xref: /linux/drivers/gpu/drm/i915/i915_gem_evict.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uuk>
26  *
27  */
28 
29 #include "gem/i915_gem_context.h"
30 #include "gt/intel_gt.h"
31 #include "gt/intel_gt_requests.h"
32 
33 #include "i915_drv.h"
34 #include "i915_gem_evict.h"
35 #include "i915_trace.h"
36 
37 I915_SELFTEST_DECLARE(static struct igt_evict_ctl {
38 	bool fail_if_busy:1;
39 } igt_evict_ctl;)
40 
41 static bool dying_vma(struct i915_vma *vma)
42 {
43 	return !kref_read(&vma->obj->base.refcount);
44 }
45 
46 static int ggtt_flush(struct i915_address_space *vm)
47 {
48 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
49 	struct intel_gt *gt;
50 	int ret = 0;
51 
52 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
53 		/*
54 		 * Not everything in the GGTT is tracked via vma (otherwise we
55 		 * could evict as required with minimal stalling) so we are forced
56 		 * to idle the GPU and explicitly retire outstanding requests in
57 		 * the hopes that we can then remove contexts and the like only
58 		 * bound by their active reference.
59 		 */
60 		ret = intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
61 		if (ret)
62 			return ret;
63 	}
64 	return ret;
65 }
66 
67 static bool grab_vma(struct i915_vma *vma, struct i915_gem_ww_ctx *ww)
68 {
69 	/*
70 	 * We add the extra refcount so the object doesn't drop to zero until
71 	 * after ungrab_vma(), this way trylock is always paired with unlock.
72 	 */
73 	if (i915_gem_object_get_rcu(vma->obj)) {
74 		if (!i915_gem_object_trylock(vma->obj, ww)) {
75 			i915_gem_object_put(vma->obj);
76 			return false;
77 		}
78 	} else {
79 		/* Dead objects don't need pins */
80 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
81 	}
82 
83 	return true;
84 }
85 
86 static void ungrab_vma(struct i915_vma *vma)
87 {
88 	if (dying_vma(vma))
89 		return;
90 
91 	i915_gem_object_unlock(vma->obj);
92 	i915_gem_object_put(vma->obj);
93 }
94 
95 static bool
96 mark_free(struct drm_mm_scan *scan,
97 	  struct i915_gem_ww_ctx *ww,
98 	  struct i915_vma *vma,
99 	  unsigned int flags,
100 	  struct list_head *unwind)
101 {
102 	if (i915_vma_is_pinned(vma))
103 		return false;
104 
105 	if (!grab_vma(vma, ww))
106 		return false;
107 
108 	list_add(&vma->evict_link, unwind);
109 	return drm_mm_scan_add_block(scan, &vma->node);
110 }
111 
112 static bool defer_evict(struct i915_vma *vma)
113 {
114 	if (i915_vma_is_active(vma))
115 		return true;
116 
117 	if (i915_vma_is_scanout(vma))
118 		return true;
119 
120 	return false;
121 }
122 
123 /**
124  * i915_gem_evict_something - Evict vmas to make room for binding a new one
125  * @vm: address space to evict from
126  * @ww: An optional struct i915_gem_ww_ctx.
127  * @min_size: size of the desired free space
128  * @alignment: alignment constraint of the desired free space
129  * @color: color for the desired space
130  * @start: start (inclusive) of the range from which to evict objects
131  * @end: end (exclusive) of the range from which to evict objects
132  * @flags: additional flags to control the eviction algorithm
133  *
134  * This function will try to evict vmas until a free space satisfying the
135  * requirements is found. Callers must check first whether any such hole exists
136  * already before calling this function.
137  *
138  * This function is used by the object/vma binding code.
139  *
140  * Since this function is only used to free up virtual address space it only
141  * ignores pinned vmas, and not object where the backing storage itself is
142  * pinned. Hence obj->pages_pin_count does not protect against eviction.
143  *
144  * To clarify: This is for freeing up virtual address space, not for freeing
145  * memory in e.g. the shrinker.
146  */
147 int
148 i915_gem_evict_something(struct i915_address_space *vm,
149 			 struct i915_gem_ww_ctx *ww,
150 			 u64 min_size, u64 alignment,
151 			 unsigned long color,
152 			 u64 start, u64 end,
153 			 unsigned flags)
154 {
155 	struct drm_mm_scan scan;
156 	struct list_head eviction_list;
157 	struct i915_vma *vma, *next;
158 	struct drm_mm_node *node;
159 	enum drm_mm_insert_mode mode;
160 	struct i915_vma *active;
161 	struct intel_gt *gt;
162 	int ret;
163 
164 	lockdep_assert_held(&vm->mutex);
165 	trace_i915_gem_evict(vm, min_size, alignment, flags);
166 
167 	/*
168 	 * The goal is to evict objects and amalgamate space in rough LRU order.
169 	 * Since both active and inactive objects reside on the same list,
170 	 * in a mix of creation and last scanned order, as we process the list
171 	 * we sort it into inactive/active, which keeps the active portion
172 	 * in a rough MRU order.
173 	 *
174 	 * The retirement sequence is thus:
175 	 *   1. Inactive objects (already retired, random order)
176 	 *   2. Active objects (will stall on unbinding, oldest scanned first)
177 	 */
178 	mode = DRM_MM_INSERT_BEST;
179 	if (flags & PIN_HIGH)
180 		mode = DRM_MM_INSERT_HIGH;
181 	if (flags & PIN_MAPPABLE)
182 		mode = DRM_MM_INSERT_LOW;
183 	drm_mm_scan_init_with_range(&scan, &vm->mm,
184 				    min_size, alignment, color,
185 				    start, end, mode);
186 
187 	if (i915_is_ggtt(vm)) {
188 		struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
189 
190 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
191 			intel_gt_retire_requests(gt);
192 	} else {
193 		intel_gt_retire_requests(vm->gt);
194 	}
195 
196 search_again:
197 	active = NULL;
198 	INIT_LIST_HEAD(&eviction_list);
199 	list_for_each_entry_safe(vma, next, &vm->bound_list, vm_link) {
200 		if (vma == active) { /* now seen this vma twice */
201 			if (flags & PIN_NONBLOCK)
202 				break;
203 
204 			active = ERR_PTR(-EAGAIN);
205 		}
206 
207 		/*
208 		 * We keep this list in a rough least-recently scanned order
209 		 * of active elements (inactive elements are cheap to reap).
210 		 * New entries are added to the end, and we move anything we
211 		 * scan to the end. The assumption is that the working set
212 		 * of applications is either steady state (and thanks to the
213 		 * userspace bo cache it almost always is) or volatile and
214 		 * frequently replaced after a frame, which are self-evicting!
215 		 * Given that assumption, the MRU order of the scan list is
216 		 * fairly static, and keeping it in least-recently scan order
217 		 * is suitable.
218 		 *
219 		 * To notice when we complete one full cycle, we record the
220 		 * first active element seen, before moving it to the tail.
221 		 */
222 		if (active != ERR_PTR(-EAGAIN) && defer_evict(vma)) {
223 			if (!active)
224 				active = vma;
225 
226 			list_move_tail(&vma->vm_link, &vm->bound_list);
227 			continue;
228 		}
229 
230 		if (mark_free(&scan, ww, vma, flags, &eviction_list))
231 			goto found;
232 	}
233 
234 	/* Nothing found, clean up and bail out! */
235 	list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
236 		ret = drm_mm_scan_remove_block(&scan, &vma->node);
237 		BUG_ON(ret);
238 		ungrab_vma(vma);
239 	}
240 
241 	/*
242 	 * Can we unpin some objects such as idle hw contents,
243 	 * or pending flips? But since only the GGTT has global entries
244 	 * such as scanouts, rinbuffers and contexts, we can skip the
245 	 * purge when inspecting per-process local address spaces.
246 	 */
247 	if (!i915_is_ggtt(vm) || flags & PIN_NONBLOCK)
248 		return -ENOSPC;
249 
250 	/*
251 	 * Not everything in the GGTT is tracked via VMA using
252 	 * i915_vma_move_to_active(), otherwise we could evict as required
253 	 * with minimal stalling. Instead we are forced to idle the GPU and
254 	 * explicitly retire outstanding requests which will then remove
255 	 * the pinning for active objects such as contexts and ring,
256 	 * enabling us to evict them on the next iteration.
257 	 *
258 	 * To ensure that all user contexts are evictable, we perform
259 	 * a switch to the perma-pinned kernel context. This all also gives
260 	 * us a termination condition, when the last retired context is
261 	 * the kernel's there is no more we can evict.
262 	 */
263 	if (I915_SELFTEST_ONLY(igt_evict_ctl.fail_if_busy))
264 		return -EBUSY;
265 
266 	ret = ggtt_flush(vm);
267 	if (ret)
268 		return ret;
269 
270 	cond_resched();
271 
272 	flags |= PIN_NONBLOCK;
273 	goto search_again;
274 
275 found:
276 	/* drm_mm doesn't allow any other other operations while
277 	 * scanning, therefore store to-be-evicted objects on a
278 	 * temporary list and take a reference for all before
279 	 * calling unbind (which may remove the active reference
280 	 * of any of our objects, thus corrupting the list).
281 	 */
282 	list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
283 		if (drm_mm_scan_remove_block(&scan, &vma->node)) {
284 			__i915_vma_pin(vma);
285 		} else {
286 			list_del(&vma->evict_link);
287 			ungrab_vma(vma);
288 		}
289 	}
290 
291 	/* Unbinding will emit any required flushes */
292 	ret = 0;
293 	list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
294 		__i915_vma_unpin(vma);
295 		if (ret == 0)
296 			ret = __i915_vma_unbind(vma);
297 		ungrab_vma(vma);
298 	}
299 
300 	while (ret == 0 && (node = drm_mm_scan_color_evict(&scan))) {
301 		vma = container_of(node, struct i915_vma, node);
302 
303 		/* If we find any non-objects (!vma), we cannot evict them */
304 		if (vma->node.color != I915_COLOR_UNEVICTABLE &&
305 		    grab_vma(vma, ww)) {
306 			ret = __i915_vma_unbind(vma);
307 			ungrab_vma(vma);
308 		} else {
309 			ret = -ENOSPC;
310 		}
311 	}
312 
313 	return ret;
314 }
315 
316 /**
317  * i915_gem_evict_for_node - Evict vmas to make room for binding a new one
318  * @vm: address space to evict from
319  * @ww: An optional struct i915_gem_ww_ctx.
320  * @target: range (and color) to evict for
321  * @flags: additional flags to control the eviction algorithm
322  *
323  * This function will try to evict vmas that overlap the target node.
324  *
325  * To clarify: This is for freeing up virtual address space, not for freeing
326  * memory in e.g. the shrinker.
327  */
328 int i915_gem_evict_for_node(struct i915_address_space *vm,
329 			    struct i915_gem_ww_ctx *ww,
330 			    struct drm_mm_node *target,
331 			    unsigned int flags)
332 {
333 	LIST_HEAD(eviction_list);
334 	struct drm_mm_node *node;
335 	u64 start = target->start;
336 	u64 end = start + target->size;
337 	struct i915_vma *vma, *next;
338 	int ret = 0;
339 
340 	lockdep_assert_held(&vm->mutex);
341 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
342 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
343 
344 	trace_i915_gem_evict_node(vm, target, flags);
345 
346 	/*
347 	 * Retire before we search the active list. Although we have
348 	 * reasonable accuracy in our retirement lists, we may have
349 	 * a stray pin (preventing eviction) that can only be resolved by
350 	 * retiring.
351 	 */
352 	if (i915_is_ggtt(vm)) {
353 		struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
354 		struct intel_gt *gt;
355 
356 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
357 			intel_gt_retire_requests(gt);
358 	} else {
359 		intel_gt_retire_requests(vm->gt);
360 	}
361 
362 	if (i915_vm_has_cache_coloring(vm)) {
363 		/* Expand search to cover neighbouring guard pages (or lack!) */
364 		if (start)
365 			start -= I915_GTT_PAGE_SIZE;
366 
367 		/* Always look at the page afterwards to avoid the end-of-GTT */
368 		end += I915_GTT_PAGE_SIZE;
369 	}
370 	GEM_BUG_ON(start >= end);
371 
372 	drm_mm_for_each_node_in_range(node, &vm->mm, start, end) {
373 		/* If we find any non-objects (!vma), we cannot evict them */
374 		if (node->color == I915_COLOR_UNEVICTABLE) {
375 			ret = -ENOSPC;
376 			break;
377 		}
378 
379 		GEM_BUG_ON(!drm_mm_node_allocated(node));
380 		vma = container_of(node, typeof(*vma), node);
381 
382 		/*
383 		 * If we are using coloring to insert guard pages between
384 		 * different cache domains within the address space, we have
385 		 * to check whether the objects on either side of our range
386 		 * abutt and conflict. If they are in conflict, then we evict
387 		 * those as well to make room for our guard pages.
388 		 */
389 		if (i915_vm_has_cache_coloring(vm)) {
390 			if (node->start + node->size == target->start) {
391 				if (node->color == target->color)
392 					continue;
393 			}
394 			if (node->start == target->start + target->size) {
395 				if (node->color == target->color)
396 					continue;
397 			}
398 		}
399 
400 		if (i915_vma_is_pinned(vma)) {
401 			ret = -ENOSPC;
402 			break;
403 		}
404 
405 		if (flags & PIN_NONBLOCK && i915_vma_is_active(vma)) {
406 			ret = -ENOSPC;
407 			break;
408 		}
409 
410 		if (!grab_vma(vma, ww)) {
411 			ret = -ENOSPC;
412 			break;
413 		}
414 
415 		/*
416 		 * Never show fear in the face of dragons!
417 		 *
418 		 * We cannot directly remove this node from within this
419 		 * iterator and as with i915_gem_evict_something() we employ
420 		 * the vma pin_count in order to prevent the action of
421 		 * unbinding one vma from freeing (by dropping its active
422 		 * reference) another in our eviction list.
423 		 */
424 		__i915_vma_pin(vma);
425 		list_add(&vma->evict_link, &eviction_list);
426 	}
427 
428 	list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
429 		__i915_vma_unpin(vma);
430 		if (ret == 0)
431 			ret = __i915_vma_unbind(vma);
432 
433 		ungrab_vma(vma);
434 	}
435 
436 	return ret;
437 }
438 
439 /**
440  * i915_gem_evict_vm - Evict all idle vmas from a vm
441  * @vm: Address space to cleanse
442  * @ww: An optional struct i915_gem_ww_ctx. If not NULL, i915_gem_evict_vm
443  * will be able to evict vma's locked by the ww as well.
444  * @busy_bo: Optional pointer to struct drm_i915_gem_object. If not NULL, then
445  * in the event i915_gem_evict_vm() is unable to trylock an object for eviction,
446  * then @busy_bo will point to it. -EBUSY is also returned. The caller must drop
447  * the vm->mutex, before trying again to acquire the contended lock. The caller
448  * also owns a reference to the object.
449  *
450  * This function evicts all vmas from a vm.
451  *
452  * This is used by the execbuf code as a last-ditch effort to defragment the
453  * address space.
454  *
455  * To clarify: This is for freeing up virtual address space, not for freeing
456  * memory in e.g. the shrinker.
457  */
458 int i915_gem_evict_vm(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww,
459 		      struct drm_i915_gem_object **busy_bo)
460 {
461 	int ret = 0;
462 
463 	lockdep_assert_held(&vm->mutex);
464 	trace_i915_gem_evict_vm(vm);
465 
466 	/* Switch back to the default context in order to unpin
467 	 * the existing context objects. However, such objects only
468 	 * pin themselves inside the global GTT and performing the
469 	 * switch otherwise is ineffective.
470 	 */
471 	if (i915_is_ggtt(vm)) {
472 		ret = ggtt_flush(vm);
473 		if (ret)
474 			return ret;
475 	}
476 
477 	do {
478 		struct i915_vma *vma, *vn;
479 		LIST_HEAD(eviction_list);
480 		LIST_HEAD(locked_eviction_list);
481 
482 		list_for_each_entry(vma, &vm->bound_list, vm_link) {
483 			if (i915_vma_is_pinned(vma))
484 				continue;
485 
486 			/*
487 			 * If we already own the lock, trylock fails. In case
488 			 * the resv is shared among multiple objects, we still
489 			 * need the object ref.
490 			 */
491 			if (!i915_gem_object_get_rcu(vma->obj) ||
492 			    (ww && (dma_resv_locking_ctx(vma->obj->base.resv) == &ww->ctx))) {
493 				__i915_vma_pin(vma);
494 				list_add(&vma->evict_link, &locked_eviction_list);
495 				continue;
496 			}
497 
498 			if (!i915_gem_object_trylock(vma->obj, ww)) {
499 				if (busy_bo) {
500 					*busy_bo = vma->obj; /* holds ref */
501 					ret = -EBUSY;
502 					break;
503 				}
504 				i915_gem_object_put(vma->obj);
505 				continue;
506 			}
507 
508 			__i915_vma_pin(vma);
509 			list_add(&vma->evict_link, &eviction_list);
510 		}
511 		if (list_empty(&eviction_list) && list_empty(&locked_eviction_list))
512 			break;
513 
514 		/* Unbind locked objects first, before unlocking the eviction_list */
515 		list_for_each_entry_safe(vma, vn, &locked_eviction_list, evict_link) {
516 			__i915_vma_unpin(vma);
517 
518 			if (ret == 0) {
519 				ret = __i915_vma_unbind(vma);
520 				if (ret != -EINTR) /* "Get me out of here!" */
521 					ret = 0;
522 			}
523 			if (!dying_vma(vma))
524 				i915_gem_object_put(vma->obj);
525 		}
526 
527 		list_for_each_entry_safe(vma, vn, &eviction_list, evict_link) {
528 			__i915_vma_unpin(vma);
529 			if (ret == 0) {
530 				ret = __i915_vma_unbind(vma);
531 				if (ret != -EINTR) /* "Get me out of here!" */
532 					ret = 0;
533 			}
534 
535 			i915_gem_object_unlock(vma->obj);
536 			i915_gem_object_put(vma->obj);
537 		}
538 	} while (ret == 0);
539 
540 	return ret;
541 }
542 
543 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
544 #include "selftests/i915_gem_evict.c"
545 #endif
546