xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 	struct drm_i915_private *dev_priv = dev->dev_private;
93 	struct completion *x = &dev_priv->error_completion;
94 	unsigned long flags;
95 	int ret;
96 
97 	if (!atomic_read(&dev_priv->mm.wedged))
98 		return 0;
99 
100 	/*
101 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 	 * userspace. If it takes that long something really bad is going on and
103 	 * we should simply try to bail out and fail as gracefully as possible.
104 	 */
105 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 	if (ret == 0) {
107 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 		return -EIO;
109 	} else if (ret < 0) {
110 		return ret;
111 	}
112 
113 	if (atomic_read(&dev_priv->mm.wedged)) {
114 		/* GPU is hung, bump the completion count to account for
115 		 * the token we just consumed so that we never hit zero and
116 		 * end up waiting upon a subsequent completion event that
117 		 * will never happen.
118 		 */
119 		spin_lock_irqsave(&x->wait.lock, flags);
120 		x->done++;
121 		spin_unlock_irqrestore(&x->wait.lock, flags);
122 	}
123 	return 0;
124 }
125 
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 	int ret;
129 
130 	ret = i915_gem_wait_for_error(dev);
131 	if (ret)
132 		return ret;
133 
134 	ret = mutex_lock_interruptible(&dev->struct_mutex);
135 	if (ret)
136 		return ret;
137 
138 	WARN_ON(i915_verify_lists(dev));
139 	return 0;
140 }
141 
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 	return obj->gtt_space && !obj->active;
146 }
147 
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 		    struct drm_file *file)
151 {
152 	struct drm_i915_gem_init *args = data;
153 
154 	if (drm_core_check_feature(dev, DRIVER_MODESET))
155 		return -ENODEV;
156 
157 	if (args->gtt_start >= args->gtt_end ||
158 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 		return -EINVAL;
160 
161 	/* GEM with user mode setting was never supported on ilk and later. */
162 	if (INTEL_INFO(dev)->gen >= 5)
163 		return -ENODEV;
164 
165 	mutex_lock(&dev->struct_mutex);
166 	i915_gem_init_global_gtt(dev, args->gtt_start,
167 				 args->gtt_end, args->gtt_end);
168 	mutex_unlock(&dev->struct_mutex);
169 
170 	return 0;
171 }
172 
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 			    struct drm_file *file)
176 {
177 	struct drm_i915_private *dev_priv = dev->dev_private;
178 	struct drm_i915_gem_get_aperture *args = data;
179 	struct drm_i915_gem_object *obj;
180 	size_t pinned;
181 
182 	pinned = 0;
183 	mutex_lock(&dev->struct_mutex);
184 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 		if (obj->pin_count)
186 			pinned += obj->gtt_space->size;
187 	mutex_unlock(&dev->struct_mutex);
188 
189 	args->aper_size = dev_priv->mm.gtt_total;
190 	args->aper_available_size = args->aper_size - pinned;
191 
192 	return 0;
193 }
194 
195 static int
196 i915_gem_create(struct drm_file *file,
197 		struct drm_device *dev,
198 		uint64_t size,
199 		uint32_t *handle_p)
200 {
201 	struct drm_i915_gem_object *obj;
202 	int ret;
203 	u32 handle;
204 
205 	size = roundup(size, PAGE_SIZE);
206 	if (size == 0)
207 		return -EINVAL;
208 
209 	/* Allocate the new object */
210 	obj = i915_gem_alloc_object(dev, size);
211 	if (obj == NULL)
212 		return -ENOMEM;
213 
214 	ret = drm_gem_handle_create(file, &obj->base, &handle);
215 	if (ret) {
216 		drm_gem_object_release(&obj->base);
217 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 		kfree(obj);
219 		return ret;
220 	}
221 
222 	/* drop reference from allocate - handle holds it now */
223 	drm_gem_object_unreference(&obj->base);
224 	trace_i915_gem_object_create(obj);
225 
226 	*handle_p = handle;
227 	return 0;
228 }
229 
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 		     struct drm_device *dev,
233 		     struct drm_mode_create_dumb *args)
234 {
235 	/* have to work out size/pitch and return them */
236 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 	args->size = args->pitch * args->height;
238 	return i915_gem_create(file, dev,
239 			       args->size, &args->handle);
240 }
241 
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 			  struct drm_device *dev,
244 			  uint32_t handle)
245 {
246 	return drm_gem_handle_delete(file, handle);
247 }
248 
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 		      struct drm_file *file)
255 {
256 	struct drm_i915_gem_create *args = data;
257 
258 	return i915_gem_create(file, dev,
259 			       args->size, &args->handle);
260 }
261 
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265 
266 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 		obj->tiling_mode != I915_TILING_NONE;
268 }
269 
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 			const char *gpu_vaddr, int gpu_offset,
273 			int length)
274 {
275 	int ret, cpu_offset = 0;
276 
277 	while (length > 0) {
278 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 		int this_length = min(cacheline_end - gpu_offset, length);
280 		int swizzled_gpu_offset = gpu_offset ^ 64;
281 
282 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 				     gpu_vaddr + swizzled_gpu_offset,
284 				     this_length);
285 		if (ret)
286 			return ret + length;
287 
288 		cpu_offset += this_length;
289 		gpu_offset += this_length;
290 		length -= this_length;
291 	}
292 
293 	return 0;
294 }
295 
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 			  const char __user *cpu_vaddr,
299 			  int length)
300 {
301 	int ret, cpu_offset = 0;
302 
303 	while (length > 0) {
304 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 		int this_length = min(cacheline_end - gpu_offset, length);
306 		int swizzled_gpu_offset = gpu_offset ^ 64;
307 
308 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 				       cpu_vaddr + cpu_offset,
310 				       this_length);
311 		if (ret)
312 			return ret + length;
313 
314 		cpu_offset += this_length;
315 		gpu_offset += this_length;
316 		length -= this_length;
317 	}
318 
319 	return 0;
320 }
321 
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 		 char __user *user_data,
328 		 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 	char *vaddr;
331 	int ret;
332 
333 	if (unlikely(page_do_bit17_swizzling))
334 		return -EINVAL;
335 
336 	vaddr = kmap_atomic(page);
337 	if (needs_clflush)
338 		drm_clflush_virt_range(vaddr + shmem_page_offset,
339 				       page_length);
340 	ret = __copy_to_user_inatomic(user_data,
341 				      vaddr + shmem_page_offset,
342 				      page_length);
343 	kunmap_atomic(vaddr);
344 
345 	return ret ? -EFAULT : 0;
346 }
347 
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 			     bool swizzled)
351 {
352 	if (unlikely(swizzled)) {
353 		unsigned long start = (unsigned long) addr;
354 		unsigned long end = (unsigned long) addr + length;
355 
356 		/* For swizzling simply ensure that we always flush both
357 		 * channels. Lame, but simple and it works. Swizzled
358 		 * pwrite/pread is far from a hotpath - current userspace
359 		 * doesn't use it at all. */
360 		start = round_down(start, 128);
361 		end = round_up(end, 128);
362 
363 		drm_clflush_virt_range((void *)start, end - start);
364 	} else {
365 		drm_clflush_virt_range(addr, length);
366 	}
367 
368 }
369 
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 		 char __user *user_data,
375 		 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 	char *vaddr;
378 	int ret;
379 
380 	vaddr = kmap(page);
381 	if (needs_clflush)
382 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 					     page_length,
384 					     page_do_bit17_swizzling);
385 
386 	if (page_do_bit17_swizzling)
387 		ret = __copy_to_user_swizzled(user_data,
388 					      vaddr, shmem_page_offset,
389 					      page_length);
390 	else
391 		ret = __copy_to_user(user_data,
392 				     vaddr + shmem_page_offset,
393 				     page_length);
394 	kunmap(page);
395 
396 	return ret ? - EFAULT : 0;
397 }
398 
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 		     struct drm_i915_gem_object *obj,
402 		     struct drm_i915_gem_pread *args,
403 		     struct drm_file *file)
404 {
405 	char __user *user_data;
406 	ssize_t remain;
407 	loff_t offset;
408 	int shmem_page_offset, page_length, ret = 0;
409 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 	int hit_slowpath = 0;
411 	int prefaulted = 0;
412 	int needs_clflush = 0;
413 	struct scatterlist *sg;
414 	int i;
415 
416 	user_data = (char __user *) (uintptr_t) args->data_ptr;
417 	remain = args->size;
418 
419 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 
421 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 		/* If we're not in the cpu read domain, set ourself into the gtt
423 		 * read domain and manually flush cachelines (if required). This
424 		 * optimizes for the case when the gpu will dirty the data
425 		 * anyway again before the next pread happens. */
426 		if (obj->cache_level == I915_CACHE_NONE)
427 			needs_clflush = 1;
428 		if (obj->gtt_space) {
429 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 			if (ret)
431 				return ret;
432 		}
433 	}
434 
435 	ret = i915_gem_object_get_pages(obj);
436 	if (ret)
437 		return ret;
438 
439 	i915_gem_object_pin_pages(obj);
440 
441 	offset = args->offset;
442 
443 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 		struct page *page;
445 
446 		if (i < offset >> PAGE_SHIFT)
447 			continue;
448 
449 		if (remain <= 0)
450 			break;
451 
452 		/* Operation in this page
453 		 *
454 		 * shmem_page_offset = offset within page in shmem file
455 		 * page_length = bytes to copy for this page
456 		 */
457 		shmem_page_offset = offset_in_page(offset);
458 		page_length = remain;
459 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 			page_length = PAGE_SIZE - shmem_page_offset;
461 
462 		page = sg_page(sg);
463 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 			(page_to_phys(page) & (1 << 17)) != 0;
465 
466 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 				       user_data, page_do_bit17_swizzling,
468 				       needs_clflush);
469 		if (ret == 0)
470 			goto next_page;
471 
472 		hit_slowpath = 1;
473 		mutex_unlock(&dev->struct_mutex);
474 
475 		if (!prefaulted) {
476 			ret = fault_in_multipages_writeable(user_data, remain);
477 			/* Userspace is tricking us, but we've already clobbered
478 			 * its pages with the prefault and promised to write the
479 			 * data up to the first fault. Hence ignore any errors
480 			 * and just continue. */
481 			(void)ret;
482 			prefaulted = 1;
483 		}
484 
485 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 				       user_data, page_do_bit17_swizzling,
487 				       needs_clflush);
488 
489 		mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492 		mark_page_accessed(page);
493 
494 		if (ret)
495 			goto out;
496 
497 		remain -= page_length;
498 		user_data += page_length;
499 		offset += page_length;
500 	}
501 
502 out:
503 	i915_gem_object_unpin_pages(obj);
504 
505 	if (hit_slowpath) {
506 		/* Fixup: Kill any reinstated backing storage pages */
507 		if (obj->madv == __I915_MADV_PURGED)
508 			i915_gem_object_truncate(obj);
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 		     struct drm_file *file)
522 {
523 	struct drm_i915_gem_pread *args = data;
524 	struct drm_i915_gem_object *obj;
525 	int ret = 0;
526 
527 	if (args->size == 0)
528 		return 0;
529 
530 	if (!access_ok(VERIFY_WRITE,
531 		       (char __user *)(uintptr_t)args->data_ptr,
532 		       args->size))
533 		return -EFAULT;
534 
535 	ret = i915_mutex_lock_interruptible(dev);
536 	if (ret)
537 		return ret;
538 
539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 	if (&obj->base == NULL) {
541 		ret = -ENOENT;
542 		goto unlock;
543 	}
544 
545 	/* Bounds check source.  */
546 	if (args->offset > obj->base.size ||
547 	    args->size > obj->base.size - args->offset) {
548 		ret = -EINVAL;
549 		goto out;
550 	}
551 
552 	/* prime objects have no backing filp to GEM pread/pwrite
553 	 * pages from.
554 	 */
555 	if (!obj->base.filp) {
556 		ret = -EINVAL;
557 		goto out;
558 	}
559 
560 	trace_i915_gem_object_pread(obj, args->offset, args->size);
561 
562 	ret = i915_gem_shmem_pread(dev, obj, args, file);
563 
564 out:
565 	drm_gem_object_unreference(&obj->base);
566 unlock:
567 	mutex_unlock(&dev->struct_mutex);
568 	return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 		loff_t page_base, int page_offset,
578 		char __user *user_data,
579 		int length)
580 {
581 	void __iomem *vaddr_atomic;
582 	void *vaddr;
583 	unsigned long unwritten;
584 
585 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 	/* We can use the cpu mem copy function because this is X86. */
587 	vaddr = (void __force*)vaddr_atomic + page_offset;
588 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 						      user_data, length);
590 	io_mapping_unmap_atomic(vaddr_atomic);
591 	return unwritten;
592 }
593 
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 			 struct drm_i915_gem_object *obj,
601 			 struct drm_i915_gem_pwrite *args,
602 			 struct drm_file *file)
603 {
604 	drm_i915_private_t *dev_priv = dev->dev_private;
605 	ssize_t remain;
606 	loff_t offset, page_base;
607 	char __user *user_data;
608 	int page_offset, page_length, ret;
609 
610 	ret = i915_gem_object_pin(obj, 0, true, true);
611 	if (ret)
612 		goto out;
613 
614 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 	if (ret)
616 		goto out_unpin;
617 
618 	ret = i915_gem_object_put_fence(obj);
619 	if (ret)
620 		goto out_unpin;
621 
622 	user_data = (char __user *) (uintptr_t) args->data_ptr;
623 	remain = args->size;
624 
625 	offset = obj->gtt_offset + args->offset;
626 
627 	while (remain > 0) {
628 		/* Operation in this page
629 		 *
630 		 * page_base = page offset within aperture
631 		 * page_offset = offset within page
632 		 * page_length = bytes to copy for this page
633 		 */
634 		page_base = offset & PAGE_MASK;
635 		page_offset = offset_in_page(offset);
636 		page_length = remain;
637 		if ((page_offset + remain) > PAGE_SIZE)
638 			page_length = PAGE_SIZE - page_offset;
639 
640 		/* If we get a fault while copying data, then (presumably) our
641 		 * source page isn't available.  Return the error and we'll
642 		 * retry in the slow path.
643 		 */
644 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 				    page_offset, user_data, page_length)) {
646 			ret = -EFAULT;
647 			goto out_unpin;
648 		}
649 
650 		remain -= page_length;
651 		user_data += page_length;
652 		offset += page_length;
653 	}
654 
655 out_unpin:
656 	i915_gem_object_unpin(obj);
657 out:
658 	return ret;
659 }
660 
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 		  char __user *user_data,
668 		  bool page_do_bit17_swizzling,
669 		  bool needs_clflush_before,
670 		  bool needs_clflush_after)
671 {
672 	char *vaddr;
673 	int ret;
674 
675 	if (unlikely(page_do_bit17_swizzling))
676 		return -EINVAL;
677 
678 	vaddr = kmap_atomic(page);
679 	if (needs_clflush_before)
680 		drm_clflush_virt_range(vaddr + shmem_page_offset,
681 				       page_length);
682 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 						user_data,
684 						page_length);
685 	if (needs_clflush_after)
686 		drm_clflush_virt_range(vaddr + shmem_page_offset,
687 				       page_length);
688 	kunmap_atomic(vaddr);
689 
690 	return ret ? -EFAULT : 0;
691 }
692 
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 		  char __user *user_data,
698 		  bool page_do_bit17_swizzling,
699 		  bool needs_clflush_before,
700 		  bool needs_clflush_after)
701 {
702 	char *vaddr;
703 	int ret;
704 
705 	vaddr = kmap(page);
706 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 					     page_length,
709 					     page_do_bit17_swizzling);
710 	if (page_do_bit17_swizzling)
711 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 						user_data,
713 						page_length);
714 	else
715 		ret = __copy_from_user(vaddr + shmem_page_offset,
716 				       user_data,
717 				       page_length);
718 	if (needs_clflush_after)
719 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 					     page_length,
721 					     page_do_bit17_swizzling);
722 	kunmap(page);
723 
724 	return ret ? -EFAULT : 0;
725 }
726 
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 		      struct drm_i915_gem_object *obj,
730 		      struct drm_i915_gem_pwrite *args,
731 		      struct drm_file *file)
732 {
733 	ssize_t remain;
734 	loff_t offset;
735 	char __user *user_data;
736 	int shmem_page_offset, page_length, ret = 0;
737 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 	int hit_slowpath = 0;
739 	int needs_clflush_after = 0;
740 	int needs_clflush_before = 0;
741 	int i;
742 	struct scatterlist *sg;
743 
744 	user_data = (char __user *) (uintptr_t) args->data_ptr;
745 	remain = args->size;
746 
747 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748 
749 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 		/* If we're not in the cpu write domain, set ourself into the gtt
751 		 * write domain and manually flush cachelines (if required). This
752 		 * optimizes for the case when the gpu will use the data
753 		 * right away and we therefore have to clflush anyway. */
754 		if (obj->cache_level == I915_CACHE_NONE)
755 			needs_clflush_after = 1;
756 		if (obj->gtt_space) {
757 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 			if (ret)
759 				return ret;
760 		}
761 	}
762 	/* Same trick applies for invalidate partially written cachelines before
763 	 * writing.  */
764 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 	    && obj->cache_level == I915_CACHE_NONE)
766 		needs_clflush_before = 1;
767 
768 	ret = i915_gem_object_get_pages(obj);
769 	if (ret)
770 		return ret;
771 
772 	i915_gem_object_pin_pages(obj);
773 
774 	offset = args->offset;
775 	obj->dirty = 1;
776 
777 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 		struct page *page;
779 		int partial_cacheline_write;
780 
781 		if (i < offset >> PAGE_SHIFT)
782 			continue;
783 
784 		if (remain <= 0)
785 			break;
786 
787 		/* Operation in this page
788 		 *
789 		 * shmem_page_offset = offset within page in shmem file
790 		 * page_length = bytes to copy for this page
791 		 */
792 		shmem_page_offset = offset_in_page(offset);
793 
794 		page_length = remain;
795 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 			page_length = PAGE_SIZE - shmem_page_offset;
797 
798 		/* If we don't overwrite a cacheline completely we need to be
799 		 * careful to have up-to-date data by first clflushing. Don't
800 		 * overcomplicate things and flush the entire patch. */
801 		partial_cacheline_write = needs_clflush_before &&
802 			((shmem_page_offset | page_length)
803 				& (boot_cpu_data.x86_clflush_size - 1));
804 
805 		page = sg_page(sg);
806 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 			(page_to_phys(page) & (1 << 17)) != 0;
808 
809 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 		if (ret == 0)
814 			goto next_page;
815 
816 		hit_slowpath = 1;
817 		mutex_unlock(&dev->struct_mutex);
818 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 					user_data, page_do_bit17_swizzling,
820 					partial_cacheline_write,
821 					needs_clflush_after);
822 
823 		mutex_lock(&dev->struct_mutex);
824 
825 next_page:
826 		set_page_dirty(page);
827 		mark_page_accessed(page);
828 
829 		if (ret)
830 			goto out;
831 
832 		remain -= page_length;
833 		user_data += page_length;
834 		offset += page_length;
835 	}
836 
837 out:
838 	i915_gem_object_unpin_pages(obj);
839 
840 	if (hit_slowpath) {
841 		/* Fixup: Kill any reinstated backing storage pages */
842 		if (obj->madv == __I915_MADV_PURGED)
843 			i915_gem_object_truncate(obj);
844 		/* and flush dirty cachelines in case the object isn't in the cpu write
845 		 * domain anymore. */
846 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 			i915_gem_clflush_object(obj);
848 			intel_gtt_chipset_flush();
849 		}
850 	}
851 
852 	if (needs_clflush_after)
853 		intel_gtt_chipset_flush();
854 
855 	return ret;
856 }
857 
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 		      struct drm_file *file)
866 {
867 	struct drm_i915_gem_pwrite *args = data;
868 	struct drm_i915_gem_object *obj;
869 	int ret;
870 
871 	if (args->size == 0)
872 		return 0;
873 
874 	if (!access_ok(VERIFY_READ,
875 		       (char __user *)(uintptr_t)args->data_ptr,
876 		       args->size))
877 		return -EFAULT;
878 
879 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 					   args->size);
881 	if (ret)
882 		return -EFAULT;
883 
884 	ret = i915_mutex_lock_interruptible(dev);
885 	if (ret)
886 		return ret;
887 
888 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 	if (&obj->base == NULL) {
890 		ret = -ENOENT;
891 		goto unlock;
892 	}
893 
894 	/* Bounds check destination. */
895 	if (args->offset > obj->base.size ||
896 	    args->size > obj->base.size - args->offset) {
897 		ret = -EINVAL;
898 		goto out;
899 	}
900 
901 	/* prime objects have no backing filp to GEM pread/pwrite
902 	 * pages from.
903 	 */
904 	if (!obj->base.filp) {
905 		ret = -EINVAL;
906 		goto out;
907 	}
908 
909 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910 
911 	ret = -EFAULT;
912 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
913 	 * it would end up going through the fenced access, and we'll get
914 	 * different detiling behavior between reading and writing.
915 	 * pread/pwrite currently are reading and writing from the CPU
916 	 * perspective, requiring manual detiling by the client.
917 	 */
918 	if (obj->phys_obj) {
919 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 		goto out;
921 	}
922 
923 	if (obj->cache_level == I915_CACHE_NONE &&
924 	    obj->tiling_mode == I915_TILING_NONE &&
925 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 		/* Note that the gtt paths might fail with non-page-backed user
928 		 * pointers (e.g. gtt mappings when moving data between
929 		 * textures). Fallback to the shmem path in that case. */
930 	}
931 
932 	if (ret == -EFAULT || ret == -ENOSPC)
933 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934 
935 out:
936 	drm_gem_object_unreference(&obj->base);
937 unlock:
938 	mutex_unlock(&dev->struct_mutex);
939 	return ret;
940 }
941 
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 		     bool interruptible)
945 {
946 	if (atomic_read(&dev_priv->mm.wedged)) {
947 		struct completion *x = &dev_priv->error_completion;
948 		bool recovery_complete;
949 		unsigned long flags;
950 
951 		/* Give the error handler a chance to run. */
952 		spin_lock_irqsave(&x->wait.lock, flags);
953 		recovery_complete = x->done > 0;
954 		spin_unlock_irqrestore(&x->wait.lock, flags);
955 
956 		/* Non-interruptible callers can't handle -EAGAIN, hence return
957 		 * -EIO unconditionally for these. */
958 		if (!interruptible)
959 			return -EIO;
960 
961 		/* Recovery complete, but still wedged means reset failure. */
962 		if (recovery_complete)
963 			return -EIO;
964 
965 		return -EAGAIN;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 	int ret;
979 
980 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 
982 	ret = 0;
983 	if (seqno == ring->outstanding_lazy_request)
984 		ret = i915_add_request(ring, NULL, NULL);
985 
986 	return ret;
987 }
988 
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 			bool interruptible, struct timespec *timeout)
1001 {
1002 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 	struct timespec before, now, wait_time={1,0};
1004 	unsigned long timeout_jiffies;
1005 	long end;
1006 	bool wait_forever = true;
1007 	int ret;
1008 
1009 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 		return 0;
1011 
1012 	trace_i915_gem_request_wait_begin(ring, seqno);
1013 
1014 	if (timeout != NULL) {
1015 		wait_time = *timeout;
1016 		wait_forever = false;
1017 	}
1018 
1019 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1020 
1021 	if (WARN_ON(!ring->irq_get(ring)))
1022 		return -ENODEV;
1023 
1024 	/* Record current time in case interrupted by signal, or wedged * */
1025 	getrawmonotonic(&before);
1026 
1027 #define EXIT_COND \
1028 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 	atomic_read(&dev_priv->mm.wedged))
1030 	do {
1031 		if (interruptible)
1032 			end = wait_event_interruptible_timeout(ring->irq_queue,
1033 							       EXIT_COND,
1034 							       timeout_jiffies);
1035 		else
1036 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 						 timeout_jiffies);
1038 
1039 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 		if (ret)
1041 			end = ret;
1042 	} while (end == 0 && wait_forever);
1043 
1044 	getrawmonotonic(&now);
1045 
1046 	ring->irq_put(ring);
1047 	trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049 
1050 	if (timeout) {
1051 		struct timespec sleep_time = timespec_sub(now, before);
1052 		*timeout = timespec_sub(*timeout, sleep_time);
1053 	}
1054 
1055 	switch (end) {
1056 	case -EIO:
1057 	case -EAGAIN: /* Wedged */
1058 	case -ERESTARTSYS: /* Signal */
1059 		return (int)end;
1060 	case 0: /* Timeout */
1061 		if (timeout)
1062 			set_normalized_timespec(timeout, 0, 0);
1063 		return -ETIME;
1064 	default: /* Completed */
1065 		WARN_ON(end < 0); /* We're not aware of other errors */
1066 		return 0;
1067 	}
1068 }
1069 
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 	struct drm_device *dev = ring->dev;
1078 	struct drm_i915_private *dev_priv = dev->dev_private;
1079 	bool interruptible = dev_priv->mm.interruptible;
1080 	int ret;
1081 
1082 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 	BUG_ON(seqno == 0);
1084 
1085 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 	if (ret)
1087 		return ret;
1088 
1089 	ret = i915_gem_check_olr(ring, seqno);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095 
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 			       bool readonly)
1103 {
1104 	struct intel_ring_buffer *ring = obj->ring;
1105 	u32 seqno;
1106 	int ret;
1107 
1108 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 	if (seqno == 0)
1110 		return 0;
1111 
1112 	ret = i915_wait_seqno(ring, seqno);
1113 	if (ret)
1114 		return ret;
1115 
1116 	i915_gem_retire_requests_ring(ring);
1117 
1118 	/* Manually manage the write flush as we may have not yet
1119 	 * retired the buffer.
1120 	 */
1121 	if (obj->last_write_seqno &&
1122 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 		obj->last_write_seqno = 0;
1124 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 					    bool readonly)
1136 {
1137 	struct drm_device *dev = obj->base.dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 	struct intel_ring_buffer *ring = obj->ring;
1140 	u32 seqno;
1141 	int ret;
1142 
1143 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 	BUG_ON(!dev_priv->mm.interruptible);
1145 
1146 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 	if (seqno == 0)
1148 		return 0;
1149 
1150 	ret = i915_gem_check_wedge(dev_priv, true);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = i915_gem_check_olr(ring, seqno);
1155 	if (ret)
1156 		return ret;
1157 
1158 	mutex_unlock(&dev->struct_mutex);
1159 	ret = __wait_seqno(ring, seqno, true, NULL);
1160 	mutex_lock(&dev->struct_mutex);
1161 
1162 	i915_gem_retire_requests_ring(ring);
1163 
1164 	/* Manually manage the write flush as we may have not yet
1165 	 * retired the buffer.
1166 	 */
1167 	if (obj->last_write_seqno &&
1168 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 		obj->last_write_seqno = 0;
1170 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 			  struct drm_file *file)
1183 {
1184 	struct drm_i915_gem_set_domain *args = data;
1185 	struct drm_i915_gem_object *obj;
1186 	uint32_t read_domains = args->read_domains;
1187 	uint32_t write_domain = args->write_domain;
1188 	int ret;
1189 
1190 	/* Only handle setting domains to types used by the CPU. */
1191 	if (write_domain & I915_GEM_GPU_DOMAINS)
1192 		return -EINVAL;
1193 
1194 	if (read_domains & I915_GEM_GPU_DOMAINS)
1195 		return -EINVAL;
1196 
1197 	/* Having something in the write domain implies it's in the read
1198 	 * domain, and only that read domain.  Enforce that in the request.
1199 	 */
1200 	if (write_domain != 0 && read_domains != write_domain)
1201 		return -EINVAL;
1202 
1203 	ret = i915_mutex_lock_interruptible(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 	if (&obj->base == NULL) {
1209 		ret = -ENOENT;
1210 		goto unlock;
1211 	}
1212 
1213 	/* Try to flush the object off the GPU without holding the lock.
1214 	 * We will repeat the flush holding the lock in the normal manner
1215 	 * to catch cases where we are gazumped.
1216 	 */
1217 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 	if (ret)
1219 		goto unref;
1220 
1221 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223 
1224 		/* Silently promote "you're not bound, there was nothing to do"
1225 		 * to success, since the client was just asking us to
1226 		 * make sure everything was done.
1227 		 */
1228 		if (ret == -EINVAL)
1229 			ret = 0;
1230 	} else {
1231 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 	}
1233 
1234 unref:
1235 	drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 	mutex_unlock(&dev->struct_mutex);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 			 struct drm_file *file)
1247 {
1248 	struct drm_i915_gem_sw_finish *args = data;
1249 	struct drm_i915_gem_object *obj;
1250 	int ret = 0;
1251 
1252 	ret = i915_mutex_lock_interruptible(dev);
1253 	if (ret)
1254 		return ret;
1255 
1256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 	if (&obj->base == NULL) {
1258 		ret = -ENOENT;
1259 		goto unlock;
1260 	}
1261 
1262 	/* Pinned buffers may be scanout, so flush the cache */
1263 	if (obj->pin_count)
1264 		i915_gem_object_flush_cpu_write_domain(obj);
1265 
1266 	drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 	mutex_unlock(&dev->struct_mutex);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 		    struct drm_file *file)
1282 {
1283 	struct drm_i915_gem_mmap *args = data;
1284 	struct drm_gem_object *obj;
1285 	unsigned long addr;
1286 
1287 	obj = drm_gem_object_lookup(dev, file, args->handle);
1288 	if (obj == NULL)
1289 		return -ENOENT;
1290 
1291 	/* prime objects have no backing filp to GEM mmap
1292 	 * pages from.
1293 	 */
1294 	if (!obj->filp) {
1295 		drm_gem_object_unreference_unlocked(obj);
1296 		return -EINVAL;
1297 	}
1298 
1299 	addr = vm_mmap(obj->filp, 0, args->size,
1300 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1301 		       args->offset);
1302 	drm_gem_object_unreference_unlocked(obj);
1303 	if (IS_ERR((void *)addr))
1304 		return addr;
1305 
1306 	args->addr_ptr = (uint64_t) addr;
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 	struct drm_device *dev = obj->base.dev;
1331 	drm_i915_private_t *dev_priv = dev->dev_private;
1332 	pgoff_t page_offset;
1333 	unsigned long pfn;
1334 	int ret = 0;
1335 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336 
1337 	/* We don't use vmf->pgoff since that has the fake offset */
1338 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 		PAGE_SHIFT;
1340 
1341 	ret = i915_mutex_lock_interruptible(dev);
1342 	if (ret)
1343 		goto out;
1344 
1345 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1346 
1347 	/* Now bind it into the GTT if needed */
1348 	if (!obj->map_and_fenceable) {
1349 		ret = i915_gem_object_unbind(obj);
1350 		if (ret)
1351 			goto unlock;
1352 	}
1353 	if (!obj->gtt_space) {
1354 		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355 		if (ret)
1356 			goto unlock;
1357 
1358 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 		if (ret)
1360 			goto unlock;
1361 	}
1362 
1363 	if (!obj->has_global_gtt_mapping)
1364 		i915_gem_gtt_bind_object(obj, obj->cache_level);
1365 
1366 	ret = i915_gem_object_get_fence(obj);
1367 	if (ret)
1368 		goto unlock;
1369 
1370 	if (i915_gem_object_is_inactive(obj))
1371 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372 
1373 	obj->fault_mappable = true;
1374 
1375 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376 		page_offset;
1377 
1378 	/* Finally, remap it using the new GTT offset */
1379 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381 	mutex_unlock(&dev->struct_mutex);
1382 out:
1383 	switch (ret) {
1384 	case -EIO:
1385 		/* If this -EIO is due to a gpu hang, give the reset code a
1386 		 * chance to clean up the mess. Otherwise return the proper
1387 		 * SIGBUS. */
1388 		if (!atomic_read(&dev_priv->mm.wedged))
1389 			return VM_FAULT_SIGBUS;
1390 	case -EAGAIN:
1391 		/* Give the error handler a chance to run and move the
1392 		 * objects off the GPU active list. Next time we service the
1393 		 * fault, we should be able to transition the page into the
1394 		 * GTT without touching the GPU (and so avoid further
1395 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 		 * with coherency, just lost writes.
1397 		 */
1398 		set_need_resched();
1399 	case 0:
1400 	case -ERESTARTSYS:
1401 	case -EINTR:
1402 	case -EBUSY:
1403 		/*
1404 		 * EBUSY is ok: this just means that another thread
1405 		 * already did the job.
1406 		 */
1407 		return VM_FAULT_NOPAGE;
1408 	case -ENOMEM:
1409 		return VM_FAULT_OOM;
1410 	case -ENOSPC:
1411 		return VM_FAULT_SIGBUS;
1412 	default:
1413 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414 		return VM_FAULT_SIGBUS;
1415 	}
1416 }
1417 
1418 /**
1419  * i915_gem_release_mmap - remove physical page mappings
1420  * @obj: obj in question
1421  *
1422  * Preserve the reservation of the mmapping with the DRM core code, but
1423  * relinquish ownership of the pages back to the system.
1424  *
1425  * It is vital that we remove the page mapping if we have mapped a tiled
1426  * object through the GTT and then lose the fence register due to
1427  * resource pressure. Similarly if the object has been moved out of the
1428  * aperture, than pages mapped into userspace must be revoked. Removing the
1429  * mapping will then trigger a page fault on the next user access, allowing
1430  * fixup by i915_gem_fault().
1431  */
1432 void
1433 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1434 {
1435 	if (!obj->fault_mappable)
1436 		return;
1437 
1438 	if (obj->base.dev->dev_mapping)
1439 		unmap_mapping_range(obj->base.dev->dev_mapping,
1440 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441 				    obj->base.size, 1);
1442 
1443 	obj->fault_mappable = false;
1444 }
1445 
1446 static uint32_t
1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1448 {
1449 	uint32_t gtt_size;
1450 
1451 	if (INTEL_INFO(dev)->gen >= 4 ||
1452 	    tiling_mode == I915_TILING_NONE)
1453 		return size;
1454 
1455 	/* Previous chips need a power-of-two fence region when tiling */
1456 	if (INTEL_INFO(dev)->gen == 3)
1457 		gtt_size = 1024*1024;
1458 	else
1459 		gtt_size = 512*1024;
1460 
1461 	while (gtt_size < size)
1462 		gtt_size <<= 1;
1463 
1464 	return gtt_size;
1465 }
1466 
1467 /**
1468  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469  * @obj: object to check
1470  *
1471  * Return the required GTT alignment for an object, taking into account
1472  * potential fence register mapping.
1473  */
1474 static uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_device *dev,
1476 			   uint32_t size,
1477 			   int tiling_mode)
1478 {
1479 	/*
1480 	 * Minimum alignment is 4k (GTT page size), but might be greater
1481 	 * if a fence register is needed for the object.
1482 	 */
1483 	if (INTEL_INFO(dev)->gen >= 4 ||
1484 	    tiling_mode == I915_TILING_NONE)
1485 		return 4096;
1486 
1487 	/*
1488 	 * Previous chips need to be aligned to the size of the smallest
1489 	 * fence register that can contain the object.
1490 	 */
1491 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1492 }
1493 
1494 /**
1495  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1496  *					 unfenced object
1497  * @dev: the device
1498  * @size: size of the object
1499  * @tiling_mode: tiling mode of the object
1500  *
1501  * Return the required GTT alignment for an object, only taking into account
1502  * unfenced tiled surface requirements.
1503  */
1504 uint32_t
1505 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1506 				    uint32_t size,
1507 				    int tiling_mode)
1508 {
1509 	/*
1510 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1511 	 */
1512 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1513 	    tiling_mode == I915_TILING_NONE)
1514 		return 4096;
1515 
1516 	/* Previous hardware however needs to be aligned to a power-of-two
1517 	 * tile height. The simplest method for determining this is to reuse
1518 	 * the power-of-tile object size.
1519 	 */
1520 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1521 }
1522 
1523 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524 {
1525 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526 	int ret;
1527 
1528 	if (obj->base.map_list.map)
1529 		return 0;
1530 
1531 	ret = drm_gem_create_mmap_offset(&obj->base);
1532 	if (ret != -ENOSPC)
1533 		return ret;
1534 
1535 	/* Badly fragmented mmap space? The only way we can recover
1536 	 * space is by destroying unwanted objects. We can't randomly release
1537 	 * mmap_offsets as userspace expects them to be persistent for the
1538 	 * lifetime of the objects. The closest we can is to release the
1539 	 * offsets on purgeable objects by truncating it and marking it purged,
1540 	 * which prevents userspace from ever using that object again.
1541 	 */
1542 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543 	ret = drm_gem_create_mmap_offset(&obj->base);
1544 	if (ret != -ENOSPC)
1545 		return ret;
1546 
1547 	i915_gem_shrink_all(dev_priv);
1548 	return drm_gem_create_mmap_offset(&obj->base);
1549 }
1550 
1551 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552 {
1553 	if (!obj->base.map_list.map)
1554 		return;
1555 
1556 	drm_gem_free_mmap_offset(&obj->base);
1557 }
1558 
1559 int
1560 i915_gem_mmap_gtt(struct drm_file *file,
1561 		  struct drm_device *dev,
1562 		  uint32_t handle,
1563 		  uint64_t *offset)
1564 {
1565 	struct drm_i915_private *dev_priv = dev->dev_private;
1566 	struct drm_i915_gem_object *obj;
1567 	int ret;
1568 
1569 	ret = i915_mutex_lock_interruptible(dev);
1570 	if (ret)
1571 		return ret;
1572 
1573 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1574 	if (&obj->base == NULL) {
1575 		ret = -ENOENT;
1576 		goto unlock;
1577 	}
1578 
1579 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1580 		ret = -E2BIG;
1581 		goto out;
1582 	}
1583 
1584 	if (obj->madv != I915_MADV_WILLNEED) {
1585 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1586 		ret = -EINVAL;
1587 		goto out;
1588 	}
1589 
1590 	ret = i915_gem_object_create_mmap_offset(obj);
1591 	if (ret)
1592 		goto out;
1593 
1594 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1595 
1596 out:
1597 	drm_gem_object_unreference(&obj->base);
1598 unlock:
1599 	mutex_unlock(&dev->struct_mutex);
1600 	return ret;
1601 }
1602 
1603 /**
1604  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1605  * @dev: DRM device
1606  * @data: GTT mapping ioctl data
1607  * @file: GEM object info
1608  *
1609  * Simply returns the fake offset to userspace so it can mmap it.
1610  * The mmap call will end up in drm_gem_mmap(), which will set things
1611  * up so we can get faults in the handler above.
1612  *
1613  * The fault handler will take care of binding the object into the GTT
1614  * (since it may have been evicted to make room for something), allocating
1615  * a fence register, and mapping the appropriate aperture address into
1616  * userspace.
1617  */
1618 int
1619 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1620 			struct drm_file *file)
1621 {
1622 	struct drm_i915_gem_mmap_gtt *args = data;
1623 
1624 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625 }
1626 
1627 /* Immediately discard the backing storage */
1628 static void
1629 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1630 {
1631 	struct inode *inode;
1632 
1633 	i915_gem_object_free_mmap_offset(obj);
1634 
1635 	if (obj->base.filp == NULL)
1636 		return;
1637 
1638 	/* Our goal here is to return as much of the memory as
1639 	 * is possible back to the system as we are called from OOM.
1640 	 * To do this we must instruct the shmfs to drop all of its
1641 	 * backing pages, *now*.
1642 	 */
1643 	inode = obj->base.filp->f_path.dentry->d_inode;
1644 	shmem_truncate_range(inode, 0, (loff_t)-1);
1645 
1646 	obj->madv = __I915_MADV_PURGED;
1647 }
1648 
1649 static inline int
1650 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651 {
1652 	return obj->madv == I915_MADV_DONTNEED;
1653 }
1654 
1655 static void
1656 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1657 {
1658 	int page_count = obj->base.size / PAGE_SIZE;
1659 	struct scatterlist *sg;
1660 	int ret, i;
1661 
1662 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1663 
1664 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665 	if (ret) {
1666 		/* In the event of a disaster, abandon all caches and
1667 		 * hope for the best.
1668 		 */
1669 		WARN_ON(ret != -EIO);
1670 		i915_gem_clflush_object(obj);
1671 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672 	}
1673 
1674 	if (i915_gem_object_needs_bit17_swizzle(obj))
1675 		i915_gem_object_save_bit_17_swizzle(obj);
1676 
1677 	if (obj->madv == I915_MADV_DONTNEED)
1678 		obj->dirty = 0;
1679 
1680 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681 		struct page *page = sg_page(sg);
1682 
1683 		if (obj->dirty)
1684 			set_page_dirty(page);
1685 
1686 		if (obj->madv == I915_MADV_WILLNEED)
1687 			mark_page_accessed(page);
1688 
1689 		page_cache_release(page);
1690 	}
1691 	obj->dirty = 0;
1692 
1693 	sg_free_table(obj->pages);
1694 	kfree(obj->pages);
1695 }
1696 
1697 static int
1698 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699 {
1700 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1701 
1702 	if (obj->pages == NULL)
1703 		return 0;
1704 
1705 	BUG_ON(obj->gtt_space);
1706 
1707 	if (obj->pages_pin_count)
1708 		return -EBUSY;
1709 
1710 	ops->put_pages(obj);
1711 	obj->pages = NULL;
1712 
1713 	list_del(&obj->gtt_list);
1714 	if (i915_gem_object_is_purgeable(obj))
1715 		i915_gem_object_truncate(obj);
1716 
1717 	return 0;
1718 }
1719 
1720 static long
1721 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722 {
1723 	struct drm_i915_gem_object *obj, *next;
1724 	long count = 0;
1725 
1726 	list_for_each_entry_safe(obj, next,
1727 				 &dev_priv->mm.unbound_list,
1728 				 gtt_list) {
1729 		if (i915_gem_object_is_purgeable(obj) &&
1730 		    i915_gem_object_put_pages(obj) == 0) {
1731 			count += obj->base.size >> PAGE_SHIFT;
1732 			if (count >= target)
1733 				return count;
1734 		}
1735 	}
1736 
1737 	list_for_each_entry_safe(obj, next,
1738 				 &dev_priv->mm.inactive_list,
1739 				 mm_list) {
1740 		if (i915_gem_object_is_purgeable(obj) &&
1741 		    i915_gem_object_unbind(obj) == 0 &&
1742 		    i915_gem_object_put_pages(obj) == 0) {
1743 			count += obj->base.size >> PAGE_SHIFT;
1744 			if (count >= target)
1745 				return count;
1746 		}
1747 	}
1748 
1749 	return count;
1750 }
1751 
1752 static void
1753 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754 {
1755 	struct drm_i915_gem_object *obj, *next;
1756 
1757 	i915_gem_evict_everything(dev_priv->dev);
1758 
1759 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1760 		i915_gem_object_put_pages(obj);
1761 }
1762 
1763 static int
1764 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1765 {
1766 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1767 	int page_count, i;
1768 	struct address_space *mapping;
1769 	struct sg_table *st;
1770 	struct scatterlist *sg;
1771 	struct page *page;
1772 	gfp_t gfp;
1773 
1774 	/* Assert that the object is not currently in any GPU domain. As it
1775 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1776 	 * a GPU cache
1777 	 */
1778 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780 
1781 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1782 	if (st == NULL)
1783 		return -ENOMEM;
1784 
1785 	page_count = obj->base.size / PAGE_SIZE;
1786 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787 		sg_free_table(st);
1788 		kfree(st);
1789 		return -ENOMEM;
1790 	}
1791 
1792 	/* Get the list of pages out of our struct file.  They'll be pinned
1793 	 * at this point until we release them.
1794 	 *
1795 	 * Fail silently without starting the shrinker
1796 	 */
1797 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798 	gfp = mapping_gfp_mask(mapping);
1799 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
1800 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1801 	for_each_sg(st->sgl, sg, page_count, i) {
1802 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803 		if (IS_ERR(page)) {
1804 			i915_gem_purge(dev_priv, page_count);
1805 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 		}
1807 		if (IS_ERR(page)) {
1808 			/* We've tried hard to allocate the memory by reaping
1809 			 * our own buffer, now let the real VM do its job and
1810 			 * go down in flames if truly OOM.
1811 			 */
1812 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1813 			gfp |= __GFP_IO | __GFP_WAIT;
1814 
1815 			i915_gem_shrink_all(dev_priv);
1816 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817 			if (IS_ERR(page))
1818 				goto err_pages;
1819 
1820 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
1821 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1822 		}
1823 
1824 		sg_set_page(sg, page, PAGE_SIZE, 0);
1825 	}
1826 
1827 	obj->pages = st;
1828 
1829 	if (i915_gem_object_needs_bit17_swizzle(obj))
1830 		i915_gem_object_do_bit_17_swizzle(obj);
1831 
1832 	return 0;
1833 
1834 err_pages:
1835 	for_each_sg(st->sgl, sg, i, page_count)
1836 		page_cache_release(sg_page(sg));
1837 	sg_free_table(st);
1838 	kfree(st);
1839 	return PTR_ERR(page);
1840 }
1841 
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 	int ret;
1855 
1856 	if (obj->pages)
1857 		return 0;
1858 
1859 	BUG_ON(obj->pages_pin_count);
1860 
1861 	ret = ops->get_pages(obj);
1862 	if (ret)
1863 		return ret;
1864 
1865 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866 	return 0;
1867 }
1868 
1869 void
1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1871 			       struct intel_ring_buffer *ring,
1872 			       u32 seqno)
1873 {
1874 	struct drm_device *dev = obj->base.dev;
1875 	struct drm_i915_private *dev_priv = dev->dev_private;
1876 
1877 	BUG_ON(ring == NULL);
1878 	obj->ring = ring;
1879 
1880 	/* Add a reference if we're newly entering the active list. */
1881 	if (!obj->active) {
1882 		drm_gem_object_reference(&obj->base);
1883 		obj->active = 1;
1884 	}
1885 
1886 	/* Move from whatever list we were on to the tail of execution. */
1887 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888 	list_move_tail(&obj->ring_list, &ring->active_list);
1889 
1890 	obj->last_read_seqno = seqno;
1891 
1892 	if (obj->fenced_gpu_access) {
1893 		obj->last_fenced_seqno = seqno;
1894 
1895 		/* Bump MRU to take account of the delayed flush */
1896 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897 			struct drm_i915_fence_reg *reg;
1898 
1899 			reg = &dev_priv->fence_regs[obj->fence_reg];
1900 			list_move_tail(&reg->lru_list,
1901 				       &dev_priv->mm.fence_list);
1902 		}
1903 	}
1904 }
1905 
1906 static void
1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1908 {
1909 	struct drm_device *dev = obj->base.dev;
1910 	struct drm_i915_private *dev_priv = dev->dev_private;
1911 
1912 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1913 	BUG_ON(!obj->active);
1914 
1915 	if (obj->pin_count) /* are we a framebuffer? */
1916 		intel_mark_fb_idle(obj);
1917 
1918 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1919 
1920 	list_del_init(&obj->ring_list);
1921 	obj->ring = NULL;
1922 
1923 	obj->last_read_seqno = 0;
1924 	obj->last_write_seqno = 0;
1925 	obj->base.write_domain = 0;
1926 
1927 	obj->last_fenced_seqno = 0;
1928 	obj->fenced_gpu_access = false;
1929 
1930 	obj->active = 0;
1931 	drm_gem_object_unreference(&obj->base);
1932 
1933 	WARN_ON(i915_verify_lists(dev));
1934 }
1935 
1936 static u32
1937 i915_gem_get_seqno(struct drm_device *dev)
1938 {
1939 	drm_i915_private_t *dev_priv = dev->dev_private;
1940 	u32 seqno = dev_priv->next_seqno;
1941 
1942 	/* reserve 0 for non-seqno */
1943 	if (++dev_priv->next_seqno == 0)
1944 		dev_priv->next_seqno = 1;
1945 
1946 	return seqno;
1947 }
1948 
1949 u32
1950 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1951 {
1952 	if (ring->outstanding_lazy_request == 0)
1953 		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954 
1955 	return ring->outstanding_lazy_request;
1956 }
1957 
1958 int
1959 i915_add_request(struct intel_ring_buffer *ring,
1960 		 struct drm_file *file,
1961 		 u32 *out_seqno)
1962 {
1963 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1964 	struct drm_i915_gem_request *request;
1965 	u32 request_ring_position;
1966 	u32 seqno;
1967 	int was_empty;
1968 	int ret;
1969 
1970 	/*
1971 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1972 	 * after having emitted the batchbuffer command. Hence we need to fix
1973 	 * things up similar to emitting the lazy request. The difference here
1974 	 * is that the flush _must_ happen before the next request, no matter
1975 	 * what.
1976 	 */
1977 	ret = intel_ring_flush_all_caches(ring);
1978 	if (ret)
1979 		return ret;
1980 
1981 	request = kmalloc(sizeof(*request), GFP_KERNEL);
1982 	if (request == NULL)
1983 		return -ENOMEM;
1984 
1985 	seqno = i915_gem_next_request_seqno(ring);
1986 
1987 	/* Record the position of the start of the request so that
1988 	 * should we detect the updated seqno part-way through the
1989 	 * GPU processing the request, we never over-estimate the
1990 	 * position of the head.
1991 	 */
1992 	request_ring_position = intel_ring_get_tail(ring);
1993 
1994 	ret = ring->add_request(ring, &seqno);
1995 	if (ret) {
1996 		kfree(request);
1997 		return ret;
1998 	}
1999 
2000 	trace_i915_gem_request_add(ring, seqno);
2001 
2002 	request->seqno = seqno;
2003 	request->ring = ring;
2004 	request->tail = request_ring_position;
2005 	request->emitted_jiffies = jiffies;
2006 	was_empty = list_empty(&ring->request_list);
2007 	list_add_tail(&request->list, &ring->request_list);
2008 	request->file_priv = NULL;
2009 
2010 	if (file) {
2011 		struct drm_i915_file_private *file_priv = file->driver_priv;
2012 
2013 		spin_lock(&file_priv->mm.lock);
2014 		request->file_priv = file_priv;
2015 		list_add_tail(&request->client_list,
2016 			      &file_priv->mm.request_list);
2017 		spin_unlock(&file_priv->mm.lock);
2018 	}
2019 
2020 	ring->outstanding_lazy_request = 0;
2021 
2022 	if (!dev_priv->mm.suspended) {
2023 		if (i915_enable_hangcheck) {
2024 			mod_timer(&dev_priv->hangcheck_timer,
2025 				  jiffies +
2026 				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2027 		}
2028 		if (was_empty) {
2029 			queue_delayed_work(dev_priv->wq,
2030 					   &dev_priv->mm.retire_work, HZ);
2031 			intel_mark_busy(dev_priv->dev);
2032 		}
2033 	}
2034 
2035 	if (out_seqno)
2036 		*out_seqno = seqno;
2037 	return 0;
2038 }
2039 
2040 static inline void
2041 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2042 {
2043 	struct drm_i915_file_private *file_priv = request->file_priv;
2044 
2045 	if (!file_priv)
2046 		return;
2047 
2048 	spin_lock(&file_priv->mm.lock);
2049 	if (request->file_priv) {
2050 		list_del(&request->client_list);
2051 		request->file_priv = NULL;
2052 	}
2053 	spin_unlock(&file_priv->mm.lock);
2054 }
2055 
2056 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057 				      struct intel_ring_buffer *ring)
2058 {
2059 	while (!list_empty(&ring->request_list)) {
2060 		struct drm_i915_gem_request *request;
2061 
2062 		request = list_first_entry(&ring->request_list,
2063 					   struct drm_i915_gem_request,
2064 					   list);
2065 
2066 		list_del(&request->list);
2067 		i915_gem_request_remove_from_client(request);
2068 		kfree(request);
2069 	}
2070 
2071 	while (!list_empty(&ring->active_list)) {
2072 		struct drm_i915_gem_object *obj;
2073 
2074 		obj = list_first_entry(&ring->active_list,
2075 				       struct drm_i915_gem_object,
2076 				       ring_list);
2077 
2078 		i915_gem_object_move_to_inactive(obj);
2079 	}
2080 }
2081 
2082 static void i915_gem_reset_fences(struct drm_device *dev)
2083 {
2084 	struct drm_i915_private *dev_priv = dev->dev_private;
2085 	int i;
2086 
2087 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2088 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2089 
2090 		i915_gem_write_fence(dev, i, NULL);
2091 
2092 		if (reg->obj)
2093 			i915_gem_object_fence_lost(reg->obj);
2094 
2095 		reg->pin_count = 0;
2096 		reg->obj = NULL;
2097 		INIT_LIST_HEAD(&reg->lru_list);
2098 	}
2099 
2100 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2101 }
2102 
2103 void i915_gem_reset(struct drm_device *dev)
2104 {
2105 	struct drm_i915_private *dev_priv = dev->dev_private;
2106 	struct drm_i915_gem_object *obj;
2107 	struct intel_ring_buffer *ring;
2108 	int i;
2109 
2110 	for_each_ring(ring, dev_priv, i)
2111 		i915_gem_reset_ring_lists(dev_priv, ring);
2112 
2113 	/* Move everything out of the GPU domains to ensure we do any
2114 	 * necessary invalidation upon reuse.
2115 	 */
2116 	list_for_each_entry(obj,
2117 			    &dev_priv->mm.inactive_list,
2118 			    mm_list)
2119 	{
2120 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2121 	}
2122 
2123 	/* The fence registers are invalidated so clear them out */
2124 	i915_gem_reset_fences(dev);
2125 }
2126 
2127 /**
2128  * This function clears the request list as sequence numbers are passed.
2129  */
2130 void
2131 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2132 {
2133 	uint32_t seqno;
2134 	int i;
2135 
2136 	if (list_empty(&ring->request_list))
2137 		return;
2138 
2139 	WARN_ON(i915_verify_lists(ring->dev));
2140 
2141 	seqno = ring->get_seqno(ring, true);
2142 
2143 	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2144 		if (seqno >= ring->sync_seqno[i])
2145 			ring->sync_seqno[i] = 0;
2146 
2147 	while (!list_empty(&ring->request_list)) {
2148 		struct drm_i915_gem_request *request;
2149 
2150 		request = list_first_entry(&ring->request_list,
2151 					   struct drm_i915_gem_request,
2152 					   list);
2153 
2154 		if (!i915_seqno_passed(seqno, request->seqno))
2155 			break;
2156 
2157 		trace_i915_gem_request_retire(ring, request->seqno);
2158 		/* We know the GPU must have read the request to have
2159 		 * sent us the seqno + interrupt, so use the position
2160 		 * of tail of the request to update the last known position
2161 		 * of the GPU head.
2162 		 */
2163 		ring->last_retired_head = request->tail;
2164 
2165 		list_del(&request->list);
2166 		i915_gem_request_remove_from_client(request);
2167 		kfree(request);
2168 	}
2169 
2170 	/* Move any buffers on the active list that are no longer referenced
2171 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2172 	 */
2173 	while (!list_empty(&ring->active_list)) {
2174 		struct drm_i915_gem_object *obj;
2175 
2176 		obj = list_first_entry(&ring->active_list,
2177 				      struct drm_i915_gem_object,
2178 				      ring_list);
2179 
2180 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2181 			break;
2182 
2183 		i915_gem_object_move_to_inactive(obj);
2184 	}
2185 
2186 	if (unlikely(ring->trace_irq_seqno &&
2187 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2188 		ring->irq_put(ring);
2189 		ring->trace_irq_seqno = 0;
2190 	}
2191 
2192 	WARN_ON(i915_verify_lists(ring->dev));
2193 }
2194 
2195 void
2196 i915_gem_retire_requests(struct drm_device *dev)
2197 {
2198 	drm_i915_private_t *dev_priv = dev->dev_private;
2199 	struct intel_ring_buffer *ring;
2200 	int i;
2201 
2202 	for_each_ring(ring, dev_priv, i)
2203 		i915_gem_retire_requests_ring(ring);
2204 }
2205 
2206 static void
2207 i915_gem_retire_work_handler(struct work_struct *work)
2208 {
2209 	drm_i915_private_t *dev_priv;
2210 	struct drm_device *dev;
2211 	struct intel_ring_buffer *ring;
2212 	bool idle;
2213 	int i;
2214 
2215 	dev_priv = container_of(work, drm_i915_private_t,
2216 				mm.retire_work.work);
2217 	dev = dev_priv->dev;
2218 
2219 	/* Come back later if the device is busy... */
2220 	if (!mutex_trylock(&dev->struct_mutex)) {
2221 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2222 		return;
2223 	}
2224 
2225 	i915_gem_retire_requests(dev);
2226 
2227 	/* Send a periodic flush down the ring so we don't hold onto GEM
2228 	 * objects indefinitely.
2229 	 */
2230 	idle = true;
2231 	for_each_ring(ring, dev_priv, i) {
2232 		if (ring->gpu_caches_dirty)
2233 			i915_add_request(ring, NULL, NULL);
2234 
2235 		idle &= list_empty(&ring->request_list);
2236 	}
2237 
2238 	if (!dev_priv->mm.suspended && !idle)
2239 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2240 	if (idle)
2241 		intel_mark_idle(dev);
2242 
2243 	mutex_unlock(&dev->struct_mutex);
2244 }
2245 
2246 /**
2247  * Ensures that an object will eventually get non-busy by flushing any required
2248  * write domains, emitting any outstanding lazy request and retiring and
2249  * completed requests.
2250  */
2251 static int
2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253 {
2254 	int ret;
2255 
2256 	if (obj->active) {
2257 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2258 		if (ret)
2259 			return ret;
2260 
2261 		i915_gem_retire_requests_ring(obj->ring);
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2269  * @DRM_IOCTL_ARGS: standard ioctl arguments
2270  *
2271  * Returns 0 if successful, else an error is returned with the remaining time in
2272  * the timeout parameter.
2273  *  -ETIME: object is still busy after timeout
2274  *  -ERESTARTSYS: signal interrupted the wait
2275  *  -ENONENT: object doesn't exist
2276  * Also possible, but rare:
2277  *  -EAGAIN: GPU wedged
2278  *  -ENOMEM: damn
2279  *  -ENODEV: Internal IRQ fail
2280  *  -E?: The add request failed
2281  *
2282  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2283  * non-zero timeout parameter the wait ioctl will wait for the given number of
2284  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2285  * without holding struct_mutex the object may become re-busied before this
2286  * function completes. A similar but shorter * race condition exists in the busy
2287  * ioctl
2288  */
2289 int
2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291 {
2292 	struct drm_i915_gem_wait *args = data;
2293 	struct drm_i915_gem_object *obj;
2294 	struct intel_ring_buffer *ring = NULL;
2295 	struct timespec timeout_stack, *timeout = NULL;
2296 	u32 seqno = 0;
2297 	int ret = 0;
2298 
2299 	if (args->timeout_ns >= 0) {
2300 		timeout_stack = ns_to_timespec(args->timeout_ns);
2301 		timeout = &timeout_stack;
2302 	}
2303 
2304 	ret = i915_mutex_lock_interruptible(dev);
2305 	if (ret)
2306 		return ret;
2307 
2308 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309 	if (&obj->base == NULL) {
2310 		mutex_unlock(&dev->struct_mutex);
2311 		return -ENOENT;
2312 	}
2313 
2314 	/* Need to make sure the object gets inactive eventually. */
2315 	ret = i915_gem_object_flush_active(obj);
2316 	if (ret)
2317 		goto out;
2318 
2319 	if (obj->active) {
2320 		seqno = obj->last_read_seqno;
2321 		ring = obj->ring;
2322 	}
2323 
2324 	if (seqno == 0)
2325 		 goto out;
2326 
2327 	/* Do this after OLR check to make sure we make forward progress polling
2328 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2329 	 */
2330 	if (!args->timeout_ns) {
2331 		ret = -ETIME;
2332 		goto out;
2333 	}
2334 
2335 	drm_gem_object_unreference(&obj->base);
2336 	mutex_unlock(&dev->struct_mutex);
2337 
2338 	ret = __wait_seqno(ring, seqno, true, timeout);
2339 	if (timeout) {
2340 		WARN_ON(!timespec_valid(timeout));
2341 		args->timeout_ns = timespec_to_ns(timeout);
2342 	}
2343 	return ret;
2344 
2345 out:
2346 	drm_gem_object_unreference(&obj->base);
2347 	mutex_unlock(&dev->struct_mutex);
2348 	return ret;
2349 }
2350 
2351 /**
2352  * i915_gem_object_sync - sync an object to a ring.
2353  *
2354  * @obj: object which may be in use on another ring.
2355  * @to: ring we wish to use the object on. May be NULL.
2356  *
2357  * This code is meant to abstract object synchronization with the GPU.
2358  * Calling with NULL implies synchronizing the object with the CPU
2359  * rather than a particular GPU ring.
2360  *
2361  * Returns 0 if successful, else propagates up the lower layer error.
2362  */
2363 int
2364 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2365 		     struct intel_ring_buffer *to)
2366 {
2367 	struct intel_ring_buffer *from = obj->ring;
2368 	u32 seqno;
2369 	int ret, idx;
2370 
2371 	if (from == NULL || to == from)
2372 		return 0;
2373 
2374 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2375 		return i915_gem_object_wait_rendering(obj, false);
2376 
2377 	idx = intel_ring_sync_index(from, to);
2378 
2379 	seqno = obj->last_read_seqno;
2380 	if (seqno <= from->sync_seqno[idx])
2381 		return 0;
2382 
2383 	ret = i915_gem_check_olr(obj->ring, seqno);
2384 	if (ret)
2385 		return ret;
2386 
2387 	ret = to->sync_to(to, from, seqno);
2388 	if (!ret)
2389 		from->sync_seqno[idx] = seqno;
2390 
2391 	return ret;
2392 }
2393 
2394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2395 {
2396 	u32 old_write_domain, old_read_domains;
2397 
2398 	/* Act a barrier for all accesses through the GTT */
2399 	mb();
2400 
2401 	/* Force a pagefault for domain tracking on next user access */
2402 	i915_gem_release_mmap(obj);
2403 
2404 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2405 		return;
2406 
2407 	old_read_domains = obj->base.read_domains;
2408 	old_write_domain = obj->base.write_domain;
2409 
2410 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2411 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2412 
2413 	trace_i915_gem_object_change_domain(obj,
2414 					    old_read_domains,
2415 					    old_write_domain);
2416 }
2417 
2418 /**
2419  * Unbinds an object from the GTT aperture.
2420  */
2421 int
2422 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2423 {
2424 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2425 	int ret = 0;
2426 
2427 	if (obj->gtt_space == NULL)
2428 		return 0;
2429 
2430 	if (obj->pin_count)
2431 		return -EBUSY;
2432 
2433 	BUG_ON(obj->pages == NULL);
2434 
2435 	ret = i915_gem_object_finish_gpu(obj);
2436 	if (ret)
2437 		return ret;
2438 	/* Continue on if we fail due to EIO, the GPU is hung so we
2439 	 * should be safe and we need to cleanup or else we might
2440 	 * cause memory corruption through use-after-free.
2441 	 */
2442 
2443 	i915_gem_object_finish_gtt(obj);
2444 
2445 	/* release the fence reg _after_ flushing */
2446 	ret = i915_gem_object_put_fence(obj);
2447 	if (ret)
2448 		return ret;
2449 
2450 	trace_i915_gem_object_unbind(obj);
2451 
2452 	if (obj->has_global_gtt_mapping)
2453 		i915_gem_gtt_unbind_object(obj);
2454 	if (obj->has_aliasing_ppgtt_mapping) {
2455 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2456 		obj->has_aliasing_ppgtt_mapping = 0;
2457 	}
2458 	i915_gem_gtt_finish_object(obj);
2459 
2460 	list_del(&obj->mm_list);
2461 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2462 	/* Avoid an unnecessary call to unbind on rebind. */
2463 	obj->map_and_fenceable = true;
2464 
2465 	drm_mm_put_block(obj->gtt_space);
2466 	obj->gtt_space = NULL;
2467 	obj->gtt_offset = 0;
2468 
2469 	return 0;
2470 }
2471 
2472 static int i915_ring_idle(struct intel_ring_buffer *ring)
2473 {
2474 	if (list_empty(&ring->active_list))
2475 		return 0;
2476 
2477 	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2478 }
2479 
2480 int i915_gpu_idle(struct drm_device *dev)
2481 {
2482 	drm_i915_private_t *dev_priv = dev->dev_private;
2483 	struct intel_ring_buffer *ring;
2484 	int ret, i;
2485 
2486 	/* Flush everything onto the inactive list. */
2487 	for_each_ring(ring, dev_priv, i) {
2488 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2489 		if (ret)
2490 			return ret;
2491 
2492 		ret = i915_ring_idle(ring);
2493 		if (ret)
2494 			return ret;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501 					struct drm_i915_gem_object *obj)
2502 {
2503 	drm_i915_private_t *dev_priv = dev->dev_private;
2504 	uint64_t val;
2505 
2506 	if (obj) {
2507 		u32 size = obj->gtt_space->size;
2508 
2509 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510 				 0xfffff000) << 32;
2511 		val |= obj->gtt_offset & 0xfffff000;
2512 		val |= (uint64_t)((obj->stride / 128) - 1) <<
2513 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2514 
2515 		if (obj->tiling_mode == I915_TILING_Y)
2516 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517 		val |= I965_FENCE_REG_VALID;
2518 	} else
2519 		val = 0;
2520 
2521 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2522 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2523 }
2524 
2525 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526 				 struct drm_i915_gem_object *obj)
2527 {
2528 	drm_i915_private_t *dev_priv = dev->dev_private;
2529 	uint64_t val;
2530 
2531 	if (obj) {
2532 		u32 size = obj->gtt_space->size;
2533 
2534 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535 				 0xfffff000) << 32;
2536 		val |= obj->gtt_offset & 0xfffff000;
2537 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538 		if (obj->tiling_mode == I915_TILING_Y)
2539 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540 		val |= I965_FENCE_REG_VALID;
2541 	} else
2542 		val = 0;
2543 
2544 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2546 }
2547 
2548 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549 				 struct drm_i915_gem_object *obj)
2550 {
2551 	drm_i915_private_t *dev_priv = dev->dev_private;
2552 	u32 val;
2553 
2554 	if (obj) {
2555 		u32 size = obj->gtt_space->size;
2556 		int pitch_val;
2557 		int tile_width;
2558 
2559 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2560 		     (size & -size) != size ||
2561 		     (obj->gtt_offset & (size - 1)),
2562 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563 		     obj->gtt_offset, obj->map_and_fenceable, size);
2564 
2565 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566 			tile_width = 128;
2567 		else
2568 			tile_width = 512;
2569 
2570 		/* Note: pitch better be a power of two tile widths */
2571 		pitch_val = obj->stride / tile_width;
2572 		pitch_val = ffs(pitch_val) - 1;
2573 
2574 		val = obj->gtt_offset;
2575 		if (obj->tiling_mode == I915_TILING_Y)
2576 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577 		val |= I915_FENCE_SIZE_BITS(size);
2578 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579 		val |= I830_FENCE_REG_VALID;
2580 	} else
2581 		val = 0;
2582 
2583 	if (reg < 8)
2584 		reg = FENCE_REG_830_0 + reg * 4;
2585 	else
2586 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587 
2588 	I915_WRITE(reg, val);
2589 	POSTING_READ(reg);
2590 }
2591 
2592 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593 				struct drm_i915_gem_object *obj)
2594 {
2595 	drm_i915_private_t *dev_priv = dev->dev_private;
2596 	uint32_t val;
2597 
2598 	if (obj) {
2599 		u32 size = obj->gtt_space->size;
2600 		uint32_t pitch_val;
2601 
2602 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2603 		     (size & -size) != size ||
2604 		     (obj->gtt_offset & (size - 1)),
2605 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606 		     obj->gtt_offset, size);
2607 
2608 		pitch_val = obj->stride / 128;
2609 		pitch_val = ffs(pitch_val) - 1;
2610 
2611 		val = obj->gtt_offset;
2612 		if (obj->tiling_mode == I915_TILING_Y)
2613 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614 		val |= I830_FENCE_SIZE_BITS(size);
2615 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616 		val |= I830_FENCE_REG_VALID;
2617 	} else
2618 		val = 0;
2619 
2620 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622 }
2623 
2624 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625 				 struct drm_i915_gem_object *obj)
2626 {
2627 	switch (INTEL_INFO(dev)->gen) {
2628 	case 7:
2629 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630 	case 5:
2631 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2632 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2633 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2634 	default: break;
2635 	}
2636 }
2637 
2638 static inline int fence_number(struct drm_i915_private *dev_priv,
2639 			       struct drm_i915_fence_reg *fence)
2640 {
2641 	return fence - dev_priv->fence_regs;
2642 }
2643 
2644 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645 					 struct drm_i915_fence_reg *fence,
2646 					 bool enable)
2647 {
2648 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649 	int reg = fence_number(dev_priv, fence);
2650 
2651 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652 
2653 	if (enable) {
2654 		obj->fence_reg = reg;
2655 		fence->obj = obj;
2656 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657 	} else {
2658 		obj->fence_reg = I915_FENCE_REG_NONE;
2659 		fence->obj = NULL;
2660 		list_del_init(&fence->lru_list);
2661 	}
2662 }
2663 
2664 static int
2665 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2666 {
2667 	if (obj->last_fenced_seqno) {
2668 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2669 		if (ret)
2670 			return ret;
2671 
2672 		obj->last_fenced_seqno = 0;
2673 	}
2674 
2675 	/* Ensure that all CPU reads are completed before installing a fence
2676 	 * and all writes before removing the fence.
2677 	 */
2678 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679 		mb();
2680 
2681 	obj->fenced_gpu_access = false;
2682 	return 0;
2683 }
2684 
2685 int
2686 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2687 {
2688 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2689 	int ret;
2690 
2691 	ret = i915_gem_object_flush_fence(obj);
2692 	if (ret)
2693 		return ret;
2694 
2695 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2696 		return 0;
2697 
2698 	i915_gem_object_update_fence(obj,
2699 				     &dev_priv->fence_regs[obj->fence_reg],
2700 				     false);
2701 	i915_gem_object_fence_lost(obj);
2702 
2703 	return 0;
2704 }
2705 
2706 static struct drm_i915_fence_reg *
2707 i915_find_fence_reg(struct drm_device *dev)
2708 {
2709 	struct drm_i915_private *dev_priv = dev->dev_private;
2710 	struct drm_i915_fence_reg *reg, *avail;
2711 	int i;
2712 
2713 	/* First try to find a free reg */
2714 	avail = NULL;
2715 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716 		reg = &dev_priv->fence_regs[i];
2717 		if (!reg->obj)
2718 			return reg;
2719 
2720 		if (!reg->pin_count)
2721 			avail = reg;
2722 	}
2723 
2724 	if (avail == NULL)
2725 		return NULL;
2726 
2727 	/* None available, try to steal one or wait for a user to finish */
2728 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2729 		if (reg->pin_count)
2730 			continue;
2731 
2732 		return reg;
2733 	}
2734 
2735 	return NULL;
2736 }
2737 
2738 /**
2739  * i915_gem_object_get_fence - set up fencing for an object
2740  * @obj: object to map through a fence reg
2741  *
2742  * When mapping objects through the GTT, userspace wants to be able to write
2743  * to them without having to worry about swizzling if the object is tiled.
2744  * This function walks the fence regs looking for a free one for @obj,
2745  * stealing one if it can't find any.
2746  *
2747  * It then sets up the reg based on the object's properties: address, pitch
2748  * and tiling format.
2749  *
2750  * For an untiled surface, this removes any existing fence.
2751  */
2752 int
2753 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2754 {
2755 	struct drm_device *dev = obj->base.dev;
2756 	struct drm_i915_private *dev_priv = dev->dev_private;
2757 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2758 	struct drm_i915_fence_reg *reg;
2759 	int ret;
2760 
2761 	/* Have we updated the tiling parameters upon the object and so
2762 	 * will need to serialise the write to the associated fence register?
2763 	 */
2764 	if (obj->fence_dirty) {
2765 		ret = i915_gem_object_flush_fence(obj);
2766 		if (ret)
2767 			return ret;
2768 	}
2769 
2770 	/* Just update our place in the LRU if our fence is getting reused. */
2771 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772 		reg = &dev_priv->fence_regs[obj->fence_reg];
2773 		if (!obj->fence_dirty) {
2774 			list_move_tail(&reg->lru_list,
2775 				       &dev_priv->mm.fence_list);
2776 			return 0;
2777 		}
2778 	} else if (enable) {
2779 		reg = i915_find_fence_reg(dev);
2780 		if (reg == NULL)
2781 			return -EDEADLK;
2782 
2783 		if (reg->obj) {
2784 			struct drm_i915_gem_object *old = reg->obj;
2785 
2786 			ret = i915_gem_object_flush_fence(old);
2787 			if (ret)
2788 				return ret;
2789 
2790 			i915_gem_object_fence_lost(old);
2791 		}
2792 	} else
2793 		return 0;
2794 
2795 	i915_gem_object_update_fence(obj, reg, enable);
2796 	obj->fence_dirty = false;
2797 
2798 	return 0;
2799 }
2800 
2801 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802 				     struct drm_mm_node *gtt_space,
2803 				     unsigned long cache_level)
2804 {
2805 	struct drm_mm_node *other;
2806 
2807 	/* On non-LLC machines we have to be careful when putting differing
2808 	 * types of snoopable memory together to avoid the prefetcher
2809 	 * crossing memory domains and dieing.
2810 	 */
2811 	if (HAS_LLC(dev))
2812 		return true;
2813 
2814 	if (gtt_space == NULL)
2815 		return true;
2816 
2817 	if (list_empty(&gtt_space->node_list))
2818 		return true;
2819 
2820 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2822 		return false;
2823 
2824 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826 		return false;
2827 
2828 	return true;
2829 }
2830 
2831 static void i915_gem_verify_gtt(struct drm_device *dev)
2832 {
2833 #if WATCH_GTT
2834 	struct drm_i915_private *dev_priv = dev->dev_private;
2835 	struct drm_i915_gem_object *obj;
2836 	int err = 0;
2837 
2838 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839 		if (obj->gtt_space == NULL) {
2840 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841 			err++;
2842 			continue;
2843 		}
2844 
2845 		if (obj->cache_level != obj->gtt_space->color) {
2846 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847 			       obj->gtt_space->start,
2848 			       obj->gtt_space->start + obj->gtt_space->size,
2849 			       obj->cache_level,
2850 			       obj->gtt_space->color);
2851 			err++;
2852 			continue;
2853 		}
2854 
2855 		if (!i915_gem_valid_gtt_space(dev,
2856 					      obj->gtt_space,
2857 					      obj->cache_level)) {
2858 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859 			       obj->gtt_space->start,
2860 			       obj->gtt_space->start + obj->gtt_space->size,
2861 			       obj->cache_level);
2862 			err++;
2863 			continue;
2864 		}
2865 	}
2866 
2867 	WARN_ON(err);
2868 #endif
2869 }
2870 
2871 /**
2872  * Finds free space in the GTT aperture and binds the object there.
2873  */
2874 static int
2875 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2876 			    unsigned alignment,
2877 			    bool map_and_fenceable,
2878 			    bool nonblocking)
2879 {
2880 	struct drm_device *dev = obj->base.dev;
2881 	drm_i915_private_t *dev_priv = dev->dev_private;
2882 	struct drm_mm_node *free_space;
2883 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2884 	bool mappable, fenceable;
2885 	int ret;
2886 
2887 	if (obj->madv != I915_MADV_WILLNEED) {
2888 		DRM_ERROR("Attempting to bind a purgeable object\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	fence_size = i915_gem_get_gtt_size(dev,
2893 					   obj->base.size,
2894 					   obj->tiling_mode);
2895 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2896 						     obj->base.size,
2897 						     obj->tiling_mode);
2898 	unfenced_alignment =
2899 		i915_gem_get_unfenced_gtt_alignment(dev,
2900 						    obj->base.size,
2901 						    obj->tiling_mode);
2902 
2903 	if (alignment == 0)
2904 		alignment = map_and_fenceable ? fence_alignment :
2905 						unfenced_alignment;
2906 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2907 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908 		return -EINVAL;
2909 	}
2910 
2911 	size = map_and_fenceable ? fence_size : obj->base.size;
2912 
2913 	/* If the object is bigger than the entire aperture, reject it early
2914 	 * before evicting everything in a vain attempt to find space.
2915 	 */
2916 	if (obj->base.size >
2917 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2918 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919 		return -E2BIG;
2920 	}
2921 
2922 	ret = i915_gem_object_get_pages(obj);
2923 	if (ret)
2924 		return ret;
2925 
2926  search_free:
2927 	if (map_and_fenceable)
2928 		free_space =
2929 			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2930 							  size, alignment, obj->cache_level,
2931 							  0, dev_priv->mm.gtt_mappable_end,
2932 							  false);
2933 	else
2934 		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2935 						      size, alignment, obj->cache_level,
2936 						      false);
2937 
2938 	if (free_space != NULL) {
2939 		if (map_and_fenceable)
2940 			obj->gtt_space =
2941 				drm_mm_get_block_range_generic(free_space,
2942 							       size, alignment, obj->cache_level,
2943 							       0, dev_priv->mm.gtt_mappable_end,
2944 							       false);
2945 		else
2946 			obj->gtt_space =
2947 				drm_mm_get_block_generic(free_space,
2948 							 size, alignment, obj->cache_level,
2949 							 false);
2950 	}
2951 	if (obj->gtt_space == NULL) {
2952 		ret = i915_gem_evict_something(dev, size, alignment,
2953 					       obj->cache_level,
2954 					       map_and_fenceable,
2955 					       nonblocking);
2956 		if (ret)
2957 			return ret;
2958 
2959 		goto search_free;
2960 	}
2961 	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2962 					      obj->gtt_space,
2963 					      obj->cache_level))) {
2964 		drm_mm_put_block(obj->gtt_space);
2965 		obj->gtt_space = NULL;
2966 		return -EINVAL;
2967 	}
2968 
2969 
2970 	ret = i915_gem_gtt_prepare_object(obj);
2971 	if (ret) {
2972 		drm_mm_put_block(obj->gtt_space);
2973 		obj->gtt_space = NULL;
2974 		return ret;
2975 	}
2976 
2977 	if (!dev_priv->mm.aliasing_ppgtt)
2978 		i915_gem_gtt_bind_object(obj, obj->cache_level);
2979 
2980 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2981 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982 
2983 	obj->gtt_offset = obj->gtt_space->start;
2984 
2985 	fenceable =
2986 		obj->gtt_space->size == fence_size &&
2987 		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2988 
2989 	mappable =
2990 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2991 
2992 	obj->map_and_fenceable = mappable && fenceable;
2993 
2994 	trace_i915_gem_object_bind(obj, map_and_fenceable);
2995 	i915_gem_verify_gtt(dev);
2996 	return 0;
2997 }
2998 
2999 void
3000 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3001 {
3002 	/* If we don't have a page list set up, then we're not pinned
3003 	 * to GPU, and we can ignore the cache flush because it'll happen
3004 	 * again at bind time.
3005 	 */
3006 	if (obj->pages == NULL)
3007 		return;
3008 
3009 	/* If the GPU is snooping the contents of the CPU cache,
3010 	 * we do not need to manually clear the CPU cache lines.  However,
3011 	 * the caches are only snooped when the render cache is
3012 	 * flushed/invalidated.  As we always have to emit invalidations
3013 	 * and flushes when moving into and out of the RENDER domain, correct
3014 	 * snooping behaviour occurs naturally as the result of our domain
3015 	 * tracking.
3016 	 */
3017 	if (obj->cache_level != I915_CACHE_NONE)
3018 		return;
3019 
3020 	trace_i915_gem_object_clflush(obj);
3021 
3022 	drm_clflush_sg(obj->pages);
3023 }
3024 
3025 /** Flushes the GTT write domain for the object if it's dirty. */
3026 static void
3027 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3028 {
3029 	uint32_t old_write_domain;
3030 
3031 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3032 		return;
3033 
3034 	/* No actual flushing is required for the GTT write domain.  Writes
3035 	 * to it immediately go to main memory as far as we know, so there's
3036 	 * no chipset flush.  It also doesn't land in render cache.
3037 	 *
3038 	 * However, we do have to enforce the order so that all writes through
3039 	 * the GTT land before any writes to the device, such as updates to
3040 	 * the GATT itself.
3041 	 */
3042 	wmb();
3043 
3044 	old_write_domain = obj->base.write_domain;
3045 	obj->base.write_domain = 0;
3046 
3047 	trace_i915_gem_object_change_domain(obj,
3048 					    obj->base.read_domains,
3049 					    old_write_domain);
3050 }
3051 
3052 /** Flushes the CPU write domain for the object if it's dirty. */
3053 static void
3054 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3055 {
3056 	uint32_t old_write_domain;
3057 
3058 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3059 		return;
3060 
3061 	i915_gem_clflush_object(obj);
3062 	intel_gtt_chipset_flush();
3063 	old_write_domain = obj->base.write_domain;
3064 	obj->base.write_domain = 0;
3065 
3066 	trace_i915_gem_object_change_domain(obj,
3067 					    obj->base.read_domains,
3068 					    old_write_domain);
3069 }
3070 
3071 /**
3072  * Moves a single object to the GTT read, and possibly write domain.
3073  *
3074  * This function returns when the move is complete, including waiting on
3075  * flushes to occur.
3076  */
3077 int
3078 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3079 {
3080 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3081 	uint32_t old_write_domain, old_read_domains;
3082 	int ret;
3083 
3084 	/* Not valid to be called on unbound objects. */
3085 	if (obj->gtt_space == NULL)
3086 		return -EINVAL;
3087 
3088 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089 		return 0;
3090 
3091 	ret = i915_gem_object_wait_rendering(obj, !write);
3092 	if (ret)
3093 		return ret;
3094 
3095 	i915_gem_object_flush_cpu_write_domain(obj);
3096 
3097 	old_write_domain = obj->base.write_domain;
3098 	old_read_domains = obj->base.read_domains;
3099 
3100 	/* It should now be out of any other write domains, and we can update
3101 	 * the domain values for our changes.
3102 	 */
3103 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105 	if (write) {
3106 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108 		obj->dirty = 1;
3109 	}
3110 
3111 	trace_i915_gem_object_change_domain(obj,
3112 					    old_read_domains,
3113 					    old_write_domain);
3114 
3115 	/* And bump the LRU for this access */
3116 	if (i915_gem_object_is_inactive(obj))
3117 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118 
3119 	return 0;
3120 }
3121 
3122 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3123 				    enum i915_cache_level cache_level)
3124 {
3125 	struct drm_device *dev = obj->base.dev;
3126 	drm_i915_private_t *dev_priv = dev->dev_private;
3127 	int ret;
3128 
3129 	if (obj->cache_level == cache_level)
3130 		return 0;
3131 
3132 	if (obj->pin_count) {
3133 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3134 		return -EBUSY;
3135 	}
3136 
3137 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138 		ret = i915_gem_object_unbind(obj);
3139 		if (ret)
3140 			return ret;
3141 	}
3142 
3143 	if (obj->gtt_space) {
3144 		ret = i915_gem_object_finish_gpu(obj);
3145 		if (ret)
3146 			return ret;
3147 
3148 		i915_gem_object_finish_gtt(obj);
3149 
3150 		/* Before SandyBridge, you could not use tiling or fence
3151 		 * registers with snooped memory, so relinquish any fences
3152 		 * currently pointing to our region in the aperture.
3153 		 */
3154 		if (INTEL_INFO(dev)->gen < 6) {
3155 			ret = i915_gem_object_put_fence(obj);
3156 			if (ret)
3157 				return ret;
3158 		}
3159 
3160 		if (obj->has_global_gtt_mapping)
3161 			i915_gem_gtt_bind_object(obj, cache_level);
3162 		if (obj->has_aliasing_ppgtt_mapping)
3163 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164 					       obj, cache_level);
3165 
3166 		obj->gtt_space->color = cache_level;
3167 	}
3168 
3169 	if (cache_level == I915_CACHE_NONE) {
3170 		u32 old_read_domains, old_write_domain;
3171 
3172 		/* If we're coming from LLC cached, then we haven't
3173 		 * actually been tracking whether the data is in the
3174 		 * CPU cache or not, since we only allow one bit set
3175 		 * in obj->write_domain and have been skipping the clflushes.
3176 		 * Just set it to the CPU cache for now.
3177 		 */
3178 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180 
3181 		old_read_domains = obj->base.read_domains;
3182 		old_write_domain = obj->base.write_domain;
3183 
3184 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186 
3187 		trace_i915_gem_object_change_domain(obj,
3188 						    old_read_domains,
3189 						    old_write_domain);
3190 	}
3191 
3192 	obj->cache_level = cache_level;
3193 	i915_gem_verify_gtt(dev);
3194 	return 0;
3195 }
3196 
3197 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3198 			       struct drm_file *file)
3199 {
3200 	struct drm_i915_gem_caching *args = data;
3201 	struct drm_i915_gem_object *obj;
3202 	int ret;
3203 
3204 	ret = i915_mutex_lock_interruptible(dev);
3205 	if (ret)
3206 		return ret;
3207 
3208 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209 	if (&obj->base == NULL) {
3210 		ret = -ENOENT;
3211 		goto unlock;
3212 	}
3213 
3214 	args->caching = obj->cache_level != I915_CACHE_NONE;
3215 
3216 	drm_gem_object_unreference(&obj->base);
3217 unlock:
3218 	mutex_unlock(&dev->struct_mutex);
3219 	return ret;
3220 }
3221 
3222 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3223 			       struct drm_file *file)
3224 {
3225 	struct drm_i915_gem_caching *args = data;
3226 	struct drm_i915_gem_object *obj;
3227 	enum i915_cache_level level;
3228 	int ret;
3229 
3230 	switch (args->caching) {
3231 	case I915_CACHING_NONE:
3232 		level = I915_CACHE_NONE;
3233 		break;
3234 	case I915_CACHING_CACHED:
3235 		level = I915_CACHE_LLC;
3236 		break;
3237 	default:
3238 		return -EINVAL;
3239 	}
3240 
3241 	ret = i915_mutex_lock_interruptible(dev);
3242 	if (ret)
3243 		return ret;
3244 
3245 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 	if (&obj->base == NULL) {
3247 		ret = -ENOENT;
3248 		goto unlock;
3249 	}
3250 
3251 	ret = i915_gem_object_set_cache_level(obj, level);
3252 
3253 	drm_gem_object_unreference(&obj->base);
3254 unlock:
3255 	mutex_unlock(&dev->struct_mutex);
3256 	return ret;
3257 }
3258 
3259 /*
3260  * Prepare buffer for display plane (scanout, cursors, etc).
3261  * Can be called from an uninterruptible phase (modesetting) and allows
3262  * any flushes to be pipelined (for pageflips).
3263  */
3264 int
3265 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3266 				     u32 alignment,
3267 				     struct intel_ring_buffer *pipelined)
3268 {
3269 	u32 old_read_domains, old_write_domain;
3270 	int ret;
3271 
3272 	if (pipelined != obj->ring) {
3273 		ret = i915_gem_object_sync(obj, pipelined);
3274 		if (ret)
3275 			return ret;
3276 	}
3277 
3278 	/* The display engine is not coherent with the LLC cache on gen6.  As
3279 	 * a result, we make sure that the pinning that is about to occur is
3280 	 * done with uncached PTEs. This is lowest common denominator for all
3281 	 * chipsets.
3282 	 *
3283 	 * However for gen6+, we could do better by using the GFDT bit instead
3284 	 * of uncaching, which would allow us to flush all the LLC-cached data
3285 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286 	 */
3287 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3288 	if (ret)
3289 		return ret;
3290 
3291 	/* As the user may map the buffer once pinned in the display plane
3292 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3293 	 * always use map_and_fenceable for all scanout buffers.
3294 	 */
3295 	ret = i915_gem_object_pin(obj, alignment, true, false);
3296 	if (ret)
3297 		return ret;
3298 
3299 	i915_gem_object_flush_cpu_write_domain(obj);
3300 
3301 	old_write_domain = obj->base.write_domain;
3302 	old_read_domains = obj->base.read_domains;
3303 
3304 	/* It should now be out of any other write domains, and we can update
3305 	 * the domain values for our changes.
3306 	 */
3307 	obj->base.write_domain = 0;
3308 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3309 
3310 	trace_i915_gem_object_change_domain(obj,
3311 					    old_read_domains,
3312 					    old_write_domain);
3313 
3314 	return 0;
3315 }
3316 
3317 int
3318 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3319 {
3320 	int ret;
3321 
3322 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3323 		return 0;
3324 
3325 	ret = i915_gem_object_wait_rendering(obj, false);
3326 	if (ret)
3327 		return ret;
3328 
3329 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3330 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3331 	return 0;
3332 }
3333 
3334 /**
3335  * Moves a single object to the CPU read, and possibly write domain.
3336  *
3337  * This function returns when the move is complete, including waiting on
3338  * flushes to occur.
3339  */
3340 int
3341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3342 {
3343 	uint32_t old_write_domain, old_read_domains;
3344 	int ret;
3345 
3346 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347 		return 0;
3348 
3349 	ret = i915_gem_object_wait_rendering(obj, !write);
3350 	if (ret)
3351 		return ret;
3352 
3353 	i915_gem_object_flush_gtt_write_domain(obj);
3354 
3355 	old_write_domain = obj->base.write_domain;
3356 	old_read_domains = obj->base.read_domains;
3357 
3358 	/* Flush the CPU cache if it's still invalid. */
3359 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3360 		i915_gem_clflush_object(obj);
3361 
3362 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3363 	}
3364 
3365 	/* It should now be out of any other write domains, and we can update
3366 	 * the domain values for our changes.
3367 	 */
3368 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3369 
3370 	/* If we're writing through the CPU, then the GPU read domains will
3371 	 * need to be invalidated at next use.
3372 	 */
3373 	if (write) {
3374 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3376 	}
3377 
3378 	trace_i915_gem_object_change_domain(obj,
3379 					    old_read_domains,
3380 					    old_write_domain);
3381 
3382 	return 0;
3383 }
3384 
3385 /* Throttle our rendering by waiting until the ring has completed our requests
3386  * emitted over 20 msec ago.
3387  *
3388  * Note that if we were to use the current jiffies each time around the loop,
3389  * we wouldn't escape the function with any frames outstanding if the time to
3390  * render a frame was over 20ms.
3391  *
3392  * This should get us reasonable parallelism between CPU and GPU but also
3393  * relatively low latency when blocking on a particular request to finish.
3394  */
3395 static int
3396 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3397 {
3398 	struct drm_i915_private *dev_priv = dev->dev_private;
3399 	struct drm_i915_file_private *file_priv = file->driver_priv;
3400 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3401 	struct drm_i915_gem_request *request;
3402 	struct intel_ring_buffer *ring = NULL;
3403 	u32 seqno = 0;
3404 	int ret;
3405 
3406 	if (atomic_read(&dev_priv->mm.wedged))
3407 		return -EIO;
3408 
3409 	spin_lock(&file_priv->mm.lock);
3410 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3411 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3412 			break;
3413 
3414 		ring = request->ring;
3415 		seqno = request->seqno;
3416 	}
3417 	spin_unlock(&file_priv->mm.lock);
3418 
3419 	if (seqno == 0)
3420 		return 0;
3421 
3422 	ret = __wait_seqno(ring, seqno, true, NULL);
3423 	if (ret == 0)
3424 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3425 
3426 	return ret;
3427 }
3428 
3429 int
3430 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3431 		    uint32_t alignment,
3432 		    bool map_and_fenceable,
3433 		    bool nonblocking)
3434 {
3435 	int ret;
3436 
3437 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3438 		return -EBUSY;
3439 
3440 	if (obj->gtt_space != NULL) {
3441 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3443 			WARN(obj->pin_count,
3444 			     "bo is already pinned with incorrect alignment:"
3445 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446 			     " obj->map_and_fenceable=%d\n",
3447 			     obj->gtt_offset, alignment,
3448 			     map_and_fenceable,
3449 			     obj->map_and_fenceable);
3450 			ret = i915_gem_object_unbind(obj);
3451 			if (ret)
3452 				return ret;
3453 		}
3454 	}
3455 
3456 	if (obj->gtt_space == NULL) {
3457 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3458 						  map_and_fenceable,
3459 						  nonblocking);
3460 		if (ret)
3461 			return ret;
3462 	}
3463 
3464 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3465 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3466 
3467 	obj->pin_count++;
3468 	obj->pin_mappable |= map_and_fenceable;
3469 
3470 	return 0;
3471 }
3472 
3473 void
3474 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3475 {
3476 	BUG_ON(obj->pin_count == 0);
3477 	BUG_ON(obj->gtt_space == NULL);
3478 
3479 	if (--obj->pin_count == 0)
3480 		obj->pin_mappable = false;
3481 }
3482 
3483 int
3484 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3485 		   struct drm_file *file)
3486 {
3487 	struct drm_i915_gem_pin *args = data;
3488 	struct drm_i915_gem_object *obj;
3489 	int ret;
3490 
3491 	ret = i915_mutex_lock_interruptible(dev);
3492 	if (ret)
3493 		return ret;
3494 
3495 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3496 	if (&obj->base == NULL) {
3497 		ret = -ENOENT;
3498 		goto unlock;
3499 	}
3500 
3501 	if (obj->madv != I915_MADV_WILLNEED) {
3502 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3503 		ret = -EINVAL;
3504 		goto out;
3505 	}
3506 
3507 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3508 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3509 			  args->handle);
3510 		ret = -EINVAL;
3511 		goto out;
3512 	}
3513 
3514 	obj->user_pin_count++;
3515 	obj->pin_filp = file;
3516 	if (obj->user_pin_count == 1) {
3517 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3518 		if (ret)
3519 			goto out;
3520 	}
3521 
3522 	/* XXX - flush the CPU caches for pinned objects
3523 	 * as the X server doesn't manage domains yet
3524 	 */
3525 	i915_gem_object_flush_cpu_write_domain(obj);
3526 	args->offset = obj->gtt_offset;
3527 out:
3528 	drm_gem_object_unreference(&obj->base);
3529 unlock:
3530 	mutex_unlock(&dev->struct_mutex);
3531 	return ret;
3532 }
3533 
3534 int
3535 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3536 		     struct drm_file *file)
3537 {
3538 	struct drm_i915_gem_pin *args = data;
3539 	struct drm_i915_gem_object *obj;
3540 	int ret;
3541 
3542 	ret = i915_mutex_lock_interruptible(dev);
3543 	if (ret)
3544 		return ret;
3545 
3546 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3547 	if (&obj->base == NULL) {
3548 		ret = -ENOENT;
3549 		goto unlock;
3550 	}
3551 
3552 	if (obj->pin_filp != file) {
3553 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3554 			  args->handle);
3555 		ret = -EINVAL;
3556 		goto out;
3557 	}
3558 	obj->user_pin_count--;
3559 	if (obj->user_pin_count == 0) {
3560 		obj->pin_filp = NULL;
3561 		i915_gem_object_unpin(obj);
3562 	}
3563 
3564 out:
3565 	drm_gem_object_unreference(&obj->base);
3566 unlock:
3567 	mutex_unlock(&dev->struct_mutex);
3568 	return ret;
3569 }
3570 
3571 int
3572 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3573 		    struct drm_file *file)
3574 {
3575 	struct drm_i915_gem_busy *args = data;
3576 	struct drm_i915_gem_object *obj;
3577 	int ret;
3578 
3579 	ret = i915_mutex_lock_interruptible(dev);
3580 	if (ret)
3581 		return ret;
3582 
3583 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3584 	if (&obj->base == NULL) {
3585 		ret = -ENOENT;
3586 		goto unlock;
3587 	}
3588 
3589 	/* Count all active objects as busy, even if they are currently not used
3590 	 * by the gpu. Users of this interface expect objects to eventually
3591 	 * become non-busy without any further actions, therefore emit any
3592 	 * necessary flushes here.
3593 	 */
3594 	ret = i915_gem_object_flush_active(obj);
3595 
3596 	args->busy = obj->active;
3597 	if (obj->ring) {
3598 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3599 		args->busy |= intel_ring_flag(obj->ring) << 16;
3600 	}
3601 
3602 	drm_gem_object_unreference(&obj->base);
3603 unlock:
3604 	mutex_unlock(&dev->struct_mutex);
3605 	return ret;
3606 }
3607 
3608 int
3609 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3610 			struct drm_file *file_priv)
3611 {
3612 	return i915_gem_ring_throttle(dev, file_priv);
3613 }
3614 
3615 int
3616 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3617 		       struct drm_file *file_priv)
3618 {
3619 	struct drm_i915_gem_madvise *args = data;
3620 	struct drm_i915_gem_object *obj;
3621 	int ret;
3622 
3623 	switch (args->madv) {
3624 	case I915_MADV_DONTNEED:
3625 	case I915_MADV_WILLNEED:
3626 	    break;
3627 	default:
3628 	    return -EINVAL;
3629 	}
3630 
3631 	ret = i915_mutex_lock_interruptible(dev);
3632 	if (ret)
3633 		return ret;
3634 
3635 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3636 	if (&obj->base == NULL) {
3637 		ret = -ENOENT;
3638 		goto unlock;
3639 	}
3640 
3641 	if (obj->pin_count) {
3642 		ret = -EINVAL;
3643 		goto out;
3644 	}
3645 
3646 	if (obj->madv != __I915_MADV_PURGED)
3647 		obj->madv = args->madv;
3648 
3649 	/* if the object is no longer attached, discard its backing storage */
3650 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3651 		i915_gem_object_truncate(obj);
3652 
3653 	args->retained = obj->madv != __I915_MADV_PURGED;
3654 
3655 out:
3656 	drm_gem_object_unreference(&obj->base);
3657 unlock:
3658 	mutex_unlock(&dev->struct_mutex);
3659 	return ret;
3660 }
3661 
3662 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3663 			  const struct drm_i915_gem_object_ops *ops)
3664 {
3665 	INIT_LIST_HEAD(&obj->mm_list);
3666 	INIT_LIST_HEAD(&obj->gtt_list);
3667 	INIT_LIST_HEAD(&obj->ring_list);
3668 	INIT_LIST_HEAD(&obj->exec_list);
3669 
3670 	obj->ops = ops;
3671 
3672 	obj->fence_reg = I915_FENCE_REG_NONE;
3673 	obj->madv = I915_MADV_WILLNEED;
3674 	/* Avoid an unnecessary call to unbind on the first bind. */
3675 	obj->map_and_fenceable = true;
3676 
3677 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3678 }
3679 
3680 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3681 	.get_pages = i915_gem_object_get_pages_gtt,
3682 	.put_pages = i915_gem_object_put_pages_gtt,
3683 };
3684 
3685 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3686 						  size_t size)
3687 {
3688 	struct drm_i915_gem_object *obj;
3689 	struct address_space *mapping;
3690 	u32 mask;
3691 
3692 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3693 	if (obj == NULL)
3694 		return NULL;
3695 
3696 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3697 		kfree(obj);
3698 		return NULL;
3699 	}
3700 
3701 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3702 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3703 		/* 965gm cannot relocate objects above 4GiB. */
3704 		mask &= ~__GFP_HIGHMEM;
3705 		mask |= __GFP_DMA32;
3706 	}
3707 
3708 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3709 	mapping_set_gfp_mask(mapping, mask);
3710 
3711 	i915_gem_object_init(obj, &i915_gem_object_ops);
3712 
3713 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3715 
3716 	if (HAS_LLC(dev)) {
3717 		/* On some devices, we can have the GPU use the LLC (the CPU
3718 		 * cache) for about a 10% performance improvement
3719 		 * compared to uncached.  Graphics requests other than
3720 		 * display scanout are coherent with the CPU in
3721 		 * accessing this cache.  This means in this mode we
3722 		 * don't need to clflush on the CPU side, and on the
3723 		 * GPU side we only need to flush internal caches to
3724 		 * get data visible to the CPU.
3725 		 *
3726 		 * However, we maintain the display planes as UC, and so
3727 		 * need to rebind when first used as such.
3728 		 */
3729 		obj->cache_level = I915_CACHE_LLC;
3730 	} else
3731 		obj->cache_level = I915_CACHE_NONE;
3732 
3733 	return obj;
3734 }
3735 
3736 int i915_gem_init_object(struct drm_gem_object *obj)
3737 {
3738 	BUG();
3739 
3740 	return 0;
3741 }
3742 
3743 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3744 {
3745 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3746 	struct drm_device *dev = obj->base.dev;
3747 	drm_i915_private_t *dev_priv = dev->dev_private;
3748 
3749 	trace_i915_gem_object_destroy(obj);
3750 
3751 	if (obj->phys_obj)
3752 		i915_gem_detach_phys_object(dev, obj);
3753 
3754 	obj->pin_count = 0;
3755 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3756 		bool was_interruptible;
3757 
3758 		was_interruptible = dev_priv->mm.interruptible;
3759 		dev_priv->mm.interruptible = false;
3760 
3761 		WARN_ON(i915_gem_object_unbind(obj));
3762 
3763 		dev_priv->mm.interruptible = was_interruptible;
3764 	}
3765 
3766 	obj->pages_pin_count = 0;
3767 	i915_gem_object_put_pages(obj);
3768 	i915_gem_object_free_mmap_offset(obj);
3769 
3770 	BUG_ON(obj->pages);
3771 
3772 	if (obj->base.import_attach)
3773 		drm_prime_gem_destroy(&obj->base, NULL);
3774 
3775 	drm_gem_object_release(&obj->base);
3776 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3777 
3778 	kfree(obj->bit_17);
3779 	kfree(obj);
3780 }
3781 
3782 int
3783 i915_gem_idle(struct drm_device *dev)
3784 {
3785 	drm_i915_private_t *dev_priv = dev->dev_private;
3786 	int ret;
3787 
3788 	mutex_lock(&dev->struct_mutex);
3789 
3790 	if (dev_priv->mm.suspended) {
3791 		mutex_unlock(&dev->struct_mutex);
3792 		return 0;
3793 	}
3794 
3795 	ret = i915_gpu_idle(dev);
3796 	if (ret) {
3797 		mutex_unlock(&dev->struct_mutex);
3798 		return ret;
3799 	}
3800 	i915_gem_retire_requests(dev);
3801 
3802 	/* Under UMS, be paranoid and evict. */
3803 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3804 		i915_gem_evict_everything(dev);
3805 
3806 	i915_gem_reset_fences(dev);
3807 
3808 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3809 	 * We need to replace this with a semaphore, or something.
3810 	 * And not confound mm.suspended!
3811 	 */
3812 	dev_priv->mm.suspended = 1;
3813 	del_timer_sync(&dev_priv->hangcheck_timer);
3814 
3815 	i915_kernel_lost_context(dev);
3816 	i915_gem_cleanup_ringbuffer(dev);
3817 
3818 	mutex_unlock(&dev->struct_mutex);
3819 
3820 	/* Cancel the retire work handler, which should be idle now. */
3821 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822 
3823 	return 0;
3824 }
3825 
3826 void i915_gem_l3_remap(struct drm_device *dev)
3827 {
3828 	drm_i915_private_t *dev_priv = dev->dev_private;
3829 	u32 misccpctl;
3830 	int i;
3831 
3832 	if (!IS_IVYBRIDGE(dev))
3833 		return;
3834 
3835 	if (!dev_priv->mm.l3_remap_info)
3836 		return;
3837 
3838 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3839 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3840 	POSTING_READ(GEN7_MISCCPCTL);
3841 
3842 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3843 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3844 		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3845 			DRM_DEBUG("0x%x was already programmed to %x\n",
3846 				  GEN7_L3LOG_BASE + i, remap);
3847 		if (remap && !dev_priv->mm.l3_remap_info[i/4])
3848 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3849 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3850 	}
3851 
3852 	/* Make sure all the writes land before disabling dop clock gating */
3853 	POSTING_READ(GEN7_L3LOG_BASE);
3854 
3855 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3856 }
3857 
3858 void i915_gem_init_swizzling(struct drm_device *dev)
3859 {
3860 	drm_i915_private_t *dev_priv = dev->dev_private;
3861 
3862 	if (INTEL_INFO(dev)->gen < 5 ||
3863 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3864 		return;
3865 
3866 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3867 				 DISP_TILE_SURFACE_SWIZZLING);
3868 
3869 	if (IS_GEN5(dev))
3870 		return;
3871 
3872 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3873 	if (IS_GEN6(dev))
3874 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3875 	else
3876 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3877 }
3878 
3879 void i915_gem_init_ppgtt(struct drm_device *dev)
3880 {
3881 	drm_i915_private_t *dev_priv = dev->dev_private;
3882 	uint32_t pd_offset;
3883 	struct intel_ring_buffer *ring;
3884 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3885 	uint32_t __iomem *pd_addr;
3886 	uint32_t pd_entry;
3887 	int i;
3888 
3889 	if (!dev_priv->mm.aliasing_ppgtt)
3890 		return;
3891 
3892 
3893 	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3894 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3895 		dma_addr_t pt_addr;
3896 
3897 		if (dev_priv->mm.gtt->needs_dmar)
3898 			pt_addr = ppgtt->pt_dma_addr[i];
3899 		else
3900 			pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3901 
3902 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3903 		pd_entry |= GEN6_PDE_VALID;
3904 
3905 		writel(pd_entry, pd_addr + i);
3906 	}
3907 	readl(pd_addr);
3908 
3909 	pd_offset = ppgtt->pd_offset;
3910 	pd_offset /= 64; /* in cachelines, */
3911 	pd_offset <<= 16;
3912 
3913 	if (INTEL_INFO(dev)->gen == 6) {
3914 		uint32_t ecochk, gab_ctl, ecobits;
3915 
3916 		ecobits = I915_READ(GAC_ECO_BITS);
3917 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3918 
3919 		gab_ctl = I915_READ(GAB_CTL);
3920 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3921 
3922 		ecochk = I915_READ(GAM_ECOCHK);
3923 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3924 				       ECOCHK_PPGTT_CACHE64B);
3925 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3926 	} else if (INTEL_INFO(dev)->gen >= 7) {
3927 		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3928 		/* GFX_MODE is per-ring on gen7+ */
3929 	}
3930 
3931 	for_each_ring(ring, dev_priv, i) {
3932 		if (INTEL_INFO(dev)->gen >= 7)
3933 			I915_WRITE(RING_MODE_GEN7(ring),
3934 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3935 
3936 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3937 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3938 	}
3939 }
3940 
3941 static bool
3942 intel_enable_blt(struct drm_device *dev)
3943 {
3944 	if (!HAS_BLT(dev))
3945 		return false;
3946 
3947 	/* The blitter was dysfunctional on early prototypes */
3948 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3949 		DRM_INFO("BLT not supported on this pre-production hardware;"
3950 			 " graphics performance will be degraded.\n");
3951 		return false;
3952 	}
3953 
3954 	return true;
3955 }
3956 
3957 int
3958 i915_gem_init_hw(struct drm_device *dev)
3959 {
3960 	drm_i915_private_t *dev_priv = dev->dev_private;
3961 	int ret;
3962 
3963 	if (!intel_enable_gtt())
3964 		return -EIO;
3965 
3966 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3967 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3968 
3969 	i915_gem_l3_remap(dev);
3970 
3971 	i915_gem_init_swizzling(dev);
3972 
3973 	ret = intel_init_render_ring_buffer(dev);
3974 	if (ret)
3975 		return ret;
3976 
3977 	if (HAS_BSD(dev)) {
3978 		ret = intel_init_bsd_ring_buffer(dev);
3979 		if (ret)
3980 			goto cleanup_render_ring;
3981 	}
3982 
3983 	if (intel_enable_blt(dev)) {
3984 		ret = intel_init_blt_ring_buffer(dev);
3985 		if (ret)
3986 			goto cleanup_bsd_ring;
3987 	}
3988 
3989 	dev_priv->next_seqno = 1;
3990 
3991 	/*
3992 	 * XXX: There was some w/a described somewhere suggesting loading
3993 	 * contexts before PPGTT.
3994 	 */
3995 	i915_gem_context_init(dev);
3996 	i915_gem_init_ppgtt(dev);
3997 
3998 	return 0;
3999 
4000 cleanup_bsd_ring:
4001 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4002 cleanup_render_ring:
4003 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4004 	return ret;
4005 }
4006 
4007 static bool
4008 intel_enable_ppgtt(struct drm_device *dev)
4009 {
4010 	if (i915_enable_ppgtt >= 0)
4011 		return i915_enable_ppgtt;
4012 
4013 #ifdef CONFIG_INTEL_IOMMU
4014 	/* Disable ppgtt on SNB if VT-d is on. */
4015 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4016 		return false;
4017 #endif
4018 
4019 	return true;
4020 }
4021 
4022 int i915_gem_init(struct drm_device *dev)
4023 {
4024 	struct drm_i915_private *dev_priv = dev->dev_private;
4025 	unsigned long gtt_size, mappable_size;
4026 	int ret;
4027 
4028 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4029 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4030 
4031 	mutex_lock(&dev->struct_mutex);
4032 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4033 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
4034 		 * aperture accordingly when using aliasing ppgtt. */
4035 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4036 
4037 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4038 
4039 		ret = i915_gem_init_aliasing_ppgtt(dev);
4040 		if (ret) {
4041 			mutex_unlock(&dev->struct_mutex);
4042 			return ret;
4043 		}
4044 	} else {
4045 		/* Let GEM Manage all of the aperture.
4046 		 *
4047 		 * However, leave one page at the end still bound to the scratch
4048 		 * page.  There are a number of places where the hardware
4049 		 * apparently prefetches past the end of the object, and we've
4050 		 * seen multiple hangs with the GPU head pointer stuck in a
4051 		 * batchbuffer bound at the last page of the aperture.  One page
4052 		 * should be enough to keep any prefetching inside of the
4053 		 * aperture.
4054 		 */
4055 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4056 					 gtt_size);
4057 	}
4058 
4059 	ret = i915_gem_init_hw(dev);
4060 	mutex_unlock(&dev->struct_mutex);
4061 	if (ret) {
4062 		i915_gem_cleanup_aliasing_ppgtt(dev);
4063 		return ret;
4064 	}
4065 
4066 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4067 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068 		dev_priv->dri1.allow_batchbuffer = 1;
4069 	return 0;
4070 }
4071 
4072 void
4073 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4074 {
4075 	drm_i915_private_t *dev_priv = dev->dev_private;
4076 	struct intel_ring_buffer *ring;
4077 	int i;
4078 
4079 	for_each_ring(ring, dev_priv, i)
4080 		intel_cleanup_ring_buffer(ring);
4081 }
4082 
4083 int
4084 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4085 		       struct drm_file *file_priv)
4086 {
4087 	drm_i915_private_t *dev_priv = dev->dev_private;
4088 	int ret;
4089 
4090 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4091 		return 0;
4092 
4093 	if (atomic_read(&dev_priv->mm.wedged)) {
4094 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4095 		atomic_set(&dev_priv->mm.wedged, 0);
4096 	}
4097 
4098 	mutex_lock(&dev->struct_mutex);
4099 	dev_priv->mm.suspended = 0;
4100 
4101 	ret = i915_gem_init_hw(dev);
4102 	if (ret != 0) {
4103 		mutex_unlock(&dev->struct_mutex);
4104 		return ret;
4105 	}
4106 
4107 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4108 	mutex_unlock(&dev->struct_mutex);
4109 
4110 	ret = drm_irq_install(dev);
4111 	if (ret)
4112 		goto cleanup_ringbuffer;
4113 
4114 	return 0;
4115 
4116 cleanup_ringbuffer:
4117 	mutex_lock(&dev->struct_mutex);
4118 	i915_gem_cleanup_ringbuffer(dev);
4119 	dev_priv->mm.suspended = 1;
4120 	mutex_unlock(&dev->struct_mutex);
4121 
4122 	return ret;
4123 }
4124 
4125 int
4126 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4127 		       struct drm_file *file_priv)
4128 {
4129 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4130 		return 0;
4131 
4132 	drm_irq_uninstall(dev);
4133 	return i915_gem_idle(dev);
4134 }
4135 
4136 void
4137 i915_gem_lastclose(struct drm_device *dev)
4138 {
4139 	int ret;
4140 
4141 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4142 		return;
4143 
4144 	ret = i915_gem_idle(dev);
4145 	if (ret)
4146 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4147 }
4148 
4149 static void
4150 init_ring_lists(struct intel_ring_buffer *ring)
4151 {
4152 	INIT_LIST_HEAD(&ring->active_list);
4153 	INIT_LIST_HEAD(&ring->request_list);
4154 }
4155 
4156 void
4157 i915_gem_load(struct drm_device *dev)
4158 {
4159 	int i;
4160 	drm_i915_private_t *dev_priv = dev->dev_private;
4161 
4162 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4163 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4164 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4165 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4166 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4167 	for (i = 0; i < I915_NUM_RINGS; i++)
4168 		init_ring_lists(&dev_priv->ring[i]);
4169 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4170 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4171 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4172 			  i915_gem_retire_work_handler);
4173 	init_completion(&dev_priv->error_completion);
4174 
4175 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4176 	if (IS_GEN3(dev)) {
4177 		I915_WRITE(MI_ARB_STATE,
4178 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4179 	}
4180 
4181 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4182 
4183 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4184 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4185 		dev_priv->fence_reg_start = 3;
4186 
4187 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4188 		dev_priv->num_fence_regs = 16;
4189 	else
4190 		dev_priv->num_fence_regs = 8;
4191 
4192 	/* Initialize fence registers to zero */
4193 	i915_gem_reset_fences(dev);
4194 
4195 	i915_gem_detect_bit_6_swizzle(dev);
4196 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4197 
4198 	dev_priv->mm.interruptible = true;
4199 
4200 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204 
4205 /*
4206  * Create a physically contiguous memory object for this object
4207  * e.g. for cursor + overlay regs
4208  */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210 				     int id, int size, int align)
4211 {
4212 	drm_i915_private_t *dev_priv = dev->dev_private;
4213 	struct drm_i915_gem_phys_object *phys_obj;
4214 	int ret;
4215 
4216 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4217 		return 0;
4218 
4219 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220 	if (!phys_obj)
4221 		return -ENOMEM;
4222 
4223 	phys_obj->id = id;
4224 
4225 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4226 	if (!phys_obj->handle) {
4227 		ret = -ENOMEM;
4228 		goto kfree_obj;
4229 	}
4230 #ifdef CONFIG_X86
4231 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233 
4234 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235 
4236 	return 0;
4237 kfree_obj:
4238 	kfree(phys_obj);
4239 	return ret;
4240 }
4241 
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244 	drm_i915_private_t *dev_priv = dev->dev_private;
4245 	struct drm_i915_gem_phys_object *phys_obj;
4246 
4247 	if (!dev_priv->mm.phys_objs[id - 1])
4248 		return;
4249 
4250 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4251 	if (phys_obj->cur_obj) {
4252 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253 	}
4254 
4255 #ifdef CONFIG_X86
4256 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258 	drm_pci_free(dev, phys_obj->handle);
4259 	kfree(phys_obj);
4260 	dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262 
4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265 	int i;
4266 
4267 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268 		i915_gem_free_phys_object(dev, i);
4269 }
4270 
4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272 				 struct drm_i915_gem_object *obj)
4273 {
4274 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4275 	char *vaddr;
4276 	int i;
4277 	int page_count;
4278 
4279 	if (!obj->phys_obj)
4280 		return;
4281 	vaddr = obj->phys_obj->handle->vaddr;
4282 
4283 	page_count = obj->base.size / PAGE_SIZE;
4284 	for (i = 0; i < page_count; i++) {
4285 		struct page *page = shmem_read_mapping_page(mapping, i);
4286 		if (!IS_ERR(page)) {
4287 			char *dst = kmap_atomic(page);
4288 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289 			kunmap_atomic(dst);
4290 
4291 			drm_clflush_pages(&page, 1);
4292 
4293 			set_page_dirty(page);
4294 			mark_page_accessed(page);
4295 			page_cache_release(page);
4296 		}
4297 	}
4298 	intel_gtt_chipset_flush();
4299 
4300 	obj->phys_obj->cur_obj = NULL;
4301 	obj->phys_obj = NULL;
4302 }
4303 
4304 int
4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306 			    struct drm_i915_gem_object *obj,
4307 			    int id,
4308 			    int align)
4309 {
4310 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4311 	drm_i915_private_t *dev_priv = dev->dev_private;
4312 	int ret = 0;
4313 	int page_count;
4314 	int i;
4315 
4316 	if (id > I915_MAX_PHYS_OBJECT)
4317 		return -EINVAL;
4318 
4319 	if (obj->phys_obj) {
4320 		if (obj->phys_obj->id == id)
4321 			return 0;
4322 		i915_gem_detach_phys_object(dev, obj);
4323 	}
4324 
4325 	/* create a new object */
4326 	if (!dev_priv->mm.phys_objs[id - 1]) {
4327 		ret = i915_gem_init_phys_object(dev, id,
4328 						obj->base.size, align);
4329 		if (ret) {
4330 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4331 				  id, obj->base.size);
4332 			return ret;
4333 		}
4334 	}
4335 
4336 	/* bind to the object */
4337 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338 	obj->phys_obj->cur_obj = obj;
4339 
4340 	page_count = obj->base.size / PAGE_SIZE;
4341 
4342 	for (i = 0; i < page_count; i++) {
4343 		struct page *page;
4344 		char *dst, *src;
4345 
4346 		page = shmem_read_mapping_page(mapping, i);
4347 		if (IS_ERR(page))
4348 			return PTR_ERR(page);
4349 
4350 		src = kmap_atomic(page);
4351 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352 		memcpy(dst, src, PAGE_SIZE);
4353 		kunmap_atomic(src);
4354 
4355 		mark_page_accessed(page);
4356 		page_cache_release(page);
4357 	}
4358 
4359 	return 0;
4360 }
4361 
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364 		     struct drm_i915_gem_object *obj,
4365 		     struct drm_i915_gem_pwrite *args,
4366 		     struct drm_file *file_priv)
4367 {
4368 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4370 
4371 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372 		unsigned long unwritten;
4373 
4374 		/* The physical object once assigned is fixed for the lifetime
4375 		 * of the obj, so we can safely drop the lock and continue
4376 		 * to access vaddr.
4377 		 */
4378 		mutex_unlock(&dev->struct_mutex);
4379 		unwritten = copy_from_user(vaddr, user_data, args->size);
4380 		mutex_lock(&dev->struct_mutex);
4381 		if (unwritten)
4382 			return -EFAULT;
4383 	}
4384 
4385 	intel_gtt_chipset_flush();
4386 	return 0;
4387 }
4388 
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391 	struct drm_i915_file_private *file_priv = file->driver_priv;
4392 
4393 	/* Clean up our request list when the client is going away, so that
4394 	 * later retire_requests won't dereference our soon-to-be-gone
4395 	 * file_priv.
4396 	 */
4397 	spin_lock(&file_priv->mm.lock);
4398 	while (!list_empty(&file_priv->mm.request_list)) {
4399 		struct drm_i915_gem_request *request;
4400 
4401 		request = list_first_entry(&file_priv->mm.request_list,
4402 					   struct drm_i915_gem_request,
4403 					   client_list);
4404 		list_del(&request->client_list);
4405 		request->file_priv = NULL;
4406 	}
4407 	spin_unlock(&file_priv->mm.lock);
4408 }
4409 
4410 static int
4411 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4412 {
4413 	struct drm_i915_private *dev_priv =
4414 		container_of(shrinker,
4415 			     struct drm_i915_private,
4416 			     mm.inactive_shrinker);
4417 	struct drm_device *dev = dev_priv->dev;
4418 	struct drm_i915_gem_object *obj;
4419 	int nr_to_scan = sc->nr_to_scan;
4420 	int cnt;
4421 
4422 	if (!mutex_trylock(&dev->struct_mutex))
4423 		return 0;
4424 
4425 	if (nr_to_scan) {
4426 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4427 		if (nr_to_scan > 0)
4428 			i915_gem_shrink_all(dev_priv);
4429 	}
4430 
4431 	cnt = 0;
4432 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4433 		if (obj->pages_pin_count == 0)
4434 			cnt += obj->base.size >> PAGE_SHIFT;
4435 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4436 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4437 			cnt += obj->base.size >> PAGE_SHIFT;
4438 
4439 	mutex_unlock(&dev->struct_mutex);
4440 	return cnt;
4441 }
4442