will be called a normal view. 55 * 56 * To support multiple views of the same object, where the number of mapped 57 * pages is not equal to the backing store, or where the layout of the pages 58 * is not linear, concept of a GGTT view was added. 59 * 60 * One example of an alternative view is a stereo display driven by a single 61 * image. In this case we would have a framebuffer looking like this 62 * (2x2 pages): 63 * 64 * 12 65 * 34 66 * 67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU 68 * rendering. In contrast, fed to the display engine would be an alternative 69 * view which could look something like this: 70 * 71 * 1212 72 * 3434 73 * 74 * In this example both the size and layout of pages in the alternative view is 75 * different from the normal view. 76 * 77 * Implementation and usage 78 * 79 * GGTT views are implemented using VMAs and are distinguished via enum 80 * i915_ggtt_view_type and struct i915_ggtt_view. 81 * 82 * A new flavour of core GEM functions which work with GGTT bound objects were 83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid 84 * renaming in large amounts of code. They take the struct i915_ggtt_view 85 * parameter encapsulating all metadata required to implement a view. 86 * 87 * As a helper for callers which are only interested in the normal view, 88 * globally const i915_ggtt_view_normal singleton instance exists. All old core 89 * GEM API functions, the ones not taking the view parameter, are operating on, 90 * or with the normal GGTT view. 91 * 92 * Code wanting to add or use a new GGTT view needs to: 93 * 94 * 1. Add a new enum with a suitable name. 95 * 2. Extend the metadata in the i915_ggtt_view structure if required. 96 * 3. Add support to i915_get_vma_pages(). 97 * 98 * New views are required to build a scatter-gather table from within the 99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and 100 * exists for the lifetime of an VMA. 101 * 102 * Core API is designed to have copy semantics which means that passed in 103 * struct i915_ggtt_view does not need to be persistent (left around after 104 * calling the core API functions). 105 * 106 */ 107 108 static int 109 i915_get_ggtt_vma_pages(struct i915_vma *vma); 110 111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) 112 { 113 /* 114 * Note that as an uncached mmio write, this will flush the 115 * WCB of the writes into the GGTT before it triggers the invalidate. 116 */ 117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 118 } 119 120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) 121 { 122 gen6_ggtt_invalidate(dev_priv); 123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); 124 } 125 126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) 127 { 128 intel_gtt_chipset_flush(); 129 } 130 131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) 132 { 133 i915->ggtt.invalidate(i915); 134 } 135 136 static int ppgtt_bind_vma(struct i915_vma *vma, 137 enum i915_cache_level cache_level, 138 u32 unused) 139 { 140 u32 pte_flags; 141 int err; 142 143 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 144 err = vma->vm->allocate_va_range(vma->vm, 145 vma->node.start, vma->size); 146 if (err) 147 return err; 148 } 149 150 /* Applicable to VLV, and gen8+ */ 151 pte_flags = 0; 152 if (i915_gem_object_is_readonly(vma->obj)) 153 pte_flags |= PTE_READ_ONLY; 154 155 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 156 157 return 0; 158 } 159 160 static void ppgtt_unbind_vma(struct i915_vma *vma) 161 { 162 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 163 } 164 165 static int ppgtt_set_pages(struct i915_vma *vma) 166 { 167 GEM_BUG_ON(vma->pages); 168 169 vma->pages = vma->obj->mm.pages; 170 171 vma->page_sizes = vma->obj->mm.page_sizes; 172 173 return 0; 174 } 175 176 static void clear_pages(struct i915_vma *vma) 177 { 178 GEM_BUG_ON(!vma->pages); 179 180 if (vma->pages != vma->obj->mm.pages) { 181 sg_free_table(vma->pages); 182 kfree(vma->pages); 183 } 184 vma->pages = NULL; 185 186 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 187 } 188 189 static u64 gen8_pte_encode(dma_addr_t addr, 190 enum i915_cache_level level, 191 u32 flags) 192 { 193 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; 194 195 if (unlikely(flags & PTE_READ_ONLY)) 196 pte &= ~_PAGE_RW; 197 198 switch (level) { 199 case I915_CACHE_NONE: 200 pte |= PPAT_UNCACHED; 201 break; 202 case I915_CACHE_WT: 203 pte |= PPAT_DISPLAY_ELLC; 204 break; 205 default: 206 pte |= PPAT_CACHED; 207 break; 208 } 209 210 return pte; 211 } 212 213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, 214 const enum i915_cache_level level) 215 { 216 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; 217 pde |= addr; 218 if (level != I915_CACHE_NONE) 219 pde |= PPAT_CACHED_PDE; 220 else 221 pde |= PPAT_UNCACHED; 222 return pde; 223 } 224 225 #define gen8_pdpe_encode gen8_pde_encode 226 #define gen8_pml4e_encode gen8_pde_encode 227 228 static u64 snb_pte_encode(dma_addr_t addr, 229 enum i915_cache_level level, 230 u32 flags) 231 { 232 gen6_pte_t pte = GEN6_PTE_VALID; 233 pte |= GEN6_PTE_ADDR_ENCODE(addr); 234 235 switch (level) { 236 case I915_CACHE_L3_LLC: 237 case I915_CACHE_LLC: 238 pte |= GEN6_PTE_CACHE_LLC; 239 break; 240 case I915_CACHE_NONE: 241 pte |= GEN6_PTE_UNCACHED; 242 break; 243 default: 244 MISSING_CASE(level); 245 } 246 247 return pte; 248 } 249 250 static u64 ivb_pte_encode(dma_addr_t addr, 251 enum i915_cache_level level, 252 u32 flags) 253 { 254 gen6_pte_t pte = GEN6_PTE_VALID; 255 pte |= GEN6_PTE_ADDR_ENCODE(addr); 256 257 switch (level) { 258 case I915_CACHE_L3_LLC: 259 pte |= GEN7_PTE_CACHE_L3_LLC; 260 break; 261 case I915_CACHE_LLC: 262 pte |= GEN6_PTE_CACHE_LLC; 263 break; 264 case I915_CACHE_NONE: 265 pte |= GEN6_PTE_UNCACHED; 266 break; 267 default: 268 MISSING_CASE(level); 269 } 270 271 return pte; 272 } 273 274 static u64 byt_pte_encode(dma_addr_t addr, 275 enum i915_cache_level level, 276 u32 flags) 277 { 278 gen6_pte_t pte = GEN6_PTE_VALID; 279 pte |= GEN6_PTE_ADDR_ENCODE(addr); 280 281 if (!(flags & PTE_READ_ONLY)) 282 pte |= BYT_PTE_WRITEABLE; 283 284 if (level != I915_CACHE_NONE) 285 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 286 287 return pte; 288 } 289 290 static u64 hsw_pte_encode(dma_addr_t addr, 291 enum i915_cache_level level, 292 u32 flags) 293 { 294 gen6_pte_t pte = GEN6_PTE_VALID; 295 pte |= HSW_PTE_ADDR_ENCODE(addr); 296 297 if (level != I915_CACHE_NONE) 298 pte |= HSW_WB_LLC_AGE3; 299 300 return pte; 301 } 302 303 static u64 iris_pte_encode(dma_addr_t addr, 304 enum i915_cache_level level, 305 u32 flags) 306 { 307 gen6_pte_t pte = GEN6_PTE_VALID; 308 pte |= HSW_PTE_ADDR_ENCODE(addr); 309 310 switch (level) { 311 case I915_CACHE_NONE: 312 break; 313 case I915_CACHE_WT: 314 pte |= HSW_WT_ELLC_LLC_AGE3; 315 break; 316 default: 317 pte |= HSW_WB_ELLC_LLC_AGE3; 318 break; 319 } 320 321 return pte; 322 } 323 324 static void stash_init(struct pagestash *stash) 325 { 326 pagevec_init(&stash->pvec); 327 spin_lock_init(&stash->lock); 328 } 329 330 static struct page *stash_pop_page(struct pagestash *stash) 331 { 332 struct page *page = NULL; 333 334 spin_lock(&stash->lock); 335 if (likely(stash->pvec.nr)) 336 page = stash->pvec.pages[--stash->pvec.nr]; 337 spin_unlock(&stash->lock); 338 339 return page; 340 } 341 342 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) 343 { 344 int nr; 345 346 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); 347 348 nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec)); 349 memcpy(stash->pvec.pages + stash->pvec.nr, 350 pvec->pages + pvec->nr - nr, 351 sizeof(pvec->pages[0]) * nr); 352 stash->pvec.nr += nr; 353 354 spin_unlock(&stash->lock); 355 356 pvec->nr -= nr; 357 } 358 359 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 360 { 361 struct pagevec stack; 362 struct page *page; 363 364 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 365 i915_gem_shrink_all(vm->i915); 366 367 page = stash_pop_page(&vm->free_pages); 368 if (page) 369 return page; 370 371 if (!vm->pt_kmap_wc) 372 return alloc_page(gfp); 373 374 /* Look in our global stash of WC pages... */ 375 page = stash_pop_page(&vm->i915->mm.wc_stash); 376 if (page) 377 return page; 378 379 /* 380 * Otherwise batch allocate pages to amortize cost of set_pages_wc. 381 * 382 * We have to be careful as page allocation may trigger the shrinker 383 * (via direct reclaim) which will fill up the WC stash underneath us. 384 * So we add our WB pages into a temporary pvec on the stack and merge 385 * them into the WC stash after all the allocations are complete. 386 */ 387 pagevec_init(&stack); 388 do { 389 struct page *page; 390 391 page = alloc_page(gfp); 392 if (unlikely(!page)) 393 break; 394 395 stack.pages[stack.nr++] = page; 396 } while (pagevec_space(&stack)); 397 398 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { 399 page = stack.pages[--stack.nr]; 400 401 /* Merge spare WC pages to the global stash */ 402 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); 403 404 /* Push any surplus WC pages onto the local VM stash */ 405 if (stack.nr) 406 stash_push_pagevec(&vm->free_pages, &stack); 407 } 408 409 /* Return unwanted leftovers */ 410 if (unlikely(stack.nr)) { 411 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); 412 __pagevec_release(&stack); 413 } 414 415 return page; 416 } 417 418 static void vm_free_pages_release(struct i915_address_space *vm, 419 bool immediate) 420 { 421 struct pagevec *pvec = &vm->free_pages.pvec; 422 struct pagevec stack; 423 424 lockdep_assert_held(&vm->free_pages.lock); 425 GEM_BUG_ON(!pagevec_count(pvec)); 426 427 if (vm->pt_kmap_wc) { 428 /* 429 * When we use WC, first fill up the global stash and then 430 * only if full immediately free the overflow. 431 */ 432 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); 433 434 /* 435 * As we have made some room in the VM's free_pages, 436 * we can wait for it to fill again. Unless we are 437 * inside i915_address_space_fini() and must 438 * immediately release the pages! 439 */ 440 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) 441 return; 442 443 /* 444 * We have to drop the lock to allow ourselves to sleep, 445 * so take a copy of the pvec and clear the stash for 446 * others to use it as we sleep. 447 */ 448 stack = *pvec; 449 pagevec_reinit(pvec); 450 spin_unlock(&vm->free_pages.lock); 451 452 pvec = &stack; 453 set_pages_array_wb(pvec->pages, pvec->nr); 454 455 spin_lock(&vm->free_pages.lock); 456 } 457 458 __pagevec_release(pvec); 459 } 460 461 static void vm_free_page(struct i915_address_space *vm, struct page *page) 462 { 463 /* 464 * On !llc, we need to change the pages back to WB. We only do so 465 * in bulk, so we rarely need to change the page attributes here, 466 * but doing so requires a stop_machine() from deep inside arch/x86/mm. 467 * To make detection of the possible sleep more likely, use an 468 * unconditional might_sleep() for everybody. 469 */ 470 might_sleep(); 471 spin_lock(&vm->free_pages.lock); 472 if (!pagevec_add(&vm->free_pages.pvec, page)) 473 vm_free_pages_release(vm, false); 474 spin_unlock(&vm->free_pages.lock); 475 } 476 477 static void i915_address_space_init(struct i915_address_space *vm, int subclass) 478 { 479 /* 480 * The vm->mutex must be reclaim safe (for use in the shrinker). 481 * Do a dummy acquire now under fs_reclaim so that any allocation 482 * attempt holding the lock is immediately reported by lockdep. 483 */ 484 mutex_init(&vm->mutex); 485 lockdep_set_subclass(&vm->mutex, subclass); 486 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 487 488 GEM_BUG_ON(!vm->total); 489 drm_mm_init(&vm->mm, 0, vm->total); 490 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 491 492 stash_init(&vm->free_pages); 493 494 INIT_LIST_HEAD(&vm->unbound_list); 495 INIT_LIST_HEAD(&vm->bound_list); 496 } 497 498 static void i915_address_space_fini(struct i915_address_space *vm) 499 { 500 spin_lock(&vm->free_pages.lock); 501 if (pagevec_count(&vm->free_pages.pvec)) 502 vm_free_pages_release(vm, true); 503 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); 504 spin_unlock(&vm->free_pages.lock); 505 506 drm_mm_takedown(&vm->mm); 507 508 mutex_destroy(&vm->mutex); 509 } 510 511 static int __setup_page_dma(struct i915_address_space *vm, 512 struct i915_page_dma *p, 513 gfp_t gfp) 514 { 515 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); 516 if (unlikely(!p->page)) 517 return -ENOMEM; 518 519 p->daddr = dma_map_page_attrs(vm->dma, 520 p->page, 0, PAGE_SIZE, 521 PCI_DMA_BIDIRECTIONAL, 522 DMA_ATTR_SKIP_CPU_SYNC | 523 DMA_ATTR_NO_WARN); 524 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 525 vm_free_page(vm, p->page); 526 return -ENOMEM; 527 } 528 529 return 0; 530 } 531 532 static int setup_page_dma(struct i915_address_space *vm, 533 struct i915_page_dma *p) 534 { 535 return __setup_page_dma(vm, p, __GFP_HIGHMEM); 536 } 537 538 static void cleanup_page_dma(struct i915_address_space *vm, 539 struct i915_page_dma *p) 540 { 541 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 542 vm_free_page(vm, p->page); 543 } 544 545 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) 546 547 #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) 548 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) 549 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) 550 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) 551 552 static void fill_page_dma(struct i915_address_space *vm, 553 struct i915_page_dma *p, 554 const u64 val) 555 { 556 u64 * const vaddr = kmap_atomic(p->page); 557 558 memset64(vaddr, val, PAGE_SIZE / sizeof(val)); 559 560 kunmap_atomic(vaddr); 561 } 562 563 static void fill_page_dma_32(struct i915_address_space *vm, 564 struct i915_page_dma *p, 565 const u32 v) 566 { 567 fill_page_dma(vm, p, (u64)v << 32 | v); 568 } 569 570 static int 571 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 572 { 573 unsigned long size; 574 575 /* 576 * In order to utilize 64K pages for an object with a size < 2M, we will 577 * need to support a 64K scratch page, given that every 16th entry for a 578 * page-table operating in 64K mode must point to a properly aligned 64K 579 * region, including any PTEs which happen to point to scratch. 580 * 581 * This is only relevant for the 48b PPGTT where we support 582 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 583 * scratch (read-only) between all vm, we create one 64k scratch page 584 * for all. 585 */ 586 size = I915_GTT_PAGE_SIZE_4K; 587 if (i915_vm_is_4lvl(vm) && 588 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { 589 size = I915_GTT_PAGE_SIZE_64K; 590 gfp |= __GFP_NOWARN; 591 } 592 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; 593 594 do { 595 int order = get_order(size); 596 struct page *page; 597 dma_addr_t addr; 598 599 page = alloc_pages(gfp, order); 600 if (unlikely(!page)) 601 goto skip; 602 603 addr = dma_map_page_attrs(vm->dma, 604 page, 0, size, 605 PCI_DMA_BIDIRECTIONAL, 606 DMA_ATTR_SKIP_CPU_SYNC | 607 DMA_ATTR_NO_WARN); 608 if (unlikely(dma_mapping_error(vm->dma, addr))) 609 goto free_page; 610 611 if (unlikely(!IS_ALIGNED(addr, size))) 612 goto unmap_page; 613 614 vm->scratch_page.page = page; 615 vm->scratch_page.daddr = addr; 616 vm->scratch_order = order; 617 return 0; 618 619 unmap_page: 620 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); 621 free_page: 622 __free_pages(page, order); 623 skip: 624 if (size == I915_GTT_PAGE_SIZE_4K) 625 return -ENOMEM; 626 627 size = I915_GTT_PAGE_SIZE_4K; 628 gfp &= ~__GFP_NOWARN; 629 } while (1); 630 } 631 632 static void cleanup_scratch_page(struct i915_address_space *vm) 633 { 634 struct i915_page_dma *p = &vm->scratch_page; 635 int order = vm->scratch_order; 636 637 dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT, 638 PCI_DMA_BIDIRECTIONAL); 639 __free_pages(p->page, order); 640 } 641 642 static struct i915_page_table *alloc_pt(struct i915_address_space *vm) 643 { 644 struct i915_page_table *pt; 645 646 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); 647 if (unlikely(!pt)) 648 return ERR_PTR(-ENOMEM); 649 650 if (unlikely(setup_px(vm, pt))) { 651 kfree(pt); 652 return ERR_PTR(-ENOMEM); 653 } 654 655 pt->used_ptes = 0; 656 return pt; 657 } 658 659 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) 660 { 661 cleanup_px(vm, pt); 662 kfree(pt); 663 } 664 665 static void gen8_initialize_pt(struct i915_address_space *vm, 666 struct i915_page_table *pt) 667 { 668 fill_px(vm, pt, vm->scratch_pte); 669 } 670 671 static void gen6_initialize_pt(struct i915_address_space *vm, 672 struct i915_page_table *pt) 673 { 674 fill32_px(vm, pt, vm->scratch_pte); 675 } 676 677 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) 678 { 679 struct i915_page_directory *pd; 680 681 pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); 682 if (unlikely(!pd)) 683 return ERR_PTR(-ENOMEM); 684 685 if (unlikely(setup_px(vm, pd))) { 686 kfree(pd); 687 return ERR_PTR(-ENOMEM); 688 } 689 690 pd->used_pdes = 0; 691 return pd; 692 } 693 694 static void free_pd(struct i915_address_space *vm, 695 struct i915_page_directory *pd) 696 { 697 cleanup_px(vm, pd); 698 kfree(pd); 699 } 700 701 static void gen8_initialize_pd(struct i915_address_space *vm, 702 struct i915_page_directory *pd) 703 { 704 fill_px(vm, pd, 705 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); 706 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); 707 } 708 709 static int __pdp_init(struct i915_address_space *vm, 710 struct i915_page_directory_pointer *pdp) 711 { 712 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 713 714 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), 715 I915_GFP_ALLOW_FAIL); 716 if (unlikely(!pdp->page_directory)) 717 return -ENOMEM; 718 719 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); 720 721 return 0; 722 } 723 724 static void __pdp_fini(struct i915_page_directory_pointer *pdp) 725 { 726 kfree(pdp->page_directory); 727 pdp->page_directory = NULL; 728 } 729 730 static struct i915_page_directory_pointer * 731 alloc_pdp(struct i915_address_space *vm) 732 { 733 struct i915_page_directory_pointer *pdp; 734 int ret = -ENOMEM; 735 736 GEM_BUG_ON(!i915_vm_is_4lvl(vm)); 737 738 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); 739 if (!pdp) 740 return ERR_PTR(-ENOMEM); 741 742 ret = __pdp_init(vm, pdp); 743 if (ret) 744 goto fail_bitmap; 745 746 ret = setup_px(vm, pdp); 747 if (ret) 748 goto fail_page_m; 749 750 return pdp; 751 752 fail_page_m: 753 __pdp_fini(pdp); 754 fail_bitmap: 755 kfree(pdp); 756 757 return ERR_PTR(ret); 758 } 759 760 static void free_pdp(struct i915_address_space *vm, 761 struct i915_page_directory_pointer *pdp) 762 { 763 __pdp_fini(pdp); 764 765 if (!i915_vm_is_4lvl(vm)) 766 return; 767 768 cleanup_px(vm, pdp); 769 kfree(pdp); 770 } 771 772 static void gen8_initialize_pdp(struct i915_address_space *vm, 773 struct i915_page_directory_pointer *pdp) 774 { 775 gen8_ppgtt_pdpe_t scratch_pdpe; 776 777 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); 778 779 fill_px(vm, pdp, scratch_pdpe); 780 } 781 782 static void gen8_initialize_pml4(struct i915_address_space *vm, 783 struct i915_pml4 *pml4) 784 { 785 fill_px(vm, pml4, 786 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); 787 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); 788 } 789 790 /* 791 * PDE TLBs are a pain to invalidate on GEN8+. When we modify 792 * the page table structures, we mark them dirty so that 793 * context switching/execlist queuing code takes extra steps 794 * to ensure that tlbs are flushed. 795 */ 796 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) 797 { 798 ppgtt->pd_dirty_engines = ALL_ENGINES; 799 } 800 801 /* Removes entries from a single page table, releasing it if it's empty. 802 * Caller can use the return value to update higher-level entries. 803 */ 804 static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm, 805 struct i915_page_table *pt, 806 u64 start, u64 length) 807 { 808 unsigned int num_entries = gen8_pte_count(start, length); 809 gen8_pte_t *vaddr; 810 811 GEM_BUG_ON(num_entries > pt->used_ptes); 812 813 pt->used_ptes -= num_entries; 814 if (!pt->used_ptes) 815 return true; 816 817 vaddr = kmap_atomic_px(pt); 818 memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries); 819 kunmap_atomic(vaddr); 820 821 return false; 822 } 823 824 static void gen8_ppgtt_set_pde(struct i915_address_space *vm, 825 struct i915_page_directory *pd, 826 struct i915_page_table *pt, 827 unsigned int pde) 828 { 829 gen8_pde_t *vaddr; 830 831 pd->page_table[pde] = pt; 832 833 vaddr = kmap_atomic_px(pd); 834 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); 835 kunmap_atomic(vaddr); 836 } 837 838 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, 839 struct i915_page_directory *pd, 840 u64 start, u64 length) 841 { 842 struct i915_page_table *pt; 843 u32 pde; 844 845 gen8_for_each_pde(pt, pd, start, length, pde) { 846 GEM_BUG_ON(pt == vm->scratch_pt); 847 848 if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) 849 continue; 850 851 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); 852 GEM_BUG_ON(!pd->used_pdes); 853 pd->used_pdes--; 854 855 free_pt(vm, pt); 856 } 857 858 return !pd->used_pdes; 859 } 860 861 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, 862 struct i915_page_directory_pointer *pdp, 863 struct i915_page_directory *pd, 864 unsigned int pdpe) 865 { 866 gen8_ppgtt_pdpe_t *vaddr; 867 868 pdp->page_directory[pdpe] = pd; 869 if (!i915_vm_is_4lvl(vm)) 870 return; 871 872 vaddr = kmap_atomic_px(pdp); 873 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); 874 kunmap_atomic(vaddr); 875 } 876 877 /* Removes entries from a single page dir pointer, releasing it if it's empty. 878 * Caller can use the return value to update higher-level entries 879 */ 880 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, 881 struct i915_page_directory_pointer *pdp, 882 u64 start, u64 length) 883 { 884 struct i915_page_directory *pd; 885 unsigned int pdpe; 886 887 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 888 GEM_BUG_ON(pd == vm->scratch_pd); 889 890 if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) 891 continue; 892 893 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 894 GEM_BUG_ON(!pdp->used_pdpes); 895 pdp->used_pdpes--; 896 897 free_pd(vm, pd); 898 } 899 900 return !pdp->used_pdpes; 901 } 902 903 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, 904 u64 start, u64 length) 905 { 906 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); 907 } 908 909 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, 910 struct i915_page_directory_pointer *pdp, 911 unsigned int pml4e) 912 { 913 gen8_ppgtt_pml4e_t *vaddr; 914 915 pml4->pdps[pml4e] = pdp; 916 917 vaddr = kmap_atomic_px(pml4); 918 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); 919 kunmap_atomic(vaddr); 920 } 921 922 /* Removes entries from a single pml4. 923 * This is the top-level structure in 4-level page tables used on gen8+. 924 * Empty entries are always scratch pml4e. 925 */ 926 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, 927 u64 start, u64 length) 928 { 929 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 930 struct i915_pml4 *pml4 = &ppgtt->pml4; 931 struct i915_page_directory_pointer *pdp; 932 unsigned int pml4e; 933 934 GEM_BUG_ON(!i915_vm_is_4lvl(vm)); 935 936 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 937 GEM_BUG_ON(pdp == vm->scratch_pdp); 938 939 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) 940 continue; 941 942 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 943 944 free_pdp(vm, pdp); 945 } 946 } 947 948 static inline struct sgt_dma { 949 struct scatterlist *sg; 950 dma_addr_t dma, max; 951 } sgt_dma(struct i915_vma *vma) { 952 struct scatterlist *sg = vma->pages->sgl; 953 dma_addr_t addr = sg_dma_address(sg); 954 return (struct sgt_dma) { sg, addr, addr + sg->length }; 955 } 956 957 struct gen8_insert_pte { 958 u16 pml4e; 959 u16 pdpe; 960 u16 pde; 961 u16 pte; 962 }; 963 964 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) 965 { 966 return (struct gen8_insert_pte) { 967 gen8_pml4e_index(start), 968 gen8_pdpe_index(start), 969 gen8_pde_index(start), 970 gen8_pte_index(start), 971 }; 972 } 973 974 static __always_inline bool 975 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, 976 struct i915_page_directory_pointer *pdp, 977 struct sgt_dma *iter, 978 struct gen8_insert_pte *idx, 979 enum i915_cache_level cache_level, 980 u32 flags) 981 { 982 struct i915_page_directory *pd; 983 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 984 gen8_pte_t *vaddr; 985 bool ret; 986 987 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 988 pd = pdp->page_directory[idx->pdpe]; 989 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 990 do { 991 vaddr[idx->pte] = pte_encode | iter->dma; 992 993 iter->dma += I915_GTT_PAGE_SIZE; 994 if (iter->dma >= iter->max) { 995 iter->sg = __sg_next(iter->sg); 996 if (!iter->sg) { 997 ret = false; 998 break; 999 } 1000 1001 iter->dma = sg_dma_address(iter->sg); 1002 iter->max = iter->dma + iter->sg->length; 1003 } 1004 1005 if (++idx->pte == GEN8_PTES) { 1006 idx->pte = 0; 1007 1008 if (++idx->pde == I915_PDES) { 1009 idx->pde = 0; 1010 1011 /* Limited by sg length for 3lvl */ 1012 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { 1013 idx->pdpe = 0; 1014 ret = true; 1015 break; 1016 } 1017 1018 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); 1019 pd = pdp->page_directory[idx->pdpe]; 1020 } 1021 1022 kunmap_atomic(vaddr); 1023 vaddr = kmap_atomic_px(pd->page_table[idx->pde]); 1024 } 1025 } while (1); 1026 kunmap_atomic(vaddr); 1027 1028 return ret; 1029 } 1030 1031 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, 1032 struct i915_vma *vma, 1033 enum i915_cache_level cache_level, 1034 u32 flags) 1035 { 1036 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1037 struct sgt_dma iter = sgt_dma(vma); 1038 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1039 1040 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, 1041 cache_level, flags); 1042 1043 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1044 } 1045 1046 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, 1047 struct i915_page_directory_pointer **pdps, 1048 struct sgt_dma *iter, 1049 enum i915_cache_level cache_level, 1050 u32 flags) 1051 { 1052 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); 1053 u64 start = vma->node.start; 1054 dma_addr_t rem = iter->sg->length; 1055 1056 do { 1057 struct gen8_insert_pte idx = gen8_insert_pte(start); 1058 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; 1059 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; 1060 unsigned int page_size; 1061 bool maybe_64K = false; 1062 gen8_pte_t encode = pte_encode; 1063 gen8_pte_t *vaddr; 1064 u16 index, max; 1065 1066 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && 1067 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && 1068 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { 1069 index = idx.pde; 1070 max = I915_PDES; 1071 page_size = I915_GTT_PAGE_SIZE_2M; 1072 1073 encode |= GEN8_PDE_PS_2M; 1074 1075 vaddr = kmap_atomic_px(pd); 1076 } else { 1077 struct i915_page_table *pt = pd->page_table[idx.pde]; 1078 1079 index = idx.pte; 1080 max = GEN8_PTES; 1081 page_size = I915_GTT_PAGE_SIZE; 1082 1083 if (!index && 1084 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && 1085 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1086 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1087 rem >= (max - index) * I915_GTT_PAGE_SIZE)) 1088 maybe_64K = true; 1089 1090 vaddr = kmap_atomic_px(pt); 1091 } 1092 1093 do { 1094 GEM_BUG_ON(iter->sg->length < page_size); 1095 vaddr[index++] = encode | iter->dma; 1096 1097 start += page_size; 1098 iter->dma += page_size; 1099 rem -= page_size; 1100 if (iter->dma >= iter->max) { 1101 iter->sg = __sg_next(iter->sg); 1102 if (!iter->sg) 1103 break; 1104 1105 rem = iter->sg->length; 1106 iter->dma = sg_dma_address(iter->sg); 1107 iter->max = iter->dma + rem; 1108 1109 if (maybe_64K && index < max && 1110 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && 1111 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || 1112 rem >= (max - index) * I915_GTT_PAGE_SIZE))) 1113 maybe_64K = false; 1114 1115 if (unlikely(!IS_ALIGNED(iter->dma, page_size))) 1116 break; 1117 } 1118 } while (rem >= page_size && index < max); 1119 1120 kunmap_atomic(vaddr); 1121 1122 /* 1123 * Is it safe to mark the 2M block as 64K? -- Either we have 1124 * filled whole page-table with 64K entries, or filled part of 1125 * it and have reached the end of the sg table and we have 1126 * enough padding. 1127 */ 1128 if (maybe_64K && 1129 (index == max || 1130 (i915_vm_has_scratch_64K(vma->vm) && 1131 !iter->sg && IS_ALIGNED(vma->node.start + 1132 vma->node.size, 1133 I915_GTT_PAGE_SIZE_2M)))) { 1134 vaddr = kmap_atomic_px(pd); 1135 vaddr[idx.pde] |= GEN8_PDE_IPS_64K; 1136 kunmap_atomic(vaddr); 1137 page_size = I915_GTT_PAGE_SIZE_64K; 1138 1139 /* 1140 * We write all 4K page entries, even when using 64K 1141 * pages. In order to verify that the HW isn't cheating 1142 * by using the 4K PTE instead of the 64K PTE, we want 1143 * to remove all the surplus entries. If the HW skipped 1144 * the 64K PTE, it will read/write into the scratch page 1145 * instead - which we detect as missing results during 1146 * selftests. 1147 */ 1148 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { 1149 u16 i; 1150 1151 encode = vma->vm->scratch_pte; 1152 vaddr = kmap_atomic_px(pd->page_table[idx.pde]); 1153 1154 for (i = 1; i < index; i += 16) 1155 memset64(vaddr + i, encode, 15); 1156 1157 kunmap_atomic(vaddr); 1158 } 1159 } 1160 1161 vma->page_sizes.gtt |= page_size; 1162 } while (iter->sg); 1163 } 1164 1165 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, 1166 struct i915_vma *vma, 1167 enum i915_cache_level cache_level, 1168 u32 flags) 1169 { 1170 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1171 struct sgt_dma iter = sgt_dma(vma); 1172 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; 1173 1174 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 1175 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level, 1176 flags); 1177 } else { 1178 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); 1179 1180 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], 1181 &iter, &idx, cache_level, 1182 flags)) 1183 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); 1184 1185 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1186 } 1187 } 1188 1189 static void gen8_free_page_tables(struct i915_address_space *vm, 1190 struct i915_page_directory *pd) 1191 { 1192 int i; 1193 1194 for (i = 0; i < I915_PDES; i++) { 1195 if (pd->page_table[i] != vm->scratch_pt) 1196 free_pt(vm, pd->page_table[i]); 1197 } 1198 } 1199 1200 static int gen8_init_scratch(struct i915_address_space *vm) 1201 { 1202 int ret; 1203 1204 /* 1205 * If everybody agrees to not to write into the scratch page, 1206 * we can reuse it for all vm, keeping contexts and processes separate. 1207 */ 1208 if (vm->has_read_only && 1209 vm->i915->kernel_context && 1210 vm->i915->kernel_context->ppgtt) { 1211 struct i915_address_space *clone = 1212 &vm->i915->kernel_context->ppgtt->vm; 1213 1214 GEM_BUG_ON(!clone->has_read_only); 1215 1216 vm->scratch_order = clone->scratch_order; 1217 vm->scratch_pte = clone->scratch_pte; 1218 vm->scratch_pt = clone->scratch_pt; 1219 vm->scratch_pd = clone->scratch_pd; 1220 vm->scratch_pdp = clone->scratch_pdp; 1221 return 0; 1222 } 1223 1224 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1225 if (ret) 1226 return ret; 1227 1228 vm->scratch_pte = 1229 gen8_pte_encode(vm->scratch_page.daddr, 1230 I915_CACHE_LLC, 1231 vm->has_read_only); 1232 1233 vm->scratch_pt = alloc_pt(vm); 1234 if (IS_ERR(vm->scratch_pt)) { 1235 ret = PTR_ERR(vm->scratch_pt); 1236 goto free_scratch_page; 1237 } 1238 1239 vm->scratch_pd = alloc_pd(vm); 1240 if (IS_ERR(vm->scratch_pd)) { 1241 ret = PTR_ERR(vm->scratch_pd); 1242 goto free_pt; 1243 } 1244 1245 if (i915_vm_is_4lvl(vm)) { 1246 vm->scratch_pdp = alloc_pdp(vm); 1247 if (IS_ERR(vm->scratch_pdp)) { 1248 ret = PTR_ERR(vm->scratch_pdp); 1249 goto free_pd; 1250 } 1251 } 1252 1253 gen8_initialize_pt(vm, vm->scratch_pt); 1254 gen8_initialize_pd(vm, vm->scratch_pd); 1255 if (i915_vm_is_4lvl(vm)) 1256 gen8_initialize_pdp(vm, vm->scratch_pdp); 1257 1258 return 0; 1259 1260 free_pd: 1261 free_pd(vm, vm->scratch_pd); 1262 free_pt: 1263 free_pt(vm, vm->scratch_pt); 1264 free_scratch_page: 1265 cleanup_scratch_page(vm); 1266 1267 return ret; 1268 } 1269 1270 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) 1271 { 1272 struct i915_address_space *vm = &ppgtt->vm; 1273 struct drm_i915_private *dev_priv = vm->i915; 1274 enum vgt_g2v_type msg; 1275 int i; 1276 1277 if (i915_vm_is_4lvl(vm)) { 1278 const u64 daddr = px_dma(&ppgtt->pml4); 1279 1280 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); 1281 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); 1282 1283 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : 1284 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); 1285 } else { 1286 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1287 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); 1288 1289 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); 1290 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); 1291 } 1292 1293 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : 1294 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); 1295 } 1296 1297 I915_WRITE(vgtif_reg(g2v_notify), msg); 1298 1299 return 0; 1300 } 1301 1302 static void gen8_free_scratch(struct i915_address_space *vm) 1303 { 1304 if (!vm->scratch_page.daddr) 1305 return; 1306 1307 if (i915_vm_is_4lvl(vm)) 1308 free_pdp(vm, vm->scratch_pdp); 1309 free_pd(vm, vm->scratch_pd); 1310 free_pt(vm, vm->scratch_pt); 1311 cleanup_scratch_page(vm); 1312 } 1313 1314 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, 1315 struct i915_page_directory_pointer *pdp) 1316 { 1317 const unsigned int pdpes = i915_pdpes_per_pdp(vm); 1318 int i; 1319 1320 for (i = 0; i < pdpes; i++) { 1321 if (pdp->page_directory[i] == vm->scratch_pd) 1322 continue; 1323 1324 gen8_free_page_tables(vm, pdp->page_directory[i]); 1325 free_pd(vm, pdp->page_directory[i]); 1326 } 1327 1328 free_pdp(vm, pdp); 1329 } 1330 1331 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) 1332 { 1333 int i; 1334 1335 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { 1336 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp) 1337 continue; 1338 1339 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]); 1340 } 1341 1342 cleanup_px(&ppgtt->vm, &ppgtt->pml4); 1343 } 1344 1345 static void gen8_ppgtt_cleanup(struct i915_address_space *vm) 1346 { 1347 struct drm_i915_private *dev_priv = vm->i915; 1348 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1349 1350 if (intel_vgpu_active(dev_priv)) 1351 gen8_ppgtt_notify_vgt(ppgtt, false); 1352 1353 if (i915_vm_is_4lvl(vm)) 1354 gen8_ppgtt_cleanup_4lvl(ppgtt); 1355 else 1356 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp); 1357 1358 gen8_free_scratch(vm); 1359 } 1360 1361 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, 1362 struct i915_page_directory *pd, 1363 u64 start, u64 length) 1364 { 1365 struct i915_page_table *pt; 1366 u64 from = start; 1367 unsigned int pde; 1368 1369 gen8_for_each_pde(pt, pd, start, length, pde) { 1370 int count = gen8_pte_count(start, length); 1371 1372 if (pt == vm->scratch_pt) { 1373 pd->used_pdes++; 1374 1375 pt = alloc_pt(vm); 1376 if (IS_ERR(pt)) { 1377 pd->used_pdes--; 1378 goto unwind; 1379 } 1380 1381 if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) 1382 gen8_initialize_pt(vm, pt); 1383 1384 gen8_ppgtt_set_pde(vm, pd, pt, pde); 1385 GEM_BUG_ON(pd->used_pdes > I915_PDES); 1386 } 1387 1388 pt->used_ptes += count; 1389 } 1390 return 0; 1391 1392 unwind: 1393 gen8_ppgtt_clear_pd(vm, pd, from, start - from); 1394 return -ENOMEM; 1395 } 1396 1397 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, 1398 struct i915_page_directory_pointer *pdp, 1399 u64 start, u64 length) 1400 { 1401 struct i915_page_directory *pd; 1402 u64 from = start; 1403 unsigned int pdpe; 1404 int ret; 1405 1406 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1407 if (pd == vm->scratch_pd) { 1408 pdp->used_pdpes++; 1409 1410 pd = alloc_pd(vm); 1411 if (IS_ERR(pd)) { 1412 pdp->used_pdpes--; 1413 goto unwind; 1414 } 1415 1416 gen8_initialize_pd(vm, pd); 1417 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1418 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); 1419 } 1420 1421 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); 1422 if (unlikely(ret)) 1423 goto unwind_pd; 1424 } 1425 1426 return 0; 1427 1428 unwind_pd: 1429 if (!pd->used_pdes) { 1430 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1431 GEM_BUG_ON(!pdp->used_pdpes); 1432 pdp->used_pdpes--; 1433 free_pd(vm, pd); 1434 } 1435 unwind: 1436 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); 1437 return -ENOMEM; 1438 } 1439 1440 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, 1441 u64 start, u64 length) 1442 { 1443 return gen8_ppgtt_alloc_pdp(vm, 1444 &i915_vm_to_ppgtt(vm)->pdp, start, length); 1445 } 1446 1447 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, 1448 u64 start, u64 length) 1449 { 1450 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1451 struct i915_pml4 *pml4 = &ppgtt->pml4; 1452 struct i915_page_directory_pointer *pdp; 1453 u64 from = start; 1454 u32 pml4e; 1455 int ret; 1456 1457 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { 1458 if (pml4->pdps[pml4e] == vm->scratch_pdp) { 1459 pdp = alloc_pdp(vm); 1460 if (IS_ERR(pdp)) 1461 goto unwind; 1462 1463 gen8_initialize_pdp(vm, pdp); 1464 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); 1465 } 1466 1467 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); 1468 if (unlikely(ret)) 1469 goto unwind_pdp; 1470 } 1471 1472 return 0; 1473 1474 unwind_pdp: 1475 if (!pdp->used_pdpes) { 1476 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); 1477 free_pdp(vm, pdp); 1478 } 1479 unwind: 1480 gen8_ppgtt_clear_4lvl(vm, from, start - from); 1481 return -ENOMEM; 1482 } 1483 1484 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) 1485 { 1486 struct i915_address_space *vm = &ppgtt->vm; 1487 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; 1488 struct i915_page_directory *pd; 1489 u64 start = 0, length = ppgtt->vm.total; 1490 u64 from = start; 1491 unsigned int pdpe; 1492 1493 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { 1494 pd = alloc_pd(vm); 1495 if (IS_ERR(pd)) 1496 goto unwind; 1497 1498 gen8_initialize_pd(vm, pd); 1499 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); 1500 pdp->used_pdpes++; 1501 } 1502 1503 pdp->used_pdpes++; /* never remove */ 1504 return 0; 1505 1506 unwind: 1507 start -= from; 1508 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { 1509 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); 1510 free_pd(vm, pd); 1511 } 1512 pdp->used_pdpes = 0; 1513 return -ENOMEM; 1514 } 1515 1516 static void ppgtt_init(struct drm_i915_private *i915, 1517 struct i915_hw_ppgtt *ppgtt) 1518 { 1519 kref_init(&ppgtt->ref); 1520 1521 ppgtt->vm.i915 = i915; 1522 ppgtt->vm.dma = &i915->drm.pdev->dev; 1523 ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size); 1524 1525 i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT); 1526 1527 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; 1528 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; 1529 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; 1530 ppgtt->vm.vma_ops.clear_pages = clear_pages; 1531 } 1532 1533 /* 1534 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers 1535 * with a net effect resembling a 2-level page table in normal x86 terms. Each 1536 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address 1537 * space. 1538 * 1539 */ 1540 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) 1541 { 1542 struct i915_hw_ppgtt *ppgtt; 1543 int err; 1544 1545 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 1546 if (!ppgtt) 1547 return ERR_PTR(-ENOMEM); 1548 1549 ppgtt_init(i915, ppgtt); 1550 1551 /* 1552 * From bdw, there is hw support for read-only pages in the PPGTT. 1553 * 1554 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support 1555 * for now. 1556 */ 1557 ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11; 1558 1559 /* There are only few exceptions for gen >=6. chv and bxt. 1560 * And we are not sure about the latter so play safe for now. 1561 */ 1562 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) 1563 ppgtt->vm.pt_kmap_wc = true; 1564 1565 err = gen8_init_scratch(&ppgtt->vm); 1566 if (err) 1567 goto err_free; 1568 1569 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1570 err = setup_px(&ppgtt->vm, &ppgtt->pml4); 1571 if (err) 1572 goto err_scratch; 1573 1574 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4); 1575 1576 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; 1577 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; 1578 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; 1579 } else { 1580 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp); 1581 if (err) 1582 goto err_scratch; 1583 1584 if (intel_vgpu_active(i915)) { 1585 err = gen8_preallocate_top_level_pdp(ppgtt); 1586 if (err) { 1587 __pdp_fini(&ppgtt->pdp); 1588 goto err_scratch; 1589 } 1590 } 1591 1592 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; 1593 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; 1594 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; 1595 } 1596 1597 if (intel_vgpu_active(i915)) 1598 gen8_ppgtt_notify_vgt(ppgtt, true); 1599 1600 ppgtt->vm.cleanup = gen8_ppgtt_cleanup; 1601 1602 return ppgtt; 1603 1604 err_scratch: 1605 gen8_free_scratch(&ppgtt->vm); 1606 err_free: 1607 kfree(ppgtt); 1608 return ERR_PTR(err); 1609 } 1610 1611 /* Write pde (index) from the page directory @pd to the page table @pt */ 1612 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt, 1613 const unsigned int pde, 1614 const struct i915_page_table *pt) 1615 { 1616 /* Caller needs to make sure the write completes if necessary */ 1617 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, 1618 ppgtt->pd_addr + pde); 1619 } 1620 1621 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) 1622 { 1623 struct intel_engine_cs *engine; 1624 u32 ecochk, ecobits; 1625 enum intel_engine_id id; 1626 1627 ecobits = I915_READ(GAC_ECO_BITS); 1628 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 1629 1630 ecochk = I915_READ(GAM_ECOCHK); 1631 if (IS_HASWELL(dev_priv)) { 1632 ecochk |= ECOCHK_PPGTT_WB_HSW; 1633 } else { 1634 ecochk |= ECOCHK_PPGTT_LLC_IVB; 1635 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; 1636 } 1637 I915_WRITE(GAM_ECOCHK, ecochk); 1638 1639 for_each_engine(engine, dev_priv, id) { 1640 /* GFX_MODE is per-ring on gen7+ */ 1641 I915_WRITE(RING_MODE_GEN7(engine), 1642 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1643 } 1644 } 1645 1646 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) 1647 { 1648 u32 ecochk, gab_ctl, ecobits; 1649 1650 ecobits = I915_READ(GAC_ECO_BITS); 1651 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | 1652 ECOBITS_PPGTT_CACHE64B); 1653 1654 gab_ctl = I915_READ(GAB_CTL); 1655 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 1656 1657 ecochk = I915_READ(GAM_ECOCHK); 1658 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); 1659 1660 if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */ 1661 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 1662 } 1663 1664 /* PPGTT support for Sandybdrige/Gen6 and later */ 1665 static void gen6_ppgtt_clear_range(struct i915_address_space *vm, 1666 u64 start, u64 length) 1667 { 1668 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1669 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 1670 unsigned int pde = first_entry / GEN6_PTES; 1671 unsigned int pte = first_entry % GEN6_PTES; 1672 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 1673 const gen6_pte_t scratch_pte = vm->scratch_pte; 1674 1675 while (num_entries) { 1676 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++]; 1677 const unsigned int count = min(num_entries, GEN6_PTES - pte); 1678 gen6_pte_t *vaddr; 1679 1680 GEM_BUG_ON(pt == vm->scratch_pt); 1681 1682 num_entries -= count; 1683 1684 GEM_BUG_ON(count > pt->used_ptes); 1685 pt->used_ptes -= count; 1686 if (!pt->used_ptes) 1687 ppgtt->scan_for_unused_pt = true; 1688 1689 /* 1690 * Note that the hw doesn't support removing PDE on the fly 1691 * (they are cached inside the context with no means to 1692 * invalidate the cache), so we can only reset the PTE 1693 * entries back to scratch. 1694 */ 1695 1696 vaddr = kmap_atomic_px(pt); 1697 memset32(vaddr + pte, scratch_pte, count); 1698 kunmap_atomic(vaddr); 1699 1700 pte = 0; 1701 } 1702 } 1703 1704 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, 1705 struct i915_vma *vma, 1706 enum i915_cache_level cache_level, 1707 u32 flags) 1708 { 1709 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1710 unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE; 1711 unsigned act_pt = first_entry / GEN6_PTES; 1712 unsigned act_pte = first_entry % GEN6_PTES; 1713 const u32 pte_encode = vm->pte_encode(0, cache_level, flags); 1714 struct sgt_dma iter = sgt_dma(vma); 1715 gen6_pte_t *vaddr; 1716 1717 GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt); 1718 1719 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); 1720 do { 1721 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); 1722 1723 iter.dma += I915_GTT_PAGE_SIZE; 1724 if (iter.dma == iter.max) { 1725 iter.sg = __sg_next(iter.sg); 1726 if (!iter.sg) 1727 break; 1728 1729 iter.dma = sg_dma_address(iter.sg); 1730 iter.max = iter.dma + iter.sg->length; 1731 } 1732 1733 if (++act_pte == GEN6_PTES) { 1734 kunmap_atomic(vaddr); 1735 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); 1736 act_pte = 0; 1737 } 1738 } while (1); 1739 kunmap_atomic(vaddr); 1740 1741 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 1742 } 1743 1744 static int gen6_alloc_va_range(struct i915_address_space *vm, 1745 u64 start, u64 length) 1746 { 1747 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1748 struct i915_page_table *pt; 1749 u64 from = start; 1750 unsigned int pde; 1751 bool flush = false; 1752 1753 gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) { 1754 const unsigned int count = gen6_pte_count(start, length); 1755 1756 if (pt == vm->scratch_pt) { 1757 pt = alloc_pt(vm); 1758 if (IS_ERR(pt)) 1759 goto unwind_out; 1760 1761 gen6_initialize_pt(vm, pt); 1762 ppgtt->base.pd.page_table[pde] = pt; 1763 1764 if (i915_vma_is_bound(ppgtt->vma, 1765 I915_VMA_GLOBAL_BIND)) { 1766 gen6_write_pde(ppgtt, pde, pt); 1767 flush = true; 1768 } 1769 1770 GEM_BUG_ON(pt->used_ptes); 1771 } 1772 1773 pt->used_ptes += count; 1774 } 1775 1776 if (flush) { 1777 mark_tlbs_dirty(&ppgtt->base); 1778 gen6_ggtt_invalidate(ppgtt->base.vm.i915); 1779 } 1780 1781 return 0; 1782 1783 unwind_out: 1784 gen6_ppgtt_clear_range(vm, from, start - from); 1785 return -ENOMEM; 1786 } 1787 1788 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt) 1789 { 1790 struct i915_address_space * const vm = &ppgtt->base.vm; 1791 struct i915_page_table *unused; 1792 u32 pde; 1793 int ret; 1794 1795 ret = setup_scratch_page(vm, __GFP_HIGHMEM); 1796 if (ret) 1797 return ret; 1798 1799 vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr, 1800 I915_CACHE_NONE, 1801 PTE_READ_ONLY); 1802 1803 vm->scratch_pt = alloc_pt(vm); 1804 if (IS_ERR(vm->scratch_pt)) { 1805 cleanup_scratch_page(vm); 1806 return PTR_ERR(vm->scratch_pt); 1807 } 1808 1809 gen6_initialize_pt(vm, vm->scratch_pt); 1810 gen6_for_all_pdes(unused, &ppgtt->base.pd, pde) 1811 ppgtt->base.pd.page_table[pde] = vm->scratch_pt; 1812 1813 return 0; 1814 } 1815 1816 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) 1817 { 1818 free_pt(vm, vm->scratch_pt); 1819 cleanup_scratch_page(vm); 1820 } 1821 1822 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt) 1823 { 1824 struct i915_page_table *pt; 1825 u32 pde; 1826 1827 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) 1828 if (pt != ppgtt->base.vm.scratch_pt) 1829 free_pt(&ppgtt->base.vm, pt); 1830 } 1831 1832 static void gen6_ppgtt_cleanup(struct i915_address_space *vm) 1833 { 1834 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); 1835 1836 i915_vma_destroy(ppgtt->vma); 1837 1838 gen6_ppgtt_free_pd(ppgtt); 1839 gen6_ppgtt_free_scratch(vm); 1840 } 1841 1842 static int pd_vma_set_pages(struct i915_vma *vma) 1843 { 1844 vma->pages = ERR_PTR(-ENODEV); 1845 return 0; 1846 } 1847 1848 static void pd_vma_clear_pages(struct i915_vma *vma) 1849 { 1850 GEM_BUG_ON(!vma->pages); 1851 1852 vma->pages = NULL; 1853 } 1854 1855 static int pd_vma_bind(struct i915_vma *vma, 1856 enum i915_cache_level cache_level, 1857 u32 unused) 1858 { 1859 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); 1860 struct gen6_hw_ppgtt *ppgtt = vma->private; 1861 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; 1862 struct i915_page_table *pt; 1863 unsigned int pde; 1864 1865 ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); 1866 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; 1867 1868 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) 1869 gen6_write_pde(ppgtt, pde, pt); 1870 1871 mark_tlbs_dirty(&ppgtt->base); 1872 gen6_ggtt_invalidate(ppgtt->base.vm.i915); 1873 1874 return 0; 1875 } 1876 1877 static void pd_vma_unbind(struct i915_vma *vma) 1878 { 1879 struct gen6_hw_ppgtt *ppgtt = vma->private; 1880 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; 1881 struct i915_page_table *pt; 1882 unsigned int pde; 1883 1884 if (!ppgtt->scan_for_unused_pt) 1885 return; 1886 1887 /* Free all no longer used page tables */ 1888 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) { 1889 if (pt->used_ptes || pt == scratch_pt) 1890 continue; 1891 1892 free_pt(&ppgtt->base.vm, pt); 1893 ppgtt->base.pd.page_table[pde] = scratch_pt; 1894 } 1895 1896 ppgtt->scan_for_unused_pt = false; 1897 } 1898 1899 static const struct i915_vma_ops pd_vma_ops = { 1900 .set_pages = pd_vma_set_pages, 1901 .clear_pages = pd_vma_clear_pages, 1902 .bind_vma = pd_vma_bind, 1903 .unbind_vma = pd_vma_unbind, 1904 }; 1905 1906 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size) 1907 { 1908 struct drm_i915_private *i915 = ppgtt->base.vm.i915; 1909 struct i915_ggtt *ggtt = &i915->ggtt; 1910 struct i915_vma *vma; 1911 1912 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 1913 GEM_BUG_ON(size > ggtt->vm.total); 1914 1915 vma = i915_vma_alloc(); 1916 if (!vma) 1917 return ERR_PTR(-ENOMEM); 1918 1919 i915_active_init(i915, &vma->active, NULL); 1920 INIT_ACTIVE_REQUEST(&vma->last_fence); 1921 1922 vma->vm = &ggtt->vm; 1923 vma->ops = &pd_vma_ops; 1924 vma->private = ppgtt; 1925 1926 vma->size = size; 1927 vma->fence_size = size; 1928 vma->flags = I915_VMA_GGTT; 1929 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ 1930 1931 INIT_LIST_HEAD(&vma->obj_link); 1932 1933 mutex_lock(&vma->vm->mutex); 1934 list_add(&vma->vm_link, &vma->vm->unbound_list); 1935 mutex_unlock(&vma->vm->mutex); 1936 1937 return vma; 1938 } 1939 1940 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base) 1941 { 1942 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 1943 int err; 1944 1945 GEM_BUG_ON(ppgtt->base.vm.closed); 1946 1947 /* 1948 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt 1949 * which will be pinned into every active context. 1950 * (When vma->pin_count becomes atomic, I expect we will naturally 1951 * need a larger, unpacked, type and kill this redundancy.) 1952 */ 1953 if (ppgtt->pin_count++) 1954 return 0; 1955 1956 /* 1957 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The 1958 * allocator works in address space sizes, so it's multiplied by page 1959 * size. We allocate at the top of the GTT to avoid fragmentation. 1960 */ 1961 err = i915_vma_pin(ppgtt->vma, 1962 0, GEN6_PD_ALIGN, 1963 PIN_GLOBAL | PIN_HIGH); 1964 if (err) 1965 goto unpin; 1966 1967 return 0; 1968 1969 unpin: 1970 ppgtt->pin_count = 0; 1971 return err; 1972 } 1973 1974 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base) 1975 { 1976 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 1977 1978 GEM_BUG_ON(!ppgtt->pin_count); 1979 if (--ppgtt->pin_count) 1980 return; 1981 1982 i915_vma_unpin(ppgtt->vma); 1983 } 1984 1985 void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base) 1986 { 1987 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); 1988 1989 if (!ppgtt->pin_count) 1990 return; 1991 1992 ppgtt->pin_count = 0; 1993 i915_vma_unpin(ppgtt->vma); 1994 } 1995 1996 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) 1997 { 1998 struct i915_ggtt * const ggtt = &i915->ggtt; 1999 struct gen6_hw_ppgtt *ppgtt; 2000 int err; 2001 2002 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); 2003 if (!ppgtt) 2004 return ERR_PTR(-ENOMEM); 2005 2006 ppgtt_init(i915, &ppgtt->base); 2007 2008 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; 2009 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; 2010 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; 2011 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; 2012 2013 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; 2014 2015 err = gen6_ppgtt_init_scratch(ppgtt); 2016 if (err) 2017 goto err_free; 2018 2019 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); 2020 if (IS_ERR(ppgtt->vma)) { 2021 err = PTR_ERR(ppgtt->vma); 2022 goto err_scratch; 2023 } 2024 2025 return &ppgtt->base; 2026 2027 err_scratch: 2028 gen6_ppgtt_free_scratch(&ppgtt->base.vm); 2029 err_free: 2030 kfree(ppgtt); 2031 return ERR_PTR(err); 2032 } 2033 2034 static void gtt_write_workarounds(struct drm_i915_private *dev_priv) 2035 { 2036 /* This function is for gtt related workarounds. This function is 2037 * called on driver load and after a GPU reset, so you can place 2038 * workarounds here even if they get overwritten by GPU reset. 2039 */ 2040 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 2041 if (IS_BROADWELL(dev_priv)) 2042 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 2043 else if (IS_CHERRYVIEW(dev_priv)) 2044 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 2045 else if (IS_GEN9_LP(dev_priv)) 2046 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 2047 else if (INTEL_GEN(dev_priv) >= 9) 2048 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 2049 2050 /* 2051 * To support 64K PTEs we need to first enable the use of the 2052 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 2053 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 2054 * shouldn't be needed after GEN10. 2055 * 2056 * 64K pages were first introduced from BDW+, although technically they 2057 * only *work* from gen9+. For pre-BDW we instead have the option for 2058 * 32K pages, but we don't currently have any support for it in our 2059 * driver. 2060 */ 2061 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && 2062 INTEL_GEN(dev_priv) <= 10) 2063 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, 2064 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | 2065 GAMW_ECO_ENABLE_64K_IPS_FIELD); 2066 } 2067 2068 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) 2069 { 2070 gtt_write_workarounds(dev_priv); 2071 2072 if (IS_GEN(dev_priv, 6)) 2073 gen6_ppgtt_enable(dev_priv); 2074 else if (IS_GEN(dev_priv, 7)) 2075 gen7_ppgtt_enable(dev_priv); 2076 2077 return 0; 2078 } 2079 2080 static struct i915_hw_ppgtt * 2081 __hw_ppgtt_create(struct drm_i915_private *i915) 2082 { 2083 if (INTEL_GEN(i915) < 8) 2084 return gen6_ppgtt_create(i915); 2085 else 2086 return gen8_ppgtt_create(i915); 2087 } 2088 2089 struct i915_hw_ppgtt * 2090 i915_ppgtt_create(struct drm_i915_private *i915) 2091 { 2092 struct i915_hw_ppgtt *ppgtt; 2093 2094 ppgtt = __hw_ppgtt_create(i915); 2095 if (IS_ERR(ppgtt)) 2096 return ppgtt; 2097 2098 trace_i915_ppgtt_create(&ppgtt->vm); 2099 2100 return ppgtt; 2101 } 2102 2103 static void ppgtt_destroy_vma(struct i915_address_space *vm) 2104 { 2105 struct list_head *phases[] = { 2106 &vm->bound_list, 2107 &vm->unbound_list, 2108 NULL, 2109 }, **phase; 2110 2111 vm->closed = true; 2112 for (phase = phases; *phase; phase++) { 2113 struct i915_vma *vma, *vn; 2114 2115 list_for_each_entry_safe(vma, vn, *phase, vm_link) 2116 i915_vma_destroy(vma); 2117 } 2118 } 2119 2120 void i915_ppgtt_release(struct kref *kref) 2121 { 2122 struct i915_hw_ppgtt *ppgtt = 2123 container_of(kref, struct i915_hw_ppgtt, ref); 2124 2125 trace_i915_ppgtt_release(&ppgtt->vm); 2126 2127 ppgtt_destroy_vma(&ppgtt->vm); 2128 2129 GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list)); 2130 GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list)); 2131 2132 ppgtt->vm.cleanup(&ppgtt->vm); 2133 i915_address_space_fini(&ppgtt->vm); 2134 kfree(ppgtt); 2135 } 2136 2137 /* Certain Gen5 chipsets require require idling the GPU before 2138 * unmapping anything from the GTT when VT-d is enabled. 2139 */ 2140 static bool needs_idle_maps(struct drm_i915_private *dev_priv) 2141 { 2142 /* Query intel_iommu to see if we need the workaround. Presumably that 2143 * was loaded first. 2144 */ 2145 return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active(); 2146 } 2147 2148 static void gen6_check_faults(struct drm_i915_private *dev_priv) 2149 { 2150 struct intel_engine_cs *engine; 2151 enum intel_engine_id id; 2152 u32 fault; 2153 2154 for_each_engine(engine, dev_priv, id) { 2155 fault = I915_READ(RING_FAULT_REG(engine)); 2156 if (fault & RING_FAULT_VALID) { 2157 DRM_DEBUG_DRIVER("Unexpected fault\n" 2158 "\tAddr: 0x%08lx\n" 2159 "\tAddress space: %s\n" 2160 "\tSource ID: %d\n" 2161 "\tType: %d\n", 2162 fault & PAGE_MASK, 2163 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", 2164 RING_FAULT_SRCID(fault), 2165 RING_FAULT_FAULT_TYPE(fault)); 2166 } 2167 } 2168 } 2169 2170 static void gen8_check_faults(struct drm_i915_private *dev_priv) 2171 { 2172 u32 fault = I915_READ(GEN8_RING_FAULT_REG); 2173 2174 if (fault & RING_FAULT_VALID) { 2175 u32 fault_data0, fault_data1; 2176 u64 fault_addr; 2177 2178 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); 2179 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); 2180 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 2181 ((u64)fault_data0 << 12); 2182 2183 DRM_DEBUG_DRIVER("Unexpected fault\n" 2184 "\tAddr: 0x%08x_%08x\n" 2185 "\tAddress space: %s\n" 2186 "\tEngine ID: %d\n" 2187 "\tSource ID: %d\n" 2188 "\tType: %d\n", 2189 upper_32_bits(fault_addr), 2190 lower_32_bits(fault_addr), 2191 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 2192 GEN8_RING_FAULT_ENGINE_ID(fault), 2193 RING_FAULT_SRCID(fault), 2194 RING_FAULT_FAULT_TYPE(fault)); 2195 } 2196 } 2197 2198 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) 2199 { 2200 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 2201 if (INTEL_GEN(dev_priv) >= 8) 2202 gen8_check_faults(dev_priv); 2203 else if (INTEL_GEN(dev_priv) >= 6) 2204 gen6_check_faults(dev_priv); 2205 else 2206 return; 2207 2208 i915_clear_error_registers(dev_priv); 2209 } 2210 2211 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) 2212 { 2213 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2214 2215 /* Don't bother messing with faults pre GEN6 as we have little 2216 * documentation supporting that it's a good idea. 2217 */ 2218 if (INTEL_GEN(dev_priv) < 6) 2219 return; 2220 2221 i915_check_and_clear_faults(dev_priv); 2222 2223 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 2224 2225 i915_ggtt_invalidate(dev_priv); 2226 } 2227 2228 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, 2229 struct sg_table *pages) 2230 { 2231 do { 2232 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, 2233 pages->sgl, pages->nents, 2234 PCI_DMA_BIDIRECTIONAL, 2235 DMA_ATTR_NO_WARN)) 2236 return 0; 2237 2238 /* 2239 * If the DMA remap fails, one cause can be that we have 2240 * too many objects pinned in a small remapping table, 2241 * such as swiotlb. Incrementally purge all other objects and 2242 * try again - if there are no more pages to remove from 2243 * the DMA remapper, i915_gem_shrink will return 0. 2244 */ 2245 GEM_BUG_ON(obj->mm.pages == pages); 2246 } while (i915_gem_shrink(to_i915(obj->base.dev), 2247 obj->base.size >> PAGE_SHIFT, NULL, 2248 I915_SHRINK_BOUND | 2249 I915_SHRINK_UNBOUND)); 2250 2251 return -ENOSPC; 2252 } 2253 2254 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 2255 { 2256 writeq(pte, addr); 2257 } 2258 2259 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 2260 dma_addr_t addr, 2261 u64 offset, 2262 enum i915_cache_level level, 2263 u32 unused) 2264 { 2265 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2266 gen8_pte_t __iomem *pte = 2267 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2268 2269 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); 2270 2271 ggtt->invalidate(vm->i915); 2272 } 2273 2274 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 2275 struct i915_vma *vma, 2276 enum i915_cache_level level, 2277 u32 flags) 2278 { 2279 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2280 struct sgt_iter sgt_iter; 2281 gen8_pte_t __iomem *gtt_entries; 2282 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); 2283 dma_addr_t addr; 2284 2285 /* 2286 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 2287 * not to allow the user to override access to a read only page. 2288 */ 2289 2290 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; 2291 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE; 2292 for_each_sgt_dma(addr, sgt_iter, vma->pages) 2293 gen8_set_pte(gtt_entries++, pte_encode | addr); 2294 2295 /* 2296 * We want to flush the TLBs only after we're certain all the PTE 2297 * updates have finished. 2298 */ 2299 ggtt->invalidate(vm->i915); 2300 } 2301 2302 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 2303 dma_addr_t addr, 2304 u64 offset, 2305 enum i915_cache_level level, 2306 u32 flags) 2307 { 2308 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2309 gen6_pte_t __iomem *pte = 2310 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 2311 2312 iowrite32(vm->pte_encode(addr, level, flags), pte); 2313 2314 ggtt->invalidate(vm->i915); 2315 } 2316 2317 /* 2318 * Binds an object into the global gtt with the specified cache level. The object 2319 * will be accessible to the GPU via commands whose operands reference offsets 2320 * within the global GTT as well as accessible by the GPU through the GMADR 2321 * mapped BAR (dev_priv->mm.gtt->gtt). 2322 */ 2323 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 2324 struct i915_vma *vma, 2325 enum i915_cache_level level, 2326 u32 flags) 2327 { 2328 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2329 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; 2330 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE; 2331 struct sgt_iter iter; 2332 dma_addr_t addr; 2333 for_each_sgt_dma(addr, iter, vma->pages) 2334 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); 2335 2336 /* 2337 * We want to flush the TLBs only after we're certain all the PTE 2338 * updates have finished. 2339 */ 2340 ggtt->invalidate(vm->i915); 2341 } 2342 2343 static void nop_clear_range(struct i915_address_space *vm, 2344 u64 start, u64 length) 2345 { 2346 } 2347 2348 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 2349 u64 start, u64 length) 2350 { 2351 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2352 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2353 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2354 const gen8_pte_t scratch_pte = vm->scratch_pte; 2355 gen8_pte_t __iomem *gtt_base = 2356 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 2357 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2358 int i; 2359 2360 if (WARN(num_entries > max_entries, 2361 "First entry = %d; Num entries = %d (max=%d)\n", 2362 first_entry, num_entries, max_entries)) 2363 num_entries = max_entries; 2364 2365 for (i = 0; i < num_entries; i++) 2366 gen8_set_pte(>t_base[i], scratch_pte); 2367 } 2368 2369 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 2370 { 2371 struct drm_i915_private *dev_priv = vm->i915; 2372 2373 /* 2374 * Make sure the internal GAM fifo has been cleared of all GTT 2375 * writes before exiting stop_machine(). This guarantees that 2376 * any aperture accesses waiting to start in another process 2377 * cannot back up behind the GTT writes causing a hang. 2378 * The register can be any arbitrary GAM register. 2379 */ 2380 POSTING_READ(GFX_FLSH_CNTL_GEN6); 2381 } 2382 2383 struct insert_page { 2384 struct i915_address_space *vm; 2385 dma_addr_t addr; 2386 u64 offset; 2387 enum i915_cache_level level; 2388 }; 2389 2390 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 2391 { 2392 struct insert_page *arg = _arg; 2393 2394 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 2395 bxt_vtd_ggtt_wa(arg->vm); 2396 2397 return 0; 2398 } 2399 2400 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 2401 dma_addr_t addr, 2402 u64 offset, 2403 enum i915_cache_level level, 2404 u32 unused) 2405 { 2406 struct insert_page arg = { vm, addr, offset, level }; 2407 2408 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 2409 } 2410 2411 struct insert_entries { 2412 struct i915_address_space *vm; 2413 struct i915_vma *vma; 2414 enum i915_cache_level level; 2415 u32 flags; 2416 }; 2417 2418 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 2419 { 2420 struct insert_entries *arg = _arg; 2421 2422 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); 2423 bxt_vtd_ggtt_wa(arg->vm); 2424 2425 return 0; 2426 } 2427 2428 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 2429 struct i915_vma *vma, 2430 enum i915_cache_level level, 2431 u32 flags) 2432 { 2433 struct insert_entries arg = { vm, vma, level, flags }; 2434 2435 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 2436 } 2437 2438 struct clear_range { 2439 struct i915_address_space *vm; 2440 u64 start; 2441 u64 length; 2442 }; 2443 2444 static int bxt_vtd_ggtt_clear_range__cb(void *_arg) 2445 { 2446 struct clear_range *arg = _arg; 2447 2448 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); 2449 bxt_vtd_ggtt_wa(arg->vm); 2450 2451 return 0; 2452 } 2453 2454 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, 2455 u64 start, 2456 u64 length) 2457 { 2458 struct clear_range arg = { vm, start, length }; 2459 2460 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); 2461 } 2462 2463 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 2464 u64 start, u64 length) 2465 { 2466 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 2467 unsigned first_entry = start / I915_GTT_PAGE_SIZE; 2468 unsigned num_entries = length / I915_GTT_PAGE_SIZE; 2469 gen6_pte_t scratch_pte, __iomem *gtt_base = 2470 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 2471 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 2472 int i; 2473 2474 if (WARN(num_entries > max_entries, 2475 "First entry = %d; Num entries = %d (max=%d)\n", 2476 first_entry, num_entries, max_entries)) 2477 num_entries = max_entries; 2478 2479 scratch_pte = vm->scratch_pte; 2480 2481 for (i = 0; i < num_entries; i++) 2482 iowrite32(scratch_pte, >t_base[i]); 2483 } 2484 2485 static void i915_ggtt_insert_page(struct i915_address_space *vm, 2486 dma_addr_t addr, 2487 u64 offset, 2488 enum i915_cache_level cache_level, 2489 u32 unused) 2490 { 2491 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2492 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2493 2494 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 2495 } 2496 2497 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 2498 struct i915_vma *vma, 2499 enum i915_cache_level cache_level, 2500 u32 unused) 2501 { 2502 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 2503 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 2504 2505 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 2506 flags); 2507 } 2508 2509 static void i915_ggtt_clear_range(struct i915_address_space *vm, 2510 u64 start, u64 length) 2511 { 2512 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 2513 } 2514 2515 static int ggtt_bind_vma(struct i915_vma *vma, 2516 enum i915_cache_level cache_level, 2517 u32 flags) 2518 { 2519 struct drm_i915_private *i915 = vma->vm->i915; 2520 struct drm_i915_gem_object *obj = vma->obj; 2521 intel_wakeref_t wakeref; 2522 u32 pte_flags; 2523 2524 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 2525 pte_flags = 0; 2526 if (i915_gem_object_is_readonly(obj)) 2527 pte_flags |= PTE_READ_ONLY; 2528 2529 with_intel_runtime_pm(i915, wakeref) 2530 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 2531 2532 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 2533 2534 /* 2535 * Without aliasing PPGTT there's no difference between 2536 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 2537 * upgrade to both bound if we bind either to avoid double-binding. 2538 */ 2539 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 2540 2541 return 0; 2542 } 2543 2544 static void ggtt_unbind_vma(struct i915_vma *vma) 2545 { 2546 struct drm_i915_private *i915 = vma->vm->i915; 2547 intel_wakeref_t wakeref; 2548 2549 with_intel_runtime_pm(i915, wakeref) 2550 vma->vm->clear_range(vma->vm, vma->node.start, vma->size); 2551 } 2552 2553 static int aliasing_gtt_bind_vma(struct i915_vma *vma, 2554 enum i915_cache_level cache_level, 2555 u32 flags) 2556 { 2557 struct drm_i915_private *i915 = vma->vm->i915; 2558 u32 pte_flags; 2559 int ret; 2560 2561 /* Currently applicable only to VLV */ 2562 pte_flags = 0; 2563 if (i915_gem_object_is_readonly(vma->obj)) 2564 pte_flags |= PTE_READ_ONLY; 2565 2566 if (flags & I915_VMA_LOCAL_BIND) { 2567 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; 2568 2569 if (!(vma->flags & I915_VMA_LOCAL_BIND)) { 2570 ret = appgtt->vm.allocate_va_range(&appgtt->vm, 2571 vma->node.start, 2572 vma->size); 2573 if (ret) 2574 return ret; 2575 } 2576 2577 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, 2578 pte_flags); 2579 } 2580 2581 if (flags & I915_VMA_GLOBAL_BIND) { 2582 intel_wakeref_t wakeref; 2583 2584 with_intel_runtime_pm(i915, wakeref) { 2585 vma->vm->insert_entries(vma->vm, vma, 2586 cache_level, pte_flags); 2587 } 2588 } 2589 2590 return 0; 2591 } 2592 2593 static void aliasing_gtt_unbind_vma(struct i915_vma *vma) 2594 { 2595 struct drm_i915_private *i915 = vma->vm->i915; 2596 2597 if (vma->flags & I915_VMA_GLOBAL_BIND) { 2598 struct i915_address_space *vm = vma->vm; 2599 intel_wakeref_t wakeref; 2600 2601 with_intel_runtime_pm(i915, wakeref) 2602 vm->clear_range(vm, vma->node.start, vma->size); 2603 } 2604 2605 if (vma->flags & I915_VMA_LOCAL_BIND) { 2606 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; 2607 2608 vm->clear_range(vm, vma->node.start, vma->size); 2609 } 2610 } 2611 2612 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, 2613 struct sg_table *pages) 2614 { 2615 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2616 struct device *kdev = &dev_priv->drm.pdev->dev; 2617 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2618 2619 if (unlikely(ggtt->do_idle_maps)) { 2620 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { 2621 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); 2622 /* Wait a bit, in hopes it avoids the hang */ 2623 udelay(10); 2624 } 2625 } 2626 2627 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); 2628 } 2629 2630 static int ggtt_set_pages(struct i915_vma *vma) 2631 { 2632 int ret; 2633 2634 GEM_BUG_ON(vma->pages); 2635 2636 ret = i915_get_ggtt_vma_pages(vma); 2637 if (ret) 2638 return ret; 2639 2640 vma->page_sizes = vma->obj->mm.page_sizes; 2641 2642 return 0; 2643 } 2644 2645 static void i915_gtt_color_adjust(const struct drm_mm_node *node, 2646 unsigned long color, 2647 u64 *start, 2648 u64 *end) 2649 { 2650 if (node->allocated && node->color != color) 2651 *start += I915_GTT_PAGE_SIZE; 2652 2653 /* Also leave a space between the unallocated reserved node after the 2654 * GTT and any objects within the GTT, i.e. we use the color adjustment 2655 * to insert a guard page to prevent prefetches crossing over the 2656 * GTT boundary. 2657 */ 2658 node = list_next_entry(node, node_list); 2659 if (node->color != color) 2660 *end -= I915_GTT_PAGE_SIZE; 2661 } 2662 2663 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) 2664 { 2665 struct i915_ggtt *ggtt = &i915->ggtt; 2666 struct i915_hw_ppgtt *ppgtt; 2667 int err; 2668 2669 ppgtt = i915_ppgtt_create(i915); 2670 if (IS_ERR(ppgtt)) 2671 return PTR_ERR(ppgtt); 2672 2673 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 2674 err = -ENODEV; 2675 goto err_ppgtt; 2676 } 2677 2678 /* 2679 * Note we only pre-allocate as far as the end of the global 2680 * GTT. On 48b / 4-level page-tables, the difference is very, 2681 * very significant! We have to preallocate as GVT/vgpu does 2682 * not like the page directory disappearing. 2683 */ 2684 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); 2685 if (err) 2686 goto err_ppgtt; 2687 2688 i915->mm.aliasing_ppgtt = ppgtt; 2689 2690 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 2691 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 2692 2693 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 2694 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 2695 2696 return 0; 2697 2698 err_ppgtt: 2699 i915_ppgtt_put(ppgtt); 2700 return err; 2701 } 2702 2703 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) 2704 { 2705 struct i915_ggtt *ggtt = &i915->ggtt; 2706 struct i915_hw_ppgtt *ppgtt; 2707 2708 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); 2709 if (!ppgtt) 2710 return; 2711 2712 i915_ppgtt_put(ppgtt); 2713 2714 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 2715 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 2716 } 2717 2718 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) 2719 { 2720 /* Let GEM Manage all of the aperture. 2721 * 2722 * However, leave one page at the end still bound to the scratch page. 2723 * There are a number of places where the hardware apparently prefetches 2724 * past the end of the object, and we've seen multiple hangs with the 2725 * GPU head pointer stuck in a batchbuffer bound at the last page of the 2726 * aperture. One page should be enough to keep any prefetching inside 2727 * of the aperture. 2728 */ 2729 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2730 unsigned long hole_start, hole_end; 2731 struct drm_mm_node *entry; 2732 int ret; 2733 2734 /* 2735 * GuC requires all resources that we're sharing with it to be placed in 2736 * non-WOPCM memory. If GuC is not present or not in use we still need a 2737 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 2738 * why. 2739 */ 2740 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 2741 intel_guc_reserved_gtt_size(&dev_priv->guc)); 2742 2743 ret = intel_vgt_balloon(dev_priv); 2744 if (ret) 2745 return ret; 2746 2747 /* Reserve a mappable slot for our lockless error capture */ 2748 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, 2749 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 2750 0, ggtt->mappable_end, 2751 DRM_MM_INSERT_LOW); 2752 if (ret) 2753 return ret; 2754 2755 /* Clear any non-preallocated blocks */ 2756 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 2757 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", 2758 hole_start, hole_end); 2759 ggtt->vm.clear_range(&ggtt->vm, hole_start, 2760 hole_end - hole_start); 2761 } 2762 2763 /* And finally clear the reserved guard page */ 2764 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 2765 2766 if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) { 2767 ret = i915_gem_init_aliasing_ppgtt(dev_priv); 2768 if (ret) 2769 goto err; 2770 } 2771 2772 return 0; 2773 2774 err: 2775 drm_mm_remove_node(&ggtt->error_capture); 2776 return ret; 2777 } 2778 2779 /** 2780 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization 2781 * @dev_priv: i915 device 2782 */ 2783 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) 2784 { 2785 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2786 struct i915_vma *vma, *vn; 2787 struct pagevec *pvec; 2788 2789 ggtt->vm.closed = true; 2790 2791 mutex_lock(&dev_priv->drm.struct_mutex); 2792 i915_gem_fini_aliasing_ppgtt(dev_priv); 2793 2794 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) 2795 WARN_ON(i915_vma_unbind(vma)); 2796 2797 if (drm_mm_node_allocated(&ggtt->error_capture)) 2798 drm_mm_remove_node(&ggtt->error_capture); 2799 2800 if (drm_mm_initialized(&ggtt->vm.mm)) { 2801 intel_vgt_deballoon(dev_priv); 2802 i915_address_space_fini(&ggtt->vm); 2803 } 2804 2805 ggtt->vm.cleanup(&ggtt->vm); 2806 2807 pvec = &dev_priv->mm.wc_stash.pvec; 2808 if (pvec->nr) { 2809 set_pages_array_wb(pvec->pages, pvec->nr); 2810 __pagevec_release(pvec); 2811 } 2812 2813 mutex_unlock(&dev_priv->drm.struct_mutex); 2814 2815 arch_phys_wc_del(ggtt->mtrr); 2816 io_mapping_fini(&ggtt->iomap); 2817 2818 i915_gem_cleanup_stolen(dev_priv); 2819 } 2820 2821 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 2822 { 2823 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 2824 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 2825 return snb_gmch_ctl << 20; 2826 } 2827 2828 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 2829 { 2830 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 2831 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 2832 if (bdw_gmch_ctl) 2833 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 2834 2835 #ifdef CONFIG_X86_32 2836 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 2837 if (bdw_gmch_ctl > 4) 2838 bdw_gmch_ctl = 4; 2839 #endif 2840 2841 return bdw_gmch_ctl << 20; 2842 } 2843 2844 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 2845 { 2846 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 2847 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 2848 2849 if (gmch_ctrl) 2850 return 1 << (20 + gmch_ctrl); 2851 2852 return 0; 2853 } 2854 2855 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 2856 { 2857 struct drm_i915_private *dev_priv = ggtt->vm.i915; 2858 struct pci_dev *pdev = dev_priv->drm.pdev; 2859 phys_addr_t phys_addr; 2860 int ret; 2861 2862 /* For Modern GENs the PTEs and register space are split in the BAR */ 2863 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 2864 2865 /* 2866 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range 2867 * will be dropped. For WC mappings in general we have 64 byte burst 2868 * writes when the WC buffer is flushed, so we can't use it, but have to 2869 * resort to an uncached mapping. The WC issue is easily caught by the 2870 * readback check when writing GTT PTE entries. 2871 */ 2872 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) 2873 ggtt->gsm = ioremap_nocache(phys_addr, size); 2874 else 2875 ggtt->gsm = ioremap_wc(phys_addr, size); 2876 if (!ggtt->gsm) { 2877 DRM_ERROR("Failed to map the ggtt page table\n"); 2878 return -ENOMEM; 2879 } 2880 2881 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); 2882 if (ret) { 2883 DRM_ERROR("Scratch setup failed\n"); 2884 /* iounmap will also get called at remove, but meh */ 2885 iounmap(ggtt->gsm); 2886 return ret; 2887 } 2888 2889 ggtt->vm.scratch_pte = 2890 ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr, 2891 I915_CACHE_NONE, 0); 2892 2893 return 0; 2894 } 2895 2896 static struct intel_ppat_entry * 2897 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) 2898 { 2899 struct intel_ppat_entry *entry = &ppat->entries[index]; 2900 2901 GEM_BUG_ON(index >= ppat->max_entries); 2902 GEM_BUG_ON(test_bit(index, ppat->used)); 2903 2904 entry->ppat = ppat; 2905 entry->value = value; 2906 kref_init(&entry->ref); 2907 set_bit(index, ppat->used); 2908 set_bit(index, ppat->dirty); 2909 2910 return entry; 2911 } 2912 2913 static void __free_ppat_entry(struct intel_ppat_entry *entry) 2914 { 2915 struct intel_ppat *ppat = entry->ppat; 2916 unsigned int index = entry - ppat->entries; 2917 2918 GEM_BUG_ON(index >= ppat->max_entries); 2919 GEM_BUG_ON(!test_bit(index, ppat->used)); 2920 2921 entry->value = ppat->clear_value; 2922 clear_bit(index, ppat->used); 2923 set_bit(index, ppat->dirty); 2924 } 2925 2926 /** 2927 * intel_ppat_get - get a usable PPAT entry 2928 * @i915: i915 device instance 2929 * @value: the PPAT value required by the caller 2930 * 2931 * The function tries to search if there is an existing PPAT entry which 2932 * matches with the required value. If perfectly matched, the existing PPAT 2933 * entry will be used. If only partially matched, it will try to check if 2934 * there is any available PPAT index. If yes, it will allocate a new PPAT 2935 * index for the required entry and update the HW. If not, the partially 2936 * matched entry will be used. 2937 */ 2938 const struct intel_ppat_entry * 2939 intel_ppat_get(struct drm_i915_private *i915, u8 value) 2940 { 2941 struct intel_ppat *ppat = &i915->ppat; 2942 struct intel_ppat_entry *entry = NULL; 2943 unsigned int scanned, best_score; 2944 int i; 2945 2946 GEM_BUG_ON(!ppat->max_entries); 2947 2948 scanned = best_score = 0; 2949 for_each_set_bit(i, ppat->used, ppat->max_entries) { 2950 unsigned int score; 2951 2952 score = ppat->match(ppat->entries[i].value, value); 2953 if (score > best_score) { 2954 entry = &ppat->entries[i]; 2955 if (score == INTEL_PPAT_PERFECT_MATCH) { 2956 kref_get(&entry->ref); 2957 return entry; 2958 } 2959 best_score = score; 2960 } 2961 scanned++; 2962 } 2963 2964 if (scanned == ppat->max_entries) { 2965 if (!entry) 2966 return ERR_PTR(-ENOSPC); 2967 2968 kref_get(&entry->ref); 2969 return entry; 2970 } 2971 2972 i = find_first_zero_bit(ppat->used, ppat->max_entries); 2973 entry = __alloc_ppat_entry(ppat, i, value); 2974 ppat->update_hw(i915); 2975 return entry; 2976 } 2977 2978 static void release_ppat(struct kref *kref) 2979 { 2980 struct intel_ppat_entry *entry = 2981 container_of(kref, struct intel_ppat_entry, ref); 2982 struct drm_i915_private *i915 = entry->ppat->i915; 2983 2984 __free_ppat_entry(entry); 2985 entry->ppat->update_hw(i915); 2986 } 2987 2988 /** 2989 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() 2990 * @entry: an intel PPAT entry 2991 * 2992 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the 2993 * entry is dynamically allocated, its reference count will be decreased. Once 2994 * the reference count becomes into zero, the PPAT index becomes free again. 2995 */ 2996 void intel_ppat_put(const struct intel_ppat_entry *entry) 2997 { 2998 struct intel_ppat *ppat = entry->ppat; 2999 unsigned int index = entry - ppat->entries; 3000 3001 GEM_BUG_ON(!ppat->max_entries); 3002 3003 kref_put(&ppat->entries[index].ref, release_ppat); 3004 } 3005 3006 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) 3007 { 3008 struct intel_ppat *ppat = &dev_priv->ppat; 3009 int i; 3010 3011 for_each_set_bit(i, ppat->dirty, ppat->max_entries) { 3012 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); 3013 clear_bit(i, ppat->dirty); 3014 } 3015 } 3016 3017 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) 3018 { 3019 struct intel_ppat *ppat = &dev_priv->ppat; 3020 u64 pat = 0; 3021 int i; 3022 3023 for (i = 0; i < ppat->max_entries; i++) 3024 pat |= GEN8_PPAT(i, ppat->entries[i].value); 3025 3026 bitmap_clear(ppat->dirty, 0, ppat->max_entries); 3027 3028 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 3029 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 3030 } 3031 3032 static unsigned int bdw_private_pat_match(u8 src, u8 dst) 3033 { 3034 unsigned int score = 0; 3035 enum { 3036 AGE_MATCH = BIT(0), 3037 TC_MATCH = BIT(1), 3038 CA_MATCH = BIT(2), 3039 }; 3040 3041 /* Cache attribute has to be matched. */ 3042 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) 3043 return 0; 3044 3045 score |= CA_MATCH; 3046 3047 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) 3048 score |= TC_MATCH; 3049 3050 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) 3051 score |= AGE_MATCH; 3052 3053 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) 3054 return INTEL_PPAT_PERFECT_MATCH; 3055 3056 return score; 3057 } 3058 3059 static unsigned int chv_private_pat_match(u8 src, u8 dst) 3060 { 3061 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? 3062 INTEL_PPAT_PERFECT_MATCH : 0; 3063 } 3064 3065 static void cnl_setup_private_ppat(struct intel_ppat *ppat) 3066 { 3067 ppat->max_entries = 8; 3068 ppat->update_hw = cnl_private_pat_update_hw; 3069 ppat->match = bdw_private_pat_match; 3070 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3071 3072 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); 3073 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 3074 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 3075 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); 3076 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3077 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3078 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3079 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3080 } 3081 3082 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 3083 * bits. When using advanced contexts each context stores its own PAT, but 3084 * writing this data shouldn't be harmful even in those cases. */ 3085 static void bdw_setup_private_ppat(struct intel_ppat *ppat) 3086 { 3087 ppat->max_entries = 8; 3088 ppat->update_hw = bdw_private_pat_update_hw; 3089 ppat->match = bdw_private_pat_match; 3090 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); 3091 3092 if (!HAS_PPGTT(ppat->i915)) { 3093 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, 3094 * so RTL will always use the value corresponding to 3095 * pat_sel = 000". 3096 * So let's disable cache for GGTT to avoid screen corruptions. 3097 * MOCS still can be used though. 3098 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work 3099 * before this patch, i.e. the same uncached + snooping access 3100 * like on gen6/7 seems to be in effect. 3101 * - So this just fixes blitter/render access. Again it looks 3102 * like it's not just uncached access, but uncached + snooping. 3103 * So we can still hold onto all our assumptions wrt cpu 3104 * clflushing on LLC machines. 3105 */ 3106 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); 3107 return; 3108 } 3109 3110 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ 3111 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ 3112 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ 3113 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ 3114 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 3115 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 3116 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 3117 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 3118 } 3119 3120 static void chv_setup_private_ppat(struct intel_ppat *ppat) 3121 { 3122 ppat->max_entries = 8; 3123 ppat->update_hw = bdw_private_pat_update_hw; 3124 ppat->match = chv_private_pat_match; 3125 ppat->clear_value = CHV_PPAT_SNOOP; 3126 3127 /* 3128 * Map WB on BDW to snooped on CHV. 3129 * 3130 * Only the snoop bit has meaning for CHV, the rest is 3131 * ignored. 3132 * 3133 * The hardware will never snoop for certain types of accesses: 3134 * - CPU GTT (GMADR->GGTT->no snoop->memory) 3135 * - PPGTT page tables 3136 * - some other special cycles 3137 * 3138 * As with BDW, we also need to consider the following for GT accesses: 3139 * "For GGTT, there is NO pat_sel[2:0] from the entry, 3140 * so RTL will always use the value corresponding to 3141 * pat_sel = 000". 3142 * Which means we must set the snoop bit in PAT entry 0 3143 * in order to keep the global status page working. 3144 */ 3145 3146 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); 3147 __alloc_ppat_entry(ppat, 1, 0); 3148 __alloc_ppat_entry(ppat, 2, 0); 3149 __alloc_ppat_entry(ppat, 3, 0); 3150 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); 3151 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); 3152 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); 3153 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); 3154 } 3155 3156 static void gen6_gmch_remove(struct i915_address_space *vm) 3157 { 3158 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 3159 3160 iounmap(ggtt->gsm); 3161 cleanup_scratch_page(vm); 3162 } 3163 3164 static void setup_private_pat(struct drm_i915_private *dev_priv) 3165 { 3166 struct intel_ppat *ppat = &dev_priv->ppat; 3167 int i; 3168 3169 ppat->i915 = dev_priv; 3170 3171 if (INTEL_GEN(dev_priv) >= 10) 3172 cnl_setup_private_ppat(ppat); 3173 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) 3174 chv_setup_private_ppat(ppat); 3175 else 3176 bdw_setup_private_ppat(ppat); 3177 3178 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); 3179 3180 for_each_clear_bit(i, ppat->used, ppat->max_entries) { 3181 ppat->entries[i].value = ppat->clear_value; 3182 ppat->entries[i].ppat = ppat; 3183 set_bit(i, ppat->dirty); 3184 } 3185 3186 ppat->update_hw(dev_priv); 3187 } 3188 3189 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 3190 { 3191 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3192 struct pci_dev *pdev = dev_priv->drm.pdev; 3193 unsigned int size; 3194 u16 snb_gmch_ctl; 3195 int err; 3196 3197 /* TODO: We're not aware of mappable constraints on gen8 yet */ 3198 ggtt->gmadr = 3199 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3200 pci_resource_len(pdev, 2)); 3201 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3202 3203 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); 3204 if (!err) 3205 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); 3206 if (err) 3207 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3208 3209 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3210 if (IS_CHERRYVIEW(dev_priv)) 3211 size = chv_get_total_gtt_size(snb_gmch_ctl); 3212 else 3213 size = gen8_get_total_gtt_size(snb_gmch_ctl); 3214 3215 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 3216 ggtt->vm.cleanup = gen6_gmch_remove; 3217 ggtt->vm.insert_page = gen8_ggtt_insert_page; 3218 ggtt->vm.clear_range = nop_clear_range; 3219 if (intel_scanout_needs_vtd_wa(dev_priv)) 3220 ggtt->vm.clear_range = gen8_ggtt_clear_range; 3221 3222 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 3223 3224 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ 3225 if (intel_ggtt_update_needs_vtd_wa(dev_priv) || 3226 IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) { 3227 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 3228 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 3229 if (ggtt->vm.clear_range != nop_clear_range) 3230 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; 3231 3232 /* Prevent recursively calling stop_machine() and deadlocks. */ 3233 dev_info(dev_priv->drm.dev, 3234 "Disabling error capture for VT-d workaround\n"); 3235 i915_disable_error_state(dev_priv, -ENODEV); 3236 } 3237 3238 ggtt->invalidate = gen6_ggtt_invalidate; 3239 3240 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3241 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3242 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3243 ggtt->vm.vma_ops.clear_pages = clear_pages; 3244 3245 ggtt->vm.pte_encode = gen8_pte_encode; 3246 3247 setup_private_pat(dev_priv); 3248 3249 return ggtt_probe_common(ggtt, size); 3250 } 3251 3252 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 3253 { 3254 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3255 struct pci_dev *pdev = dev_priv->drm.pdev; 3256 unsigned int size; 3257 u16 snb_gmch_ctl; 3258 int err; 3259 3260 ggtt->gmadr = 3261 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), 3262 pci_resource_len(pdev, 2)); 3263 ggtt->mappable_end = resource_size(&ggtt->gmadr); 3264 3265 /* 64/512MB is the current min/max we actually know of, but this is just 3266 * a coarse sanity check. 3267 */ 3268 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 3269 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); 3270 return -ENXIO; 3271 } 3272 3273 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); 3274 if (!err) 3275 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); 3276 if (err) 3277 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); 3278 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 3279 3280 size = gen6_get_total_gtt_size(snb_gmch_ctl); 3281 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 3282 3283 ggtt->vm.clear_range = gen6_ggtt_clear_range; 3284 ggtt->vm.insert_page = gen6_ggtt_insert_page; 3285 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 3286 ggtt->vm.cleanup = gen6_gmch_remove; 3287 3288 ggtt->invalidate = gen6_ggtt_invalidate; 3289 3290 if (HAS_EDRAM(dev_priv)) 3291 ggtt->vm.pte_encode = iris_pte_encode; 3292 else if (IS_HASWELL(dev_priv)) 3293 ggtt->vm.pte_encode = hsw_pte_encode; 3294 else if (IS_VALLEYVIEW(dev_priv)) 3295 ggtt->vm.pte_encode = byt_pte_encode; 3296 else if (INTEL_GEN(dev_priv) >= 7) 3297 ggtt->vm.pte_encode = ivb_pte_encode; 3298 else 3299 ggtt->vm.pte_encode = snb_pte_encode; 3300 3301 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3302 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3303 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3304 ggtt->vm.vma_ops.clear_pages = clear_pages; 3305 3306 return ggtt_probe_common(ggtt, size); 3307 } 3308 3309 static void i915_gmch_remove(struct i915_address_space *vm) 3310 { 3311 intel_gmch_remove(); 3312 } 3313 3314 static int i915_gmch_probe(struct i915_ggtt *ggtt) 3315 { 3316 struct drm_i915_private *dev_priv = ggtt->vm.i915; 3317 phys_addr_t gmadr_base; 3318 int ret; 3319 3320 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); 3321 if (!ret) { 3322 DRM_ERROR("failed to set up gmch\n"); 3323 return -EIO; 3324 } 3325 3326 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 3327 3328 ggtt->gmadr = 3329 (struct resource) DEFINE_RES_MEM(gmadr_base, 3330 ggtt->mappable_end); 3331 3332 ggtt->do_idle_maps = needs_idle_maps(dev_priv); 3333 ggtt->vm.insert_page = i915_ggtt_insert_page; 3334 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 3335 ggtt->vm.clear_range = i915_ggtt_clear_range; 3336 ggtt->vm.cleanup = i915_gmch_remove; 3337 3338 ggtt->invalidate = gmch_ggtt_invalidate; 3339 3340 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 3341 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 3342 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 3343 ggtt->vm.vma_ops.clear_pages = clear_pages; 3344 3345 if (unlikely(ggtt->do_idle_maps)) 3346 DRM_INFO("applying Ironlake quirks for intel_iommu\n"); 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * i915_ggtt_probe_hw - Probe GGTT hardware location 3353 * @dev_priv: i915 device 3354 */ 3355 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) 3356 { 3357 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3358 int ret; 3359 3360 ggtt->vm.i915 = dev_priv; 3361 ggtt->vm.dma = &dev_priv->drm.pdev->dev; 3362 3363 if (INTEL_GEN(dev_priv) <= 5) 3364 ret = i915_gmch_probe(ggtt); 3365 else if (INTEL_GEN(dev_priv) < 8) 3366 ret = gen6_gmch_probe(ggtt); 3367 else 3368 ret = gen8_gmch_probe(ggtt); 3369 if (ret) 3370 return ret; 3371 3372 /* Trim the GGTT to fit the GuC mappable upper range (when enabled). 3373 * This is easier than doing range restriction on the fly, as we 3374 * currently don't have any bits spare to pass in this upper 3375 * restriction! 3376 */ 3377 if (USES_GUC(dev_priv)) { 3378 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP); 3379 ggtt->mappable_end = 3380 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 3381 } 3382 3383 if ((ggtt->vm.total - 1) >> 32) { 3384 DRM_ERROR("We never expected a Global GTT with more than 32bits" 3385 " of address space! Found %lldM!\n", 3386 ggtt->vm.total >> 20); 3387 ggtt->vm.total = 1ULL << 32; 3388 ggtt->mappable_end = 3389 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 3390 } 3391 3392 if (ggtt->mappable_end > ggtt->vm.total) { 3393 DRM_ERROR("mappable aperture extends past end of GGTT," 3394 " aperture=%pa, total=%llx\n", 3395 &ggtt->mappable_end, ggtt->vm.total); 3396 ggtt->mappable_end = ggtt->vm.total; 3397 } 3398 3399 /* GMADR is the PCI mmio aperture into the global GTT. */ 3400 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); 3401 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); 3402 DRM_DEBUG_DRIVER("DSM size = %lluM\n", 3403 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 3404 if (intel_vtd_active()) 3405 DRM_INFO("VT-d active for gfx access\n"); 3406 3407 return 0; 3408 } 3409 3410 /** 3411 * i915_ggtt_init_hw - Initialize GGTT hardware 3412 * @dev_priv: i915 device 3413 */ 3414 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) 3415 { 3416 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3417 int ret; 3418 3419 stash_init(&dev_priv->mm.wc_stash); 3420 3421 /* Note that we use page colouring to enforce a guard page at the 3422 * end of the address space. This is required as the CS may prefetch 3423 * beyond the end of the batch buffer, across the page boundary, 3424 * and beyond the end of the GTT if we do not provide a guard. 3425 */ 3426 mutex_lock(&dev_priv->drm.struct_mutex); 3427 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 3428 3429 ggtt->vm.is_ggtt = true; 3430 3431 /* Only VLV supports read-only GGTT mappings */ 3432 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); 3433 3434 if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv)) 3435 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; 3436 mutex_unlock(&dev_priv->drm.struct_mutex); 3437 3438 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, 3439 dev_priv->ggtt.gmadr.start, 3440 dev_priv->ggtt.mappable_end)) { 3441 ret = -EIO; 3442 goto out_gtt_cleanup; 3443 } 3444 3445 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); 3446 3447 /* 3448 * Initialise stolen early so that we may reserve preallocated 3449 * objects for the BIOS to KMS transition. 3450 */ 3451 ret = i915_gem_init_stolen(dev_priv); 3452 if (ret) 3453 goto out_gtt_cleanup; 3454 3455 return 0; 3456 3457 out_gtt_cleanup: 3458 ggtt->vm.cleanup(&ggtt->vm); 3459 return ret; 3460 } 3461 3462 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) 3463 { 3464 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) 3465 return -EIO; 3466 3467 return 0; 3468 } 3469 3470 void i915_ggtt_enable_guc(struct drm_i915_private *i915) 3471 { 3472 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); 3473 3474 i915->ggtt.invalidate = guc_ggtt_invalidate; 3475 3476 i915_ggtt_invalidate(i915); 3477 } 3478 3479 void i915_ggtt_disable_guc(struct drm_i915_private *i915) 3480 { 3481 /* XXX Temporary pardon for error unload */ 3482 if (i915->ggtt.invalidate == gen6_ggtt_invalidate) 3483 return; 3484 3485 /* We should only be called after i915_ggtt_enable_guc() */ 3486 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); 3487 3488 i915->ggtt.invalidate = gen6_ggtt_invalidate; 3489 3490 i915_ggtt_invalidate(i915); 3491 } 3492 3493 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) 3494 { 3495 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3496 struct i915_vma *vma, *vn; 3497 3498 i915_check_and_clear_faults(dev_priv); 3499 3500 mutex_lock(&ggtt->vm.mutex); 3501 3502 /* First fill our portion of the GTT with scratch pages */ 3503 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 3504 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ 3505 3506 /* clflush objects bound into the GGTT and rebind them. */ 3507 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 3508 struct drm_i915_gem_object *obj = vma->obj; 3509 3510 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) 3511 continue; 3512 3513 mutex_unlock(&ggtt->vm.mutex); 3514 3515 if (!i915_vma_unbind(vma)) 3516 goto lock; 3517 3518 WARN_ON(i915_vma_bind(vma, 3519 obj ? obj->cache_level : 0, 3520 PIN_UPDATE)); 3521 if (obj) 3522 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); 3523 3524 lock: 3525 mutex_lock(&ggtt->vm.mutex); 3526 } 3527 3528 ggtt->vm.closed = false; 3529 i915_ggtt_invalidate(dev_priv); 3530 3531 mutex_unlock(&ggtt->vm.mutex); 3532 3533 if (INTEL_GEN(dev_priv) >= 8) { 3534 struct intel_ppat *ppat = &dev_priv->ppat; 3535 3536 bitmap_set(ppat->dirty, 0, ppat->max_entries); 3537 dev_priv->ppat.update_hw(dev_priv); 3538 return; 3539 } 3540 } 3541 3542 static struct scatterlist * 3543 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 3544 unsigned int width, unsigned int height, 3545 unsigned int stride, 3546 struct sg_table *st, struct scatterlist *sg) 3547 { 3548 unsigned int column, row; 3549 unsigned int src_idx; 3550 3551 for (column = 0; column < width; column++) { 3552 src_idx = stride * (height - 1) + column + offset; 3553 for (row = 0; row < height; row++) { 3554 st->nents++; 3555 /* We don't need the pages, but need to initialize 3556 * the entries so the sg list can be happily traversed. 3557 * The only thing we need are DMA addresses. 3558 */ 3559 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 3560 sg_dma_address(sg) = 3561 i915_gem_object_get_dma_address(obj, src_idx); 3562 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 3563 sg = sg_next(sg); 3564 src_idx -= stride; 3565 } 3566 } 3567 3568 return sg; 3569 } 3570 3571 static noinline struct sg_table * 3572 intel_rotate_pages(struct intel_rotation_info *rot_info, 3573 struct drm_i915_gem_object *obj) 3574 { 3575 unsigned int size = intel_rotation_info_size(rot_info); 3576 struct sg_table *st; 3577 struct scatterlist *sg; 3578 int ret = -ENOMEM; 3579 int i; 3580 3581 /* Allocate target SG list. */ 3582 st = kmalloc(sizeof(*st), GFP_KERNEL); 3583 if (!st) 3584 goto err_st_alloc; 3585 3586 ret = sg_alloc_table(st, size, GFP_KERNEL); 3587 if (ret) 3588 goto err_sg_alloc; 3589 3590 st->nents = 0; 3591 sg = st->sgl; 3592 3593 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 3594 sg = rotate_pages(obj, rot_info->plane[i].offset, 3595 rot_info->plane[i].width, rot_info->plane[i].height, 3596 rot_info->plane[i].stride, st, sg); 3597 } 3598 3599 return st; 3600 3601 err_sg_alloc: 3602 kfree(st); 3603 err_st_alloc: 3604 3605 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 3606 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); 3607 3608 return ERR_PTR(ret); 3609 } 3610 3611 static noinline struct sg_table * 3612 intel_partial_pages(const struct i915_ggtt_view *view, 3613 struct drm_i915_gem_object *obj) 3614 { 3615 struct sg_table *st; 3616 struct scatterlist *sg, *iter; 3617 unsigned int count = view->partial.size; 3618 unsigned int offset; 3619 int ret = -ENOMEM; 3620 3621 st = kmalloc(sizeof(*st), GFP_KERNEL); 3622 if (!st) 3623 goto err_st_alloc; 3624 3625 ret = sg_alloc_table(st, count, GFP_KERNEL); 3626 if (ret) 3627 goto err_sg_alloc; 3628 3629 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 3630 GEM_BUG_ON(!iter); 3631 3632 sg = st->sgl; 3633 st->nents = 0; 3634 do { 3635 unsigned int len; 3636 3637 len = min(iter->length - (offset << PAGE_SHIFT), 3638 count << PAGE_SHIFT); 3639 sg_set_page(sg, NULL, len, 0); 3640 sg_dma_address(sg) = 3641 sg_dma_address(iter) + (offset << PAGE_SHIFT); 3642 sg_dma_len(sg) = len; 3643 3644 st->nents++; 3645 count -= len >> PAGE_SHIFT; 3646 if (count == 0) { 3647 sg_mark_end(sg); 3648 i915_sg_trim(st); /* Drop any unused tail entries. */ 3649 3650 return st; 3651 } 3652 3653 sg = __sg_next(sg); 3654 iter = __sg_next(iter); 3655 offset = 0; 3656 } while (1); 3657 3658 err_sg_alloc: 3659 kfree(st); 3660 err_st_alloc: 3661 return ERR_PTR(ret); 3662 } 3663 3664 static int 3665 i915_get_ggtt_vma_pages(struct i915_vma *vma) 3666 { 3667 int ret; 3668 3669 /* The vma->pages are only valid within the lifespan of the borrowed 3670 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 3671 * must be the vma->pages. A simple rule is that vma->pages must only 3672 * be accessed when the obj->mm.pages are pinned. 3673 */ 3674 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 3675 3676 switch (vma->ggtt_view.type) { 3677 default: 3678 GEM_BUG_ON(vma->ggtt_view.type); 3679 /* fall through */ 3680 case I915_GGTT_VIEW_NORMAL: 3681 vma->pages = vma->obj->mm.pages; 3682 return 0; 3683 3684 case I915_GGTT_VIEW_ROTATED: 3685 vma->pages = 3686 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 3687 break; 3688 3689 case I915_GGTT_VIEW_PARTIAL: 3690 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 3691 break; 3692 } 3693 3694 ret = 0; 3695 if (IS_ERR(vma->pages)) { 3696 ret = PTR_ERR(vma->pages); 3697 vma->pages = NULL; 3698 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", 3699 vma->ggtt_view.type, ret); 3700 } 3701 return ret; 3702 } 3703 3704 /** 3705 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) 3706 * @vm: the &struct i915_address_space 3707 * @node: the &struct drm_mm_node (typically i915_vma.mode) 3708 * @size: how much space to allocate inside the GTT, 3709 * must be #I915_GTT_PAGE_SIZE aligned 3710 * @offset: where to insert inside the GTT, 3711 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node 3712 * (@offset + @size) must fit within the address space 3713 * @color: color to apply to node, if this node is not from a VMA, 3714 * color must be #I915_COLOR_UNEVICTABLE 3715 * @flags: control search and eviction behaviour 3716 * 3717 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside 3718 * the address space (using @size and @color). If the @node does not fit, it 3719 * tries to evict any overlapping nodes from the GTT, including any 3720 * neighbouring nodes if the colors do not match (to ensure guard pages between 3721 * differing domains). See i915_gem_evict_for_node() for the gory details 3722 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on 3723 * evicting active overlapping objects, and any overlapping node that is pinned 3724 * or marked as unevictable will also result in failure. 3725 * 3726 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3727 * asked to wait for eviction and interrupted. 3728 */ 3729 int i915_gem_gtt_reserve(struct i915_address_space *vm, 3730 struct drm_mm_node *node, 3731 u64 size, u64 offset, unsigned long color, 3732 unsigned int flags) 3733 { 3734 int err; 3735 3736 GEM_BUG_ON(!size); 3737 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3738 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); 3739 GEM_BUG_ON(range_overflows(offset, size, vm->total)); 3740 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 3741 GEM_BUG_ON(drm_mm_node_allocated(node)); 3742 3743 node->size = size; 3744 node->start = offset; 3745 node->color = color; 3746 3747 err = drm_mm_reserve_node(&vm->mm, node); 3748 if (err != -ENOSPC) 3749 return err; 3750 3751 if (flags & PIN_NOEVICT) 3752 return -ENOSPC; 3753 3754 err = i915_gem_evict_for_node(vm, node, flags); 3755 if (err == 0) 3756 err = drm_mm_reserve_node(&vm->mm, node); 3757 3758 return err; 3759 } 3760 3761 static u64 random_offset(u64 start, u64 end, u64 len, u64 align) 3762 { 3763 u64 range, addr; 3764 3765 GEM_BUG_ON(range_overflows(start, len, end)); 3766 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); 3767 3768 range = round_down(end - len, align) - round_up(start, align); 3769 if (range) { 3770 if (sizeof(unsigned long) == sizeof(u64)) { 3771 addr = get_random_long(); 3772 } else { 3773 addr = get_random_int(); 3774 if (range > U32_MAX) { 3775 addr <<= 32; 3776 addr |= get_random_int(); 3777 } 3778 } 3779 div64_u64_rem(addr, range, &addr); 3780 start += addr; 3781 } 3782 3783 return round_up(start, align); 3784 } 3785 3786 /** 3787 * i915_gem_gtt_insert - insert a node into an address_space (GTT) 3788 * @vm: the &struct i915_address_space 3789 * @node: the &struct drm_mm_node (typically i915_vma.node) 3790 * @size: how much space to allocate inside the GTT, 3791 * must be #I915_GTT_PAGE_SIZE aligned 3792 * @alignment: required alignment of starting offset, may be 0 but 3793 * if specified, this must be a power-of-two and at least 3794 * #I915_GTT_MIN_ALIGNMENT 3795 * @color: color to apply to node 3796 * @start: start of any range restriction inside GTT (0 for all), 3797 * must be #I915_GTT_PAGE_SIZE aligned 3798 * @end: end of any range restriction inside GTT (U64_MAX for all), 3799 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX 3800 * @flags: control search and eviction behaviour 3801 * 3802 * i915_gem_gtt_insert() first searches for an available hole into which 3803 * is can insert the node. The hole address is aligned to @alignment and 3804 * its @size must then fit entirely within the [@start, @end] bounds. The 3805 * nodes on either side of the hole must match @color, or else a guard page 3806 * will be inserted between the two nodes (or the node evicted). If no 3807 * suitable hole is found, first a victim is randomly selected and tested 3808 * for eviction, otherwise then the LRU list of objects within the GTT 3809 * is scanned to find the first set of replacement nodes to create the hole. 3810 * Those old overlapping nodes are evicted from the GTT (and so must be 3811 * rebound before any future use). Any node that is currently pinned cannot 3812 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently 3813 * active and #PIN_NONBLOCK is specified, that node is also skipped when 3814 * searching for an eviction candidate. See i915_gem_evict_something() for 3815 * the gory details on the eviction algorithm. 3816 * 3817 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if 3818 * asked to wait for eviction and interrupted. 3819 */ 3820 int i915_gem_gtt_insert(struct i915_address_space *vm, 3821 struct drm_mm_node *node, 3822 u64 size, u64 alignment, unsigned long color, 3823 u64 start, u64 end, unsigned int flags) 3824 { 3825 enum drm_mm_insert_mode mode; 3826 u64 offset; 3827 int err; 3828 3829 lockdep_assert_held(&vm->i915->drm.struct_mutex); 3830 GEM_BUG_ON(!size); 3831 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 3832 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 3833 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 3834 GEM_BUG_ON(start >= end); 3835 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 3836 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 3837 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); 3838 GEM_BUG_ON(drm_mm_node_allocated(node)); 3839 3840 if (unlikely(range_overflows(start, size, end))) 3841 return -ENOSPC; 3842 3843 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) 3844 return -ENOSPC; 3845 3846 mode = DRM_MM_INSERT_BEST; 3847 if (flags & PIN_HIGH) 3848 mode = DRM_MM_INSERT_HIGHEST; 3849 if (flags & PIN_MAPPABLE) 3850 mode = DRM_MM_INSERT_LOW; 3851 3852 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 3853 * so we know that we always have a minimum alignment of 4096. 3854 * The drm_mm range manager is optimised to return results 3855 * with zero alignment, so where possible use the optimal 3856 * path. 3857 */ 3858 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); 3859 if (alignment <= I915_GTT_MIN_ALIGNMENT) 3860 alignment = 0; 3861 3862 err = drm_mm_insert_node_in_range(&vm->mm, node, 3863 size, alignment, color, 3864 start, end, mode); 3865 if (err != -ENOSPC) 3866 return err; 3867 3868 if (mode & DRM_MM_INSERT_ONCE) { 3869 err = drm_mm_insert_node_in_range(&vm->mm, node, 3870 size, alignment, color, 3871 start, end, 3872 DRM_MM_INSERT_BEST); 3873 if (err != -ENOSPC) 3874 return err; 3875 } 3876 3877 if (flags & PIN_NOEVICT) 3878 return -ENOSPC; 3879 3880 /* No free space, pick a slot at random. 3881 * 3882 * There is a pathological case here using a GTT shared between 3883 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): 3884 * 3885 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| 3886 * (64k objects) (448k objects) 3887 * 3888 * Now imagine that the eviction LRU is ordered top-down (just because 3889 * pathology meets real life), and that we need to evict an object to 3890 * make room inside the aperture. The eviction scan then has to walk 3891 * the 448k list before it finds one within range. And now imagine that 3892 * it has to search for a new hole between every byte inside the memcpy, 3893 * for several simultaneous clients. 3894 * 3895 * On a full-ppgtt system, if we have run out of available space, there 3896 * will be lots and lots of objects in the eviction list! Again, 3897 * searching that LRU list may be slow if we are also applying any 3898 * range restrictions (e.g. restriction to low 4GiB) and so, for 3899 * simplicity and similarilty between different GTT, try the single 3900 * random replacement first. 3901 */ 3902 offset = random_offset(start, end, 3903 size, alignment ?: I915_GTT_MIN_ALIGNMENT); 3904 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); 3905 if (err != -ENOSPC) 3906 return err; 3907 3908 /* Randomly selected placement is pinned, do a search */ 3909 err = i915_gem_evict_something(vm, size, alignment, color, 3910 start, end, flags); 3911 if (err) 3912 return err; 3913 3914 return drm_mm_insert_node_in_range(&vm->mm, node, 3915 size, alignment, color, 3916 start, end, DRM_MM_INSERT_EVICT); 3917 } 3918 3919 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3920 #include "selftests/mock_gtt.c" 3921 #include "selftests/i915_gem_gtt.c" 3922 #endif 3923