1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct i915_gpu_error *error) 91 { 92 int ret; 93 94 #define EXIT_COND (!i915_reset_in_progress(error) || \ 95 i915_terminally_wedged(error)) 96 if (EXIT_COND) 97 return 0; 98 99 /* 100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 101 * userspace. If it takes that long something really bad is going on and 102 * we should simply try to bail out and fail as gracefully as possible. 103 */ 104 ret = wait_event_interruptible_timeout(error->reset_queue, 105 EXIT_COND, 106 10*HZ); 107 if (ret == 0) { 108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 109 return -EIO; 110 } else if (ret < 0) { 111 return ret; 112 } 113 #undef EXIT_COND 114 115 return 0; 116 } 117 118 int i915_mutex_lock_interruptible(struct drm_device *dev) 119 { 120 struct drm_i915_private *dev_priv = dev->dev_private; 121 int ret; 122 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 124 if (ret) 125 return ret; 126 127 ret = mutex_lock_interruptible(&dev->struct_mutex); 128 if (ret) 129 return ret; 130 131 WARN_ON(i915_verify_lists(dev)); 132 return 0; 133 } 134 135 static inline bool 136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 137 { 138 return obj->gtt_space && !obj->active; 139 } 140 141 int 142 i915_gem_init_ioctl(struct drm_device *dev, void *data, 143 struct drm_file *file) 144 { 145 struct drm_i915_private *dev_priv = dev->dev_private; 146 struct drm_i915_gem_init *args = data; 147 148 if (drm_core_check_feature(dev, DRIVER_MODESET)) 149 return -ENODEV; 150 151 if (args->gtt_start >= args->gtt_end || 152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 153 return -EINVAL; 154 155 /* GEM with user mode setting was never supported on ilk and later. */ 156 if (INTEL_INFO(dev)->gen >= 5) 157 return -ENODEV; 158 159 mutex_lock(&dev->struct_mutex); 160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 161 args->gtt_end); 162 dev_priv->gtt.mappable_end = args->gtt_end; 163 mutex_unlock(&dev->struct_mutex); 164 165 return 0; 166 } 167 168 int 169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 170 struct drm_file *file) 171 { 172 struct drm_i915_private *dev_priv = dev->dev_private; 173 struct drm_i915_gem_get_aperture *args = data; 174 struct drm_i915_gem_object *obj; 175 size_t pinned; 176 177 pinned = 0; 178 mutex_lock(&dev->struct_mutex); 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 180 if (obj->pin_count) 181 pinned += obj->gtt_space->size; 182 mutex_unlock(&dev->struct_mutex); 183 184 args->aper_size = dev_priv->gtt.total; 185 args->aper_available_size = args->aper_size - pinned; 186 187 return 0; 188 } 189 190 void *i915_gem_object_alloc(struct drm_device *dev) 191 { 192 struct drm_i915_private *dev_priv = dev->dev_private; 193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO); 194 } 195 196 void i915_gem_object_free(struct drm_i915_gem_object *obj) 197 { 198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 199 kmem_cache_free(dev_priv->slab, obj); 200 } 201 202 static int 203 i915_gem_create(struct drm_file *file, 204 struct drm_device *dev, 205 uint64_t size, 206 uint32_t *handle_p) 207 { 208 struct drm_i915_gem_object *obj; 209 int ret; 210 u32 handle; 211 212 size = roundup(size, PAGE_SIZE); 213 if (size == 0) 214 return -EINVAL; 215 216 /* Allocate the new object */ 217 obj = i915_gem_alloc_object(dev, size); 218 if (obj == NULL) 219 return -ENOMEM; 220 221 ret = drm_gem_handle_create(file, &obj->base, &handle); 222 if (ret) { 223 drm_gem_object_release(&obj->base); 224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 225 i915_gem_object_free(obj); 226 return ret; 227 } 228 229 /* drop reference from allocate - handle holds it now */ 230 drm_gem_object_unreference(&obj->base); 231 trace_i915_gem_object_create(obj); 232 233 *handle_p = handle; 234 return 0; 235 } 236 237 int 238 i915_gem_dumb_create(struct drm_file *file, 239 struct drm_device *dev, 240 struct drm_mode_create_dumb *args) 241 { 242 /* have to work out size/pitch and return them */ 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 244 args->size = args->pitch * args->height; 245 return i915_gem_create(file, dev, 246 args->size, &args->handle); 247 } 248 249 int i915_gem_dumb_destroy(struct drm_file *file, 250 struct drm_device *dev, 251 uint32_t handle) 252 { 253 return drm_gem_handle_delete(file, handle); 254 } 255 256 /** 257 * Creates a new mm object and returns a handle to it. 258 */ 259 int 260 i915_gem_create_ioctl(struct drm_device *dev, void *data, 261 struct drm_file *file) 262 { 263 struct drm_i915_gem_create *args = data; 264 265 return i915_gem_create(file, dev, 266 args->size, &args->handle); 267 } 268 269 static inline int 270 __copy_to_user_swizzled(char __user *cpu_vaddr, 271 const char *gpu_vaddr, int gpu_offset, 272 int length) 273 { 274 int ret, cpu_offset = 0; 275 276 while (length > 0) { 277 int cacheline_end = ALIGN(gpu_offset + 1, 64); 278 int this_length = min(cacheline_end - gpu_offset, length); 279 int swizzled_gpu_offset = gpu_offset ^ 64; 280 281 ret = __copy_to_user(cpu_vaddr + cpu_offset, 282 gpu_vaddr + swizzled_gpu_offset, 283 this_length); 284 if (ret) 285 return ret + length; 286 287 cpu_offset += this_length; 288 gpu_offset += this_length; 289 length -= this_length; 290 } 291 292 return 0; 293 } 294 295 static inline int 296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 297 const char __user *cpu_vaddr, 298 int length) 299 { 300 int ret, cpu_offset = 0; 301 302 while (length > 0) { 303 int cacheline_end = ALIGN(gpu_offset + 1, 64); 304 int this_length = min(cacheline_end - gpu_offset, length); 305 int swizzled_gpu_offset = gpu_offset ^ 64; 306 307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 308 cpu_vaddr + cpu_offset, 309 this_length); 310 if (ret) 311 return ret + length; 312 313 cpu_offset += this_length; 314 gpu_offset += this_length; 315 length -= this_length; 316 } 317 318 return 0; 319 } 320 321 /* Per-page copy function for the shmem pread fastpath. 322 * Flushes invalid cachelines before reading the target if 323 * needs_clflush is set. */ 324 static int 325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 326 char __user *user_data, 327 bool page_do_bit17_swizzling, bool needs_clflush) 328 { 329 char *vaddr; 330 int ret; 331 332 if (unlikely(page_do_bit17_swizzling)) 333 return -EINVAL; 334 335 vaddr = kmap_atomic(page); 336 if (needs_clflush) 337 drm_clflush_virt_range(vaddr + shmem_page_offset, 338 page_length); 339 ret = __copy_to_user_inatomic(user_data, 340 vaddr + shmem_page_offset, 341 page_length); 342 kunmap_atomic(vaddr); 343 344 return ret ? -EFAULT : 0; 345 } 346 347 static void 348 shmem_clflush_swizzled_range(char *addr, unsigned long length, 349 bool swizzled) 350 { 351 if (unlikely(swizzled)) { 352 unsigned long start = (unsigned long) addr; 353 unsigned long end = (unsigned long) addr + length; 354 355 /* For swizzling simply ensure that we always flush both 356 * channels. Lame, but simple and it works. Swizzled 357 * pwrite/pread is far from a hotpath - current userspace 358 * doesn't use it at all. */ 359 start = round_down(start, 128); 360 end = round_up(end, 128); 361 362 drm_clflush_virt_range((void *)start, end - start); 363 } else { 364 drm_clflush_virt_range(addr, length); 365 } 366 367 } 368 369 /* Only difference to the fast-path function is that this can handle bit17 370 * and uses non-atomic copy and kmap functions. */ 371 static int 372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 373 char __user *user_data, 374 bool page_do_bit17_swizzling, bool needs_clflush) 375 { 376 char *vaddr; 377 int ret; 378 379 vaddr = kmap(page); 380 if (needs_clflush) 381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 382 page_length, 383 page_do_bit17_swizzling); 384 385 if (page_do_bit17_swizzling) 386 ret = __copy_to_user_swizzled(user_data, 387 vaddr, shmem_page_offset, 388 page_length); 389 else 390 ret = __copy_to_user(user_data, 391 vaddr + shmem_page_offset, 392 page_length); 393 kunmap(page); 394 395 return ret ? - EFAULT : 0; 396 } 397 398 static int 399 i915_gem_shmem_pread(struct drm_device *dev, 400 struct drm_i915_gem_object *obj, 401 struct drm_i915_gem_pread *args, 402 struct drm_file *file) 403 { 404 char __user *user_data; 405 ssize_t remain; 406 loff_t offset; 407 int shmem_page_offset, page_length, ret = 0; 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 409 int prefaulted = 0; 410 int needs_clflush = 0; 411 struct sg_page_iter sg_iter; 412 413 user_data = to_user_ptr(args->data_ptr); 414 remain = args->size; 415 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 417 418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 419 /* If we're not in the cpu read domain, set ourself into the gtt 420 * read domain and manually flush cachelines (if required). This 421 * optimizes for the case when the gpu will dirty the data 422 * anyway again before the next pread happens. */ 423 if (obj->cache_level == I915_CACHE_NONE) 424 needs_clflush = 1; 425 if (obj->gtt_space) { 426 ret = i915_gem_object_set_to_gtt_domain(obj, false); 427 if (ret) 428 return ret; 429 } 430 } 431 432 ret = i915_gem_object_get_pages(obj); 433 if (ret) 434 return ret; 435 436 i915_gem_object_pin_pages(obj); 437 438 offset = args->offset; 439 440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 441 offset >> PAGE_SHIFT) { 442 struct page *page = sg_page_iter_page(&sg_iter); 443 444 if (remain <= 0) 445 break; 446 447 /* Operation in this page 448 * 449 * shmem_page_offset = offset within page in shmem file 450 * page_length = bytes to copy for this page 451 */ 452 shmem_page_offset = offset_in_page(offset); 453 page_length = remain; 454 if ((shmem_page_offset + page_length) > PAGE_SIZE) 455 page_length = PAGE_SIZE - shmem_page_offset; 456 457 page_do_bit17_swizzling = obj_do_bit17_swizzling && 458 (page_to_phys(page) & (1 << 17)) != 0; 459 460 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 461 user_data, page_do_bit17_swizzling, 462 needs_clflush); 463 if (ret == 0) 464 goto next_page; 465 466 mutex_unlock(&dev->struct_mutex); 467 468 if (!prefaulted) { 469 ret = fault_in_multipages_writeable(user_data, remain); 470 /* Userspace is tricking us, but we've already clobbered 471 * its pages with the prefault and promised to write the 472 * data up to the first fault. Hence ignore any errors 473 * and just continue. */ 474 (void)ret; 475 prefaulted = 1; 476 } 477 478 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 479 user_data, page_do_bit17_swizzling, 480 needs_clflush); 481 482 mutex_lock(&dev->struct_mutex); 483 484 next_page: 485 mark_page_accessed(page); 486 487 if (ret) 488 goto out; 489 490 remain -= page_length; 491 user_data += page_length; 492 offset += page_length; 493 } 494 495 out: 496 i915_gem_object_unpin_pages(obj); 497 498 return ret; 499 } 500 501 /** 502 * Reads data from the object referenced by handle. 503 * 504 * On error, the contents of *data are undefined. 505 */ 506 int 507 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 508 struct drm_file *file) 509 { 510 struct drm_i915_gem_pread *args = data; 511 struct drm_i915_gem_object *obj; 512 int ret = 0; 513 514 if (args->size == 0) 515 return 0; 516 517 if (!access_ok(VERIFY_WRITE, 518 to_user_ptr(args->data_ptr), 519 args->size)) 520 return -EFAULT; 521 522 ret = i915_mutex_lock_interruptible(dev); 523 if (ret) 524 return ret; 525 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 527 if (&obj->base == NULL) { 528 ret = -ENOENT; 529 goto unlock; 530 } 531 532 /* Bounds check source. */ 533 if (args->offset > obj->base.size || 534 args->size > obj->base.size - args->offset) { 535 ret = -EINVAL; 536 goto out; 537 } 538 539 /* prime objects have no backing filp to GEM pread/pwrite 540 * pages from. 541 */ 542 if (!obj->base.filp) { 543 ret = -EINVAL; 544 goto out; 545 } 546 547 trace_i915_gem_object_pread(obj, args->offset, args->size); 548 549 ret = i915_gem_shmem_pread(dev, obj, args, file); 550 551 out: 552 drm_gem_object_unreference(&obj->base); 553 unlock: 554 mutex_unlock(&dev->struct_mutex); 555 return ret; 556 } 557 558 /* This is the fast write path which cannot handle 559 * page faults in the source data 560 */ 561 562 static inline int 563 fast_user_write(struct io_mapping *mapping, 564 loff_t page_base, int page_offset, 565 char __user *user_data, 566 int length) 567 { 568 void __iomem *vaddr_atomic; 569 void *vaddr; 570 unsigned long unwritten; 571 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 573 /* We can use the cpu mem copy function because this is X86. */ 574 vaddr = (void __force*)vaddr_atomic + page_offset; 575 unwritten = __copy_from_user_inatomic_nocache(vaddr, 576 user_data, length); 577 io_mapping_unmap_atomic(vaddr_atomic); 578 return unwritten; 579 } 580 581 /** 582 * This is the fast pwrite path, where we copy the data directly from the 583 * user into the GTT, uncached. 584 */ 585 static int 586 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 587 struct drm_i915_gem_object *obj, 588 struct drm_i915_gem_pwrite *args, 589 struct drm_file *file) 590 { 591 drm_i915_private_t *dev_priv = dev->dev_private; 592 ssize_t remain; 593 loff_t offset, page_base; 594 char __user *user_data; 595 int page_offset, page_length, ret; 596 597 ret = i915_gem_object_pin(obj, 0, true, true); 598 if (ret) 599 goto out; 600 601 ret = i915_gem_object_set_to_gtt_domain(obj, true); 602 if (ret) 603 goto out_unpin; 604 605 ret = i915_gem_object_put_fence(obj); 606 if (ret) 607 goto out_unpin; 608 609 user_data = to_user_ptr(args->data_ptr); 610 remain = args->size; 611 612 offset = obj->gtt_offset + args->offset; 613 614 while (remain > 0) { 615 /* Operation in this page 616 * 617 * page_base = page offset within aperture 618 * page_offset = offset within page 619 * page_length = bytes to copy for this page 620 */ 621 page_base = offset & PAGE_MASK; 622 page_offset = offset_in_page(offset); 623 page_length = remain; 624 if ((page_offset + remain) > PAGE_SIZE) 625 page_length = PAGE_SIZE - page_offset; 626 627 /* If we get a fault while copying data, then (presumably) our 628 * source page isn't available. Return the error and we'll 629 * retry in the slow path. 630 */ 631 if (fast_user_write(dev_priv->gtt.mappable, page_base, 632 page_offset, user_data, page_length)) { 633 ret = -EFAULT; 634 goto out_unpin; 635 } 636 637 remain -= page_length; 638 user_data += page_length; 639 offset += page_length; 640 } 641 642 out_unpin: 643 i915_gem_object_unpin(obj); 644 out: 645 return ret; 646 } 647 648 /* Per-page copy function for the shmem pwrite fastpath. 649 * Flushes invalid cachelines before writing to the target if 650 * needs_clflush_before is set and flushes out any written cachelines after 651 * writing if needs_clflush is set. */ 652 static int 653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 654 char __user *user_data, 655 bool page_do_bit17_swizzling, 656 bool needs_clflush_before, 657 bool needs_clflush_after) 658 { 659 char *vaddr; 660 int ret; 661 662 if (unlikely(page_do_bit17_swizzling)) 663 return -EINVAL; 664 665 vaddr = kmap_atomic(page); 666 if (needs_clflush_before) 667 drm_clflush_virt_range(vaddr + shmem_page_offset, 668 page_length); 669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 670 user_data, 671 page_length); 672 if (needs_clflush_after) 673 drm_clflush_virt_range(vaddr + shmem_page_offset, 674 page_length); 675 kunmap_atomic(vaddr); 676 677 return ret ? -EFAULT : 0; 678 } 679 680 /* Only difference to the fast-path function is that this can handle bit17 681 * and uses non-atomic copy and kmap functions. */ 682 static int 683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 684 char __user *user_data, 685 bool page_do_bit17_swizzling, 686 bool needs_clflush_before, 687 bool needs_clflush_after) 688 { 689 char *vaddr; 690 int ret; 691 692 vaddr = kmap(page); 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 695 page_length, 696 page_do_bit17_swizzling); 697 if (page_do_bit17_swizzling) 698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 699 user_data, 700 page_length); 701 else 702 ret = __copy_from_user(vaddr + shmem_page_offset, 703 user_data, 704 page_length); 705 if (needs_clflush_after) 706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 707 page_length, 708 page_do_bit17_swizzling); 709 kunmap(page); 710 711 return ret ? -EFAULT : 0; 712 } 713 714 static int 715 i915_gem_shmem_pwrite(struct drm_device *dev, 716 struct drm_i915_gem_object *obj, 717 struct drm_i915_gem_pwrite *args, 718 struct drm_file *file) 719 { 720 ssize_t remain; 721 loff_t offset; 722 char __user *user_data; 723 int shmem_page_offset, page_length, ret = 0; 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 725 int hit_slowpath = 0; 726 int needs_clflush_after = 0; 727 int needs_clflush_before = 0; 728 struct sg_page_iter sg_iter; 729 730 user_data = to_user_ptr(args->data_ptr); 731 remain = args->size; 732 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 734 735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 736 /* If we're not in the cpu write domain, set ourself into the gtt 737 * write domain and manually flush cachelines (if required). This 738 * optimizes for the case when the gpu will use the data 739 * right away and we therefore have to clflush anyway. */ 740 if (obj->cache_level == I915_CACHE_NONE) 741 needs_clflush_after = 1; 742 if (obj->gtt_space) { 743 ret = i915_gem_object_set_to_gtt_domain(obj, true); 744 if (ret) 745 return ret; 746 } 747 } 748 /* Same trick applies for invalidate partially written cachelines before 749 * writing. */ 750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 751 && obj->cache_level == I915_CACHE_NONE) 752 needs_clflush_before = 1; 753 754 ret = i915_gem_object_get_pages(obj); 755 if (ret) 756 return ret; 757 758 i915_gem_object_pin_pages(obj); 759 760 offset = args->offset; 761 obj->dirty = 1; 762 763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 764 offset >> PAGE_SHIFT) { 765 struct page *page = sg_page_iter_page(&sg_iter); 766 int partial_cacheline_write; 767 768 if (remain <= 0) 769 break; 770 771 /* Operation in this page 772 * 773 * shmem_page_offset = offset within page in shmem file 774 * page_length = bytes to copy for this page 775 */ 776 shmem_page_offset = offset_in_page(offset); 777 778 page_length = remain; 779 if ((shmem_page_offset + page_length) > PAGE_SIZE) 780 page_length = PAGE_SIZE - shmem_page_offset; 781 782 /* If we don't overwrite a cacheline completely we need to be 783 * careful to have up-to-date data by first clflushing. Don't 784 * overcomplicate things and flush the entire patch. */ 785 partial_cacheline_write = needs_clflush_before && 786 ((shmem_page_offset | page_length) 787 & (boot_cpu_data.x86_clflush_size - 1)); 788 789 page_do_bit17_swizzling = obj_do_bit17_swizzling && 790 (page_to_phys(page) & (1 << 17)) != 0; 791 792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 793 user_data, page_do_bit17_swizzling, 794 partial_cacheline_write, 795 needs_clflush_after); 796 if (ret == 0) 797 goto next_page; 798 799 hit_slowpath = 1; 800 mutex_unlock(&dev->struct_mutex); 801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 802 user_data, page_do_bit17_swizzling, 803 partial_cacheline_write, 804 needs_clflush_after); 805 806 mutex_lock(&dev->struct_mutex); 807 808 next_page: 809 set_page_dirty(page); 810 mark_page_accessed(page); 811 812 if (ret) 813 goto out; 814 815 remain -= page_length; 816 user_data += page_length; 817 offset += page_length; 818 } 819 820 out: 821 i915_gem_object_unpin_pages(obj); 822 823 if (hit_slowpath) { 824 /* 825 * Fixup: Flush cpu caches in case we didn't flush the dirty 826 * cachelines in-line while writing and the object moved 827 * out of the cpu write domain while we've dropped the lock. 828 */ 829 if (!needs_clflush_after && 830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 831 i915_gem_clflush_object(obj); 832 i915_gem_chipset_flush(dev); 833 } 834 } 835 836 if (needs_clflush_after) 837 i915_gem_chipset_flush(dev); 838 839 return ret; 840 } 841 842 /** 843 * Writes data to the object referenced by handle. 844 * 845 * On error, the contents of the buffer that were to be modified are undefined. 846 */ 847 int 848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 849 struct drm_file *file) 850 { 851 struct drm_i915_gem_pwrite *args = data; 852 struct drm_i915_gem_object *obj; 853 int ret; 854 855 if (args->size == 0) 856 return 0; 857 858 if (!access_ok(VERIFY_READ, 859 to_user_ptr(args->data_ptr), 860 args->size)) 861 return -EFAULT; 862 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 864 args->size); 865 if (ret) 866 return -EFAULT; 867 868 ret = i915_mutex_lock_interruptible(dev); 869 if (ret) 870 return ret; 871 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 873 if (&obj->base == NULL) { 874 ret = -ENOENT; 875 goto unlock; 876 } 877 878 /* Bounds check destination. */ 879 if (args->offset > obj->base.size || 880 args->size > obj->base.size - args->offset) { 881 ret = -EINVAL; 882 goto out; 883 } 884 885 /* prime objects have no backing filp to GEM pread/pwrite 886 * pages from. 887 */ 888 if (!obj->base.filp) { 889 ret = -EINVAL; 890 goto out; 891 } 892 893 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 894 895 ret = -EFAULT; 896 /* We can only do the GTT pwrite on untiled buffers, as otherwise 897 * it would end up going through the fenced access, and we'll get 898 * different detiling behavior between reading and writing. 899 * pread/pwrite currently are reading and writing from the CPU 900 * perspective, requiring manual detiling by the client. 901 */ 902 if (obj->phys_obj) { 903 ret = i915_gem_phys_pwrite(dev, obj, args, file); 904 goto out; 905 } 906 907 if (obj->cache_level == I915_CACHE_NONE && 908 obj->tiling_mode == I915_TILING_NONE && 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 911 /* Note that the gtt paths might fail with non-page-backed user 912 * pointers (e.g. gtt mappings when moving data between 913 * textures). Fallback to the shmem path in that case. */ 914 } 915 916 if (ret == -EFAULT || ret == -ENOSPC) 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 918 919 out: 920 drm_gem_object_unreference(&obj->base); 921 unlock: 922 mutex_unlock(&dev->struct_mutex); 923 return ret; 924 } 925 926 int 927 i915_gem_check_wedge(struct i915_gpu_error *error, 928 bool interruptible) 929 { 930 if (i915_reset_in_progress(error)) { 931 /* Non-interruptible callers can't handle -EAGAIN, hence return 932 * -EIO unconditionally for these. */ 933 if (!interruptible) 934 return -EIO; 935 936 /* Recovery complete, but the reset failed ... */ 937 if (i915_terminally_wedged(error)) 938 return -EIO; 939 940 return -EAGAIN; 941 } 942 943 return 0; 944 } 945 946 /* 947 * Compare seqno against outstanding lazy request. Emit a request if they are 948 * equal. 949 */ 950 static int 951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 952 { 953 int ret; 954 955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 956 957 ret = 0; 958 if (seqno == ring->outstanding_lazy_request) 959 ret = i915_add_request(ring, NULL); 960 961 return ret; 962 } 963 964 /** 965 * __wait_seqno - wait until execution of seqno has finished 966 * @ring: the ring expected to report seqno 967 * @seqno: duh! 968 * @reset_counter: reset sequence associated with the given seqno 969 * @interruptible: do an interruptible wait (normally yes) 970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 971 * 972 * Note: It is of utmost importance that the passed in seqno and reset_counter 973 * values have been read by the caller in an smp safe manner. Where read-side 974 * locks are involved, it is sufficient to read the reset_counter before 975 * unlocking the lock that protects the seqno. For lockless tricks, the 976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 977 * inserted. 978 * 979 * Returns 0 if the seqno was found within the alloted time. Else returns the 980 * errno with remaining time filled in timeout argument. 981 */ 982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 983 unsigned reset_counter, 984 bool interruptible, struct timespec *timeout) 985 { 986 drm_i915_private_t *dev_priv = ring->dev->dev_private; 987 struct timespec before, now, wait_time={1,0}; 988 unsigned long timeout_jiffies; 989 long end; 990 bool wait_forever = true; 991 int ret; 992 993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 994 return 0; 995 996 trace_i915_gem_request_wait_begin(ring, seqno); 997 998 if (timeout != NULL) { 999 wait_time = *timeout; 1000 wait_forever = false; 1001 } 1002 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 1004 1005 if (WARN_ON(!ring->irq_get(ring))) 1006 return -ENODEV; 1007 1008 /* Record current time in case interrupted by signal, or wedged * */ 1009 getrawmonotonic(&before); 1010 1011 #define EXIT_COND \ 1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1013 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1015 do { 1016 if (interruptible) 1017 end = wait_event_interruptible_timeout(ring->irq_queue, 1018 EXIT_COND, 1019 timeout_jiffies); 1020 else 1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1022 timeout_jiffies); 1023 1024 /* We need to check whether any gpu reset happened in between 1025 * the caller grabbing the seqno and now ... */ 1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1027 end = -EAGAIN; 1028 1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1030 * gone. */ 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1032 if (ret) 1033 end = ret; 1034 } while (end == 0 && wait_forever); 1035 1036 getrawmonotonic(&now); 1037 1038 ring->irq_put(ring); 1039 trace_i915_gem_request_wait_end(ring, seqno); 1040 #undef EXIT_COND 1041 1042 if (timeout) { 1043 struct timespec sleep_time = timespec_sub(now, before); 1044 *timeout = timespec_sub(*timeout, sleep_time); 1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1046 set_normalized_timespec(timeout, 0, 0); 1047 } 1048 1049 switch (end) { 1050 case -EIO: 1051 case -EAGAIN: /* Wedged */ 1052 case -ERESTARTSYS: /* Signal */ 1053 return (int)end; 1054 case 0: /* Timeout */ 1055 return -ETIME; 1056 default: /* Completed */ 1057 WARN_ON(end < 0); /* We're not aware of other errors */ 1058 return 0; 1059 } 1060 } 1061 1062 /** 1063 * Waits for a sequence number to be signaled, and cleans up the 1064 * request and object lists appropriately for that event. 1065 */ 1066 int 1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1068 { 1069 struct drm_device *dev = ring->dev; 1070 struct drm_i915_private *dev_priv = dev->dev_private; 1071 bool interruptible = dev_priv->mm.interruptible; 1072 int ret; 1073 1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1075 BUG_ON(seqno == 0); 1076 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1078 if (ret) 1079 return ret; 1080 1081 ret = i915_gem_check_olr(ring, seqno); 1082 if (ret) 1083 return ret; 1084 1085 return __wait_seqno(ring, seqno, 1086 atomic_read(&dev_priv->gpu_error.reset_counter), 1087 interruptible, NULL); 1088 } 1089 1090 static int 1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1092 struct intel_ring_buffer *ring) 1093 { 1094 i915_gem_retire_requests_ring(ring); 1095 1096 /* Manually manage the write flush as we may have not yet 1097 * retired the buffer. 1098 * 1099 * Note that the last_write_seqno is always the earlier of 1100 * the two (read/write) seqno, so if we haved successfully waited, 1101 * we know we have passed the last write. 1102 */ 1103 obj->last_write_seqno = 0; 1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1105 1106 return 0; 1107 } 1108 1109 /** 1110 * Ensures that all rendering to the object has completed and the object is 1111 * safe to unbind from the GTT or access from the CPU. 1112 */ 1113 static __must_check int 1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1115 bool readonly) 1116 { 1117 struct intel_ring_buffer *ring = obj->ring; 1118 u32 seqno; 1119 int ret; 1120 1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1122 if (seqno == 0) 1123 return 0; 1124 1125 ret = i915_wait_seqno(ring, seqno); 1126 if (ret) 1127 return ret; 1128 1129 return i915_gem_object_wait_rendering__tail(obj, ring); 1130 } 1131 1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1133 * as the object state may change during this call. 1134 */ 1135 static __must_check int 1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1137 bool readonly) 1138 { 1139 struct drm_device *dev = obj->base.dev; 1140 struct drm_i915_private *dev_priv = dev->dev_private; 1141 struct intel_ring_buffer *ring = obj->ring; 1142 unsigned reset_counter; 1143 u32 seqno; 1144 int ret; 1145 1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1147 BUG_ON(!dev_priv->mm.interruptible); 1148 1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1150 if (seqno == 0) 1151 return 0; 1152 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1154 if (ret) 1155 return ret; 1156 1157 ret = i915_gem_check_olr(ring, seqno); 1158 if (ret) 1159 return ret; 1160 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1162 mutex_unlock(&dev->struct_mutex); 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1164 mutex_lock(&dev->struct_mutex); 1165 if (ret) 1166 return ret; 1167 1168 return i915_gem_object_wait_rendering__tail(obj, ring); 1169 } 1170 1171 /** 1172 * Called when user space prepares to use an object with the CPU, either 1173 * through the mmap ioctl's mapping or a GTT mapping. 1174 */ 1175 int 1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1177 struct drm_file *file) 1178 { 1179 struct drm_i915_gem_set_domain *args = data; 1180 struct drm_i915_gem_object *obj; 1181 uint32_t read_domains = args->read_domains; 1182 uint32_t write_domain = args->write_domain; 1183 int ret; 1184 1185 /* Only handle setting domains to types used by the CPU. */ 1186 if (write_domain & I915_GEM_GPU_DOMAINS) 1187 return -EINVAL; 1188 1189 if (read_domains & I915_GEM_GPU_DOMAINS) 1190 return -EINVAL; 1191 1192 /* Having something in the write domain implies it's in the read 1193 * domain, and only that read domain. Enforce that in the request. 1194 */ 1195 if (write_domain != 0 && read_domains != write_domain) 1196 return -EINVAL; 1197 1198 ret = i915_mutex_lock_interruptible(dev); 1199 if (ret) 1200 return ret; 1201 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1203 if (&obj->base == NULL) { 1204 ret = -ENOENT; 1205 goto unlock; 1206 } 1207 1208 /* Try to flush the object off the GPU without holding the lock. 1209 * We will repeat the flush holding the lock in the normal manner 1210 * to catch cases where we are gazumped. 1211 */ 1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1213 if (ret) 1214 goto unref; 1215 1216 if (read_domains & I915_GEM_DOMAIN_GTT) { 1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1218 1219 /* Silently promote "you're not bound, there was nothing to do" 1220 * to success, since the client was just asking us to 1221 * make sure everything was done. 1222 */ 1223 if (ret == -EINVAL) 1224 ret = 0; 1225 } else { 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1227 } 1228 1229 unref: 1230 drm_gem_object_unreference(&obj->base); 1231 unlock: 1232 mutex_unlock(&dev->struct_mutex); 1233 return ret; 1234 } 1235 1236 /** 1237 * Called when user space has done writes to this buffer 1238 */ 1239 int 1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1241 struct drm_file *file) 1242 { 1243 struct drm_i915_gem_sw_finish *args = data; 1244 struct drm_i915_gem_object *obj; 1245 int ret = 0; 1246 1247 ret = i915_mutex_lock_interruptible(dev); 1248 if (ret) 1249 return ret; 1250 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1252 if (&obj->base == NULL) { 1253 ret = -ENOENT; 1254 goto unlock; 1255 } 1256 1257 /* Pinned buffers may be scanout, so flush the cache */ 1258 if (obj->pin_count) 1259 i915_gem_object_flush_cpu_write_domain(obj); 1260 1261 drm_gem_object_unreference(&obj->base); 1262 unlock: 1263 mutex_unlock(&dev->struct_mutex); 1264 return ret; 1265 } 1266 1267 /** 1268 * Maps the contents of an object, returning the address it is mapped 1269 * into. 1270 * 1271 * While the mapping holds a reference on the contents of the object, it doesn't 1272 * imply a ref on the object itself. 1273 */ 1274 int 1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1276 struct drm_file *file) 1277 { 1278 struct drm_i915_gem_mmap *args = data; 1279 struct drm_gem_object *obj; 1280 unsigned long addr; 1281 1282 obj = drm_gem_object_lookup(dev, file, args->handle); 1283 if (obj == NULL) 1284 return -ENOENT; 1285 1286 /* prime objects have no backing filp to GEM mmap 1287 * pages from. 1288 */ 1289 if (!obj->filp) { 1290 drm_gem_object_unreference_unlocked(obj); 1291 return -EINVAL; 1292 } 1293 1294 addr = vm_mmap(obj->filp, 0, args->size, 1295 PROT_READ | PROT_WRITE, MAP_SHARED, 1296 args->offset); 1297 drm_gem_object_unreference_unlocked(obj); 1298 if (IS_ERR((void *)addr)) 1299 return addr; 1300 1301 args->addr_ptr = (uint64_t) addr; 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * i915_gem_fault - fault a page into the GTT 1308 * vma: VMA in question 1309 * vmf: fault info 1310 * 1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1312 * from userspace. The fault handler takes care of binding the object to 1313 * the GTT (if needed), allocating and programming a fence register (again, 1314 * only if needed based on whether the old reg is still valid or the object 1315 * is tiled) and inserting a new PTE into the faulting process. 1316 * 1317 * Note that the faulting process may involve evicting existing objects 1318 * from the GTT and/or fence registers to make room. So performance may 1319 * suffer if the GTT working set is large or there are few fence registers 1320 * left. 1321 */ 1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1323 { 1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1325 struct drm_device *dev = obj->base.dev; 1326 drm_i915_private_t *dev_priv = dev->dev_private; 1327 pgoff_t page_offset; 1328 unsigned long pfn; 1329 int ret = 0; 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1331 1332 /* We don't use vmf->pgoff since that has the fake offset */ 1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1334 PAGE_SHIFT; 1335 1336 ret = i915_mutex_lock_interruptible(dev); 1337 if (ret) 1338 goto out; 1339 1340 trace_i915_gem_object_fault(obj, page_offset, true, write); 1341 1342 /* Access to snoopable pages through the GTT is incoherent. */ 1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1344 ret = -EINVAL; 1345 goto unlock; 1346 } 1347 1348 /* Now bind it into the GTT if needed */ 1349 ret = i915_gem_object_pin(obj, 0, true, false); 1350 if (ret) 1351 goto unlock; 1352 1353 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1354 if (ret) 1355 goto unpin; 1356 1357 ret = i915_gem_object_get_fence(obj); 1358 if (ret) 1359 goto unpin; 1360 1361 obj->fault_mappable = true; 1362 1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) + 1364 page_offset; 1365 1366 /* Finally, remap it using the new GTT offset */ 1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1368 unpin: 1369 i915_gem_object_unpin(obj); 1370 unlock: 1371 mutex_unlock(&dev->struct_mutex); 1372 out: 1373 switch (ret) { 1374 case -EIO: 1375 /* If this -EIO is due to a gpu hang, give the reset code a 1376 * chance to clean up the mess. Otherwise return the proper 1377 * SIGBUS. */ 1378 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1379 return VM_FAULT_SIGBUS; 1380 case -EAGAIN: 1381 /* Give the error handler a chance to run and move the 1382 * objects off the GPU active list. Next time we service the 1383 * fault, we should be able to transition the page into the 1384 * GTT without touching the GPU (and so avoid further 1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1386 * with coherency, just lost writes. 1387 */ 1388 set_need_resched(); 1389 case 0: 1390 case -ERESTARTSYS: 1391 case -EINTR: 1392 case -EBUSY: 1393 /* 1394 * EBUSY is ok: this just means that another thread 1395 * already did the job. 1396 */ 1397 return VM_FAULT_NOPAGE; 1398 case -ENOMEM: 1399 return VM_FAULT_OOM; 1400 case -ENOSPC: 1401 return VM_FAULT_SIGBUS; 1402 default: 1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1404 return VM_FAULT_SIGBUS; 1405 } 1406 } 1407 1408 /** 1409 * i915_gem_release_mmap - remove physical page mappings 1410 * @obj: obj in question 1411 * 1412 * Preserve the reservation of the mmapping with the DRM core code, but 1413 * relinquish ownership of the pages back to the system. 1414 * 1415 * It is vital that we remove the page mapping if we have mapped a tiled 1416 * object through the GTT and then lose the fence register due to 1417 * resource pressure. Similarly if the object has been moved out of the 1418 * aperture, than pages mapped into userspace must be revoked. Removing the 1419 * mapping will then trigger a page fault on the next user access, allowing 1420 * fixup by i915_gem_fault(). 1421 */ 1422 void 1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1424 { 1425 if (!obj->fault_mappable) 1426 return; 1427 1428 if (obj->base.dev->dev_mapping) 1429 unmap_mapping_range(obj->base.dev->dev_mapping, 1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1431 obj->base.size, 1); 1432 1433 obj->fault_mappable = false; 1434 } 1435 1436 uint32_t 1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1438 { 1439 uint32_t gtt_size; 1440 1441 if (INTEL_INFO(dev)->gen >= 4 || 1442 tiling_mode == I915_TILING_NONE) 1443 return size; 1444 1445 /* Previous chips need a power-of-two fence region when tiling */ 1446 if (INTEL_INFO(dev)->gen == 3) 1447 gtt_size = 1024*1024; 1448 else 1449 gtt_size = 512*1024; 1450 1451 while (gtt_size < size) 1452 gtt_size <<= 1; 1453 1454 return gtt_size; 1455 } 1456 1457 /** 1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1459 * @obj: object to check 1460 * 1461 * Return the required GTT alignment for an object, taking into account 1462 * potential fence register mapping. 1463 */ 1464 uint32_t 1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1466 int tiling_mode, bool fenced) 1467 { 1468 /* 1469 * Minimum alignment is 4k (GTT page size), but might be greater 1470 * if a fence register is needed for the object. 1471 */ 1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1473 tiling_mode == I915_TILING_NONE) 1474 return 4096; 1475 1476 /* 1477 * Previous chips need to be aligned to the size of the smallest 1478 * fence register that can contain the object. 1479 */ 1480 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1481 } 1482 1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1484 { 1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1486 int ret; 1487 1488 if (obj->base.map_list.map) 1489 return 0; 1490 1491 dev_priv->mm.shrinker_no_lock_stealing = true; 1492 1493 ret = drm_gem_create_mmap_offset(&obj->base); 1494 if (ret != -ENOSPC) 1495 goto out; 1496 1497 /* Badly fragmented mmap space? The only way we can recover 1498 * space is by destroying unwanted objects. We can't randomly release 1499 * mmap_offsets as userspace expects them to be persistent for the 1500 * lifetime of the objects. The closest we can is to release the 1501 * offsets on purgeable objects by truncating it and marking it purged, 1502 * which prevents userspace from ever using that object again. 1503 */ 1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1505 ret = drm_gem_create_mmap_offset(&obj->base); 1506 if (ret != -ENOSPC) 1507 goto out; 1508 1509 i915_gem_shrink_all(dev_priv); 1510 ret = drm_gem_create_mmap_offset(&obj->base); 1511 out: 1512 dev_priv->mm.shrinker_no_lock_stealing = false; 1513 1514 return ret; 1515 } 1516 1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1518 { 1519 if (!obj->base.map_list.map) 1520 return; 1521 1522 drm_gem_free_mmap_offset(&obj->base); 1523 } 1524 1525 int 1526 i915_gem_mmap_gtt(struct drm_file *file, 1527 struct drm_device *dev, 1528 uint32_t handle, 1529 uint64_t *offset) 1530 { 1531 struct drm_i915_private *dev_priv = dev->dev_private; 1532 struct drm_i915_gem_object *obj; 1533 int ret; 1534 1535 ret = i915_mutex_lock_interruptible(dev); 1536 if (ret) 1537 return ret; 1538 1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1540 if (&obj->base == NULL) { 1541 ret = -ENOENT; 1542 goto unlock; 1543 } 1544 1545 if (obj->base.size > dev_priv->gtt.mappable_end) { 1546 ret = -E2BIG; 1547 goto out; 1548 } 1549 1550 if (obj->madv != I915_MADV_WILLNEED) { 1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1552 ret = -EINVAL; 1553 goto out; 1554 } 1555 1556 ret = i915_gem_object_create_mmap_offset(obj); 1557 if (ret) 1558 goto out; 1559 1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1561 1562 out: 1563 drm_gem_object_unreference(&obj->base); 1564 unlock: 1565 mutex_unlock(&dev->struct_mutex); 1566 return ret; 1567 } 1568 1569 /** 1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1571 * @dev: DRM device 1572 * @data: GTT mapping ioctl data 1573 * @file: GEM object info 1574 * 1575 * Simply returns the fake offset to userspace so it can mmap it. 1576 * The mmap call will end up in drm_gem_mmap(), which will set things 1577 * up so we can get faults in the handler above. 1578 * 1579 * The fault handler will take care of binding the object into the GTT 1580 * (since it may have been evicted to make room for something), allocating 1581 * a fence register, and mapping the appropriate aperture address into 1582 * userspace. 1583 */ 1584 int 1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1586 struct drm_file *file) 1587 { 1588 struct drm_i915_gem_mmap_gtt *args = data; 1589 1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1591 } 1592 1593 /* Immediately discard the backing storage */ 1594 static void 1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1596 { 1597 struct inode *inode; 1598 1599 i915_gem_object_free_mmap_offset(obj); 1600 1601 if (obj->base.filp == NULL) 1602 return; 1603 1604 /* Our goal here is to return as much of the memory as 1605 * is possible back to the system as we are called from OOM. 1606 * To do this we must instruct the shmfs to drop all of its 1607 * backing pages, *now*. 1608 */ 1609 inode = file_inode(obj->base.filp); 1610 shmem_truncate_range(inode, 0, (loff_t)-1); 1611 1612 obj->madv = __I915_MADV_PURGED; 1613 } 1614 1615 static inline int 1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1617 { 1618 return obj->madv == I915_MADV_DONTNEED; 1619 } 1620 1621 static void 1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1623 { 1624 struct sg_page_iter sg_iter; 1625 int ret; 1626 1627 BUG_ON(obj->madv == __I915_MADV_PURGED); 1628 1629 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1630 if (ret) { 1631 /* In the event of a disaster, abandon all caches and 1632 * hope for the best. 1633 */ 1634 WARN_ON(ret != -EIO); 1635 i915_gem_clflush_object(obj); 1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1637 } 1638 1639 if (i915_gem_object_needs_bit17_swizzle(obj)) 1640 i915_gem_object_save_bit_17_swizzle(obj); 1641 1642 if (obj->madv == I915_MADV_DONTNEED) 1643 obj->dirty = 0; 1644 1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1646 struct page *page = sg_page_iter_page(&sg_iter); 1647 1648 if (obj->dirty) 1649 set_page_dirty(page); 1650 1651 if (obj->madv == I915_MADV_WILLNEED) 1652 mark_page_accessed(page); 1653 1654 page_cache_release(page); 1655 } 1656 obj->dirty = 0; 1657 1658 sg_free_table(obj->pages); 1659 kfree(obj->pages); 1660 } 1661 1662 int 1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1664 { 1665 const struct drm_i915_gem_object_ops *ops = obj->ops; 1666 1667 if (obj->pages == NULL) 1668 return 0; 1669 1670 BUG_ON(obj->gtt_space); 1671 1672 if (obj->pages_pin_count) 1673 return -EBUSY; 1674 1675 /* ->put_pages might need to allocate memory for the bit17 swizzle 1676 * array, hence protect them from being reaped by removing them from gtt 1677 * lists early. */ 1678 list_del(&obj->global_list); 1679 1680 ops->put_pages(obj); 1681 obj->pages = NULL; 1682 1683 if (i915_gem_object_is_purgeable(obj)) 1684 i915_gem_object_truncate(obj); 1685 1686 return 0; 1687 } 1688 1689 static long 1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1691 bool purgeable_only) 1692 { 1693 struct drm_i915_gem_object *obj, *next; 1694 long count = 0; 1695 1696 list_for_each_entry_safe(obj, next, 1697 &dev_priv->mm.unbound_list, 1698 global_list) { 1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1700 i915_gem_object_put_pages(obj) == 0) { 1701 count += obj->base.size >> PAGE_SHIFT; 1702 if (count >= target) 1703 return count; 1704 } 1705 } 1706 1707 list_for_each_entry_safe(obj, next, 1708 &dev_priv->mm.inactive_list, 1709 mm_list) { 1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1711 i915_gem_object_unbind(obj) == 0 && 1712 i915_gem_object_put_pages(obj) == 0) { 1713 count += obj->base.size >> PAGE_SHIFT; 1714 if (count >= target) 1715 return count; 1716 } 1717 } 1718 1719 return count; 1720 } 1721 1722 static long 1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1724 { 1725 return __i915_gem_shrink(dev_priv, target, true); 1726 } 1727 1728 static void 1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1730 { 1731 struct drm_i915_gem_object *obj, *next; 1732 1733 i915_gem_evict_everything(dev_priv->dev); 1734 1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, 1736 global_list) 1737 i915_gem_object_put_pages(obj); 1738 } 1739 1740 static int 1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1742 { 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1744 int page_count, i; 1745 struct address_space *mapping; 1746 struct sg_table *st; 1747 struct scatterlist *sg; 1748 struct sg_page_iter sg_iter; 1749 struct page *page; 1750 unsigned long last_pfn = 0; /* suppress gcc warning */ 1751 gfp_t gfp; 1752 1753 /* Assert that the object is not currently in any GPU domain. As it 1754 * wasn't in the GTT, there shouldn't be any way it could have been in 1755 * a GPU cache 1756 */ 1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1759 1760 st = kmalloc(sizeof(*st), GFP_KERNEL); 1761 if (st == NULL) 1762 return -ENOMEM; 1763 1764 page_count = obj->base.size / PAGE_SIZE; 1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1766 sg_free_table(st); 1767 kfree(st); 1768 return -ENOMEM; 1769 } 1770 1771 /* Get the list of pages out of our struct file. They'll be pinned 1772 * at this point until we release them. 1773 * 1774 * Fail silently without starting the shrinker 1775 */ 1776 mapping = file_inode(obj->base.filp)->i_mapping; 1777 gfp = mapping_gfp_mask(mapping); 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1779 gfp &= ~(__GFP_IO | __GFP_WAIT); 1780 sg = st->sgl; 1781 st->nents = 0; 1782 for (i = 0; i < page_count; i++) { 1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1784 if (IS_ERR(page)) { 1785 i915_gem_purge(dev_priv, page_count); 1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1787 } 1788 if (IS_ERR(page)) { 1789 /* We've tried hard to allocate the memory by reaping 1790 * our own buffer, now let the real VM do its job and 1791 * go down in flames if truly OOM. 1792 */ 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1794 gfp |= __GFP_IO | __GFP_WAIT; 1795 1796 i915_gem_shrink_all(dev_priv); 1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1798 if (IS_ERR(page)) 1799 goto err_pages; 1800 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1802 gfp &= ~(__GFP_IO | __GFP_WAIT); 1803 } 1804 #ifdef CONFIG_SWIOTLB 1805 if (swiotlb_nr_tbl()) { 1806 st->nents++; 1807 sg_set_page(sg, page, PAGE_SIZE, 0); 1808 sg = sg_next(sg); 1809 continue; 1810 } 1811 #endif 1812 if (!i || page_to_pfn(page) != last_pfn + 1) { 1813 if (i) 1814 sg = sg_next(sg); 1815 st->nents++; 1816 sg_set_page(sg, page, PAGE_SIZE, 0); 1817 } else { 1818 sg->length += PAGE_SIZE; 1819 } 1820 last_pfn = page_to_pfn(page); 1821 } 1822 #ifdef CONFIG_SWIOTLB 1823 if (!swiotlb_nr_tbl()) 1824 #endif 1825 sg_mark_end(sg); 1826 obj->pages = st; 1827 1828 if (i915_gem_object_needs_bit17_swizzle(obj)) 1829 i915_gem_object_do_bit_17_swizzle(obj); 1830 1831 return 0; 1832 1833 err_pages: 1834 sg_mark_end(sg); 1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1836 page_cache_release(sg_page_iter_page(&sg_iter)); 1837 sg_free_table(st); 1838 kfree(st); 1839 return PTR_ERR(page); 1840 } 1841 1842 /* Ensure that the associated pages are gathered from the backing storage 1843 * and pinned into our object. i915_gem_object_get_pages() may be called 1844 * multiple times before they are released by a single call to 1845 * i915_gem_object_put_pages() - once the pages are no longer referenced 1846 * either as a result of memory pressure (reaping pages under the shrinker) 1847 * or as the object is itself released. 1848 */ 1849 int 1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1851 { 1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1853 const struct drm_i915_gem_object_ops *ops = obj->ops; 1854 int ret; 1855 1856 if (obj->pages) 1857 return 0; 1858 1859 if (obj->madv != I915_MADV_WILLNEED) { 1860 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1861 return -EINVAL; 1862 } 1863 1864 BUG_ON(obj->pages_pin_count); 1865 1866 ret = ops->get_pages(obj); 1867 if (ret) 1868 return ret; 1869 1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 1871 return 0; 1872 } 1873 1874 void 1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1876 struct intel_ring_buffer *ring) 1877 { 1878 struct drm_device *dev = obj->base.dev; 1879 struct drm_i915_private *dev_priv = dev->dev_private; 1880 u32 seqno = intel_ring_get_seqno(ring); 1881 1882 BUG_ON(ring == NULL); 1883 obj->ring = ring; 1884 1885 /* Add a reference if we're newly entering the active list. */ 1886 if (!obj->active) { 1887 drm_gem_object_reference(&obj->base); 1888 obj->active = 1; 1889 } 1890 1891 /* Move from whatever list we were on to the tail of execution. */ 1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1893 list_move_tail(&obj->ring_list, &ring->active_list); 1894 1895 obj->last_read_seqno = seqno; 1896 1897 if (obj->fenced_gpu_access) { 1898 obj->last_fenced_seqno = seqno; 1899 1900 /* Bump MRU to take account of the delayed flush */ 1901 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1902 struct drm_i915_fence_reg *reg; 1903 1904 reg = &dev_priv->fence_regs[obj->fence_reg]; 1905 list_move_tail(®->lru_list, 1906 &dev_priv->mm.fence_list); 1907 } 1908 } 1909 } 1910 1911 static void 1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1913 { 1914 struct drm_device *dev = obj->base.dev; 1915 struct drm_i915_private *dev_priv = dev->dev_private; 1916 1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1918 BUG_ON(!obj->active); 1919 1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1921 1922 list_del_init(&obj->ring_list); 1923 obj->ring = NULL; 1924 1925 obj->last_read_seqno = 0; 1926 obj->last_write_seqno = 0; 1927 obj->base.write_domain = 0; 1928 1929 obj->last_fenced_seqno = 0; 1930 obj->fenced_gpu_access = false; 1931 1932 obj->active = 0; 1933 drm_gem_object_unreference(&obj->base); 1934 1935 WARN_ON(i915_verify_lists(dev)); 1936 } 1937 1938 static int 1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1940 { 1941 struct drm_i915_private *dev_priv = dev->dev_private; 1942 struct intel_ring_buffer *ring; 1943 int ret, i, j; 1944 1945 /* Carefully retire all requests without writing to the rings */ 1946 for_each_ring(ring, dev_priv, i) { 1947 ret = intel_ring_idle(ring); 1948 if (ret) 1949 return ret; 1950 } 1951 i915_gem_retire_requests(dev); 1952 1953 /* Finally reset hw state */ 1954 for_each_ring(ring, dev_priv, i) { 1955 intel_ring_init_seqno(ring, seqno); 1956 1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1958 ring->sync_seqno[j] = 0; 1959 } 1960 1961 return 0; 1962 } 1963 1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1965 { 1966 struct drm_i915_private *dev_priv = dev->dev_private; 1967 int ret; 1968 1969 if (seqno == 0) 1970 return -EINVAL; 1971 1972 /* HWS page needs to be set less than what we 1973 * will inject to ring 1974 */ 1975 ret = i915_gem_init_seqno(dev, seqno - 1); 1976 if (ret) 1977 return ret; 1978 1979 /* Carefully set the last_seqno value so that wrap 1980 * detection still works 1981 */ 1982 dev_priv->next_seqno = seqno; 1983 dev_priv->last_seqno = seqno - 1; 1984 if (dev_priv->last_seqno == 0) 1985 dev_priv->last_seqno--; 1986 1987 return 0; 1988 } 1989 1990 int 1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1992 { 1993 struct drm_i915_private *dev_priv = dev->dev_private; 1994 1995 /* reserve 0 for non-seqno */ 1996 if (dev_priv->next_seqno == 0) { 1997 int ret = i915_gem_init_seqno(dev, 0); 1998 if (ret) 1999 return ret; 2000 2001 dev_priv->next_seqno = 1; 2002 } 2003 2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2005 return 0; 2006 } 2007 2008 int __i915_add_request(struct intel_ring_buffer *ring, 2009 struct drm_file *file, 2010 struct drm_i915_gem_object *obj, 2011 u32 *out_seqno) 2012 { 2013 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2014 struct drm_i915_gem_request *request; 2015 u32 request_ring_position, request_start; 2016 int was_empty; 2017 int ret; 2018 2019 request_start = intel_ring_get_tail(ring); 2020 /* 2021 * Emit any outstanding flushes - execbuf can fail to emit the flush 2022 * after having emitted the batchbuffer command. Hence we need to fix 2023 * things up similar to emitting the lazy request. The difference here 2024 * is that the flush _must_ happen before the next request, no matter 2025 * what. 2026 */ 2027 ret = intel_ring_flush_all_caches(ring); 2028 if (ret) 2029 return ret; 2030 2031 request = kmalloc(sizeof(*request), GFP_KERNEL); 2032 if (request == NULL) 2033 return -ENOMEM; 2034 2035 2036 /* Record the position of the start of the request so that 2037 * should we detect the updated seqno part-way through the 2038 * GPU processing the request, we never over-estimate the 2039 * position of the head. 2040 */ 2041 request_ring_position = intel_ring_get_tail(ring); 2042 2043 ret = ring->add_request(ring); 2044 if (ret) { 2045 kfree(request); 2046 return ret; 2047 } 2048 2049 request->seqno = intel_ring_get_seqno(ring); 2050 request->ring = ring; 2051 request->head = request_start; 2052 request->tail = request_ring_position; 2053 request->ctx = ring->last_context; 2054 request->batch_obj = obj; 2055 2056 /* Whilst this request exists, batch_obj will be on the 2057 * active_list, and so will hold the active reference. Only when this 2058 * request is retired will the the batch_obj be moved onto the 2059 * inactive_list and lose its active reference. Hence we do not need 2060 * to explicitly hold another reference here. 2061 */ 2062 2063 if (request->ctx) 2064 i915_gem_context_reference(request->ctx); 2065 2066 request->emitted_jiffies = jiffies; 2067 was_empty = list_empty(&ring->request_list); 2068 list_add_tail(&request->list, &ring->request_list); 2069 request->file_priv = NULL; 2070 2071 if (file) { 2072 struct drm_i915_file_private *file_priv = file->driver_priv; 2073 2074 spin_lock(&file_priv->mm.lock); 2075 request->file_priv = file_priv; 2076 list_add_tail(&request->client_list, 2077 &file_priv->mm.request_list); 2078 spin_unlock(&file_priv->mm.lock); 2079 } 2080 2081 trace_i915_gem_request_add(ring, request->seqno); 2082 ring->outstanding_lazy_request = 0; 2083 2084 if (!dev_priv->mm.suspended) { 2085 if (i915_enable_hangcheck) { 2086 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2087 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2088 } 2089 if (was_empty) { 2090 queue_delayed_work(dev_priv->wq, 2091 &dev_priv->mm.retire_work, 2092 round_jiffies_up_relative(HZ)); 2093 intel_mark_busy(dev_priv->dev); 2094 } 2095 } 2096 2097 if (out_seqno) 2098 *out_seqno = request->seqno; 2099 return 0; 2100 } 2101 2102 static inline void 2103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2104 { 2105 struct drm_i915_file_private *file_priv = request->file_priv; 2106 2107 if (!file_priv) 2108 return; 2109 2110 spin_lock(&file_priv->mm.lock); 2111 if (request->file_priv) { 2112 list_del(&request->client_list); 2113 request->file_priv = NULL; 2114 } 2115 spin_unlock(&file_priv->mm.lock); 2116 } 2117 2118 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj) 2119 { 2120 if (acthd >= obj->gtt_offset && 2121 acthd < obj->gtt_offset + obj->base.size) 2122 return true; 2123 2124 return false; 2125 } 2126 2127 static bool i915_head_inside_request(const u32 acthd_unmasked, 2128 const u32 request_start, 2129 const u32 request_end) 2130 { 2131 const u32 acthd = acthd_unmasked & HEAD_ADDR; 2132 2133 if (request_start < request_end) { 2134 if (acthd >= request_start && acthd < request_end) 2135 return true; 2136 } else if (request_start > request_end) { 2137 if (acthd >= request_start || acthd < request_end) 2138 return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 static bool i915_request_guilty(struct drm_i915_gem_request *request, 2145 const u32 acthd, bool *inside) 2146 { 2147 /* There is a possibility that unmasked head address 2148 * pointing inside the ring, matches the batch_obj address range. 2149 * However this is extremely unlikely. 2150 */ 2151 2152 if (request->batch_obj) { 2153 if (i915_head_inside_object(acthd, request->batch_obj)) { 2154 *inside = true; 2155 return true; 2156 } 2157 } 2158 2159 if (i915_head_inside_request(acthd, request->head, request->tail)) { 2160 *inside = false; 2161 return true; 2162 } 2163 2164 return false; 2165 } 2166 2167 static void i915_set_reset_status(struct intel_ring_buffer *ring, 2168 struct drm_i915_gem_request *request, 2169 u32 acthd) 2170 { 2171 struct i915_ctx_hang_stats *hs = NULL; 2172 bool inside, guilty; 2173 2174 /* Innocent until proven guilty */ 2175 guilty = false; 2176 2177 if (ring->hangcheck.action != wait && 2178 i915_request_guilty(request, acthd, &inside)) { 2179 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n", 2180 ring->name, 2181 inside ? "inside" : "flushing", 2182 request->batch_obj ? 2183 request->batch_obj->gtt_offset : 0, 2184 request->ctx ? request->ctx->id : 0, 2185 acthd); 2186 2187 guilty = true; 2188 } 2189 2190 /* If contexts are disabled or this is the default context, use 2191 * file_priv->reset_state 2192 */ 2193 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID) 2194 hs = &request->ctx->hang_stats; 2195 else if (request->file_priv) 2196 hs = &request->file_priv->hang_stats; 2197 2198 if (hs) { 2199 if (guilty) 2200 hs->batch_active++; 2201 else 2202 hs->batch_pending++; 2203 } 2204 } 2205 2206 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2207 { 2208 list_del(&request->list); 2209 i915_gem_request_remove_from_client(request); 2210 2211 if (request->ctx) 2212 i915_gem_context_unreference(request->ctx); 2213 2214 kfree(request); 2215 } 2216 2217 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2218 struct intel_ring_buffer *ring) 2219 { 2220 u32 completed_seqno; 2221 u32 acthd; 2222 2223 acthd = intel_ring_get_active_head(ring); 2224 completed_seqno = ring->get_seqno(ring, false); 2225 2226 while (!list_empty(&ring->request_list)) { 2227 struct drm_i915_gem_request *request; 2228 2229 request = list_first_entry(&ring->request_list, 2230 struct drm_i915_gem_request, 2231 list); 2232 2233 if (request->seqno > completed_seqno) 2234 i915_set_reset_status(ring, request, acthd); 2235 2236 i915_gem_free_request(request); 2237 } 2238 2239 while (!list_empty(&ring->active_list)) { 2240 struct drm_i915_gem_object *obj; 2241 2242 obj = list_first_entry(&ring->active_list, 2243 struct drm_i915_gem_object, 2244 ring_list); 2245 2246 i915_gem_object_move_to_inactive(obj); 2247 } 2248 } 2249 2250 void i915_gem_restore_fences(struct drm_device *dev) 2251 { 2252 struct drm_i915_private *dev_priv = dev->dev_private; 2253 int i; 2254 2255 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2256 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2257 i915_gem_write_fence(dev, i, reg->obj); 2258 } 2259 } 2260 2261 void i915_gem_reset(struct drm_device *dev) 2262 { 2263 struct drm_i915_private *dev_priv = dev->dev_private; 2264 struct drm_i915_gem_object *obj; 2265 struct intel_ring_buffer *ring; 2266 int i; 2267 2268 for_each_ring(ring, dev_priv, i) 2269 i915_gem_reset_ring_lists(dev_priv, ring); 2270 2271 /* Move everything out of the GPU domains to ensure we do any 2272 * necessary invalidation upon reuse. 2273 */ 2274 list_for_each_entry(obj, 2275 &dev_priv->mm.inactive_list, 2276 mm_list) 2277 { 2278 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2279 } 2280 2281 i915_gem_restore_fences(dev); 2282 } 2283 2284 /** 2285 * This function clears the request list as sequence numbers are passed. 2286 */ 2287 void 2288 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2289 { 2290 uint32_t seqno; 2291 2292 if (list_empty(&ring->request_list)) 2293 return; 2294 2295 WARN_ON(i915_verify_lists(ring->dev)); 2296 2297 seqno = ring->get_seqno(ring, true); 2298 2299 while (!list_empty(&ring->request_list)) { 2300 struct drm_i915_gem_request *request; 2301 2302 request = list_first_entry(&ring->request_list, 2303 struct drm_i915_gem_request, 2304 list); 2305 2306 if (!i915_seqno_passed(seqno, request->seqno)) 2307 break; 2308 2309 trace_i915_gem_request_retire(ring, request->seqno); 2310 /* We know the GPU must have read the request to have 2311 * sent us the seqno + interrupt, so use the position 2312 * of tail of the request to update the last known position 2313 * of the GPU head. 2314 */ 2315 ring->last_retired_head = request->tail; 2316 2317 i915_gem_free_request(request); 2318 } 2319 2320 /* Move any buffers on the active list that are no longer referenced 2321 * by the ringbuffer to the flushing/inactive lists as appropriate. 2322 */ 2323 while (!list_empty(&ring->active_list)) { 2324 struct drm_i915_gem_object *obj; 2325 2326 obj = list_first_entry(&ring->active_list, 2327 struct drm_i915_gem_object, 2328 ring_list); 2329 2330 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2331 break; 2332 2333 i915_gem_object_move_to_inactive(obj); 2334 } 2335 2336 if (unlikely(ring->trace_irq_seqno && 2337 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2338 ring->irq_put(ring); 2339 ring->trace_irq_seqno = 0; 2340 } 2341 2342 WARN_ON(i915_verify_lists(ring->dev)); 2343 } 2344 2345 void 2346 i915_gem_retire_requests(struct drm_device *dev) 2347 { 2348 drm_i915_private_t *dev_priv = dev->dev_private; 2349 struct intel_ring_buffer *ring; 2350 int i; 2351 2352 for_each_ring(ring, dev_priv, i) 2353 i915_gem_retire_requests_ring(ring); 2354 } 2355 2356 static void 2357 i915_gem_retire_work_handler(struct work_struct *work) 2358 { 2359 drm_i915_private_t *dev_priv; 2360 struct drm_device *dev; 2361 struct intel_ring_buffer *ring; 2362 bool idle; 2363 int i; 2364 2365 dev_priv = container_of(work, drm_i915_private_t, 2366 mm.retire_work.work); 2367 dev = dev_priv->dev; 2368 2369 /* Come back later if the device is busy... */ 2370 if (!mutex_trylock(&dev->struct_mutex)) { 2371 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2372 round_jiffies_up_relative(HZ)); 2373 return; 2374 } 2375 2376 i915_gem_retire_requests(dev); 2377 2378 /* Send a periodic flush down the ring so we don't hold onto GEM 2379 * objects indefinitely. 2380 */ 2381 idle = true; 2382 for_each_ring(ring, dev_priv, i) { 2383 if (ring->gpu_caches_dirty) 2384 i915_add_request(ring, NULL); 2385 2386 idle &= list_empty(&ring->request_list); 2387 } 2388 2389 if (!dev_priv->mm.suspended && !idle) 2390 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2391 round_jiffies_up_relative(HZ)); 2392 if (idle) 2393 intel_mark_idle(dev); 2394 2395 mutex_unlock(&dev->struct_mutex); 2396 } 2397 2398 /** 2399 * Ensures that an object will eventually get non-busy by flushing any required 2400 * write domains, emitting any outstanding lazy request and retiring and 2401 * completed requests. 2402 */ 2403 static int 2404 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2405 { 2406 int ret; 2407 2408 if (obj->active) { 2409 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2410 if (ret) 2411 return ret; 2412 2413 i915_gem_retire_requests_ring(obj->ring); 2414 } 2415 2416 return 0; 2417 } 2418 2419 /** 2420 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2421 * @DRM_IOCTL_ARGS: standard ioctl arguments 2422 * 2423 * Returns 0 if successful, else an error is returned with the remaining time in 2424 * the timeout parameter. 2425 * -ETIME: object is still busy after timeout 2426 * -ERESTARTSYS: signal interrupted the wait 2427 * -ENONENT: object doesn't exist 2428 * Also possible, but rare: 2429 * -EAGAIN: GPU wedged 2430 * -ENOMEM: damn 2431 * -ENODEV: Internal IRQ fail 2432 * -E?: The add request failed 2433 * 2434 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2435 * non-zero timeout parameter the wait ioctl will wait for the given number of 2436 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2437 * without holding struct_mutex the object may become re-busied before this 2438 * function completes. A similar but shorter * race condition exists in the busy 2439 * ioctl 2440 */ 2441 int 2442 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2443 { 2444 drm_i915_private_t *dev_priv = dev->dev_private; 2445 struct drm_i915_gem_wait *args = data; 2446 struct drm_i915_gem_object *obj; 2447 struct intel_ring_buffer *ring = NULL; 2448 struct timespec timeout_stack, *timeout = NULL; 2449 unsigned reset_counter; 2450 u32 seqno = 0; 2451 int ret = 0; 2452 2453 if (args->timeout_ns >= 0) { 2454 timeout_stack = ns_to_timespec(args->timeout_ns); 2455 timeout = &timeout_stack; 2456 } 2457 2458 ret = i915_mutex_lock_interruptible(dev); 2459 if (ret) 2460 return ret; 2461 2462 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2463 if (&obj->base == NULL) { 2464 mutex_unlock(&dev->struct_mutex); 2465 return -ENOENT; 2466 } 2467 2468 /* Need to make sure the object gets inactive eventually. */ 2469 ret = i915_gem_object_flush_active(obj); 2470 if (ret) 2471 goto out; 2472 2473 if (obj->active) { 2474 seqno = obj->last_read_seqno; 2475 ring = obj->ring; 2476 } 2477 2478 if (seqno == 0) 2479 goto out; 2480 2481 /* Do this after OLR check to make sure we make forward progress polling 2482 * on this IOCTL with a 0 timeout (like busy ioctl) 2483 */ 2484 if (!args->timeout_ns) { 2485 ret = -ETIME; 2486 goto out; 2487 } 2488 2489 drm_gem_object_unreference(&obj->base); 2490 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2491 mutex_unlock(&dev->struct_mutex); 2492 2493 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2494 if (timeout) 2495 args->timeout_ns = timespec_to_ns(timeout); 2496 return ret; 2497 2498 out: 2499 drm_gem_object_unreference(&obj->base); 2500 mutex_unlock(&dev->struct_mutex); 2501 return ret; 2502 } 2503 2504 /** 2505 * i915_gem_object_sync - sync an object to a ring. 2506 * 2507 * @obj: object which may be in use on another ring. 2508 * @to: ring we wish to use the object on. May be NULL. 2509 * 2510 * This code is meant to abstract object synchronization with the GPU. 2511 * Calling with NULL implies synchronizing the object with the CPU 2512 * rather than a particular GPU ring. 2513 * 2514 * Returns 0 if successful, else propagates up the lower layer error. 2515 */ 2516 int 2517 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2518 struct intel_ring_buffer *to) 2519 { 2520 struct intel_ring_buffer *from = obj->ring; 2521 u32 seqno; 2522 int ret, idx; 2523 2524 if (from == NULL || to == from) 2525 return 0; 2526 2527 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2528 return i915_gem_object_wait_rendering(obj, false); 2529 2530 idx = intel_ring_sync_index(from, to); 2531 2532 seqno = obj->last_read_seqno; 2533 if (seqno <= from->sync_seqno[idx]) 2534 return 0; 2535 2536 ret = i915_gem_check_olr(obj->ring, seqno); 2537 if (ret) 2538 return ret; 2539 2540 ret = to->sync_to(to, from, seqno); 2541 if (!ret) 2542 /* We use last_read_seqno because sync_to() 2543 * might have just caused seqno wrap under 2544 * the radar. 2545 */ 2546 from->sync_seqno[idx] = obj->last_read_seqno; 2547 2548 return ret; 2549 } 2550 2551 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2552 { 2553 u32 old_write_domain, old_read_domains; 2554 2555 /* Force a pagefault for domain tracking on next user access */ 2556 i915_gem_release_mmap(obj); 2557 2558 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2559 return; 2560 2561 /* Wait for any direct GTT access to complete */ 2562 mb(); 2563 2564 old_read_domains = obj->base.read_domains; 2565 old_write_domain = obj->base.write_domain; 2566 2567 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2568 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2569 2570 trace_i915_gem_object_change_domain(obj, 2571 old_read_domains, 2572 old_write_domain); 2573 } 2574 2575 /** 2576 * Unbinds an object from the GTT aperture. 2577 */ 2578 int 2579 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2580 { 2581 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2582 int ret; 2583 2584 if (obj->gtt_space == NULL) 2585 return 0; 2586 2587 if (obj->pin_count) 2588 return -EBUSY; 2589 2590 BUG_ON(obj->pages == NULL); 2591 2592 ret = i915_gem_object_finish_gpu(obj); 2593 if (ret) 2594 return ret; 2595 /* Continue on if we fail due to EIO, the GPU is hung so we 2596 * should be safe and we need to cleanup or else we might 2597 * cause memory corruption through use-after-free. 2598 */ 2599 2600 i915_gem_object_finish_gtt(obj); 2601 2602 /* release the fence reg _after_ flushing */ 2603 ret = i915_gem_object_put_fence(obj); 2604 if (ret) 2605 return ret; 2606 2607 trace_i915_gem_object_unbind(obj); 2608 2609 if (obj->has_global_gtt_mapping) 2610 i915_gem_gtt_unbind_object(obj); 2611 if (obj->has_aliasing_ppgtt_mapping) { 2612 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2613 obj->has_aliasing_ppgtt_mapping = 0; 2614 } 2615 i915_gem_gtt_finish_object(obj); 2616 i915_gem_object_unpin_pages(obj); 2617 2618 list_del(&obj->mm_list); 2619 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2620 /* Avoid an unnecessary call to unbind on rebind. */ 2621 obj->map_and_fenceable = true; 2622 2623 drm_mm_put_block(obj->gtt_space); 2624 obj->gtt_space = NULL; 2625 obj->gtt_offset = 0; 2626 2627 return 0; 2628 } 2629 2630 int i915_gpu_idle(struct drm_device *dev) 2631 { 2632 drm_i915_private_t *dev_priv = dev->dev_private; 2633 struct intel_ring_buffer *ring; 2634 int ret, i; 2635 2636 /* Flush everything onto the inactive list. */ 2637 for_each_ring(ring, dev_priv, i) { 2638 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2639 if (ret) 2640 return ret; 2641 2642 ret = intel_ring_idle(ring); 2643 if (ret) 2644 return ret; 2645 } 2646 2647 return 0; 2648 } 2649 2650 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2651 struct drm_i915_gem_object *obj) 2652 { 2653 drm_i915_private_t *dev_priv = dev->dev_private; 2654 int fence_reg; 2655 int fence_pitch_shift; 2656 uint64_t val; 2657 2658 if (INTEL_INFO(dev)->gen >= 6) { 2659 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2660 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2661 } else { 2662 fence_reg = FENCE_REG_965_0; 2663 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2664 } 2665 2666 if (obj) { 2667 u32 size = obj->gtt_space->size; 2668 2669 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2670 0xfffff000) << 32; 2671 val |= obj->gtt_offset & 0xfffff000; 2672 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2673 if (obj->tiling_mode == I915_TILING_Y) 2674 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2675 val |= I965_FENCE_REG_VALID; 2676 } else 2677 val = 0; 2678 2679 fence_reg += reg * 8; 2680 I915_WRITE64(fence_reg, val); 2681 POSTING_READ(fence_reg); 2682 } 2683 2684 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2685 struct drm_i915_gem_object *obj) 2686 { 2687 drm_i915_private_t *dev_priv = dev->dev_private; 2688 u32 val; 2689 2690 if (obj) { 2691 u32 size = obj->gtt_space->size; 2692 int pitch_val; 2693 int tile_width; 2694 2695 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2696 (size & -size) != size || 2697 (obj->gtt_offset & (size - 1)), 2698 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2699 obj->gtt_offset, obj->map_and_fenceable, size); 2700 2701 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2702 tile_width = 128; 2703 else 2704 tile_width = 512; 2705 2706 /* Note: pitch better be a power of two tile widths */ 2707 pitch_val = obj->stride / tile_width; 2708 pitch_val = ffs(pitch_val) - 1; 2709 2710 val = obj->gtt_offset; 2711 if (obj->tiling_mode == I915_TILING_Y) 2712 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2713 val |= I915_FENCE_SIZE_BITS(size); 2714 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2715 val |= I830_FENCE_REG_VALID; 2716 } else 2717 val = 0; 2718 2719 if (reg < 8) 2720 reg = FENCE_REG_830_0 + reg * 4; 2721 else 2722 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2723 2724 I915_WRITE(reg, val); 2725 POSTING_READ(reg); 2726 } 2727 2728 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2729 struct drm_i915_gem_object *obj) 2730 { 2731 drm_i915_private_t *dev_priv = dev->dev_private; 2732 uint32_t val; 2733 2734 if (obj) { 2735 u32 size = obj->gtt_space->size; 2736 uint32_t pitch_val; 2737 2738 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2739 (size & -size) != size || 2740 (obj->gtt_offset & (size - 1)), 2741 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2742 obj->gtt_offset, size); 2743 2744 pitch_val = obj->stride / 128; 2745 pitch_val = ffs(pitch_val) - 1; 2746 2747 val = obj->gtt_offset; 2748 if (obj->tiling_mode == I915_TILING_Y) 2749 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2750 val |= I830_FENCE_SIZE_BITS(size); 2751 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2752 val |= I830_FENCE_REG_VALID; 2753 } else 2754 val = 0; 2755 2756 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2757 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2758 } 2759 2760 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2761 { 2762 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2763 } 2764 2765 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2766 struct drm_i915_gem_object *obj) 2767 { 2768 struct drm_i915_private *dev_priv = dev->dev_private; 2769 2770 /* Ensure that all CPU reads are completed before installing a fence 2771 * and all writes before removing the fence. 2772 */ 2773 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2774 mb(); 2775 2776 switch (INTEL_INFO(dev)->gen) { 2777 case 7: 2778 case 6: 2779 case 5: 2780 case 4: i965_write_fence_reg(dev, reg, obj); break; 2781 case 3: i915_write_fence_reg(dev, reg, obj); break; 2782 case 2: i830_write_fence_reg(dev, reg, obj); break; 2783 default: BUG(); 2784 } 2785 2786 /* And similarly be paranoid that no direct access to this region 2787 * is reordered to before the fence is installed. 2788 */ 2789 if (i915_gem_object_needs_mb(obj)) 2790 mb(); 2791 } 2792 2793 static inline int fence_number(struct drm_i915_private *dev_priv, 2794 struct drm_i915_fence_reg *fence) 2795 { 2796 return fence - dev_priv->fence_regs; 2797 } 2798 2799 struct write_fence { 2800 struct drm_device *dev; 2801 struct drm_i915_gem_object *obj; 2802 int fence; 2803 }; 2804 2805 static void i915_gem_write_fence__ipi(void *data) 2806 { 2807 struct write_fence *args = data; 2808 2809 /* Required for SNB+ with LLC */ 2810 wbinvd(); 2811 2812 /* Required for VLV */ 2813 i915_gem_write_fence(args->dev, args->fence, args->obj); 2814 } 2815 2816 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2817 struct drm_i915_fence_reg *fence, 2818 bool enable) 2819 { 2820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2821 struct write_fence args = { 2822 .dev = obj->base.dev, 2823 .fence = fence_number(dev_priv, fence), 2824 .obj = enable ? obj : NULL, 2825 }; 2826 2827 /* In order to fully serialize access to the fenced region and 2828 * the update to the fence register we need to take extreme 2829 * measures on SNB+. In theory, the write to the fence register 2830 * flushes all memory transactions before, and coupled with the 2831 * mb() placed around the register write we serialise all memory 2832 * operations with respect to the changes in the tiler. Yet, on 2833 * SNB+ we need to take a step further and emit an explicit wbinvd() 2834 * on each processor in order to manually flush all memory 2835 * transactions before updating the fence register. 2836 * 2837 * However, Valleyview complicates matter. There the wbinvd is 2838 * insufficient and unlike SNB/IVB requires the serialising 2839 * register write. (Note that that register write by itself is 2840 * conversely not sufficient for SNB+.) To compromise, we do both. 2841 */ 2842 if (INTEL_INFO(args.dev)->gen >= 6) 2843 on_each_cpu(i915_gem_write_fence__ipi, &args, 1); 2844 else 2845 i915_gem_write_fence(args.dev, args.fence, args.obj); 2846 2847 if (enable) { 2848 obj->fence_reg = args.fence; 2849 fence->obj = obj; 2850 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2851 } else { 2852 obj->fence_reg = I915_FENCE_REG_NONE; 2853 fence->obj = NULL; 2854 list_del_init(&fence->lru_list); 2855 } 2856 } 2857 2858 static int 2859 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2860 { 2861 if (obj->last_fenced_seqno) { 2862 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2863 if (ret) 2864 return ret; 2865 2866 obj->last_fenced_seqno = 0; 2867 } 2868 2869 obj->fenced_gpu_access = false; 2870 return 0; 2871 } 2872 2873 int 2874 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2875 { 2876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2877 struct drm_i915_fence_reg *fence; 2878 int ret; 2879 2880 ret = i915_gem_object_wait_fence(obj); 2881 if (ret) 2882 return ret; 2883 2884 if (obj->fence_reg == I915_FENCE_REG_NONE) 2885 return 0; 2886 2887 fence = &dev_priv->fence_regs[obj->fence_reg]; 2888 2889 i915_gem_object_fence_lost(obj); 2890 i915_gem_object_update_fence(obj, fence, false); 2891 2892 return 0; 2893 } 2894 2895 static struct drm_i915_fence_reg * 2896 i915_find_fence_reg(struct drm_device *dev) 2897 { 2898 struct drm_i915_private *dev_priv = dev->dev_private; 2899 struct drm_i915_fence_reg *reg, *avail; 2900 int i; 2901 2902 /* First try to find a free reg */ 2903 avail = NULL; 2904 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2905 reg = &dev_priv->fence_regs[i]; 2906 if (!reg->obj) 2907 return reg; 2908 2909 if (!reg->pin_count) 2910 avail = reg; 2911 } 2912 2913 if (avail == NULL) 2914 return NULL; 2915 2916 /* None available, try to steal one or wait for a user to finish */ 2917 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2918 if (reg->pin_count) 2919 continue; 2920 2921 return reg; 2922 } 2923 2924 return NULL; 2925 } 2926 2927 /** 2928 * i915_gem_object_get_fence - set up fencing for an object 2929 * @obj: object to map through a fence reg 2930 * 2931 * When mapping objects through the GTT, userspace wants to be able to write 2932 * to them without having to worry about swizzling if the object is tiled. 2933 * This function walks the fence regs looking for a free one for @obj, 2934 * stealing one if it can't find any. 2935 * 2936 * It then sets up the reg based on the object's properties: address, pitch 2937 * and tiling format. 2938 * 2939 * For an untiled surface, this removes any existing fence. 2940 */ 2941 int 2942 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2943 { 2944 struct drm_device *dev = obj->base.dev; 2945 struct drm_i915_private *dev_priv = dev->dev_private; 2946 bool enable = obj->tiling_mode != I915_TILING_NONE; 2947 struct drm_i915_fence_reg *reg; 2948 int ret; 2949 2950 /* Have we updated the tiling parameters upon the object and so 2951 * will need to serialise the write to the associated fence register? 2952 */ 2953 if (obj->fence_dirty) { 2954 ret = i915_gem_object_wait_fence(obj); 2955 if (ret) 2956 return ret; 2957 } 2958 2959 /* Just update our place in the LRU if our fence is getting reused. */ 2960 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2961 reg = &dev_priv->fence_regs[obj->fence_reg]; 2962 if (!obj->fence_dirty) { 2963 list_move_tail(®->lru_list, 2964 &dev_priv->mm.fence_list); 2965 return 0; 2966 } 2967 } else if (enable) { 2968 reg = i915_find_fence_reg(dev); 2969 if (reg == NULL) 2970 return -EDEADLK; 2971 2972 if (reg->obj) { 2973 struct drm_i915_gem_object *old = reg->obj; 2974 2975 ret = i915_gem_object_wait_fence(old); 2976 if (ret) 2977 return ret; 2978 2979 i915_gem_object_fence_lost(old); 2980 } 2981 } else 2982 return 0; 2983 2984 i915_gem_object_update_fence(obj, reg, enable); 2985 obj->fence_dirty = false; 2986 2987 return 0; 2988 } 2989 2990 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2991 struct drm_mm_node *gtt_space, 2992 unsigned long cache_level) 2993 { 2994 struct drm_mm_node *other; 2995 2996 /* On non-LLC machines we have to be careful when putting differing 2997 * types of snoopable memory together to avoid the prefetcher 2998 * crossing memory domains and dying. 2999 */ 3000 if (HAS_LLC(dev)) 3001 return true; 3002 3003 if (gtt_space == NULL) 3004 return true; 3005 3006 if (list_empty(>t_space->node_list)) 3007 return true; 3008 3009 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3010 if (other->allocated && !other->hole_follows && other->color != cache_level) 3011 return false; 3012 3013 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3014 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3015 return false; 3016 3017 return true; 3018 } 3019 3020 static void i915_gem_verify_gtt(struct drm_device *dev) 3021 { 3022 #if WATCH_GTT 3023 struct drm_i915_private *dev_priv = dev->dev_private; 3024 struct drm_i915_gem_object *obj; 3025 int err = 0; 3026 3027 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3028 if (obj->gtt_space == NULL) { 3029 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3030 err++; 3031 continue; 3032 } 3033 3034 if (obj->cache_level != obj->gtt_space->color) { 3035 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3036 obj->gtt_space->start, 3037 obj->gtt_space->start + obj->gtt_space->size, 3038 obj->cache_level, 3039 obj->gtt_space->color); 3040 err++; 3041 continue; 3042 } 3043 3044 if (!i915_gem_valid_gtt_space(dev, 3045 obj->gtt_space, 3046 obj->cache_level)) { 3047 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3048 obj->gtt_space->start, 3049 obj->gtt_space->start + obj->gtt_space->size, 3050 obj->cache_level); 3051 err++; 3052 continue; 3053 } 3054 } 3055 3056 WARN_ON(err); 3057 #endif 3058 } 3059 3060 /** 3061 * Finds free space in the GTT aperture and binds the object there. 3062 */ 3063 static int 3064 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 3065 unsigned alignment, 3066 bool map_and_fenceable, 3067 bool nonblocking) 3068 { 3069 struct drm_device *dev = obj->base.dev; 3070 drm_i915_private_t *dev_priv = dev->dev_private; 3071 struct drm_mm_node *node; 3072 u32 size, fence_size, fence_alignment, unfenced_alignment; 3073 bool mappable, fenceable; 3074 size_t gtt_max = map_and_fenceable ? 3075 dev_priv->gtt.mappable_end : dev_priv->gtt.total; 3076 int ret; 3077 3078 fence_size = i915_gem_get_gtt_size(dev, 3079 obj->base.size, 3080 obj->tiling_mode); 3081 fence_alignment = i915_gem_get_gtt_alignment(dev, 3082 obj->base.size, 3083 obj->tiling_mode, true); 3084 unfenced_alignment = 3085 i915_gem_get_gtt_alignment(dev, 3086 obj->base.size, 3087 obj->tiling_mode, false); 3088 3089 if (alignment == 0) 3090 alignment = map_and_fenceable ? fence_alignment : 3091 unfenced_alignment; 3092 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 3093 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 3094 return -EINVAL; 3095 } 3096 3097 size = map_and_fenceable ? fence_size : obj->base.size; 3098 3099 /* If the object is bigger than the entire aperture, reject it early 3100 * before evicting everything in a vain attempt to find space. 3101 */ 3102 if (obj->base.size > gtt_max) { 3103 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n", 3104 obj->base.size, 3105 map_and_fenceable ? "mappable" : "total", 3106 gtt_max); 3107 return -E2BIG; 3108 } 3109 3110 ret = i915_gem_object_get_pages(obj); 3111 if (ret) 3112 return ret; 3113 3114 i915_gem_object_pin_pages(obj); 3115 3116 node = kzalloc(sizeof(*node), GFP_KERNEL); 3117 if (node == NULL) { 3118 i915_gem_object_unpin_pages(obj); 3119 return -ENOMEM; 3120 } 3121 3122 search_free: 3123 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node, 3124 size, alignment, 3125 obj->cache_level, 0, gtt_max); 3126 if (ret) { 3127 ret = i915_gem_evict_something(dev, size, alignment, 3128 obj->cache_level, 3129 map_and_fenceable, 3130 nonblocking); 3131 if (ret == 0) 3132 goto search_free; 3133 3134 i915_gem_object_unpin_pages(obj); 3135 kfree(node); 3136 return ret; 3137 } 3138 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) { 3139 i915_gem_object_unpin_pages(obj); 3140 drm_mm_put_block(node); 3141 return -EINVAL; 3142 } 3143 3144 ret = i915_gem_gtt_prepare_object(obj); 3145 if (ret) { 3146 i915_gem_object_unpin_pages(obj); 3147 drm_mm_put_block(node); 3148 return ret; 3149 } 3150 3151 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3152 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3153 3154 obj->gtt_space = node; 3155 obj->gtt_offset = node->start; 3156 3157 fenceable = 3158 node->size == fence_size && 3159 (node->start & (fence_alignment - 1)) == 0; 3160 3161 mappable = 3162 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3163 3164 obj->map_and_fenceable = mappable && fenceable; 3165 3166 trace_i915_gem_object_bind(obj, map_and_fenceable); 3167 i915_gem_verify_gtt(dev); 3168 return 0; 3169 } 3170 3171 void 3172 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3173 { 3174 /* If we don't have a page list set up, then we're not pinned 3175 * to GPU, and we can ignore the cache flush because it'll happen 3176 * again at bind time. 3177 */ 3178 if (obj->pages == NULL) 3179 return; 3180 3181 /* 3182 * Stolen memory is always coherent with the GPU as it is explicitly 3183 * marked as wc by the system, or the system is cache-coherent. 3184 */ 3185 if (obj->stolen) 3186 return; 3187 3188 /* If the GPU is snooping the contents of the CPU cache, 3189 * we do not need to manually clear the CPU cache lines. However, 3190 * the caches are only snooped when the render cache is 3191 * flushed/invalidated. As we always have to emit invalidations 3192 * and flushes when moving into and out of the RENDER domain, correct 3193 * snooping behaviour occurs naturally as the result of our domain 3194 * tracking. 3195 */ 3196 if (obj->cache_level != I915_CACHE_NONE) 3197 return; 3198 3199 trace_i915_gem_object_clflush(obj); 3200 3201 drm_clflush_sg(obj->pages); 3202 } 3203 3204 /** Flushes the GTT write domain for the object if it's dirty. */ 3205 static void 3206 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3207 { 3208 uint32_t old_write_domain; 3209 3210 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3211 return; 3212 3213 /* No actual flushing is required for the GTT write domain. Writes 3214 * to it immediately go to main memory as far as we know, so there's 3215 * no chipset flush. It also doesn't land in render cache. 3216 * 3217 * However, we do have to enforce the order so that all writes through 3218 * the GTT land before any writes to the device, such as updates to 3219 * the GATT itself. 3220 */ 3221 wmb(); 3222 3223 old_write_domain = obj->base.write_domain; 3224 obj->base.write_domain = 0; 3225 3226 trace_i915_gem_object_change_domain(obj, 3227 obj->base.read_domains, 3228 old_write_domain); 3229 } 3230 3231 /** Flushes the CPU write domain for the object if it's dirty. */ 3232 static void 3233 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3234 { 3235 uint32_t old_write_domain; 3236 3237 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3238 return; 3239 3240 i915_gem_clflush_object(obj); 3241 i915_gem_chipset_flush(obj->base.dev); 3242 old_write_domain = obj->base.write_domain; 3243 obj->base.write_domain = 0; 3244 3245 trace_i915_gem_object_change_domain(obj, 3246 obj->base.read_domains, 3247 old_write_domain); 3248 } 3249 3250 /** 3251 * Moves a single object to the GTT read, and possibly write domain. 3252 * 3253 * This function returns when the move is complete, including waiting on 3254 * flushes to occur. 3255 */ 3256 int 3257 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3258 { 3259 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3260 uint32_t old_write_domain, old_read_domains; 3261 int ret; 3262 3263 /* Not valid to be called on unbound objects. */ 3264 if (obj->gtt_space == NULL) 3265 return -EINVAL; 3266 3267 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3268 return 0; 3269 3270 ret = i915_gem_object_wait_rendering(obj, !write); 3271 if (ret) 3272 return ret; 3273 3274 i915_gem_object_flush_cpu_write_domain(obj); 3275 3276 /* Serialise direct access to this object with the barriers for 3277 * coherent writes from the GPU, by effectively invalidating the 3278 * GTT domain upon first access. 3279 */ 3280 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3281 mb(); 3282 3283 old_write_domain = obj->base.write_domain; 3284 old_read_domains = obj->base.read_domains; 3285 3286 /* It should now be out of any other write domains, and we can update 3287 * the domain values for our changes. 3288 */ 3289 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3290 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3291 if (write) { 3292 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3293 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3294 obj->dirty = 1; 3295 } 3296 3297 trace_i915_gem_object_change_domain(obj, 3298 old_read_domains, 3299 old_write_domain); 3300 3301 /* And bump the LRU for this access */ 3302 if (i915_gem_object_is_inactive(obj)) 3303 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3304 3305 return 0; 3306 } 3307 3308 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3309 enum i915_cache_level cache_level) 3310 { 3311 struct drm_device *dev = obj->base.dev; 3312 drm_i915_private_t *dev_priv = dev->dev_private; 3313 int ret; 3314 3315 if (obj->cache_level == cache_level) 3316 return 0; 3317 3318 if (obj->pin_count) { 3319 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3320 return -EBUSY; 3321 } 3322 3323 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3324 ret = i915_gem_object_unbind(obj); 3325 if (ret) 3326 return ret; 3327 } 3328 3329 if (obj->gtt_space) { 3330 ret = i915_gem_object_finish_gpu(obj); 3331 if (ret) 3332 return ret; 3333 3334 i915_gem_object_finish_gtt(obj); 3335 3336 /* Before SandyBridge, you could not use tiling or fence 3337 * registers with snooped memory, so relinquish any fences 3338 * currently pointing to our region in the aperture. 3339 */ 3340 if (INTEL_INFO(dev)->gen < 6) { 3341 ret = i915_gem_object_put_fence(obj); 3342 if (ret) 3343 return ret; 3344 } 3345 3346 if (obj->has_global_gtt_mapping) 3347 i915_gem_gtt_bind_object(obj, cache_level); 3348 if (obj->has_aliasing_ppgtt_mapping) 3349 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3350 obj, cache_level); 3351 3352 obj->gtt_space->color = cache_level; 3353 } 3354 3355 if (cache_level == I915_CACHE_NONE) { 3356 u32 old_read_domains, old_write_domain; 3357 3358 /* If we're coming from LLC cached, then we haven't 3359 * actually been tracking whether the data is in the 3360 * CPU cache or not, since we only allow one bit set 3361 * in obj->write_domain and have been skipping the clflushes. 3362 * Just set it to the CPU cache for now. 3363 */ 3364 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3365 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3366 3367 old_read_domains = obj->base.read_domains; 3368 old_write_domain = obj->base.write_domain; 3369 3370 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3371 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3372 3373 trace_i915_gem_object_change_domain(obj, 3374 old_read_domains, 3375 old_write_domain); 3376 } 3377 3378 obj->cache_level = cache_level; 3379 i915_gem_verify_gtt(dev); 3380 return 0; 3381 } 3382 3383 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3384 struct drm_file *file) 3385 { 3386 struct drm_i915_gem_caching *args = data; 3387 struct drm_i915_gem_object *obj; 3388 int ret; 3389 3390 ret = i915_mutex_lock_interruptible(dev); 3391 if (ret) 3392 return ret; 3393 3394 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3395 if (&obj->base == NULL) { 3396 ret = -ENOENT; 3397 goto unlock; 3398 } 3399 3400 args->caching = obj->cache_level != I915_CACHE_NONE; 3401 3402 drm_gem_object_unreference(&obj->base); 3403 unlock: 3404 mutex_unlock(&dev->struct_mutex); 3405 return ret; 3406 } 3407 3408 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3409 struct drm_file *file) 3410 { 3411 struct drm_i915_gem_caching *args = data; 3412 struct drm_i915_gem_object *obj; 3413 enum i915_cache_level level; 3414 int ret; 3415 3416 switch (args->caching) { 3417 case I915_CACHING_NONE: 3418 level = I915_CACHE_NONE; 3419 break; 3420 case I915_CACHING_CACHED: 3421 level = I915_CACHE_LLC; 3422 break; 3423 default: 3424 return -EINVAL; 3425 } 3426 3427 ret = i915_mutex_lock_interruptible(dev); 3428 if (ret) 3429 return ret; 3430 3431 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3432 if (&obj->base == NULL) { 3433 ret = -ENOENT; 3434 goto unlock; 3435 } 3436 3437 ret = i915_gem_object_set_cache_level(obj, level); 3438 3439 drm_gem_object_unreference(&obj->base); 3440 unlock: 3441 mutex_unlock(&dev->struct_mutex); 3442 return ret; 3443 } 3444 3445 /* 3446 * Prepare buffer for display plane (scanout, cursors, etc). 3447 * Can be called from an uninterruptible phase (modesetting) and allows 3448 * any flushes to be pipelined (for pageflips). 3449 */ 3450 int 3451 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3452 u32 alignment, 3453 struct intel_ring_buffer *pipelined) 3454 { 3455 u32 old_read_domains, old_write_domain; 3456 int ret; 3457 3458 if (pipelined != obj->ring) { 3459 ret = i915_gem_object_sync(obj, pipelined); 3460 if (ret) 3461 return ret; 3462 } 3463 3464 /* The display engine is not coherent with the LLC cache on gen6. As 3465 * a result, we make sure that the pinning that is about to occur is 3466 * done with uncached PTEs. This is lowest common denominator for all 3467 * chipsets. 3468 * 3469 * However for gen6+, we could do better by using the GFDT bit instead 3470 * of uncaching, which would allow us to flush all the LLC-cached data 3471 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3472 */ 3473 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3474 if (ret) 3475 return ret; 3476 3477 /* As the user may map the buffer once pinned in the display plane 3478 * (e.g. libkms for the bootup splash), we have to ensure that we 3479 * always use map_and_fenceable for all scanout buffers. 3480 */ 3481 ret = i915_gem_object_pin(obj, alignment, true, false); 3482 if (ret) 3483 return ret; 3484 3485 i915_gem_object_flush_cpu_write_domain(obj); 3486 3487 old_write_domain = obj->base.write_domain; 3488 old_read_domains = obj->base.read_domains; 3489 3490 /* It should now be out of any other write domains, and we can update 3491 * the domain values for our changes. 3492 */ 3493 obj->base.write_domain = 0; 3494 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3495 3496 trace_i915_gem_object_change_domain(obj, 3497 old_read_domains, 3498 old_write_domain); 3499 3500 return 0; 3501 } 3502 3503 int 3504 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3505 { 3506 int ret; 3507 3508 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3509 return 0; 3510 3511 ret = i915_gem_object_wait_rendering(obj, false); 3512 if (ret) 3513 return ret; 3514 3515 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3516 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3517 return 0; 3518 } 3519 3520 /** 3521 * Moves a single object to the CPU read, and possibly write domain. 3522 * 3523 * This function returns when the move is complete, including waiting on 3524 * flushes to occur. 3525 */ 3526 int 3527 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3528 { 3529 uint32_t old_write_domain, old_read_domains; 3530 int ret; 3531 3532 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3533 return 0; 3534 3535 ret = i915_gem_object_wait_rendering(obj, !write); 3536 if (ret) 3537 return ret; 3538 3539 i915_gem_object_flush_gtt_write_domain(obj); 3540 3541 old_write_domain = obj->base.write_domain; 3542 old_read_domains = obj->base.read_domains; 3543 3544 /* Flush the CPU cache if it's still invalid. */ 3545 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3546 i915_gem_clflush_object(obj); 3547 3548 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3549 } 3550 3551 /* It should now be out of any other write domains, and we can update 3552 * the domain values for our changes. 3553 */ 3554 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3555 3556 /* If we're writing through the CPU, then the GPU read domains will 3557 * need to be invalidated at next use. 3558 */ 3559 if (write) { 3560 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3561 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3562 } 3563 3564 trace_i915_gem_object_change_domain(obj, 3565 old_read_domains, 3566 old_write_domain); 3567 3568 return 0; 3569 } 3570 3571 /* Throttle our rendering by waiting until the ring has completed our requests 3572 * emitted over 20 msec ago. 3573 * 3574 * Note that if we were to use the current jiffies each time around the loop, 3575 * we wouldn't escape the function with any frames outstanding if the time to 3576 * render a frame was over 20ms. 3577 * 3578 * This should get us reasonable parallelism between CPU and GPU but also 3579 * relatively low latency when blocking on a particular request to finish. 3580 */ 3581 static int 3582 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3583 { 3584 struct drm_i915_private *dev_priv = dev->dev_private; 3585 struct drm_i915_file_private *file_priv = file->driver_priv; 3586 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3587 struct drm_i915_gem_request *request; 3588 struct intel_ring_buffer *ring = NULL; 3589 unsigned reset_counter; 3590 u32 seqno = 0; 3591 int ret; 3592 3593 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3594 if (ret) 3595 return ret; 3596 3597 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3598 if (ret) 3599 return ret; 3600 3601 spin_lock(&file_priv->mm.lock); 3602 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3603 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3604 break; 3605 3606 ring = request->ring; 3607 seqno = request->seqno; 3608 } 3609 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3610 spin_unlock(&file_priv->mm.lock); 3611 3612 if (seqno == 0) 3613 return 0; 3614 3615 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3616 if (ret == 0) 3617 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3618 3619 return ret; 3620 } 3621 3622 int 3623 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3624 uint32_t alignment, 3625 bool map_and_fenceable, 3626 bool nonblocking) 3627 { 3628 int ret; 3629 3630 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3631 return -EBUSY; 3632 3633 if (obj->gtt_space != NULL) { 3634 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3635 (map_and_fenceable && !obj->map_and_fenceable)) { 3636 WARN(obj->pin_count, 3637 "bo is already pinned with incorrect alignment:" 3638 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3639 " obj->map_and_fenceable=%d\n", 3640 obj->gtt_offset, alignment, 3641 map_and_fenceable, 3642 obj->map_and_fenceable); 3643 ret = i915_gem_object_unbind(obj); 3644 if (ret) 3645 return ret; 3646 } 3647 } 3648 3649 if (obj->gtt_space == NULL) { 3650 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3651 3652 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3653 map_and_fenceable, 3654 nonblocking); 3655 if (ret) 3656 return ret; 3657 3658 if (!dev_priv->mm.aliasing_ppgtt) 3659 i915_gem_gtt_bind_object(obj, obj->cache_level); 3660 } 3661 3662 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3663 i915_gem_gtt_bind_object(obj, obj->cache_level); 3664 3665 obj->pin_count++; 3666 obj->pin_mappable |= map_and_fenceable; 3667 3668 return 0; 3669 } 3670 3671 void 3672 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3673 { 3674 BUG_ON(obj->pin_count == 0); 3675 BUG_ON(obj->gtt_space == NULL); 3676 3677 if (--obj->pin_count == 0) 3678 obj->pin_mappable = false; 3679 } 3680 3681 int 3682 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3683 struct drm_file *file) 3684 { 3685 struct drm_i915_gem_pin *args = data; 3686 struct drm_i915_gem_object *obj; 3687 int ret; 3688 3689 ret = i915_mutex_lock_interruptible(dev); 3690 if (ret) 3691 return ret; 3692 3693 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3694 if (&obj->base == NULL) { 3695 ret = -ENOENT; 3696 goto unlock; 3697 } 3698 3699 if (obj->madv != I915_MADV_WILLNEED) { 3700 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3701 ret = -EINVAL; 3702 goto out; 3703 } 3704 3705 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3706 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3707 args->handle); 3708 ret = -EINVAL; 3709 goto out; 3710 } 3711 3712 if (obj->user_pin_count == 0) { 3713 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3714 if (ret) 3715 goto out; 3716 } 3717 3718 obj->user_pin_count++; 3719 obj->pin_filp = file; 3720 3721 /* XXX - flush the CPU caches for pinned objects 3722 * as the X server doesn't manage domains yet 3723 */ 3724 i915_gem_object_flush_cpu_write_domain(obj); 3725 args->offset = obj->gtt_offset; 3726 out: 3727 drm_gem_object_unreference(&obj->base); 3728 unlock: 3729 mutex_unlock(&dev->struct_mutex); 3730 return ret; 3731 } 3732 3733 int 3734 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3735 struct drm_file *file) 3736 { 3737 struct drm_i915_gem_pin *args = data; 3738 struct drm_i915_gem_object *obj; 3739 int ret; 3740 3741 ret = i915_mutex_lock_interruptible(dev); 3742 if (ret) 3743 return ret; 3744 3745 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3746 if (&obj->base == NULL) { 3747 ret = -ENOENT; 3748 goto unlock; 3749 } 3750 3751 if (obj->pin_filp != file) { 3752 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3753 args->handle); 3754 ret = -EINVAL; 3755 goto out; 3756 } 3757 obj->user_pin_count--; 3758 if (obj->user_pin_count == 0) { 3759 obj->pin_filp = NULL; 3760 i915_gem_object_unpin(obj); 3761 } 3762 3763 out: 3764 drm_gem_object_unreference(&obj->base); 3765 unlock: 3766 mutex_unlock(&dev->struct_mutex); 3767 return ret; 3768 } 3769 3770 int 3771 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3772 struct drm_file *file) 3773 { 3774 struct drm_i915_gem_busy *args = data; 3775 struct drm_i915_gem_object *obj; 3776 int ret; 3777 3778 ret = i915_mutex_lock_interruptible(dev); 3779 if (ret) 3780 return ret; 3781 3782 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3783 if (&obj->base == NULL) { 3784 ret = -ENOENT; 3785 goto unlock; 3786 } 3787 3788 /* Count all active objects as busy, even if they are currently not used 3789 * by the gpu. Users of this interface expect objects to eventually 3790 * become non-busy without any further actions, therefore emit any 3791 * necessary flushes here. 3792 */ 3793 ret = i915_gem_object_flush_active(obj); 3794 3795 args->busy = obj->active; 3796 if (obj->ring) { 3797 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3798 args->busy |= intel_ring_flag(obj->ring) << 16; 3799 } 3800 3801 drm_gem_object_unreference(&obj->base); 3802 unlock: 3803 mutex_unlock(&dev->struct_mutex); 3804 return ret; 3805 } 3806 3807 int 3808 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3809 struct drm_file *file_priv) 3810 { 3811 return i915_gem_ring_throttle(dev, file_priv); 3812 } 3813 3814 int 3815 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3816 struct drm_file *file_priv) 3817 { 3818 struct drm_i915_gem_madvise *args = data; 3819 struct drm_i915_gem_object *obj; 3820 int ret; 3821 3822 switch (args->madv) { 3823 case I915_MADV_DONTNEED: 3824 case I915_MADV_WILLNEED: 3825 break; 3826 default: 3827 return -EINVAL; 3828 } 3829 3830 ret = i915_mutex_lock_interruptible(dev); 3831 if (ret) 3832 return ret; 3833 3834 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3835 if (&obj->base == NULL) { 3836 ret = -ENOENT; 3837 goto unlock; 3838 } 3839 3840 if (obj->pin_count) { 3841 ret = -EINVAL; 3842 goto out; 3843 } 3844 3845 if (obj->madv != __I915_MADV_PURGED) 3846 obj->madv = args->madv; 3847 3848 /* if the object is no longer attached, discard its backing storage */ 3849 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3850 i915_gem_object_truncate(obj); 3851 3852 args->retained = obj->madv != __I915_MADV_PURGED; 3853 3854 out: 3855 drm_gem_object_unreference(&obj->base); 3856 unlock: 3857 mutex_unlock(&dev->struct_mutex); 3858 return ret; 3859 } 3860 3861 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3862 const struct drm_i915_gem_object_ops *ops) 3863 { 3864 INIT_LIST_HEAD(&obj->mm_list); 3865 INIT_LIST_HEAD(&obj->global_list); 3866 INIT_LIST_HEAD(&obj->ring_list); 3867 INIT_LIST_HEAD(&obj->exec_list); 3868 3869 obj->ops = ops; 3870 3871 obj->fence_reg = I915_FENCE_REG_NONE; 3872 obj->madv = I915_MADV_WILLNEED; 3873 /* Avoid an unnecessary call to unbind on the first bind. */ 3874 obj->map_and_fenceable = true; 3875 3876 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3877 } 3878 3879 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3880 .get_pages = i915_gem_object_get_pages_gtt, 3881 .put_pages = i915_gem_object_put_pages_gtt, 3882 }; 3883 3884 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3885 size_t size) 3886 { 3887 struct drm_i915_gem_object *obj; 3888 struct address_space *mapping; 3889 gfp_t mask; 3890 3891 obj = i915_gem_object_alloc(dev); 3892 if (obj == NULL) 3893 return NULL; 3894 3895 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3896 i915_gem_object_free(obj); 3897 return NULL; 3898 } 3899 3900 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3901 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3902 /* 965gm cannot relocate objects above 4GiB. */ 3903 mask &= ~__GFP_HIGHMEM; 3904 mask |= __GFP_DMA32; 3905 } 3906 3907 mapping = file_inode(obj->base.filp)->i_mapping; 3908 mapping_set_gfp_mask(mapping, mask); 3909 3910 i915_gem_object_init(obj, &i915_gem_object_ops); 3911 3912 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3913 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3914 3915 if (HAS_LLC(dev)) { 3916 /* On some devices, we can have the GPU use the LLC (the CPU 3917 * cache) for about a 10% performance improvement 3918 * compared to uncached. Graphics requests other than 3919 * display scanout are coherent with the CPU in 3920 * accessing this cache. This means in this mode we 3921 * don't need to clflush on the CPU side, and on the 3922 * GPU side we only need to flush internal caches to 3923 * get data visible to the CPU. 3924 * 3925 * However, we maintain the display planes as UC, and so 3926 * need to rebind when first used as such. 3927 */ 3928 obj->cache_level = I915_CACHE_LLC; 3929 } else 3930 obj->cache_level = I915_CACHE_NONE; 3931 3932 return obj; 3933 } 3934 3935 int i915_gem_init_object(struct drm_gem_object *obj) 3936 { 3937 BUG(); 3938 3939 return 0; 3940 } 3941 3942 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3943 { 3944 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3945 struct drm_device *dev = obj->base.dev; 3946 drm_i915_private_t *dev_priv = dev->dev_private; 3947 3948 trace_i915_gem_object_destroy(obj); 3949 3950 if (obj->phys_obj) 3951 i915_gem_detach_phys_object(dev, obj); 3952 3953 obj->pin_count = 0; 3954 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3955 bool was_interruptible; 3956 3957 was_interruptible = dev_priv->mm.interruptible; 3958 dev_priv->mm.interruptible = false; 3959 3960 WARN_ON(i915_gem_object_unbind(obj)); 3961 3962 dev_priv->mm.interruptible = was_interruptible; 3963 } 3964 3965 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 3966 * before progressing. */ 3967 if (obj->stolen) 3968 i915_gem_object_unpin_pages(obj); 3969 3970 if (WARN_ON(obj->pages_pin_count)) 3971 obj->pages_pin_count = 0; 3972 i915_gem_object_put_pages(obj); 3973 i915_gem_object_free_mmap_offset(obj); 3974 i915_gem_object_release_stolen(obj); 3975 3976 BUG_ON(obj->pages); 3977 3978 if (obj->base.import_attach) 3979 drm_prime_gem_destroy(&obj->base, NULL); 3980 3981 drm_gem_object_release(&obj->base); 3982 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3983 3984 kfree(obj->bit_17); 3985 i915_gem_object_free(obj); 3986 } 3987 3988 int 3989 i915_gem_idle(struct drm_device *dev) 3990 { 3991 drm_i915_private_t *dev_priv = dev->dev_private; 3992 int ret; 3993 3994 mutex_lock(&dev->struct_mutex); 3995 3996 if (dev_priv->mm.suspended) { 3997 mutex_unlock(&dev->struct_mutex); 3998 return 0; 3999 } 4000 4001 ret = i915_gpu_idle(dev); 4002 if (ret) { 4003 mutex_unlock(&dev->struct_mutex); 4004 return ret; 4005 } 4006 i915_gem_retire_requests(dev); 4007 4008 /* Under UMS, be paranoid and evict. */ 4009 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4010 i915_gem_evict_everything(dev); 4011 4012 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4013 * We need to replace this with a semaphore, or something. 4014 * And not confound mm.suspended! 4015 */ 4016 dev_priv->mm.suspended = 1; 4017 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4018 4019 i915_kernel_lost_context(dev); 4020 i915_gem_cleanup_ringbuffer(dev); 4021 4022 mutex_unlock(&dev->struct_mutex); 4023 4024 /* Cancel the retire work handler, which should be idle now. */ 4025 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4026 4027 return 0; 4028 } 4029 4030 void i915_gem_l3_remap(struct drm_device *dev) 4031 { 4032 drm_i915_private_t *dev_priv = dev->dev_private; 4033 u32 misccpctl; 4034 int i; 4035 4036 if (!HAS_L3_GPU_CACHE(dev)) 4037 return; 4038 4039 if (!dev_priv->l3_parity.remap_info) 4040 return; 4041 4042 misccpctl = I915_READ(GEN7_MISCCPCTL); 4043 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 4044 POSTING_READ(GEN7_MISCCPCTL); 4045 4046 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4047 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 4048 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 4049 DRM_DEBUG("0x%x was already programmed to %x\n", 4050 GEN7_L3LOG_BASE + i, remap); 4051 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 4052 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 4053 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 4054 } 4055 4056 /* Make sure all the writes land before disabling dop clock gating */ 4057 POSTING_READ(GEN7_L3LOG_BASE); 4058 4059 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 4060 } 4061 4062 void i915_gem_init_swizzling(struct drm_device *dev) 4063 { 4064 drm_i915_private_t *dev_priv = dev->dev_private; 4065 4066 if (INTEL_INFO(dev)->gen < 5 || 4067 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4068 return; 4069 4070 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4071 DISP_TILE_SURFACE_SWIZZLING); 4072 4073 if (IS_GEN5(dev)) 4074 return; 4075 4076 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4077 if (IS_GEN6(dev)) 4078 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4079 else if (IS_GEN7(dev)) 4080 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4081 else 4082 BUG(); 4083 } 4084 4085 static bool 4086 intel_enable_blt(struct drm_device *dev) 4087 { 4088 if (!HAS_BLT(dev)) 4089 return false; 4090 4091 /* The blitter was dysfunctional on early prototypes */ 4092 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4093 DRM_INFO("BLT not supported on this pre-production hardware;" 4094 " graphics performance will be degraded.\n"); 4095 return false; 4096 } 4097 4098 return true; 4099 } 4100 4101 static int i915_gem_init_rings(struct drm_device *dev) 4102 { 4103 struct drm_i915_private *dev_priv = dev->dev_private; 4104 int ret; 4105 4106 ret = intel_init_render_ring_buffer(dev); 4107 if (ret) 4108 return ret; 4109 4110 if (HAS_BSD(dev)) { 4111 ret = intel_init_bsd_ring_buffer(dev); 4112 if (ret) 4113 goto cleanup_render_ring; 4114 } 4115 4116 if (intel_enable_blt(dev)) { 4117 ret = intel_init_blt_ring_buffer(dev); 4118 if (ret) 4119 goto cleanup_bsd_ring; 4120 } 4121 4122 if (HAS_VEBOX(dev)) { 4123 ret = intel_init_vebox_ring_buffer(dev); 4124 if (ret) 4125 goto cleanup_blt_ring; 4126 } 4127 4128 4129 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4130 if (ret) 4131 goto cleanup_vebox_ring; 4132 4133 return 0; 4134 4135 cleanup_vebox_ring: 4136 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4137 cleanup_blt_ring: 4138 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4139 cleanup_bsd_ring: 4140 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4141 cleanup_render_ring: 4142 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4143 4144 return ret; 4145 } 4146 4147 int 4148 i915_gem_init_hw(struct drm_device *dev) 4149 { 4150 drm_i915_private_t *dev_priv = dev->dev_private; 4151 int ret; 4152 4153 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4154 return -EIO; 4155 4156 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 4157 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 4158 4159 if (HAS_PCH_NOP(dev)) { 4160 u32 temp = I915_READ(GEN7_MSG_CTL); 4161 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4162 I915_WRITE(GEN7_MSG_CTL, temp); 4163 } 4164 4165 i915_gem_l3_remap(dev); 4166 4167 i915_gem_init_swizzling(dev); 4168 4169 ret = i915_gem_init_rings(dev); 4170 if (ret) 4171 return ret; 4172 4173 /* 4174 * XXX: There was some w/a described somewhere suggesting loading 4175 * contexts before PPGTT. 4176 */ 4177 i915_gem_context_init(dev); 4178 if (dev_priv->mm.aliasing_ppgtt) { 4179 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4180 if (ret) { 4181 i915_gem_cleanup_aliasing_ppgtt(dev); 4182 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4183 } 4184 } 4185 4186 return 0; 4187 } 4188 4189 int i915_gem_init(struct drm_device *dev) 4190 { 4191 struct drm_i915_private *dev_priv = dev->dev_private; 4192 int ret; 4193 4194 mutex_lock(&dev->struct_mutex); 4195 4196 if (IS_VALLEYVIEW(dev)) { 4197 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4198 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4199 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4200 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4201 } 4202 4203 i915_gem_init_global_gtt(dev); 4204 4205 ret = i915_gem_init_hw(dev); 4206 mutex_unlock(&dev->struct_mutex); 4207 if (ret) { 4208 i915_gem_cleanup_aliasing_ppgtt(dev); 4209 return ret; 4210 } 4211 4212 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4213 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4214 dev_priv->dri1.allow_batchbuffer = 1; 4215 return 0; 4216 } 4217 4218 void 4219 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4220 { 4221 drm_i915_private_t *dev_priv = dev->dev_private; 4222 struct intel_ring_buffer *ring; 4223 int i; 4224 4225 for_each_ring(ring, dev_priv, i) 4226 intel_cleanup_ring_buffer(ring); 4227 } 4228 4229 int 4230 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4231 struct drm_file *file_priv) 4232 { 4233 drm_i915_private_t *dev_priv = dev->dev_private; 4234 int ret; 4235 4236 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4237 return 0; 4238 4239 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4240 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4241 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4242 } 4243 4244 mutex_lock(&dev->struct_mutex); 4245 dev_priv->mm.suspended = 0; 4246 4247 ret = i915_gem_init_hw(dev); 4248 if (ret != 0) { 4249 mutex_unlock(&dev->struct_mutex); 4250 return ret; 4251 } 4252 4253 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4254 mutex_unlock(&dev->struct_mutex); 4255 4256 ret = drm_irq_install(dev); 4257 if (ret) 4258 goto cleanup_ringbuffer; 4259 4260 return 0; 4261 4262 cleanup_ringbuffer: 4263 mutex_lock(&dev->struct_mutex); 4264 i915_gem_cleanup_ringbuffer(dev); 4265 dev_priv->mm.suspended = 1; 4266 mutex_unlock(&dev->struct_mutex); 4267 4268 return ret; 4269 } 4270 4271 int 4272 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4273 struct drm_file *file_priv) 4274 { 4275 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4276 return 0; 4277 4278 drm_irq_uninstall(dev); 4279 return i915_gem_idle(dev); 4280 } 4281 4282 void 4283 i915_gem_lastclose(struct drm_device *dev) 4284 { 4285 int ret; 4286 4287 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4288 return; 4289 4290 ret = i915_gem_idle(dev); 4291 if (ret) 4292 DRM_ERROR("failed to idle hardware: %d\n", ret); 4293 } 4294 4295 static void 4296 init_ring_lists(struct intel_ring_buffer *ring) 4297 { 4298 INIT_LIST_HEAD(&ring->active_list); 4299 INIT_LIST_HEAD(&ring->request_list); 4300 } 4301 4302 void 4303 i915_gem_load(struct drm_device *dev) 4304 { 4305 drm_i915_private_t *dev_priv = dev->dev_private; 4306 int i; 4307 4308 dev_priv->slab = 4309 kmem_cache_create("i915_gem_object", 4310 sizeof(struct drm_i915_gem_object), 0, 4311 SLAB_HWCACHE_ALIGN, 4312 NULL); 4313 4314 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4315 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4316 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4317 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4318 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4319 for (i = 0; i < I915_NUM_RINGS; i++) 4320 init_ring_lists(&dev_priv->ring[i]); 4321 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4322 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4323 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4324 i915_gem_retire_work_handler); 4325 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4326 4327 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4328 if (IS_GEN3(dev)) { 4329 I915_WRITE(MI_ARB_STATE, 4330 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4331 } 4332 4333 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4334 4335 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4336 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4337 dev_priv->fence_reg_start = 3; 4338 4339 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4340 dev_priv->num_fence_regs = 32; 4341 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4342 dev_priv->num_fence_regs = 16; 4343 else 4344 dev_priv->num_fence_regs = 8; 4345 4346 /* Initialize fence registers to zero */ 4347 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4348 i915_gem_restore_fences(dev); 4349 4350 i915_gem_detect_bit_6_swizzle(dev); 4351 init_waitqueue_head(&dev_priv->pending_flip_queue); 4352 4353 dev_priv->mm.interruptible = true; 4354 4355 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4356 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4357 register_shrinker(&dev_priv->mm.inactive_shrinker); 4358 } 4359 4360 /* 4361 * Create a physically contiguous memory object for this object 4362 * e.g. for cursor + overlay regs 4363 */ 4364 static int i915_gem_init_phys_object(struct drm_device *dev, 4365 int id, int size, int align) 4366 { 4367 drm_i915_private_t *dev_priv = dev->dev_private; 4368 struct drm_i915_gem_phys_object *phys_obj; 4369 int ret; 4370 4371 if (dev_priv->mm.phys_objs[id - 1] || !size) 4372 return 0; 4373 4374 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4375 if (!phys_obj) 4376 return -ENOMEM; 4377 4378 phys_obj->id = id; 4379 4380 phys_obj->handle = drm_pci_alloc(dev, size, align); 4381 if (!phys_obj->handle) { 4382 ret = -ENOMEM; 4383 goto kfree_obj; 4384 } 4385 #ifdef CONFIG_X86 4386 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4387 #endif 4388 4389 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4390 4391 return 0; 4392 kfree_obj: 4393 kfree(phys_obj); 4394 return ret; 4395 } 4396 4397 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4398 { 4399 drm_i915_private_t *dev_priv = dev->dev_private; 4400 struct drm_i915_gem_phys_object *phys_obj; 4401 4402 if (!dev_priv->mm.phys_objs[id - 1]) 4403 return; 4404 4405 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4406 if (phys_obj->cur_obj) { 4407 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4408 } 4409 4410 #ifdef CONFIG_X86 4411 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4412 #endif 4413 drm_pci_free(dev, phys_obj->handle); 4414 kfree(phys_obj); 4415 dev_priv->mm.phys_objs[id - 1] = NULL; 4416 } 4417 4418 void i915_gem_free_all_phys_object(struct drm_device *dev) 4419 { 4420 int i; 4421 4422 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4423 i915_gem_free_phys_object(dev, i); 4424 } 4425 4426 void i915_gem_detach_phys_object(struct drm_device *dev, 4427 struct drm_i915_gem_object *obj) 4428 { 4429 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4430 char *vaddr; 4431 int i; 4432 int page_count; 4433 4434 if (!obj->phys_obj) 4435 return; 4436 vaddr = obj->phys_obj->handle->vaddr; 4437 4438 page_count = obj->base.size / PAGE_SIZE; 4439 for (i = 0; i < page_count; i++) { 4440 struct page *page = shmem_read_mapping_page(mapping, i); 4441 if (!IS_ERR(page)) { 4442 char *dst = kmap_atomic(page); 4443 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4444 kunmap_atomic(dst); 4445 4446 drm_clflush_pages(&page, 1); 4447 4448 set_page_dirty(page); 4449 mark_page_accessed(page); 4450 page_cache_release(page); 4451 } 4452 } 4453 i915_gem_chipset_flush(dev); 4454 4455 obj->phys_obj->cur_obj = NULL; 4456 obj->phys_obj = NULL; 4457 } 4458 4459 int 4460 i915_gem_attach_phys_object(struct drm_device *dev, 4461 struct drm_i915_gem_object *obj, 4462 int id, 4463 int align) 4464 { 4465 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4466 drm_i915_private_t *dev_priv = dev->dev_private; 4467 int ret = 0; 4468 int page_count; 4469 int i; 4470 4471 if (id > I915_MAX_PHYS_OBJECT) 4472 return -EINVAL; 4473 4474 if (obj->phys_obj) { 4475 if (obj->phys_obj->id == id) 4476 return 0; 4477 i915_gem_detach_phys_object(dev, obj); 4478 } 4479 4480 /* create a new object */ 4481 if (!dev_priv->mm.phys_objs[id - 1]) { 4482 ret = i915_gem_init_phys_object(dev, id, 4483 obj->base.size, align); 4484 if (ret) { 4485 DRM_ERROR("failed to init phys object %d size: %zu\n", 4486 id, obj->base.size); 4487 return ret; 4488 } 4489 } 4490 4491 /* bind to the object */ 4492 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4493 obj->phys_obj->cur_obj = obj; 4494 4495 page_count = obj->base.size / PAGE_SIZE; 4496 4497 for (i = 0; i < page_count; i++) { 4498 struct page *page; 4499 char *dst, *src; 4500 4501 page = shmem_read_mapping_page(mapping, i); 4502 if (IS_ERR(page)) 4503 return PTR_ERR(page); 4504 4505 src = kmap_atomic(page); 4506 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4507 memcpy(dst, src, PAGE_SIZE); 4508 kunmap_atomic(src); 4509 4510 mark_page_accessed(page); 4511 page_cache_release(page); 4512 } 4513 4514 return 0; 4515 } 4516 4517 static int 4518 i915_gem_phys_pwrite(struct drm_device *dev, 4519 struct drm_i915_gem_object *obj, 4520 struct drm_i915_gem_pwrite *args, 4521 struct drm_file *file_priv) 4522 { 4523 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4524 char __user *user_data = to_user_ptr(args->data_ptr); 4525 4526 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4527 unsigned long unwritten; 4528 4529 /* The physical object once assigned is fixed for the lifetime 4530 * of the obj, so we can safely drop the lock and continue 4531 * to access vaddr. 4532 */ 4533 mutex_unlock(&dev->struct_mutex); 4534 unwritten = copy_from_user(vaddr, user_data, args->size); 4535 mutex_lock(&dev->struct_mutex); 4536 if (unwritten) 4537 return -EFAULT; 4538 } 4539 4540 i915_gem_chipset_flush(dev); 4541 return 0; 4542 } 4543 4544 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4545 { 4546 struct drm_i915_file_private *file_priv = file->driver_priv; 4547 4548 /* Clean up our request list when the client is going away, so that 4549 * later retire_requests won't dereference our soon-to-be-gone 4550 * file_priv. 4551 */ 4552 spin_lock(&file_priv->mm.lock); 4553 while (!list_empty(&file_priv->mm.request_list)) { 4554 struct drm_i915_gem_request *request; 4555 4556 request = list_first_entry(&file_priv->mm.request_list, 4557 struct drm_i915_gem_request, 4558 client_list); 4559 list_del(&request->client_list); 4560 request->file_priv = NULL; 4561 } 4562 spin_unlock(&file_priv->mm.lock); 4563 } 4564 4565 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4566 { 4567 if (!mutex_is_locked(mutex)) 4568 return false; 4569 4570 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4571 return mutex->owner == task; 4572 #else 4573 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4574 return false; 4575 #endif 4576 } 4577 4578 static int 4579 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4580 { 4581 struct drm_i915_private *dev_priv = 4582 container_of(shrinker, 4583 struct drm_i915_private, 4584 mm.inactive_shrinker); 4585 struct drm_device *dev = dev_priv->dev; 4586 struct drm_i915_gem_object *obj; 4587 int nr_to_scan = sc->nr_to_scan; 4588 bool unlock = true; 4589 int cnt; 4590 4591 if (!mutex_trylock(&dev->struct_mutex)) { 4592 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4593 return 0; 4594 4595 if (dev_priv->mm.shrinker_no_lock_stealing) 4596 return 0; 4597 4598 unlock = false; 4599 } 4600 4601 if (nr_to_scan) { 4602 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4603 if (nr_to_scan > 0) 4604 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan, 4605 false); 4606 if (nr_to_scan > 0) 4607 i915_gem_shrink_all(dev_priv); 4608 } 4609 4610 cnt = 0; 4611 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 4612 if (obj->pages_pin_count == 0) 4613 cnt += obj->base.size >> PAGE_SHIFT; 4614 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list) 4615 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4616 cnt += obj->base.size >> PAGE_SHIFT; 4617 4618 if (unlock) 4619 mutex_unlock(&dev->struct_mutex); 4620 return cnt; 4621 } 4622