xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98 
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100 	.type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103 	.type = I915_GGTT_VIEW_ROTATED,
104 };
105 
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 	bool has_aliasing_ppgtt;
109 	bool has_full_ppgtt;
110 	bool has_full_48bit_ppgtt;
111 
112 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114 	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115 
116 	if (intel_vgpu_active(dev))
117 		has_full_ppgtt = false; /* emulation is too hard */
118 
119 	/*
120 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121 	 * execlists, the sole mechanism available to submit work.
122 	 */
123 	if (INTEL_INFO(dev)->gen < 9 &&
124 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125 		return 0;
126 
127 	if (enable_ppgtt == 1)
128 		return 1;
129 
130 	if (enable_ppgtt == 2 && has_full_ppgtt)
131 		return 2;
132 
133 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134 		return 3;
135 
136 #ifdef CONFIG_INTEL_IOMMU
137 	/* Disable ppgtt on SNB if VT-d is on. */
138 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
140 		return 0;
141 	}
142 #endif
143 
144 	/* Early VLV doesn't have this */
145 	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147 		return 0;
148 	}
149 
150 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151 		return has_full_48bit_ppgtt ? 3 : 2;
152 	else
153 		return has_aliasing_ppgtt ? 1 : 0;
154 }
155 
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157 			  enum i915_cache_level cache_level,
158 			  u32 unused)
159 {
160 	u32 pte_flags = 0;
161 
162 	/* Currently applicable only to VLV */
163 	if (vma->obj->gt_ro)
164 		pte_flags |= PTE_READ_ONLY;
165 
166 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167 				cache_level, pte_flags);
168 
169 	return 0;
170 }
171 
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174 	vma->vm->clear_range(vma->vm,
175 			     vma->node.start,
176 			     vma->obj->base.size,
177 			     true);
178 }
179 
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181 				  enum i915_cache_level level,
182 				  bool valid)
183 {
184 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185 	pte |= addr;
186 
187 	switch (level) {
188 	case I915_CACHE_NONE:
189 		pte |= PPAT_UNCACHED_INDEX;
190 		break;
191 	case I915_CACHE_WT:
192 		pte |= PPAT_DISPLAY_ELLC_INDEX;
193 		break;
194 	default:
195 		pte |= PPAT_CACHED_INDEX;
196 		break;
197 	}
198 
199 	return pte;
200 }
201 
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203 				  const enum i915_cache_level level)
204 {
205 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206 	pde |= addr;
207 	if (level != I915_CACHE_NONE)
208 		pde |= PPAT_CACHED_PDE_INDEX;
209 	else
210 		pde |= PPAT_UNCACHED_INDEX;
211 	return pde;
212 }
213 
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216 
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218 				 enum i915_cache_level level,
219 				 bool valid, u32 unused)
220 {
221 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
223 
224 	switch (level) {
225 	case I915_CACHE_L3_LLC:
226 	case I915_CACHE_LLC:
227 		pte |= GEN6_PTE_CACHE_LLC;
228 		break;
229 	case I915_CACHE_NONE:
230 		pte |= GEN6_PTE_UNCACHED;
231 		break;
232 	default:
233 		MISSING_CASE(level);
234 	}
235 
236 	return pte;
237 }
238 
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240 				 enum i915_cache_level level,
241 				 bool valid, u32 unused)
242 {
243 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
245 
246 	switch (level) {
247 	case I915_CACHE_L3_LLC:
248 		pte |= GEN7_PTE_CACHE_L3_LLC;
249 		break;
250 	case I915_CACHE_LLC:
251 		pte |= GEN6_PTE_CACHE_LLC;
252 		break;
253 	case I915_CACHE_NONE:
254 		pte |= GEN6_PTE_UNCACHED;
255 		break;
256 	default:
257 		MISSING_CASE(level);
258 	}
259 
260 	return pte;
261 }
262 
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264 				 enum i915_cache_level level,
265 				 bool valid, u32 flags)
266 {
267 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
269 
270 	if (!(flags & PTE_READ_ONLY))
271 		pte |= BYT_PTE_WRITEABLE;
272 
273 	if (level != I915_CACHE_NONE)
274 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275 
276 	return pte;
277 }
278 
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280 				 enum i915_cache_level level,
281 				 bool valid, u32 unused)
282 {
283 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 	pte |= HSW_PTE_ADDR_ENCODE(addr);
285 
286 	if (level != I915_CACHE_NONE)
287 		pte |= HSW_WB_LLC_AGE3;
288 
289 	return pte;
290 }
291 
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293 				  enum i915_cache_level level,
294 				  bool valid, u32 unused)
295 {
296 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297 	pte |= HSW_PTE_ADDR_ENCODE(addr);
298 
299 	switch (level) {
300 	case I915_CACHE_NONE:
301 		break;
302 	case I915_CACHE_WT:
303 		pte |= HSW_WT_ELLC_LLC_AGE3;
304 		break;
305 	default:
306 		pte |= HSW_WB_ELLC_LLC_AGE3;
307 		break;
308 	}
309 
310 	return pte;
311 }
312 
313 static int __setup_page_dma(struct drm_device *dev,
314 			    struct i915_page_dma *p, gfp_t flags)
315 {
316 	struct device *device = &dev->pdev->dev;
317 
318 	p->page = alloc_page(flags);
319 	if (!p->page)
320 		return -ENOMEM;
321 
322 	p->daddr = dma_map_page(device,
323 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324 
325 	if (dma_mapping_error(device, p->daddr)) {
326 		__free_page(p->page);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335 	return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337 
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340 	if (WARN_ON(!p->page))
341 		return;
342 
343 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344 	__free_page(p->page);
345 	memset(p, 0, sizeof(*p));
346 }
347 
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350 	return kmap_atomic(p->page);
351 }
352 
353 /* We use the flushing unmap only with ppgtt structures:
354  * page directories, page tables and scratch pages.
355  */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358 	/* There are only few exceptions for gen >=6. chv and bxt.
359 	 * And we are not sure about the latter so play safe for now.
360 	 */
361 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
363 
364 	kunmap_atomic(vaddr);
365 }
366 
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369 
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374 
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376 			  const uint64_t val)
377 {
378 	int i;
379 	uint64_t * const vaddr = kmap_page_dma(p);
380 
381 	for (i = 0; i < 512; i++)
382 		vaddr[i] = val;
383 
384 	kunmap_page_dma(dev, vaddr);
385 }
386 
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388 			     const uint32_t val32)
389 {
390 	uint64_t v = val32;
391 
392 	v = v << 32 | val32;
393 
394 	fill_page_dma(dev, p, v);
395 }
396 
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399 	struct i915_page_scratch *sp;
400 	int ret;
401 
402 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403 	if (sp == NULL)
404 		return ERR_PTR(-ENOMEM);
405 
406 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407 	if (ret) {
408 		kfree(sp);
409 		return ERR_PTR(ret);
410 	}
411 
412 	set_pages_uc(px_page(sp), 1);
413 
414 	return sp;
415 }
416 
417 static void free_scratch_page(struct drm_device *dev,
418 			      struct i915_page_scratch *sp)
419 {
420 	set_pages_wb(px_page(sp), 1);
421 
422 	cleanup_px(dev, sp);
423 	kfree(sp);
424 }
425 
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428 	struct i915_page_table *pt;
429 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430 		GEN8_PTES : GEN6_PTES;
431 	int ret = -ENOMEM;
432 
433 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 	if (!pt)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 				GFP_KERNEL);
439 
440 	if (!pt->used_ptes)
441 		goto fail_bitmap;
442 
443 	ret = setup_px(dev, pt);
444 	if (ret)
445 		goto fail_page_m;
446 
447 	return pt;
448 
449 fail_page_m:
450 	kfree(pt->used_ptes);
451 fail_bitmap:
452 	kfree(pt);
453 
454 	return ERR_PTR(ret);
455 }
456 
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459 	cleanup_px(dev, pt);
460 	kfree(pt->used_ptes);
461 	kfree(pt);
462 }
463 
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 			       struct i915_page_table *pt)
466 {
467 	gen8_pte_t scratch_pte;
468 
469 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470 				      I915_CACHE_LLC, true);
471 
472 	fill_px(vm->dev, pt, scratch_pte);
473 }
474 
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 			       struct i915_page_table *pt)
477 {
478 	gen6_pte_t scratch_pte;
479 
480 	WARN_ON(px_dma(vm->scratch_page) == 0);
481 
482 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483 				     I915_CACHE_LLC, true, 0);
484 
485 	fill32_px(vm->dev, pt, scratch_pte);
486 }
487 
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490 	struct i915_page_directory *pd;
491 	int ret = -ENOMEM;
492 
493 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 	if (!pd)
495 		return ERR_PTR(-ENOMEM);
496 
497 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 				sizeof(*pd->used_pdes), GFP_KERNEL);
499 	if (!pd->used_pdes)
500 		goto fail_bitmap;
501 
502 	ret = setup_px(dev, pd);
503 	if (ret)
504 		goto fail_page_m;
505 
506 	return pd;
507 
508 fail_page_m:
509 	kfree(pd->used_pdes);
510 fail_bitmap:
511 	kfree(pd);
512 
513 	return ERR_PTR(ret);
514 }
515 
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518 	if (px_page(pd)) {
519 		cleanup_px(dev, pd);
520 		kfree(pd->used_pdes);
521 		kfree(pd);
522 	}
523 }
524 
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526 			       struct i915_page_directory *pd)
527 {
528 	gen8_pde_t scratch_pde;
529 
530 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531 
532 	fill_px(vm->dev, pd, scratch_pde);
533 }
534 
535 static int __pdp_init(struct drm_device *dev,
536 		      struct i915_page_directory_pointer *pdp)
537 {
538 	size_t pdpes = I915_PDPES_PER_PDP(dev);
539 
540 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541 				  sizeof(unsigned long),
542 				  GFP_KERNEL);
543 	if (!pdp->used_pdpes)
544 		return -ENOMEM;
545 
546 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547 				      GFP_KERNEL);
548 	if (!pdp->page_directory) {
549 		kfree(pdp->used_pdpes);
550 		/* the PDP might be the statically allocated top level. Keep it
551 		 * as clean as possible */
552 		pdp->used_pdpes = NULL;
553 		return -ENOMEM;
554 	}
555 
556 	return 0;
557 }
558 
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561 	kfree(pdp->used_pdpes);
562 	kfree(pdp->page_directory);
563 	pdp->page_directory = NULL;
564 }
565 
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569 	struct i915_page_directory_pointer *pdp;
570 	int ret = -ENOMEM;
571 
572 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573 
574 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575 	if (!pdp)
576 		return ERR_PTR(-ENOMEM);
577 
578 	ret = __pdp_init(dev, pdp);
579 	if (ret)
580 		goto fail_bitmap;
581 
582 	ret = setup_px(dev, pdp);
583 	if (ret)
584 		goto fail_page_m;
585 
586 	return pdp;
587 
588 fail_page_m:
589 	__pdp_fini(pdp);
590 fail_bitmap:
591 	kfree(pdp);
592 
593 	return ERR_PTR(ret);
594 }
595 
596 static void free_pdp(struct drm_device *dev,
597 		     struct i915_page_directory_pointer *pdp)
598 {
599 	__pdp_fini(pdp);
600 	if (USES_FULL_48BIT_PPGTT(dev)) {
601 		cleanup_px(dev, pdp);
602 		kfree(pdp);
603 	}
604 }
605 
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607 				struct i915_page_directory_pointer *pdp)
608 {
609 	gen8_ppgtt_pdpe_t scratch_pdpe;
610 
611 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612 
613 	fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615 
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617 				 struct i915_pml4 *pml4)
618 {
619 	gen8_ppgtt_pml4e_t scratch_pml4e;
620 
621 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622 					  I915_CACHE_LLC);
623 
624 	fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626 
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629 			  struct i915_page_directory_pointer *pdp,
630 			  struct i915_page_directory *pd,
631 			  int index)
632 {
633 	gen8_ppgtt_pdpe_t *page_directorypo;
634 
635 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636 		return;
637 
638 	page_directorypo = kmap_px(pdp);
639 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640 	kunmap_px(ppgtt, page_directorypo);
641 }
642 
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645 				  struct i915_pml4 *pml4,
646 				  struct i915_page_directory_pointer *pdp,
647 				  int index)
648 {
649 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650 
651 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653 	kunmap_px(ppgtt, pagemap);
654 }
655 
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658 			  unsigned entry,
659 			  dma_addr_t addr)
660 {
661 	struct intel_engine_cs *engine = req->engine;
662 	int ret;
663 
664 	BUG_ON(entry >= 4);
665 
666 	ret = intel_ring_begin(req, 6);
667 	if (ret)
668 		return ret;
669 
670 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
671 	intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
672 	intel_ring_emit(engine, upper_32_bits(addr));
673 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
675 	intel_ring_emit(engine, lower_32_bits(addr));
676 	intel_ring_advance(engine);
677 
678 	return 0;
679 }
680 
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682 				 struct drm_i915_gem_request *req)
683 {
684 	int i, ret;
685 
686 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688 
689 		ret = gen8_write_pdp(req, i, pd_daddr);
690 		if (ret)
691 			return ret;
692 	}
693 
694 	return 0;
695 }
696 
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 			      struct drm_i915_gem_request *req)
699 {
700 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702 
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704 				       struct i915_page_directory_pointer *pdp,
705 				       uint64_t start,
706 				       uint64_t length,
707 				       gen8_pte_t scratch_pte)
708 {
709 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
710 	gen8_pte_t *pt_vaddr;
711 	unsigned pdpe = gen8_pdpe_index(start);
712 	unsigned pde = gen8_pde_index(start);
713 	unsigned pte = gen8_pte_index(start);
714 	unsigned num_entries = length >> PAGE_SHIFT;
715 	unsigned last_pte, i;
716 
717 	if (WARN_ON(!pdp))
718 		return;
719 
720 	while (num_entries) {
721 		struct i915_page_directory *pd;
722 		struct i915_page_table *pt;
723 
724 		if (WARN_ON(!pdp->page_directory[pdpe]))
725 			break;
726 
727 		pd = pdp->page_directory[pdpe];
728 
729 		if (WARN_ON(!pd->page_table[pde]))
730 			break;
731 
732 		pt = pd->page_table[pde];
733 
734 		if (WARN_ON(!px_page(pt)))
735 			break;
736 
737 		last_pte = pte + num_entries;
738 		if (last_pte > GEN8_PTES)
739 			last_pte = GEN8_PTES;
740 
741 		pt_vaddr = kmap_px(pt);
742 
743 		for (i = pte; i < last_pte; i++) {
744 			pt_vaddr[i] = scratch_pte;
745 			num_entries--;
746 		}
747 
748 		kunmap_px(ppgtt, pt_vaddr);
749 
750 		pte = 0;
751 		if (++pde == I915_PDES) {
752 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
753 				break;
754 			pde = 0;
755 		}
756 	}
757 }
758 
759 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
760 				   uint64_t start,
761 				   uint64_t length,
762 				   bool use_scratch)
763 {
764 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
765 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766 						 I915_CACHE_LLC, use_scratch);
767 
768 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770 					   scratch_pte);
771 	} else {
772 		uint64_t pml4e;
773 		struct i915_page_directory_pointer *pdp;
774 
775 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
776 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777 						   scratch_pte);
778 		}
779 	}
780 }
781 
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784 			      struct i915_page_directory_pointer *pdp,
785 			      struct sg_page_iter *sg_iter,
786 			      uint64_t start,
787 			      enum i915_cache_level cache_level)
788 {
789 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
790 	gen8_pte_t *pt_vaddr;
791 	unsigned pdpe = gen8_pdpe_index(start);
792 	unsigned pde = gen8_pde_index(start);
793 	unsigned pte = gen8_pte_index(start);
794 
795 	pt_vaddr = NULL;
796 
797 	while (__sg_page_iter_next(sg_iter)) {
798 		if (pt_vaddr == NULL) {
799 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
800 			struct i915_page_table *pt = pd->page_table[pde];
801 			pt_vaddr = kmap_px(pt);
802 		}
803 
804 		pt_vaddr[pte] =
805 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
806 					cache_level, true);
807 		if (++pte == GEN8_PTES) {
808 			kunmap_px(ppgtt, pt_vaddr);
809 			pt_vaddr = NULL;
810 			if (++pde == I915_PDES) {
811 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
812 					break;
813 				pde = 0;
814 			}
815 			pte = 0;
816 		}
817 	}
818 
819 	if (pt_vaddr)
820 		kunmap_px(ppgtt, pt_vaddr);
821 }
822 
823 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
824 				      struct sg_table *pages,
825 				      uint64_t start,
826 				      enum i915_cache_level cache_level,
827 				      u32 unused)
828 {
829 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
830 	struct sg_page_iter sg_iter;
831 
832 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
833 
834 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
835 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
836 					      cache_level);
837 	} else {
838 		struct i915_page_directory_pointer *pdp;
839 		uint64_t pml4e;
840 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
841 
842 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
843 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
844 						      start, cache_level);
845 		}
846 	}
847 }
848 
849 static void gen8_free_page_tables(struct drm_device *dev,
850 				  struct i915_page_directory *pd)
851 {
852 	int i;
853 
854 	if (!px_page(pd))
855 		return;
856 
857 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
858 		if (WARN_ON(!pd->page_table[i]))
859 			continue;
860 
861 		free_pt(dev, pd->page_table[i]);
862 		pd->page_table[i] = NULL;
863 	}
864 }
865 
866 static int gen8_init_scratch(struct i915_address_space *vm)
867 {
868 	struct drm_device *dev = vm->dev;
869 
870 	vm->scratch_page = alloc_scratch_page(dev);
871 	if (IS_ERR(vm->scratch_page))
872 		return PTR_ERR(vm->scratch_page);
873 
874 	vm->scratch_pt = alloc_pt(dev);
875 	if (IS_ERR(vm->scratch_pt)) {
876 		free_scratch_page(dev, vm->scratch_page);
877 		return PTR_ERR(vm->scratch_pt);
878 	}
879 
880 	vm->scratch_pd = alloc_pd(dev);
881 	if (IS_ERR(vm->scratch_pd)) {
882 		free_pt(dev, vm->scratch_pt);
883 		free_scratch_page(dev, vm->scratch_page);
884 		return PTR_ERR(vm->scratch_pd);
885 	}
886 
887 	if (USES_FULL_48BIT_PPGTT(dev)) {
888 		vm->scratch_pdp = alloc_pdp(dev);
889 		if (IS_ERR(vm->scratch_pdp)) {
890 			free_pd(dev, vm->scratch_pd);
891 			free_pt(dev, vm->scratch_pt);
892 			free_scratch_page(dev, vm->scratch_page);
893 			return PTR_ERR(vm->scratch_pdp);
894 		}
895 	}
896 
897 	gen8_initialize_pt(vm, vm->scratch_pt);
898 	gen8_initialize_pd(vm, vm->scratch_pd);
899 	if (USES_FULL_48BIT_PPGTT(dev))
900 		gen8_initialize_pdp(vm, vm->scratch_pdp);
901 
902 	return 0;
903 }
904 
905 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
906 {
907 	enum vgt_g2v_type msg;
908 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
909 	int i;
910 
911 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
912 		u64 daddr = px_dma(&ppgtt->pml4);
913 
914 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
915 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
916 
917 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
918 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
919 	} else {
920 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
921 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
922 
923 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
924 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
925 		}
926 
927 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
928 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
929 	}
930 
931 	I915_WRITE(vgtif_reg(g2v_notify), msg);
932 
933 	return 0;
934 }
935 
936 static void gen8_free_scratch(struct i915_address_space *vm)
937 {
938 	struct drm_device *dev = vm->dev;
939 
940 	if (USES_FULL_48BIT_PPGTT(dev))
941 		free_pdp(dev, vm->scratch_pdp);
942 	free_pd(dev, vm->scratch_pd);
943 	free_pt(dev, vm->scratch_pt);
944 	free_scratch_page(dev, vm->scratch_page);
945 }
946 
947 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
948 				    struct i915_page_directory_pointer *pdp)
949 {
950 	int i;
951 
952 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
953 		if (WARN_ON(!pdp->page_directory[i]))
954 			continue;
955 
956 		gen8_free_page_tables(dev, pdp->page_directory[i]);
957 		free_pd(dev, pdp->page_directory[i]);
958 	}
959 
960 	free_pdp(dev, pdp);
961 }
962 
963 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
964 {
965 	int i;
966 
967 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
968 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
969 			continue;
970 
971 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
972 	}
973 
974 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
975 }
976 
977 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
978 {
979 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
980 
981 	if (intel_vgpu_active(vm->dev))
982 		gen8_ppgtt_notify_vgt(ppgtt, false);
983 
984 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
985 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
986 	else
987 		gen8_ppgtt_cleanup_4lvl(ppgtt);
988 
989 	gen8_free_scratch(vm);
990 }
991 
992 /**
993  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
994  * @vm:	Master vm structure.
995  * @pd:	Page directory for this address range.
996  * @start:	Starting virtual address to begin allocations.
997  * @length:	Size of the allocations.
998  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
999  *		caller to free on error.
1000  *
1001  * Allocate the required number of page tables. Extremely similar to
1002  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1003  * the page directory boundary (instead of the page directory pointer). That
1004  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1005  * possible, and likely that the caller will need to use multiple calls of this
1006  * function to achieve the appropriate allocation.
1007  *
1008  * Return: 0 if success; negative error code otherwise.
1009  */
1010 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1011 				     struct i915_page_directory *pd,
1012 				     uint64_t start,
1013 				     uint64_t length,
1014 				     unsigned long *new_pts)
1015 {
1016 	struct drm_device *dev = vm->dev;
1017 	struct i915_page_table *pt;
1018 	uint32_t pde;
1019 
1020 	gen8_for_each_pde(pt, pd, start, length, pde) {
1021 		/* Don't reallocate page tables */
1022 		if (test_bit(pde, pd->used_pdes)) {
1023 			/* Scratch is never allocated this way */
1024 			WARN_ON(pt == vm->scratch_pt);
1025 			continue;
1026 		}
1027 
1028 		pt = alloc_pt(dev);
1029 		if (IS_ERR(pt))
1030 			goto unwind_out;
1031 
1032 		gen8_initialize_pt(vm, pt);
1033 		pd->page_table[pde] = pt;
1034 		__set_bit(pde, new_pts);
1035 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1036 	}
1037 
1038 	return 0;
1039 
1040 unwind_out:
1041 	for_each_set_bit(pde, new_pts, I915_PDES)
1042 		free_pt(dev, pd->page_table[pde]);
1043 
1044 	return -ENOMEM;
1045 }
1046 
1047 /**
1048  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1049  * @vm:	Master vm structure.
1050  * @pdp:	Page directory pointer for this address range.
1051  * @start:	Starting virtual address to begin allocations.
1052  * @length:	Size of the allocations.
1053  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1054  *		caller to free on error.
1055  *
1056  * Allocate the required number of page directories starting at the pde index of
1057  * @start, and ending at the pde index @start + @length. This function will skip
1058  * over already allocated page directories within the range, and only allocate
1059  * new ones, setting the appropriate pointer within the pdp as well as the
1060  * correct position in the bitmap @new_pds.
1061  *
1062  * The function will only allocate the pages within the range for a give page
1063  * directory pointer. In other words, if @start + @length straddles a virtually
1064  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1065  * required by the caller, This is not currently possible, and the BUG in the
1066  * code will prevent it.
1067  *
1068  * Return: 0 if success; negative error code otherwise.
1069  */
1070 static int
1071 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1072 				  struct i915_page_directory_pointer *pdp,
1073 				  uint64_t start,
1074 				  uint64_t length,
1075 				  unsigned long *new_pds)
1076 {
1077 	struct drm_device *dev = vm->dev;
1078 	struct i915_page_directory *pd;
1079 	uint32_t pdpe;
1080 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1081 
1082 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1083 
1084 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1085 		if (test_bit(pdpe, pdp->used_pdpes))
1086 			continue;
1087 
1088 		pd = alloc_pd(dev);
1089 		if (IS_ERR(pd))
1090 			goto unwind_out;
1091 
1092 		gen8_initialize_pd(vm, pd);
1093 		pdp->page_directory[pdpe] = pd;
1094 		__set_bit(pdpe, new_pds);
1095 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1096 	}
1097 
1098 	return 0;
1099 
1100 unwind_out:
1101 	for_each_set_bit(pdpe, new_pds, pdpes)
1102 		free_pd(dev, pdp->page_directory[pdpe]);
1103 
1104 	return -ENOMEM;
1105 }
1106 
1107 /**
1108  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1109  * @vm:	Master vm structure.
1110  * @pml4:	Page map level 4 for this address range.
1111  * @start:	Starting virtual address to begin allocations.
1112  * @length:	Size of the allocations.
1113  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1114  *		caller to free on error.
1115  *
1116  * Allocate the required number of page directory pointers. Extremely similar to
1117  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1118  * The main difference is here we are limited by the pml4 boundary (instead of
1119  * the page directory pointer).
1120  *
1121  * Return: 0 if success; negative error code otherwise.
1122  */
1123 static int
1124 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1125 				  struct i915_pml4 *pml4,
1126 				  uint64_t start,
1127 				  uint64_t length,
1128 				  unsigned long *new_pdps)
1129 {
1130 	struct drm_device *dev = vm->dev;
1131 	struct i915_page_directory_pointer *pdp;
1132 	uint32_t pml4e;
1133 
1134 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1135 
1136 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1137 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1138 			pdp = alloc_pdp(dev);
1139 			if (IS_ERR(pdp))
1140 				goto unwind_out;
1141 
1142 			gen8_initialize_pdp(vm, pdp);
1143 			pml4->pdps[pml4e] = pdp;
1144 			__set_bit(pml4e, new_pdps);
1145 			trace_i915_page_directory_pointer_entry_alloc(vm,
1146 								      pml4e,
1147 								      start,
1148 								      GEN8_PML4E_SHIFT);
1149 		}
1150 	}
1151 
1152 	return 0;
1153 
1154 unwind_out:
1155 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1156 		free_pdp(dev, pml4->pdps[pml4e]);
1157 
1158 	return -ENOMEM;
1159 }
1160 
1161 static void
1162 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1163 {
1164 	kfree(new_pts);
1165 	kfree(new_pds);
1166 }
1167 
1168 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1169  * of these are based on the number of PDPEs in the system.
1170  */
1171 static
1172 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1173 					 unsigned long **new_pts,
1174 					 uint32_t pdpes)
1175 {
1176 	unsigned long *pds;
1177 	unsigned long *pts;
1178 
1179 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1180 	if (!pds)
1181 		return -ENOMEM;
1182 
1183 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1184 		      GFP_TEMPORARY);
1185 	if (!pts)
1186 		goto err_out;
1187 
1188 	*new_pds = pds;
1189 	*new_pts = pts;
1190 
1191 	return 0;
1192 
1193 err_out:
1194 	free_gen8_temp_bitmaps(pds, pts);
1195 	return -ENOMEM;
1196 }
1197 
1198 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1199  * the page table structures, we mark them dirty so that
1200  * context switching/execlist queuing code takes extra steps
1201  * to ensure that tlbs are flushed.
1202  */
1203 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1204 {
1205 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1206 }
1207 
1208 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1209 				    struct i915_page_directory_pointer *pdp,
1210 				    uint64_t start,
1211 				    uint64_t length)
1212 {
1213 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1214 	unsigned long *new_page_dirs, *new_page_tables;
1215 	struct drm_device *dev = vm->dev;
1216 	struct i915_page_directory *pd;
1217 	const uint64_t orig_start = start;
1218 	const uint64_t orig_length = length;
1219 	uint32_t pdpe;
1220 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1221 	int ret;
1222 
1223 	/* Wrap is never okay since we can only represent 48b, and we don't
1224 	 * actually use the other side of the canonical address space.
1225 	 */
1226 	if (WARN_ON(start + length < start))
1227 		return -ENODEV;
1228 
1229 	if (WARN_ON(start + length > vm->total))
1230 		return -ENODEV;
1231 
1232 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1233 	if (ret)
1234 		return ret;
1235 
1236 	/* Do the allocations first so we can easily bail out */
1237 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1238 						new_page_dirs);
1239 	if (ret) {
1240 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1241 		return ret;
1242 	}
1243 
1244 	/* For every page directory referenced, allocate page tables */
1245 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1246 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1247 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1248 		if (ret)
1249 			goto err_out;
1250 	}
1251 
1252 	start = orig_start;
1253 	length = orig_length;
1254 
1255 	/* Allocations have completed successfully, so set the bitmaps, and do
1256 	 * the mappings. */
1257 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1258 		gen8_pde_t *const page_directory = kmap_px(pd);
1259 		struct i915_page_table *pt;
1260 		uint64_t pd_len = length;
1261 		uint64_t pd_start = start;
1262 		uint32_t pde;
1263 
1264 		/* Every pd should be allocated, we just did that above. */
1265 		WARN_ON(!pd);
1266 
1267 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1268 			/* Same reasoning as pd */
1269 			WARN_ON(!pt);
1270 			WARN_ON(!pd_len);
1271 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1272 
1273 			/* Set our used ptes within the page table */
1274 			bitmap_set(pt->used_ptes,
1275 				   gen8_pte_index(pd_start),
1276 				   gen8_pte_count(pd_start, pd_len));
1277 
1278 			/* Our pde is now pointing to the pagetable, pt */
1279 			__set_bit(pde, pd->used_pdes);
1280 
1281 			/* Map the PDE to the page table */
1282 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1283 							      I915_CACHE_LLC);
1284 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1285 							gen8_pte_index(start),
1286 							gen8_pte_count(start, length),
1287 							GEN8_PTES);
1288 
1289 			/* NB: We haven't yet mapped ptes to pages. At this
1290 			 * point we're still relying on insert_entries() */
1291 		}
1292 
1293 		kunmap_px(ppgtt, page_directory);
1294 		__set_bit(pdpe, pdp->used_pdpes);
1295 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1296 	}
1297 
1298 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1299 	mark_tlbs_dirty(ppgtt);
1300 	return 0;
1301 
1302 err_out:
1303 	while (pdpe--) {
1304 		unsigned long temp;
1305 
1306 		for_each_set_bit(temp, new_page_tables + pdpe *
1307 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1308 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1309 	}
1310 
1311 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1312 		free_pd(dev, pdp->page_directory[pdpe]);
1313 
1314 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1315 	mark_tlbs_dirty(ppgtt);
1316 	return ret;
1317 }
1318 
1319 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1320 				    struct i915_pml4 *pml4,
1321 				    uint64_t start,
1322 				    uint64_t length)
1323 {
1324 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1325 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1326 	struct i915_page_directory_pointer *pdp;
1327 	uint64_t pml4e;
1328 	int ret = 0;
1329 
1330 	/* Do the pml4 allocations first, so we don't need to track the newly
1331 	 * allocated tables below the pdp */
1332 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1333 
1334 	/* The pagedirectory and pagetable allocations are done in the shared 3
1335 	 * and 4 level code. Just allocate the pdps.
1336 	 */
1337 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1338 						new_pdps);
1339 	if (ret)
1340 		return ret;
1341 
1342 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1343 	     "The allocation has spanned more than 512GB. "
1344 	     "It is highly likely this is incorrect.");
1345 
1346 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1347 		WARN_ON(!pdp);
1348 
1349 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1350 		if (ret)
1351 			goto err_out;
1352 
1353 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1354 	}
1355 
1356 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1357 		  GEN8_PML4ES_PER_PML4);
1358 
1359 	return 0;
1360 
1361 err_out:
1362 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1363 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1364 
1365 	return ret;
1366 }
1367 
1368 static int gen8_alloc_va_range(struct i915_address_space *vm,
1369 			       uint64_t start, uint64_t length)
1370 {
1371 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1372 
1373 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1374 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1375 	else
1376 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1377 }
1378 
1379 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1380 			  uint64_t start, uint64_t length,
1381 			  gen8_pte_t scratch_pte,
1382 			  struct seq_file *m)
1383 {
1384 	struct i915_page_directory *pd;
1385 	uint32_t pdpe;
1386 
1387 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1388 		struct i915_page_table *pt;
1389 		uint64_t pd_len = length;
1390 		uint64_t pd_start = start;
1391 		uint32_t pde;
1392 
1393 		if (!test_bit(pdpe, pdp->used_pdpes))
1394 			continue;
1395 
1396 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1397 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1398 			uint32_t  pte;
1399 			gen8_pte_t *pt_vaddr;
1400 
1401 			if (!test_bit(pde, pd->used_pdes))
1402 				continue;
1403 
1404 			pt_vaddr = kmap_px(pt);
1405 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1406 				uint64_t va =
1407 					(pdpe << GEN8_PDPE_SHIFT) |
1408 					(pde << GEN8_PDE_SHIFT) |
1409 					(pte << GEN8_PTE_SHIFT);
1410 				int i;
1411 				bool found = false;
1412 
1413 				for (i = 0; i < 4; i++)
1414 					if (pt_vaddr[pte + i] != scratch_pte)
1415 						found = true;
1416 				if (!found)
1417 					continue;
1418 
1419 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1420 				for (i = 0; i < 4; i++) {
1421 					if (pt_vaddr[pte + i] != scratch_pte)
1422 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1423 					else
1424 						seq_puts(m, "  SCRATCH ");
1425 				}
1426 				seq_puts(m, "\n");
1427 			}
1428 			/* don't use kunmap_px, it could trigger
1429 			 * an unnecessary flush.
1430 			 */
1431 			kunmap_atomic(pt_vaddr);
1432 		}
1433 	}
1434 }
1435 
1436 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1437 {
1438 	struct i915_address_space *vm = &ppgtt->base;
1439 	uint64_t start = ppgtt->base.start;
1440 	uint64_t length = ppgtt->base.total;
1441 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1442 						 I915_CACHE_LLC, true);
1443 
1444 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1445 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1446 	} else {
1447 		uint64_t pml4e;
1448 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1449 		struct i915_page_directory_pointer *pdp;
1450 
1451 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1452 			if (!test_bit(pml4e, pml4->used_pml4es))
1453 				continue;
1454 
1455 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1456 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1457 		}
1458 	}
1459 }
1460 
1461 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1462 {
1463 	unsigned long *new_page_dirs, *new_page_tables;
1464 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1465 	int ret;
1466 
1467 	/* We allocate temp bitmap for page tables for no gain
1468 	 * but as this is for init only, lets keep the things simple
1469 	 */
1470 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/* Allocate for all pdps regardless of how the ppgtt
1475 	 * was defined.
1476 	 */
1477 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1478 						0, 1ULL << 32,
1479 						new_page_dirs);
1480 	if (!ret)
1481 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1482 
1483 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1484 
1485 	return ret;
1486 }
1487 
1488 /*
1489  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1490  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1491  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1492  * space.
1493  *
1494  */
1495 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1496 {
1497 	int ret;
1498 
1499 	ret = gen8_init_scratch(&ppgtt->base);
1500 	if (ret)
1501 		return ret;
1502 
1503 	ppgtt->base.start = 0;
1504 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1505 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1506 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1507 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1508 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1509 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1510 	ppgtt->debug_dump = gen8_dump_ppgtt;
1511 
1512 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1513 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1514 		if (ret)
1515 			goto free_scratch;
1516 
1517 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1518 
1519 		ppgtt->base.total = 1ULL << 48;
1520 		ppgtt->switch_mm = gen8_48b_mm_switch;
1521 	} else {
1522 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1523 		if (ret)
1524 			goto free_scratch;
1525 
1526 		ppgtt->base.total = 1ULL << 32;
1527 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1528 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1529 							      0, 0,
1530 							      GEN8_PML4E_SHIFT);
1531 
1532 		if (intel_vgpu_active(ppgtt->base.dev)) {
1533 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1534 			if (ret)
1535 				goto free_scratch;
1536 		}
1537 	}
1538 
1539 	if (intel_vgpu_active(ppgtt->base.dev))
1540 		gen8_ppgtt_notify_vgt(ppgtt, true);
1541 
1542 	return 0;
1543 
1544 free_scratch:
1545 	gen8_free_scratch(&ppgtt->base);
1546 	return ret;
1547 }
1548 
1549 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1550 {
1551 	struct i915_address_space *vm = &ppgtt->base;
1552 	struct i915_page_table *unused;
1553 	gen6_pte_t scratch_pte;
1554 	uint32_t pd_entry;
1555 	uint32_t  pte, pde, temp;
1556 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1557 
1558 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1559 				     I915_CACHE_LLC, true, 0);
1560 
1561 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1562 		u32 expected;
1563 		gen6_pte_t *pt_vaddr;
1564 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1565 		pd_entry = readl(ppgtt->pd_addr + pde);
1566 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1567 
1568 		if (pd_entry != expected)
1569 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1570 				   pde,
1571 				   pd_entry,
1572 				   expected);
1573 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1574 
1575 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1576 
1577 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1578 			unsigned long va =
1579 				(pde * PAGE_SIZE * GEN6_PTES) +
1580 				(pte * PAGE_SIZE);
1581 			int i;
1582 			bool found = false;
1583 			for (i = 0; i < 4; i++)
1584 				if (pt_vaddr[pte + i] != scratch_pte)
1585 					found = true;
1586 			if (!found)
1587 				continue;
1588 
1589 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1590 			for (i = 0; i < 4; i++) {
1591 				if (pt_vaddr[pte + i] != scratch_pte)
1592 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1593 				else
1594 					seq_puts(m, "  SCRATCH ");
1595 			}
1596 			seq_puts(m, "\n");
1597 		}
1598 		kunmap_px(ppgtt, pt_vaddr);
1599 	}
1600 }
1601 
1602 /* Write pde (index) from the page directory @pd to the page table @pt */
1603 static void gen6_write_pde(struct i915_page_directory *pd,
1604 			    const int pde, struct i915_page_table *pt)
1605 {
1606 	/* Caller needs to make sure the write completes if necessary */
1607 	struct i915_hw_ppgtt *ppgtt =
1608 		container_of(pd, struct i915_hw_ppgtt, pd);
1609 	u32 pd_entry;
1610 
1611 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1612 	pd_entry |= GEN6_PDE_VALID;
1613 
1614 	writel(pd_entry, ppgtt->pd_addr + pde);
1615 }
1616 
1617 /* Write all the page tables found in the ppgtt structure to incrementing page
1618  * directories. */
1619 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1620 				  struct i915_page_directory *pd,
1621 				  uint32_t start, uint32_t length)
1622 {
1623 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1624 	struct i915_page_table *pt;
1625 	uint32_t pde, temp;
1626 
1627 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1628 		gen6_write_pde(pd, pde, pt);
1629 
1630 	/* Make sure write is complete before other code can use this page
1631 	 * table. Also require for WC mapped PTEs */
1632 	readl(ggtt->gsm);
1633 }
1634 
1635 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1636 {
1637 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1638 
1639 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1640 }
1641 
1642 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1643 			 struct drm_i915_gem_request *req)
1644 {
1645 	struct intel_engine_cs *engine = req->engine;
1646 	int ret;
1647 
1648 	/* NB: TLBs must be flushed and invalidated before a switch */
1649 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1650 	if (ret)
1651 		return ret;
1652 
1653 	ret = intel_ring_begin(req, 6);
1654 	if (ret)
1655 		return ret;
1656 
1657 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1658 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1659 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1660 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1661 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1662 	intel_ring_emit(engine, MI_NOOP);
1663 	intel_ring_advance(engine);
1664 
1665 	return 0;
1666 }
1667 
1668 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1669 			  struct drm_i915_gem_request *req)
1670 {
1671 	struct intel_engine_cs *engine = req->engine;
1672 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1673 
1674 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1675 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1676 	return 0;
1677 }
1678 
1679 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1680 			  struct drm_i915_gem_request *req)
1681 {
1682 	struct intel_engine_cs *engine = req->engine;
1683 	int ret;
1684 
1685 	/* NB: TLBs must be flushed and invalidated before a switch */
1686 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1687 	if (ret)
1688 		return ret;
1689 
1690 	ret = intel_ring_begin(req, 6);
1691 	if (ret)
1692 		return ret;
1693 
1694 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1695 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1696 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1697 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1698 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1699 	intel_ring_emit(engine, MI_NOOP);
1700 	intel_ring_advance(engine);
1701 
1702 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1703 	if (engine->id != RCS) {
1704 		ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1705 		if (ret)
1706 			return ret;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1713 			  struct drm_i915_gem_request *req)
1714 {
1715 	struct intel_engine_cs *engine = req->engine;
1716 	struct drm_device *dev = ppgtt->base.dev;
1717 	struct drm_i915_private *dev_priv = dev->dev_private;
1718 
1719 
1720 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1721 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1722 
1723 	POSTING_READ(RING_PP_DIR_DCLV(engine));
1724 
1725 	return 0;
1726 }
1727 
1728 static void gen8_ppgtt_enable(struct drm_device *dev)
1729 {
1730 	struct drm_i915_private *dev_priv = dev->dev_private;
1731 	struct intel_engine_cs *engine;
1732 
1733 	for_each_engine(engine, dev_priv) {
1734 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1735 		I915_WRITE(RING_MODE_GEN7(engine),
1736 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1737 	}
1738 }
1739 
1740 static void gen7_ppgtt_enable(struct drm_device *dev)
1741 {
1742 	struct drm_i915_private *dev_priv = dev->dev_private;
1743 	struct intel_engine_cs *engine;
1744 	uint32_t ecochk, ecobits;
1745 
1746 	ecobits = I915_READ(GAC_ECO_BITS);
1747 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1748 
1749 	ecochk = I915_READ(GAM_ECOCHK);
1750 	if (IS_HASWELL(dev)) {
1751 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1752 	} else {
1753 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1754 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1755 	}
1756 	I915_WRITE(GAM_ECOCHK, ecochk);
1757 
1758 	for_each_engine(engine, dev_priv) {
1759 		/* GFX_MODE is per-ring on gen7+ */
1760 		I915_WRITE(RING_MODE_GEN7(engine),
1761 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1762 	}
1763 }
1764 
1765 static void gen6_ppgtt_enable(struct drm_device *dev)
1766 {
1767 	struct drm_i915_private *dev_priv = dev->dev_private;
1768 	uint32_t ecochk, gab_ctl, ecobits;
1769 
1770 	ecobits = I915_READ(GAC_ECO_BITS);
1771 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1772 		   ECOBITS_PPGTT_CACHE64B);
1773 
1774 	gab_ctl = I915_READ(GAB_CTL);
1775 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1776 
1777 	ecochk = I915_READ(GAM_ECOCHK);
1778 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1779 
1780 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1781 }
1782 
1783 /* PPGTT support for Sandybdrige/Gen6 and later */
1784 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1785 				   uint64_t start,
1786 				   uint64_t length,
1787 				   bool use_scratch)
1788 {
1789 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1790 	gen6_pte_t *pt_vaddr, scratch_pte;
1791 	unsigned first_entry = start >> PAGE_SHIFT;
1792 	unsigned num_entries = length >> PAGE_SHIFT;
1793 	unsigned act_pt = first_entry / GEN6_PTES;
1794 	unsigned first_pte = first_entry % GEN6_PTES;
1795 	unsigned last_pte, i;
1796 
1797 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1798 				     I915_CACHE_LLC, true, 0);
1799 
1800 	while (num_entries) {
1801 		last_pte = first_pte + num_entries;
1802 		if (last_pte > GEN6_PTES)
1803 			last_pte = GEN6_PTES;
1804 
1805 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1806 
1807 		for (i = first_pte; i < last_pte; i++)
1808 			pt_vaddr[i] = scratch_pte;
1809 
1810 		kunmap_px(ppgtt, pt_vaddr);
1811 
1812 		num_entries -= last_pte - first_pte;
1813 		first_pte = 0;
1814 		act_pt++;
1815 	}
1816 }
1817 
1818 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1819 				      struct sg_table *pages,
1820 				      uint64_t start,
1821 				      enum i915_cache_level cache_level, u32 flags)
1822 {
1823 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1824 	gen6_pte_t *pt_vaddr;
1825 	unsigned first_entry = start >> PAGE_SHIFT;
1826 	unsigned act_pt = first_entry / GEN6_PTES;
1827 	unsigned act_pte = first_entry % GEN6_PTES;
1828 	struct sg_page_iter sg_iter;
1829 
1830 	pt_vaddr = NULL;
1831 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1832 		if (pt_vaddr == NULL)
1833 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1834 
1835 		pt_vaddr[act_pte] =
1836 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1837 				       cache_level, true, flags);
1838 
1839 		if (++act_pte == GEN6_PTES) {
1840 			kunmap_px(ppgtt, pt_vaddr);
1841 			pt_vaddr = NULL;
1842 			act_pt++;
1843 			act_pte = 0;
1844 		}
1845 	}
1846 	if (pt_vaddr)
1847 		kunmap_px(ppgtt, pt_vaddr);
1848 }
1849 
1850 static int gen6_alloc_va_range(struct i915_address_space *vm,
1851 			       uint64_t start_in, uint64_t length_in)
1852 {
1853 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1854 	struct drm_device *dev = vm->dev;
1855 	struct drm_i915_private *dev_priv = to_i915(dev);
1856 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1857 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1858 	struct i915_page_table *pt;
1859 	uint32_t start, length, start_save, length_save;
1860 	uint32_t pde, temp;
1861 	int ret;
1862 
1863 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1864 		return -ENODEV;
1865 
1866 	start = start_save = start_in;
1867 	length = length_save = length_in;
1868 
1869 	bitmap_zero(new_page_tables, I915_PDES);
1870 
1871 	/* The allocation is done in two stages so that we can bail out with
1872 	 * minimal amount of pain. The first stage finds new page tables that
1873 	 * need allocation. The second stage marks use ptes within the page
1874 	 * tables.
1875 	 */
1876 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1877 		if (pt != vm->scratch_pt) {
1878 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1879 			continue;
1880 		}
1881 
1882 		/* We've already allocated a page table */
1883 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1884 
1885 		pt = alloc_pt(dev);
1886 		if (IS_ERR(pt)) {
1887 			ret = PTR_ERR(pt);
1888 			goto unwind_out;
1889 		}
1890 
1891 		gen6_initialize_pt(vm, pt);
1892 
1893 		ppgtt->pd.page_table[pde] = pt;
1894 		__set_bit(pde, new_page_tables);
1895 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1896 	}
1897 
1898 	start = start_save;
1899 	length = length_save;
1900 
1901 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1902 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1903 
1904 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1905 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1906 			   gen6_pte_count(start, length));
1907 
1908 		if (__test_and_clear_bit(pde, new_page_tables))
1909 			gen6_write_pde(&ppgtt->pd, pde, pt);
1910 
1911 		trace_i915_page_table_entry_map(vm, pde, pt,
1912 					 gen6_pte_index(start),
1913 					 gen6_pte_count(start, length),
1914 					 GEN6_PTES);
1915 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1916 				GEN6_PTES);
1917 	}
1918 
1919 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1920 
1921 	/* Make sure write is complete before other code can use this page
1922 	 * table. Also require for WC mapped PTEs */
1923 	readl(ggtt->gsm);
1924 
1925 	mark_tlbs_dirty(ppgtt);
1926 	return 0;
1927 
1928 unwind_out:
1929 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1930 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1931 
1932 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1933 		free_pt(vm->dev, pt);
1934 	}
1935 
1936 	mark_tlbs_dirty(ppgtt);
1937 	return ret;
1938 }
1939 
1940 static int gen6_init_scratch(struct i915_address_space *vm)
1941 {
1942 	struct drm_device *dev = vm->dev;
1943 
1944 	vm->scratch_page = alloc_scratch_page(dev);
1945 	if (IS_ERR(vm->scratch_page))
1946 		return PTR_ERR(vm->scratch_page);
1947 
1948 	vm->scratch_pt = alloc_pt(dev);
1949 	if (IS_ERR(vm->scratch_pt)) {
1950 		free_scratch_page(dev, vm->scratch_page);
1951 		return PTR_ERR(vm->scratch_pt);
1952 	}
1953 
1954 	gen6_initialize_pt(vm, vm->scratch_pt);
1955 
1956 	return 0;
1957 }
1958 
1959 static void gen6_free_scratch(struct i915_address_space *vm)
1960 {
1961 	struct drm_device *dev = vm->dev;
1962 
1963 	free_pt(dev, vm->scratch_pt);
1964 	free_scratch_page(dev, vm->scratch_page);
1965 }
1966 
1967 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1968 {
1969 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1970 	struct i915_page_table *pt;
1971 	uint32_t pde;
1972 
1973 	drm_mm_remove_node(&ppgtt->node);
1974 
1975 	gen6_for_all_pdes(pt, ppgtt, pde) {
1976 		if (pt != vm->scratch_pt)
1977 			free_pt(ppgtt->base.dev, pt);
1978 	}
1979 
1980 	gen6_free_scratch(vm);
1981 }
1982 
1983 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1984 {
1985 	struct i915_address_space *vm = &ppgtt->base;
1986 	struct drm_device *dev = ppgtt->base.dev;
1987 	struct drm_i915_private *dev_priv = to_i915(dev);
1988 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1989 	bool retried = false;
1990 	int ret;
1991 
1992 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1993 	 * allocator works in address space sizes, so it's multiplied by page
1994 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1995 	 */
1996 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1997 
1998 	ret = gen6_init_scratch(vm);
1999 	if (ret)
2000 		return ret;
2001 
2002 alloc:
2003 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2004 						  &ppgtt->node, GEN6_PD_SIZE,
2005 						  GEN6_PD_ALIGN, 0,
2006 						  0, ggtt->base.total,
2007 						  DRM_MM_TOPDOWN);
2008 	if (ret == -ENOSPC && !retried) {
2009 		ret = i915_gem_evict_something(dev, &ggtt->base,
2010 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2011 					       I915_CACHE_NONE,
2012 					       0, ggtt->base.total,
2013 					       0);
2014 		if (ret)
2015 			goto err_out;
2016 
2017 		retried = true;
2018 		goto alloc;
2019 	}
2020 
2021 	if (ret)
2022 		goto err_out;
2023 
2024 
2025 	if (ppgtt->node.start < ggtt->mappable_end)
2026 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2027 
2028 	return 0;
2029 
2030 err_out:
2031 	gen6_free_scratch(vm);
2032 	return ret;
2033 }
2034 
2035 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2036 {
2037 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2038 }
2039 
2040 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2041 				  uint64_t start, uint64_t length)
2042 {
2043 	struct i915_page_table *unused;
2044 	uint32_t pde, temp;
2045 
2046 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2047 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2048 }
2049 
2050 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2051 {
2052 	struct drm_device *dev = ppgtt->base.dev;
2053 	struct drm_i915_private *dev_priv = to_i915(dev);
2054 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2055 	int ret;
2056 
2057 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2058 	if (IS_GEN6(dev)) {
2059 		ppgtt->switch_mm = gen6_mm_switch;
2060 	} else if (IS_HASWELL(dev)) {
2061 		ppgtt->switch_mm = hsw_mm_switch;
2062 	} else if (IS_GEN7(dev)) {
2063 		ppgtt->switch_mm = gen7_mm_switch;
2064 	} else
2065 		BUG();
2066 
2067 	if (intel_vgpu_active(dev))
2068 		ppgtt->switch_mm = vgpu_mm_switch;
2069 
2070 	ret = gen6_ppgtt_alloc(ppgtt);
2071 	if (ret)
2072 		return ret;
2073 
2074 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2075 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2076 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2077 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2078 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2079 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2080 	ppgtt->base.start = 0;
2081 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2082 	ppgtt->debug_dump = gen6_dump_ppgtt;
2083 
2084 	ppgtt->pd.base.ggtt_offset =
2085 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2086 
2087 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2088 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2089 
2090 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2091 
2092 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2093 
2094 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2095 			 ppgtt->node.size >> 20,
2096 			 ppgtt->node.start / PAGE_SIZE);
2097 
2098 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2099 		  ppgtt->pd.base.ggtt_offset << 10);
2100 
2101 	return 0;
2102 }
2103 
2104 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2105 {
2106 	ppgtt->base.dev = dev;
2107 
2108 	if (INTEL_INFO(dev)->gen < 8)
2109 		return gen6_ppgtt_init(ppgtt);
2110 	else
2111 		return gen8_ppgtt_init(ppgtt);
2112 }
2113 
2114 static void i915_address_space_init(struct i915_address_space *vm,
2115 				    struct drm_i915_private *dev_priv)
2116 {
2117 	drm_mm_init(&vm->mm, vm->start, vm->total);
2118 	vm->dev = dev_priv->dev;
2119 	INIT_LIST_HEAD(&vm->active_list);
2120 	INIT_LIST_HEAD(&vm->inactive_list);
2121 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2122 }
2123 
2124 static void gtt_write_workarounds(struct drm_device *dev)
2125 {
2126 	struct drm_i915_private *dev_priv = dev->dev_private;
2127 
2128 	/* This function is for gtt related workarounds. This function is
2129 	 * called on driver load and after a GPU reset, so you can place
2130 	 * workarounds here even if they get overwritten by GPU reset.
2131 	 */
2132 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2133 	if (IS_BROADWELL(dev))
2134 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2135 	else if (IS_CHERRYVIEW(dev))
2136 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2137 	else if (IS_SKYLAKE(dev))
2138 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2139 	else if (IS_BROXTON(dev))
2140 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2141 }
2142 
2143 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2144 {
2145 	struct drm_i915_private *dev_priv = dev->dev_private;
2146 	int ret = 0;
2147 
2148 	ret = __hw_ppgtt_init(dev, ppgtt);
2149 	if (ret == 0) {
2150 		kref_init(&ppgtt->ref);
2151 		i915_address_space_init(&ppgtt->base, dev_priv);
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 int i915_ppgtt_init_hw(struct drm_device *dev)
2158 {
2159 	gtt_write_workarounds(dev);
2160 
2161 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2162 	 * and the PDPs are contained within the context itself.  We don't
2163 	 * need to do anything here. */
2164 	if (i915.enable_execlists)
2165 		return 0;
2166 
2167 	if (!USES_PPGTT(dev))
2168 		return 0;
2169 
2170 	if (IS_GEN6(dev))
2171 		gen6_ppgtt_enable(dev);
2172 	else if (IS_GEN7(dev))
2173 		gen7_ppgtt_enable(dev);
2174 	else if (INTEL_INFO(dev)->gen >= 8)
2175 		gen8_ppgtt_enable(dev);
2176 	else
2177 		MISSING_CASE(INTEL_INFO(dev)->gen);
2178 
2179 	return 0;
2180 }
2181 
2182 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2183 {
2184 	struct drm_i915_private *dev_priv = req->i915;
2185 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2186 
2187 	if (i915.enable_execlists)
2188 		return 0;
2189 
2190 	if (!ppgtt)
2191 		return 0;
2192 
2193 	return ppgtt->switch_mm(ppgtt, req);
2194 }
2195 
2196 struct i915_hw_ppgtt *
2197 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2198 {
2199 	struct i915_hw_ppgtt *ppgtt;
2200 	int ret;
2201 
2202 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2203 	if (!ppgtt)
2204 		return ERR_PTR(-ENOMEM);
2205 
2206 	ret = i915_ppgtt_init(dev, ppgtt);
2207 	if (ret) {
2208 		kfree(ppgtt);
2209 		return ERR_PTR(ret);
2210 	}
2211 
2212 	ppgtt->file_priv = fpriv;
2213 
2214 	trace_i915_ppgtt_create(&ppgtt->base);
2215 
2216 	return ppgtt;
2217 }
2218 
2219 void  i915_ppgtt_release(struct kref *kref)
2220 {
2221 	struct i915_hw_ppgtt *ppgtt =
2222 		container_of(kref, struct i915_hw_ppgtt, ref);
2223 
2224 	trace_i915_ppgtt_release(&ppgtt->base);
2225 
2226 	/* vmas should already be unbound */
2227 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2228 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2229 
2230 	list_del(&ppgtt->base.global_link);
2231 	drm_mm_takedown(&ppgtt->base.mm);
2232 
2233 	ppgtt->base.cleanup(&ppgtt->base);
2234 	kfree(ppgtt);
2235 }
2236 
2237 extern int intel_iommu_gfx_mapped;
2238 /* Certain Gen5 chipsets require require idling the GPU before
2239  * unmapping anything from the GTT when VT-d is enabled.
2240  */
2241 static bool needs_idle_maps(struct drm_device *dev)
2242 {
2243 #ifdef CONFIG_INTEL_IOMMU
2244 	/* Query intel_iommu to see if we need the workaround. Presumably that
2245 	 * was loaded first.
2246 	 */
2247 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2248 		return true;
2249 #endif
2250 	return false;
2251 }
2252 
2253 static bool do_idling(struct drm_i915_private *dev_priv)
2254 {
2255 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2256 	bool ret = dev_priv->mm.interruptible;
2257 
2258 	if (unlikely(ggtt->do_idle_maps)) {
2259 		dev_priv->mm.interruptible = false;
2260 		if (i915_gpu_idle(dev_priv->dev)) {
2261 			DRM_ERROR("Couldn't idle GPU\n");
2262 			/* Wait a bit, in hopes it avoids the hang */
2263 			udelay(10);
2264 		}
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2271 {
2272 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2273 
2274 	if (unlikely(ggtt->do_idle_maps))
2275 		dev_priv->mm.interruptible = interruptible;
2276 }
2277 
2278 void i915_check_and_clear_faults(struct drm_device *dev)
2279 {
2280 	struct drm_i915_private *dev_priv = dev->dev_private;
2281 	struct intel_engine_cs *engine;
2282 
2283 	if (INTEL_INFO(dev)->gen < 6)
2284 		return;
2285 
2286 	for_each_engine(engine, dev_priv) {
2287 		u32 fault_reg;
2288 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2289 		if (fault_reg & RING_FAULT_VALID) {
2290 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2291 					 "\tAddr: 0x%08lx\n"
2292 					 "\tAddress space: %s\n"
2293 					 "\tSource ID: %d\n"
2294 					 "\tType: %d\n",
2295 					 fault_reg & PAGE_MASK,
2296 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2297 					 RING_FAULT_SRCID(fault_reg),
2298 					 RING_FAULT_FAULT_TYPE(fault_reg));
2299 			I915_WRITE(RING_FAULT_REG(engine),
2300 				   fault_reg & ~RING_FAULT_VALID);
2301 		}
2302 	}
2303 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2304 }
2305 
2306 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2307 {
2308 	if (INTEL_INFO(dev_priv)->gen < 6) {
2309 		intel_gtt_chipset_flush();
2310 	} else {
2311 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2312 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2313 	}
2314 }
2315 
2316 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2317 {
2318 	struct drm_i915_private *dev_priv = to_i915(dev);
2319 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2320 
2321 	/* Don't bother messing with faults pre GEN6 as we have little
2322 	 * documentation supporting that it's a good idea.
2323 	 */
2324 	if (INTEL_INFO(dev)->gen < 6)
2325 		return;
2326 
2327 	i915_check_and_clear_faults(dev);
2328 
2329 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2330 			     true);
2331 
2332 	i915_ggtt_flush(dev_priv);
2333 }
2334 
2335 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2336 {
2337 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2338 			obj->pages->sgl, obj->pages->nents,
2339 			PCI_DMA_BIDIRECTIONAL))
2340 		return -ENOSPC;
2341 
2342 	return 0;
2343 }
2344 
2345 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2346 {
2347 #ifdef writeq
2348 	writeq(pte, addr);
2349 #else
2350 	iowrite32((u32)pte, addr);
2351 	iowrite32(pte >> 32, addr + 4);
2352 #endif
2353 }
2354 
2355 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2356 				     struct sg_table *st,
2357 				     uint64_t start,
2358 				     enum i915_cache_level level, u32 unused)
2359 {
2360 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2361 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2362 	unsigned first_entry = start >> PAGE_SHIFT;
2363 	gen8_pte_t __iomem *gtt_entries =
2364 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2365 	int i = 0;
2366 	struct sg_page_iter sg_iter;
2367 	dma_addr_t addr = 0; /* shut up gcc */
2368 	int rpm_atomic_seq;
2369 
2370 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2371 
2372 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2373 		addr = sg_dma_address(sg_iter.sg) +
2374 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2375 		gen8_set_pte(&gtt_entries[i],
2376 			     gen8_pte_encode(addr, level, true));
2377 		i++;
2378 	}
2379 
2380 	/*
2381 	 * XXX: This serves as a posting read to make sure that the PTE has
2382 	 * actually been updated. There is some concern that even though
2383 	 * registers and PTEs are within the same BAR that they are potentially
2384 	 * of NUMA access patterns. Therefore, even with the way we assume
2385 	 * hardware should work, we must keep this posting read for paranoia.
2386 	 */
2387 	if (i != 0)
2388 		WARN_ON(readq(&gtt_entries[i-1])
2389 			!= gen8_pte_encode(addr, level, true));
2390 
2391 	/* This next bit makes the above posting read even more important. We
2392 	 * want to flush the TLBs only after we're certain all the PTE updates
2393 	 * have finished.
2394 	 */
2395 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2396 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2397 
2398 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2399 }
2400 
2401 struct insert_entries {
2402 	struct i915_address_space *vm;
2403 	struct sg_table *st;
2404 	uint64_t start;
2405 	enum i915_cache_level level;
2406 	u32 flags;
2407 };
2408 
2409 static int gen8_ggtt_insert_entries__cb(void *_arg)
2410 {
2411 	struct insert_entries *arg = _arg;
2412 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2413 				 arg->start, arg->level, arg->flags);
2414 	return 0;
2415 }
2416 
2417 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2418 					  struct sg_table *st,
2419 					  uint64_t start,
2420 					  enum i915_cache_level level,
2421 					  u32 flags)
2422 {
2423 	struct insert_entries arg = { vm, st, start, level, flags };
2424 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2425 }
2426 
2427 /*
2428  * Binds an object into the global gtt with the specified cache level. The object
2429  * will be accessible to the GPU via commands whose operands reference offsets
2430  * within the global GTT as well as accessible by the GPU through the GMADR
2431  * mapped BAR (dev_priv->mm.gtt->gtt).
2432  */
2433 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2434 				     struct sg_table *st,
2435 				     uint64_t start,
2436 				     enum i915_cache_level level, u32 flags)
2437 {
2438 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2439 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2440 	unsigned first_entry = start >> PAGE_SHIFT;
2441 	gen6_pte_t __iomem *gtt_entries =
2442 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2443 	int i = 0;
2444 	struct sg_page_iter sg_iter;
2445 	dma_addr_t addr = 0;
2446 	int rpm_atomic_seq;
2447 
2448 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2449 
2450 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2451 		addr = sg_page_iter_dma_address(&sg_iter);
2452 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2453 		i++;
2454 	}
2455 
2456 	/* XXX: This serves as a posting read to make sure that the PTE has
2457 	 * actually been updated. There is some concern that even though
2458 	 * registers and PTEs are within the same BAR that they are potentially
2459 	 * of NUMA access patterns. Therefore, even with the way we assume
2460 	 * hardware should work, we must keep this posting read for paranoia.
2461 	 */
2462 	if (i != 0) {
2463 		unsigned long gtt = readl(&gtt_entries[i-1]);
2464 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2465 	}
2466 
2467 	/* This next bit makes the above posting read even more important. We
2468 	 * want to flush the TLBs only after we're certain all the PTE updates
2469 	 * have finished.
2470 	 */
2471 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2472 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2473 
2474 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2475 }
2476 
2477 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2478 				  uint64_t start,
2479 				  uint64_t length,
2480 				  bool use_scratch)
2481 {
2482 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2483 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2484 	unsigned first_entry = start >> PAGE_SHIFT;
2485 	unsigned num_entries = length >> PAGE_SHIFT;
2486 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2487 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2488 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2489 	int i;
2490 	int rpm_atomic_seq;
2491 
2492 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2493 
2494 	if (WARN(num_entries > max_entries,
2495 		 "First entry = %d; Num entries = %d (max=%d)\n",
2496 		 first_entry, num_entries, max_entries))
2497 		num_entries = max_entries;
2498 
2499 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2500 				      I915_CACHE_LLC,
2501 				      use_scratch);
2502 	for (i = 0; i < num_entries; i++)
2503 		gen8_set_pte(&gtt_base[i], scratch_pte);
2504 	readl(gtt_base);
2505 
2506 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2507 }
2508 
2509 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2510 				  uint64_t start,
2511 				  uint64_t length,
2512 				  bool use_scratch)
2513 {
2514 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2515 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2516 	unsigned first_entry = start >> PAGE_SHIFT;
2517 	unsigned num_entries = length >> PAGE_SHIFT;
2518 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2519 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2520 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2521 	int i;
2522 	int rpm_atomic_seq;
2523 
2524 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2525 
2526 	if (WARN(num_entries > max_entries,
2527 		 "First entry = %d; Num entries = %d (max=%d)\n",
2528 		 first_entry, num_entries, max_entries))
2529 		num_entries = max_entries;
2530 
2531 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2532 				     I915_CACHE_LLC, use_scratch, 0);
2533 
2534 	for (i = 0; i < num_entries; i++)
2535 		iowrite32(scratch_pte, &gtt_base[i]);
2536 	readl(gtt_base);
2537 
2538 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2539 }
2540 
2541 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2542 				     struct sg_table *pages,
2543 				     uint64_t start,
2544 				     enum i915_cache_level cache_level, u32 unused)
2545 {
2546 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2547 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2548 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2549 	int rpm_atomic_seq;
2550 
2551 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2552 
2553 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2554 
2555 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2556 
2557 }
2558 
2559 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2560 				  uint64_t start,
2561 				  uint64_t length,
2562 				  bool unused)
2563 {
2564 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2565 	unsigned first_entry = start >> PAGE_SHIFT;
2566 	unsigned num_entries = length >> PAGE_SHIFT;
2567 	int rpm_atomic_seq;
2568 
2569 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2570 
2571 	intel_gtt_clear_range(first_entry, num_entries);
2572 
2573 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2574 }
2575 
2576 static int ggtt_bind_vma(struct i915_vma *vma,
2577 			 enum i915_cache_level cache_level,
2578 			 u32 flags)
2579 {
2580 	struct drm_i915_gem_object *obj = vma->obj;
2581 	u32 pte_flags = 0;
2582 	int ret;
2583 
2584 	ret = i915_get_ggtt_vma_pages(vma);
2585 	if (ret)
2586 		return ret;
2587 
2588 	/* Currently applicable only to VLV */
2589 	if (obj->gt_ro)
2590 		pte_flags |= PTE_READ_ONLY;
2591 
2592 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2593 				vma->node.start,
2594 				cache_level, pte_flags);
2595 
2596 	/*
2597 	 * Without aliasing PPGTT there's no difference between
2598 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2599 	 * upgrade to both bound if we bind either to avoid double-binding.
2600 	 */
2601 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2602 
2603 	return 0;
2604 }
2605 
2606 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2607 				 enum i915_cache_level cache_level,
2608 				 u32 flags)
2609 {
2610 	u32 pte_flags;
2611 	int ret;
2612 
2613 	ret = i915_get_ggtt_vma_pages(vma);
2614 	if (ret)
2615 		return ret;
2616 
2617 	/* Currently applicable only to VLV */
2618 	pte_flags = 0;
2619 	if (vma->obj->gt_ro)
2620 		pte_flags |= PTE_READ_ONLY;
2621 
2622 
2623 	if (flags & GLOBAL_BIND) {
2624 		vma->vm->insert_entries(vma->vm,
2625 					vma->ggtt_view.pages,
2626 					vma->node.start,
2627 					cache_level, pte_flags);
2628 	}
2629 
2630 	if (flags & LOCAL_BIND) {
2631 		struct i915_hw_ppgtt *appgtt =
2632 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2633 		appgtt->base.insert_entries(&appgtt->base,
2634 					    vma->ggtt_view.pages,
2635 					    vma->node.start,
2636 					    cache_level, pte_flags);
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static void ggtt_unbind_vma(struct i915_vma *vma)
2643 {
2644 	struct drm_device *dev = vma->vm->dev;
2645 	struct drm_i915_private *dev_priv = dev->dev_private;
2646 	struct drm_i915_gem_object *obj = vma->obj;
2647 	const uint64_t size = min_t(uint64_t,
2648 				    obj->base.size,
2649 				    vma->node.size);
2650 
2651 	if (vma->bound & GLOBAL_BIND) {
2652 		vma->vm->clear_range(vma->vm,
2653 				     vma->node.start,
2654 				     size,
2655 				     true);
2656 	}
2657 
2658 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2659 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2660 
2661 		appgtt->base.clear_range(&appgtt->base,
2662 					 vma->node.start,
2663 					 size,
2664 					 true);
2665 	}
2666 }
2667 
2668 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2669 {
2670 	struct drm_device *dev = obj->base.dev;
2671 	struct drm_i915_private *dev_priv = dev->dev_private;
2672 	bool interruptible;
2673 
2674 	interruptible = do_idling(dev_priv);
2675 
2676 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2677 		     PCI_DMA_BIDIRECTIONAL);
2678 
2679 	undo_idling(dev_priv, interruptible);
2680 }
2681 
2682 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2683 				  unsigned long color,
2684 				  u64 *start,
2685 				  u64 *end)
2686 {
2687 	if (node->color != color)
2688 		*start += 4096;
2689 
2690 	if (!list_empty(&node->node_list)) {
2691 		node = list_entry(node->node_list.next,
2692 				  struct drm_mm_node,
2693 				  node_list);
2694 		if (node->allocated && node->color != color)
2695 			*end -= 4096;
2696 	}
2697 }
2698 
2699 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2700 				     u64 start,
2701 				     u64 mappable_end,
2702 				     u64 end)
2703 {
2704 	/* Let GEM Manage all of the aperture.
2705 	 *
2706 	 * However, leave one page at the end still bound to the scratch page.
2707 	 * There are a number of places where the hardware apparently prefetches
2708 	 * past the end of the object, and we've seen multiple hangs with the
2709 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2710 	 * aperture.  One page should be enough to keep any prefetching inside
2711 	 * of the aperture.
2712 	 */
2713 	struct drm_i915_private *dev_priv = to_i915(dev);
2714 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2715 	struct drm_mm_node *entry;
2716 	struct drm_i915_gem_object *obj;
2717 	unsigned long hole_start, hole_end;
2718 	int ret;
2719 
2720 	BUG_ON(mappable_end > end);
2721 
2722 	ggtt->base.start = start;
2723 
2724 	/* Subtract the guard page before address space initialization to
2725 	 * shrink the range used by drm_mm */
2726 	ggtt->base.total = end - start - PAGE_SIZE;
2727 	i915_address_space_init(&ggtt->base, dev_priv);
2728 	ggtt->base.total += PAGE_SIZE;
2729 
2730 	if (intel_vgpu_active(dev)) {
2731 		ret = intel_vgt_balloon(dev);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 
2736 	if (!HAS_LLC(dev))
2737 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2738 
2739 	/* Mark any preallocated objects as occupied */
2740 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2741 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2742 
2743 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2744 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2745 
2746 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2747 		ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2748 		if (ret) {
2749 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2750 			return ret;
2751 		}
2752 		vma->bound |= GLOBAL_BIND;
2753 		__i915_vma_set_map_and_fenceable(vma);
2754 		list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2755 	}
2756 
2757 	/* Clear any non-preallocated blocks */
2758 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2759 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2760 			      hole_start, hole_end);
2761 		ggtt->base.clear_range(&ggtt->base, hole_start,
2762 				     hole_end - hole_start, true);
2763 	}
2764 
2765 	/* And finally clear the reserved guard page */
2766 	ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2767 
2768 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2769 		struct i915_hw_ppgtt *ppgtt;
2770 
2771 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2772 		if (!ppgtt)
2773 			return -ENOMEM;
2774 
2775 		ret = __hw_ppgtt_init(dev, ppgtt);
2776 		if (ret) {
2777 			ppgtt->base.cleanup(&ppgtt->base);
2778 			kfree(ppgtt);
2779 			return ret;
2780 		}
2781 
2782 		if (ppgtt->base.allocate_va_range)
2783 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2784 							    ppgtt->base.total);
2785 		if (ret) {
2786 			ppgtt->base.cleanup(&ppgtt->base);
2787 			kfree(ppgtt);
2788 			return ret;
2789 		}
2790 
2791 		ppgtt->base.clear_range(&ppgtt->base,
2792 					ppgtt->base.start,
2793 					ppgtt->base.total,
2794 					true);
2795 
2796 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2797 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2798 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 /**
2805  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2806  * @dev: DRM device
2807  */
2808 void i915_gem_init_ggtt(struct drm_device *dev)
2809 {
2810 	struct drm_i915_private *dev_priv = to_i915(dev);
2811 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2812 
2813 	i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2814 }
2815 
2816 /**
2817  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2818  * @dev: DRM device
2819  */
2820 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2821 {
2822 	struct drm_i915_private *dev_priv = to_i915(dev);
2823 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2824 
2825 	if (dev_priv->mm.aliasing_ppgtt) {
2826 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2827 
2828 		ppgtt->base.cleanup(&ppgtt->base);
2829 	}
2830 
2831 	i915_gem_cleanup_stolen(dev);
2832 
2833 	if (drm_mm_initialized(&ggtt->base.mm)) {
2834 		if (intel_vgpu_active(dev))
2835 			intel_vgt_deballoon();
2836 
2837 		drm_mm_takedown(&ggtt->base.mm);
2838 		list_del(&ggtt->base.global_link);
2839 	}
2840 
2841 	ggtt->base.cleanup(&ggtt->base);
2842 }
2843 
2844 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2845 {
2846 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2847 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2848 	return snb_gmch_ctl << 20;
2849 }
2850 
2851 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2852 {
2853 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2854 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2855 	if (bdw_gmch_ctl)
2856 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2857 
2858 #ifdef CONFIG_X86_32
2859 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2860 	if (bdw_gmch_ctl > 4)
2861 		bdw_gmch_ctl = 4;
2862 #endif
2863 
2864 	return bdw_gmch_ctl << 20;
2865 }
2866 
2867 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2868 {
2869 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2870 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2871 
2872 	if (gmch_ctrl)
2873 		return 1 << (20 + gmch_ctrl);
2874 
2875 	return 0;
2876 }
2877 
2878 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2879 {
2880 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2881 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2882 	return snb_gmch_ctl << 25; /* 32 MB units */
2883 }
2884 
2885 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2886 {
2887 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2888 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2889 	return bdw_gmch_ctl << 25; /* 32 MB units */
2890 }
2891 
2892 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2893 {
2894 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2895 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2896 
2897 	/*
2898 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2899 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2900 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2901 	 */
2902 	if (gmch_ctrl < 0x11)
2903 		return gmch_ctrl << 25;
2904 	else if (gmch_ctrl < 0x17)
2905 		return (gmch_ctrl - 0x11 + 2) << 22;
2906 	else
2907 		return (gmch_ctrl - 0x17 + 9) << 22;
2908 }
2909 
2910 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2911 {
2912 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2913 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2914 
2915 	if (gen9_gmch_ctl < 0xf0)
2916 		return gen9_gmch_ctl << 25; /* 32 MB units */
2917 	else
2918 		/* 4MB increments starting at 0xf0 for 4MB */
2919 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2920 }
2921 
2922 static int ggtt_probe_common(struct drm_device *dev,
2923 			     size_t gtt_size)
2924 {
2925 	struct drm_i915_private *dev_priv = to_i915(dev);
2926 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2927 	struct i915_page_scratch *scratch_page;
2928 	phys_addr_t ggtt_phys_addr;
2929 
2930 	/* For Modern GENs the PTEs and register space are split in the BAR */
2931 	ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2932 			 (pci_resource_len(dev->pdev, 0) / 2);
2933 
2934 	/*
2935 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2936 	 * dropped. For WC mappings in general we have 64 byte burst writes
2937 	 * when the WC buffer is flushed, so we can't use it, but have to
2938 	 * resort to an uncached mapping. The WC issue is easily caught by the
2939 	 * readback check when writing GTT PTE entries.
2940 	 */
2941 	if (IS_BROXTON(dev))
2942 		ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2943 	else
2944 		ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2945 	if (!ggtt->gsm) {
2946 		DRM_ERROR("Failed to map the gtt page table\n");
2947 		return -ENOMEM;
2948 	}
2949 
2950 	scratch_page = alloc_scratch_page(dev);
2951 	if (IS_ERR(scratch_page)) {
2952 		DRM_ERROR("Scratch setup failed\n");
2953 		/* iounmap will also get called at remove, but meh */
2954 		iounmap(ggtt->gsm);
2955 		return PTR_ERR(scratch_page);
2956 	}
2957 
2958 	ggtt->base.scratch_page = scratch_page;
2959 
2960 	return 0;
2961 }
2962 
2963 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2964  * bits. When using advanced contexts each context stores its own PAT, but
2965  * writing this data shouldn't be harmful even in those cases. */
2966 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2967 {
2968 	uint64_t pat;
2969 
2970 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2971 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2972 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2973 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2974 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2975 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2976 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2977 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2978 
2979 	if (!USES_PPGTT(dev_priv))
2980 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2981 		 * so RTL will always use the value corresponding to
2982 		 * pat_sel = 000".
2983 		 * So let's disable cache for GGTT to avoid screen corruptions.
2984 		 * MOCS still can be used though.
2985 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2986 		 * before this patch, i.e. the same uncached + snooping access
2987 		 * like on gen6/7 seems to be in effect.
2988 		 * - So this just fixes blitter/render access. Again it looks
2989 		 * like it's not just uncached access, but uncached + snooping.
2990 		 * So we can still hold onto all our assumptions wrt cpu
2991 		 * clflushing on LLC machines.
2992 		 */
2993 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2994 
2995 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2996 	 * write would work. */
2997 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2998 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2999 }
3000 
3001 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3002 {
3003 	uint64_t pat;
3004 
3005 	/*
3006 	 * Map WB on BDW to snooped on CHV.
3007 	 *
3008 	 * Only the snoop bit has meaning for CHV, the rest is
3009 	 * ignored.
3010 	 *
3011 	 * The hardware will never snoop for certain types of accesses:
3012 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3013 	 * - PPGTT page tables
3014 	 * - some other special cycles
3015 	 *
3016 	 * As with BDW, we also need to consider the following for GT accesses:
3017 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3018 	 * so RTL will always use the value corresponding to
3019 	 * pat_sel = 000".
3020 	 * Which means we must set the snoop bit in PAT entry 0
3021 	 * in order to keep the global status page working.
3022 	 */
3023 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3024 	      GEN8_PPAT(1, 0) |
3025 	      GEN8_PPAT(2, 0) |
3026 	      GEN8_PPAT(3, 0) |
3027 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3028 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3029 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3030 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3031 
3032 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3033 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3034 }
3035 
3036 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3037 {
3038 	struct drm_device *dev = ggtt->base.dev;
3039 	struct drm_i915_private *dev_priv = to_i915(dev);
3040 	u16 snb_gmch_ctl;
3041 	int ret;
3042 
3043 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3044 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3045 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3046 
3047 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3048 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3049 
3050 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3051 
3052 	if (INTEL_INFO(dev)->gen >= 9) {
3053 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3054 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3055 	} else if (IS_CHERRYVIEW(dev)) {
3056 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3057 		ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3058 	} else {
3059 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3060 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3061 	}
3062 
3063 	ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3064 
3065 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3066 		chv_setup_private_ppat(dev_priv);
3067 	else
3068 		bdw_setup_private_ppat(dev_priv);
3069 
3070 	ret = ggtt_probe_common(dev, ggtt->size);
3071 
3072 	ggtt->base.clear_range = gen8_ggtt_clear_range;
3073 	if (IS_CHERRYVIEW(dev_priv))
3074 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3075 	else
3076 		ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3077 	ggtt->base.bind_vma = ggtt_bind_vma;
3078 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3079 
3080 	return ret;
3081 }
3082 
3083 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3084 {
3085 	struct drm_device *dev = ggtt->base.dev;
3086 	u16 snb_gmch_ctl;
3087 	int ret;
3088 
3089 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3090 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3091 
3092 	/* 64/512MB is the current min/max we actually know of, but this is just
3093 	 * a coarse sanity check.
3094 	 */
3095 	if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3096 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3097 		return -ENXIO;
3098 	}
3099 
3100 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3101 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3102 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3103 
3104 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3105 	ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3106 	ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3107 
3108 	ret = ggtt_probe_common(dev, ggtt->size);
3109 
3110 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3111 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3112 	ggtt->base.bind_vma = ggtt_bind_vma;
3113 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3114 
3115 	return ret;
3116 }
3117 
3118 static void gen6_gmch_remove(struct i915_address_space *vm)
3119 {
3120 	struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3121 
3122 	iounmap(ggtt->gsm);
3123 	free_scratch_page(vm->dev, vm->scratch_page);
3124 }
3125 
3126 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3127 {
3128 	struct drm_device *dev = ggtt->base.dev;
3129 	struct drm_i915_private *dev_priv = to_i915(dev);
3130 	int ret;
3131 
3132 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3133 	if (!ret) {
3134 		DRM_ERROR("failed to set up gmch\n");
3135 		return -EIO;
3136 	}
3137 
3138 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3139 		      &ggtt->mappable_base, &ggtt->mappable_end);
3140 
3141 	ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3142 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3143 	ggtt->base.clear_range = i915_ggtt_clear_range;
3144 	ggtt->base.bind_vma = ggtt_bind_vma;
3145 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3146 
3147 	if (unlikely(ggtt->do_idle_maps))
3148 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3149 
3150 	return 0;
3151 }
3152 
3153 static void i915_gmch_remove(struct i915_address_space *vm)
3154 {
3155 	intel_gmch_remove();
3156 }
3157 
3158 /**
3159  * i915_ggtt_init_hw - Initialize GGTT hardware
3160  * @dev: DRM device
3161  */
3162 int i915_ggtt_init_hw(struct drm_device *dev)
3163 {
3164 	struct drm_i915_private *dev_priv = to_i915(dev);
3165 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3166 	int ret;
3167 
3168 	if (INTEL_INFO(dev)->gen <= 5) {
3169 		ggtt->probe = i915_gmch_probe;
3170 		ggtt->base.cleanup = i915_gmch_remove;
3171 	} else if (INTEL_INFO(dev)->gen < 8) {
3172 		ggtt->probe = gen6_gmch_probe;
3173 		ggtt->base.cleanup = gen6_gmch_remove;
3174 
3175 		if (HAS_EDRAM(dev))
3176 			ggtt->base.pte_encode = iris_pte_encode;
3177 		else if (IS_HASWELL(dev))
3178 			ggtt->base.pte_encode = hsw_pte_encode;
3179 		else if (IS_VALLEYVIEW(dev))
3180 			ggtt->base.pte_encode = byt_pte_encode;
3181 		else if (INTEL_INFO(dev)->gen >= 7)
3182 			ggtt->base.pte_encode = ivb_pte_encode;
3183 		else
3184 			ggtt->base.pte_encode = snb_pte_encode;
3185 	} else {
3186 		ggtt->probe = gen8_gmch_probe;
3187 		ggtt->base.cleanup = gen6_gmch_remove;
3188 	}
3189 
3190 	ggtt->base.dev = dev;
3191 	ggtt->base.is_ggtt = true;
3192 
3193 	ret = ggtt->probe(ggtt);
3194 	if (ret)
3195 		return ret;
3196 
3197 	if ((ggtt->base.total - 1) >> 32) {
3198 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3199 			  "of address space! Found %lldM!\n",
3200 			  ggtt->base.total >> 20);
3201 		ggtt->base.total = 1ULL << 32;
3202 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3203 	}
3204 
3205 	/*
3206 	 * Initialise stolen early so that we may reserve preallocated
3207 	 * objects for the BIOS to KMS transition.
3208 	 */
3209 	ret = i915_gem_init_stolen(dev);
3210 	if (ret)
3211 		goto out_gtt_cleanup;
3212 
3213 	/* GMADR is the PCI mmio aperture into the global GTT. */
3214 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3215 		 ggtt->base.total >> 20);
3216 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3217 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3218 #ifdef CONFIG_INTEL_IOMMU
3219 	if (intel_iommu_gfx_mapped)
3220 		DRM_INFO("VT-d active for gfx access\n");
3221 #endif
3222 	/*
3223 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3224 	 * user's requested state against the hardware/driver capabilities.  We
3225 	 * do this now so that we can print out any log messages once rather
3226 	 * than every time we check intel_enable_ppgtt().
3227 	 */
3228 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3229 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3230 
3231 	return 0;
3232 
3233 out_gtt_cleanup:
3234 	ggtt->base.cleanup(&ggtt->base);
3235 
3236 	return ret;
3237 }
3238 
3239 int i915_ggtt_enable_hw(struct drm_device *dev)
3240 {
3241 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3242 		return -EIO;
3243 
3244 	return 0;
3245 }
3246 
3247 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3248 {
3249 	struct drm_i915_private *dev_priv = to_i915(dev);
3250 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3251 	struct drm_i915_gem_object *obj;
3252 	struct i915_vma *vma;
3253 	bool flush;
3254 
3255 	i915_check_and_clear_faults(dev);
3256 
3257 	/* First fill our portion of the GTT with scratch pages */
3258 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3259 			       true);
3260 
3261 	/* Cache flush objects bound into GGTT and rebind them. */
3262 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3263 		flush = false;
3264 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3265 			if (vma->vm != &ggtt->base)
3266 				continue;
3267 
3268 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3269 					      PIN_UPDATE));
3270 
3271 			flush = true;
3272 		}
3273 
3274 		if (flush)
3275 			i915_gem_clflush_object(obj, obj->pin_display);
3276 	}
3277 
3278 	if (INTEL_INFO(dev)->gen >= 8) {
3279 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3280 			chv_setup_private_ppat(dev_priv);
3281 		else
3282 			bdw_setup_private_ppat(dev_priv);
3283 
3284 		return;
3285 	}
3286 
3287 	if (USES_PPGTT(dev)) {
3288 		struct i915_address_space *vm;
3289 
3290 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3291 			/* TODO: Perhaps it shouldn't be gen6 specific */
3292 
3293 			struct i915_hw_ppgtt *ppgtt;
3294 
3295 			if (vm->is_ggtt)
3296 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3297 			else
3298 				ppgtt = i915_vm_to_ppgtt(vm);
3299 
3300 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3301 					      0, ppgtt->base.total);
3302 		}
3303 	}
3304 
3305 	i915_ggtt_flush(dev_priv);
3306 }
3307 
3308 static struct i915_vma *
3309 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3310 		      struct i915_address_space *vm,
3311 		      const struct i915_ggtt_view *ggtt_view)
3312 {
3313 	struct i915_vma *vma;
3314 
3315 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3316 		return ERR_PTR(-EINVAL);
3317 
3318 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3319 	if (vma == NULL)
3320 		return ERR_PTR(-ENOMEM);
3321 
3322 	INIT_LIST_HEAD(&vma->vm_link);
3323 	INIT_LIST_HEAD(&vma->obj_link);
3324 	INIT_LIST_HEAD(&vma->exec_list);
3325 	vma->vm = vm;
3326 	vma->obj = obj;
3327 	vma->is_ggtt = i915_is_ggtt(vm);
3328 
3329 	if (i915_is_ggtt(vm))
3330 		vma->ggtt_view = *ggtt_view;
3331 	else
3332 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3333 
3334 	list_add_tail(&vma->obj_link, &obj->vma_list);
3335 
3336 	return vma;
3337 }
3338 
3339 struct i915_vma *
3340 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3341 				  struct i915_address_space *vm)
3342 {
3343 	struct i915_vma *vma;
3344 
3345 	vma = i915_gem_obj_to_vma(obj, vm);
3346 	if (!vma)
3347 		vma = __i915_gem_vma_create(obj, vm,
3348 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3349 
3350 	return vma;
3351 }
3352 
3353 struct i915_vma *
3354 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3355 				       const struct i915_ggtt_view *view)
3356 {
3357 	struct drm_device *dev = obj->base.dev;
3358 	struct drm_i915_private *dev_priv = to_i915(dev);
3359 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3360 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3361 
3362 	if (!vma)
3363 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3364 
3365 	return vma;
3366 
3367 }
3368 
3369 static struct scatterlist *
3370 rotate_pages(const dma_addr_t *in, unsigned int offset,
3371 	     unsigned int width, unsigned int height,
3372 	     unsigned int stride,
3373 	     struct sg_table *st, struct scatterlist *sg)
3374 {
3375 	unsigned int column, row;
3376 	unsigned int src_idx;
3377 
3378 	for (column = 0; column < width; column++) {
3379 		src_idx = stride * (height - 1) + column;
3380 		for (row = 0; row < height; row++) {
3381 			st->nents++;
3382 			/* We don't need the pages, but need to initialize
3383 			 * the entries so the sg list can be happily traversed.
3384 			 * The only thing we need are DMA addresses.
3385 			 */
3386 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3387 			sg_dma_address(sg) = in[offset + src_idx];
3388 			sg_dma_len(sg) = PAGE_SIZE;
3389 			sg = sg_next(sg);
3390 			src_idx -= stride;
3391 		}
3392 	}
3393 
3394 	return sg;
3395 }
3396 
3397 static struct sg_table *
3398 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3399 			  struct drm_i915_gem_object *obj)
3400 {
3401 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3402 	unsigned int size_pages_uv;
3403 	struct sg_page_iter sg_iter;
3404 	unsigned long i;
3405 	dma_addr_t *page_addr_list;
3406 	struct sg_table *st;
3407 	unsigned int uv_start_page;
3408 	struct scatterlist *sg;
3409 	int ret = -ENOMEM;
3410 
3411 	/* Allocate a temporary list of source pages for random access. */
3412 	page_addr_list = drm_malloc_gfp(obj->base.size / PAGE_SIZE,
3413 					sizeof(dma_addr_t),
3414 					GFP_TEMPORARY);
3415 	if (!page_addr_list)
3416 		return ERR_PTR(ret);
3417 
3418 	/* Account for UV plane with NV12. */
3419 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3420 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3421 	else
3422 		size_pages_uv = 0;
3423 
3424 	/* Allocate target SG list. */
3425 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3426 	if (!st)
3427 		goto err_st_alloc;
3428 
3429 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3430 	if (ret)
3431 		goto err_sg_alloc;
3432 
3433 	/* Populate source page list from the object. */
3434 	i = 0;
3435 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3436 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3437 		i++;
3438 	}
3439 
3440 	st->nents = 0;
3441 	sg = st->sgl;
3442 
3443 	/* Rotate the pages. */
3444 	sg = rotate_pages(page_addr_list, 0,
3445 			  rot_info->plane[0].width, rot_info->plane[0].height,
3446 			  rot_info->plane[0].width,
3447 			  st, sg);
3448 
3449 	/* Append the UV plane if NV12. */
3450 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3451 		uv_start_page = size_pages;
3452 
3453 		/* Check for tile-row un-alignment. */
3454 		if (offset_in_page(rot_info->uv_offset))
3455 			uv_start_page--;
3456 
3457 		rot_info->uv_start_page = uv_start_page;
3458 
3459 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3460 				  rot_info->plane[1].width, rot_info->plane[1].height,
3461 				  rot_info->plane[1].width,
3462 				  st, sg);
3463 	}
3464 
3465 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3466 		      obj->base.size, rot_info->plane[0].width,
3467 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3468 		      size_pages);
3469 
3470 	drm_free_large(page_addr_list);
3471 
3472 	return st;
3473 
3474 err_sg_alloc:
3475 	kfree(st);
3476 err_st_alloc:
3477 	drm_free_large(page_addr_list);
3478 
3479 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3480 		      obj->base.size, ret, rot_info->plane[0].width,
3481 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3482 		      size_pages);
3483 	return ERR_PTR(ret);
3484 }
3485 
3486 static struct sg_table *
3487 intel_partial_pages(const struct i915_ggtt_view *view,
3488 		    struct drm_i915_gem_object *obj)
3489 {
3490 	struct sg_table *st;
3491 	struct scatterlist *sg;
3492 	struct sg_page_iter obj_sg_iter;
3493 	int ret = -ENOMEM;
3494 
3495 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3496 	if (!st)
3497 		goto err_st_alloc;
3498 
3499 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3500 	if (ret)
3501 		goto err_sg_alloc;
3502 
3503 	sg = st->sgl;
3504 	st->nents = 0;
3505 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3506 		view->params.partial.offset)
3507 	{
3508 		if (st->nents >= view->params.partial.size)
3509 			break;
3510 
3511 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3512 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3513 		sg_dma_len(sg) = PAGE_SIZE;
3514 
3515 		sg = sg_next(sg);
3516 		st->nents++;
3517 	}
3518 
3519 	return st;
3520 
3521 err_sg_alloc:
3522 	kfree(st);
3523 err_st_alloc:
3524 	return ERR_PTR(ret);
3525 }
3526 
3527 static int
3528 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3529 {
3530 	int ret = 0;
3531 
3532 	if (vma->ggtt_view.pages)
3533 		return 0;
3534 
3535 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3536 		vma->ggtt_view.pages = vma->obj->pages;
3537 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3538 		vma->ggtt_view.pages =
3539 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3540 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3541 		vma->ggtt_view.pages =
3542 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3543 	else
3544 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3545 			  vma->ggtt_view.type);
3546 
3547 	if (!vma->ggtt_view.pages) {
3548 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3549 			  vma->ggtt_view.type);
3550 		ret = -EINVAL;
3551 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3552 		ret = PTR_ERR(vma->ggtt_view.pages);
3553 		vma->ggtt_view.pages = NULL;
3554 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3555 			  vma->ggtt_view.type, ret);
3556 	}
3557 
3558 	return ret;
3559 }
3560 
3561 /**
3562  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3563  * @vma: VMA to map
3564  * @cache_level: mapping cache level
3565  * @flags: flags like global or local mapping
3566  *
3567  * DMA addresses are taken from the scatter-gather table of this object (or of
3568  * this VMA in case of non-default GGTT views) and PTE entries set up.
3569  * Note that DMA addresses are also the only part of the SG table we care about.
3570  */
3571 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3572 		  u32 flags)
3573 {
3574 	int ret;
3575 	u32 bind_flags;
3576 
3577 	if (WARN_ON(flags == 0))
3578 		return -EINVAL;
3579 
3580 	bind_flags = 0;
3581 	if (flags & PIN_GLOBAL)
3582 		bind_flags |= GLOBAL_BIND;
3583 	if (flags & PIN_USER)
3584 		bind_flags |= LOCAL_BIND;
3585 
3586 	if (flags & PIN_UPDATE)
3587 		bind_flags |= vma->bound;
3588 	else
3589 		bind_flags &= ~vma->bound;
3590 
3591 	if (bind_flags == 0)
3592 		return 0;
3593 
3594 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3595 		/* XXX: i915_vma_pin() will fix this +- hack */
3596 		vma->pin_count++;
3597 		trace_i915_va_alloc(vma);
3598 		ret = vma->vm->allocate_va_range(vma->vm,
3599 						 vma->node.start,
3600 						 vma->node.size);
3601 		vma->pin_count--;
3602 		if (ret)
3603 			return ret;
3604 	}
3605 
3606 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3607 	if (ret)
3608 		return ret;
3609 
3610 	vma->bound |= bind_flags;
3611 
3612 	return 0;
3613 }
3614 
3615 /**
3616  * i915_ggtt_view_size - Get the size of a GGTT view.
3617  * @obj: Object the view is of.
3618  * @view: The view in question.
3619  *
3620  * @return The size of the GGTT view in bytes.
3621  */
3622 size_t
3623 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3624 		    const struct i915_ggtt_view *view)
3625 {
3626 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3627 		return obj->base.size;
3628 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3629 		return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3630 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3631 		return view->params.partial.size << PAGE_SHIFT;
3632 	} else {
3633 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3634 		return obj->base.size;
3635 	}
3636 }
3637