xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98 
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100 	.type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103 	.type = I915_GGTT_VIEW_ROTATED,
104 };
105 
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 	bool has_aliasing_ppgtt;
109 	bool has_full_ppgtt;
110 	bool has_full_48bit_ppgtt;
111 
112 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114 	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115 
116 	if (intel_vgpu_active(dev))
117 		has_full_ppgtt = false; /* emulation is too hard */
118 
119 	/*
120 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121 	 * execlists, the sole mechanism available to submit work.
122 	 */
123 	if (INTEL_INFO(dev)->gen < 9 &&
124 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125 		return 0;
126 
127 	if (enable_ppgtt == 1)
128 		return 1;
129 
130 	if (enable_ppgtt == 2 && has_full_ppgtt)
131 		return 2;
132 
133 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134 		return 3;
135 
136 #ifdef CONFIG_INTEL_IOMMU
137 	/* Disable ppgtt on SNB if VT-d is on. */
138 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
140 		return 0;
141 	}
142 #endif
143 
144 	/* Early VLV doesn't have this */
145 	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147 		return 0;
148 	}
149 
150 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151 		return has_full_48bit_ppgtt ? 3 : 2;
152 	else
153 		return has_aliasing_ppgtt ? 1 : 0;
154 }
155 
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157 			  enum i915_cache_level cache_level,
158 			  u32 unused)
159 {
160 	u32 pte_flags = 0;
161 
162 	/* Currently applicable only to VLV */
163 	if (vma->obj->gt_ro)
164 		pte_flags |= PTE_READ_ONLY;
165 
166 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167 				cache_level, pte_flags);
168 
169 	return 0;
170 }
171 
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174 	vma->vm->clear_range(vma->vm,
175 			     vma->node.start,
176 			     vma->obj->base.size,
177 			     true);
178 }
179 
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181 				  enum i915_cache_level level,
182 				  bool valid)
183 {
184 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185 	pte |= addr;
186 
187 	switch (level) {
188 	case I915_CACHE_NONE:
189 		pte |= PPAT_UNCACHED_INDEX;
190 		break;
191 	case I915_CACHE_WT:
192 		pte |= PPAT_DISPLAY_ELLC_INDEX;
193 		break;
194 	default:
195 		pte |= PPAT_CACHED_INDEX;
196 		break;
197 	}
198 
199 	return pte;
200 }
201 
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203 				  const enum i915_cache_level level)
204 {
205 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206 	pde |= addr;
207 	if (level != I915_CACHE_NONE)
208 		pde |= PPAT_CACHED_PDE_INDEX;
209 	else
210 		pde |= PPAT_UNCACHED_INDEX;
211 	return pde;
212 }
213 
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216 
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218 				 enum i915_cache_level level,
219 				 bool valid, u32 unused)
220 {
221 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
223 
224 	switch (level) {
225 	case I915_CACHE_L3_LLC:
226 	case I915_CACHE_LLC:
227 		pte |= GEN6_PTE_CACHE_LLC;
228 		break;
229 	case I915_CACHE_NONE:
230 		pte |= GEN6_PTE_UNCACHED;
231 		break;
232 	default:
233 		MISSING_CASE(level);
234 	}
235 
236 	return pte;
237 }
238 
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240 				 enum i915_cache_level level,
241 				 bool valid, u32 unused)
242 {
243 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
245 
246 	switch (level) {
247 	case I915_CACHE_L3_LLC:
248 		pte |= GEN7_PTE_CACHE_L3_LLC;
249 		break;
250 	case I915_CACHE_LLC:
251 		pte |= GEN6_PTE_CACHE_LLC;
252 		break;
253 	case I915_CACHE_NONE:
254 		pte |= GEN6_PTE_UNCACHED;
255 		break;
256 	default:
257 		MISSING_CASE(level);
258 	}
259 
260 	return pte;
261 }
262 
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264 				 enum i915_cache_level level,
265 				 bool valid, u32 flags)
266 {
267 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
269 
270 	if (!(flags & PTE_READ_ONLY))
271 		pte |= BYT_PTE_WRITEABLE;
272 
273 	if (level != I915_CACHE_NONE)
274 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275 
276 	return pte;
277 }
278 
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280 				 enum i915_cache_level level,
281 				 bool valid, u32 unused)
282 {
283 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 	pte |= HSW_PTE_ADDR_ENCODE(addr);
285 
286 	if (level != I915_CACHE_NONE)
287 		pte |= HSW_WB_LLC_AGE3;
288 
289 	return pte;
290 }
291 
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293 				  enum i915_cache_level level,
294 				  bool valid, u32 unused)
295 {
296 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297 	pte |= HSW_PTE_ADDR_ENCODE(addr);
298 
299 	switch (level) {
300 	case I915_CACHE_NONE:
301 		break;
302 	case I915_CACHE_WT:
303 		pte |= HSW_WT_ELLC_LLC_AGE3;
304 		break;
305 	default:
306 		pte |= HSW_WB_ELLC_LLC_AGE3;
307 		break;
308 	}
309 
310 	return pte;
311 }
312 
313 static int __setup_page_dma(struct drm_device *dev,
314 			    struct i915_page_dma *p, gfp_t flags)
315 {
316 	struct device *device = &dev->pdev->dev;
317 
318 	p->page = alloc_page(flags);
319 	if (!p->page)
320 		return -ENOMEM;
321 
322 	p->daddr = dma_map_page(device,
323 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324 
325 	if (dma_mapping_error(device, p->daddr)) {
326 		__free_page(p->page);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335 	return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337 
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340 	if (WARN_ON(!p->page))
341 		return;
342 
343 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344 	__free_page(p->page);
345 	memset(p, 0, sizeof(*p));
346 }
347 
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350 	return kmap_atomic(p->page);
351 }
352 
353 /* We use the flushing unmap only with ppgtt structures:
354  * page directories, page tables and scratch pages.
355  */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358 	/* There are only few exceptions for gen >=6. chv and bxt.
359 	 * And we are not sure about the latter so play safe for now.
360 	 */
361 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
363 
364 	kunmap_atomic(vaddr);
365 }
366 
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369 
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374 
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376 			  const uint64_t val)
377 {
378 	int i;
379 	uint64_t * const vaddr = kmap_page_dma(p);
380 
381 	for (i = 0; i < 512; i++)
382 		vaddr[i] = val;
383 
384 	kunmap_page_dma(dev, vaddr);
385 }
386 
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388 			     const uint32_t val32)
389 {
390 	uint64_t v = val32;
391 
392 	v = v << 32 | val32;
393 
394 	fill_page_dma(dev, p, v);
395 }
396 
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399 	struct i915_page_scratch *sp;
400 	int ret;
401 
402 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403 	if (sp == NULL)
404 		return ERR_PTR(-ENOMEM);
405 
406 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407 	if (ret) {
408 		kfree(sp);
409 		return ERR_PTR(ret);
410 	}
411 
412 	set_pages_uc(px_page(sp), 1);
413 
414 	return sp;
415 }
416 
417 static void free_scratch_page(struct drm_device *dev,
418 			      struct i915_page_scratch *sp)
419 {
420 	set_pages_wb(px_page(sp), 1);
421 
422 	cleanup_px(dev, sp);
423 	kfree(sp);
424 }
425 
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428 	struct i915_page_table *pt;
429 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430 		GEN8_PTES : GEN6_PTES;
431 	int ret = -ENOMEM;
432 
433 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 	if (!pt)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 				GFP_KERNEL);
439 
440 	if (!pt->used_ptes)
441 		goto fail_bitmap;
442 
443 	ret = setup_px(dev, pt);
444 	if (ret)
445 		goto fail_page_m;
446 
447 	return pt;
448 
449 fail_page_m:
450 	kfree(pt->used_ptes);
451 fail_bitmap:
452 	kfree(pt);
453 
454 	return ERR_PTR(ret);
455 }
456 
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459 	cleanup_px(dev, pt);
460 	kfree(pt->used_ptes);
461 	kfree(pt);
462 }
463 
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 			       struct i915_page_table *pt)
466 {
467 	gen8_pte_t scratch_pte;
468 
469 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470 				      I915_CACHE_LLC, true);
471 
472 	fill_px(vm->dev, pt, scratch_pte);
473 }
474 
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 			       struct i915_page_table *pt)
477 {
478 	gen6_pte_t scratch_pte;
479 
480 	WARN_ON(px_dma(vm->scratch_page) == 0);
481 
482 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483 				     I915_CACHE_LLC, true, 0);
484 
485 	fill32_px(vm->dev, pt, scratch_pte);
486 }
487 
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490 	struct i915_page_directory *pd;
491 	int ret = -ENOMEM;
492 
493 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 	if (!pd)
495 		return ERR_PTR(-ENOMEM);
496 
497 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 				sizeof(*pd->used_pdes), GFP_KERNEL);
499 	if (!pd->used_pdes)
500 		goto fail_bitmap;
501 
502 	ret = setup_px(dev, pd);
503 	if (ret)
504 		goto fail_page_m;
505 
506 	return pd;
507 
508 fail_page_m:
509 	kfree(pd->used_pdes);
510 fail_bitmap:
511 	kfree(pd);
512 
513 	return ERR_PTR(ret);
514 }
515 
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518 	if (px_page(pd)) {
519 		cleanup_px(dev, pd);
520 		kfree(pd->used_pdes);
521 		kfree(pd);
522 	}
523 }
524 
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526 			       struct i915_page_directory *pd)
527 {
528 	gen8_pde_t scratch_pde;
529 
530 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531 
532 	fill_px(vm->dev, pd, scratch_pde);
533 }
534 
535 static int __pdp_init(struct drm_device *dev,
536 		      struct i915_page_directory_pointer *pdp)
537 {
538 	size_t pdpes = I915_PDPES_PER_PDP(dev);
539 
540 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541 				  sizeof(unsigned long),
542 				  GFP_KERNEL);
543 	if (!pdp->used_pdpes)
544 		return -ENOMEM;
545 
546 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547 				      GFP_KERNEL);
548 	if (!pdp->page_directory) {
549 		kfree(pdp->used_pdpes);
550 		/* the PDP might be the statically allocated top level. Keep it
551 		 * as clean as possible */
552 		pdp->used_pdpes = NULL;
553 		return -ENOMEM;
554 	}
555 
556 	return 0;
557 }
558 
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561 	kfree(pdp->used_pdpes);
562 	kfree(pdp->page_directory);
563 	pdp->page_directory = NULL;
564 }
565 
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569 	struct i915_page_directory_pointer *pdp;
570 	int ret = -ENOMEM;
571 
572 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573 
574 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575 	if (!pdp)
576 		return ERR_PTR(-ENOMEM);
577 
578 	ret = __pdp_init(dev, pdp);
579 	if (ret)
580 		goto fail_bitmap;
581 
582 	ret = setup_px(dev, pdp);
583 	if (ret)
584 		goto fail_page_m;
585 
586 	return pdp;
587 
588 fail_page_m:
589 	__pdp_fini(pdp);
590 fail_bitmap:
591 	kfree(pdp);
592 
593 	return ERR_PTR(ret);
594 }
595 
596 static void free_pdp(struct drm_device *dev,
597 		     struct i915_page_directory_pointer *pdp)
598 {
599 	__pdp_fini(pdp);
600 	if (USES_FULL_48BIT_PPGTT(dev)) {
601 		cleanup_px(dev, pdp);
602 		kfree(pdp);
603 	}
604 }
605 
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607 				struct i915_page_directory_pointer *pdp)
608 {
609 	gen8_ppgtt_pdpe_t scratch_pdpe;
610 
611 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612 
613 	fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615 
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617 				 struct i915_pml4 *pml4)
618 {
619 	gen8_ppgtt_pml4e_t scratch_pml4e;
620 
621 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622 					  I915_CACHE_LLC);
623 
624 	fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626 
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629 			  struct i915_page_directory_pointer *pdp,
630 			  struct i915_page_directory *pd,
631 			  int index)
632 {
633 	gen8_ppgtt_pdpe_t *page_directorypo;
634 
635 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636 		return;
637 
638 	page_directorypo = kmap_px(pdp);
639 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640 	kunmap_px(ppgtt, page_directorypo);
641 }
642 
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645 				  struct i915_pml4 *pml4,
646 				  struct i915_page_directory_pointer *pdp,
647 				  int index)
648 {
649 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650 
651 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653 	kunmap_px(ppgtt, pagemap);
654 }
655 
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658 			  unsigned entry,
659 			  dma_addr_t addr)
660 {
661 	struct intel_engine_cs *engine = req->engine;
662 	int ret;
663 
664 	BUG_ON(entry >= 4);
665 
666 	ret = intel_ring_begin(req, 6);
667 	if (ret)
668 		return ret;
669 
670 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
671 	intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
672 	intel_ring_emit(engine, upper_32_bits(addr));
673 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
675 	intel_ring_emit(engine, lower_32_bits(addr));
676 	intel_ring_advance(engine);
677 
678 	return 0;
679 }
680 
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682 				 struct drm_i915_gem_request *req)
683 {
684 	int i, ret;
685 
686 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688 
689 		ret = gen8_write_pdp(req, i, pd_daddr);
690 		if (ret)
691 			return ret;
692 	}
693 
694 	return 0;
695 }
696 
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 			      struct drm_i915_gem_request *req)
699 {
700 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702 
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704 				       struct i915_page_directory_pointer *pdp,
705 				       uint64_t start,
706 				       uint64_t length,
707 				       gen8_pte_t scratch_pte)
708 {
709 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
710 	gen8_pte_t *pt_vaddr;
711 	unsigned pdpe = gen8_pdpe_index(start);
712 	unsigned pde = gen8_pde_index(start);
713 	unsigned pte = gen8_pte_index(start);
714 	unsigned num_entries = length >> PAGE_SHIFT;
715 	unsigned last_pte, i;
716 
717 	if (WARN_ON(!pdp))
718 		return;
719 
720 	while (num_entries) {
721 		struct i915_page_directory *pd;
722 		struct i915_page_table *pt;
723 
724 		if (WARN_ON(!pdp->page_directory[pdpe]))
725 			break;
726 
727 		pd = pdp->page_directory[pdpe];
728 
729 		if (WARN_ON(!pd->page_table[pde]))
730 			break;
731 
732 		pt = pd->page_table[pde];
733 
734 		if (WARN_ON(!px_page(pt)))
735 			break;
736 
737 		last_pte = pte + num_entries;
738 		if (last_pte > GEN8_PTES)
739 			last_pte = GEN8_PTES;
740 
741 		pt_vaddr = kmap_px(pt);
742 
743 		for (i = pte; i < last_pte; i++) {
744 			pt_vaddr[i] = scratch_pte;
745 			num_entries--;
746 		}
747 
748 		kunmap_px(ppgtt, pt);
749 
750 		pte = 0;
751 		if (++pde == I915_PDES) {
752 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
753 				break;
754 			pde = 0;
755 		}
756 	}
757 }
758 
759 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
760 				   uint64_t start,
761 				   uint64_t length,
762 				   bool use_scratch)
763 {
764 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
765 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766 						 I915_CACHE_LLC, use_scratch);
767 
768 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770 					   scratch_pte);
771 	} else {
772 		uint64_t pml4e;
773 		struct i915_page_directory_pointer *pdp;
774 
775 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
776 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777 						   scratch_pte);
778 		}
779 	}
780 }
781 
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784 			      struct i915_page_directory_pointer *pdp,
785 			      struct sg_page_iter *sg_iter,
786 			      uint64_t start,
787 			      enum i915_cache_level cache_level)
788 {
789 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
790 	gen8_pte_t *pt_vaddr;
791 	unsigned pdpe = gen8_pdpe_index(start);
792 	unsigned pde = gen8_pde_index(start);
793 	unsigned pte = gen8_pte_index(start);
794 
795 	pt_vaddr = NULL;
796 
797 	while (__sg_page_iter_next(sg_iter)) {
798 		if (pt_vaddr == NULL) {
799 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
800 			struct i915_page_table *pt = pd->page_table[pde];
801 			pt_vaddr = kmap_px(pt);
802 		}
803 
804 		pt_vaddr[pte] =
805 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
806 					cache_level, true);
807 		if (++pte == GEN8_PTES) {
808 			kunmap_px(ppgtt, pt_vaddr);
809 			pt_vaddr = NULL;
810 			if (++pde == I915_PDES) {
811 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
812 					break;
813 				pde = 0;
814 			}
815 			pte = 0;
816 		}
817 	}
818 
819 	if (pt_vaddr)
820 		kunmap_px(ppgtt, pt_vaddr);
821 }
822 
823 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
824 				      struct sg_table *pages,
825 				      uint64_t start,
826 				      enum i915_cache_level cache_level,
827 				      u32 unused)
828 {
829 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
830 	struct sg_page_iter sg_iter;
831 
832 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
833 
834 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
835 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
836 					      cache_level);
837 	} else {
838 		struct i915_page_directory_pointer *pdp;
839 		uint64_t pml4e;
840 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
841 
842 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
843 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
844 						      start, cache_level);
845 		}
846 	}
847 }
848 
849 static void gen8_free_page_tables(struct drm_device *dev,
850 				  struct i915_page_directory *pd)
851 {
852 	int i;
853 
854 	if (!px_page(pd))
855 		return;
856 
857 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
858 		if (WARN_ON(!pd->page_table[i]))
859 			continue;
860 
861 		free_pt(dev, pd->page_table[i]);
862 		pd->page_table[i] = NULL;
863 	}
864 }
865 
866 static int gen8_init_scratch(struct i915_address_space *vm)
867 {
868 	struct drm_device *dev = vm->dev;
869 
870 	vm->scratch_page = alloc_scratch_page(dev);
871 	if (IS_ERR(vm->scratch_page))
872 		return PTR_ERR(vm->scratch_page);
873 
874 	vm->scratch_pt = alloc_pt(dev);
875 	if (IS_ERR(vm->scratch_pt)) {
876 		free_scratch_page(dev, vm->scratch_page);
877 		return PTR_ERR(vm->scratch_pt);
878 	}
879 
880 	vm->scratch_pd = alloc_pd(dev);
881 	if (IS_ERR(vm->scratch_pd)) {
882 		free_pt(dev, vm->scratch_pt);
883 		free_scratch_page(dev, vm->scratch_page);
884 		return PTR_ERR(vm->scratch_pd);
885 	}
886 
887 	if (USES_FULL_48BIT_PPGTT(dev)) {
888 		vm->scratch_pdp = alloc_pdp(dev);
889 		if (IS_ERR(vm->scratch_pdp)) {
890 			free_pd(dev, vm->scratch_pd);
891 			free_pt(dev, vm->scratch_pt);
892 			free_scratch_page(dev, vm->scratch_page);
893 			return PTR_ERR(vm->scratch_pdp);
894 		}
895 	}
896 
897 	gen8_initialize_pt(vm, vm->scratch_pt);
898 	gen8_initialize_pd(vm, vm->scratch_pd);
899 	if (USES_FULL_48BIT_PPGTT(dev))
900 		gen8_initialize_pdp(vm, vm->scratch_pdp);
901 
902 	return 0;
903 }
904 
905 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
906 {
907 	enum vgt_g2v_type msg;
908 	struct drm_device *dev = ppgtt->base.dev;
909 	struct drm_i915_private *dev_priv = dev->dev_private;
910 	int i;
911 
912 	if (USES_FULL_48BIT_PPGTT(dev)) {
913 		u64 daddr = px_dma(&ppgtt->pml4);
914 
915 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
916 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
917 
918 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
919 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
920 	} else {
921 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
922 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
923 
924 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
925 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
926 		}
927 
928 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
929 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
930 	}
931 
932 	I915_WRITE(vgtif_reg(g2v_notify), msg);
933 
934 	return 0;
935 }
936 
937 static void gen8_free_scratch(struct i915_address_space *vm)
938 {
939 	struct drm_device *dev = vm->dev;
940 
941 	if (USES_FULL_48BIT_PPGTT(dev))
942 		free_pdp(dev, vm->scratch_pdp);
943 	free_pd(dev, vm->scratch_pd);
944 	free_pt(dev, vm->scratch_pt);
945 	free_scratch_page(dev, vm->scratch_page);
946 }
947 
948 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
949 				    struct i915_page_directory_pointer *pdp)
950 {
951 	int i;
952 
953 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
954 		if (WARN_ON(!pdp->page_directory[i]))
955 			continue;
956 
957 		gen8_free_page_tables(dev, pdp->page_directory[i]);
958 		free_pd(dev, pdp->page_directory[i]);
959 	}
960 
961 	free_pdp(dev, pdp);
962 }
963 
964 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
965 {
966 	int i;
967 
968 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
969 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
970 			continue;
971 
972 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
973 	}
974 
975 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
976 }
977 
978 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
979 {
980 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
981 
982 	if (intel_vgpu_active(vm->dev))
983 		gen8_ppgtt_notify_vgt(ppgtt, false);
984 
985 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
986 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
987 	else
988 		gen8_ppgtt_cleanup_4lvl(ppgtt);
989 
990 	gen8_free_scratch(vm);
991 }
992 
993 /**
994  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
995  * @vm:	Master vm structure.
996  * @pd:	Page directory for this address range.
997  * @start:	Starting virtual address to begin allocations.
998  * @length:	Size of the allocations.
999  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1000  *		caller to free on error.
1001  *
1002  * Allocate the required number of page tables. Extremely similar to
1003  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1004  * the page directory boundary (instead of the page directory pointer). That
1005  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1006  * possible, and likely that the caller will need to use multiple calls of this
1007  * function to achieve the appropriate allocation.
1008  *
1009  * Return: 0 if success; negative error code otherwise.
1010  */
1011 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1012 				     struct i915_page_directory *pd,
1013 				     uint64_t start,
1014 				     uint64_t length,
1015 				     unsigned long *new_pts)
1016 {
1017 	struct drm_device *dev = vm->dev;
1018 	struct i915_page_table *pt;
1019 	uint32_t pde;
1020 
1021 	gen8_for_each_pde(pt, pd, start, length, pde) {
1022 		/* Don't reallocate page tables */
1023 		if (test_bit(pde, pd->used_pdes)) {
1024 			/* Scratch is never allocated this way */
1025 			WARN_ON(pt == vm->scratch_pt);
1026 			continue;
1027 		}
1028 
1029 		pt = alloc_pt(dev);
1030 		if (IS_ERR(pt))
1031 			goto unwind_out;
1032 
1033 		gen8_initialize_pt(vm, pt);
1034 		pd->page_table[pde] = pt;
1035 		__set_bit(pde, new_pts);
1036 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1037 	}
1038 
1039 	return 0;
1040 
1041 unwind_out:
1042 	for_each_set_bit(pde, new_pts, I915_PDES)
1043 		free_pt(dev, pd->page_table[pde]);
1044 
1045 	return -ENOMEM;
1046 }
1047 
1048 /**
1049  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1050  * @vm:	Master vm structure.
1051  * @pdp:	Page directory pointer for this address range.
1052  * @start:	Starting virtual address to begin allocations.
1053  * @length:	Size of the allocations.
1054  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1055  *		caller to free on error.
1056  *
1057  * Allocate the required number of page directories starting at the pde index of
1058  * @start, and ending at the pde index @start + @length. This function will skip
1059  * over already allocated page directories within the range, and only allocate
1060  * new ones, setting the appropriate pointer within the pdp as well as the
1061  * correct position in the bitmap @new_pds.
1062  *
1063  * The function will only allocate the pages within the range for a give page
1064  * directory pointer. In other words, if @start + @length straddles a virtually
1065  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1066  * required by the caller, This is not currently possible, and the BUG in the
1067  * code will prevent it.
1068  *
1069  * Return: 0 if success; negative error code otherwise.
1070  */
1071 static int
1072 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1073 				  struct i915_page_directory_pointer *pdp,
1074 				  uint64_t start,
1075 				  uint64_t length,
1076 				  unsigned long *new_pds)
1077 {
1078 	struct drm_device *dev = vm->dev;
1079 	struct i915_page_directory *pd;
1080 	uint32_t pdpe;
1081 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1082 
1083 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1084 
1085 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1086 		if (test_bit(pdpe, pdp->used_pdpes))
1087 			continue;
1088 
1089 		pd = alloc_pd(dev);
1090 		if (IS_ERR(pd))
1091 			goto unwind_out;
1092 
1093 		gen8_initialize_pd(vm, pd);
1094 		pdp->page_directory[pdpe] = pd;
1095 		__set_bit(pdpe, new_pds);
1096 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1097 	}
1098 
1099 	return 0;
1100 
1101 unwind_out:
1102 	for_each_set_bit(pdpe, new_pds, pdpes)
1103 		free_pd(dev, pdp->page_directory[pdpe]);
1104 
1105 	return -ENOMEM;
1106 }
1107 
1108 /**
1109  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1110  * @vm:	Master vm structure.
1111  * @pml4:	Page map level 4 for this address range.
1112  * @start:	Starting virtual address to begin allocations.
1113  * @length:	Size of the allocations.
1114  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1115  *		caller to free on error.
1116  *
1117  * Allocate the required number of page directory pointers. Extremely similar to
1118  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1119  * The main difference is here we are limited by the pml4 boundary (instead of
1120  * the page directory pointer).
1121  *
1122  * Return: 0 if success; negative error code otherwise.
1123  */
1124 static int
1125 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1126 				  struct i915_pml4 *pml4,
1127 				  uint64_t start,
1128 				  uint64_t length,
1129 				  unsigned long *new_pdps)
1130 {
1131 	struct drm_device *dev = vm->dev;
1132 	struct i915_page_directory_pointer *pdp;
1133 	uint32_t pml4e;
1134 
1135 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1136 
1137 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1138 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1139 			pdp = alloc_pdp(dev);
1140 			if (IS_ERR(pdp))
1141 				goto unwind_out;
1142 
1143 			gen8_initialize_pdp(vm, pdp);
1144 			pml4->pdps[pml4e] = pdp;
1145 			__set_bit(pml4e, new_pdps);
1146 			trace_i915_page_directory_pointer_entry_alloc(vm,
1147 								      pml4e,
1148 								      start,
1149 								      GEN8_PML4E_SHIFT);
1150 		}
1151 	}
1152 
1153 	return 0;
1154 
1155 unwind_out:
1156 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1157 		free_pdp(dev, pml4->pdps[pml4e]);
1158 
1159 	return -ENOMEM;
1160 }
1161 
1162 static void
1163 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1164 {
1165 	kfree(new_pts);
1166 	kfree(new_pds);
1167 }
1168 
1169 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1170  * of these are based on the number of PDPEs in the system.
1171  */
1172 static
1173 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1174 					 unsigned long **new_pts,
1175 					 uint32_t pdpes)
1176 {
1177 	unsigned long *pds;
1178 	unsigned long *pts;
1179 
1180 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1181 	if (!pds)
1182 		return -ENOMEM;
1183 
1184 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1185 		      GFP_TEMPORARY);
1186 	if (!pts)
1187 		goto err_out;
1188 
1189 	*new_pds = pds;
1190 	*new_pts = pts;
1191 
1192 	return 0;
1193 
1194 err_out:
1195 	free_gen8_temp_bitmaps(pds, pts);
1196 	return -ENOMEM;
1197 }
1198 
1199 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1200  * the page table structures, we mark them dirty so that
1201  * context switching/execlist queuing code takes extra steps
1202  * to ensure that tlbs are flushed.
1203  */
1204 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1205 {
1206 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1207 }
1208 
1209 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1210 				    struct i915_page_directory_pointer *pdp,
1211 				    uint64_t start,
1212 				    uint64_t length)
1213 {
1214 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1215 	unsigned long *new_page_dirs, *new_page_tables;
1216 	struct drm_device *dev = vm->dev;
1217 	struct i915_page_directory *pd;
1218 	const uint64_t orig_start = start;
1219 	const uint64_t orig_length = length;
1220 	uint32_t pdpe;
1221 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1222 	int ret;
1223 
1224 	/* Wrap is never okay since we can only represent 48b, and we don't
1225 	 * actually use the other side of the canonical address space.
1226 	 */
1227 	if (WARN_ON(start + length < start))
1228 		return -ENODEV;
1229 
1230 	if (WARN_ON(start + length > vm->total))
1231 		return -ENODEV;
1232 
1233 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1234 	if (ret)
1235 		return ret;
1236 
1237 	/* Do the allocations first so we can easily bail out */
1238 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1239 						new_page_dirs);
1240 	if (ret) {
1241 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1242 		return ret;
1243 	}
1244 
1245 	/* For every page directory referenced, allocate page tables */
1246 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1247 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1248 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1249 		if (ret)
1250 			goto err_out;
1251 	}
1252 
1253 	start = orig_start;
1254 	length = orig_length;
1255 
1256 	/* Allocations have completed successfully, so set the bitmaps, and do
1257 	 * the mappings. */
1258 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259 		gen8_pde_t *const page_directory = kmap_px(pd);
1260 		struct i915_page_table *pt;
1261 		uint64_t pd_len = length;
1262 		uint64_t pd_start = start;
1263 		uint32_t pde;
1264 
1265 		/* Every pd should be allocated, we just did that above. */
1266 		WARN_ON(!pd);
1267 
1268 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1269 			/* Same reasoning as pd */
1270 			WARN_ON(!pt);
1271 			WARN_ON(!pd_len);
1272 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1273 
1274 			/* Set our used ptes within the page table */
1275 			bitmap_set(pt->used_ptes,
1276 				   gen8_pte_index(pd_start),
1277 				   gen8_pte_count(pd_start, pd_len));
1278 
1279 			/* Our pde is now pointing to the pagetable, pt */
1280 			__set_bit(pde, pd->used_pdes);
1281 
1282 			/* Map the PDE to the page table */
1283 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1284 							      I915_CACHE_LLC);
1285 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1286 							gen8_pte_index(start),
1287 							gen8_pte_count(start, length),
1288 							GEN8_PTES);
1289 
1290 			/* NB: We haven't yet mapped ptes to pages. At this
1291 			 * point we're still relying on insert_entries() */
1292 		}
1293 
1294 		kunmap_px(ppgtt, page_directory);
1295 		__set_bit(pdpe, pdp->used_pdpes);
1296 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1297 	}
1298 
1299 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1300 	mark_tlbs_dirty(ppgtt);
1301 	return 0;
1302 
1303 err_out:
1304 	while (pdpe--) {
1305 		unsigned long temp;
1306 
1307 		for_each_set_bit(temp, new_page_tables + pdpe *
1308 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1309 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1310 	}
1311 
1312 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1313 		free_pd(dev, pdp->page_directory[pdpe]);
1314 
1315 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1316 	mark_tlbs_dirty(ppgtt);
1317 	return ret;
1318 }
1319 
1320 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1321 				    struct i915_pml4 *pml4,
1322 				    uint64_t start,
1323 				    uint64_t length)
1324 {
1325 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1326 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1327 	struct i915_page_directory_pointer *pdp;
1328 	uint64_t pml4e;
1329 	int ret = 0;
1330 
1331 	/* Do the pml4 allocations first, so we don't need to track the newly
1332 	 * allocated tables below the pdp */
1333 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1334 
1335 	/* The pagedirectory and pagetable allocations are done in the shared 3
1336 	 * and 4 level code. Just allocate the pdps.
1337 	 */
1338 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1339 						new_pdps);
1340 	if (ret)
1341 		return ret;
1342 
1343 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1344 	     "The allocation has spanned more than 512GB. "
1345 	     "It is highly likely this is incorrect.");
1346 
1347 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1348 		WARN_ON(!pdp);
1349 
1350 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1351 		if (ret)
1352 			goto err_out;
1353 
1354 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1355 	}
1356 
1357 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1358 		  GEN8_PML4ES_PER_PML4);
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1364 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1365 
1366 	return ret;
1367 }
1368 
1369 static int gen8_alloc_va_range(struct i915_address_space *vm,
1370 			       uint64_t start, uint64_t length)
1371 {
1372 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1373 
1374 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1375 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1376 	else
1377 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1378 }
1379 
1380 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1381 			  uint64_t start, uint64_t length,
1382 			  gen8_pte_t scratch_pte,
1383 			  struct seq_file *m)
1384 {
1385 	struct i915_page_directory *pd;
1386 	uint32_t pdpe;
1387 
1388 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1389 		struct i915_page_table *pt;
1390 		uint64_t pd_len = length;
1391 		uint64_t pd_start = start;
1392 		uint32_t pde;
1393 
1394 		if (!test_bit(pdpe, pdp->used_pdpes))
1395 			continue;
1396 
1397 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1398 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1399 			uint32_t  pte;
1400 			gen8_pte_t *pt_vaddr;
1401 
1402 			if (!test_bit(pde, pd->used_pdes))
1403 				continue;
1404 
1405 			pt_vaddr = kmap_px(pt);
1406 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1407 				uint64_t va =
1408 					(pdpe << GEN8_PDPE_SHIFT) |
1409 					(pde << GEN8_PDE_SHIFT) |
1410 					(pte << GEN8_PTE_SHIFT);
1411 				int i;
1412 				bool found = false;
1413 
1414 				for (i = 0; i < 4; i++)
1415 					if (pt_vaddr[pte + i] != scratch_pte)
1416 						found = true;
1417 				if (!found)
1418 					continue;
1419 
1420 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1421 				for (i = 0; i < 4; i++) {
1422 					if (pt_vaddr[pte + i] != scratch_pte)
1423 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1424 					else
1425 						seq_puts(m, "  SCRATCH ");
1426 				}
1427 				seq_puts(m, "\n");
1428 			}
1429 			/* don't use kunmap_px, it could trigger
1430 			 * an unnecessary flush.
1431 			 */
1432 			kunmap_atomic(pt_vaddr);
1433 		}
1434 	}
1435 }
1436 
1437 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1438 {
1439 	struct i915_address_space *vm = &ppgtt->base;
1440 	uint64_t start = ppgtt->base.start;
1441 	uint64_t length = ppgtt->base.total;
1442 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1443 						 I915_CACHE_LLC, true);
1444 
1445 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1446 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1447 	} else {
1448 		uint64_t pml4e;
1449 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1450 		struct i915_page_directory_pointer *pdp;
1451 
1452 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1453 			if (!test_bit(pml4e, pml4->used_pml4es))
1454 				continue;
1455 
1456 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1457 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1458 		}
1459 	}
1460 }
1461 
1462 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1463 {
1464 	unsigned long *new_page_dirs, *new_page_tables;
1465 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1466 	int ret;
1467 
1468 	/* We allocate temp bitmap for page tables for no gain
1469 	 * but as this is for init only, lets keep the things simple
1470 	 */
1471 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1472 	if (ret)
1473 		return ret;
1474 
1475 	/* Allocate for all pdps regardless of how the ppgtt
1476 	 * was defined.
1477 	 */
1478 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1479 						0, 1ULL << 32,
1480 						new_page_dirs);
1481 	if (!ret)
1482 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1483 
1484 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1485 
1486 	return ret;
1487 }
1488 
1489 /*
1490  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1491  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1492  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1493  * space.
1494  *
1495  */
1496 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1497 {
1498 	int ret;
1499 
1500 	ret = gen8_init_scratch(&ppgtt->base);
1501 	if (ret)
1502 		return ret;
1503 
1504 	ppgtt->base.start = 0;
1505 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1506 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1507 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1508 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1509 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1510 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1511 	ppgtt->debug_dump = gen8_dump_ppgtt;
1512 
1513 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1514 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1515 		if (ret)
1516 			goto free_scratch;
1517 
1518 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1519 
1520 		ppgtt->base.total = 1ULL << 48;
1521 		ppgtt->switch_mm = gen8_48b_mm_switch;
1522 	} else {
1523 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1524 		if (ret)
1525 			goto free_scratch;
1526 
1527 		ppgtt->base.total = 1ULL << 32;
1528 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1529 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1530 							      0, 0,
1531 							      GEN8_PML4E_SHIFT);
1532 
1533 		if (intel_vgpu_active(ppgtt->base.dev)) {
1534 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1535 			if (ret)
1536 				goto free_scratch;
1537 		}
1538 	}
1539 
1540 	if (intel_vgpu_active(ppgtt->base.dev))
1541 		gen8_ppgtt_notify_vgt(ppgtt, true);
1542 
1543 	return 0;
1544 
1545 free_scratch:
1546 	gen8_free_scratch(&ppgtt->base);
1547 	return ret;
1548 }
1549 
1550 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1551 {
1552 	struct i915_address_space *vm = &ppgtt->base;
1553 	struct i915_page_table *unused;
1554 	gen6_pte_t scratch_pte;
1555 	uint32_t pd_entry;
1556 	uint32_t  pte, pde, temp;
1557 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1558 
1559 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1560 				     I915_CACHE_LLC, true, 0);
1561 
1562 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1563 		u32 expected;
1564 		gen6_pte_t *pt_vaddr;
1565 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1566 		pd_entry = readl(ppgtt->pd_addr + pde);
1567 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1568 
1569 		if (pd_entry != expected)
1570 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1571 				   pde,
1572 				   pd_entry,
1573 				   expected);
1574 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1575 
1576 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1577 
1578 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1579 			unsigned long va =
1580 				(pde * PAGE_SIZE * GEN6_PTES) +
1581 				(pte * PAGE_SIZE);
1582 			int i;
1583 			bool found = false;
1584 			for (i = 0; i < 4; i++)
1585 				if (pt_vaddr[pte + i] != scratch_pte)
1586 					found = true;
1587 			if (!found)
1588 				continue;
1589 
1590 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1591 			for (i = 0; i < 4; i++) {
1592 				if (pt_vaddr[pte + i] != scratch_pte)
1593 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1594 				else
1595 					seq_puts(m, "  SCRATCH ");
1596 			}
1597 			seq_puts(m, "\n");
1598 		}
1599 		kunmap_px(ppgtt, pt_vaddr);
1600 	}
1601 }
1602 
1603 /* Write pde (index) from the page directory @pd to the page table @pt */
1604 static void gen6_write_pde(struct i915_page_directory *pd,
1605 			    const int pde, struct i915_page_table *pt)
1606 {
1607 	/* Caller needs to make sure the write completes if necessary */
1608 	struct i915_hw_ppgtt *ppgtt =
1609 		container_of(pd, struct i915_hw_ppgtt, pd);
1610 	u32 pd_entry;
1611 
1612 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1613 	pd_entry |= GEN6_PDE_VALID;
1614 
1615 	writel(pd_entry, ppgtt->pd_addr + pde);
1616 }
1617 
1618 /* Write all the page tables found in the ppgtt structure to incrementing page
1619  * directories. */
1620 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1621 				  struct i915_page_directory *pd,
1622 				  uint32_t start, uint32_t length)
1623 {
1624 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1625 	struct i915_page_table *pt;
1626 	uint32_t pde, temp;
1627 
1628 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1629 		gen6_write_pde(pd, pde, pt);
1630 
1631 	/* Make sure write is complete before other code can use this page
1632 	 * table. Also require for WC mapped PTEs */
1633 	readl(ggtt->gsm);
1634 }
1635 
1636 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1637 {
1638 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1639 
1640 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1641 }
1642 
1643 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1644 			 struct drm_i915_gem_request *req)
1645 {
1646 	struct intel_engine_cs *engine = req->engine;
1647 	int ret;
1648 
1649 	/* NB: TLBs must be flushed and invalidated before a switch */
1650 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1651 	if (ret)
1652 		return ret;
1653 
1654 	ret = intel_ring_begin(req, 6);
1655 	if (ret)
1656 		return ret;
1657 
1658 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1659 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1660 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1661 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1662 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1663 	intel_ring_emit(engine, MI_NOOP);
1664 	intel_ring_advance(engine);
1665 
1666 	return 0;
1667 }
1668 
1669 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1670 			  struct drm_i915_gem_request *req)
1671 {
1672 	struct intel_engine_cs *engine = req->engine;
1673 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1674 
1675 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1676 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1677 	return 0;
1678 }
1679 
1680 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1681 			  struct drm_i915_gem_request *req)
1682 {
1683 	struct intel_engine_cs *engine = req->engine;
1684 	int ret;
1685 
1686 	/* NB: TLBs must be flushed and invalidated before a switch */
1687 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1688 	if (ret)
1689 		return ret;
1690 
1691 	ret = intel_ring_begin(req, 6);
1692 	if (ret)
1693 		return ret;
1694 
1695 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1696 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1697 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1698 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1699 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1700 	intel_ring_emit(engine, MI_NOOP);
1701 	intel_ring_advance(engine);
1702 
1703 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1704 	if (engine->id != RCS) {
1705 		ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1706 		if (ret)
1707 			return ret;
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1714 			  struct drm_i915_gem_request *req)
1715 {
1716 	struct intel_engine_cs *engine = req->engine;
1717 	struct drm_device *dev = ppgtt->base.dev;
1718 	struct drm_i915_private *dev_priv = dev->dev_private;
1719 
1720 
1721 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1722 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1723 
1724 	POSTING_READ(RING_PP_DIR_DCLV(engine));
1725 
1726 	return 0;
1727 }
1728 
1729 static void gen8_ppgtt_enable(struct drm_device *dev)
1730 {
1731 	struct drm_i915_private *dev_priv = dev->dev_private;
1732 	struct intel_engine_cs *engine;
1733 
1734 	for_each_engine(engine, dev_priv) {
1735 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1736 		I915_WRITE(RING_MODE_GEN7(engine),
1737 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1738 	}
1739 }
1740 
1741 static void gen7_ppgtt_enable(struct drm_device *dev)
1742 {
1743 	struct drm_i915_private *dev_priv = dev->dev_private;
1744 	struct intel_engine_cs *engine;
1745 	uint32_t ecochk, ecobits;
1746 
1747 	ecobits = I915_READ(GAC_ECO_BITS);
1748 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1749 
1750 	ecochk = I915_READ(GAM_ECOCHK);
1751 	if (IS_HASWELL(dev)) {
1752 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1753 	} else {
1754 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1755 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1756 	}
1757 	I915_WRITE(GAM_ECOCHK, ecochk);
1758 
1759 	for_each_engine(engine, dev_priv) {
1760 		/* GFX_MODE is per-ring on gen7+ */
1761 		I915_WRITE(RING_MODE_GEN7(engine),
1762 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1763 	}
1764 }
1765 
1766 static void gen6_ppgtt_enable(struct drm_device *dev)
1767 {
1768 	struct drm_i915_private *dev_priv = dev->dev_private;
1769 	uint32_t ecochk, gab_ctl, ecobits;
1770 
1771 	ecobits = I915_READ(GAC_ECO_BITS);
1772 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1773 		   ECOBITS_PPGTT_CACHE64B);
1774 
1775 	gab_ctl = I915_READ(GAB_CTL);
1776 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1777 
1778 	ecochk = I915_READ(GAM_ECOCHK);
1779 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1780 
1781 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1782 }
1783 
1784 /* PPGTT support for Sandybdrige/Gen6 and later */
1785 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1786 				   uint64_t start,
1787 				   uint64_t length,
1788 				   bool use_scratch)
1789 {
1790 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1791 	gen6_pte_t *pt_vaddr, scratch_pte;
1792 	unsigned first_entry = start >> PAGE_SHIFT;
1793 	unsigned num_entries = length >> PAGE_SHIFT;
1794 	unsigned act_pt = first_entry / GEN6_PTES;
1795 	unsigned first_pte = first_entry % GEN6_PTES;
1796 	unsigned last_pte, i;
1797 
1798 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1799 				     I915_CACHE_LLC, true, 0);
1800 
1801 	while (num_entries) {
1802 		last_pte = first_pte + num_entries;
1803 		if (last_pte > GEN6_PTES)
1804 			last_pte = GEN6_PTES;
1805 
1806 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1807 
1808 		for (i = first_pte; i < last_pte; i++)
1809 			pt_vaddr[i] = scratch_pte;
1810 
1811 		kunmap_px(ppgtt, pt_vaddr);
1812 
1813 		num_entries -= last_pte - first_pte;
1814 		first_pte = 0;
1815 		act_pt++;
1816 	}
1817 }
1818 
1819 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1820 				      struct sg_table *pages,
1821 				      uint64_t start,
1822 				      enum i915_cache_level cache_level, u32 flags)
1823 {
1824 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1825 	gen6_pte_t *pt_vaddr;
1826 	unsigned first_entry = start >> PAGE_SHIFT;
1827 	unsigned act_pt = first_entry / GEN6_PTES;
1828 	unsigned act_pte = first_entry % GEN6_PTES;
1829 	struct sg_page_iter sg_iter;
1830 
1831 	pt_vaddr = NULL;
1832 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1833 		if (pt_vaddr == NULL)
1834 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1835 
1836 		pt_vaddr[act_pte] =
1837 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1838 				       cache_level, true, flags);
1839 
1840 		if (++act_pte == GEN6_PTES) {
1841 			kunmap_px(ppgtt, pt_vaddr);
1842 			pt_vaddr = NULL;
1843 			act_pt++;
1844 			act_pte = 0;
1845 		}
1846 	}
1847 	if (pt_vaddr)
1848 		kunmap_px(ppgtt, pt_vaddr);
1849 }
1850 
1851 static int gen6_alloc_va_range(struct i915_address_space *vm,
1852 			       uint64_t start_in, uint64_t length_in)
1853 {
1854 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1855 	struct drm_device *dev = vm->dev;
1856 	struct drm_i915_private *dev_priv = to_i915(dev);
1857 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1858 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1859 	struct i915_page_table *pt;
1860 	uint32_t start, length, start_save, length_save;
1861 	uint32_t pde, temp;
1862 	int ret;
1863 
1864 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1865 		return -ENODEV;
1866 
1867 	start = start_save = start_in;
1868 	length = length_save = length_in;
1869 
1870 	bitmap_zero(new_page_tables, I915_PDES);
1871 
1872 	/* The allocation is done in two stages so that we can bail out with
1873 	 * minimal amount of pain. The first stage finds new page tables that
1874 	 * need allocation. The second stage marks use ptes within the page
1875 	 * tables.
1876 	 */
1877 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1878 		if (pt != vm->scratch_pt) {
1879 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1880 			continue;
1881 		}
1882 
1883 		/* We've already allocated a page table */
1884 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1885 
1886 		pt = alloc_pt(dev);
1887 		if (IS_ERR(pt)) {
1888 			ret = PTR_ERR(pt);
1889 			goto unwind_out;
1890 		}
1891 
1892 		gen6_initialize_pt(vm, pt);
1893 
1894 		ppgtt->pd.page_table[pde] = pt;
1895 		__set_bit(pde, new_page_tables);
1896 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1897 	}
1898 
1899 	start = start_save;
1900 	length = length_save;
1901 
1902 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1903 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1904 
1905 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1906 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1907 			   gen6_pte_count(start, length));
1908 
1909 		if (__test_and_clear_bit(pde, new_page_tables))
1910 			gen6_write_pde(&ppgtt->pd, pde, pt);
1911 
1912 		trace_i915_page_table_entry_map(vm, pde, pt,
1913 					 gen6_pte_index(start),
1914 					 gen6_pte_count(start, length),
1915 					 GEN6_PTES);
1916 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1917 				GEN6_PTES);
1918 	}
1919 
1920 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1921 
1922 	/* Make sure write is complete before other code can use this page
1923 	 * table. Also require for WC mapped PTEs */
1924 	readl(ggtt->gsm);
1925 
1926 	mark_tlbs_dirty(ppgtt);
1927 	return 0;
1928 
1929 unwind_out:
1930 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1931 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1932 
1933 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1934 		free_pt(vm->dev, pt);
1935 	}
1936 
1937 	mark_tlbs_dirty(ppgtt);
1938 	return ret;
1939 }
1940 
1941 static int gen6_init_scratch(struct i915_address_space *vm)
1942 {
1943 	struct drm_device *dev = vm->dev;
1944 
1945 	vm->scratch_page = alloc_scratch_page(dev);
1946 	if (IS_ERR(vm->scratch_page))
1947 		return PTR_ERR(vm->scratch_page);
1948 
1949 	vm->scratch_pt = alloc_pt(dev);
1950 	if (IS_ERR(vm->scratch_pt)) {
1951 		free_scratch_page(dev, vm->scratch_page);
1952 		return PTR_ERR(vm->scratch_pt);
1953 	}
1954 
1955 	gen6_initialize_pt(vm, vm->scratch_pt);
1956 
1957 	return 0;
1958 }
1959 
1960 static void gen6_free_scratch(struct i915_address_space *vm)
1961 {
1962 	struct drm_device *dev = vm->dev;
1963 
1964 	free_pt(dev, vm->scratch_pt);
1965 	free_scratch_page(dev, vm->scratch_page);
1966 }
1967 
1968 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1969 {
1970 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1971 	struct i915_page_table *pt;
1972 	uint32_t pde;
1973 
1974 	drm_mm_remove_node(&ppgtt->node);
1975 
1976 	gen6_for_all_pdes(pt, ppgtt, pde) {
1977 		if (pt != vm->scratch_pt)
1978 			free_pt(ppgtt->base.dev, pt);
1979 	}
1980 
1981 	gen6_free_scratch(vm);
1982 }
1983 
1984 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1985 {
1986 	struct i915_address_space *vm = &ppgtt->base;
1987 	struct drm_device *dev = ppgtt->base.dev;
1988 	struct drm_i915_private *dev_priv = to_i915(dev);
1989 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1990 	bool retried = false;
1991 	int ret;
1992 
1993 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1994 	 * allocator works in address space sizes, so it's multiplied by page
1995 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1996 	 */
1997 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1998 
1999 	ret = gen6_init_scratch(vm);
2000 	if (ret)
2001 		return ret;
2002 
2003 alloc:
2004 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2005 						  &ppgtt->node, GEN6_PD_SIZE,
2006 						  GEN6_PD_ALIGN, 0,
2007 						  0, ggtt->base.total,
2008 						  DRM_MM_TOPDOWN);
2009 	if (ret == -ENOSPC && !retried) {
2010 		ret = i915_gem_evict_something(dev, &ggtt->base,
2011 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2012 					       I915_CACHE_NONE,
2013 					       0, ggtt->base.total,
2014 					       0);
2015 		if (ret)
2016 			goto err_out;
2017 
2018 		retried = true;
2019 		goto alloc;
2020 	}
2021 
2022 	if (ret)
2023 		goto err_out;
2024 
2025 
2026 	if (ppgtt->node.start < ggtt->mappable_end)
2027 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2028 
2029 	return 0;
2030 
2031 err_out:
2032 	gen6_free_scratch(vm);
2033 	return ret;
2034 }
2035 
2036 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2037 {
2038 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2039 }
2040 
2041 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2042 				  uint64_t start, uint64_t length)
2043 {
2044 	struct i915_page_table *unused;
2045 	uint32_t pde, temp;
2046 
2047 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2048 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2049 }
2050 
2051 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2052 {
2053 	struct drm_device *dev = ppgtt->base.dev;
2054 	struct drm_i915_private *dev_priv = to_i915(dev);
2055 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2056 	int ret;
2057 
2058 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2059 	if (IS_GEN6(dev)) {
2060 		ppgtt->switch_mm = gen6_mm_switch;
2061 	} else if (IS_HASWELL(dev)) {
2062 		ppgtt->switch_mm = hsw_mm_switch;
2063 	} else if (IS_GEN7(dev)) {
2064 		ppgtt->switch_mm = gen7_mm_switch;
2065 	} else
2066 		BUG();
2067 
2068 	if (intel_vgpu_active(dev))
2069 		ppgtt->switch_mm = vgpu_mm_switch;
2070 
2071 	ret = gen6_ppgtt_alloc(ppgtt);
2072 	if (ret)
2073 		return ret;
2074 
2075 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2076 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2077 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2078 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2079 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2080 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2081 	ppgtt->base.start = 0;
2082 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2083 	ppgtt->debug_dump = gen6_dump_ppgtt;
2084 
2085 	ppgtt->pd.base.ggtt_offset =
2086 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2087 
2088 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2089 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2090 
2091 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2092 
2093 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2094 
2095 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2096 			 ppgtt->node.size >> 20,
2097 			 ppgtt->node.start / PAGE_SIZE);
2098 
2099 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2100 		  ppgtt->pd.base.ggtt_offset << 10);
2101 
2102 	return 0;
2103 }
2104 
2105 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2106 {
2107 	ppgtt->base.dev = dev;
2108 
2109 	if (INTEL_INFO(dev)->gen < 8)
2110 		return gen6_ppgtt_init(ppgtt);
2111 	else
2112 		return gen8_ppgtt_init(ppgtt);
2113 }
2114 
2115 static void i915_address_space_init(struct i915_address_space *vm,
2116 				    struct drm_i915_private *dev_priv)
2117 {
2118 	drm_mm_init(&vm->mm, vm->start, vm->total);
2119 	vm->dev = dev_priv->dev;
2120 	INIT_LIST_HEAD(&vm->active_list);
2121 	INIT_LIST_HEAD(&vm->inactive_list);
2122 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2123 }
2124 
2125 static void gtt_write_workarounds(struct drm_device *dev)
2126 {
2127 	struct drm_i915_private *dev_priv = dev->dev_private;
2128 
2129 	/* This function is for gtt related workarounds. This function is
2130 	 * called on driver load and after a GPU reset, so you can place
2131 	 * workarounds here even if they get overwritten by GPU reset.
2132 	 */
2133 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2134 	if (IS_BROADWELL(dev))
2135 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2136 	else if (IS_CHERRYVIEW(dev))
2137 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2138 	else if (IS_SKYLAKE(dev))
2139 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2140 	else if (IS_BROXTON(dev))
2141 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2142 }
2143 
2144 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2145 {
2146 	struct drm_i915_private *dev_priv = dev->dev_private;
2147 	int ret = 0;
2148 
2149 	ret = __hw_ppgtt_init(dev, ppgtt);
2150 	if (ret == 0) {
2151 		kref_init(&ppgtt->ref);
2152 		i915_address_space_init(&ppgtt->base, dev_priv);
2153 	}
2154 
2155 	return ret;
2156 }
2157 
2158 int i915_ppgtt_init_hw(struct drm_device *dev)
2159 {
2160 	gtt_write_workarounds(dev);
2161 
2162 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2163 	 * and the PDPs are contained within the context itself.  We don't
2164 	 * need to do anything here. */
2165 	if (i915.enable_execlists)
2166 		return 0;
2167 
2168 	if (!USES_PPGTT(dev))
2169 		return 0;
2170 
2171 	if (IS_GEN6(dev))
2172 		gen6_ppgtt_enable(dev);
2173 	else if (IS_GEN7(dev))
2174 		gen7_ppgtt_enable(dev);
2175 	else if (INTEL_INFO(dev)->gen >= 8)
2176 		gen8_ppgtt_enable(dev);
2177 	else
2178 		MISSING_CASE(INTEL_INFO(dev)->gen);
2179 
2180 	return 0;
2181 }
2182 
2183 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2184 {
2185 	struct drm_i915_private *dev_priv = req->i915;
2186 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2187 
2188 	if (i915.enable_execlists)
2189 		return 0;
2190 
2191 	if (!ppgtt)
2192 		return 0;
2193 
2194 	return ppgtt->switch_mm(ppgtt, req);
2195 }
2196 
2197 struct i915_hw_ppgtt *
2198 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2199 {
2200 	struct i915_hw_ppgtt *ppgtt;
2201 	int ret;
2202 
2203 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2204 	if (!ppgtt)
2205 		return ERR_PTR(-ENOMEM);
2206 
2207 	ret = i915_ppgtt_init(dev, ppgtt);
2208 	if (ret) {
2209 		kfree(ppgtt);
2210 		return ERR_PTR(ret);
2211 	}
2212 
2213 	ppgtt->file_priv = fpriv;
2214 
2215 	trace_i915_ppgtt_create(&ppgtt->base);
2216 
2217 	return ppgtt;
2218 }
2219 
2220 void  i915_ppgtt_release(struct kref *kref)
2221 {
2222 	struct i915_hw_ppgtt *ppgtt =
2223 		container_of(kref, struct i915_hw_ppgtt, ref);
2224 
2225 	trace_i915_ppgtt_release(&ppgtt->base);
2226 
2227 	/* vmas should already be unbound */
2228 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2229 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2230 
2231 	list_del(&ppgtt->base.global_link);
2232 	drm_mm_takedown(&ppgtt->base.mm);
2233 
2234 	ppgtt->base.cleanup(&ppgtt->base);
2235 	kfree(ppgtt);
2236 }
2237 
2238 extern int intel_iommu_gfx_mapped;
2239 /* Certain Gen5 chipsets require require idling the GPU before
2240  * unmapping anything from the GTT when VT-d is enabled.
2241  */
2242 static bool needs_idle_maps(struct drm_device *dev)
2243 {
2244 #ifdef CONFIG_INTEL_IOMMU
2245 	/* Query intel_iommu to see if we need the workaround. Presumably that
2246 	 * was loaded first.
2247 	 */
2248 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2249 		return true;
2250 #endif
2251 	return false;
2252 }
2253 
2254 static bool do_idling(struct drm_i915_private *dev_priv)
2255 {
2256 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2257 	bool ret = dev_priv->mm.interruptible;
2258 
2259 	if (unlikely(ggtt->do_idle_maps)) {
2260 		dev_priv->mm.interruptible = false;
2261 		if (i915_gpu_idle(dev_priv->dev)) {
2262 			DRM_ERROR("Couldn't idle GPU\n");
2263 			/* Wait a bit, in hopes it avoids the hang */
2264 			udelay(10);
2265 		}
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2272 {
2273 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2274 
2275 	if (unlikely(ggtt->do_idle_maps))
2276 		dev_priv->mm.interruptible = interruptible;
2277 }
2278 
2279 void i915_check_and_clear_faults(struct drm_device *dev)
2280 {
2281 	struct drm_i915_private *dev_priv = dev->dev_private;
2282 	struct intel_engine_cs *engine;
2283 
2284 	if (INTEL_INFO(dev)->gen < 6)
2285 		return;
2286 
2287 	for_each_engine(engine, dev_priv) {
2288 		u32 fault_reg;
2289 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2290 		if (fault_reg & RING_FAULT_VALID) {
2291 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2292 					 "\tAddr: 0x%08lx\n"
2293 					 "\tAddress space: %s\n"
2294 					 "\tSource ID: %d\n"
2295 					 "\tType: %d\n",
2296 					 fault_reg & PAGE_MASK,
2297 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2298 					 RING_FAULT_SRCID(fault_reg),
2299 					 RING_FAULT_FAULT_TYPE(fault_reg));
2300 			I915_WRITE(RING_FAULT_REG(engine),
2301 				   fault_reg & ~RING_FAULT_VALID);
2302 		}
2303 	}
2304 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2305 }
2306 
2307 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2308 {
2309 	if (INTEL_INFO(dev_priv)->gen < 6) {
2310 		intel_gtt_chipset_flush();
2311 	} else {
2312 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2313 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2314 	}
2315 }
2316 
2317 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2318 {
2319 	struct drm_i915_private *dev_priv = to_i915(dev);
2320 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2321 
2322 	/* Don't bother messing with faults pre GEN6 as we have little
2323 	 * documentation supporting that it's a good idea.
2324 	 */
2325 	if (INTEL_INFO(dev)->gen < 6)
2326 		return;
2327 
2328 	i915_check_and_clear_faults(dev);
2329 
2330 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2331 			     true);
2332 
2333 	i915_ggtt_flush(dev_priv);
2334 }
2335 
2336 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2337 {
2338 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2339 			obj->pages->sgl, obj->pages->nents,
2340 			PCI_DMA_BIDIRECTIONAL))
2341 		return -ENOSPC;
2342 
2343 	return 0;
2344 }
2345 
2346 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2347 {
2348 #ifdef writeq
2349 	writeq(pte, addr);
2350 #else
2351 	iowrite32((u32)pte, addr);
2352 	iowrite32(pte >> 32, addr + 4);
2353 #endif
2354 }
2355 
2356 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2357 				     struct sg_table *st,
2358 				     uint64_t start,
2359 				     enum i915_cache_level level, u32 unused)
2360 {
2361 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2362 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2363 	unsigned first_entry = start >> PAGE_SHIFT;
2364 	gen8_pte_t __iomem *gtt_entries =
2365 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2366 	int i = 0;
2367 	struct sg_page_iter sg_iter;
2368 	dma_addr_t addr = 0; /* shut up gcc */
2369 	int rpm_atomic_seq;
2370 
2371 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2372 
2373 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2374 		addr = sg_dma_address(sg_iter.sg) +
2375 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2376 		gen8_set_pte(&gtt_entries[i],
2377 			     gen8_pte_encode(addr, level, true));
2378 		i++;
2379 	}
2380 
2381 	/*
2382 	 * XXX: This serves as a posting read to make sure that the PTE has
2383 	 * actually been updated. There is some concern that even though
2384 	 * registers and PTEs are within the same BAR that they are potentially
2385 	 * of NUMA access patterns. Therefore, even with the way we assume
2386 	 * hardware should work, we must keep this posting read for paranoia.
2387 	 */
2388 	if (i != 0)
2389 		WARN_ON(readq(&gtt_entries[i-1])
2390 			!= gen8_pte_encode(addr, level, true));
2391 
2392 	/* This next bit makes the above posting read even more important. We
2393 	 * want to flush the TLBs only after we're certain all the PTE updates
2394 	 * have finished.
2395 	 */
2396 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2397 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2398 
2399 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2400 }
2401 
2402 struct insert_entries {
2403 	struct i915_address_space *vm;
2404 	struct sg_table *st;
2405 	uint64_t start;
2406 	enum i915_cache_level level;
2407 	u32 flags;
2408 };
2409 
2410 static int gen8_ggtt_insert_entries__cb(void *_arg)
2411 {
2412 	struct insert_entries *arg = _arg;
2413 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2414 				 arg->start, arg->level, arg->flags);
2415 	return 0;
2416 }
2417 
2418 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2419 					  struct sg_table *st,
2420 					  uint64_t start,
2421 					  enum i915_cache_level level,
2422 					  u32 flags)
2423 {
2424 	struct insert_entries arg = { vm, st, start, level, flags };
2425 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2426 }
2427 
2428 /*
2429  * Binds an object into the global gtt with the specified cache level. The object
2430  * will be accessible to the GPU via commands whose operands reference offsets
2431  * within the global GTT as well as accessible by the GPU through the GMADR
2432  * mapped BAR (dev_priv->mm.gtt->gtt).
2433  */
2434 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2435 				     struct sg_table *st,
2436 				     uint64_t start,
2437 				     enum i915_cache_level level, u32 flags)
2438 {
2439 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2440 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2441 	unsigned first_entry = start >> PAGE_SHIFT;
2442 	gen6_pte_t __iomem *gtt_entries =
2443 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2444 	int i = 0;
2445 	struct sg_page_iter sg_iter;
2446 	dma_addr_t addr = 0;
2447 	int rpm_atomic_seq;
2448 
2449 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2450 
2451 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2452 		addr = sg_page_iter_dma_address(&sg_iter);
2453 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2454 		i++;
2455 	}
2456 
2457 	/* XXX: This serves as a posting read to make sure that the PTE has
2458 	 * actually been updated. There is some concern that even though
2459 	 * registers and PTEs are within the same BAR that they are potentially
2460 	 * of NUMA access patterns. Therefore, even with the way we assume
2461 	 * hardware should work, we must keep this posting read for paranoia.
2462 	 */
2463 	if (i != 0) {
2464 		unsigned long gtt = readl(&gtt_entries[i-1]);
2465 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2466 	}
2467 
2468 	/* This next bit makes the above posting read even more important. We
2469 	 * want to flush the TLBs only after we're certain all the PTE updates
2470 	 * have finished.
2471 	 */
2472 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2473 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2474 
2475 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2476 }
2477 
2478 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2479 				  uint64_t start,
2480 				  uint64_t length,
2481 				  bool use_scratch)
2482 {
2483 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2484 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2485 	unsigned first_entry = start >> PAGE_SHIFT;
2486 	unsigned num_entries = length >> PAGE_SHIFT;
2487 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2488 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2489 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2490 	int i;
2491 	int rpm_atomic_seq;
2492 
2493 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2494 
2495 	if (WARN(num_entries > max_entries,
2496 		 "First entry = %d; Num entries = %d (max=%d)\n",
2497 		 first_entry, num_entries, max_entries))
2498 		num_entries = max_entries;
2499 
2500 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2501 				      I915_CACHE_LLC,
2502 				      use_scratch);
2503 	for (i = 0; i < num_entries; i++)
2504 		gen8_set_pte(&gtt_base[i], scratch_pte);
2505 	readl(gtt_base);
2506 
2507 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2508 }
2509 
2510 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2511 				  uint64_t start,
2512 				  uint64_t length,
2513 				  bool use_scratch)
2514 {
2515 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2517 	unsigned first_entry = start >> PAGE_SHIFT;
2518 	unsigned num_entries = length >> PAGE_SHIFT;
2519 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2520 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2521 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522 	int i;
2523 	int rpm_atomic_seq;
2524 
2525 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526 
2527 	if (WARN(num_entries > max_entries,
2528 		 "First entry = %d; Num entries = %d (max=%d)\n",
2529 		 first_entry, num_entries, max_entries))
2530 		num_entries = max_entries;
2531 
2532 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2533 				     I915_CACHE_LLC, use_scratch, 0);
2534 
2535 	for (i = 0; i < num_entries; i++)
2536 		iowrite32(scratch_pte, &gtt_base[i]);
2537 	readl(gtt_base);
2538 
2539 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541 
2542 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2543 				     struct sg_table *pages,
2544 				     uint64_t start,
2545 				     enum i915_cache_level cache_level, u32 unused)
2546 {
2547 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2548 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2549 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2550 	int rpm_atomic_seq;
2551 
2552 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2553 
2554 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2555 
2556 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2557 
2558 }
2559 
2560 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2561 				  uint64_t start,
2562 				  uint64_t length,
2563 				  bool unused)
2564 {
2565 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2566 	unsigned first_entry = start >> PAGE_SHIFT;
2567 	unsigned num_entries = length >> PAGE_SHIFT;
2568 	int rpm_atomic_seq;
2569 
2570 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571 
2572 	intel_gtt_clear_range(first_entry, num_entries);
2573 
2574 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 }
2576 
2577 static int ggtt_bind_vma(struct i915_vma *vma,
2578 			 enum i915_cache_level cache_level,
2579 			 u32 flags)
2580 {
2581 	struct drm_i915_gem_object *obj = vma->obj;
2582 	u32 pte_flags = 0;
2583 	int ret;
2584 
2585 	ret = i915_get_ggtt_vma_pages(vma);
2586 	if (ret)
2587 		return ret;
2588 
2589 	/* Currently applicable only to VLV */
2590 	if (obj->gt_ro)
2591 		pte_flags |= PTE_READ_ONLY;
2592 
2593 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2594 				vma->node.start,
2595 				cache_level, pte_flags);
2596 
2597 	/*
2598 	 * Without aliasing PPGTT there's no difference between
2599 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2600 	 * upgrade to both bound if we bind either to avoid double-binding.
2601 	 */
2602 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2603 
2604 	return 0;
2605 }
2606 
2607 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2608 				 enum i915_cache_level cache_level,
2609 				 u32 flags)
2610 {
2611 	u32 pte_flags;
2612 	int ret;
2613 
2614 	ret = i915_get_ggtt_vma_pages(vma);
2615 	if (ret)
2616 		return ret;
2617 
2618 	/* Currently applicable only to VLV */
2619 	pte_flags = 0;
2620 	if (vma->obj->gt_ro)
2621 		pte_flags |= PTE_READ_ONLY;
2622 
2623 
2624 	if (flags & GLOBAL_BIND) {
2625 		vma->vm->insert_entries(vma->vm,
2626 					vma->ggtt_view.pages,
2627 					vma->node.start,
2628 					cache_level, pte_flags);
2629 	}
2630 
2631 	if (flags & LOCAL_BIND) {
2632 		struct i915_hw_ppgtt *appgtt =
2633 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2634 		appgtt->base.insert_entries(&appgtt->base,
2635 					    vma->ggtt_view.pages,
2636 					    vma->node.start,
2637 					    cache_level, pte_flags);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 static void ggtt_unbind_vma(struct i915_vma *vma)
2644 {
2645 	struct drm_device *dev = vma->vm->dev;
2646 	struct drm_i915_private *dev_priv = dev->dev_private;
2647 	struct drm_i915_gem_object *obj = vma->obj;
2648 	const uint64_t size = min_t(uint64_t,
2649 				    obj->base.size,
2650 				    vma->node.size);
2651 
2652 	if (vma->bound & GLOBAL_BIND) {
2653 		vma->vm->clear_range(vma->vm,
2654 				     vma->node.start,
2655 				     size,
2656 				     true);
2657 	}
2658 
2659 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2660 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2661 
2662 		appgtt->base.clear_range(&appgtt->base,
2663 					 vma->node.start,
2664 					 size,
2665 					 true);
2666 	}
2667 }
2668 
2669 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2670 {
2671 	struct drm_device *dev = obj->base.dev;
2672 	struct drm_i915_private *dev_priv = dev->dev_private;
2673 	bool interruptible;
2674 
2675 	interruptible = do_idling(dev_priv);
2676 
2677 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2678 		     PCI_DMA_BIDIRECTIONAL);
2679 
2680 	undo_idling(dev_priv, interruptible);
2681 }
2682 
2683 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2684 				  unsigned long color,
2685 				  u64 *start,
2686 				  u64 *end)
2687 {
2688 	if (node->color != color)
2689 		*start += 4096;
2690 
2691 	if (!list_empty(&node->node_list)) {
2692 		node = list_entry(node->node_list.next,
2693 				  struct drm_mm_node,
2694 				  node_list);
2695 		if (node->allocated && node->color != color)
2696 			*end -= 4096;
2697 	}
2698 }
2699 
2700 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2701 				     u64 start,
2702 				     u64 mappable_end,
2703 				     u64 end)
2704 {
2705 	/* Let GEM Manage all of the aperture.
2706 	 *
2707 	 * However, leave one page at the end still bound to the scratch page.
2708 	 * There are a number of places where the hardware apparently prefetches
2709 	 * past the end of the object, and we've seen multiple hangs with the
2710 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2711 	 * aperture.  One page should be enough to keep any prefetching inside
2712 	 * of the aperture.
2713 	 */
2714 	struct drm_i915_private *dev_priv = to_i915(dev);
2715 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2716 	struct drm_mm_node *entry;
2717 	struct drm_i915_gem_object *obj;
2718 	unsigned long hole_start, hole_end;
2719 	int ret;
2720 
2721 	BUG_ON(mappable_end > end);
2722 
2723 	ggtt->base.start = start;
2724 
2725 	/* Subtract the guard page before address space initialization to
2726 	 * shrink the range used by drm_mm */
2727 	ggtt->base.total = end - start - PAGE_SIZE;
2728 	i915_address_space_init(&ggtt->base, dev_priv);
2729 	ggtt->base.total += PAGE_SIZE;
2730 
2731 	if (intel_vgpu_active(dev)) {
2732 		ret = intel_vgt_balloon(dev);
2733 		if (ret)
2734 			return ret;
2735 	}
2736 
2737 	if (!HAS_LLC(dev))
2738 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2739 
2740 	/* Mark any preallocated objects as occupied */
2741 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2742 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2743 
2744 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2745 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2746 
2747 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2748 		ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2749 		if (ret) {
2750 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2751 			return ret;
2752 		}
2753 		vma->bound |= GLOBAL_BIND;
2754 		__i915_vma_set_map_and_fenceable(vma);
2755 		list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2756 	}
2757 
2758 	/* Clear any non-preallocated blocks */
2759 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2760 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2761 			      hole_start, hole_end);
2762 		ggtt->base.clear_range(&ggtt->base, hole_start,
2763 				     hole_end - hole_start, true);
2764 	}
2765 
2766 	/* And finally clear the reserved guard page */
2767 	ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2768 
2769 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2770 		struct i915_hw_ppgtt *ppgtt;
2771 
2772 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2773 		if (!ppgtt)
2774 			return -ENOMEM;
2775 
2776 		ret = __hw_ppgtt_init(dev, ppgtt);
2777 		if (ret) {
2778 			ppgtt->base.cleanup(&ppgtt->base);
2779 			kfree(ppgtt);
2780 			return ret;
2781 		}
2782 
2783 		if (ppgtt->base.allocate_va_range)
2784 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2785 							    ppgtt->base.total);
2786 		if (ret) {
2787 			ppgtt->base.cleanup(&ppgtt->base);
2788 			kfree(ppgtt);
2789 			return ret;
2790 		}
2791 
2792 		ppgtt->base.clear_range(&ppgtt->base,
2793 					ppgtt->base.start,
2794 					ppgtt->base.total,
2795 					true);
2796 
2797 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2798 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2799 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 /**
2806  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2807  * @dev: DRM device
2808  */
2809 void i915_gem_init_ggtt(struct drm_device *dev)
2810 {
2811 	struct drm_i915_private *dev_priv = to_i915(dev);
2812 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2813 
2814 	i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2815 }
2816 
2817 /**
2818  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2819  * @dev: DRM device
2820  */
2821 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2822 {
2823 	struct drm_i915_private *dev_priv = to_i915(dev);
2824 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2825 
2826 	if (dev_priv->mm.aliasing_ppgtt) {
2827 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2828 
2829 		ppgtt->base.cleanup(&ppgtt->base);
2830 	}
2831 
2832 	i915_gem_cleanup_stolen(dev);
2833 
2834 	if (drm_mm_initialized(&ggtt->base.mm)) {
2835 		if (intel_vgpu_active(dev))
2836 			intel_vgt_deballoon();
2837 
2838 		drm_mm_takedown(&ggtt->base.mm);
2839 		list_del(&ggtt->base.global_link);
2840 	}
2841 
2842 	ggtt->base.cleanup(&ggtt->base);
2843 }
2844 
2845 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2846 {
2847 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2848 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2849 	return snb_gmch_ctl << 20;
2850 }
2851 
2852 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2853 {
2854 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2855 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2856 	if (bdw_gmch_ctl)
2857 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2858 
2859 #ifdef CONFIG_X86_32
2860 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2861 	if (bdw_gmch_ctl > 4)
2862 		bdw_gmch_ctl = 4;
2863 #endif
2864 
2865 	return bdw_gmch_ctl << 20;
2866 }
2867 
2868 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2869 {
2870 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2871 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2872 
2873 	if (gmch_ctrl)
2874 		return 1 << (20 + gmch_ctrl);
2875 
2876 	return 0;
2877 }
2878 
2879 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2880 {
2881 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2882 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2883 	return snb_gmch_ctl << 25; /* 32 MB units */
2884 }
2885 
2886 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2887 {
2888 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2889 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2890 	return bdw_gmch_ctl << 25; /* 32 MB units */
2891 }
2892 
2893 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2894 {
2895 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2896 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2897 
2898 	/*
2899 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2900 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2901 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2902 	 */
2903 	if (gmch_ctrl < 0x11)
2904 		return gmch_ctrl << 25;
2905 	else if (gmch_ctrl < 0x17)
2906 		return (gmch_ctrl - 0x11 + 2) << 22;
2907 	else
2908 		return (gmch_ctrl - 0x17 + 9) << 22;
2909 }
2910 
2911 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2912 {
2913 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2914 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2915 
2916 	if (gen9_gmch_ctl < 0xf0)
2917 		return gen9_gmch_ctl << 25; /* 32 MB units */
2918 	else
2919 		/* 4MB increments starting at 0xf0 for 4MB */
2920 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2921 }
2922 
2923 static int ggtt_probe_common(struct drm_device *dev,
2924 			     size_t gtt_size)
2925 {
2926 	struct drm_i915_private *dev_priv = to_i915(dev);
2927 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2928 	struct i915_page_scratch *scratch_page;
2929 	phys_addr_t ggtt_phys_addr;
2930 
2931 	/* For Modern GENs the PTEs and register space are split in the BAR */
2932 	ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2933 			 (pci_resource_len(dev->pdev, 0) / 2);
2934 
2935 	/*
2936 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937 	 * dropped. For WC mappings in general we have 64 byte burst writes
2938 	 * when the WC buffer is flushed, so we can't use it, but have to
2939 	 * resort to an uncached mapping. The WC issue is easily caught by the
2940 	 * readback check when writing GTT PTE entries.
2941 	 */
2942 	if (IS_BROXTON(dev))
2943 		ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2944 	else
2945 		ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2946 	if (!ggtt->gsm) {
2947 		DRM_ERROR("Failed to map the gtt page table\n");
2948 		return -ENOMEM;
2949 	}
2950 
2951 	scratch_page = alloc_scratch_page(dev);
2952 	if (IS_ERR(scratch_page)) {
2953 		DRM_ERROR("Scratch setup failed\n");
2954 		/* iounmap will also get called at remove, but meh */
2955 		iounmap(ggtt->gsm);
2956 		return PTR_ERR(scratch_page);
2957 	}
2958 
2959 	ggtt->base.scratch_page = scratch_page;
2960 
2961 	return 0;
2962 }
2963 
2964 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965  * bits. When using advanced contexts each context stores its own PAT, but
2966  * writing this data shouldn't be harmful even in those cases. */
2967 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968 {
2969 	uint64_t pat;
2970 
2971 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2972 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2975 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979 
2980 	if (!USES_PPGTT(dev_priv))
2981 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982 		 * so RTL will always use the value corresponding to
2983 		 * pat_sel = 000".
2984 		 * So let's disable cache for GGTT to avoid screen corruptions.
2985 		 * MOCS still can be used though.
2986 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987 		 * before this patch, i.e. the same uncached + snooping access
2988 		 * like on gen6/7 seems to be in effect.
2989 		 * - So this just fixes blitter/render access. Again it looks
2990 		 * like it's not just uncached access, but uncached + snooping.
2991 		 * So we can still hold onto all our assumptions wrt cpu
2992 		 * clflushing on LLC machines.
2993 		 */
2994 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995 
2996 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997 	 * write would work. */
2998 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000 }
3001 
3002 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003 {
3004 	uint64_t pat;
3005 
3006 	/*
3007 	 * Map WB on BDW to snooped on CHV.
3008 	 *
3009 	 * Only the snoop bit has meaning for CHV, the rest is
3010 	 * ignored.
3011 	 *
3012 	 * The hardware will never snoop for certain types of accesses:
3013 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014 	 * - PPGTT page tables
3015 	 * - some other special cycles
3016 	 *
3017 	 * As with BDW, we also need to consider the following for GT accesses:
3018 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019 	 * so RTL will always use the value corresponding to
3020 	 * pat_sel = 000".
3021 	 * Which means we must set the snoop bit in PAT entry 0
3022 	 * in order to keep the global status page working.
3023 	 */
3024 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025 	      GEN8_PPAT(1, 0) |
3026 	      GEN8_PPAT(2, 0) |
3027 	      GEN8_PPAT(3, 0) |
3028 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032 
3033 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035 }
3036 
3037 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039 	struct drm_device *dev = ggtt->base.dev;
3040 	struct drm_i915_private *dev_priv = to_i915(dev);
3041 	u16 snb_gmch_ctl;
3042 	int ret;
3043 
3044 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3045 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3046 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3047 
3048 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3049 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3050 
3051 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3052 
3053 	if (INTEL_INFO(dev)->gen >= 9) {
3054 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3055 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3056 	} else if (IS_CHERRYVIEW(dev)) {
3057 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3058 		ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3059 	} else {
3060 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3061 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062 	}
3063 
3064 	ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3065 
3066 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3067 		chv_setup_private_ppat(dev_priv);
3068 	else
3069 		bdw_setup_private_ppat(dev_priv);
3070 
3071 	ret = ggtt_probe_common(dev, ggtt->size);
3072 
3073 	ggtt->base.clear_range = gen8_ggtt_clear_range;
3074 	if (IS_CHERRYVIEW(dev_priv))
3075 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3076 	else
3077 		ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3078 	ggtt->base.bind_vma = ggtt_bind_vma;
3079 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3080 
3081 	return ret;
3082 }
3083 
3084 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3085 {
3086 	struct drm_device *dev = ggtt->base.dev;
3087 	u16 snb_gmch_ctl;
3088 	int ret;
3089 
3090 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3091 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3092 
3093 	/* 64/512MB is the current min/max we actually know of, but this is just
3094 	 * a coarse sanity check.
3095 	 */
3096 	if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3097 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3098 		return -ENXIO;
3099 	}
3100 
3101 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3102 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3103 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3104 
3105 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3106 	ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3107 	ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3108 
3109 	ret = ggtt_probe_common(dev, ggtt->size);
3110 
3111 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3112 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3113 	ggtt->base.bind_vma = ggtt_bind_vma;
3114 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3115 
3116 	return ret;
3117 }
3118 
3119 static void gen6_gmch_remove(struct i915_address_space *vm)
3120 {
3121 	struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3122 
3123 	iounmap(ggtt->gsm);
3124 	free_scratch_page(vm->dev, vm->scratch_page);
3125 }
3126 
3127 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3128 {
3129 	struct drm_device *dev = ggtt->base.dev;
3130 	struct drm_i915_private *dev_priv = to_i915(dev);
3131 	int ret;
3132 
3133 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3134 	if (!ret) {
3135 		DRM_ERROR("failed to set up gmch\n");
3136 		return -EIO;
3137 	}
3138 
3139 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3140 		      &ggtt->mappable_base, &ggtt->mappable_end);
3141 
3142 	ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3143 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3144 	ggtt->base.clear_range = i915_ggtt_clear_range;
3145 	ggtt->base.bind_vma = ggtt_bind_vma;
3146 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3147 
3148 	if (unlikely(ggtt->do_idle_maps))
3149 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3150 
3151 	return 0;
3152 }
3153 
3154 static void i915_gmch_remove(struct i915_address_space *vm)
3155 {
3156 	intel_gmch_remove();
3157 }
3158 
3159 /**
3160  * i915_ggtt_init_hw - Initialize GGTT hardware
3161  * @dev: DRM device
3162  */
3163 int i915_ggtt_init_hw(struct drm_device *dev)
3164 {
3165 	struct drm_i915_private *dev_priv = to_i915(dev);
3166 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3167 	int ret;
3168 
3169 	if (INTEL_INFO(dev)->gen <= 5) {
3170 		ggtt->probe = i915_gmch_probe;
3171 		ggtt->base.cleanup = i915_gmch_remove;
3172 	} else if (INTEL_INFO(dev)->gen < 8) {
3173 		ggtt->probe = gen6_gmch_probe;
3174 		ggtt->base.cleanup = gen6_gmch_remove;
3175 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3176 			ggtt->base.pte_encode = iris_pte_encode;
3177 		else if (IS_HASWELL(dev))
3178 			ggtt->base.pte_encode = hsw_pte_encode;
3179 		else if (IS_VALLEYVIEW(dev))
3180 			ggtt->base.pte_encode = byt_pte_encode;
3181 		else if (INTEL_INFO(dev)->gen >= 7)
3182 			ggtt->base.pte_encode = ivb_pte_encode;
3183 		else
3184 			ggtt->base.pte_encode = snb_pte_encode;
3185 	} else {
3186 		ggtt->probe = gen8_gmch_probe;
3187 		ggtt->base.cleanup = gen6_gmch_remove;
3188 	}
3189 
3190 	ggtt->base.dev = dev;
3191 	ggtt->base.is_ggtt = true;
3192 
3193 	ret = ggtt->probe(ggtt);
3194 	if (ret)
3195 		return ret;
3196 
3197 	if ((ggtt->base.total - 1) >> 32) {
3198 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3199 			  "of address space! Found %lldM!\n",
3200 			  ggtt->base.total >> 20);
3201 		ggtt->base.total = 1ULL << 32;
3202 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3203 	}
3204 
3205 	/*
3206 	 * Initialise stolen early so that we may reserve preallocated
3207 	 * objects for the BIOS to KMS transition.
3208 	 */
3209 	ret = i915_gem_init_stolen(dev);
3210 	if (ret)
3211 		goto out_gtt_cleanup;
3212 
3213 	/* GMADR is the PCI mmio aperture into the global GTT. */
3214 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3215 		 ggtt->base.total >> 20);
3216 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3217 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3218 #ifdef CONFIG_INTEL_IOMMU
3219 	if (intel_iommu_gfx_mapped)
3220 		DRM_INFO("VT-d active for gfx access\n");
3221 #endif
3222 	/*
3223 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3224 	 * user's requested state against the hardware/driver capabilities.  We
3225 	 * do this now so that we can print out any log messages once rather
3226 	 * than every time we check intel_enable_ppgtt().
3227 	 */
3228 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3229 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3230 
3231 	return 0;
3232 
3233 out_gtt_cleanup:
3234 	ggtt->base.cleanup(&ggtt->base);
3235 
3236 	return ret;
3237 }
3238 
3239 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3240 {
3241 	struct drm_i915_private *dev_priv = to_i915(dev);
3242 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3243 	struct drm_i915_gem_object *obj;
3244 	struct i915_vma *vma;
3245 	bool flush;
3246 
3247 	i915_check_and_clear_faults(dev);
3248 
3249 	/* First fill our portion of the GTT with scratch pages */
3250 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3251 			       true);
3252 
3253 	/* Cache flush objects bound into GGTT and rebind them. */
3254 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3255 		flush = false;
3256 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3257 			if (vma->vm != &ggtt->base)
3258 				continue;
3259 
3260 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3261 					      PIN_UPDATE));
3262 
3263 			flush = true;
3264 		}
3265 
3266 		if (flush)
3267 			i915_gem_clflush_object(obj, obj->pin_display);
3268 	}
3269 
3270 	if (INTEL_INFO(dev)->gen >= 8) {
3271 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3272 			chv_setup_private_ppat(dev_priv);
3273 		else
3274 			bdw_setup_private_ppat(dev_priv);
3275 
3276 		return;
3277 	}
3278 
3279 	if (USES_PPGTT(dev)) {
3280 		struct i915_address_space *vm;
3281 
3282 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3283 			/* TODO: Perhaps it shouldn't be gen6 specific */
3284 
3285 			struct i915_hw_ppgtt *ppgtt;
3286 
3287 			if (vm->is_ggtt)
3288 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3289 			else
3290 				ppgtt = i915_vm_to_ppgtt(vm);
3291 
3292 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3293 					      0, ppgtt->base.total);
3294 		}
3295 	}
3296 
3297 	i915_ggtt_flush(dev_priv);
3298 }
3299 
3300 static struct i915_vma *
3301 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3302 		      struct i915_address_space *vm,
3303 		      const struct i915_ggtt_view *ggtt_view)
3304 {
3305 	struct i915_vma *vma;
3306 
3307 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3308 		return ERR_PTR(-EINVAL);
3309 
3310 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3311 	if (vma == NULL)
3312 		return ERR_PTR(-ENOMEM);
3313 
3314 	INIT_LIST_HEAD(&vma->vm_link);
3315 	INIT_LIST_HEAD(&vma->obj_link);
3316 	INIT_LIST_HEAD(&vma->exec_list);
3317 	vma->vm = vm;
3318 	vma->obj = obj;
3319 	vma->is_ggtt = i915_is_ggtt(vm);
3320 
3321 	if (i915_is_ggtt(vm))
3322 		vma->ggtt_view = *ggtt_view;
3323 	else
3324 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3325 
3326 	list_add_tail(&vma->obj_link, &obj->vma_list);
3327 
3328 	return vma;
3329 }
3330 
3331 struct i915_vma *
3332 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3333 				  struct i915_address_space *vm)
3334 {
3335 	struct i915_vma *vma;
3336 
3337 	vma = i915_gem_obj_to_vma(obj, vm);
3338 	if (!vma)
3339 		vma = __i915_gem_vma_create(obj, vm,
3340 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3341 
3342 	return vma;
3343 }
3344 
3345 struct i915_vma *
3346 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3347 				       const struct i915_ggtt_view *view)
3348 {
3349 	struct drm_device *dev = obj->base.dev;
3350 	struct drm_i915_private *dev_priv = to_i915(dev);
3351 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3352 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3353 
3354 	if (!vma)
3355 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3356 
3357 	return vma;
3358 
3359 }
3360 
3361 static struct scatterlist *
3362 rotate_pages(const dma_addr_t *in, unsigned int offset,
3363 	     unsigned int width, unsigned int height,
3364 	     unsigned int stride,
3365 	     struct sg_table *st, struct scatterlist *sg)
3366 {
3367 	unsigned int column, row;
3368 	unsigned int src_idx;
3369 
3370 	for (column = 0; column < width; column++) {
3371 		src_idx = stride * (height - 1) + column;
3372 		for (row = 0; row < height; row++) {
3373 			st->nents++;
3374 			/* We don't need the pages, but need to initialize
3375 			 * the entries so the sg list can be happily traversed.
3376 			 * The only thing we need are DMA addresses.
3377 			 */
3378 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3379 			sg_dma_address(sg) = in[offset + src_idx];
3380 			sg_dma_len(sg) = PAGE_SIZE;
3381 			sg = sg_next(sg);
3382 			src_idx -= stride;
3383 		}
3384 	}
3385 
3386 	return sg;
3387 }
3388 
3389 static struct sg_table *
3390 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3391 			  struct drm_i915_gem_object *obj)
3392 {
3393 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3394 	unsigned int size_pages_uv;
3395 	struct sg_page_iter sg_iter;
3396 	unsigned long i;
3397 	dma_addr_t *page_addr_list;
3398 	struct sg_table *st;
3399 	unsigned int uv_start_page;
3400 	struct scatterlist *sg;
3401 	int ret = -ENOMEM;
3402 
3403 	/* Allocate a temporary list of source pages for random access. */
3404 	page_addr_list = drm_malloc_gfp(obj->base.size / PAGE_SIZE,
3405 					sizeof(dma_addr_t),
3406 					GFP_TEMPORARY);
3407 	if (!page_addr_list)
3408 		return ERR_PTR(ret);
3409 
3410 	/* Account for UV plane with NV12. */
3411 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3412 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3413 	else
3414 		size_pages_uv = 0;
3415 
3416 	/* Allocate target SG list. */
3417 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3418 	if (!st)
3419 		goto err_st_alloc;
3420 
3421 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3422 	if (ret)
3423 		goto err_sg_alloc;
3424 
3425 	/* Populate source page list from the object. */
3426 	i = 0;
3427 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3428 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3429 		i++;
3430 	}
3431 
3432 	st->nents = 0;
3433 	sg = st->sgl;
3434 
3435 	/* Rotate the pages. */
3436 	sg = rotate_pages(page_addr_list, 0,
3437 			  rot_info->plane[0].width, rot_info->plane[0].height,
3438 			  rot_info->plane[0].width,
3439 			  st, sg);
3440 
3441 	/* Append the UV plane if NV12. */
3442 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3443 		uv_start_page = size_pages;
3444 
3445 		/* Check for tile-row un-alignment. */
3446 		if (offset_in_page(rot_info->uv_offset))
3447 			uv_start_page--;
3448 
3449 		rot_info->uv_start_page = uv_start_page;
3450 
3451 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3452 				  rot_info->plane[1].width, rot_info->plane[1].height,
3453 				  rot_info->plane[1].width,
3454 				  st, sg);
3455 	}
3456 
3457 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3458 		      obj->base.size, rot_info->plane[0].width,
3459 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3460 		      size_pages);
3461 
3462 	drm_free_large(page_addr_list);
3463 
3464 	return st;
3465 
3466 err_sg_alloc:
3467 	kfree(st);
3468 err_st_alloc:
3469 	drm_free_large(page_addr_list);
3470 
3471 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3472 		      obj->base.size, ret, rot_info->plane[0].width,
3473 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3474 		      size_pages);
3475 	return ERR_PTR(ret);
3476 }
3477 
3478 static struct sg_table *
3479 intel_partial_pages(const struct i915_ggtt_view *view,
3480 		    struct drm_i915_gem_object *obj)
3481 {
3482 	struct sg_table *st;
3483 	struct scatterlist *sg;
3484 	struct sg_page_iter obj_sg_iter;
3485 	int ret = -ENOMEM;
3486 
3487 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3488 	if (!st)
3489 		goto err_st_alloc;
3490 
3491 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3492 	if (ret)
3493 		goto err_sg_alloc;
3494 
3495 	sg = st->sgl;
3496 	st->nents = 0;
3497 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3498 		view->params.partial.offset)
3499 	{
3500 		if (st->nents >= view->params.partial.size)
3501 			break;
3502 
3503 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3504 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3505 		sg_dma_len(sg) = PAGE_SIZE;
3506 
3507 		sg = sg_next(sg);
3508 		st->nents++;
3509 	}
3510 
3511 	return st;
3512 
3513 err_sg_alloc:
3514 	kfree(st);
3515 err_st_alloc:
3516 	return ERR_PTR(ret);
3517 }
3518 
3519 static int
3520 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3521 {
3522 	int ret = 0;
3523 
3524 	if (vma->ggtt_view.pages)
3525 		return 0;
3526 
3527 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3528 		vma->ggtt_view.pages = vma->obj->pages;
3529 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3530 		vma->ggtt_view.pages =
3531 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3532 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3533 		vma->ggtt_view.pages =
3534 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3535 	else
3536 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3537 			  vma->ggtt_view.type);
3538 
3539 	if (!vma->ggtt_view.pages) {
3540 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3541 			  vma->ggtt_view.type);
3542 		ret = -EINVAL;
3543 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3544 		ret = PTR_ERR(vma->ggtt_view.pages);
3545 		vma->ggtt_view.pages = NULL;
3546 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3547 			  vma->ggtt_view.type, ret);
3548 	}
3549 
3550 	return ret;
3551 }
3552 
3553 /**
3554  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3555  * @vma: VMA to map
3556  * @cache_level: mapping cache level
3557  * @flags: flags like global or local mapping
3558  *
3559  * DMA addresses are taken from the scatter-gather table of this object (or of
3560  * this VMA in case of non-default GGTT views) and PTE entries set up.
3561  * Note that DMA addresses are also the only part of the SG table we care about.
3562  */
3563 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3564 		  u32 flags)
3565 {
3566 	int ret;
3567 	u32 bind_flags;
3568 
3569 	if (WARN_ON(flags == 0))
3570 		return -EINVAL;
3571 
3572 	bind_flags = 0;
3573 	if (flags & PIN_GLOBAL)
3574 		bind_flags |= GLOBAL_BIND;
3575 	if (flags & PIN_USER)
3576 		bind_flags |= LOCAL_BIND;
3577 
3578 	if (flags & PIN_UPDATE)
3579 		bind_flags |= vma->bound;
3580 	else
3581 		bind_flags &= ~vma->bound;
3582 
3583 	if (bind_flags == 0)
3584 		return 0;
3585 
3586 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3587 		/* XXX: i915_vma_pin() will fix this +- hack */
3588 		vma->pin_count++;
3589 		trace_i915_va_alloc(vma);
3590 		ret = vma->vm->allocate_va_range(vma->vm,
3591 						 vma->node.start,
3592 						 vma->node.size);
3593 		vma->pin_count--;
3594 		if (ret)
3595 			return ret;
3596 	}
3597 
3598 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3599 	if (ret)
3600 		return ret;
3601 
3602 	vma->bound |= bind_flags;
3603 
3604 	return 0;
3605 }
3606 
3607 /**
3608  * i915_ggtt_view_size - Get the size of a GGTT view.
3609  * @obj: Object the view is of.
3610  * @view: The view in question.
3611  *
3612  * @return The size of the GGTT view in bytes.
3613  */
3614 size_t
3615 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3616 		    const struct i915_ggtt_view *view)
3617 {
3618 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3619 		return obj->base.size;
3620 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3621 		return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3622 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3623 		return view->params.partial.size << PAGE_SHIFT;
3624 	} else {
3625 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3626 		return obj->base.size;
3627 	}
3628 }
3629