xref: /linux/drivers/gpu/drm/i915/i915_gem_gtt.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94 
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97 
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102 
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 	bool has_aliasing_ppgtt;
106 	bool has_full_ppgtt;
107 
108 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110 
111 	if (intel_vgpu_active(dev))
112 		has_full_ppgtt = false; /* emulation is too hard */
113 
114 	/*
115 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 	 * execlists, the sole mechanism available to submit work.
117 	 */
118 	if (INTEL_INFO(dev)->gen < 9 &&
119 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 		return 0;
121 
122 	if (enable_ppgtt == 1)
123 		return 1;
124 
125 	if (enable_ppgtt == 2 && has_full_ppgtt)
126 		return 2;
127 
128 #ifdef CONFIG_INTEL_IOMMU
129 	/* Disable ppgtt on SNB if VT-d is on. */
130 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 		return 0;
133 	}
134 #endif
135 
136 	/* Early VLV doesn't have this */
137 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 	    dev->pdev->revision < 0xb) {
139 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 		return 0;
141 	}
142 
143 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 		return 2;
145 	else
146 		return has_aliasing_ppgtt ? 1 : 0;
147 }
148 
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 			  enum i915_cache_level cache_level,
151 			  u32 unused)
152 {
153 	u32 pte_flags = 0;
154 
155 	/* Currently applicable only to VLV */
156 	if (vma->obj->gt_ro)
157 		pte_flags |= PTE_READ_ONLY;
158 
159 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 				cache_level, pte_flags);
161 
162 	return 0;
163 }
164 
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 	vma->vm->clear_range(vma->vm,
168 			     vma->node.start,
169 			     vma->obj->base.size,
170 			     true);
171 }
172 
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 				  enum i915_cache_level level,
175 				  bool valid)
176 {
177 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 	pte |= addr;
179 
180 	switch (level) {
181 	case I915_CACHE_NONE:
182 		pte |= PPAT_UNCACHED_INDEX;
183 		break;
184 	case I915_CACHE_WT:
185 		pte |= PPAT_DISPLAY_ELLC_INDEX;
186 		break;
187 	default:
188 		pte |= PPAT_CACHED_INDEX;
189 		break;
190 	}
191 
192 	return pte;
193 }
194 
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196 				  dma_addr_t addr,
197 				  enum i915_cache_level level)
198 {
199 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200 	pde |= addr;
201 	if (level != I915_CACHE_NONE)
202 		pde |= PPAT_CACHED_PDE_INDEX;
203 	else
204 		pde |= PPAT_UNCACHED_INDEX;
205 	return pde;
206 }
207 
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209 				 enum i915_cache_level level,
210 				 bool valid, u32 unused)
211 {
212 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
214 
215 	switch (level) {
216 	case I915_CACHE_L3_LLC:
217 	case I915_CACHE_LLC:
218 		pte |= GEN6_PTE_CACHE_LLC;
219 		break;
220 	case I915_CACHE_NONE:
221 		pte |= GEN6_PTE_UNCACHED;
222 		break;
223 	default:
224 		MISSING_CASE(level);
225 	}
226 
227 	return pte;
228 }
229 
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231 				 enum i915_cache_level level,
232 				 bool valid, u32 unused)
233 {
234 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
236 
237 	switch (level) {
238 	case I915_CACHE_L3_LLC:
239 		pte |= GEN7_PTE_CACHE_L3_LLC;
240 		break;
241 	case I915_CACHE_LLC:
242 		pte |= GEN6_PTE_CACHE_LLC;
243 		break;
244 	case I915_CACHE_NONE:
245 		pte |= GEN6_PTE_UNCACHED;
246 		break;
247 	default:
248 		MISSING_CASE(level);
249 	}
250 
251 	return pte;
252 }
253 
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255 				 enum i915_cache_level level,
256 				 bool valid, u32 flags)
257 {
258 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
260 
261 	if (!(flags & PTE_READ_ONLY))
262 		pte |= BYT_PTE_WRITEABLE;
263 
264 	if (level != I915_CACHE_NONE)
265 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266 
267 	return pte;
268 }
269 
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271 				 enum i915_cache_level level,
272 				 bool valid, u32 unused)
273 {
274 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275 	pte |= HSW_PTE_ADDR_ENCODE(addr);
276 
277 	if (level != I915_CACHE_NONE)
278 		pte |= HSW_WB_LLC_AGE3;
279 
280 	return pte;
281 }
282 
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284 				  enum i915_cache_level level,
285 				  bool valid, u32 unused)
286 {
287 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288 	pte |= HSW_PTE_ADDR_ENCODE(addr);
289 
290 	switch (level) {
291 	case I915_CACHE_NONE:
292 		break;
293 	case I915_CACHE_WT:
294 		pte |= HSW_WT_ELLC_LLC_AGE3;
295 		break;
296 	default:
297 		pte |= HSW_WB_ELLC_LLC_AGE3;
298 		break;
299 	}
300 
301 	return pte;
302 }
303 
304 #define i915_dma_unmap_single(px, dev) \
305 	__i915_dma_unmap_single((px)->daddr, dev)
306 
307 static void __i915_dma_unmap_single(dma_addr_t daddr,
308 				    struct drm_device *dev)
309 {
310 	struct device *device = &dev->pdev->dev;
311 
312 	dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
313 }
314 
315 /**
316  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
317  * @px:	Page table/dir/etc to get a DMA map for
318  * @dev:	drm device
319  *
320  * Page table allocations are unified across all gens. They always require a
321  * single 4k allocation, as well as a DMA mapping. If we keep the structs
322  * symmetric here, the simple macro covers us for every page table type.
323  *
324  * Return: 0 if success.
325  */
326 #define i915_dma_map_single(px, dev) \
327 	i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
328 
329 static int i915_dma_map_page_single(struct page *page,
330 				    struct drm_device *dev,
331 				    dma_addr_t *daddr)
332 {
333 	struct device *device = &dev->pdev->dev;
334 
335 	*daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
336 	if (dma_mapping_error(device, *daddr))
337 		return -ENOMEM;
338 
339 	return 0;
340 }
341 
342 static void unmap_and_free_pt(struct i915_page_table *pt,
343 			       struct drm_device *dev)
344 {
345 	if (WARN_ON(!pt->page))
346 		return;
347 
348 	i915_dma_unmap_single(pt, dev);
349 	__free_page(pt->page);
350 	kfree(pt->used_ptes);
351 	kfree(pt);
352 }
353 
354 static void gen8_initialize_pt(struct i915_address_space *vm,
355 			       struct i915_page_table *pt)
356 {
357 	gen8_pte_t *pt_vaddr, scratch_pte;
358 	int i;
359 
360 	pt_vaddr = kmap_atomic(pt->page);
361 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
362 				      I915_CACHE_LLC, true);
363 
364 	for (i = 0; i < GEN8_PTES; i++)
365 		pt_vaddr[i] = scratch_pte;
366 
367 	if (!HAS_LLC(vm->dev))
368 		drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
369 	kunmap_atomic(pt_vaddr);
370 }
371 
372 static struct i915_page_table *alloc_pt_single(struct drm_device *dev)
373 {
374 	struct i915_page_table *pt;
375 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
376 		GEN8_PTES : GEN6_PTES;
377 	int ret = -ENOMEM;
378 
379 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
380 	if (!pt)
381 		return ERR_PTR(-ENOMEM);
382 
383 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
384 				GFP_KERNEL);
385 
386 	if (!pt->used_ptes)
387 		goto fail_bitmap;
388 
389 	pt->page = alloc_page(GFP_KERNEL);
390 	if (!pt->page)
391 		goto fail_page;
392 
393 	ret = i915_dma_map_single(pt, dev);
394 	if (ret)
395 		goto fail_dma;
396 
397 	return pt;
398 
399 fail_dma:
400 	__free_page(pt->page);
401 fail_page:
402 	kfree(pt->used_ptes);
403 fail_bitmap:
404 	kfree(pt);
405 
406 	return ERR_PTR(ret);
407 }
408 
409 static void unmap_and_free_pd(struct i915_page_directory *pd,
410 			      struct drm_device *dev)
411 {
412 	if (pd->page) {
413 		i915_dma_unmap_single(pd, dev);
414 		__free_page(pd->page);
415 		kfree(pd->used_pdes);
416 		kfree(pd);
417 	}
418 }
419 
420 static struct i915_page_directory *alloc_pd_single(struct drm_device *dev)
421 {
422 	struct i915_page_directory *pd;
423 	int ret = -ENOMEM;
424 
425 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
426 	if (!pd)
427 		return ERR_PTR(-ENOMEM);
428 
429 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
430 				sizeof(*pd->used_pdes), GFP_KERNEL);
431 	if (!pd->used_pdes)
432 		goto free_pd;
433 
434 	pd->page = alloc_page(GFP_KERNEL);
435 	if (!pd->page)
436 		goto free_bitmap;
437 
438 	ret = i915_dma_map_single(pd, dev);
439 	if (ret)
440 		goto free_page;
441 
442 	return pd;
443 
444 free_page:
445 	__free_page(pd->page);
446 free_bitmap:
447 	kfree(pd->used_pdes);
448 free_pd:
449 	kfree(pd);
450 
451 	return ERR_PTR(ret);
452 }
453 
454 /* Broadwell Page Directory Pointer Descriptors */
455 static int gen8_write_pdp(struct intel_engine_cs *ring,
456 			  unsigned entry,
457 			  dma_addr_t addr)
458 {
459 	int ret;
460 
461 	BUG_ON(entry >= 4);
462 
463 	ret = intel_ring_begin(ring, 6);
464 	if (ret)
465 		return ret;
466 
467 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
468 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
469 	intel_ring_emit(ring, upper_32_bits(addr));
470 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
471 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
472 	intel_ring_emit(ring, lower_32_bits(addr));
473 	intel_ring_advance(ring);
474 
475 	return 0;
476 }
477 
478 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
479 			  struct intel_engine_cs *ring)
480 {
481 	int i, ret;
482 
483 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
484 		struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
485 		dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
486 		/* The page directory might be NULL, but we need to clear out
487 		 * whatever the previous context might have used. */
488 		ret = gen8_write_pdp(ring, i, pd_daddr);
489 		if (ret)
490 			return ret;
491 	}
492 
493 	return 0;
494 }
495 
496 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
497 				   uint64_t start,
498 				   uint64_t length,
499 				   bool use_scratch)
500 {
501 	struct i915_hw_ppgtt *ppgtt =
502 		container_of(vm, struct i915_hw_ppgtt, base);
503 	gen8_pte_t *pt_vaddr, scratch_pte;
504 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
505 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
506 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
507 	unsigned num_entries = length >> PAGE_SHIFT;
508 	unsigned last_pte, i;
509 
510 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
511 				      I915_CACHE_LLC, use_scratch);
512 
513 	while (num_entries) {
514 		struct i915_page_directory *pd;
515 		struct i915_page_table *pt;
516 		struct page *page_table;
517 
518 		if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
519 			break;
520 
521 		pd = ppgtt->pdp.page_directory[pdpe];
522 
523 		if (WARN_ON(!pd->page_table[pde]))
524 			break;
525 
526 		pt = pd->page_table[pde];
527 
528 		if (WARN_ON(!pt->page))
529 			break;
530 
531 		page_table = pt->page;
532 
533 		last_pte = pte + num_entries;
534 		if (last_pte > GEN8_PTES)
535 			last_pte = GEN8_PTES;
536 
537 		pt_vaddr = kmap_atomic(page_table);
538 
539 		for (i = pte; i < last_pte; i++) {
540 			pt_vaddr[i] = scratch_pte;
541 			num_entries--;
542 		}
543 
544 		if (!HAS_LLC(ppgtt->base.dev))
545 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
546 		kunmap_atomic(pt_vaddr);
547 
548 		pte = 0;
549 		if (++pde == I915_PDES) {
550 			pdpe++;
551 			pde = 0;
552 		}
553 	}
554 }
555 
556 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
557 				      struct sg_table *pages,
558 				      uint64_t start,
559 				      enum i915_cache_level cache_level, u32 unused)
560 {
561 	struct i915_hw_ppgtt *ppgtt =
562 		container_of(vm, struct i915_hw_ppgtt, base);
563 	gen8_pte_t *pt_vaddr;
564 	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
565 	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
566 	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
567 	struct sg_page_iter sg_iter;
568 
569 	pt_vaddr = NULL;
570 
571 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
572 		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
573 			break;
574 
575 		if (pt_vaddr == NULL) {
576 			struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
577 			struct i915_page_table *pt = pd->page_table[pde];
578 			struct page *page_table = pt->page;
579 
580 			pt_vaddr = kmap_atomic(page_table);
581 		}
582 
583 		pt_vaddr[pte] =
584 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
585 					cache_level, true);
586 		if (++pte == GEN8_PTES) {
587 			if (!HAS_LLC(ppgtt->base.dev))
588 				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
589 			kunmap_atomic(pt_vaddr);
590 			pt_vaddr = NULL;
591 			if (++pde == I915_PDES) {
592 				pdpe++;
593 				pde = 0;
594 			}
595 			pte = 0;
596 		}
597 	}
598 	if (pt_vaddr) {
599 		if (!HAS_LLC(ppgtt->base.dev))
600 			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
601 		kunmap_atomic(pt_vaddr);
602 	}
603 }
604 
605 static void __gen8_do_map_pt(gen8_pde_t * const pde,
606 			     struct i915_page_table *pt,
607 			     struct drm_device *dev)
608 {
609 	gen8_pde_t entry =
610 		gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
611 	*pde = entry;
612 }
613 
614 static void gen8_initialize_pd(struct i915_address_space *vm,
615 			       struct i915_page_directory *pd)
616 {
617 	struct i915_hw_ppgtt *ppgtt =
618 			container_of(vm, struct i915_hw_ppgtt, base);
619 	gen8_pde_t *page_directory;
620 	struct i915_page_table *pt;
621 	int i;
622 
623 	page_directory = kmap_atomic(pd->page);
624 	pt = ppgtt->scratch_pt;
625 	for (i = 0; i < I915_PDES; i++)
626 		/* Map the PDE to the page table */
627 		__gen8_do_map_pt(page_directory + i, pt, vm->dev);
628 
629 	if (!HAS_LLC(vm->dev))
630 		drm_clflush_virt_range(page_directory, PAGE_SIZE);
631 	kunmap_atomic(page_directory);
632 }
633 
634 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
635 {
636 	int i;
637 
638 	if (!pd->page)
639 		return;
640 
641 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
642 		if (WARN_ON(!pd->page_table[i]))
643 			continue;
644 
645 		unmap_and_free_pt(pd->page_table[i], dev);
646 		pd->page_table[i] = NULL;
647 	}
648 }
649 
650 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
651 {
652 	struct i915_hw_ppgtt *ppgtt =
653 		container_of(vm, struct i915_hw_ppgtt, base);
654 	int i;
655 
656 	for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
657 		if (WARN_ON(!ppgtt->pdp.page_directory[i]))
658 			continue;
659 
660 		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
661 		unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
662 	}
663 
664 	unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
665 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
666 }
667 
668 /**
669  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
670  * @ppgtt:	Master ppgtt structure.
671  * @pd:		Page directory for this address range.
672  * @start:	Starting virtual address to begin allocations.
673  * @length	Size of the allocations.
674  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
675  *		caller to free on error.
676  *
677  * Allocate the required number of page tables. Extremely similar to
678  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
679  * the page directory boundary (instead of the page directory pointer). That
680  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
681  * possible, and likely that the caller will need to use multiple calls of this
682  * function to achieve the appropriate allocation.
683  *
684  * Return: 0 if success; negative error code otherwise.
685  */
686 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
687 				     struct i915_page_directory *pd,
688 				     uint64_t start,
689 				     uint64_t length,
690 				     unsigned long *new_pts)
691 {
692 	struct drm_device *dev = ppgtt->base.dev;
693 	struct i915_page_table *pt;
694 	uint64_t temp;
695 	uint32_t pde;
696 
697 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
698 		/* Don't reallocate page tables */
699 		if (pt) {
700 			/* Scratch is never allocated this way */
701 			WARN_ON(pt == ppgtt->scratch_pt);
702 			continue;
703 		}
704 
705 		pt = alloc_pt_single(dev);
706 		if (IS_ERR(pt))
707 			goto unwind_out;
708 
709 		gen8_initialize_pt(&ppgtt->base, pt);
710 		pd->page_table[pde] = pt;
711 		set_bit(pde, new_pts);
712 	}
713 
714 	return 0;
715 
716 unwind_out:
717 	for_each_set_bit(pde, new_pts, I915_PDES)
718 		unmap_and_free_pt(pd->page_table[pde], dev);
719 
720 	return -ENOMEM;
721 }
722 
723 /**
724  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
725  * @ppgtt:	Master ppgtt structure.
726  * @pdp:	Page directory pointer for this address range.
727  * @start:	Starting virtual address to begin allocations.
728  * @length	Size of the allocations.
729  * @new_pds	Bitmap set by function with new allocations. Likely used by the
730  *		caller to free on error.
731  *
732  * Allocate the required number of page directories starting at the pde index of
733  * @start, and ending at the pde index @start + @length. This function will skip
734  * over already allocated page directories within the range, and only allocate
735  * new ones, setting the appropriate pointer within the pdp as well as the
736  * correct position in the bitmap @new_pds.
737  *
738  * The function will only allocate the pages within the range for a give page
739  * directory pointer. In other words, if @start + @length straddles a virtually
740  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
741  * required by the caller, This is not currently possible, and the BUG in the
742  * code will prevent it.
743  *
744  * Return: 0 if success; negative error code otherwise.
745  */
746 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
747 				     struct i915_page_directory_pointer *pdp,
748 				     uint64_t start,
749 				     uint64_t length,
750 				     unsigned long *new_pds)
751 {
752 	struct drm_device *dev = ppgtt->base.dev;
753 	struct i915_page_directory *pd;
754 	uint64_t temp;
755 	uint32_t pdpe;
756 
757 	WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
758 
759 	/* FIXME: upper bound must not overflow 32 bits  */
760 	WARN_ON((start + length) > (1ULL << 32));
761 
762 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
763 		if (pd)
764 			continue;
765 
766 		pd = alloc_pd_single(dev);
767 		if (IS_ERR(pd))
768 			goto unwind_out;
769 
770 		gen8_initialize_pd(&ppgtt->base, pd);
771 		pdp->page_directory[pdpe] = pd;
772 		set_bit(pdpe, new_pds);
773 	}
774 
775 	return 0;
776 
777 unwind_out:
778 	for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
779 		unmap_and_free_pd(pdp->page_directory[pdpe], dev);
780 
781 	return -ENOMEM;
782 }
783 
784 static void
785 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
786 {
787 	int i;
788 
789 	for (i = 0; i < GEN8_LEGACY_PDPES; i++)
790 		kfree(new_pts[i]);
791 	kfree(new_pts);
792 	kfree(new_pds);
793 }
794 
795 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
796  * of these are based on the number of PDPEs in the system.
797  */
798 static
799 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
800 					 unsigned long ***new_pts)
801 {
802 	int i;
803 	unsigned long *pds;
804 	unsigned long **pts;
805 
806 	pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
807 	if (!pds)
808 		return -ENOMEM;
809 
810 	pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
811 	if (!pts) {
812 		kfree(pds);
813 		return -ENOMEM;
814 	}
815 
816 	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
817 		pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
818 				 sizeof(unsigned long), GFP_KERNEL);
819 		if (!pts[i])
820 			goto err_out;
821 	}
822 
823 	*new_pds = pds;
824 	*new_pts = pts;
825 
826 	return 0;
827 
828 err_out:
829 	free_gen8_temp_bitmaps(pds, pts);
830 	return -ENOMEM;
831 }
832 
833 static int gen8_alloc_va_range(struct i915_address_space *vm,
834 			       uint64_t start,
835 			       uint64_t length)
836 {
837 	struct i915_hw_ppgtt *ppgtt =
838 		container_of(vm, struct i915_hw_ppgtt, base);
839 	unsigned long *new_page_dirs, **new_page_tables;
840 	struct i915_page_directory *pd;
841 	const uint64_t orig_start = start;
842 	const uint64_t orig_length = length;
843 	uint64_t temp;
844 	uint32_t pdpe;
845 	int ret;
846 
847 	/* Wrap is never okay since we can only represent 48b, and we don't
848 	 * actually use the other side of the canonical address space.
849 	 */
850 	if (WARN_ON(start + length < start))
851 		return -ERANGE;
852 
853 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
854 	if (ret)
855 		return ret;
856 
857 	/* Do the allocations first so we can easily bail out */
858 	ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
859 					new_page_dirs);
860 	if (ret) {
861 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
862 		return ret;
863 	}
864 
865 	/* For every page directory referenced, allocate page tables */
866 	gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
867 		ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
868 						new_page_tables[pdpe]);
869 		if (ret)
870 			goto err_out;
871 	}
872 
873 	start = orig_start;
874 	length = orig_length;
875 
876 	/* Allocations have completed successfully, so set the bitmaps, and do
877 	 * the mappings. */
878 	gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
879 		gen8_pde_t *const page_directory = kmap_atomic(pd->page);
880 		struct i915_page_table *pt;
881 		uint64_t pd_len = gen8_clamp_pd(start, length);
882 		uint64_t pd_start = start;
883 		uint32_t pde;
884 
885 		/* Every pd should be allocated, we just did that above. */
886 		WARN_ON(!pd);
887 
888 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
889 			/* Same reasoning as pd */
890 			WARN_ON(!pt);
891 			WARN_ON(!pd_len);
892 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
893 
894 			/* Set our used ptes within the page table */
895 			bitmap_set(pt->used_ptes,
896 				   gen8_pte_index(pd_start),
897 				   gen8_pte_count(pd_start, pd_len));
898 
899 			/* Our pde is now pointing to the pagetable, pt */
900 			set_bit(pde, pd->used_pdes);
901 
902 			/* Map the PDE to the page table */
903 			__gen8_do_map_pt(page_directory + pde, pt, vm->dev);
904 
905 			/* NB: We haven't yet mapped ptes to pages. At this
906 			 * point we're still relying on insert_entries() */
907 		}
908 
909 		if (!HAS_LLC(vm->dev))
910 			drm_clflush_virt_range(page_directory, PAGE_SIZE);
911 
912 		kunmap_atomic(page_directory);
913 
914 		set_bit(pdpe, ppgtt->pdp.used_pdpes);
915 	}
916 
917 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
918 	return 0;
919 
920 err_out:
921 	while (pdpe--) {
922 		for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
923 			unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
924 	}
925 
926 	for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
927 		unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
928 
929 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
930 	return ret;
931 }
932 
933 /*
934  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
935  * with a net effect resembling a 2-level page table in normal x86 terms. Each
936  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
937  * space.
938  *
939  */
940 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
941 {
942 	ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
943 	if (IS_ERR(ppgtt->scratch_pt))
944 		return PTR_ERR(ppgtt->scratch_pt);
945 
946 	ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
947 	if (IS_ERR(ppgtt->scratch_pd))
948 		return PTR_ERR(ppgtt->scratch_pd);
949 
950 	gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
951 	gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
952 
953 	ppgtt->base.start = 0;
954 	ppgtt->base.total = 1ULL << 32;
955 	if (IS_ENABLED(CONFIG_X86_32))
956 		/* While we have a proliferation of size_t variables
957 		 * we cannot represent the full ppgtt size on 32bit,
958 		 * so limit it to the same size as the GGTT (currently
959 		 * 2GiB).
960 		 */
961 		ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
962 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
963 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
964 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
965 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
966 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
967 	ppgtt->base.bind_vma = ppgtt_bind_vma;
968 
969 	ppgtt->switch_mm = gen8_mm_switch;
970 
971 	return 0;
972 }
973 
974 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
975 {
976 	struct i915_address_space *vm = &ppgtt->base;
977 	struct i915_page_table *unused;
978 	gen6_pte_t scratch_pte;
979 	uint32_t pd_entry;
980 	uint32_t  pte, pde, temp;
981 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
982 
983 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
984 
985 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
986 		u32 expected;
987 		gen6_pte_t *pt_vaddr;
988 		dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
989 		pd_entry = readl(ppgtt->pd_addr + pde);
990 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
991 
992 		if (pd_entry != expected)
993 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
994 				   pde,
995 				   pd_entry,
996 				   expected);
997 		seq_printf(m, "\tPDE: %x\n", pd_entry);
998 
999 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1000 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1001 			unsigned long va =
1002 				(pde * PAGE_SIZE * GEN6_PTES) +
1003 				(pte * PAGE_SIZE);
1004 			int i;
1005 			bool found = false;
1006 			for (i = 0; i < 4; i++)
1007 				if (pt_vaddr[pte + i] != scratch_pte)
1008 					found = true;
1009 			if (!found)
1010 				continue;
1011 
1012 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1013 			for (i = 0; i < 4; i++) {
1014 				if (pt_vaddr[pte + i] != scratch_pte)
1015 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1016 				else
1017 					seq_puts(m, "  SCRATCH ");
1018 			}
1019 			seq_puts(m, "\n");
1020 		}
1021 		kunmap_atomic(pt_vaddr);
1022 	}
1023 }
1024 
1025 /* Write pde (index) from the page directory @pd to the page table @pt */
1026 static void gen6_write_pde(struct i915_page_directory *pd,
1027 			    const int pde, struct i915_page_table *pt)
1028 {
1029 	/* Caller needs to make sure the write completes if necessary */
1030 	struct i915_hw_ppgtt *ppgtt =
1031 		container_of(pd, struct i915_hw_ppgtt, pd);
1032 	u32 pd_entry;
1033 
1034 	pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1035 	pd_entry |= GEN6_PDE_VALID;
1036 
1037 	writel(pd_entry, ppgtt->pd_addr + pde);
1038 }
1039 
1040 /* Write all the page tables found in the ppgtt structure to incrementing page
1041  * directories. */
1042 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1043 				  struct i915_page_directory *pd,
1044 				  uint32_t start, uint32_t length)
1045 {
1046 	struct i915_page_table *pt;
1047 	uint32_t pde, temp;
1048 
1049 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1050 		gen6_write_pde(pd, pde, pt);
1051 
1052 	/* Make sure write is complete before other code can use this page
1053 	 * table. Also require for WC mapped PTEs */
1054 	readl(dev_priv->gtt.gsm);
1055 }
1056 
1057 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1058 {
1059 	BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1060 
1061 	return (ppgtt->pd.pd_offset / 64) << 16;
1062 }
1063 
1064 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1065 			 struct intel_engine_cs *ring)
1066 {
1067 	int ret;
1068 
1069 	/* NB: TLBs must be flushed and invalidated before a switch */
1070 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1071 	if (ret)
1072 		return ret;
1073 
1074 	ret = intel_ring_begin(ring, 6);
1075 	if (ret)
1076 		return ret;
1077 
1078 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1079 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1080 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1081 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1082 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1083 	intel_ring_emit(ring, MI_NOOP);
1084 	intel_ring_advance(ring);
1085 
1086 	return 0;
1087 }
1088 
1089 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1090 			  struct intel_engine_cs *ring)
1091 {
1092 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1093 
1094 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1095 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1096 	return 0;
1097 }
1098 
1099 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1100 			  struct intel_engine_cs *ring)
1101 {
1102 	int ret;
1103 
1104 	/* NB: TLBs must be flushed and invalidated before a switch */
1105 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1106 	if (ret)
1107 		return ret;
1108 
1109 	ret = intel_ring_begin(ring, 6);
1110 	if (ret)
1111 		return ret;
1112 
1113 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1114 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1115 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1116 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1117 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1118 	intel_ring_emit(ring, MI_NOOP);
1119 	intel_ring_advance(ring);
1120 
1121 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1122 	if (ring->id != RCS) {
1123 		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1132 			  struct intel_engine_cs *ring)
1133 {
1134 	struct drm_device *dev = ppgtt->base.dev;
1135 	struct drm_i915_private *dev_priv = dev->dev_private;
1136 
1137 
1138 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1139 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1140 
1141 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1142 
1143 	return 0;
1144 }
1145 
1146 static void gen8_ppgtt_enable(struct drm_device *dev)
1147 {
1148 	struct drm_i915_private *dev_priv = dev->dev_private;
1149 	struct intel_engine_cs *ring;
1150 	int j;
1151 
1152 	for_each_ring(ring, dev_priv, j) {
1153 		I915_WRITE(RING_MODE_GEN7(ring),
1154 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1155 	}
1156 }
1157 
1158 static void gen7_ppgtt_enable(struct drm_device *dev)
1159 {
1160 	struct drm_i915_private *dev_priv = dev->dev_private;
1161 	struct intel_engine_cs *ring;
1162 	uint32_t ecochk, ecobits;
1163 	int i;
1164 
1165 	ecobits = I915_READ(GAC_ECO_BITS);
1166 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1167 
1168 	ecochk = I915_READ(GAM_ECOCHK);
1169 	if (IS_HASWELL(dev)) {
1170 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1171 	} else {
1172 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1173 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1174 	}
1175 	I915_WRITE(GAM_ECOCHK, ecochk);
1176 
1177 	for_each_ring(ring, dev_priv, i) {
1178 		/* GFX_MODE is per-ring on gen7+ */
1179 		I915_WRITE(RING_MODE_GEN7(ring),
1180 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1181 	}
1182 }
1183 
1184 static void gen6_ppgtt_enable(struct drm_device *dev)
1185 {
1186 	struct drm_i915_private *dev_priv = dev->dev_private;
1187 	uint32_t ecochk, gab_ctl, ecobits;
1188 
1189 	ecobits = I915_READ(GAC_ECO_BITS);
1190 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1191 		   ECOBITS_PPGTT_CACHE64B);
1192 
1193 	gab_ctl = I915_READ(GAB_CTL);
1194 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1195 
1196 	ecochk = I915_READ(GAM_ECOCHK);
1197 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1198 
1199 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1200 }
1201 
1202 /* PPGTT support for Sandybdrige/Gen6 and later */
1203 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1204 				   uint64_t start,
1205 				   uint64_t length,
1206 				   bool use_scratch)
1207 {
1208 	struct i915_hw_ppgtt *ppgtt =
1209 		container_of(vm, struct i915_hw_ppgtt, base);
1210 	gen6_pte_t *pt_vaddr, scratch_pte;
1211 	unsigned first_entry = start >> PAGE_SHIFT;
1212 	unsigned num_entries = length >> PAGE_SHIFT;
1213 	unsigned act_pt = first_entry / GEN6_PTES;
1214 	unsigned first_pte = first_entry % GEN6_PTES;
1215 	unsigned last_pte, i;
1216 
1217 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1218 
1219 	while (num_entries) {
1220 		last_pte = first_pte + num_entries;
1221 		if (last_pte > GEN6_PTES)
1222 			last_pte = GEN6_PTES;
1223 
1224 		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1225 
1226 		for (i = first_pte; i < last_pte; i++)
1227 			pt_vaddr[i] = scratch_pte;
1228 
1229 		kunmap_atomic(pt_vaddr);
1230 
1231 		num_entries -= last_pte - first_pte;
1232 		first_pte = 0;
1233 		act_pt++;
1234 	}
1235 }
1236 
1237 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1238 				      struct sg_table *pages,
1239 				      uint64_t start,
1240 				      enum i915_cache_level cache_level, u32 flags)
1241 {
1242 	struct i915_hw_ppgtt *ppgtt =
1243 		container_of(vm, struct i915_hw_ppgtt, base);
1244 	gen6_pte_t *pt_vaddr;
1245 	unsigned first_entry = start >> PAGE_SHIFT;
1246 	unsigned act_pt = first_entry / GEN6_PTES;
1247 	unsigned act_pte = first_entry % GEN6_PTES;
1248 	struct sg_page_iter sg_iter;
1249 
1250 	pt_vaddr = NULL;
1251 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1252 		if (pt_vaddr == NULL)
1253 			pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1254 
1255 		pt_vaddr[act_pte] =
1256 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1257 				       cache_level, true, flags);
1258 
1259 		if (++act_pte == GEN6_PTES) {
1260 			kunmap_atomic(pt_vaddr);
1261 			pt_vaddr = NULL;
1262 			act_pt++;
1263 			act_pte = 0;
1264 		}
1265 	}
1266 	if (pt_vaddr)
1267 		kunmap_atomic(pt_vaddr);
1268 }
1269 
1270 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1271  * are switching between contexts with the same LRCA, we also must do a force
1272  * restore.
1273  */
1274 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1275 {
1276 	/* If current vm != vm, */
1277 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1278 }
1279 
1280 static void gen6_initialize_pt(struct i915_address_space *vm,
1281 		struct i915_page_table *pt)
1282 {
1283 	gen6_pte_t *pt_vaddr, scratch_pte;
1284 	int i;
1285 
1286 	WARN_ON(vm->scratch.addr == 0);
1287 
1288 	scratch_pte = vm->pte_encode(vm->scratch.addr,
1289 			I915_CACHE_LLC, true, 0);
1290 
1291 	pt_vaddr = kmap_atomic(pt->page);
1292 
1293 	for (i = 0; i < GEN6_PTES; i++)
1294 		pt_vaddr[i] = scratch_pte;
1295 
1296 	kunmap_atomic(pt_vaddr);
1297 }
1298 
1299 static int gen6_alloc_va_range(struct i915_address_space *vm,
1300 			       uint64_t start, uint64_t length)
1301 {
1302 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1303 	struct drm_device *dev = vm->dev;
1304 	struct drm_i915_private *dev_priv = dev->dev_private;
1305 	struct i915_hw_ppgtt *ppgtt =
1306 				container_of(vm, struct i915_hw_ppgtt, base);
1307 	struct i915_page_table *pt;
1308 	const uint32_t start_save = start, length_save = length;
1309 	uint32_t pde, temp;
1310 	int ret;
1311 
1312 	WARN_ON(upper_32_bits(start));
1313 
1314 	bitmap_zero(new_page_tables, I915_PDES);
1315 
1316 	/* The allocation is done in two stages so that we can bail out with
1317 	 * minimal amount of pain. The first stage finds new page tables that
1318 	 * need allocation. The second stage marks use ptes within the page
1319 	 * tables.
1320 	 */
1321 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1322 		if (pt != ppgtt->scratch_pt) {
1323 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1324 			continue;
1325 		}
1326 
1327 		/* We've already allocated a page table */
1328 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1329 
1330 		pt = alloc_pt_single(dev);
1331 		if (IS_ERR(pt)) {
1332 			ret = PTR_ERR(pt);
1333 			goto unwind_out;
1334 		}
1335 
1336 		gen6_initialize_pt(vm, pt);
1337 
1338 		ppgtt->pd.page_table[pde] = pt;
1339 		set_bit(pde, new_page_tables);
1340 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1341 	}
1342 
1343 	start = start_save;
1344 	length = length_save;
1345 
1346 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1347 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1348 
1349 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1350 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1351 			   gen6_pte_count(start, length));
1352 
1353 		if (test_and_clear_bit(pde, new_page_tables))
1354 			gen6_write_pde(&ppgtt->pd, pde, pt);
1355 
1356 		trace_i915_page_table_entry_map(vm, pde, pt,
1357 					 gen6_pte_index(start),
1358 					 gen6_pte_count(start, length),
1359 					 GEN6_PTES);
1360 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1361 				GEN6_PTES);
1362 	}
1363 
1364 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1365 
1366 	/* Make sure write is complete before other code can use this page
1367 	 * table. Also require for WC mapped PTEs */
1368 	readl(dev_priv->gtt.gsm);
1369 
1370 	mark_tlbs_dirty(ppgtt);
1371 	return 0;
1372 
1373 unwind_out:
1374 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1375 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1376 
1377 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1378 		unmap_and_free_pt(pt, vm->dev);
1379 	}
1380 
1381 	mark_tlbs_dirty(ppgtt);
1382 	return ret;
1383 }
1384 
1385 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1386 {
1387 	struct i915_hw_ppgtt *ppgtt =
1388 		container_of(vm, struct i915_hw_ppgtt, base);
1389 	struct i915_page_table *pt;
1390 	uint32_t pde;
1391 
1392 
1393 	drm_mm_remove_node(&ppgtt->node);
1394 
1395 	gen6_for_all_pdes(pt, ppgtt, pde) {
1396 		if (pt != ppgtt->scratch_pt)
1397 			unmap_and_free_pt(pt, ppgtt->base.dev);
1398 	}
1399 
1400 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1401 	unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1402 }
1403 
1404 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1405 {
1406 	struct drm_device *dev = ppgtt->base.dev;
1407 	struct drm_i915_private *dev_priv = dev->dev_private;
1408 	bool retried = false;
1409 	int ret;
1410 
1411 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1412 	 * allocator works in address space sizes, so it's multiplied by page
1413 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1414 	 */
1415 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1416 	ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1417 	if (IS_ERR(ppgtt->scratch_pt))
1418 		return PTR_ERR(ppgtt->scratch_pt);
1419 
1420 	gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1421 
1422 alloc:
1423 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1424 						  &ppgtt->node, GEN6_PD_SIZE,
1425 						  GEN6_PD_ALIGN, 0,
1426 						  0, dev_priv->gtt.base.total,
1427 						  DRM_MM_TOPDOWN);
1428 	if (ret == -ENOSPC && !retried) {
1429 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1430 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1431 					       I915_CACHE_NONE,
1432 					       0, dev_priv->gtt.base.total,
1433 					       0);
1434 		if (ret)
1435 			goto err_out;
1436 
1437 		retried = true;
1438 		goto alloc;
1439 	}
1440 
1441 	if (ret)
1442 		goto err_out;
1443 
1444 
1445 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1446 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1447 
1448 	return 0;
1449 
1450 err_out:
1451 	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1452 	return ret;
1453 }
1454 
1455 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1456 {
1457 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1458 }
1459 
1460 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1461 				  uint64_t start, uint64_t length)
1462 {
1463 	struct i915_page_table *unused;
1464 	uint32_t pde, temp;
1465 
1466 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1467 		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1468 }
1469 
1470 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 	struct drm_device *dev = ppgtt->base.dev;
1473 	struct drm_i915_private *dev_priv = dev->dev_private;
1474 	int ret;
1475 
1476 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1477 	if (IS_GEN6(dev)) {
1478 		ppgtt->switch_mm = gen6_mm_switch;
1479 	} else if (IS_HASWELL(dev)) {
1480 		ppgtt->switch_mm = hsw_mm_switch;
1481 	} else if (IS_GEN7(dev)) {
1482 		ppgtt->switch_mm = gen7_mm_switch;
1483 	} else
1484 		BUG();
1485 
1486 	if (intel_vgpu_active(dev))
1487 		ppgtt->switch_mm = vgpu_mm_switch;
1488 
1489 	ret = gen6_ppgtt_alloc(ppgtt);
1490 	if (ret)
1491 		return ret;
1492 
1493 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1494 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1495 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1496 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1497 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1498 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1499 	ppgtt->base.start = 0;
1500 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1501 	ppgtt->debug_dump = gen6_dump_ppgtt;
1502 
1503 	ppgtt->pd.pd_offset =
1504 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1505 
1506 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1507 		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1508 
1509 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1510 
1511 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1512 
1513 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1514 			 ppgtt->node.size >> 20,
1515 			 ppgtt->node.start / PAGE_SIZE);
1516 
1517 	DRM_DEBUG("Adding PPGTT at offset %x\n",
1518 		  ppgtt->pd.pd_offset << 10);
1519 
1520 	return 0;
1521 }
1522 
1523 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1524 {
1525 	struct drm_i915_private *dev_priv = dev->dev_private;
1526 
1527 	ppgtt->base.dev = dev;
1528 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1529 
1530 	if (INTEL_INFO(dev)->gen < 8)
1531 		return gen6_ppgtt_init(ppgtt);
1532 	else
1533 		return gen8_ppgtt_init(ppgtt);
1534 }
1535 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1536 {
1537 	struct drm_i915_private *dev_priv = dev->dev_private;
1538 	int ret = 0;
1539 
1540 	ret = __hw_ppgtt_init(dev, ppgtt);
1541 	if (ret == 0) {
1542 		kref_init(&ppgtt->ref);
1543 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1544 			    ppgtt->base.total);
1545 		i915_init_vm(dev_priv, &ppgtt->base);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 int i915_ppgtt_init_hw(struct drm_device *dev)
1552 {
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 	struct intel_engine_cs *ring;
1555 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1556 	int i, ret = 0;
1557 
1558 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1559 	 * and the PDPs are contained within the context itself.  We don't
1560 	 * need to do anything here. */
1561 	if (i915.enable_execlists)
1562 		return 0;
1563 
1564 	if (!USES_PPGTT(dev))
1565 		return 0;
1566 
1567 	if (IS_GEN6(dev))
1568 		gen6_ppgtt_enable(dev);
1569 	else if (IS_GEN7(dev))
1570 		gen7_ppgtt_enable(dev);
1571 	else if (INTEL_INFO(dev)->gen >= 8)
1572 		gen8_ppgtt_enable(dev);
1573 	else
1574 		MISSING_CASE(INTEL_INFO(dev)->gen);
1575 
1576 	if (ppgtt) {
1577 		for_each_ring(ring, dev_priv, i) {
1578 			ret = ppgtt->switch_mm(ppgtt, ring);
1579 			if (ret != 0)
1580 				return ret;
1581 		}
1582 	}
1583 
1584 	return ret;
1585 }
1586 struct i915_hw_ppgtt *
1587 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1588 {
1589 	struct i915_hw_ppgtt *ppgtt;
1590 	int ret;
1591 
1592 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1593 	if (!ppgtt)
1594 		return ERR_PTR(-ENOMEM);
1595 
1596 	ret = i915_ppgtt_init(dev, ppgtt);
1597 	if (ret) {
1598 		kfree(ppgtt);
1599 		return ERR_PTR(ret);
1600 	}
1601 
1602 	ppgtt->file_priv = fpriv;
1603 
1604 	trace_i915_ppgtt_create(&ppgtt->base);
1605 
1606 	return ppgtt;
1607 }
1608 
1609 void  i915_ppgtt_release(struct kref *kref)
1610 {
1611 	struct i915_hw_ppgtt *ppgtt =
1612 		container_of(kref, struct i915_hw_ppgtt, ref);
1613 
1614 	trace_i915_ppgtt_release(&ppgtt->base);
1615 
1616 	/* vmas should already be unbound */
1617 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1618 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1619 
1620 	list_del(&ppgtt->base.global_link);
1621 	drm_mm_takedown(&ppgtt->base.mm);
1622 
1623 	ppgtt->base.cleanup(&ppgtt->base);
1624 	kfree(ppgtt);
1625 }
1626 
1627 extern int intel_iommu_gfx_mapped;
1628 /* Certain Gen5 chipsets require require idling the GPU before
1629  * unmapping anything from the GTT when VT-d is enabled.
1630  */
1631 static bool needs_idle_maps(struct drm_device *dev)
1632 {
1633 #ifdef CONFIG_INTEL_IOMMU
1634 	/* Query intel_iommu to see if we need the workaround. Presumably that
1635 	 * was loaded first.
1636 	 */
1637 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1638 		return true;
1639 #endif
1640 	return false;
1641 }
1642 
1643 static bool do_idling(struct drm_i915_private *dev_priv)
1644 {
1645 	bool ret = dev_priv->mm.interruptible;
1646 
1647 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1648 		dev_priv->mm.interruptible = false;
1649 		if (i915_gpu_idle(dev_priv->dev)) {
1650 			DRM_ERROR("Couldn't idle GPU\n");
1651 			/* Wait a bit, in hopes it avoids the hang */
1652 			udelay(10);
1653 		}
1654 	}
1655 
1656 	return ret;
1657 }
1658 
1659 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1660 {
1661 	if (unlikely(dev_priv->gtt.do_idle_maps))
1662 		dev_priv->mm.interruptible = interruptible;
1663 }
1664 
1665 void i915_check_and_clear_faults(struct drm_device *dev)
1666 {
1667 	struct drm_i915_private *dev_priv = dev->dev_private;
1668 	struct intel_engine_cs *ring;
1669 	int i;
1670 
1671 	if (INTEL_INFO(dev)->gen < 6)
1672 		return;
1673 
1674 	for_each_ring(ring, dev_priv, i) {
1675 		u32 fault_reg;
1676 		fault_reg = I915_READ(RING_FAULT_REG(ring));
1677 		if (fault_reg & RING_FAULT_VALID) {
1678 			DRM_DEBUG_DRIVER("Unexpected fault\n"
1679 					 "\tAddr: 0x%08lx\n"
1680 					 "\tAddress space: %s\n"
1681 					 "\tSource ID: %d\n"
1682 					 "\tType: %d\n",
1683 					 fault_reg & PAGE_MASK,
1684 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1685 					 RING_FAULT_SRCID(fault_reg),
1686 					 RING_FAULT_FAULT_TYPE(fault_reg));
1687 			I915_WRITE(RING_FAULT_REG(ring),
1688 				   fault_reg & ~RING_FAULT_VALID);
1689 		}
1690 	}
1691 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1692 }
1693 
1694 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1695 {
1696 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1697 		intel_gtt_chipset_flush();
1698 	} else {
1699 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1700 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1701 	}
1702 }
1703 
1704 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1705 {
1706 	struct drm_i915_private *dev_priv = dev->dev_private;
1707 
1708 	/* Don't bother messing with faults pre GEN6 as we have little
1709 	 * documentation supporting that it's a good idea.
1710 	 */
1711 	if (INTEL_INFO(dev)->gen < 6)
1712 		return;
1713 
1714 	i915_check_and_clear_faults(dev);
1715 
1716 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1717 				       dev_priv->gtt.base.start,
1718 				       dev_priv->gtt.base.total,
1719 				       true);
1720 
1721 	i915_ggtt_flush(dev_priv);
1722 }
1723 
1724 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1725 {
1726 	if (obj->has_dma_mapping)
1727 		return 0;
1728 
1729 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1730 			obj->pages->sgl, obj->pages->nents,
1731 			PCI_DMA_BIDIRECTIONAL))
1732 		return -ENOSPC;
1733 
1734 	return 0;
1735 }
1736 
1737 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1738 {
1739 #ifdef writeq
1740 	writeq(pte, addr);
1741 #else
1742 	iowrite32((u32)pte, addr);
1743 	iowrite32(pte >> 32, addr + 4);
1744 #endif
1745 }
1746 
1747 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1748 				     struct sg_table *st,
1749 				     uint64_t start,
1750 				     enum i915_cache_level level, u32 unused)
1751 {
1752 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1753 	unsigned first_entry = start >> PAGE_SHIFT;
1754 	gen8_pte_t __iomem *gtt_entries =
1755 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1756 	int i = 0;
1757 	struct sg_page_iter sg_iter;
1758 	dma_addr_t addr = 0; /* shut up gcc */
1759 
1760 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1761 		addr = sg_dma_address(sg_iter.sg) +
1762 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1763 		gen8_set_pte(&gtt_entries[i],
1764 			     gen8_pte_encode(addr, level, true));
1765 		i++;
1766 	}
1767 
1768 	/*
1769 	 * XXX: This serves as a posting read to make sure that the PTE has
1770 	 * actually been updated. There is some concern that even though
1771 	 * registers and PTEs are within the same BAR that they are potentially
1772 	 * of NUMA access patterns. Therefore, even with the way we assume
1773 	 * hardware should work, we must keep this posting read for paranoia.
1774 	 */
1775 	if (i != 0)
1776 		WARN_ON(readq(&gtt_entries[i-1])
1777 			!= gen8_pte_encode(addr, level, true));
1778 
1779 	/* This next bit makes the above posting read even more important. We
1780 	 * want to flush the TLBs only after we're certain all the PTE updates
1781 	 * have finished.
1782 	 */
1783 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1784 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1785 }
1786 
1787 /*
1788  * Binds an object into the global gtt with the specified cache level. The object
1789  * will be accessible to the GPU via commands whose operands reference offsets
1790  * within the global GTT as well as accessible by the GPU through the GMADR
1791  * mapped BAR (dev_priv->mm.gtt->gtt).
1792  */
1793 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1794 				     struct sg_table *st,
1795 				     uint64_t start,
1796 				     enum i915_cache_level level, u32 flags)
1797 {
1798 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1799 	unsigned first_entry = start >> PAGE_SHIFT;
1800 	gen6_pte_t __iomem *gtt_entries =
1801 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1802 	int i = 0;
1803 	struct sg_page_iter sg_iter;
1804 	dma_addr_t addr = 0;
1805 
1806 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1807 		addr = sg_page_iter_dma_address(&sg_iter);
1808 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1809 		i++;
1810 	}
1811 
1812 	/* XXX: This serves as a posting read to make sure that the PTE has
1813 	 * actually been updated. There is some concern that even though
1814 	 * registers and PTEs are within the same BAR that they are potentially
1815 	 * of NUMA access patterns. Therefore, even with the way we assume
1816 	 * hardware should work, we must keep this posting read for paranoia.
1817 	 */
1818 	if (i != 0) {
1819 		unsigned long gtt = readl(&gtt_entries[i-1]);
1820 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1821 	}
1822 
1823 	/* This next bit makes the above posting read even more important. We
1824 	 * want to flush the TLBs only after we're certain all the PTE updates
1825 	 * have finished.
1826 	 */
1827 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1828 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1829 }
1830 
1831 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1832 				  uint64_t start,
1833 				  uint64_t length,
1834 				  bool use_scratch)
1835 {
1836 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1837 	unsigned first_entry = start >> PAGE_SHIFT;
1838 	unsigned num_entries = length >> PAGE_SHIFT;
1839 	gen8_pte_t scratch_pte, __iomem *gtt_base =
1840 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1841 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1842 	int i;
1843 
1844 	if (WARN(num_entries > max_entries,
1845 		 "First entry = %d; Num entries = %d (max=%d)\n",
1846 		 first_entry, num_entries, max_entries))
1847 		num_entries = max_entries;
1848 
1849 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1850 				      I915_CACHE_LLC,
1851 				      use_scratch);
1852 	for (i = 0; i < num_entries; i++)
1853 		gen8_set_pte(&gtt_base[i], scratch_pte);
1854 	readl(gtt_base);
1855 }
1856 
1857 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1858 				  uint64_t start,
1859 				  uint64_t length,
1860 				  bool use_scratch)
1861 {
1862 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1863 	unsigned first_entry = start >> PAGE_SHIFT;
1864 	unsigned num_entries = length >> PAGE_SHIFT;
1865 	gen6_pte_t scratch_pte, __iomem *gtt_base =
1866 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1867 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1868 	int i;
1869 
1870 	if (WARN(num_entries > max_entries,
1871 		 "First entry = %d; Num entries = %d (max=%d)\n",
1872 		 first_entry, num_entries, max_entries))
1873 		num_entries = max_entries;
1874 
1875 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1876 
1877 	for (i = 0; i < num_entries; i++)
1878 		iowrite32(scratch_pte, &gtt_base[i]);
1879 	readl(gtt_base);
1880 }
1881 
1882 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1883 				     struct sg_table *pages,
1884 				     uint64_t start,
1885 				     enum i915_cache_level cache_level, u32 unused)
1886 {
1887 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1888 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1889 
1890 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1891 
1892 }
1893 
1894 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1895 				  uint64_t start,
1896 				  uint64_t length,
1897 				  bool unused)
1898 {
1899 	unsigned first_entry = start >> PAGE_SHIFT;
1900 	unsigned num_entries = length >> PAGE_SHIFT;
1901 	intel_gtt_clear_range(first_entry, num_entries);
1902 }
1903 
1904 static int ggtt_bind_vma(struct i915_vma *vma,
1905 			 enum i915_cache_level cache_level,
1906 			 u32 flags)
1907 {
1908 	struct drm_device *dev = vma->vm->dev;
1909 	struct drm_i915_private *dev_priv = dev->dev_private;
1910 	struct drm_i915_gem_object *obj = vma->obj;
1911 	struct sg_table *pages = obj->pages;
1912 	u32 pte_flags = 0;
1913 	int ret;
1914 
1915 	ret = i915_get_ggtt_vma_pages(vma);
1916 	if (ret)
1917 		return ret;
1918 	pages = vma->ggtt_view.pages;
1919 
1920 	/* Currently applicable only to VLV */
1921 	if (obj->gt_ro)
1922 		pte_flags |= PTE_READ_ONLY;
1923 
1924 
1925 	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1926 		vma->vm->insert_entries(vma->vm, pages,
1927 					vma->node.start,
1928 					cache_level, pte_flags);
1929 	}
1930 
1931 	if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1932 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1933 		appgtt->base.insert_entries(&appgtt->base, pages,
1934 					    vma->node.start,
1935 					    cache_level, pte_flags);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static void ggtt_unbind_vma(struct i915_vma *vma)
1942 {
1943 	struct drm_device *dev = vma->vm->dev;
1944 	struct drm_i915_private *dev_priv = dev->dev_private;
1945 	struct drm_i915_gem_object *obj = vma->obj;
1946 	const uint64_t size = min_t(uint64_t,
1947 				    obj->base.size,
1948 				    vma->node.size);
1949 
1950 	if (vma->bound & GLOBAL_BIND) {
1951 		vma->vm->clear_range(vma->vm,
1952 				     vma->node.start,
1953 				     size,
1954 				     true);
1955 	}
1956 
1957 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1958 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1959 
1960 		appgtt->base.clear_range(&appgtt->base,
1961 					 vma->node.start,
1962 					 size,
1963 					 true);
1964 	}
1965 }
1966 
1967 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1968 {
1969 	struct drm_device *dev = obj->base.dev;
1970 	struct drm_i915_private *dev_priv = dev->dev_private;
1971 	bool interruptible;
1972 
1973 	interruptible = do_idling(dev_priv);
1974 
1975 	if (!obj->has_dma_mapping)
1976 		dma_unmap_sg(&dev->pdev->dev,
1977 			     obj->pages->sgl, obj->pages->nents,
1978 			     PCI_DMA_BIDIRECTIONAL);
1979 
1980 	undo_idling(dev_priv, interruptible);
1981 }
1982 
1983 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1984 				  unsigned long color,
1985 				  u64 *start,
1986 				  u64 *end)
1987 {
1988 	if (node->color != color)
1989 		*start += 4096;
1990 
1991 	if (!list_empty(&node->node_list)) {
1992 		node = list_entry(node->node_list.next,
1993 				  struct drm_mm_node,
1994 				  node_list);
1995 		if (node->allocated && node->color != color)
1996 			*end -= 4096;
1997 	}
1998 }
1999 
2000 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2001 				     unsigned long start,
2002 				     unsigned long mappable_end,
2003 				     unsigned long end)
2004 {
2005 	/* Let GEM Manage all of the aperture.
2006 	 *
2007 	 * However, leave one page at the end still bound to the scratch page.
2008 	 * There are a number of places where the hardware apparently prefetches
2009 	 * past the end of the object, and we've seen multiple hangs with the
2010 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2011 	 * aperture.  One page should be enough to keep any prefetching inside
2012 	 * of the aperture.
2013 	 */
2014 	struct drm_i915_private *dev_priv = dev->dev_private;
2015 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2016 	struct drm_mm_node *entry;
2017 	struct drm_i915_gem_object *obj;
2018 	unsigned long hole_start, hole_end;
2019 	int ret;
2020 
2021 	BUG_ON(mappable_end > end);
2022 
2023 	/* Subtract the guard page ... */
2024 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2025 
2026 	dev_priv->gtt.base.start = start;
2027 	dev_priv->gtt.base.total = end - start;
2028 
2029 	if (intel_vgpu_active(dev)) {
2030 		ret = intel_vgt_balloon(dev);
2031 		if (ret)
2032 			return ret;
2033 	}
2034 
2035 	if (!HAS_LLC(dev))
2036 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2037 
2038 	/* Mark any preallocated objects as occupied */
2039 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2040 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2041 
2042 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2043 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2044 
2045 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2046 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2047 		if (ret) {
2048 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2049 			return ret;
2050 		}
2051 		vma->bound |= GLOBAL_BIND;
2052 	}
2053 
2054 	/* Clear any non-preallocated blocks */
2055 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2056 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2057 			      hole_start, hole_end);
2058 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2059 				     hole_end - hole_start, true);
2060 	}
2061 
2062 	/* And finally clear the reserved guard page */
2063 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2064 
2065 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2066 		struct i915_hw_ppgtt *ppgtt;
2067 
2068 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2069 		if (!ppgtt)
2070 			return -ENOMEM;
2071 
2072 		ret = __hw_ppgtt_init(dev, ppgtt);
2073 		if (ret) {
2074 			ppgtt->base.cleanup(&ppgtt->base);
2075 			kfree(ppgtt);
2076 			return ret;
2077 		}
2078 
2079 		if (ppgtt->base.allocate_va_range)
2080 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2081 							    ppgtt->base.total);
2082 		if (ret) {
2083 			ppgtt->base.cleanup(&ppgtt->base);
2084 			kfree(ppgtt);
2085 			return ret;
2086 		}
2087 
2088 		ppgtt->base.clear_range(&ppgtt->base,
2089 					ppgtt->base.start,
2090 					ppgtt->base.total,
2091 					true);
2092 
2093 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 void i915_gem_init_global_gtt(struct drm_device *dev)
2100 {
2101 	struct drm_i915_private *dev_priv = dev->dev_private;
2102 	unsigned long gtt_size, mappable_size;
2103 
2104 	gtt_size = dev_priv->gtt.base.total;
2105 	mappable_size = dev_priv->gtt.mappable_end;
2106 
2107 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2108 }
2109 
2110 void i915_global_gtt_cleanup(struct drm_device *dev)
2111 {
2112 	struct drm_i915_private *dev_priv = dev->dev_private;
2113 	struct i915_address_space *vm = &dev_priv->gtt.base;
2114 
2115 	if (dev_priv->mm.aliasing_ppgtt) {
2116 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2117 
2118 		ppgtt->base.cleanup(&ppgtt->base);
2119 	}
2120 
2121 	if (drm_mm_initialized(&vm->mm)) {
2122 		if (intel_vgpu_active(dev))
2123 			intel_vgt_deballoon();
2124 
2125 		drm_mm_takedown(&vm->mm);
2126 		list_del(&vm->global_link);
2127 	}
2128 
2129 	vm->cleanup(vm);
2130 }
2131 
2132 static int setup_scratch_page(struct drm_device *dev)
2133 {
2134 	struct drm_i915_private *dev_priv = dev->dev_private;
2135 	struct page *page;
2136 	dma_addr_t dma_addr;
2137 
2138 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2139 	if (page == NULL)
2140 		return -ENOMEM;
2141 	set_pages_uc(page, 1);
2142 
2143 #ifdef CONFIG_INTEL_IOMMU
2144 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2145 				PCI_DMA_BIDIRECTIONAL);
2146 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
2147 		return -EINVAL;
2148 #else
2149 	dma_addr = page_to_phys(page);
2150 #endif
2151 	dev_priv->gtt.base.scratch.page = page;
2152 	dev_priv->gtt.base.scratch.addr = dma_addr;
2153 
2154 	return 0;
2155 }
2156 
2157 static void teardown_scratch_page(struct drm_device *dev)
2158 {
2159 	struct drm_i915_private *dev_priv = dev->dev_private;
2160 	struct page *page = dev_priv->gtt.base.scratch.page;
2161 
2162 	set_pages_wb(page, 1);
2163 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2164 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2165 	__free_page(page);
2166 }
2167 
2168 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2169 {
2170 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2171 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2172 	return snb_gmch_ctl << 20;
2173 }
2174 
2175 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2176 {
2177 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2178 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2179 	if (bdw_gmch_ctl)
2180 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2181 
2182 #ifdef CONFIG_X86_32
2183 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2184 	if (bdw_gmch_ctl > 4)
2185 		bdw_gmch_ctl = 4;
2186 #endif
2187 
2188 	return bdw_gmch_ctl << 20;
2189 }
2190 
2191 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2192 {
2193 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2194 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2195 
2196 	if (gmch_ctrl)
2197 		return 1 << (20 + gmch_ctrl);
2198 
2199 	return 0;
2200 }
2201 
2202 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2203 {
2204 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2205 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2206 	return snb_gmch_ctl << 25; /* 32 MB units */
2207 }
2208 
2209 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2210 {
2211 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2212 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2213 	return bdw_gmch_ctl << 25; /* 32 MB units */
2214 }
2215 
2216 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2217 {
2218 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2219 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2220 
2221 	/*
2222 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2223 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2224 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2225 	 */
2226 	if (gmch_ctrl < 0x11)
2227 		return gmch_ctrl << 25;
2228 	else if (gmch_ctrl < 0x17)
2229 		return (gmch_ctrl - 0x11 + 2) << 22;
2230 	else
2231 		return (gmch_ctrl - 0x17 + 9) << 22;
2232 }
2233 
2234 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2235 {
2236 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2237 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2238 
2239 	if (gen9_gmch_ctl < 0xf0)
2240 		return gen9_gmch_ctl << 25; /* 32 MB units */
2241 	else
2242 		/* 4MB increments starting at 0xf0 for 4MB */
2243 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2244 }
2245 
2246 static int ggtt_probe_common(struct drm_device *dev,
2247 			     size_t gtt_size)
2248 {
2249 	struct drm_i915_private *dev_priv = dev->dev_private;
2250 	phys_addr_t gtt_phys_addr;
2251 	int ret;
2252 
2253 	/* For Modern GENs the PTEs and register space are split in the BAR */
2254 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2255 		(pci_resource_len(dev->pdev, 0) / 2);
2256 
2257 	/*
2258 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2259 	 * dropped. For WC mappings in general we have 64 byte burst writes
2260 	 * when the WC buffer is flushed, so we can't use it, but have to
2261 	 * resort to an uncached mapping. The WC issue is easily caught by the
2262 	 * readback check when writing GTT PTE entries.
2263 	 */
2264 	if (IS_BROXTON(dev))
2265 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2266 	else
2267 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2268 	if (!dev_priv->gtt.gsm) {
2269 		DRM_ERROR("Failed to map the gtt page table\n");
2270 		return -ENOMEM;
2271 	}
2272 
2273 	ret = setup_scratch_page(dev);
2274 	if (ret) {
2275 		DRM_ERROR("Scratch setup failed\n");
2276 		/* iounmap will also get called at remove, but meh */
2277 		iounmap(dev_priv->gtt.gsm);
2278 	}
2279 
2280 	return ret;
2281 }
2282 
2283 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2284  * bits. When using advanced contexts each context stores its own PAT, but
2285  * writing this data shouldn't be harmful even in those cases. */
2286 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2287 {
2288 	uint64_t pat;
2289 
2290 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2291 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2292 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2293 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2294 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2295 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2296 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2297 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2298 
2299 	if (!USES_PPGTT(dev_priv->dev))
2300 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2301 		 * so RTL will always use the value corresponding to
2302 		 * pat_sel = 000".
2303 		 * So let's disable cache for GGTT to avoid screen corruptions.
2304 		 * MOCS still can be used though.
2305 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2306 		 * before this patch, i.e. the same uncached + snooping access
2307 		 * like on gen6/7 seems to be in effect.
2308 		 * - So this just fixes blitter/render access. Again it looks
2309 		 * like it's not just uncached access, but uncached + snooping.
2310 		 * So we can still hold onto all our assumptions wrt cpu
2311 		 * clflushing on LLC machines.
2312 		 */
2313 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2314 
2315 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2316 	 * write would work. */
2317 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2318 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2319 }
2320 
2321 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2322 {
2323 	uint64_t pat;
2324 
2325 	/*
2326 	 * Map WB on BDW to snooped on CHV.
2327 	 *
2328 	 * Only the snoop bit has meaning for CHV, the rest is
2329 	 * ignored.
2330 	 *
2331 	 * The hardware will never snoop for certain types of accesses:
2332 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2333 	 * - PPGTT page tables
2334 	 * - some other special cycles
2335 	 *
2336 	 * As with BDW, we also need to consider the following for GT accesses:
2337 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2338 	 * so RTL will always use the value corresponding to
2339 	 * pat_sel = 000".
2340 	 * Which means we must set the snoop bit in PAT entry 0
2341 	 * in order to keep the global status page working.
2342 	 */
2343 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2344 	      GEN8_PPAT(1, 0) |
2345 	      GEN8_PPAT(2, 0) |
2346 	      GEN8_PPAT(3, 0) |
2347 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2348 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2349 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2350 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2351 
2352 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2353 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2354 }
2355 
2356 static int gen8_gmch_probe(struct drm_device *dev,
2357 			   size_t *gtt_total,
2358 			   size_t *stolen,
2359 			   phys_addr_t *mappable_base,
2360 			   unsigned long *mappable_end)
2361 {
2362 	struct drm_i915_private *dev_priv = dev->dev_private;
2363 	unsigned int gtt_size;
2364 	u16 snb_gmch_ctl;
2365 	int ret;
2366 
2367 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2368 	*mappable_base = pci_resource_start(dev->pdev, 2);
2369 	*mappable_end = pci_resource_len(dev->pdev, 2);
2370 
2371 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2372 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2373 
2374 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2375 
2376 	if (INTEL_INFO(dev)->gen >= 9) {
2377 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2378 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2379 	} else if (IS_CHERRYVIEW(dev)) {
2380 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2381 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2382 	} else {
2383 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2384 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2385 	}
2386 
2387 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2388 
2389 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2390 		chv_setup_private_ppat(dev_priv);
2391 	else
2392 		bdw_setup_private_ppat(dev_priv);
2393 
2394 	ret = ggtt_probe_common(dev, gtt_size);
2395 
2396 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2397 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2398 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2399 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2400 
2401 	return ret;
2402 }
2403 
2404 static int gen6_gmch_probe(struct drm_device *dev,
2405 			   size_t *gtt_total,
2406 			   size_t *stolen,
2407 			   phys_addr_t *mappable_base,
2408 			   unsigned long *mappable_end)
2409 {
2410 	struct drm_i915_private *dev_priv = dev->dev_private;
2411 	unsigned int gtt_size;
2412 	u16 snb_gmch_ctl;
2413 	int ret;
2414 
2415 	*mappable_base = pci_resource_start(dev->pdev, 2);
2416 	*mappable_end = pci_resource_len(dev->pdev, 2);
2417 
2418 	/* 64/512MB is the current min/max we actually know of, but this is just
2419 	 * a coarse sanity check.
2420 	 */
2421 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2422 		DRM_ERROR("Unknown GMADR size (%lx)\n",
2423 			  dev_priv->gtt.mappable_end);
2424 		return -ENXIO;
2425 	}
2426 
2427 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2428 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2429 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2430 
2431 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2432 
2433 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2434 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2435 
2436 	ret = ggtt_probe_common(dev, gtt_size);
2437 
2438 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2439 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2440 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2441 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2442 
2443 	return ret;
2444 }
2445 
2446 static void gen6_gmch_remove(struct i915_address_space *vm)
2447 {
2448 
2449 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2450 
2451 	iounmap(gtt->gsm);
2452 	teardown_scratch_page(vm->dev);
2453 }
2454 
2455 static int i915_gmch_probe(struct drm_device *dev,
2456 			   size_t *gtt_total,
2457 			   size_t *stolen,
2458 			   phys_addr_t *mappable_base,
2459 			   unsigned long *mappable_end)
2460 {
2461 	struct drm_i915_private *dev_priv = dev->dev_private;
2462 	int ret;
2463 
2464 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2465 	if (!ret) {
2466 		DRM_ERROR("failed to set up gmch\n");
2467 		return -EIO;
2468 	}
2469 
2470 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2471 
2472 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2473 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2474 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2475 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2476 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2477 
2478 	if (unlikely(dev_priv->gtt.do_idle_maps))
2479 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2480 
2481 	return 0;
2482 }
2483 
2484 static void i915_gmch_remove(struct i915_address_space *vm)
2485 {
2486 	intel_gmch_remove();
2487 }
2488 
2489 int i915_gem_gtt_init(struct drm_device *dev)
2490 {
2491 	struct drm_i915_private *dev_priv = dev->dev_private;
2492 	struct i915_gtt *gtt = &dev_priv->gtt;
2493 	int ret;
2494 
2495 	if (INTEL_INFO(dev)->gen <= 5) {
2496 		gtt->gtt_probe = i915_gmch_probe;
2497 		gtt->base.cleanup = i915_gmch_remove;
2498 	} else if (INTEL_INFO(dev)->gen < 8) {
2499 		gtt->gtt_probe = gen6_gmch_probe;
2500 		gtt->base.cleanup = gen6_gmch_remove;
2501 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2502 			gtt->base.pte_encode = iris_pte_encode;
2503 		else if (IS_HASWELL(dev))
2504 			gtt->base.pte_encode = hsw_pte_encode;
2505 		else if (IS_VALLEYVIEW(dev))
2506 			gtt->base.pte_encode = byt_pte_encode;
2507 		else if (INTEL_INFO(dev)->gen >= 7)
2508 			gtt->base.pte_encode = ivb_pte_encode;
2509 		else
2510 			gtt->base.pte_encode = snb_pte_encode;
2511 	} else {
2512 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2513 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2514 	}
2515 
2516 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2517 			     &gtt->mappable_base, &gtt->mappable_end);
2518 	if (ret)
2519 		return ret;
2520 
2521 	gtt->base.dev = dev;
2522 
2523 	/* GMADR is the PCI mmio aperture into the global GTT. */
2524 	DRM_INFO("Memory usable by graphics device = %zdM\n",
2525 		 gtt->base.total >> 20);
2526 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2527 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2528 #ifdef CONFIG_INTEL_IOMMU
2529 	if (intel_iommu_gfx_mapped)
2530 		DRM_INFO("VT-d active for gfx access\n");
2531 #endif
2532 	/*
2533 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2534 	 * user's requested state against the hardware/driver capabilities.  We
2535 	 * do this now so that we can print out any log messages once rather
2536 	 * than every time we check intel_enable_ppgtt().
2537 	 */
2538 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2539 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2540 
2541 	return 0;
2542 }
2543 
2544 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2545 {
2546 	struct drm_i915_private *dev_priv = dev->dev_private;
2547 	struct drm_i915_gem_object *obj;
2548 	struct i915_address_space *vm;
2549 
2550 	i915_check_and_clear_faults(dev);
2551 
2552 	/* First fill our portion of the GTT with scratch pages */
2553 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2554 				       dev_priv->gtt.base.start,
2555 				       dev_priv->gtt.base.total,
2556 				       true);
2557 
2558 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2559 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2560 							   &dev_priv->gtt.base);
2561 		if (!vma)
2562 			continue;
2563 
2564 		i915_gem_clflush_object(obj, obj->pin_display);
2565 		WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2566 	}
2567 
2568 
2569 	if (INTEL_INFO(dev)->gen >= 8) {
2570 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2571 			chv_setup_private_ppat(dev_priv);
2572 		else
2573 			bdw_setup_private_ppat(dev_priv);
2574 
2575 		return;
2576 	}
2577 
2578 	if (USES_PPGTT(dev)) {
2579 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2580 			/* TODO: Perhaps it shouldn't be gen6 specific */
2581 
2582 			struct i915_hw_ppgtt *ppgtt =
2583 					container_of(vm, struct i915_hw_ppgtt,
2584 						     base);
2585 
2586 			if (i915_is_ggtt(vm))
2587 				ppgtt = dev_priv->mm.aliasing_ppgtt;
2588 
2589 			gen6_write_page_range(dev_priv, &ppgtt->pd,
2590 					      0, ppgtt->base.total);
2591 		}
2592 	}
2593 
2594 	i915_ggtt_flush(dev_priv);
2595 }
2596 
2597 static struct i915_vma *
2598 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2599 		      struct i915_address_space *vm,
2600 		      const struct i915_ggtt_view *ggtt_view)
2601 {
2602 	struct i915_vma *vma;
2603 
2604 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2605 		return ERR_PTR(-EINVAL);
2606 
2607 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2608 	if (vma == NULL)
2609 		return ERR_PTR(-ENOMEM);
2610 
2611 	INIT_LIST_HEAD(&vma->vma_link);
2612 	INIT_LIST_HEAD(&vma->mm_list);
2613 	INIT_LIST_HEAD(&vma->exec_list);
2614 	vma->vm = vm;
2615 	vma->obj = obj;
2616 
2617 	if (i915_is_ggtt(vm))
2618 		vma->ggtt_view = *ggtt_view;
2619 
2620 	list_add_tail(&vma->vma_link, &obj->vma_list);
2621 	if (!i915_is_ggtt(vm))
2622 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2623 
2624 	return vma;
2625 }
2626 
2627 struct i915_vma *
2628 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2629 				  struct i915_address_space *vm)
2630 {
2631 	struct i915_vma *vma;
2632 
2633 	vma = i915_gem_obj_to_vma(obj, vm);
2634 	if (!vma)
2635 		vma = __i915_gem_vma_create(obj, vm,
2636 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2637 
2638 	return vma;
2639 }
2640 
2641 struct i915_vma *
2642 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2643 				       const struct i915_ggtt_view *view)
2644 {
2645 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2646 	struct i915_vma *vma;
2647 
2648 	if (WARN_ON(!view))
2649 		return ERR_PTR(-EINVAL);
2650 
2651 	vma = i915_gem_obj_to_ggtt_view(obj, view);
2652 
2653 	if (IS_ERR(vma))
2654 		return vma;
2655 
2656 	if (!vma)
2657 		vma = __i915_gem_vma_create(obj, ggtt, view);
2658 
2659 	return vma;
2660 
2661 }
2662 
2663 static void
2664 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2665 	     struct sg_table *st)
2666 {
2667 	unsigned int column, row;
2668 	unsigned int src_idx;
2669 	struct scatterlist *sg = st->sgl;
2670 
2671 	st->nents = 0;
2672 
2673 	for (column = 0; column < width; column++) {
2674 		src_idx = width * (height - 1) + column;
2675 		for (row = 0; row < height; row++) {
2676 			st->nents++;
2677 			/* We don't need the pages, but need to initialize
2678 			 * the entries so the sg list can be happily traversed.
2679 			 * The only thing we need are DMA addresses.
2680 			 */
2681 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
2682 			sg_dma_address(sg) = in[src_idx];
2683 			sg_dma_len(sg) = PAGE_SIZE;
2684 			sg = sg_next(sg);
2685 			src_idx -= width;
2686 		}
2687 	}
2688 }
2689 
2690 static struct sg_table *
2691 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2692 			  struct drm_i915_gem_object *obj)
2693 {
2694 	struct drm_device *dev = obj->base.dev;
2695 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2696 	unsigned long size, pages, rot_pages;
2697 	struct sg_page_iter sg_iter;
2698 	unsigned long i;
2699 	dma_addr_t *page_addr_list;
2700 	struct sg_table *st;
2701 	unsigned int tile_pitch, tile_height;
2702 	unsigned int width_pages, height_pages;
2703 	int ret = -ENOMEM;
2704 
2705 	pages = obj->base.size / PAGE_SIZE;
2706 
2707 	/* Calculate tiling geometry. */
2708 	tile_height = intel_tile_height(dev, rot_info->pixel_format,
2709 					rot_info->fb_modifier);
2710 	tile_pitch = PAGE_SIZE / tile_height;
2711 	width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2712 	height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2713 	rot_pages = width_pages * height_pages;
2714 	size = rot_pages * PAGE_SIZE;
2715 
2716 	/* Allocate a temporary list of source pages for random access. */
2717 	page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2718 	if (!page_addr_list)
2719 		return ERR_PTR(ret);
2720 
2721 	/* Allocate target SG list. */
2722 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2723 	if (!st)
2724 		goto err_st_alloc;
2725 
2726 	ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2727 	if (ret)
2728 		goto err_sg_alloc;
2729 
2730 	/* Populate source page list from the object. */
2731 	i = 0;
2732 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2733 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2734 		i++;
2735 	}
2736 
2737 	/* Rotate the pages. */
2738 	rotate_pages(page_addr_list, width_pages, height_pages, st);
2739 
2740 	DRM_DEBUG_KMS(
2741 		      "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2742 		      size, rot_info->pitch, rot_info->height,
2743 		      rot_info->pixel_format, width_pages, height_pages,
2744 		      rot_pages);
2745 
2746 	drm_free_large(page_addr_list);
2747 
2748 	return st;
2749 
2750 err_sg_alloc:
2751 	kfree(st);
2752 err_st_alloc:
2753 	drm_free_large(page_addr_list);
2754 
2755 	DRM_DEBUG_KMS(
2756 		      "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2757 		      size, ret, rot_info->pitch, rot_info->height,
2758 		      rot_info->pixel_format, width_pages, height_pages,
2759 		      rot_pages);
2760 	return ERR_PTR(ret);
2761 }
2762 
2763 static struct sg_table *
2764 intel_partial_pages(const struct i915_ggtt_view *view,
2765 		    struct drm_i915_gem_object *obj)
2766 {
2767 	struct sg_table *st;
2768 	struct scatterlist *sg;
2769 	struct sg_page_iter obj_sg_iter;
2770 	int ret = -ENOMEM;
2771 
2772 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2773 	if (!st)
2774 		goto err_st_alloc;
2775 
2776 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2777 	if (ret)
2778 		goto err_sg_alloc;
2779 
2780 	sg = st->sgl;
2781 	st->nents = 0;
2782 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2783 		view->params.partial.offset)
2784 	{
2785 		if (st->nents >= view->params.partial.size)
2786 			break;
2787 
2788 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
2789 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2790 		sg_dma_len(sg) = PAGE_SIZE;
2791 
2792 		sg = sg_next(sg);
2793 		st->nents++;
2794 	}
2795 
2796 	return st;
2797 
2798 err_sg_alloc:
2799 	kfree(st);
2800 err_st_alloc:
2801 	return ERR_PTR(ret);
2802 }
2803 
2804 static int
2805 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2806 {
2807 	int ret = 0;
2808 
2809 	if (vma->ggtt_view.pages)
2810 		return 0;
2811 
2812 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2813 		vma->ggtt_view.pages = vma->obj->pages;
2814 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2815 		vma->ggtt_view.pages =
2816 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2817 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2818 		vma->ggtt_view.pages =
2819 			intel_partial_pages(&vma->ggtt_view, vma->obj);
2820 	else
2821 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2822 			  vma->ggtt_view.type);
2823 
2824 	if (!vma->ggtt_view.pages) {
2825 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2826 			  vma->ggtt_view.type);
2827 		ret = -EINVAL;
2828 	} else if (IS_ERR(vma->ggtt_view.pages)) {
2829 		ret = PTR_ERR(vma->ggtt_view.pages);
2830 		vma->ggtt_view.pages = NULL;
2831 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2832 			  vma->ggtt_view.type, ret);
2833 	}
2834 
2835 	return ret;
2836 }
2837 
2838 /**
2839  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2840  * @vma: VMA to map
2841  * @cache_level: mapping cache level
2842  * @flags: flags like global or local mapping
2843  *
2844  * DMA addresses are taken from the scatter-gather table of this object (or of
2845  * this VMA in case of non-default GGTT views) and PTE entries set up.
2846  * Note that DMA addresses are also the only part of the SG table we care about.
2847  */
2848 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2849 		  u32 flags)
2850 {
2851 	int ret;
2852 	u32 bind_flags;
2853 
2854 	if (WARN_ON(flags == 0))
2855 		return -EINVAL;
2856 
2857 	bind_flags = 0;
2858 	if (flags & PIN_GLOBAL)
2859 		bind_flags |= GLOBAL_BIND;
2860 	if (flags & PIN_USER)
2861 		bind_flags |= LOCAL_BIND;
2862 
2863 	if (flags & PIN_UPDATE)
2864 		bind_flags |= vma->bound;
2865 	else
2866 		bind_flags &= ~vma->bound;
2867 
2868 	if (bind_flags == 0)
2869 		return 0;
2870 
2871 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
2872 		trace_i915_va_alloc(vma->vm,
2873 				    vma->node.start,
2874 				    vma->node.size,
2875 				    VM_TO_TRACE_NAME(vma->vm));
2876 
2877 		ret = vma->vm->allocate_va_range(vma->vm,
2878 						 vma->node.start,
2879 						 vma->node.size);
2880 		if (ret)
2881 			return ret;
2882 	}
2883 
2884 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2885 	if (ret)
2886 		return ret;
2887 
2888 	vma->bound |= bind_flags;
2889 
2890 	return 0;
2891 }
2892 
2893 /**
2894  * i915_ggtt_view_size - Get the size of a GGTT view.
2895  * @obj: Object the view is of.
2896  * @view: The view in question.
2897  *
2898  * @return The size of the GGTT view in bytes.
2899  */
2900 size_t
2901 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2902 		    const struct i915_ggtt_view *view)
2903 {
2904 	if (view->type == I915_GGTT_VIEW_NORMAL ||
2905 	    view->type == I915_GGTT_VIEW_ROTATED) {
2906 		return obj->base.size;
2907 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2908 		return view->params.partial.size << PAGE_SHIFT;
2909 	} else {
2910 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2911 		return obj->base.size;
2912 	}
2913 }
2914