xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 	int ret;
93 
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 		   i915_terminally_wedged(error))
96 	if (EXIT_COND)
97 		return 0;
98 
99 	/*
100 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 	 * userspace. If it takes that long something really bad is going on and
102 	 * we should simply try to bail out and fail as gracefully as possible.
103 	 */
104 	ret = wait_event_interruptible_timeout(error->reset_queue,
105 					       EXIT_COND,
106 					       10*HZ);
107 	if (ret == 0) {
108 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 		return -EIO;
110 	} else if (ret < 0) {
111 		return ret;
112 	}
113 #undef EXIT_COND
114 
115 	return 0;
116 }
117 
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	int ret;
122 
123 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 	if (ret)
125 		return ret;
126 
127 	ret = mutex_lock_interruptible(&dev->struct_mutex);
128 	if (ret)
129 		return ret;
130 
131 	WARN_ON(i915_verify_lists(dev));
132 	return 0;
133 }
134 
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 	return obj->gtt_space && !obj->active;
139 }
140 
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 		    struct drm_file *file)
144 {
145 	struct drm_i915_private *dev_priv = dev->dev_private;
146 	struct drm_i915_gem_init *args = data;
147 
148 	if (drm_core_check_feature(dev, DRIVER_MODESET))
149 		return -ENODEV;
150 
151 	if (args->gtt_start >= args->gtt_end ||
152 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 		return -EINVAL;
154 
155 	/* GEM with user mode setting was never supported on ilk and later. */
156 	if (INTEL_INFO(dev)->gen >= 5)
157 		return -ENODEV;
158 
159 	mutex_lock(&dev->struct_mutex);
160 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 				  args->gtt_end);
162 	dev_priv->gtt.mappable_end = args->gtt_end;
163 	mutex_unlock(&dev->struct_mutex);
164 
165 	return 0;
166 }
167 
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 			    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_get_aperture *args = data;
174 	struct drm_i915_gem_object *obj;
175 	size_t pinned;
176 
177 	pinned = 0;
178 	mutex_lock(&dev->struct_mutex);
179 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 		if (obj->pin_count)
181 			pinned += obj->gtt_space->size;
182 	mutex_unlock(&dev->struct_mutex);
183 
184 	args->aper_size = dev_priv->gtt.total;
185 	args->aper_available_size = args->aper_size - pinned;
186 
187 	return 0;
188 }
189 
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 	struct drm_i915_private *dev_priv = dev->dev_private;
193 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195 
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 	kmem_cache_free(dev_priv->slab, obj);
200 }
201 
202 static int
203 i915_gem_create(struct drm_file *file,
204 		struct drm_device *dev,
205 		uint64_t size,
206 		uint32_t *handle_p)
207 {
208 	struct drm_i915_gem_object *obj;
209 	int ret;
210 	u32 handle;
211 
212 	size = roundup(size, PAGE_SIZE);
213 	if (size == 0)
214 		return -EINVAL;
215 
216 	/* Allocate the new object */
217 	obj = i915_gem_alloc_object(dev, size);
218 	if (obj == NULL)
219 		return -ENOMEM;
220 
221 	ret = drm_gem_handle_create(file, &obj->base, &handle);
222 	if (ret) {
223 		drm_gem_object_release(&obj->base);
224 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 		i915_gem_object_free(obj);
226 		return ret;
227 	}
228 
229 	/* drop reference from allocate - handle holds it now */
230 	drm_gem_object_unreference(&obj->base);
231 	trace_i915_gem_object_create(obj);
232 
233 	*handle_p = handle;
234 	return 0;
235 }
236 
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 		     struct drm_device *dev,
240 		     struct drm_mode_create_dumb *args)
241 {
242 	/* have to work out size/pitch and return them */
243 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 	args->size = args->pitch * args->height;
245 	return i915_gem_create(file, dev,
246 			       args->size, &args->handle);
247 }
248 
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 			  struct drm_device *dev,
251 			  uint32_t handle)
252 {
253 	return drm_gem_handle_delete(file, handle);
254 }
255 
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 		      struct drm_file *file)
262 {
263 	struct drm_i915_gem_create *args = data;
264 
265 	return i915_gem_create(file, dev,
266 			       args->size, &args->handle);
267 }
268 
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 			const char *gpu_vaddr, int gpu_offset,
272 			int length)
273 {
274 	int ret, cpu_offset = 0;
275 
276 	while (length > 0) {
277 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 		int this_length = min(cacheline_end - gpu_offset, length);
279 		int swizzled_gpu_offset = gpu_offset ^ 64;
280 
281 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 				     gpu_vaddr + swizzled_gpu_offset,
283 				     this_length);
284 		if (ret)
285 			return ret + length;
286 
287 		cpu_offset += this_length;
288 		gpu_offset += this_length;
289 		length -= this_length;
290 	}
291 
292 	return 0;
293 }
294 
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 			  const char __user *cpu_vaddr,
298 			  int length)
299 {
300 	int ret, cpu_offset = 0;
301 
302 	while (length > 0) {
303 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 		int this_length = min(cacheline_end - gpu_offset, length);
305 		int swizzled_gpu_offset = gpu_offset ^ 64;
306 
307 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 				       cpu_vaddr + cpu_offset,
309 				       this_length);
310 		if (ret)
311 			return ret + length;
312 
313 		cpu_offset += this_length;
314 		gpu_offset += this_length;
315 		length -= this_length;
316 	}
317 
318 	return 0;
319 }
320 
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 		 char __user *user_data,
327 		 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 	char *vaddr;
330 	int ret;
331 
332 	if (unlikely(page_do_bit17_swizzling))
333 		return -EINVAL;
334 
335 	vaddr = kmap_atomic(page);
336 	if (needs_clflush)
337 		drm_clflush_virt_range(vaddr + shmem_page_offset,
338 				       page_length);
339 	ret = __copy_to_user_inatomic(user_data,
340 				      vaddr + shmem_page_offset,
341 				      page_length);
342 	kunmap_atomic(vaddr);
343 
344 	return ret ? -EFAULT : 0;
345 }
346 
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 			     bool swizzled)
350 {
351 	if (unlikely(swizzled)) {
352 		unsigned long start = (unsigned long) addr;
353 		unsigned long end = (unsigned long) addr + length;
354 
355 		/* For swizzling simply ensure that we always flush both
356 		 * channels. Lame, but simple and it works. Swizzled
357 		 * pwrite/pread is far from a hotpath - current userspace
358 		 * doesn't use it at all. */
359 		start = round_down(start, 128);
360 		end = round_up(end, 128);
361 
362 		drm_clflush_virt_range((void *)start, end - start);
363 	} else {
364 		drm_clflush_virt_range(addr, length);
365 	}
366 
367 }
368 
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 		 char __user *user_data,
374 		 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 	char *vaddr;
377 	int ret;
378 
379 	vaddr = kmap(page);
380 	if (needs_clflush)
381 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 					     page_length,
383 					     page_do_bit17_swizzling);
384 
385 	if (page_do_bit17_swizzling)
386 		ret = __copy_to_user_swizzled(user_data,
387 					      vaddr, shmem_page_offset,
388 					      page_length);
389 	else
390 		ret = __copy_to_user(user_data,
391 				     vaddr + shmem_page_offset,
392 				     page_length);
393 	kunmap(page);
394 
395 	return ret ? - EFAULT : 0;
396 }
397 
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 		     struct drm_i915_gem_object *obj,
401 		     struct drm_i915_gem_pread *args,
402 		     struct drm_file *file)
403 {
404 	char __user *user_data;
405 	ssize_t remain;
406 	loff_t offset;
407 	int shmem_page_offset, page_length, ret = 0;
408 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 	int prefaulted = 0;
410 	int needs_clflush = 0;
411 	struct sg_page_iter sg_iter;
412 
413 	user_data = to_user_ptr(args->data_ptr);
414 	remain = args->size;
415 
416 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417 
418 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 		/* If we're not in the cpu read domain, set ourself into the gtt
420 		 * read domain and manually flush cachelines (if required). This
421 		 * optimizes for the case when the gpu will dirty the data
422 		 * anyway again before the next pread happens. */
423 		if (obj->cache_level == I915_CACHE_NONE)
424 			needs_clflush = 1;
425 		if (obj->gtt_space) {
426 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 			if (ret)
428 				return ret;
429 		}
430 	}
431 
432 	ret = i915_gem_object_get_pages(obj);
433 	if (ret)
434 		return ret;
435 
436 	i915_gem_object_pin_pages(obj);
437 
438 	offset = args->offset;
439 
440 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 			 offset >> PAGE_SHIFT) {
442 		struct page *page = sg_page_iter_page(&sg_iter);
443 
444 		if (remain <= 0)
445 			break;
446 
447 		/* Operation in this page
448 		 *
449 		 * shmem_page_offset = offset within page in shmem file
450 		 * page_length = bytes to copy for this page
451 		 */
452 		shmem_page_offset = offset_in_page(offset);
453 		page_length = remain;
454 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 			page_length = PAGE_SIZE - shmem_page_offset;
456 
457 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 			(page_to_phys(page) & (1 << 17)) != 0;
459 
460 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 				       user_data, page_do_bit17_swizzling,
462 				       needs_clflush);
463 		if (ret == 0)
464 			goto next_page;
465 
466 		mutex_unlock(&dev->struct_mutex);
467 
468 		if (!prefaulted) {
469 			ret = fault_in_multipages_writeable(user_data, remain);
470 			/* Userspace is tricking us, but we've already clobbered
471 			 * its pages with the prefault and promised to write the
472 			 * data up to the first fault. Hence ignore any errors
473 			 * and just continue. */
474 			(void)ret;
475 			prefaulted = 1;
476 		}
477 
478 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 				       user_data, page_do_bit17_swizzling,
480 				       needs_clflush);
481 
482 		mutex_lock(&dev->struct_mutex);
483 
484 next_page:
485 		mark_page_accessed(page);
486 
487 		if (ret)
488 			goto out;
489 
490 		remain -= page_length;
491 		user_data += page_length;
492 		offset += page_length;
493 	}
494 
495 out:
496 	i915_gem_object_unpin_pages(obj);
497 
498 	return ret;
499 }
500 
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 		     struct drm_file *file)
509 {
510 	struct drm_i915_gem_pread *args = data;
511 	struct drm_i915_gem_object *obj;
512 	int ret = 0;
513 
514 	if (args->size == 0)
515 		return 0;
516 
517 	if (!access_ok(VERIFY_WRITE,
518 		       to_user_ptr(args->data_ptr),
519 		       args->size))
520 		return -EFAULT;
521 
522 	ret = i915_mutex_lock_interruptible(dev);
523 	if (ret)
524 		return ret;
525 
526 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 	if (&obj->base == NULL) {
528 		ret = -ENOENT;
529 		goto unlock;
530 	}
531 
532 	/* Bounds check source.  */
533 	if (args->offset > obj->base.size ||
534 	    args->size > obj->base.size - args->offset) {
535 		ret = -EINVAL;
536 		goto out;
537 	}
538 
539 	/* prime objects have no backing filp to GEM pread/pwrite
540 	 * pages from.
541 	 */
542 	if (!obj->base.filp) {
543 		ret = -EINVAL;
544 		goto out;
545 	}
546 
547 	trace_i915_gem_object_pread(obj, args->offset, args->size);
548 
549 	ret = i915_gem_shmem_pread(dev, obj, args, file);
550 
551 out:
552 	drm_gem_object_unreference(&obj->base);
553 unlock:
554 	mutex_unlock(&dev->struct_mutex);
555 	return ret;
556 }
557 
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561 
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 		loff_t page_base, int page_offset,
565 		char __user *user_data,
566 		int length)
567 {
568 	void __iomem *vaddr_atomic;
569 	void *vaddr;
570 	unsigned long unwritten;
571 
572 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 	/* We can use the cpu mem copy function because this is X86. */
574 	vaddr = (void __force*)vaddr_atomic + page_offset;
575 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 						      user_data, length);
577 	io_mapping_unmap_atomic(vaddr_atomic);
578 	return unwritten;
579 }
580 
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 			 struct drm_i915_gem_object *obj,
588 			 struct drm_i915_gem_pwrite *args,
589 			 struct drm_file *file)
590 {
591 	drm_i915_private_t *dev_priv = dev->dev_private;
592 	ssize_t remain;
593 	loff_t offset, page_base;
594 	char __user *user_data;
595 	int page_offset, page_length, ret;
596 
597 	ret = i915_gem_object_pin(obj, 0, true, true);
598 	if (ret)
599 		goto out;
600 
601 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 	if (ret)
603 		goto out_unpin;
604 
605 	ret = i915_gem_object_put_fence(obj);
606 	if (ret)
607 		goto out_unpin;
608 
609 	user_data = to_user_ptr(args->data_ptr);
610 	remain = args->size;
611 
612 	offset = obj->gtt_offset + args->offset;
613 
614 	while (remain > 0) {
615 		/* Operation in this page
616 		 *
617 		 * page_base = page offset within aperture
618 		 * page_offset = offset within page
619 		 * page_length = bytes to copy for this page
620 		 */
621 		page_base = offset & PAGE_MASK;
622 		page_offset = offset_in_page(offset);
623 		page_length = remain;
624 		if ((page_offset + remain) > PAGE_SIZE)
625 			page_length = PAGE_SIZE - page_offset;
626 
627 		/* If we get a fault while copying data, then (presumably) our
628 		 * source page isn't available.  Return the error and we'll
629 		 * retry in the slow path.
630 		 */
631 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 				    page_offset, user_data, page_length)) {
633 			ret = -EFAULT;
634 			goto out_unpin;
635 		}
636 
637 		remain -= page_length;
638 		user_data += page_length;
639 		offset += page_length;
640 	}
641 
642 out_unpin:
643 	i915_gem_object_unpin(obj);
644 out:
645 	return ret;
646 }
647 
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 		  char __user *user_data,
655 		  bool page_do_bit17_swizzling,
656 		  bool needs_clflush_before,
657 		  bool needs_clflush_after)
658 {
659 	char *vaddr;
660 	int ret;
661 
662 	if (unlikely(page_do_bit17_swizzling))
663 		return -EINVAL;
664 
665 	vaddr = kmap_atomic(page);
666 	if (needs_clflush_before)
667 		drm_clflush_virt_range(vaddr + shmem_page_offset,
668 				       page_length);
669 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 						user_data,
671 						page_length);
672 	if (needs_clflush_after)
673 		drm_clflush_virt_range(vaddr + shmem_page_offset,
674 				       page_length);
675 	kunmap_atomic(vaddr);
676 
677 	return ret ? -EFAULT : 0;
678 }
679 
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 		  char __user *user_data,
685 		  bool page_do_bit17_swizzling,
686 		  bool needs_clflush_before,
687 		  bool needs_clflush_after)
688 {
689 	char *vaddr;
690 	int ret;
691 
692 	vaddr = kmap(page);
693 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 					     page_length,
696 					     page_do_bit17_swizzling);
697 	if (page_do_bit17_swizzling)
698 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 						user_data,
700 						page_length);
701 	else
702 		ret = __copy_from_user(vaddr + shmem_page_offset,
703 				       user_data,
704 				       page_length);
705 	if (needs_clflush_after)
706 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 					     page_length,
708 					     page_do_bit17_swizzling);
709 	kunmap(page);
710 
711 	return ret ? -EFAULT : 0;
712 }
713 
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 		      struct drm_i915_gem_object *obj,
717 		      struct drm_i915_gem_pwrite *args,
718 		      struct drm_file *file)
719 {
720 	ssize_t remain;
721 	loff_t offset;
722 	char __user *user_data;
723 	int shmem_page_offset, page_length, ret = 0;
724 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 	int hit_slowpath = 0;
726 	int needs_clflush_after = 0;
727 	int needs_clflush_before = 0;
728 	struct sg_page_iter sg_iter;
729 
730 	user_data = to_user_ptr(args->data_ptr);
731 	remain = args->size;
732 
733 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734 
735 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 		/* If we're not in the cpu write domain, set ourself into the gtt
737 		 * write domain and manually flush cachelines (if required). This
738 		 * optimizes for the case when the gpu will use the data
739 		 * right away and we therefore have to clflush anyway. */
740 		if (obj->cache_level == I915_CACHE_NONE)
741 			needs_clflush_after = 1;
742 		if (obj->gtt_space) {
743 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	/* Same trick applies for invalidate partially written cachelines before
749 	 * writing.  */
750 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 	    && obj->cache_level == I915_CACHE_NONE)
752 		needs_clflush_before = 1;
753 
754 	ret = i915_gem_object_get_pages(obj);
755 	if (ret)
756 		return ret;
757 
758 	i915_gem_object_pin_pages(obj);
759 
760 	offset = args->offset;
761 	obj->dirty = 1;
762 
763 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 			 offset >> PAGE_SHIFT) {
765 		struct page *page = sg_page_iter_page(&sg_iter);
766 		int partial_cacheline_write;
767 
768 		if (remain <= 0)
769 			break;
770 
771 		/* Operation in this page
772 		 *
773 		 * shmem_page_offset = offset within page in shmem file
774 		 * page_length = bytes to copy for this page
775 		 */
776 		shmem_page_offset = offset_in_page(offset);
777 
778 		page_length = remain;
779 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 			page_length = PAGE_SIZE - shmem_page_offset;
781 
782 		/* If we don't overwrite a cacheline completely we need to be
783 		 * careful to have up-to-date data by first clflushing. Don't
784 		 * overcomplicate things and flush the entire patch. */
785 		partial_cacheline_write = needs_clflush_before &&
786 			((shmem_page_offset | page_length)
787 				& (boot_cpu_data.x86_clflush_size - 1));
788 
789 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 			(page_to_phys(page) & (1 << 17)) != 0;
791 
792 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 					user_data, page_do_bit17_swizzling,
794 					partial_cacheline_write,
795 					needs_clflush_after);
796 		if (ret == 0)
797 			goto next_page;
798 
799 		hit_slowpath = 1;
800 		mutex_unlock(&dev->struct_mutex);
801 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 					user_data, page_do_bit17_swizzling,
803 					partial_cacheline_write,
804 					needs_clflush_after);
805 
806 		mutex_lock(&dev->struct_mutex);
807 
808 next_page:
809 		set_page_dirty(page);
810 		mark_page_accessed(page);
811 
812 		if (ret)
813 			goto out;
814 
815 		remain -= page_length;
816 		user_data += page_length;
817 		offset += page_length;
818 	}
819 
820 out:
821 	i915_gem_object_unpin_pages(obj);
822 
823 	if (hit_slowpath) {
824 		/*
825 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 		 * cachelines in-line while writing and the object moved
827 		 * out of the cpu write domain while we've dropped the lock.
828 		 */
829 		if (!needs_clflush_after &&
830 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 			i915_gem_clflush_object(obj);
832 			i915_gem_chipset_flush(dev);
833 		}
834 	}
835 
836 	if (needs_clflush_after)
837 		i915_gem_chipset_flush(dev);
838 
839 	return ret;
840 }
841 
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 		      struct drm_file *file)
850 {
851 	struct drm_i915_gem_pwrite *args = data;
852 	struct drm_i915_gem_object *obj;
853 	int ret;
854 
855 	if (args->size == 0)
856 		return 0;
857 
858 	if (!access_ok(VERIFY_READ,
859 		       to_user_ptr(args->data_ptr),
860 		       args->size))
861 		return -EFAULT;
862 
863 	ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 					   args->size);
865 	if (ret)
866 		return -EFAULT;
867 
868 	ret = i915_mutex_lock_interruptible(dev);
869 	if (ret)
870 		return ret;
871 
872 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 	if (&obj->base == NULL) {
874 		ret = -ENOENT;
875 		goto unlock;
876 	}
877 
878 	/* Bounds check destination. */
879 	if (args->offset > obj->base.size ||
880 	    args->size > obj->base.size - args->offset) {
881 		ret = -EINVAL;
882 		goto out;
883 	}
884 
885 	/* prime objects have no backing filp to GEM pread/pwrite
886 	 * pages from.
887 	 */
888 	if (!obj->base.filp) {
889 		ret = -EINVAL;
890 		goto out;
891 	}
892 
893 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894 
895 	ret = -EFAULT;
896 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
897 	 * it would end up going through the fenced access, and we'll get
898 	 * different detiling behavior between reading and writing.
899 	 * pread/pwrite currently are reading and writing from the CPU
900 	 * perspective, requiring manual detiling by the client.
901 	 */
902 	if (obj->phys_obj) {
903 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 		goto out;
905 	}
906 
907 	if (obj->cache_level == I915_CACHE_NONE &&
908 	    obj->tiling_mode == I915_TILING_NONE &&
909 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 		/* Note that the gtt paths might fail with non-page-backed user
912 		 * pointers (e.g. gtt mappings when moving data between
913 		 * textures). Fallback to the shmem path in that case. */
914 	}
915 
916 	if (ret == -EFAULT || ret == -ENOSPC)
917 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918 
919 out:
920 	drm_gem_object_unreference(&obj->base);
921 unlock:
922 	mutex_unlock(&dev->struct_mutex);
923 	return ret;
924 }
925 
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 		     bool interruptible)
929 {
930 	if (i915_reset_in_progress(error)) {
931 		/* Non-interruptible callers can't handle -EAGAIN, hence return
932 		 * -EIO unconditionally for these. */
933 		if (!interruptible)
934 			return -EIO;
935 
936 		/* Recovery complete, but the reset failed ... */
937 		if (i915_terminally_wedged(error))
938 			return -EIO;
939 
940 		return -EAGAIN;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 	int ret;
954 
955 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956 
957 	ret = 0;
958 	if (seqno == ring->outstanding_lazy_request)
959 		ret = i915_add_request(ring, NULL);
960 
961 	return ret;
962 }
963 
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 			unsigned reset_counter,
984 			bool interruptible, struct timespec *timeout)
985 {
986 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 	struct timespec before, now, wait_time={1,0};
988 	unsigned long timeout_jiffies;
989 	long end;
990 	bool wait_forever = true;
991 	int ret;
992 
993 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 		return 0;
995 
996 	trace_i915_gem_request_wait_begin(ring, seqno);
997 
998 	if (timeout != NULL) {
999 		wait_time = *timeout;
1000 		wait_forever = false;
1001 	}
1002 
1003 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004 
1005 	if (WARN_ON(!ring->irq_get(ring)))
1006 		return -ENODEV;
1007 
1008 	/* Record current time in case interrupted by signal, or wedged * */
1009 	getrawmonotonic(&before);
1010 
1011 #define EXIT_COND \
1012 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 	do {
1016 		if (interruptible)
1017 			end = wait_event_interruptible_timeout(ring->irq_queue,
1018 							       EXIT_COND,
1019 							       timeout_jiffies);
1020 		else
1021 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 						 timeout_jiffies);
1023 
1024 		/* We need to check whether any gpu reset happened in between
1025 		 * the caller grabbing the seqno and now ... */
1026 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 			end = -EAGAIN;
1028 
1029 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 		 * gone. */
1031 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 		if (ret)
1033 			end = ret;
1034 	} while (end == 0 && wait_forever);
1035 
1036 	getrawmonotonic(&now);
1037 
1038 	ring->irq_put(ring);
1039 	trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041 
1042 	if (timeout) {
1043 		struct timespec sleep_time = timespec_sub(now, before);
1044 		*timeout = timespec_sub(*timeout, sleep_time);
1045 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 			set_normalized_timespec(timeout, 0, 0);
1047 	}
1048 
1049 	switch (end) {
1050 	case -EIO:
1051 	case -EAGAIN: /* Wedged */
1052 	case -ERESTARTSYS: /* Signal */
1053 		return (int)end;
1054 	case 0: /* Timeout */
1055 		return -ETIME;
1056 	default: /* Completed */
1057 		WARN_ON(end < 0); /* We're not aware of other errors */
1058 		return 0;
1059 	}
1060 }
1061 
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 	struct drm_device *dev = ring->dev;
1070 	struct drm_i915_private *dev_priv = dev->dev_private;
1071 	bool interruptible = dev_priv->mm.interruptible;
1072 	int ret;
1073 
1074 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 	BUG_ON(seqno == 0);
1076 
1077 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = i915_gem_check_olr(ring, seqno);
1082 	if (ret)
1083 		return ret;
1084 
1085 	return __wait_seqno(ring, seqno,
1086 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1087 			    interruptible, NULL);
1088 }
1089 
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 				     struct intel_ring_buffer *ring)
1093 {
1094 	i915_gem_retire_requests_ring(ring);
1095 
1096 	/* Manually manage the write flush as we may have not yet
1097 	 * retired the buffer.
1098 	 *
1099 	 * Note that the last_write_seqno is always the earlier of
1100 	 * the two (read/write) seqno, so if we haved successfully waited,
1101 	 * we know we have passed the last write.
1102 	 */
1103 	obj->last_write_seqno = 0;
1104 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * Ensures that all rendering to the object has completed and the object is
1111  * safe to unbind from the GTT or access from the CPU.
1112  */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 			       bool readonly)
1116 {
1117 	struct intel_ring_buffer *ring = obj->ring;
1118 	u32 seqno;
1119 	int ret;
1120 
1121 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 	if (seqno == 0)
1123 		return 0;
1124 
1125 	ret = i915_wait_seqno(ring, seqno);
1126 	if (ret)
1127 		return ret;
1128 
1129 	return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131 
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133  * as the object state may change during this call.
1134  */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 					    bool readonly)
1138 {
1139 	struct drm_device *dev = obj->base.dev;
1140 	struct drm_i915_private *dev_priv = dev->dev_private;
1141 	struct intel_ring_buffer *ring = obj->ring;
1142 	unsigned reset_counter;
1143 	u32 seqno;
1144 	int ret;
1145 
1146 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 	BUG_ON(!dev_priv->mm.interruptible);
1148 
1149 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 	if (seqno == 0)
1151 		return 0;
1152 
1153 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ret = i915_gem_check_olr(ring, seqno);
1158 	if (ret)
1159 		return ret;
1160 
1161 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 	mutex_unlock(&dev->struct_mutex);
1163 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 	mutex_lock(&dev->struct_mutex);
1165 	if (ret)
1166 		return ret;
1167 
1168 	return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170 
1171 /**
1172  * Called when user space prepares to use an object with the CPU, either
1173  * through the mmap ioctl's mapping or a GTT mapping.
1174  */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 			  struct drm_file *file)
1178 {
1179 	struct drm_i915_gem_set_domain *args = data;
1180 	struct drm_i915_gem_object *obj;
1181 	uint32_t read_domains = args->read_domains;
1182 	uint32_t write_domain = args->write_domain;
1183 	int ret;
1184 
1185 	/* Only handle setting domains to types used by the CPU. */
1186 	if (write_domain & I915_GEM_GPU_DOMAINS)
1187 		return -EINVAL;
1188 
1189 	if (read_domains & I915_GEM_GPU_DOMAINS)
1190 		return -EINVAL;
1191 
1192 	/* Having something in the write domain implies it's in the read
1193 	 * domain, and only that read domain.  Enforce that in the request.
1194 	 */
1195 	if (write_domain != 0 && read_domains != write_domain)
1196 		return -EINVAL;
1197 
1198 	ret = i915_mutex_lock_interruptible(dev);
1199 	if (ret)
1200 		return ret;
1201 
1202 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 	if (&obj->base == NULL) {
1204 		ret = -ENOENT;
1205 		goto unlock;
1206 	}
1207 
1208 	/* Try to flush the object off the GPU without holding the lock.
1209 	 * We will repeat the flush holding the lock in the normal manner
1210 	 * to catch cases where we are gazumped.
1211 	 */
1212 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 	if (ret)
1214 		goto unref;
1215 
1216 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218 
1219 		/* Silently promote "you're not bound, there was nothing to do"
1220 		 * to success, since the client was just asking us to
1221 		 * make sure everything was done.
1222 		 */
1223 		if (ret == -EINVAL)
1224 			ret = 0;
1225 	} else {
1226 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 	}
1228 
1229 unref:
1230 	drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 	mutex_unlock(&dev->struct_mutex);
1233 	return ret;
1234 }
1235 
1236 /**
1237  * Called when user space has done writes to this buffer
1238  */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 			 struct drm_file *file)
1242 {
1243 	struct drm_i915_gem_sw_finish *args = data;
1244 	struct drm_i915_gem_object *obj;
1245 	int ret = 0;
1246 
1247 	ret = i915_mutex_lock_interruptible(dev);
1248 	if (ret)
1249 		return ret;
1250 
1251 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 	if (&obj->base == NULL) {
1253 		ret = -ENOENT;
1254 		goto unlock;
1255 	}
1256 
1257 	/* Pinned buffers may be scanout, so flush the cache */
1258 	if (obj->pin_count)
1259 		i915_gem_object_flush_cpu_write_domain(obj);
1260 
1261 	drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 	mutex_unlock(&dev->struct_mutex);
1264 	return ret;
1265 }
1266 
1267 /**
1268  * Maps the contents of an object, returning the address it is mapped
1269  * into.
1270  *
1271  * While the mapping holds a reference on the contents of the object, it doesn't
1272  * imply a ref on the object itself.
1273  */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 		    struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_mmap *args = data;
1279 	struct drm_gem_object *obj;
1280 	unsigned long addr;
1281 
1282 	obj = drm_gem_object_lookup(dev, file, args->handle);
1283 	if (obj == NULL)
1284 		return -ENOENT;
1285 
1286 	/* prime objects have no backing filp to GEM mmap
1287 	 * pages from.
1288 	 */
1289 	if (!obj->filp) {
1290 		drm_gem_object_unreference_unlocked(obj);
1291 		return -EINVAL;
1292 	}
1293 
1294 	addr = vm_mmap(obj->filp, 0, args->size,
1295 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1296 		       args->offset);
1297 	drm_gem_object_unreference_unlocked(obj);
1298 	if (IS_ERR((void *)addr))
1299 		return addr;
1300 
1301 	args->addr_ptr = (uint64_t) addr;
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * i915_gem_fault - fault a page into the GTT
1308  * vma: VMA in question
1309  * vmf: fault info
1310  *
1311  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312  * from userspace.  The fault handler takes care of binding the object to
1313  * the GTT (if needed), allocating and programming a fence register (again,
1314  * only if needed based on whether the old reg is still valid or the object
1315  * is tiled) and inserting a new PTE into the faulting process.
1316  *
1317  * Note that the faulting process may involve evicting existing objects
1318  * from the GTT and/or fence registers to make room.  So performance may
1319  * suffer if the GTT working set is large or there are few fence registers
1320  * left.
1321  */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 	struct drm_device *dev = obj->base.dev;
1326 	drm_i915_private_t *dev_priv = dev->dev_private;
1327 	pgoff_t page_offset;
1328 	unsigned long pfn;
1329 	int ret = 0;
1330 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331 
1332 	/* We don't use vmf->pgoff since that has the fake offset */
1333 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 		PAGE_SHIFT;
1335 
1336 	ret = i915_mutex_lock_interruptible(dev);
1337 	if (ret)
1338 		goto out;
1339 
1340 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1341 
1342 	/* Access to snoopable pages through the GTT is incoherent. */
1343 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 		ret = -EINVAL;
1345 		goto unlock;
1346 	}
1347 
1348 	/* Now bind it into the GTT if needed */
1349 	ret = i915_gem_object_pin(obj, 0, true, false);
1350 	if (ret)
1351 		goto unlock;
1352 
1353 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 	if (ret)
1355 		goto unpin;
1356 
1357 	ret = i915_gem_object_get_fence(obj);
1358 	if (ret)
1359 		goto unpin;
1360 
1361 	obj->fault_mappable = true;
1362 
1363 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1364 		page_offset;
1365 
1366 	/* Finally, remap it using the new GTT offset */
1367 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1368 unpin:
1369 	i915_gem_object_unpin(obj);
1370 unlock:
1371 	mutex_unlock(&dev->struct_mutex);
1372 out:
1373 	switch (ret) {
1374 	case -EIO:
1375 		/* If this -EIO is due to a gpu hang, give the reset code a
1376 		 * chance to clean up the mess. Otherwise return the proper
1377 		 * SIGBUS. */
1378 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1379 			return VM_FAULT_SIGBUS;
1380 	case -EAGAIN:
1381 		/* Give the error handler a chance to run and move the
1382 		 * objects off the GPU active list. Next time we service the
1383 		 * fault, we should be able to transition the page into the
1384 		 * GTT without touching the GPU (and so avoid further
1385 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 		 * with coherency, just lost writes.
1387 		 */
1388 		set_need_resched();
1389 	case 0:
1390 	case -ERESTARTSYS:
1391 	case -EINTR:
1392 	case -EBUSY:
1393 		/*
1394 		 * EBUSY is ok: this just means that another thread
1395 		 * already did the job.
1396 		 */
1397 		return VM_FAULT_NOPAGE;
1398 	case -ENOMEM:
1399 		return VM_FAULT_OOM;
1400 	case -ENOSPC:
1401 		return VM_FAULT_SIGBUS;
1402 	default:
1403 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1404 		return VM_FAULT_SIGBUS;
1405 	}
1406 }
1407 
1408 /**
1409  * i915_gem_release_mmap - remove physical page mappings
1410  * @obj: obj in question
1411  *
1412  * Preserve the reservation of the mmapping with the DRM core code, but
1413  * relinquish ownership of the pages back to the system.
1414  *
1415  * It is vital that we remove the page mapping if we have mapped a tiled
1416  * object through the GTT and then lose the fence register due to
1417  * resource pressure. Similarly if the object has been moved out of the
1418  * aperture, than pages mapped into userspace must be revoked. Removing the
1419  * mapping will then trigger a page fault on the next user access, allowing
1420  * fixup by i915_gem_fault().
1421  */
1422 void
1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1424 {
1425 	if (!obj->fault_mappable)
1426 		return;
1427 
1428 	if (obj->base.dev->dev_mapping)
1429 		unmap_mapping_range(obj->base.dev->dev_mapping,
1430 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 				    obj->base.size, 1);
1432 
1433 	obj->fault_mappable = false;
1434 }
1435 
1436 uint32_t
1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1438 {
1439 	uint32_t gtt_size;
1440 
1441 	if (INTEL_INFO(dev)->gen >= 4 ||
1442 	    tiling_mode == I915_TILING_NONE)
1443 		return size;
1444 
1445 	/* Previous chips need a power-of-two fence region when tiling */
1446 	if (INTEL_INFO(dev)->gen == 3)
1447 		gtt_size = 1024*1024;
1448 	else
1449 		gtt_size = 512*1024;
1450 
1451 	while (gtt_size < size)
1452 		gtt_size <<= 1;
1453 
1454 	return gtt_size;
1455 }
1456 
1457 /**
1458  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459  * @obj: object to check
1460  *
1461  * Return the required GTT alignment for an object, taking into account
1462  * potential fence register mapping.
1463  */
1464 uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 			   int tiling_mode, bool fenced)
1467 {
1468 	/*
1469 	 * Minimum alignment is 4k (GTT page size), but might be greater
1470 	 * if a fence register is needed for the object.
1471 	 */
1472 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1473 	    tiling_mode == I915_TILING_NONE)
1474 		return 4096;
1475 
1476 	/*
1477 	 * Previous chips need to be aligned to the size of the smallest
1478 	 * fence register that can contain the object.
1479 	 */
1480 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482 
1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484 {
1485 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 	int ret;
1487 
1488 	if (obj->base.map_list.map)
1489 		return 0;
1490 
1491 	dev_priv->mm.shrinker_no_lock_stealing = true;
1492 
1493 	ret = drm_gem_create_mmap_offset(&obj->base);
1494 	if (ret != -ENOSPC)
1495 		goto out;
1496 
1497 	/* Badly fragmented mmap space? The only way we can recover
1498 	 * space is by destroying unwanted objects. We can't randomly release
1499 	 * mmap_offsets as userspace expects them to be persistent for the
1500 	 * lifetime of the objects. The closest we can is to release the
1501 	 * offsets on purgeable objects by truncating it and marking it purged,
1502 	 * which prevents userspace from ever using that object again.
1503 	 */
1504 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 	ret = drm_gem_create_mmap_offset(&obj->base);
1506 	if (ret != -ENOSPC)
1507 		goto out;
1508 
1509 	i915_gem_shrink_all(dev_priv);
1510 	ret = drm_gem_create_mmap_offset(&obj->base);
1511 out:
1512 	dev_priv->mm.shrinker_no_lock_stealing = false;
1513 
1514 	return ret;
1515 }
1516 
1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519 	if (!obj->base.map_list.map)
1520 		return;
1521 
1522 	drm_gem_free_mmap_offset(&obj->base);
1523 }
1524 
1525 int
1526 i915_gem_mmap_gtt(struct drm_file *file,
1527 		  struct drm_device *dev,
1528 		  uint32_t handle,
1529 		  uint64_t *offset)
1530 {
1531 	struct drm_i915_private *dev_priv = dev->dev_private;
1532 	struct drm_i915_gem_object *obj;
1533 	int ret;
1534 
1535 	ret = i915_mutex_lock_interruptible(dev);
1536 	if (ret)
1537 		return ret;
1538 
1539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1540 	if (&obj->base == NULL) {
1541 		ret = -ENOENT;
1542 		goto unlock;
1543 	}
1544 
1545 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1546 		ret = -E2BIG;
1547 		goto out;
1548 	}
1549 
1550 	if (obj->madv != I915_MADV_WILLNEED) {
1551 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1552 		ret = -EINVAL;
1553 		goto out;
1554 	}
1555 
1556 	ret = i915_gem_object_create_mmap_offset(obj);
1557 	if (ret)
1558 		goto out;
1559 
1560 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1561 
1562 out:
1563 	drm_gem_object_unreference(&obj->base);
1564 unlock:
1565 	mutex_unlock(&dev->struct_mutex);
1566 	return ret;
1567 }
1568 
1569 /**
1570  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571  * @dev: DRM device
1572  * @data: GTT mapping ioctl data
1573  * @file: GEM object info
1574  *
1575  * Simply returns the fake offset to userspace so it can mmap it.
1576  * The mmap call will end up in drm_gem_mmap(), which will set things
1577  * up so we can get faults in the handler above.
1578  *
1579  * The fault handler will take care of binding the object into the GTT
1580  * (since it may have been evicted to make room for something), allocating
1581  * a fence register, and mapping the appropriate aperture address into
1582  * userspace.
1583  */
1584 int
1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 			struct drm_file *file)
1587 {
1588 	struct drm_i915_gem_mmap_gtt *args = data;
1589 
1590 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591 }
1592 
1593 /* Immediately discard the backing storage */
1594 static void
1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1596 {
1597 	struct inode *inode;
1598 
1599 	i915_gem_object_free_mmap_offset(obj);
1600 
1601 	if (obj->base.filp == NULL)
1602 		return;
1603 
1604 	/* Our goal here is to return as much of the memory as
1605 	 * is possible back to the system as we are called from OOM.
1606 	 * To do this we must instruct the shmfs to drop all of its
1607 	 * backing pages, *now*.
1608 	 */
1609 	inode = file_inode(obj->base.filp);
1610 	shmem_truncate_range(inode, 0, (loff_t)-1);
1611 
1612 	obj->madv = __I915_MADV_PURGED;
1613 }
1614 
1615 static inline int
1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617 {
1618 	return obj->madv == I915_MADV_DONTNEED;
1619 }
1620 
1621 static void
1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1623 {
1624 	struct sg_page_iter sg_iter;
1625 	int ret;
1626 
1627 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1628 
1629 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 	if (ret) {
1631 		/* In the event of a disaster, abandon all caches and
1632 		 * hope for the best.
1633 		 */
1634 		WARN_ON(ret != -EIO);
1635 		i915_gem_clflush_object(obj);
1636 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 	}
1638 
1639 	if (i915_gem_object_needs_bit17_swizzle(obj))
1640 		i915_gem_object_save_bit_17_swizzle(obj);
1641 
1642 	if (obj->madv == I915_MADV_DONTNEED)
1643 		obj->dirty = 0;
1644 
1645 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1646 		struct page *page = sg_page_iter_page(&sg_iter);
1647 
1648 		if (obj->dirty)
1649 			set_page_dirty(page);
1650 
1651 		if (obj->madv == I915_MADV_WILLNEED)
1652 			mark_page_accessed(page);
1653 
1654 		page_cache_release(page);
1655 	}
1656 	obj->dirty = 0;
1657 
1658 	sg_free_table(obj->pages);
1659 	kfree(obj->pages);
1660 }
1661 
1662 int
1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664 {
1665 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1666 
1667 	if (obj->pages == NULL)
1668 		return 0;
1669 
1670 	BUG_ON(obj->gtt_space);
1671 
1672 	if (obj->pages_pin_count)
1673 		return -EBUSY;
1674 
1675 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1676 	 * array, hence protect them from being reaped by removing them from gtt
1677 	 * lists early. */
1678 	list_del(&obj->global_list);
1679 
1680 	ops->put_pages(obj);
1681 	obj->pages = NULL;
1682 
1683 	if (i915_gem_object_is_purgeable(obj))
1684 		i915_gem_object_truncate(obj);
1685 
1686 	return 0;
1687 }
1688 
1689 static long
1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 		  bool purgeable_only)
1692 {
1693 	struct drm_i915_gem_object *obj, *next;
1694 	long count = 0;
1695 
1696 	list_for_each_entry_safe(obj, next,
1697 				 &dev_priv->mm.unbound_list,
1698 				 global_list) {
1699 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1700 		    i915_gem_object_put_pages(obj) == 0) {
1701 			count += obj->base.size >> PAGE_SHIFT;
1702 			if (count >= target)
1703 				return count;
1704 		}
1705 	}
1706 
1707 	list_for_each_entry_safe(obj, next,
1708 				 &dev_priv->mm.inactive_list,
1709 				 mm_list) {
1710 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 		    i915_gem_object_unbind(obj) == 0 &&
1712 		    i915_gem_object_put_pages(obj) == 0) {
1713 			count += obj->base.size >> PAGE_SHIFT;
1714 			if (count >= target)
1715 				return count;
1716 		}
1717 	}
1718 
1719 	return count;
1720 }
1721 
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 	return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727 
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 	struct drm_i915_gem_object *obj, *next;
1732 
1733 	i915_gem_evict_everything(dev_priv->dev);
1734 
1735 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 				 global_list)
1737 		i915_gem_object_put_pages(obj);
1738 }
1739 
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 	int page_count, i;
1745 	struct address_space *mapping;
1746 	struct sg_table *st;
1747 	struct scatterlist *sg;
1748 	struct sg_page_iter sg_iter;
1749 	struct page *page;
1750 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1751 	gfp_t gfp;
1752 
1753 	/* Assert that the object is not currently in any GPU domain. As it
1754 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 	 * a GPU cache
1756 	 */
1757 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759 
1760 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 	if (st == NULL)
1762 		return -ENOMEM;
1763 
1764 	page_count = obj->base.size / PAGE_SIZE;
1765 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 		sg_free_table(st);
1767 		kfree(st);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	/* Get the list of pages out of our struct file.  They'll be pinned
1772 	 * at this point until we release them.
1773 	 *
1774 	 * Fail silently without starting the shrinker
1775 	 */
1776 	mapping = file_inode(obj->base.filp)->i_mapping;
1777 	gfp = mapping_gfp_mask(mapping);
1778 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 	sg = st->sgl;
1781 	st->nents = 0;
1782 	for (i = 0; i < page_count; i++) {
1783 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 		if (IS_ERR(page)) {
1785 			i915_gem_purge(dev_priv, page_count);
1786 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 		}
1788 		if (IS_ERR(page)) {
1789 			/* We've tried hard to allocate the memory by reaping
1790 			 * our own buffer, now let the real VM do its job and
1791 			 * go down in flames if truly OOM.
1792 			 */
1793 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 			gfp |= __GFP_IO | __GFP_WAIT;
1795 
1796 			i915_gem_shrink_all(dev_priv);
1797 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 			if (IS_ERR(page))
1799 				goto err_pages;
1800 
1801 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 		}
1804 #ifdef CONFIG_SWIOTLB
1805 		if (swiotlb_nr_tbl()) {
1806 			st->nents++;
1807 			sg_set_page(sg, page, PAGE_SIZE, 0);
1808 			sg = sg_next(sg);
1809 			continue;
1810 		}
1811 #endif
1812 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 			if (i)
1814 				sg = sg_next(sg);
1815 			st->nents++;
1816 			sg_set_page(sg, page, PAGE_SIZE, 0);
1817 		} else {
1818 			sg->length += PAGE_SIZE;
1819 		}
1820 		last_pfn = page_to_pfn(page);
1821 	}
1822 #ifdef CONFIG_SWIOTLB
1823 	if (!swiotlb_nr_tbl())
1824 #endif
1825 		sg_mark_end(sg);
1826 	obj->pages = st;
1827 
1828 	if (i915_gem_object_needs_bit17_swizzle(obj))
1829 		i915_gem_object_do_bit_17_swizzle(obj);
1830 
1831 	return 0;
1832 
1833 err_pages:
1834 	sg_mark_end(sg);
1835 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 		page_cache_release(sg_page_iter_page(&sg_iter));
1837 	sg_free_table(st);
1838 	kfree(st);
1839 	return PTR_ERR(page);
1840 }
1841 
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 	int ret;
1855 
1856 	if (obj->pages)
1857 		return 0;
1858 
1859 	if (obj->madv != I915_MADV_WILLNEED) {
1860 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	BUG_ON(obj->pages_pin_count);
1865 
1866 	ret = ops->get_pages(obj);
1867 	if (ret)
1868 		return ret;
1869 
1870 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 	return 0;
1872 }
1873 
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 			       struct intel_ring_buffer *ring)
1877 {
1878 	struct drm_device *dev = obj->base.dev;
1879 	struct drm_i915_private *dev_priv = dev->dev_private;
1880 	u32 seqno = intel_ring_get_seqno(ring);
1881 
1882 	BUG_ON(ring == NULL);
1883 	obj->ring = ring;
1884 
1885 	/* Add a reference if we're newly entering the active list. */
1886 	if (!obj->active) {
1887 		drm_gem_object_reference(&obj->base);
1888 		obj->active = 1;
1889 	}
1890 
1891 	/* Move from whatever list we were on to the tail of execution. */
1892 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 	list_move_tail(&obj->ring_list, &ring->active_list);
1894 
1895 	obj->last_read_seqno = seqno;
1896 
1897 	if (obj->fenced_gpu_access) {
1898 		obj->last_fenced_seqno = seqno;
1899 
1900 		/* Bump MRU to take account of the delayed flush */
1901 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 			struct drm_i915_fence_reg *reg;
1903 
1904 			reg = &dev_priv->fence_regs[obj->fence_reg];
1905 			list_move_tail(&reg->lru_list,
1906 				       &dev_priv->mm.fence_list);
1907 		}
1908 	}
1909 }
1910 
1911 static void
1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914 	struct drm_device *dev = obj->base.dev;
1915 	struct drm_i915_private *dev_priv = dev->dev_private;
1916 
1917 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918 	BUG_ON(!obj->active);
1919 
1920 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921 
1922 	list_del_init(&obj->ring_list);
1923 	obj->ring = NULL;
1924 
1925 	obj->last_read_seqno = 0;
1926 	obj->last_write_seqno = 0;
1927 	obj->base.write_domain = 0;
1928 
1929 	obj->last_fenced_seqno = 0;
1930 	obj->fenced_gpu_access = false;
1931 
1932 	obj->active = 0;
1933 	drm_gem_object_unreference(&obj->base);
1934 
1935 	WARN_ON(i915_verify_lists(dev));
1936 }
1937 
1938 static int
1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941 	struct drm_i915_private *dev_priv = dev->dev_private;
1942 	struct intel_ring_buffer *ring;
1943 	int ret, i, j;
1944 
1945 	/* Carefully retire all requests without writing to the rings */
1946 	for_each_ring(ring, dev_priv, i) {
1947 		ret = intel_ring_idle(ring);
1948 		if (ret)
1949 			return ret;
1950 	}
1951 	i915_gem_retire_requests(dev);
1952 
1953 	/* Finally reset hw state */
1954 	for_each_ring(ring, dev_priv, i) {
1955 		intel_ring_init_seqno(ring, seqno);
1956 
1957 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 			ring->sync_seqno[j] = 0;
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 	struct drm_i915_private *dev_priv = dev->dev_private;
1967 	int ret;
1968 
1969 	if (seqno == 0)
1970 		return -EINVAL;
1971 
1972 	/* HWS page needs to be set less than what we
1973 	 * will inject to ring
1974 	 */
1975 	ret = i915_gem_init_seqno(dev, seqno - 1);
1976 	if (ret)
1977 		return ret;
1978 
1979 	/* Carefully set the last_seqno value so that wrap
1980 	 * detection still works
1981 	 */
1982 	dev_priv->next_seqno = seqno;
1983 	dev_priv->last_seqno = seqno - 1;
1984 	if (dev_priv->last_seqno == 0)
1985 		dev_priv->last_seqno--;
1986 
1987 	return 0;
1988 }
1989 
1990 int
1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993 	struct drm_i915_private *dev_priv = dev->dev_private;
1994 
1995 	/* reserve 0 for non-seqno */
1996 	if (dev_priv->next_seqno == 0) {
1997 		int ret = i915_gem_init_seqno(dev, 0);
1998 		if (ret)
1999 			return ret;
2000 
2001 		dev_priv->next_seqno = 1;
2002 	}
2003 
2004 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005 	return 0;
2006 }
2007 
2008 int __i915_add_request(struct intel_ring_buffer *ring,
2009 		       struct drm_file *file,
2010 		       struct drm_i915_gem_object *obj,
2011 		       u32 *out_seqno)
2012 {
2013 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014 	struct drm_i915_gem_request *request;
2015 	u32 request_ring_position, request_start;
2016 	int was_empty;
2017 	int ret;
2018 
2019 	request_start = intel_ring_get_tail(ring);
2020 	/*
2021 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2022 	 * after having emitted the batchbuffer command. Hence we need to fix
2023 	 * things up similar to emitting the lazy request. The difference here
2024 	 * is that the flush _must_ happen before the next request, no matter
2025 	 * what.
2026 	 */
2027 	ret = intel_ring_flush_all_caches(ring);
2028 	if (ret)
2029 		return ret;
2030 
2031 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2032 	if (request == NULL)
2033 		return -ENOMEM;
2034 
2035 
2036 	/* Record the position of the start of the request so that
2037 	 * should we detect the updated seqno part-way through the
2038 	 * GPU processing the request, we never over-estimate the
2039 	 * position of the head.
2040 	 */
2041 	request_ring_position = intel_ring_get_tail(ring);
2042 
2043 	ret = ring->add_request(ring);
2044 	if (ret) {
2045 		kfree(request);
2046 		return ret;
2047 	}
2048 
2049 	request->seqno = intel_ring_get_seqno(ring);
2050 	request->ring = ring;
2051 	request->head = request_start;
2052 	request->tail = request_ring_position;
2053 	request->ctx = ring->last_context;
2054 	request->batch_obj = obj;
2055 
2056 	/* Whilst this request exists, batch_obj will be on the
2057 	 * active_list, and so will hold the active reference. Only when this
2058 	 * request is retired will the the batch_obj be moved onto the
2059 	 * inactive_list and lose its active reference. Hence we do not need
2060 	 * to explicitly hold another reference here.
2061 	 */
2062 
2063 	if (request->ctx)
2064 		i915_gem_context_reference(request->ctx);
2065 
2066 	request->emitted_jiffies = jiffies;
2067 	was_empty = list_empty(&ring->request_list);
2068 	list_add_tail(&request->list, &ring->request_list);
2069 	request->file_priv = NULL;
2070 
2071 	if (file) {
2072 		struct drm_i915_file_private *file_priv = file->driver_priv;
2073 
2074 		spin_lock(&file_priv->mm.lock);
2075 		request->file_priv = file_priv;
2076 		list_add_tail(&request->client_list,
2077 			      &file_priv->mm.request_list);
2078 		spin_unlock(&file_priv->mm.lock);
2079 	}
2080 
2081 	trace_i915_gem_request_add(ring, request->seqno);
2082 	ring->outstanding_lazy_request = 0;
2083 
2084 	if (!dev_priv->mm.suspended) {
2085 		if (i915_enable_hangcheck) {
2086 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2087 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2088 		}
2089 		if (was_empty) {
2090 			queue_delayed_work(dev_priv->wq,
2091 					   &dev_priv->mm.retire_work,
2092 					   round_jiffies_up_relative(HZ));
2093 			intel_mark_busy(dev_priv->dev);
2094 		}
2095 	}
2096 
2097 	if (out_seqno)
2098 		*out_seqno = request->seqno;
2099 	return 0;
2100 }
2101 
2102 static inline void
2103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2104 {
2105 	struct drm_i915_file_private *file_priv = request->file_priv;
2106 
2107 	if (!file_priv)
2108 		return;
2109 
2110 	spin_lock(&file_priv->mm.lock);
2111 	if (request->file_priv) {
2112 		list_del(&request->client_list);
2113 		request->file_priv = NULL;
2114 	}
2115 	spin_unlock(&file_priv->mm.lock);
2116 }
2117 
2118 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2119 {
2120 	if (acthd >= obj->gtt_offset &&
2121 	    acthd < obj->gtt_offset + obj->base.size)
2122 		return true;
2123 
2124 	return false;
2125 }
2126 
2127 static bool i915_head_inside_request(const u32 acthd_unmasked,
2128 				     const u32 request_start,
2129 				     const u32 request_end)
2130 {
2131 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2132 
2133 	if (request_start < request_end) {
2134 		if (acthd >= request_start && acthd < request_end)
2135 			return true;
2136 	} else if (request_start > request_end) {
2137 		if (acthd >= request_start || acthd < request_end)
2138 			return true;
2139 	}
2140 
2141 	return false;
2142 }
2143 
2144 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2145 				const u32 acthd, bool *inside)
2146 {
2147 	/* There is a possibility that unmasked head address
2148 	 * pointing inside the ring, matches the batch_obj address range.
2149 	 * However this is extremely unlikely.
2150 	 */
2151 
2152 	if (request->batch_obj) {
2153 		if (i915_head_inside_object(acthd, request->batch_obj)) {
2154 			*inside = true;
2155 			return true;
2156 		}
2157 	}
2158 
2159 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2160 		*inside = false;
2161 		return true;
2162 	}
2163 
2164 	return false;
2165 }
2166 
2167 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2168 				  struct drm_i915_gem_request *request,
2169 				  u32 acthd)
2170 {
2171 	struct i915_ctx_hang_stats *hs = NULL;
2172 	bool inside, guilty;
2173 
2174 	/* Innocent until proven guilty */
2175 	guilty = false;
2176 
2177 	if (ring->hangcheck.action != wait &&
2178 	    i915_request_guilty(request, acthd, &inside)) {
2179 		DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2180 			  ring->name,
2181 			  inside ? "inside" : "flushing",
2182 			  request->batch_obj ?
2183 			  request->batch_obj->gtt_offset : 0,
2184 			  request->ctx ? request->ctx->id : 0,
2185 			  acthd);
2186 
2187 		guilty = true;
2188 	}
2189 
2190 	/* If contexts are disabled or this is the default context, use
2191 	 * file_priv->reset_state
2192 	 */
2193 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2194 		hs = &request->ctx->hang_stats;
2195 	else if (request->file_priv)
2196 		hs = &request->file_priv->hang_stats;
2197 
2198 	if (hs) {
2199 		if (guilty)
2200 			hs->batch_active++;
2201 		else
2202 			hs->batch_pending++;
2203 	}
2204 }
2205 
2206 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2207 {
2208 	list_del(&request->list);
2209 	i915_gem_request_remove_from_client(request);
2210 
2211 	if (request->ctx)
2212 		i915_gem_context_unreference(request->ctx);
2213 
2214 	kfree(request);
2215 }
2216 
2217 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2218 				      struct intel_ring_buffer *ring)
2219 {
2220 	u32 completed_seqno;
2221 	u32 acthd;
2222 
2223 	acthd = intel_ring_get_active_head(ring);
2224 	completed_seqno = ring->get_seqno(ring, false);
2225 
2226 	while (!list_empty(&ring->request_list)) {
2227 		struct drm_i915_gem_request *request;
2228 
2229 		request = list_first_entry(&ring->request_list,
2230 					   struct drm_i915_gem_request,
2231 					   list);
2232 
2233 		if (request->seqno > completed_seqno)
2234 			i915_set_reset_status(ring, request, acthd);
2235 
2236 		i915_gem_free_request(request);
2237 	}
2238 
2239 	while (!list_empty(&ring->active_list)) {
2240 		struct drm_i915_gem_object *obj;
2241 
2242 		obj = list_first_entry(&ring->active_list,
2243 				       struct drm_i915_gem_object,
2244 				       ring_list);
2245 
2246 		i915_gem_object_move_to_inactive(obj);
2247 	}
2248 }
2249 
2250 void i915_gem_restore_fences(struct drm_device *dev)
2251 {
2252 	struct drm_i915_private *dev_priv = dev->dev_private;
2253 	int i;
2254 
2255 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2256 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2257 		i915_gem_write_fence(dev, i, reg->obj);
2258 	}
2259 }
2260 
2261 void i915_gem_reset(struct drm_device *dev)
2262 {
2263 	struct drm_i915_private *dev_priv = dev->dev_private;
2264 	struct drm_i915_gem_object *obj;
2265 	struct intel_ring_buffer *ring;
2266 	int i;
2267 
2268 	for_each_ring(ring, dev_priv, i)
2269 		i915_gem_reset_ring_lists(dev_priv, ring);
2270 
2271 	/* Move everything out of the GPU domains to ensure we do any
2272 	 * necessary invalidation upon reuse.
2273 	 */
2274 	list_for_each_entry(obj,
2275 			    &dev_priv->mm.inactive_list,
2276 			    mm_list)
2277 	{
2278 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2279 	}
2280 
2281 	i915_gem_restore_fences(dev);
2282 }
2283 
2284 /**
2285  * This function clears the request list as sequence numbers are passed.
2286  */
2287 void
2288 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2289 {
2290 	uint32_t seqno;
2291 
2292 	if (list_empty(&ring->request_list))
2293 		return;
2294 
2295 	WARN_ON(i915_verify_lists(ring->dev));
2296 
2297 	seqno = ring->get_seqno(ring, true);
2298 
2299 	while (!list_empty(&ring->request_list)) {
2300 		struct drm_i915_gem_request *request;
2301 
2302 		request = list_first_entry(&ring->request_list,
2303 					   struct drm_i915_gem_request,
2304 					   list);
2305 
2306 		if (!i915_seqno_passed(seqno, request->seqno))
2307 			break;
2308 
2309 		trace_i915_gem_request_retire(ring, request->seqno);
2310 		/* We know the GPU must have read the request to have
2311 		 * sent us the seqno + interrupt, so use the position
2312 		 * of tail of the request to update the last known position
2313 		 * of the GPU head.
2314 		 */
2315 		ring->last_retired_head = request->tail;
2316 
2317 		i915_gem_free_request(request);
2318 	}
2319 
2320 	/* Move any buffers on the active list that are no longer referenced
2321 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2322 	 */
2323 	while (!list_empty(&ring->active_list)) {
2324 		struct drm_i915_gem_object *obj;
2325 
2326 		obj = list_first_entry(&ring->active_list,
2327 				      struct drm_i915_gem_object,
2328 				      ring_list);
2329 
2330 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2331 			break;
2332 
2333 		i915_gem_object_move_to_inactive(obj);
2334 	}
2335 
2336 	if (unlikely(ring->trace_irq_seqno &&
2337 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2338 		ring->irq_put(ring);
2339 		ring->trace_irq_seqno = 0;
2340 	}
2341 
2342 	WARN_ON(i915_verify_lists(ring->dev));
2343 }
2344 
2345 void
2346 i915_gem_retire_requests(struct drm_device *dev)
2347 {
2348 	drm_i915_private_t *dev_priv = dev->dev_private;
2349 	struct intel_ring_buffer *ring;
2350 	int i;
2351 
2352 	for_each_ring(ring, dev_priv, i)
2353 		i915_gem_retire_requests_ring(ring);
2354 }
2355 
2356 static void
2357 i915_gem_retire_work_handler(struct work_struct *work)
2358 {
2359 	drm_i915_private_t *dev_priv;
2360 	struct drm_device *dev;
2361 	struct intel_ring_buffer *ring;
2362 	bool idle;
2363 	int i;
2364 
2365 	dev_priv = container_of(work, drm_i915_private_t,
2366 				mm.retire_work.work);
2367 	dev = dev_priv->dev;
2368 
2369 	/* Come back later if the device is busy... */
2370 	if (!mutex_trylock(&dev->struct_mutex)) {
2371 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2372 				   round_jiffies_up_relative(HZ));
2373 		return;
2374 	}
2375 
2376 	i915_gem_retire_requests(dev);
2377 
2378 	/* Send a periodic flush down the ring so we don't hold onto GEM
2379 	 * objects indefinitely.
2380 	 */
2381 	idle = true;
2382 	for_each_ring(ring, dev_priv, i) {
2383 		if (ring->gpu_caches_dirty)
2384 			i915_add_request(ring, NULL);
2385 
2386 		idle &= list_empty(&ring->request_list);
2387 	}
2388 
2389 	if (!dev_priv->mm.suspended && !idle)
2390 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2391 				   round_jiffies_up_relative(HZ));
2392 	if (idle)
2393 		intel_mark_idle(dev);
2394 
2395 	mutex_unlock(&dev->struct_mutex);
2396 }
2397 
2398 /**
2399  * Ensures that an object will eventually get non-busy by flushing any required
2400  * write domains, emitting any outstanding lazy request and retiring and
2401  * completed requests.
2402  */
2403 static int
2404 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2405 {
2406 	int ret;
2407 
2408 	if (obj->active) {
2409 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2410 		if (ret)
2411 			return ret;
2412 
2413 		i915_gem_retire_requests_ring(obj->ring);
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 /**
2420  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2421  * @DRM_IOCTL_ARGS: standard ioctl arguments
2422  *
2423  * Returns 0 if successful, else an error is returned with the remaining time in
2424  * the timeout parameter.
2425  *  -ETIME: object is still busy after timeout
2426  *  -ERESTARTSYS: signal interrupted the wait
2427  *  -ENONENT: object doesn't exist
2428  * Also possible, but rare:
2429  *  -EAGAIN: GPU wedged
2430  *  -ENOMEM: damn
2431  *  -ENODEV: Internal IRQ fail
2432  *  -E?: The add request failed
2433  *
2434  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2435  * non-zero timeout parameter the wait ioctl will wait for the given number of
2436  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2437  * without holding struct_mutex the object may become re-busied before this
2438  * function completes. A similar but shorter * race condition exists in the busy
2439  * ioctl
2440  */
2441 int
2442 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2443 {
2444 	drm_i915_private_t *dev_priv = dev->dev_private;
2445 	struct drm_i915_gem_wait *args = data;
2446 	struct drm_i915_gem_object *obj;
2447 	struct intel_ring_buffer *ring = NULL;
2448 	struct timespec timeout_stack, *timeout = NULL;
2449 	unsigned reset_counter;
2450 	u32 seqno = 0;
2451 	int ret = 0;
2452 
2453 	if (args->timeout_ns >= 0) {
2454 		timeout_stack = ns_to_timespec(args->timeout_ns);
2455 		timeout = &timeout_stack;
2456 	}
2457 
2458 	ret = i915_mutex_lock_interruptible(dev);
2459 	if (ret)
2460 		return ret;
2461 
2462 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2463 	if (&obj->base == NULL) {
2464 		mutex_unlock(&dev->struct_mutex);
2465 		return -ENOENT;
2466 	}
2467 
2468 	/* Need to make sure the object gets inactive eventually. */
2469 	ret = i915_gem_object_flush_active(obj);
2470 	if (ret)
2471 		goto out;
2472 
2473 	if (obj->active) {
2474 		seqno = obj->last_read_seqno;
2475 		ring = obj->ring;
2476 	}
2477 
2478 	if (seqno == 0)
2479 		 goto out;
2480 
2481 	/* Do this after OLR check to make sure we make forward progress polling
2482 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2483 	 */
2484 	if (!args->timeout_ns) {
2485 		ret = -ETIME;
2486 		goto out;
2487 	}
2488 
2489 	drm_gem_object_unreference(&obj->base);
2490 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2491 	mutex_unlock(&dev->struct_mutex);
2492 
2493 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2494 	if (timeout)
2495 		args->timeout_ns = timespec_to_ns(timeout);
2496 	return ret;
2497 
2498 out:
2499 	drm_gem_object_unreference(&obj->base);
2500 	mutex_unlock(&dev->struct_mutex);
2501 	return ret;
2502 }
2503 
2504 /**
2505  * i915_gem_object_sync - sync an object to a ring.
2506  *
2507  * @obj: object which may be in use on another ring.
2508  * @to: ring we wish to use the object on. May be NULL.
2509  *
2510  * This code is meant to abstract object synchronization with the GPU.
2511  * Calling with NULL implies synchronizing the object with the CPU
2512  * rather than a particular GPU ring.
2513  *
2514  * Returns 0 if successful, else propagates up the lower layer error.
2515  */
2516 int
2517 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2518 		     struct intel_ring_buffer *to)
2519 {
2520 	struct intel_ring_buffer *from = obj->ring;
2521 	u32 seqno;
2522 	int ret, idx;
2523 
2524 	if (from == NULL || to == from)
2525 		return 0;
2526 
2527 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2528 		return i915_gem_object_wait_rendering(obj, false);
2529 
2530 	idx = intel_ring_sync_index(from, to);
2531 
2532 	seqno = obj->last_read_seqno;
2533 	if (seqno <= from->sync_seqno[idx])
2534 		return 0;
2535 
2536 	ret = i915_gem_check_olr(obj->ring, seqno);
2537 	if (ret)
2538 		return ret;
2539 
2540 	ret = to->sync_to(to, from, seqno);
2541 	if (!ret)
2542 		/* We use last_read_seqno because sync_to()
2543 		 * might have just caused seqno wrap under
2544 		 * the radar.
2545 		 */
2546 		from->sync_seqno[idx] = obj->last_read_seqno;
2547 
2548 	return ret;
2549 }
2550 
2551 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2552 {
2553 	u32 old_write_domain, old_read_domains;
2554 
2555 	/* Force a pagefault for domain tracking on next user access */
2556 	i915_gem_release_mmap(obj);
2557 
2558 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2559 		return;
2560 
2561 	/* Wait for any direct GTT access to complete */
2562 	mb();
2563 
2564 	old_read_domains = obj->base.read_domains;
2565 	old_write_domain = obj->base.write_domain;
2566 
2567 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2568 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2569 
2570 	trace_i915_gem_object_change_domain(obj,
2571 					    old_read_domains,
2572 					    old_write_domain);
2573 }
2574 
2575 /**
2576  * Unbinds an object from the GTT aperture.
2577  */
2578 int
2579 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2580 {
2581 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2582 	int ret;
2583 
2584 	if (obj->gtt_space == NULL)
2585 		return 0;
2586 
2587 	if (obj->pin_count)
2588 		return -EBUSY;
2589 
2590 	BUG_ON(obj->pages == NULL);
2591 
2592 	ret = i915_gem_object_finish_gpu(obj);
2593 	if (ret)
2594 		return ret;
2595 	/* Continue on if we fail due to EIO, the GPU is hung so we
2596 	 * should be safe and we need to cleanup or else we might
2597 	 * cause memory corruption through use-after-free.
2598 	 */
2599 
2600 	i915_gem_object_finish_gtt(obj);
2601 
2602 	/* release the fence reg _after_ flushing */
2603 	ret = i915_gem_object_put_fence(obj);
2604 	if (ret)
2605 		return ret;
2606 
2607 	trace_i915_gem_object_unbind(obj);
2608 
2609 	if (obj->has_global_gtt_mapping)
2610 		i915_gem_gtt_unbind_object(obj);
2611 	if (obj->has_aliasing_ppgtt_mapping) {
2612 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2613 		obj->has_aliasing_ppgtt_mapping = 0;
2614 	}
2615 	i915_gem_gtt_finish_object(obj);
2616 	i915_gem_object_unpin_pages(obj);
2617 
2618 	list_del(&obj->mm_list);
2619 	list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2620 	/* Avoid an unnecessary call to unbind on rebind. */
2621 	obj->map_and_fenceable = true;
2622 
2623 	drm_mm_put_block(obj->gtt_space);
2624 	obj->gtt_space = NULL;
2625 	obj->gtt_offset = 0;
2626 
2627 	return 0;
2628 }
2629 
2630 int i915_gpu_idle(struct drm_device *dev)
2631 {
2632 	drm_i915_private_t *dev_priv = dev->dev_private;
2633 	struct intel_ring_buffer *ring;
2634 	int ret, i;
2635 
2636 	/* Flush everything onto the inactive list. */
2637 	for_each_ring(ring, dev_priv, i) {
2638 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2639 		if (ret)
2640 			return ret;
2641 
2642 		ret = intel_ring_idle(ring);
2643 		if (ret)
2644 			return ret;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2651 				 struct drm_i915_gem_object *obj)
2652 {
2653 	drm_i915_private_t *dev_priv = dev->dev_private;
2654 	int fence_reg;
2655 	int fence_pitch_shift;
2656 	uint64_t val;
2657 
2658 	if (INTEL_INFO(dev)->gen >= 6) {
2659 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2660 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2661 	} else {
2662 		fence_reg = FENCE_REG_965_0;
2663 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2664 	}
2665 
2666 	if (obj) {
2667 		u32 size = obj->gtt_space->size;
2668 
2669 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2670 				 0xfffff000) << 32;
2671 		val |= obj->gtt_offset & 0xfffff000;
2672 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2673 		if (obj->tiling_mode == I915_TILING_Y)
2674 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2675 		val |= I965_FENCE_REG_VALID;
2676 	} else
2677 		val = 0;
2678 
2679 	fence_reg += reg * 8;
2680 	I915_WRITE64(fence_reg, val);
2681 	POSTING_READ(fence_reg);
2682 }
2683 
2684 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2685 				 struct drm_i915_gem_object *obj)
2686 {
2687 	drm_i915_private_t *dev_priv = dev->dev_private;
2688 	u32 val;
2689 
2690 	if (obj) {
2691 		u32 size = obj->gtt_space->size;
2692 		int pitch_val;
2693 		int tile_width;
2694 
2695 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2696 		     (size & -size) != size ||
2697 		     (obj->gtt_offset & (size - 1)),
2698 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2699 		     obj->gtt_offset, obj->map_and_fenceable, size);
2700 
2701 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2702 			tile_width = 128;
2703 		else
2704 			tile_width = 512;
2705 
2706 		/* Note: pitch better be a power of two tile widths */
2707 		pitch_val = obj->stride / tile_width;
2708 		pitch_val = ffs(pitch_val) - 1;
2709 
2710 		val = obj->gtt_offset;
2711 		if (obj->tiling_mode == I915_TILING_Y)
2712 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2713 		val |= I915_FENCE_SIZE_BITS(size);
2714 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2715 		val |= I830_FENCE_REG_VALID;
2716 	} else
2717 		val = 0;
2718 
2719 	if (reg < 8)
2720 		reg = FENCE_REG_830_0 + reg * 4;
2721 	else
2722 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2723 
2724 	I915_WRITE(reg, val);
2725 	POSTING_READ(reg);
2726 }
2727 
2728 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2729 				struct drm_i915_gem_object *obj)
2730 {
2731 	drm_i915_private_t *dev_priv = dev->dev_private;
2732 	uint32_t val;
2733 
2734 	if (obj) {
2735 		u32 size = obj->gtt_space->size;
2736 		uint32_t pitch_val;
2737 
2738 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2739 		     (size & -size) != size ||
2740 		     (obj->gtt_offset & (size - 1)),
2741 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2742 		     obj->gtt_offset, size);
2743 
2744 		pitch_val = obj->stride / 128;
2745 		pitch_val = ffs(pitch_val) - 1;
2746 
2747 		val = obj->gtt_offset;
2748 		if (obj->tiling_mode == I915_TILING_Y)
2749 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2750 		val |= I830_FENCE_SIZE_BITS(size);
2751 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2752 		val |= I830_FENCE_REG_VALID;
2753 	} else
2754 		val = 0;
2755 
2756 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2757 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2758 }
2759 
2760 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2761 {
2762 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2763 }
2764 
2765 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2766 				 struct drm_i915_gem_object *obj)
2767 {
2768 	struct drm_i915_private *dev_priv = dev->dev_private;
2769 
2770 	/* Ensure that all CPU reads are completed before installing a fence
2771 	 * and all writes before removing the fence.
2772 	 */
2773 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2774 		mb();
2775 
2776 	switch (INTEL_INFO(dev)->gen) {
2777 	case 7:
2778 	case 6:
2779 	case 5:
2780 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2781 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2782 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2783 	default: BUG();
2784 	}
2785 
2786 	/* And similarly be paranoid that no direct access to this region
2787 	 * is reordered to before the fence is installed.
2788 	 */
2789 	if (i915_gem_object_needs_mb(obj))
2790 		mb();
2791 }
2792 
2793 static inline int fence_number(struct drm_i915_private *dev_priv,
2794 			       struct drm_i915_fence_reg *fence)
2795 {
2796 	return fence - dev_priv->fence_regs;
2797 }
2798 
2799 struct write_fence {
2800 	struct drm_device *dev;
2801 	struct drm_i915_gem_object *obj;
2802 	int fence;
2803 };
2804 
2805 static void i915_gem_write_fence__ipi(void *data)
2806 {
2807 	struct write_fence *args = data;
2808 
2809 	/* Required for SNB+ with LLC */
2810 	wbinvd();
2811 
2812 	/* Required for VLV */
2813 	i915_gem_write_fence(args->dev, args->fence, args->obj);
2814 }
2815 
2816 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2817 					 struct drm_i915_fence_reg *fence,
2818 					 bool enable)
2819 {
2820 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2821 	struct write_fence args = {
2822 		.dev = obj->base.dev,
2823 		.fence = fence_number(dev_priv, fence),
2824 		.obj = enable ? obj : NULL,
2825 	};
2826 
2827 	/* In order to fully serialize access to the fenced region and
2828 	 * the update to the fence register we need to take extreme
2829 	 * measures on SNB+. In theory, the write to the fence register
2830 	 * flushes all memory transactions before, and coupled with the
2831 	 * mb() placed around the register write we serialise all memory
2832 	 * operations with respect to the changes in the tiler. Yet, on
2833 	 * SNB+ we need to take a step further and emit an explicit wbinvd()
2834 	 * on each processor in order to manually flush all memory
2835 	 * transactions before updating the fence register.
2836 	 *
2837 	 * However, Valleyview complicates matter. There the wbinvd is
2838 	 * insufficient and unlike SNB/IVB requires the serialising
2839 	 * register write. (Note that that register write by itself is
2840 	 * conversely not sufficient for SNB+.) To compromise, we do both.
2841 	 */
2842 	if (INTEL_INFO(args.dev)->gen >= 6)
2843 		on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2844 	else
2845 		i915_gem_write_fence(args.dev, args.fence, args.obj);
2846 
2847 	if (enable) {
2848 		obj->fence_reg = args.fence;
2849 		fence->obj = obj;
2850 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2851 	} else {
2852 		obj->fence_reg = I915_FENCE_REG_NONE;
2853 		fence->obj = NULL;
2854 		list_del_init(&fence->lru_list);
2855 	}
2856 }
2857 
2858 static int
2859 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2860 {
2861 	if (obj->last_fenced_seqno) {
2862 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2863 		if (ret)
2864 			return ret;
2865 
2866 		obj->last_fenced_seqno = 0;
2867 	}
2868 
2869 	obj->fenced_gpu_access = false;
2870 	return 0;
2871 }
2872 
2873 int
2874 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2875 {
2876 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2877 	struct drm_i915_fence_reg *fence;
2878 	int ret;
2879 
2880 	ret = i915_gem_object_wait_fence(obj);
2881 	if (ret)
2882 		return ret;
2883 
2884 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2885 		return 0;
2886 
2887 	fence = &dev_priv->fence_regs[obj->fence_reg];
2888 
2889 	i915_gem_object_fence_lost(obj);
2890 	i915_gem_object_update_fence(obj, fence, false);
2891 
2892 	return 0;
2893 }
2894 
2895 static struct drm_i915_fence_reg *
2896 i915_find_fence_reg(struct drm_device *dev)
2897 {
2898 	struct drm_i915_private *dev_priv = dev->dev_private;
2899 	struct drm_i915_fence_reg *reg, *avail;
2900 	int i;
2901 
2902 	/* First try to find a free reg */
2903 	avail = NULL;
2904 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2905 		reg = &dev_priv->fence_regs[i];
2906 		if (!reg->obj)
2907 			return reg;
2908 
2909 		if (!reg->pin_count)
2910 			avail = reg;
2911 	}
2912 
2913 	if (avail == NULL)
2914 		return NULL;
2915 
2916 	/* None available, try to steal one or wait for a user to finish */
2917 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2918 		if (reg->pin_count)
2919 			continue;
2920 
2921 		return reg;
2922 	}
2923 
2924 	return NULL;
2925 }
2926 
2927 /**
2928  * i915_gem_object_get_fence - set up fencing for an object
2929  * @obj: object to map through a fence reg
2930  *
2931  * When mapping objects through the GTT, userspace wants to be able to write
2932  * to them without having to worry about swizzling if the object is tiled.
2933  * This function walks the fence regs looking for a free one for @obj,
2934  * stealing one if it can't find any.
2935  *
2936  * It then sets up the reg based on the object's properties: address, pitch
2937  * and tiling format.
2938  *
2939  * For an untiled surface, this removes any existing fence.
2940  */
2941 int
2942 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2943 {
2944 	struct drm_device *dev = obj->base.dev;
2945 	struct drm_i915_private *dev_priv = dev->dev_private;
2946 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2947 	struct drm_i915_fence_reg *reg;
2948 	int ret;
2949 
2950 	/* Have we updated the tiling parameters upon the object and so
2951 	 * will need to serialise the write to the associated fence register?
2952 	 */
2953 	if (obj->fence_dirty) {
2954 		ret = i915_gem_object_wait_fence(obj);
2955 		if (ret)
2956 			return ret;
2957 	}
2958 
2959 	/* Just update our place in the LRU if our fence is getting reused. */
2960 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2961 		reg = &dev_priv->fence_regs[obj->fence_reg];
2962 		if (!obj->fence_dirty) {
2963 			list_move_tail(&reg->lru_list,
2964 				       &dev_priv->mm.fence_list);
2965 			return 0;
2966 		}
2967 	} else if (enable) {
2968 		reg = i915_find_fence_reg(dev);
2969 		if (reg == NULL)
2970 			return -EDEADLK;
2971 
2972 		if (reg->obj) {
2973 			struct drm_i915_gem_object *old = reg->obj;
2974 
2975 			ret = i915_gem_object_wait_fence(old);
2976 			if (ret)
2977 				return ret;
2978 
2979 			i915_gem_object_fence_lost(old);
2980 		}
2981 	} else
2982 		return 0;
2983 
2984 	i915_gem_object_update_fence(obj, reg, enable);
2985 	obj->fence_dirty = false;
2986 
2987 	return 0;
2988 }
2989 
2990 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2991 				     struct drm_mm_node *gtt_space,
2992 				     unsigned long cache_level)
2993 {
2994 	struct drm_mm_node *other;
2995 
2996 	/* On non-LLC machines we have to be careful when putting differing
2997 	 * types of snoopable memory together to avoid the prefetcher
2998 	 * crossing memory domains and dying.
2999 	 */
3000 	if (HAS_LLC(dev))
3001 		return true;
3002 
3003 	if (gtt_space == NULL)
3004 		return true;
3005 
3006 	if (list_empty(&gtt_space->node_list))
3007 		return true;
3008 
3009 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3010 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3011 		return false;
3012 
3013 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3014 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3015 		return false;
3016 
3017 	return true;
3018 }
3019 
3020 static void i915_gem_verify_gtt(struct drm_device *dev)
3021 {
3022 #if WATCH_GTT
3023 	struct drm_i915_private *dev_priv = dev->dev_private;
3024 	struct drm_i915_gem_object *obj;
3025 	int err = 0;
3026 
3027 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3028 		if (obj->gtt_space == NULL) {
3029 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3030 			err++;
3031 			continue;
3032 		}
3033 
3034 		if (obj->cache_level != obj->gtt_space->color) {
3035 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3036 			       obj->gtt_space->start,
3037 			       obj->gtt_space->start + obj->gtt_space->size,
3038 			       obj->cache_level,
3039 			       obj->gtt_space->color);
3040 			err++;
3041 			continue;
3042 		}
3043 
3044 		if (!i915_gem_valid_gtt_space(dev,
3045 					      obj->gtt_space,
3046 					      obj->cache_level)) {
3047 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3048 			       obj->gtt_space->start,
3049 			       obj->gtt_space->start + obj->gtt_space->size,
3050 			       obj->cache_level);
3051 			err++;
3052 			continue;
3053 		}
3054 	}
3055 
3056 	WARN_ON(err);
3057 #endif
3058 }
3059 
3060 /**
3061  * Finds free space in the GTT aperture and binds the object there.
3062  */
3063 static int
3064 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3065 			    unsigned alignment,
3066 			    bool map_and_fenceable,
3067 			    bool nonblocking)
3068 {
3069 	struct drm_device *dev = obj->base.dev;
3070 	drm_i915_private_t *dev_priv = dev->dev_private;
3071 	struct drm_mm_node *node;
3072 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3073 	bool mappable, fenceable;
3074 	size_t gtt_max = map_and_fenceable ?
3075 		dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3076 	int ret;
3077 
3078 	fence_size = i915_gem_get_gtt_size(dev,
3079 					   obj->base.size,
3080 					   obj->tiling_mode);
3081 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3082 						     obj->base.size,
3083 						     obj->tiling_mode, true);
3084 	unfenced_alignment =
3085 		i915_gem_get_gtt_alignment(dev,
3086 						    obj->base.size,
3087 						    obj->tiling_mode, false);
3088 
3089 	if (alignment == 0)
3090 		alignment = map_and_fenceable ? fence_alignment :
3091 						unfenced_alignment;
3092 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3093 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3094 		return -EINVAL;
3095 	}
3096 
3097 	size = map_and_fenceable ? fence_size : obj->base.size;
3098 
3099 	/* If the object is bigger than the entire aperture, reject it early
3100 	 * before evicting everything in a vain attempt to find space.
3101 	 */
3102 	if (obj->base.size > gtt_max) {
3103 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3104 			  obj->base.size,
3105 			  map_and_fenceable ? "mappable" : "total",
3106 			  gtt_max);
3107 		return -E2BIG;
3108 	}
3109 
3110 	ret = i915_gem_object_get_pages(obj);
3111 	if (ret)
3112 		return ret;
3113 
3114 	i915_gem_object_pin_pages(obj);
3115 
3116 	node = kzalloc(sizeof(*node), GFP_KERNEL);
3117 	if (node == NULL) {
3118 		i915_gem_object_unpin_pages(obj);
3119 		return -ENOMEM;
3120 	}
3121 
3122 search_free:
3123 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3124 						  size, alignment,
3125 						  obj->cache_level, 0, gtt_max);
3126 	if (ret) {
3127 		ret = i915_gem_evict_something(dev, size, alignment,
3128 					       obj->cache_level,
3129 					       map_and_fenceable,
3130 					       nonblocking);
3131 		if (ret == 0)
3132 			goto search_free;
3133 
3134 		i915_gem_object_unpin_pages(obj);
3135 		kfree(node);
3136 		return ret;
3137 	}
3138 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3139 		i915_gem_object_unpin_pages(obj);
3140 		drm_mm_put_block(node);
3141 		return -EINVAL;
3142 	}
3143 
3144 	ret = i915_gem_gtt_prepare_object(obj);
3145 	if (ret) {
3146 		i915_gem_object_unpin_pages(obj);
3147 		drm_mm_put_block(node);
3148 		return ret;
3149 	}
3150 
3151 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3152 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3153 
3154 	obj->gtt_space = node;
3155 	obj->gtt_offset = node->start;
3156 
3157 	fenceable =
3158 		node->size == fence_size &&
3159 		(node->start & (fence_alignment - 1)) == 0;
3160 
3161 	mappable =
3162 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3163 
3164 	obj->map_and_fenceable = mappable && fenceable;
3165 
3166 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3167 	i915_gem_verify_gtt(dev);
3168 	return 0;
3169 }
3170 
3171 void
3172 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3173 {
3174 	/* If we don't have a page list set up, then we're not pinned
3175 	 * to GPU, and we can ignore the cache flush because it'll happen
3176 	 * again at bind time.
3177 	 */
3178 	if (obj->pages == NULL)
3179 		return;
3180 
3181 	/*
3182 	 * Stolen memory is always coherent with the GPU as it is explicitly
3183 	 * marked as wc by the system, or the system is cache-coherent.
3184 	 */
3185 	if (obj->stolen)
3186 		return;
3187 
3188 	/* If the GPU is snooping the contents of the CPU cache,
3189 	 * we do not need to manually clear the CPU cache lines.  However,
3190 	 * the caches are only snooped when the render cache is
3191 	 * flushed/invalidated.  As we always have to emit invalidations
3192 	 * and flushes when moving into and out of the RENDER domain, correct
3193 	 * snooping behaviour occurs naturally as the result of our domain
3194 	 * tracking.
3195 	 */
3196 	if (obj->cache_level != I915_CACHE_NONE)
3197 		return;
3198 
3199 	trace_i915_gem_object_clflush(obj);
3200 
3201 	drm_clflush_sg(obj->pages);
3202 }
3203 
3204 /** Flushes the GTT write domain for the object if it's dirty. */
3205 static void
3206 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3207 {
3208 	uint32_t old_write_domain;
3209 
3210 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3211 		return;
3212 
3213 	/* No actual flushing is required for the GTT write domain.  Writes
3214 	 * to it immediately go to main memory as far as we know, so there's
3215 	 * no chipset flush.  It also doesn't land in render cache.
3216 	 *
3217 	 * However, we do have to enforce the order so that all writes through
3218 	 * the GTT land before any writes to the device, such as updates to
3219 	 * the GATT itself.
3220 	 */
3221 	wmb();
3222 
3223 	old_write_domain = obj->base.write_domain;
3224 	obj->base.write_domain = 0;
3225 
3226 	trace_i915_gem_object_change_domain(obj,
3227 					    obj->base.read_domains,
3228 					    old_write_domain);
3229 }
3230 
3231 /** Flushes the CPU write domain for the object if it's dirty. */
3232 static void
3233 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3234 {
3235 	uint32_t old_write_domain;
3236 
3237 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3238 		return;
3239 
3240 	i915_gem_clflush_object(obj);
3241 	i915_gem_chipset_flush(obj->base.dev);
3242 	old_write_domain = obj->base.write_domain;
3243 	obj->base.write_domain = 0;
3244 
3245 	trace_i915_gem_object_change_domain(obj,
3246 					    obj->base.read_domains,
3247 					    old_write_domain);
3248 }
3249 
3250 /**
3251  * Moves a single object to the GTT read, and possibly write domain.
3252  *
3253  * This function returns when the move is complete, including waiting on
3254  * flushes to occur.
3255  */
3256 int
3257 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3258 {
3259 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3260 	uint32_t old_write_domain, old_read_domains;
3261 	int ret;
3262 
3263 	/* Not valid to be called on unbound objects. */
3264 	if (obj->gtt_space == NULL)
3265 		return -EINVAL;
3266 
3267 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3268 		return 0;
3269 
3270 	ret = i915_gem_object_wait_rendering(obj, !write);
3271 	if (ret)
3272 		return ret;
3273 
3274 	i915_gem_object_flush_cpu_write_domain(obj);
3275 
3276 	/* Serialise direct access to this object with the barriers for
3277 	 * coherent writes from the GPU, by effectively invalidating the
3278 	 * GTT domain upon first access.
3279 	 */
3280 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3281 		mb();
3282 
3283 	old_write_domain = obj->base.write_domain;
3284 	old_read_domains = obj->base.read_domains;
3285 
3286 	/* It should now be out of any other write domains, and we can update
3287 	 * the domain values for our changes.
3288 	 */
3289 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3290 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3291 	if (write) {
3292 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3293 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3294 		obj->dirty = 1;
3295 	}
3296 
3297 	trace_i915_gem_object_change_domain(obj,
3298 					    old_read_domains,
3299 					    old_write_domain);
3300 
3301 	/* And bump the LRU for this access */
3302 	if (i915_gem_object_is_inactive(obj))
3303 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3304 
3305 	return 0;
3306 }
3307 
3308 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3309 				    enum i915_cache_level cache_level)
3310 {
3311 	struct drm_device *dev = obj->base.dev;
3312 	drm_i915_private_t *dev_priv = dev->dev_private;
3313 	int ret;
3314 
3315 	if (obj->cache_level == cache_level)
3316 		return 0;
3317 
3318 	if (obj->pin_count) {
3319 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3320 		return -EBUSY;
3321 	}
3322 
3323 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3324 		ret = i915_gem_object_unbind(obj);
3325 		if (ret)
3326 			return ret;
3327 	}
3328 
3329 	if (obj->gtt_space) {
3330 		ret = i915_gem_object_finish_gpu(obj);
3331 		if (ret)
3332 			return ret;
3333 
3334 		i915_gem_object_finish_gtt(obj);
3335 
3336 		/* Before SandyBridge, you could not use tiling or fence
3337 		 * registers with snooped memory, so relinquish any fences
3338 		 * currently pointing to our region in the aperture.
3339 		 */
3340 		if (INTEL_INFO(dev)->gen < 6) {
3341 			ret = i915_gem_object_put_fence(obj);
3342 			if (ret)
3343 				return ret;
3344 		}
3345 
3346 		if (obj->has_global_gtt_mapping)
3347 			i915_gem_gtt_bind_object(obj, cache_level);
3348 		if (obj->has_aliasing_ppgtt_mapping)
3349 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3350 					       obj, cache_level);
3351 
3352 		obj->gtt_space->color = cache_level;
3353 	}
3354 
3355 	if (cache_level == I915_CACHE_NONE) {
3356 		u32 old_read_domains, old_write_domain;
3357 
3358 		/* If we're coming from LLC cached, then we haven't
3359 		 * actually been tracking whether the data is in the
3360 		 * CPU cache or not, since we only allow one bit set
3361 		 * in obj->write_domain and have been skipping the clflushes.
3362 		 * Just set it to the CPU cache for now.
3363 		 */
3364 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3365 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3366 
3367 		old_read_domains = obj->base.read_domains;
3368 		old_write_domain = obj->base.write_domain;
3369 
3370 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3371 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3372 
3373 		trace_i915_gem_object_change_domain(obj,
3374 						    old_read_domains,
3375 						    old_write_domain);
3376 	}
3377 
3378 	obj->cache_level = cache_level;
3379 	i915_gem_verify_gtt(dev);
3380 	return 0;
3381 }
3382 
3383 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3384 			       struct drm_file *file)
3385 {
3386 	struct drm_i915_gem_caching *args = data;
3387 	struct drm_i915_gem_object *obj;
3388 	int ret;
3389 
3390 	ret = i915_mutex_lock_interruptible(dev);
3391 	if (ret)
3392 		return ret;
3393 
3394 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3395 	if (&obj->base == NULL) {
3396 		ret = -ENOENT;
3397 		goto unlock;
3398 	}
3399 
3400 	args->caching = obj->cache_level != I915_CACHE_NONE;
3401 
3402 	drm_gem_object_unreference(&obj->base);
3403 unlock:
3404 	mutex_unlock(&dev->struct_mutex);
3405 	return ret;
3406 }
3407 
3408 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3409 			       struct drm_file *file)
3410 {
3411 	struct drm_i915_gem_caching *args = data;
3412 	struct drm_i915_gem_object *obj;
3413 	enum i915_cache_level level;
3414 	int ret;
3415 
3416 	switch (args->caching) {
3417 	case I915_CACHING_NONE:
3418 		level = I915_CACHE_NONE;
3419 		break;
3420 	case I915_CACHING_CACHED:
3421 		level = I915_CACHE_LLC;
3422 		break;
3423 	default:
3424 		return -EINVAL;
3425 	}
3426 
3427 	ret = i915_mutex_lock_interruptible(dev);
3428 	if (ret)
3429 		return ret;
3430 
3431 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3432 	if (&obj->base == NULL) {
3433 		ret = -ENOENT;
3434 		goto unlock;
3435 	}
3436 
3437 	ret = i915_gem_object_set_cache_level(obj, level);
3438 
3439 	drm_gem_object_unreference(&obj->base);
3440 unlock:
3441 	mutex_unlock(&dev->struct_mutex);
3442 	return ret;
3443 }
3444 
3445 /*
3446  * Prepare buffer for display plane (scanout, cursors, etc).
3447  * Can be called from an uninterruptible phase (modesetting) and allows
3448  * any flushes to be pipelined (for pageflips).
3449  */
3450 int
3451 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3452 				     u32 alignment,
3453 				     struct intel_ring_buffer *pipelined)
3454 {
3455 	u32 old_read_domains, old_write_domain;
3456 	int ret;
3457 
3458 	if (pipelined != obj->ring) {
3459 		ret = i915_gem_object_sync(obj, pipelined);
3460 		if (ret)
3461 			return ret;
3462 	}
3463 
3464 	/* The display engine is not coherent with the LLC cache on gen6.  As
3465 	 * a result, we make sure that the pinning that is about to occur is
3466 	 * done with uncached PTEs. This is lowest common denominator for all
3467 	 * chipsets.
3468 	 *
3469 	 * However for gen6+, we could do better by using the GFDT bit instead
3470 	 * of uncaching, which would allow us to flush all the LLC-cached data
3471 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3472 	 */
3473 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3474 	if (ret)
3475 		return ret;
3476 
3477 	/* As the user may map the buffer once pinned in the display plane
3478 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3479 	 * always use map_and_fenceable for all scanout buffers.
3480 	 */
3481 	ret = i915_gem_object_pin(obj, alignment, true, false);
3482 	if (ret)
3483 		return ret;
3484 
3485 	i915_gem_object_flush_cpu_write_domain(obj);
3486 
3487 	old_write_domain = obj->base.write_domain;
3488 	old_read_domains = obj->base.read_domains;
3489 
3490 	/* It should now be out of any other write domains, and we can update
3491 	 * the domain values for our changes.
3492 	 */
3493 	obj->base.write_domain = 0;
3494 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3495 
3496 	trace_i915_gem_object_change_domain(obj,
3497 					    old_read_domains,
3498 					    old_write_domain);
3499 
3500 	return 0;
3501 }
3502 
3503 int
3504 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3505 {
3506 	int ret;
3507 
3508 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3509 		return 0;
3510 
3511 	ret = i915_gem_object_wait_rendering(obj, false);
3512 	if (ret)
3513 		return ret;
3514 
3515 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3516 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3517 	return 0;
3518 }
3519 
3520 /**
3521  * Moves a single object to the CPU read, and possibly write domain.
3522  *
3523  * This function returns when the move is complete, including waiting on
3524  * flushes to occur.
3525  */
3526 int
3527 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3528 {
3529 	uint32_t old_write_domain, old_read_domains;
3530 	int ret;
3531 
3532 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3533 		return 0;
3534 
3535 	ret = i915_gem_object_wait_rendering(obj, !write);
3536 	if (ret)
3537 		return ret;
3538 
3539 	i915_gem_object_flush_gtt_write_domain(obj);
3540 
3541 	old_write_domain = obj->base.write_domain;
3542 	old_read_domains = obj->base.read_domains;
3543 
3544 	/* Flush the CPU cache if it's still invalid. */
3545 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3546 		i915_gem_clflush_object(obj);
3547 
3548 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3549 	}
3550 
3551 	/* It should now be out of any other write domains, and we can update
3552 	 * the domain values for our changes.
3553 	 */
3554 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3555 
3556 	/* If we're writing through the CPU, then the GPU read domains will
3557 	 * need to be invalidated at next use.
3558 	 */
3559 	if (write) {
3560 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3561 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3562 	}
3563 
3564 	trace_i915_gem_object_change_domain(obj,
3565 					    old_read_domains,
3566 					    old_write_domain);
3567 
3568 	return 0;
3569 }
3570 
3571 /* Throttle our rendering by waiting until the ring has completed our requests
3572  * emitted over 20 msec ago.
3573  *
3574  * Note that if we were to use the current jiffies each time around the loop,
3575  * we wouldn't escape the function with any frames outstanding if the time to
3576  * render a frame was over 20ms.
3577  *
3578  * This should get us reasonable parallelism between CPU and GPU but also
3579  * relatively low latency when blocking on a particular request to finish.
3580  */
3581 static int
3582 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3583 {
3584 	struct drm_i915_private *dev_priv = dev->dev_private;
3585 	struct drm_i915_file_private *file_priv = file->driver_priv;
3586 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3587 	struct drm_i915_gem_request *request;
3588 	struct intel_ring_buffer *ring = NULL;
3589 	unsigned reset_counter;
3590 	u32 seqno = 0;
3591 	int ret;
3592 
3593 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3594 	if (ret)
3595 		return ret;
3596 
3597 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3598 	if (ret)
3599 		return ret;
3600 
3601 	spin_lock(&file_priv->mm.lock);
3602 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3603 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3604 			break;
3605 
3606 		ring = request->ring;
3607 		seqno = request->seqno;
3608 	}
3609 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3610 	spin_unlock(&file_priv->mm.lock);
3611 
3612 	if (seqno == 0)
3613 		return 0;
3614 
3615 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3616 	if (ret == 0)
3617 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3618 
3619 	return ret;
3620 }
3621 
3622 int
3623 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3624 		    uint32_t alignment,
3625 		    bool map_and_fenceable,
3626 		    bool nonblocking)
3627 {
3628 	int ret;
3629 
3630 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3631 		return -EBUSY;
3632 
3633 	if (obj->gtt_space != NULL) {
3634 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3635 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3636 			WARN(obj->pin_count,
3637 			     "bo is already pinned with incorrect alignment:"
3638 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3639 			     " obj->map_and_fenceable=%d\n",
3640 			     obj->gtt_offset, alignment,
3641 			     map_and_fenceable,
3642 			     obj->map_and_fenceable);
3643 			ret = i915_gem_object_unbind(obj);
3644 			if (ret)
3645 				return ret;
3646 		}
3647 	}
3648 
3649 	if (obj->gtt_space == NULL) {
3650 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3651 
3652 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3653 						  map_and_fenceable,
3654 						  nonblocking);
3655 		if (ret)
3656 			return ret;
3657 
3658 		if (!dev_priv->mm.aliasing_ppgtt)
3659 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3660 	}
3661 
3662 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3663 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3664 
3665 	obj->pin_count++;
3666 	obj->pin_mappable |= map_and_fenceable;
3667 
3668 	return 0;
3669 }
3670 
3671 void
3672 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3673 {
3674 	BUG_ON(obj->pin_count == 0);
3675 	BUG_ON(obj->gtt_space == NULL);
3676 
3677 	if (--obj->pin_count == 0)
3678 		obj->pin_mappable = false;
3679 }
3680 
3681 int
3682 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3683 		   struct drm_file *file)
3684 {
3685 	struct drm_i915_gem_pin *args = data;
3686 	struct drm_i915_gem_object *obj;
3687 	int ret;
3688 
3689 	ret = i915_mutex_lock_interruptible(dev);
3690 	if (ret)
3691 		return ret;
3692 
3693 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3694 	if (&obj->base == NULL) {
3695 		ret = -ENOENT;
3696 		goto unlock;
3697 	}
3698 
3699 	if (obj->madv != I915_MADV_WILLNEED) {
3700 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3701 		ret = -EINVAL;
3702 		goto out;
3703 	}
3704 
3705 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3706 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3707 			  args->handle);
3708 		ret = -EINVAL;
3709 		goto out;
3710 	}
3711 
3712 	if (obj->user_pin_count == 0) {
3713 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3714 		if (ret)
3715 			goto out;
3716 	}
3717 
3718 	obj->user_pin_count++;
3719 	obj->pin_filp = file;
3720 
3721 	/* XXX - flush the CPU caches for pinned objects
3722 	 * as the X server doesn't manage domains yet
3723 	 */
3724 	i915_gem_object_flush_cpu_write_domain(obj);
3725 	args->offset = obj->gtt_offset;
3726 out:
3727 	drm_gem_object_unreference(&obj->base);
3728 unlock:
3729 	mutex_unlock(&dev->struct_mutex);
3730 	return ret;
3731 }
3732 
3733 int
3734 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3735 		     struct drm_file *file)
3736 {
3737 	struct drm_i915_gem_pin *args = data;
3738 	struct drm_i915_gem_object *obj;
3739 	int ret;
3740 
3741 	ret = i915_mutex_lock_interruptible(dev);
3742 	if (ret)
3743 		return ret;
3744 
3745 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3746 	if (&obj->base == NULL) {
3747 		ret = -ENOENT;
3748 		goto unlock;
3749 	}
3750 
3751 	if (obj->pin_filp != file) {
3752 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3753 			  args->handle);
3754 		ret = -EINVAL;
3755 		goto out;
3756 	}
3757 	obj->user_pin_count--;
3758 	if (obj->user_pin_count == 0) {
3759 		obj->pin_filp = NULL;
3760 		i915_gem_object_unpin(obj);
3761 	}
3762 
3763 out:
3764 	drm_gem_object_unreference(&obj->base);
3765 unlock:
3766 	mutex_unlock(&dev->struct_mutex);
3767 	return ret;
3768 }
3769 
3770 int
3771 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3772 		    struct drm_file *file)
3773 {
3774 	struct drm_i915_gem_busy *args = data;
3775 	struct drm_i915_gem_object *obj;
3776 	int ret;
3777 
3778 	ret = i915_mutex_lock_interruptible(dev);
3779 	if (ret)
3780 		return ret;
3781 
3782 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3783 	if (&obj->base == NULL) {
3784 		ret = -ENOENT;
3785 		goto unlock;
3786 	}
3787 
3788 	/* Count all active objects as busy, even if they are currently not used
3789 	 * by the gpu. Users of this interface expect objects to eventually
3790 	 * become non-busy without any further actions, therefore emit any
3791 	 * necessary flushes here.
3792 	 */
3793 	ret = i915_gem_object_flush_active(obj);
3794 
3795 	args->busy = obj->active;
3796 	if (obj->ring) {
3797 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3798 		args->busy |= intel_ring_flag(obj->ring) << 16;
3799 	}
3800 
3801 	drm_gem_object_unreference(&obj->base);
3802 unlock:
3803 	mutex_unlock(&dev->struct_mutex);
3804 	return ret;
3805 }
3806 
3807 int
3808 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3809 			struct drm_file *file_priv)
3810 {
3811 	return i915_gem_ring_throttle(dev, file_priv);
3812 }
3813 
3814 int
3815 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3816 		       struct drm_file *file_priv)
3817 {
3818 	struct drm_i915_gem_madvise *args = data;
3819 	struct drm_i915_gem_object *obj;
3820 	int ret;
3821 
3822 	switch (args->madv) {
3823 	case I915_MADV_DONTNEED:
3824 	case I915_MADV_WILLNEED:
3825 	    break;
3826 	default:
3827 	    return -EINVAL;
3828 	}
3829 
3830 	ret = i915_mutex_lock_interruptible(dev);
3831 	if (ret)
3832 		return ret;
3833 
3834 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3835 	if (&obj->base == NULL) {
3836 		ret = -ENOENT;
3837 		goto unlock;
3838 	}
3839 
3840 	if (obj->pin_count) {
3841 		ret = -EINVAL;
3842 		goto out;
3843 	}
3844 
3845 	if (obj->madv != __I915_MADV_PURGED)
3846 		obj->madv = args->madv;
3847 
3848 	/* if the object is no longer attached, discard its backing storage */
3849 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3850 		i915_gem_object_truncate(obj);
3851 
3852 	args->retained = obj->madv != __I915_MADV_PURGED;
3853 
3854 out:
3855 	drm_gem_object_unreference(&obj->base);
3856 unlock:
3857 	mutex_unlock(&dev->struct_mutex);
3858 	return ret;
3859 }
3860 
3861 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3862 			  const struct drm_i915_gem_object_ops *ops)
3863 {
3864 	INIT_LIST_HEAD(&obj->mm_list);
3865 	INIT_LIST_HEAD(&obj->global_list);
3866 	INIT_LIST_HEAD(&obj->ring_list);
3867 	INIT_LIST_HEAD(&obj->exec_list);
3868 
3869 	obj->ops = ops;
3870 
3871 	obj->fence_reg = I915_FENCE_REG_NONE;
3872 	obj->madv = I915_MADV_WILLNEED;
3873 	/* Avoid an unnecessary call to unbind on the first bind. */
3874 	obj->map_and_fenceable = true;
3875 
3876 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3877 }
3878 
3879 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3880 	.get_pages = i915_gem_object_get_pages_gtt,
3881 	.put_pages = i915_gem_object_put_pages_gtt,
3882 };
3883 
3884 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3885 						  size_t size)
3886 {
3887 	struct drm_i915_gem_object *obj;
3888 	struct address_space *mapping;
3889 	gfp_t mask;
3890 
3891 	obj = i915_gem_object_alloc(dev);
3892 	if (obj == NULL)
3893 		return NULL;
3894 
3895 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3896 		i915_gem_object_free(obj);
3897 		return NULL;
3898 	}
3899 
3900 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3901 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3902 		/* 965gm cannot relocate objects above 4GiB. */
3903 		mask &= ~__GFP_HIGHMEM;
3904 		mask |= __GFP_DMA32;
3905 	}
3906 
3907 	mapping = file_inode(obj->base.filp)->i_mapping;
3908 	mapping_set_gfp_mask(mapping, mask);
3909 
3910 	i915_gem_object_init(obj, &i915_gem_object_ops);
3911 
3912 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3913 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3914 
3915 	if (HAS_LLC(dev)) {
3916 		/* On some devices, we can have the GPU use the LLC (the CPU
3917 		 * cache) for about a 10% performance improvement
3918 		 * compared to uncached.  Graphics requests other than
3919 		 * display scanout are coherent with the CPU in
3920 		 * accessing this cache.  This means in this mode we
3921 		 * don't need to clflush on the CPU side, and on the
3922 		 * GPU side we only need to flush internal caches to
3923 		 * get data visible to the CPU.
3924 		 *
3925 		 * However, we maintain the display planes as UC, and so
3926 		 * need to rebind when first used as such.
3927 		 */
3928 		obj->cache_level = I915_CACHE_LLC;
3929 	} else
3930 		obj->cache_level = I915_CACHE_NONE;
3931 
3932 	return obj;
3933 }
3934 
3935 int i915_gem_init_object(struct drm_gem_object *obj)
3936 {
3937 	BUG();
3938 
3939 	return 0;
3940 }
3941 
3942 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3943 {
3944 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3945 	struct drm_device *dev = obj->base.dev;
3946 	drm_i915_private_t *dev_priv = dev->dev_private;
3947 
3948 	trace_i915_gem_object_destroy(obj);
3949 
3950 	if (obj->phys_obj)
3951 		i915_gem_detach_phys_object(dev, obj);
3952 
3953 	obj->pin_count = 0;
3954 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3955 		bool was_interruptible;
3956 
3957 		was_interruptible = dev_priv->mm.interruptible;
3958 		dev_priv->mm.interruptible = false;
3959 
3960 		WARN_ON(i915_gem_object_unbind(obj));
3961 
3962 		dev_priv->mm.interruptible = was_interruptible;
3963 	}
3964 
3965 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3966 	 * before progressing. */
3967 	if (obj->stolen)
3968 		i915_gem_object_unpin_pages(obj);
3969 
3970 	if (WARN_ON(obj->pages_pin_count))
3971 		obj->pages_pin_count = 0;
3972 	i915_gem_object_put_pages(obj);
3973 	i915_gem_object_free_mmap_offset(obj);
3974 	i915_gem_object_release_stolen(obj);
3975 
3976 	BUG_ON(obj->pages);
3977 
3978 	if (obj->base.import_attach)
3979 		drm_prime_gem_destroy(&obj->base, NULL);
3980 
3981 	drm_gem_object_release(&obj->base);
3982 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3983 
3984 	kfree(obj->bit_17);
3985 	i915_gem_object_free(obj);
3986 }
3987 
3988 int
3989 i915_gem_idle(struct drm_device *dev)
3990 {
3991 	drm_i915_private_t *dev_priv = dev->dev_private;
3992 	int ret;
3993 
3994 	mutex_lock(&dev->struct_mutex);
3995 
3996 	if (dev_priv->mm.suspended) {
3997 		mutex_unlock(&dev->struct_mutex);
3998 		return 0;
3999 	}
4000 
4001 	ret = i915_gpu_idle(dev);
4002 	if (ret) {
4003 		mutex_unlock(&dev->struct_mutex);
4004 		return ret;
4005 	}
4006 	i915_gem_retire_requests(dev);
4007 
4008 	/* Under UMS, be paranoid and evict. */
4009 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4010 		i915_gem_evict_everything(dev);
4011 
4012 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4013 	 * We need to replace this with a semaphore, or something.
4014 	 * And not confound mm.suspended!
4015 	 */
4016 	dev_priv->mm.suspended = 1;
4017 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4018 
4019 	i915_kernel_lost_context(dev);
4020 	i915_gem_cleanup_ringbuffer(dev);
4021 
4022 	mutex_unlock(&dev->struct_mutex);
4023 
4024 	/* Cancel the retire work handler, which should be idle now. */
4025 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4026 
4027 	return 0;
4028 }
4029 
4030 void i915_gem_l3_remap(struct drm_device *dev)
4031 {
4032 	drm_i915_private_t *dev_priv = dev->dev_private;
4033 	u32 misccpctl;
4034 	int i;
4035 
4036 	if (!HAS_L3_GPU_CACHE(dev))
4037 		return;
4038 
4039 	if (!dev_priv->l3_parity.remap_info)
4040 		return;
4041 
4042 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4043 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4044 	POSTING_READ(GEN7_MISCCPCTL);
4045 
4046 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4047 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4048 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4049 			DRM_DEBUG("0x%x was already programmed to %x\n",
4050 				  GEN7_L3LOG_BASE + i, remap);
4051 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4052 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4053 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4054 	}
4055 
4056 	/* Make sure all the writes land before disabling dop clock gating */
4057 	POSTING_READ(GEN7_L3LOG_BASE);
4058 
4059 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4060 }
4061 
4062 void i915_gem_init_swizzling(struct drm_device *dev)
4063 {
4064 	drm_i915_private_t *dev_priv = dev->dev_private;
4065 
4066 	if (INTEL_INFO(dev)->gen < 5 ||
4067 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4068 		return;
4069 
4070 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4071 				 DISP_TILE_SURFACE_SWIZZLING);
4072 
4073 	if (IS_GEN5(dev))
4074 		return;
4075 
4076 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4077 	if (IS_GEN6(dev))
4078 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4079 	else if (IS_GEN7(dev))
4080 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4081 	else
4082 		BUG();
4083 }
4084 
4085 static bool
4086 intel_enable_blt(struct drm_device *dev)
4087 {
4088 	if (!HAS_BLT(dev))
4089 		return false;
4090 
4091 	/* The blitter was dysfunctional on early prototypes */
4092 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4093 		DRM_INFO("BLT not supported on this pre-production hardware;"
4094 			 " graphics performance will be degraded.\n");
4095 		return false;
4096 	}
4097 
4098 	return true;
4099 }
4100 
4101 static int i915_gem_init_rings(struct drm_device *dev)
4102 {
4103 	struct drm_i915_private *dev_priv = dev->dev_private;
4104 	int ret;
4105 
4106 	ret = intel_init_render_ring_buffer(dev);
4107 	if (ret)
4108 		return ret;
4109 
4110 	if (HAS_BSD(dev)) {
4111 		ret = intel_init_bsd_ring_buffer(dev);
4112 		if (ret)
4113 			goto cleanup_render_ring;
4114 	}
4115 
4116 	if (intel_enable_blt(dev)) {
4117 		ret = intel_init_blt_ring_buffer(dev);
4118 		if (ret)
4119 			goto cleanup_bsd_ring;
4120 	}
4121 
4122 	if (HAS_VEBOX(dev)) {
4123 		ret = intel_init_vebox_ring_buffer(dev);
4124 		if (ret)
4125 			goto cleanup_blt_ring;
4126 	}
4127 
4128 
4129 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4130 	if (ret)
4131 		goto cleanup_vebox_ring;
4132 
4133 	return 0;
4134 
4135 cleanup_vebox_ring:
4136 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4137 cleanup_blt_ring:
4138 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4139 cleanup_bsd_ring:
4140 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4141 cleanup_render_ring:
4142 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4143 
4144 	return ret;
4145 }
4146 
4147 int
4148 i915_gem_init_hw(struct drm_device *dev)
4149 {
4150 	drm_i915_private_t *dev_priv = dev->dev_private;
4151 	int ret;
4152 
4153 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4154 		return -EIO;
4155 
4156 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4157 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4158 
4159 	if (HAS_PCH_NOP(dev)) {
4160 		u32 temp = I915_READ(GEN7_MSG_CTL);
4161 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4162 		I915_WRITE(GEN7_MSG_CTL, temp);
4163 	}
4164 
4165 	i915_gem_l3_remap(dev);
4166 
4167 	i915_gem_init_swizzling(dev);
4168 
4169 	ret = i915_gem_init_rings(dev);
4170 	if (ret)
4171 		return ret;
4172 
4173 	/*
4174 	 * XXX: There was some w/a described somewhere suggesting loading
4175 	 * contexts before PPGTT.
4176 	 */
4177 	i915_gem_context_init(dev);
4178 	if (dev_priv->mm.aliasing_ppgtt) {
4179 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4180 		if (ret) {
4181 			i915_gem_cleanup_aliasing_ppgtt(dev);
4182 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4183 		}
4184 	}
4185 
4186 	return 0;
4187 }
4188 
4189 int i915_gem_init(struct drm_device *dev)
4190 {
4191 	struct drm_i915_private *dev_priv = dev->dev_private;
4192 	int ret;
4193 
4194 	mutex_lock(&dev->struct_mutex);
4195 
4196 	if (IS_VALLEYVIEW(dev)) {
4197 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4198 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4199 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4200 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4201 	}
4202 
4203 	i915_gem_init_global_gtt(dev);
4204 
4205 	ret = i915_gem_init_hw(dev);
4206 	mutex_unlock(&dev->struct_mutex);
4207 	if (ret) {
4208 		i915_gem_cleanup_aliasing_ppgtt(dev);
4209 		return ret;
4210 	}
4211 
4212 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4213 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4214 		dev_priv->dri1.allow_batchbuffer = 1;
4215 	return 0;
4216 }
4217 
4218 void
4219 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4220 {
4221 	drm_i915_private_t *dev_priv = dev->dev_private;
4222 	struct intel_ring_buffer *ring;
4223 	int i;
4224 
4225 	for_each_ring(ring, dev_priv, i)
4226 		intel_cleanup_ring_buffer(ring);
4227 }
4228 
4229 int
4230 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4231 		       struct drm_file *file_priv)
4232 {
4233 	drm_i915_private_t *dev_priv = dev->dev_private;
4234 	int ret;
4235 
4236 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4237 		return 0;
4238 
4239 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4240 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4241 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4242 	}
4243 
4244 	mutex_lock(&dev->struct_mutex);
4245 	dev_priv->mm.suspended = 0;
4246 
4247 	ret = i915_gem_init_hw(dev);
4248 	if (ret != 0) {
4249 		mutex_unlock(&dev->struct_mutex);
4250 		return ret;
4251 	}
4252 
4253 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4254 	mutex_unlock(&dev->struct_mutex);
4255 
4256 	ret = drm_irq_install(dev);
4257 	if (ret)
4258 		goto cleanup_ringbuffer;
4259 
4260 	return 0;
4261 
4262 cleanup_ringbuffer:
4263 	mutex_lock(&dev->struct_mutex);
4264 	i915_gem_cleanup_ringbuffer(dev);
4265 	dev_priv->mm.suspended = 1;
4266 	mutex_unlock(&dev->struct_mutex);
4267 
4268 	return ret;
4269 }
4270 
4271 int
4272 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4273 		       struct drm_file *file_priv)
4274 {
4275 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4276 		return 0;
4277 
4278 	drm_irq_uninstall(dev);
4279 	return i915_gem_idle(dev);
4280 }
4281 
4282 void
4283 i915_gem_lastclose(struct drm_device *dev)
4284 {
4285 	int ret;
4286 
4287 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4288 		return;
4289 
4290 	ret = i915_gem_idle(dev);
4291 	if (ret)
4292 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4293 }
4294 
4295 static void
4296 init_ring_lists(struct intel_ring_buffer *ring)
4297 {
4298 	INIT_LIST_HEAD(&ring->active_list);
4299 	INIT_LIST_HEAD(&ring->request_list);
4300 }
4301 
4302 void
4303 i915_gem_load(struct drm_device *dev)
4304 {
4305 	drm_i915_private_t *dev_priv = dev->dev_private;
4306 	int i;
4307 
4308 	dev_priv->slab =
4309 		kmem_cache_create("i915_gem_object",
4310 				  sizeof(struct drm_i915_gem_object), 0,
4311 				  SLAB_HWCACHE_ALIGN,
4312 				  NULL);
4313 
4314 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4315 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4316 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4317 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4318 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4319 	for (i = 0; i < I915_NUM_RINGS; i++)
4320 		init_ring_lists(&dev_priv->ring[i]);
4321 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4322 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4323 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4324 			  i915_gem_retire_work_handler);
4325 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4326 
4327 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4328 	if (IS_GEN3(dev)) {
4329 		I915_WRITE(MI_ARB_STATE,
4330 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4331 	}
4332 
4333 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4334 
4335 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4336 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4337 		dev_priv->fence_reg_start = 3;
4338 
4339 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4340 		dev_priv->num_fence_regs = 32;
4341 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4342 		dev_priv->num_fence_regs = 16;
4343 	else
4344 		dev_priv->num_fence_regs = 8;
4345 
4346 	/* Initialize fence registers to zero */
4347 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4348 	i915_gem_restore_fences(dev);
4349 
4350 	i915_gem_detect_bit_6_swizzle(dev);
4351 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4352 
4353 	dev_priv->mm.interruptible = true;
4354 
4355 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4356 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4357 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4358 }
4359 
4360 /*
4361  * Create a physically contiguous memory object for this object
4362  * e.g. for cursor + overlay regs
4363  */
4364 static int i915_gem_init_phys_object(struct drm_device *dev,
4365 				     int id, int size, int align)
4366 {
4367 	drm_i915_private_t *dev_priv = dev->dev_private;
4368 	struct drm_i915_gem_phys_object *phys_obj;
4369 	int ret;
4370 
4371 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4372 		return 0;
4373 
4374 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4375 	if (!phys_obj)
4376 		return -ENOMEM;
4377 
4378 	phys_obj->id = id;
4379 
4380 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4381 	if (!phys_obj->handle) {
4382 		ret = -ENOMEM;
4383 		goto kfree_obj;
4384 	}
4385 #ifdef CONFIG_X86
4386 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4387 #endif
4388 
4389 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4390 
4391 	return 0;
4392 kfree_obj:
4393 	kfree(phys_obj);
4394 	return ret;
4395 }
4396 
4397 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4398 {
4399 	drm_i915_private_t *dev_priv = dev->dev_private;
4400 	struct drm_i915_gem_phys_object *phys_obj;
4401 
4402 	if (!dev_priv->mm.phys_objs[id - 1])
4403 		return;
4404 
4405 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4406 	if (phys_obj->cur_obj) {
4407 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4408 	}
4409 
4410 #ifdef CONFIG_X86
4411 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4412 #endif
4413 	drm_pci_free(dev, phys_obj->handle);
4414 	kfree(phys_obj);
4415 	dev_priv->mm.phys_objs[id - 1] = NULL;
4416 }
4417 
4418 void i915_gem_free_all_phys_object(struct drm_device *dev)
4419 {
4420 	int i;
4421 
4422 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4423 		i915_gem_free_phys_object(dev, i);
4424 }
4425 
4426 void i915_gem_detach_phys_object(struct drm_device *dev,
4427 				 struct drm_i915_gem_object *obj)
4428 {
4429 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4430 	char *vaddr;
4431 	int i;
4432 	int page_count;
4433 
4434 	if (!obj->phys_obj)
4435 		return;
4436 	vaddr = obj->phys_obj->handle->vaddr;
4437 
4438 	page_count = obj->base.size / PAGE_SIZE;
4439 	for (i = 0; i < page_count; i++) {
4440 		struct page *page = shmem_read_mapping_page(mapping, i);
4441 		if (!IS_ERR(page)) {
4442 			char *dst = kmap_atomic(page);
4443 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4444 			kunmap_atomic(dst);
4445 
4446 			drm_clflush_pages(&page, 1);
4447 
4448 			set_page_dirty(page);
4449 			mark_page_accessed(page);
4450 			page_cache_release(page);
4451 		}
4452 	}
4453 	i915_gem_chipset_flush(dev);
4454 
4455 	obj->phys_obj->cur_obj = NULL;
4456 	obj->phys_obj = NULL;
4457 }
4458 
4459 int
4460 i915_gem_attach_phys_object(struct drm_device *dev,
4461 			    struct drm_i915_gem_object *obj,
4462 			    int id,
4463 			    int align)
4464 {
4465 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4466 	drm_i915_private_t *dev_priv = dev->dev_private;
4467 	int ret = 0;
4468 	int page_count;
4469 	int i;
4470 
4471 	if (id > I915_MAX_PHYS_OBJECT)
4472 		return -EINVAL;
4473 
4474 	if (obj->phys_obj) {
4475 		if (obj->phys_obj->id == id)
4476 			return 0;
4477 		i915_gem_detach_phys_object(dev, obj);
4478 	}
4479 
4480 	/* create a new object */
4481 	if (!dev_priv->mm.phys_objs[id - 1]) {
4482 		ret = i915_gem_init_phys_object(dev, id,
4483 						obj->base.size, align);
4484 		if (ret) {
4485 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4486 				  id, obj->base.size);
4487 			return ret;
4488 		}
4489 	}
4490 
4491 	/* bind to the object */
4492 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4493 	obj->phys_obj->cur_obj = obj;
4494 
4495 	page_count = obj->base.size / PAGE_SIZE;
4496 
4497 	for (i = 0; i < page_count; i++) {
4498 		struct page *page;
4499 		char *dst, *src;
4500 
4501 		page = shmem_read_mapping_page(mapping, i);
4502 		if (IS_ERR(page))
4503 			return PTR_ERR(page);
4504 
4505 		src = kmap_atomic(page);
4506 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4507 		memcpy(dst, src, PAGE_SIZE);
4508 		kunmap_atomic(src);
4509 
4510 		mark_page_accessed(page);
4511 		page_cache_release(page);
4512 	}
4513 
4514 	return 0;
4515 }
4516 
4517 static int
4518 i915_gem_phys_pwrite(struct drm_device *dev,
4519 		     struct drm_i915_gem_object *obj,
4520 		     struct drm_i915_gem_pwrite *args,
4521 		     struct drm_file *file_priv)
4522 {
4523 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4524 	char __user *user_data = to_user_ptr(args->data_ptr);
4525 
4526 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4527 		unsigned long unwritten;
4528 
4529 		/* The physical object once assigned is fixed for the lifetime
4530 		 * of the obj, so we can safely drop the lock and continue
4531 		 * to access vaddr.
4532 		 */
4533 		mutex_unlock(&dev->struct_mutex);
4534 		unwritten = copy_from_user(vaddr, user_data, args->size);
4535 		mutex_lock(&dev->struct_mutex);
4536 		if (unwritten)
4537 			return -EFAULT;
4538 	}
4539 
4540 	i915_gem_chipset_flush(dev);
4541 	return 0;
4542 }
4543 
4544 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4545 {
4546 	struct drm_i915_file_private *file_priv = file->driver_priv;
4547 
4548 	/* Clean up our request list when the client is going away, so that
4549 	 * later retire_requests won't dereference our soon-to-be-gone
4550 	 * file_priv.
4551 	 */
4552 	spin_lock(&file_priv->mm.lock);
4553 	while (!list_empty(&file_priv->mm.request_list)) {
4554 		struct drm_i915_gem_request *request;
4555 
4556 		request = list_first_entry(&file_priv->mm.request_list,
4557 					   struct drm_i915_gem_request,
4558 					   client_list);
4559 		list_del(&request->client_list);
4560 		request->file_priv = NULL;
4561 	}
4562 	spin_unlock(&file_priv->mm.lock);
4563 }
4564 
4565 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4566 {
4567 	if (!mutex_is_locked(mutex))
4568 		return false;
4569 
4570 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4571 	return mutex->owner == task;
4572 #else
4573 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4574 	return false;
4575 #endif
4576 }
4577 
4578 static int
4579 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4580 {
4581 	struct drm_i915_private *dev_priv =
4582 		container_of(shrinker,
4583 			     struct drm_i915_private,
4584 			     mm.inactive_shrinker);
4585 	struct drm_device *dev = dev_priv->dev;
4586 	struct drm_i915_gem_object *obj;
4587 	int nr_to_scan = sc->nr_to_scan;
4588 	bool unlock = true;
4589 	int cnt;
4590 
4591 	if (!mutex_trylock(&dev->struct_mutex)) {
4592 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4593 			return 0;
4594 
4595 		if (dev_priv->mm.shrinker_no_lock_stealing)
4596 			return 0;
4597 
4598 		unlock = false;
4599 	}
4600 
4601 	if (nr_to_scan) {
4602 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4603 		if (nr_to_scan > 0)
4604 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4605 							false);
4606 		if (nr_to_scan > 0)
4607 			i915_gem_shrink_all(dev_priv);
4608 	}
4609 
4610 	cnt = 0;
4611 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4612 		if (obj->pages_pin_count == 0)
4613 			cnt += obj->base.size >> PAGE_SHIFT;
4614 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4615 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4616 			cnt += obj->base.size >> PAGE_SHIFT;
4617 
4618 	if (unlock)
4619 		mutex_unlock(&dev->struct_mutex);
4620 	return cnt;
4621 }
4622