1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct drm_device *dev) 91 { 92 struct drm_i915_private *dev_priv = dev->dev_private; 93 struct completion *x = &dev_priv->error_completion; 94 unsigned long flags; 95 int ret; 96 97 if (!atomic_read(&dev_priv->mm.wedged)) 98 return 0; 99 100 /* 101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 102 * userspace. If it takes that long something really bad is going on and 103 * we should simply try to bail out and fail as gracefully as possible. 104 */ 105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ); 106 if (ret == 0) { 107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 108 return -EIO; 109 } else if (ret < 0) { 110 return ret; 111 } 112 113 if (atomic_read(&dev_priv->mm.wedged)) { 114 /* GPU is hung, bump the completion count to account for 115 * the token we just consumed so that we never hit zero and 116 * end up waiting upon a subsequent completion event that 117 * will never happen. 118 */ 119 spin_lock_irqsave(&x->wait.lock, flags); 120 x->done++; 121 spin_unlock_irqrestore(&x->wait.lock, flags); 122 } 123 return 0; 124 } 125 126 int i915_mutex_lock_interruptible(struct drm_device *dev) 127 { 128 int ret; 129 130 ret = i915_gem_wait_for_error(dev); 131 if (ret) 132 return ret; 133 134 ret = mutex_lock_interruptible(&dev->struct_mutex); 135 if (ret) 136 return ret; 137 138 WARN_ON(i915_verify_lists(dev)); 139 return 0; 140 } 141 142 static inline bool 143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 144 { 145 return obj->gtt_space && !obj->active; 146 } 147 148 int 149 i915_gem_init_ioctl(struct drm_device *dev, void *data, 150 struct drm_file *file) 151 { 152 struct drm_i915_gem_init *args = data; 153 154 if (drm_core_check_feature(dev, DRIVER_MODESET)) 155 return -ENODEV; 156 157 if (args->gtt_start >= args->gtt_end || 158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 159 return -EINVAL; 160 161 /* GEM with user mode setting was never supported on ilk and later. */ 162 if (INTEL_INFO(dev)->gen >= 5) 163 return -ENODEV; 164 165 mutex_lock(&dev->struct_mutex); 166 i915_gem_init_global_gtt(dev, args->gtt_start, 167 args->gtt_end, args->gtt_end); 168 mutex_unlock(&dev->struct_mutex); 169 170 return 0; 171 } 172 173 int 174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 175 struct drm_file *file) 176 { 177 struct drm_i915_private *dev_priv = dev->dev_private; 178 struct drm_i915_gem_get_aperture *args = data; 179 struct drm_i915_gem_object *obj; 180 size_t pinned; 181 182 pinned = 0; 183 mutex_lock(&dev->struct_mutex); 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 185 if (obj->pin_count) 186 pinned += obj->gtt_space->size; 187 mutex_unlock(&dev->struct_mutex); 188 189 args->aper_size = dev_priv->mm.gtt_total; 190 args->aper_available_size = args->aper_size - pinned; 191 192 return 0; 193 } 194 195 static int 196 i915_gem_create(struct drm_file *file, 197 struct drm_device *dev, 198 uint64_t size, 199 uint32_t *handle_p) 200 { 201 struct drm_i915_gem_object *obj; 202 int ret; 203 u32 handle; 204 205 size = roundup(size, PAGE_SIZE); 206 if (size == 0) 207 return -EINVAL; 208 209 /* Allocate the new object */ 210 obj = i915_gem_alloc_object(dev, size); 211 if (obj == NULL) 212 return -ENOMEM; 213 214 ret = drm_gem_handle_create(file, &obj->base, &handle); 215 if (ret) { 216 drm_gem_object_release(&obj->base); 217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 218 kfree(obj); 219 return ret; 220 } 221 222 /* drop reference from allocate - handle holds it now */ 223 drm_gem_object_unreference(&obj->base); 224 trace_i915_gem_object_create(obj); 225 226 *handle_p = handle; 227 return 0; 228 } 229 230 int 231 i915_gem_dumb_create(struct drm_file *file, 232 struct drm_device *dev, 233 struct drm_mode_create_dumb *args) 234 { 235 /* have to work out size/pitch and return them */ 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 237 args->size = args->pitch * args->height; 238 return i915_gem_create(file, dev, 239 args->size, &args->handle); 240 } 241 242 int i915_gem_dumb_destroy(struct drm_file *file, 243 struct drm_device *dev, 244 uint32_t handle) 245 { 246 return drm_gem_handle_delete(file, handle); 247 } 248 249 /** 250 * Creates a new mm object and returns a handle to it. 251 */ 252 int 253 i915_gem_create_ioctl(struct drm_device *dev, void *data, 254 struct drm_file *file) 255 { 256 struct drm_i915_gem_create *args = data; 257 258 return i915_gem_create(file, dev, 259 args->size, &args->handle); 260 } 261 262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 263 { 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 265 266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 267 obj->tiling_mode != I915_TILING_NONE; 268 } 269 270 static inline int 271 __copy_to_user_swizzled(char __user *cpu_vaddr, 272 const char *gpu_vaddr, int gpu_offset, 273 int length) 274 { 275 int ret, cpu_offset = 0; 276 277 while (length > 0) { 278 int cacheline_end = ALIGN(gpu_offset + 1, 64); 279 int this_length = min(cacheline_end - gpu_offset, length); 280 int swizzled_gpu_offset = gpu_offset ^ 64; 281 282 ret = __copy_to_user(cpu_vaddr + cpu_offset, 283 gpu_vaddr + swizzled_gpu_offset, 284 this_length); 285 if (ret) 286 return ret + length; 287 288 cpu_offset += this_length; 289 gpu_offset += this_length; 290 length -= this_length; 291 } 292 293 return 0; 294 } 295 296 static inline int 297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 298 const char __user *cpu_vaddr, 299 int length) 300 { 301 int ret, cpu_offset = 0; 302 303 while (length > 0) { 304 int cacheline_end = ALIGN(gpu_offset + 1, 64); 305 int this_length = min(cacheline_end - gpu_offset, length); 306 int swizzled_gpu_offset = gpu_offset ^ 64; 307 308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 309 cpu_vaddr + cpu_offset, 310 this_length); 311 if (ret) 312 return ret + length; 313 314 cpu_offset += this_length; 315 gpu_offset += this_length; 316 length -= this_length; 317 } 318 319 return 0; 320 } 321 322 /* Per-page copy function for the shmem pread fastpath. 323 * Flushes invalid cachelines before reading the target if 324 * needs_clflush is set. */ 325 static int 326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 327 char __user *user_data, 328 bool page_do_bit17_swizzling, bool needs_clflush) 329 { 330 char *vaddr; 331 int ret; 332 333 if (unlikely(page_do_bit17_swizzling)) 334 return -EINVAL; 335 336 vaddr = kmap_atomic(page); 337 if (needs_clflush) 338 drm_clflush_virt_range(vaddr + shmem_page_offset, 339 page_length); 340 ret = __copy_to_user_inatomic(user_data, 341 vaddr + shmem_page_offset, 342 page_length); 343 kunmap_atomic(vaddr); 344 345 return ret ? -EFAULT : 0; 346 } 347 348 static void 349 shmem_clflush_swizzled_range(char *addr, unsigned long length, 350 bool swizzled) 351 { 352 if (unlikely(swizzled)) { 353 unsigned long start = (unsigned long) addr; 354 unsigned long end = (unsigned long) addr + length; 355 356 /* For swizzling simply ensure that we always flush both 357 * channels. Lame, but simple and it works. Swizzled 358 * pwrite/pread is far from a hotpath - current userspace 359 * doesn't use it at all. */ 360 start = round_down(start, 128); 361 end = round_up(end, 128); 362 363 drm_clflush_virt_range((void *)start, end - start); 364 } else { 365 drm_clflush_virt_range(addr, length); 366 } 367 368 } 369 370 /* Only difference to the fast-path function is that this can handle bit17 371 * and uses non-atomic copy and kmap functions. */ 372 static int 373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 374 char __user *user_data, 375 bool page_do_bit17_swizzling, bool needs_clflush) 376 { 377 char *vaddr; 378 int ret; 379 380 vaddr = kmap(page); 381 if (needs_clflush) 382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 383 page_length, 384 page_do_bit17_swizzling); 385 386 if (page_do_bit17_swizzling) 387 ret = __copy_to_user_swizzled(user_data, 388 vaddr, shmem_page_offset, 389 page_length); 390 else 391 ret = __copy_to_user(user_data, 392 vaddr + shmem_page_offset, 393 page_length); 394 kunmap(page); 395 396 return ret ? - EFAULT : 0; 397 } 398 399 static int 400 i915_gem_shmem_pread(struct drm_device *dev, 401 struct drm_i915_gem_object *obj, 402 struct drm_i915_gem_pread *args, 403 struct drm_file *file) 404 { 405 char __user *user_data; 406 ssize_t remain; 407 loff_t offset; 408 int shmem_page_offset, page_length, ret = 0; 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 410 int hit_slowpath = 0; 411 int prefaulted = 0; 412 int needs_clflush = 0; 413 struct scatterlist *sg; 414 int i; 415 416 user_data = (char __user *) (uintptr_t) args->data_ptr; 417 remain = args->size; 418 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 420 421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 422 /* If we're not in the cpu read domain, set ourself into the gtt 423 * read domain and manually flush cachelines (if required). This 424 * optimizes for the case when the gpu will dirty the data 425 * anyway again before the next pread happens. */ 426 if (obj->cache_level == I915_CACHE_NONE) 427 needs_clflush = 1; 428 if (obj->gtt_space) { 429 ret = i915_gem_object_set_to_gtt_domain(obj, false); 430 if (ret) 431 return ret; 432 } 433 } 434 435 ret = i915_gem_object_get_pages(obj); 436 if (ret) 437 return ret; 438 439 i915_gem_object_pin_pages(obj); 440 441 offset = args->offset; 442 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 444 struct page *page; 445 446 if (i < offset >> PAGE_SHIFT) 447 continue; 448 449 if (remain <= 0) 450 break; 451 452 /* Operation in this page 453 * 454 * shmem_page_offset = offset within page in shmem file 455 * page_length = bytes to copy for this page 456 */ 457 shmem_page_offset = offset_in_page(offset); 458 page_length = remain; 459 if ((shmem_page_offset + page_length) > PAGE_SIZE) 460 page_length = PAGE_SIZE - shmem_page_offset; 461 462 page = sg_page(sg); 463 page_do_bit17_swizzling = obj_do_bit17_swizzling && 464 (page_to_phys(page) & (1 << 17)) != 0; 465 466 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 467 user_data, page_do_bit17_swizzling, 468 needs_clflush); 469 if (ret == 0) 470 goto next_page; 471 472 hit_slowpath = 1; 473 mutex_unlock(&dev->struct_mutex); 474 475 if (!prefaulted) { 476 ret = fault_in_multipages_writeable(user_data, remain); 477 /* Userspace is tricking us, but we've already clobbered 478 * its pages with the prefault and promised to write the 479 * data up to the first fault. Hence ignore any errors 480 * and just continue. */ 481 (void)ret; 482 prefaulted = 1; 483 } 484 485 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 486 user_data, page_do_bit17_swizzling, 487 needs_clflush); 488 489 mutex_lock(&dev->struct_mutex); 490 491 next_page: 492 mark_page_accessed(page); 493 494 if (ret) 495 goto out; 496 497 remain -= page_length; 498 user_data += page_length; 499 offset += page_length; 500 } 501 502 out: 503 i915_gem_object_unpin_pages(obj); 504 505 if (hit_slowpath) { 506 /* Fixup: Kill any reinstated backing storage pages */ 507 if (obj->madv == __I915_MADV_PURGED) 508 i915_gem_object_truncate(obj); 509 } 510 511 return ret; 512 } 513 514 /** 515 * Reads data from the object referenced by handle. 516 * 517 * On error, the contents of *data are undefined. 518 */ 519 int 520 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 521 struct drm_file *file) 522 { 523 struct drm_i915_gem_pread *args = data; 524 struct drm_i915_gem_object *obj; 525 int ret = 0; 526 527 if (args->size == 0) 528 return 0; 529 530 if (!access_ok(VERIFY_WRITE, 531 (char __user *)(uintptr_t)args->data_ptr, 532 args->size)) 533 return -EFAULT; 534 535 ret = i915_mutex_lock_interruptible(dev); 536 if (ret) 537 return ret; 538 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 540 if (&obj->base == NULL) { 541 ret = -ENOENT; 542 goto unlock; 543 } 544 545 /* Bounds check source. */ 546 if (args->offset > obj->base.size || 547 args->size > obj->base.size - args->offset) { 548 ret = -EINVAL; 549 goto out; 550 } 551 552 /* prime objects have no backing filp to GEM pread/pwrite 553 * pages from. 554 */ 555 if (!obj->base.filp) { 556 ret = -EINVAL; 557 goto out; 558 } 559 560 trace_i915_gem_object_pread(obj, args->offset, args->size); 561 562 ret = i915_gem_shmem_pread(dev, obj, args, file); 563 564 out: 565 drm_gem_object_unreference(&obj->base); 566 unlock: 567 mutex_unlock(&dev->struct_mutex); 568 return ret; 569 } 570 571 /* This is the fast write path which cannot handle 572 * page faults in the source data 573 */ 574 575 static inline int 576 fast_user_write(struct io_mapping *mapping, 577 loff_t page_base, int page_offset, 578 char __user *user_data, 579 int length) 580 { 581 void __iomem *vaddr_atomic; 582 void *vaddr; 583 unsigned long unwritten; 584 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 586 /* We can use the cpu mem copy function because this is X86. */ 587 vaddr = (void __force*)vaddr_atomic + page_offset; 588 unwritten = __copy_from_user_inatomic_nocache(vaddr, 589 user_data, length); 590 io_mapping_unmap_atomic(vaddr_atomic); 591 return unwritten; 592 } 593 594 /** 595 * This is the fast pwrite path, where we copy the data directly from the 596 * user into the GTT, uncached. 597 */ 598 static int 599 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 600 struct drm_i915_gem_object *obj, 601 struct drm_i915_gem_pwrite *args, 602 struct drm_file *file) 603 { 604 drm_i915_private_t *dev_priv = dev->dev_private; 605 ssize_t remain; 606 loff_t offset, page_base; 607 char __user *user_data; 608 int page_offset, page_length, ret; 609 610 ret = i915_gem_object_pin(obj, 0, true, true); 611 if (ret) 612 goto out; 613 614 ret = i915_gem_object_set_to_gtt_domain(obj, true); 615 if (ret) 616 goto out_unpin; 617 618 ret = i915_gem_object_put_fence(obj); 619 if (ret) 620 goto out_unpin; 621 622 user_data = (char __user *) (uintptr_t) args->data_ptr; 623 remain = args->size; 624 625 offset = obj->gtt_offset + args->offset; 626 627 while (remain > 0) { 628 /* Operation in this page 629 * 630 * page_base = page offset within aperture 631 * page_offset = offset within page 632 * page_length = bytes to copy for this page 633 */ 634 page_base = offset & PAGE_MASK; 635 page_offset = offset_in_page(offset); 636 page_length = remain; 637 if ((page_offset + remain) > PAGE_SIZE) 638 page_length = PAGE_SIZE - page_offset; 639 640 /* If we get a fault while copying data, then (presumably) our 641 * source page isn't available. Return the error and we'll 642 * retry in the slow path. 643 */ 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, 645 page_offset, user_data, page_length)) { 646 ret = -EFAULT; 647 goto out_unpin; 648 } 649 650 remain -= page_length; 651 user_data += page_length; 652 offset += page_length; 653 } 654 655 out_unpin: 656 i915_gem_object_unpin(obj); 657 out: 658 return ret; 659 } 660 661 /* Per-page copy function for the shmem pwrite fastpath. 662 * Flushes invalid cachelines before writing to the target if 663 * needs_clflush_before is set and flushes out any written cachelines after 664 * writing if needs_clflush is set. */ 665 static int 666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 667 char __user *user_data, 668 bool page_do_bit17_swizzling, 669 bool needs_clflush_before, 670 bool needs_clflush_after) 671 { 672 char *vaddr; 673 int ret; 674 675 if (unlikely(page_do_bit17_swizzling)) 676 return -EINVAL; 677 678 vaddr = kmap_atomic(page); 679 if (needs_clflush_before) 680 drm_clflush_virt_range(vaddr + shmem_page_offset, 681 page_length); 682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 683 user_data, 684 page_length); 685 if (needs_clflush_after) 686 drm_clflush_virt_range(vaddr + shmem_page_offset, 687 page_length); 688 kunmap_atomic(vaddr); 689 690 return ret ? -EFAULT : 0; 691 } 692 693 /* Only difference to the fast-path function is that this can handle bit17 694 * and uses non-atomic copy and kmap functions. */ 695 static int 696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 697 char __user *user_data, 698 bool page_do_bit17_swizzling, 699 bool needs_clflush_before, 700 bool needs_clflush_after) 701 { 702 char *vaddr; 703 int ret; 704 705 vaddr = kmap(page); 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 708 page_length, 709 page_do_bit17_swizzling); 710 if (page_do_bit17_swizzling) 711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 712 user_data, 713 page_length); 714 else 715 ret = __copy_from_user(vaddr + shmem_page_offset, 716 user_data, 717 page_length); 718 if (needs_clflush_after) 719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 720 page_length, 721 page_do_bit17_swizzling); 722 kunmap(page); 723 724 return ret ? -EFAULT : 0; 725 } 726 727 static int 728 i915_gem_shmem_pwrite(struct drm_device *dev, 729 struct drm_i915_gem_object *obj, 730 struct drm_i915_gem_pwrite *args, 731 struct drm_file *file) 732 { 733 ssize_t remain; 734 loff_t offset; 735 char __user *user_data; 736 int shmem_page_offset, page_length, ret = 0; 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 738 int hit_slowpath = 0; 739 int needs_clflush_after = 0; 740 int needs_clflush_before = 0; 741 int i; 742 struct scatterlist *sg; 743 744 user_data = (char __user *) (uintptr_t) args->data_ptr; 745 remain = args->size; 746 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 748 749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 750 /* If we're not in the cpu write domain, set ourself into the gtt 751 * write domain and manually flush cachelines (if required). This 752 * optimizes for the case when the gpu will use the data 753 * right away and we therefore have to clflush anyway. */ 754 if (obj->cache_level == I915_CACHE_NONE) 755 needs_clflush_after = 1; 756 if (obj->gtt_space) { 757 ret = i915_gem_object_set_to_gtt_domain(obj, true); 758 if (ret) 759 return ret; 760 } 761 } 762 /* Same trick applies for invalidate partially written cachelines before 763 * writing. */ 764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 765 && obj->cache_level == I915_CACHE_NONE) 766 needs_clflush_before = 1; 767 768 ret = i915_gem_object_get_pages(obj); 769 if (ret) 770 return ret; 771 772 i915_gem_object_pin_pages(obj); 773 774 offset = args->offset; 775 obj->dirty = 1; 776 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 778 struct page *page; 779 int partial_cacheline_write; 780 781 if (i < offset >> PAGE_SHIFT) 782 continue; 783 784 if (remain <= 0) 785 break; 786 787 /* Operation in this page 788 * 789 * shmem_page_offset = offset within page in shmem file 790 * page_length = bytes to copy for this page 791 */ 792 shmem_page_offset = offset_in_page(offset); 793 794 page_length = remain; 795 if ((shmem_page_offset + page_length) > PAGE_SIZE) 796 page_length = PAGE_SIZE - shmem_page_offset; 797 798 /* If we don't overwrite a cacheline completely we need to be 799 * careful to have up-to-date data by first clflushing. Don't 800 * overcomplicate things and flush the entire patch. */ 801 partial_cacheline_write = needs_clflush_before && 802 ((shmem_page_offset | page_length) 803 & (boot_cpu_data.x86_clflush_size - 1)); 804 805 page = sg_page(sg); 806 page_do_bit17_swizzling = obj_do_bit17_swizzling && 807 (page_to_phys(page) & (1 << 17)) != 0; 808 809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 810 user_data, page_do_bit17_swizzling, 811 partial_cacheline_write, 812 needs_clflush_after); 813 if (ret == 0) 814 goto next_page; 815 816 hit_slowpath = 1; 817 mutex_unlock(&dev->struct_mutex); 818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 819 user_data, page_do_bit17_swizzling, 820 partial_cacheline_write, 821 needs_clflush_after); 822 823 mutex_lock(&dev->struct_mutex); 824 825 next_page: 826 set_page_dirty(page); 827 mark_page_accessed(page); 828 829 if (ret) 830 goto out; 831 832 remain -= page_length; 833 user_data += page_length; 834 offset += page_length; 835 } 836 837 out: 838 i915_gem_object_unpin_pages(obj); 839 840 if (hit_slowpath) { 841 /* Fixup: Kill any reinstated backing storage pages */ 842 if (obj->madv == __I915_MADV_PURGED) 843 i915_gem_object_truncate(obj); 844 /* and flush dirty cachelines in case the object isn't in the cpu write 845 * domain anymore. */ 846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 847 i915_gem_clflush_object(obj); 848 intel_gtt_chipset_flush(); 849 } 850 } 851 852 if (needs_clflush_after) 853 intel_gtt_chipset_flush(); 854 855 return ret; 856 } 857 858 /** 859 * Writes data to the object referenced by handle. 860 * 861 * On error, the contents of the buffer that were to be modified are undefined. 862 */ 863 int 864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 865 struct drm_file *file) 866 { 867 struct drm_i915_gem_pwrite *args = data; 868 struct drm_i915_gem_object *obj; 869 int ret; 870 871 if (args->size == 0) 872 return 0; 873 874 if (!access_ok(VERIFY_READ, 875 (char __user *)(uintptr_t)args->data_ptr, 876 args->size)) 877 return -EFAULT; 878 879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, 880 args->size); 881 if (ret) 882 return -EFAULT; 883 884 ret = i915_mutex_lock_interruptible(dev); 885 if (ret) 886 return ret; 887 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 889 if (&obj->base == NULL) { 890 ret = -ENOENT; 891 goto unlock; 892 } 893 894 /* Bounds check destination. */ 895 if (args->offset > obj->base.size || 896 args->size > obj->base.size - args->offset) { 897 ret = -EINVAL; 898 goto out; 899 } 900 901 /* prime objects have no backing filp to GEM pread/pwrite 902 * pages from. 903 */ 904 if (!obj->base.filp) { 905 ret = -EINVAL; 906 goto out; 907 } 908 909 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 910 911 ret = -EFAULT; 912 /* We can only do the GTT pwrite on untiled buffers, as otherwise 913 * it would end up going through the fenced access, and we'll get 914 * different detiling behavior between reading and writing. 915 * pread/pwrite currently are reading and writing from the CPU 916 * perspective, requiring manual detiling by the client. 917 */ 918 if (obj->phys_obj) { 919 ret = i915_gem_phys_pwrite(dev, obj, args, file); 920 goto out; 921 } 922 923 if (obj->cache_level == I915_CACHE_NONE && 924 obj->tiling_mode == I915_TILING_NONE && 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 927 /* Note that the gtt paths might fail with non-page-backed user 928 * pointers (e.g. gtt mappings when moving data between 929 * textures). Fallback to the shmem path in that case. */ 930 } 931 932 if (ret == -EFAULT || ret == -ENOSPC) 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 934 935 out: 936 drm_gem_object_unreference(&obj->base); 937 unlock: 938 mutex_unlock(&dev->struct_mutex); 939 return ret; 940 } 941 942 int 943 i915_gem_check_wedge(struct drm_i915_private *dev_priv, 944 bool interruptible) 945 { 946 if (atomic_read(&dev_priv->mm.wedged)) { 947 struct completion *x = &dev_priv->error_completion; 948 bool recovery_complete; 949 unsigned long flags; 950 951 /* Give the error handler a chance to run. */ 952 spin_lock_irqsave(&x->wait.lock, flags); 953 recovery_complete = x->done > 0; 954 spin_unlock_irqrestore(&x->wait.lock, flags); 955 956 /* Non-interruptible callers can't handle -EAGAIN, hence return 957 * -EIO unconditionally for these. */ 958 if (!interruptible) 959 return -EIO; 960 961 /* Recovery complete, but still wedged means reset failure. */ 962 if (recovery_complete) 963 return -EIO; 964 965 return -EAGAIN; 966 } 967 968 return 0; 969 } 970 971 /* 972 * Compare seqno against outstanding lazy request. Emit a request if they are 973 * equal. 974 */ 975 static int 976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 977 { 978 int ret; 979 980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 981 982 ret = 0; 983 if (seqno == ring->outstanding_lazy_request) 984 ret = i915_add_request(ring, NULL, NULL); 985 986 return ret; 987 } 988 989 /** 990 * __wait_seqno - wait until execution of seqno has finished 991 * @ring: the ring expected to report seqno 992 * @seqno: duh! 993 * @interruptible: do an interruptible wait (normally yes) 994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 995 * 996 * Returns 0 if the seqno was found within the alloted time. Else returns the 997 * errno with remaining time filled in timeout argument. 998 */ 999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 1000 bool interruptible, struct timespec *timeout) 1001 { 1002 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1003 struct timespec before, now, wait_time={1,0}; 1004 unsigned long timeout_jiffies; 1005 long end; 1006 bool wait_forever = true; 1007 int ret; 1008 1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1010 return 0; 1011 1012 trace_i915_gem_request_wait_begin(ring, seqno); 1013 1014 if (timeout != NULL) { 1015 wait_time = *timeout; 1016 wait_forever = false; 1017 } 1018 1019 timeout_jiffies = timespec_to_jiffies(&wait_time); 1020 1021 if (WARN_ON(!ring->irq_get(ring))) 1022 return -ENODEV; 1023 1024 /* Record current time in case interrupted by signal, or wedged * */ 1025 getrawmonotonic(&before); 1026 1027 #define EXIT_COND \ 1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1029 atomic_read(&dev_priv->mm.wedged)) 1030 do { 1031 if (interruptible) 1032 end = wait_event_interruptible_timeout(ring->irq_queue, 1033 EXIT_COND, 1034 timeout_jiffies); 1035 else 1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1037 timeout_jiffies); 1038 1039 ret = i915_gem_check_wedge(dev_priv, interruptible); 1040 if (ret) 1041 end = ret; 1042 } while (end == 0 && wait_forever); 1043 1044 getrawmonotonic(&now); 1045 1046 ring->irq_put(ring); 1047 trace_i915_gem_request_wait_end(ring, seqno); 1048 #undef EXIT_COND 1049 1050 if (timeout) { 1051 struct timespec sleep_time = timespec_sub(now, before); 1052 *timeout = timespec_sub(*timeout, sleep_time); 1053 } 1054 1055 switch (end) { 1056 case -EIO: 1057 case -EAGAIN: /* Wedged */ 1058 case -ERESTARTSYS: /* Signal */ 1059 return (int)end; 1060 case 0: /* Timeout */ 1061 if (timeout) 1062 set_normalized_timespec(timeout, 0, 0); 1063 return -ETIME; 1064 default: /* Completed */ 1065 WARN_ON(end < 0); /* We're not aware of other errors */ 1066 return 0; 1067 } 1068 } 1069 1070 /** 1071 * Waits for a sequence number to be signaled, and cleans up the 1072 * request and object lists appropriately for that event. 1073 */ 1074 int 1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1076 { 1077 struct drm_device *dev = ring->dev; 1078 struct drm_i915_private *dev_priv = dev->dev_private; 1079 bool interruptible = dev_priv->mm.interruptible; 1080 int ret; 1081 1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1083 BUG_ON(seqno == 0); 1084 1085 ret = i915_gem_check_wedge(dev_priv, interruptible); 1086 if (ret) 1087 return ret; 1088 1089 ret = i915_gem_check_olr(ring, seqno); 1090 if (ret) 1091 return ret; 1092 1093 return __wait_seqno(ring, seqno, interruptible, NULL); 1094 } 1095 1096 /** 1097 * Ensures that all rendering to the object has completed and the object is 1098 * safe to unbind from the GTT or access from the CPU. 1099 */ 1100 static __must_check int 1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1102 bool readonly) 1103 { 1104 struct intel_ring_buffer *ring = obj->ring; 1105 u32 seqno; 1106 int ret; 1107 1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1109 if (seqno == 0) 1110 return 0; 1111 1112 ret = i915_wait_seqno(ring, seqno); 1113 if (ret) 1114 return ret; 1115 1116 i915_gem_retire_requests_ring(ring); 1117 1118 /* Manually manage the write flush as we may have not yet 1119 * retired the buffer. 1120 */ 1121 if (obj->last_write_seqno && 1122 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1123 obj->last_write_seqno = 0; 1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1125 } 1126 1127 return 0; 1128 } 1129 1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1131 * as the object state may change during this call. 1132 */ 1133 static __must_check int 1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1135 bool readonly) 1136 { 1137 struct drm_device *dev = obj->base.dev; 1138 struct drm_i915_private *dev_priv = dev->dev_private; 1139 struct intel_ring_buffer *ring = obj->ring; 1140 u32 seqno; 1141 int ret; 1142 1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1144 BUG_ON(!dev_priv->mm.interruptible); 1145 1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1147 if (seqno == 0) 1148 return 0; 1149 1150 ret = i915_gem_check_wedge(dev_priv, true); 1151 if (ret) 1152 return ret; 1153 1154 ret = i915_gem_check_olr(ring, seqno); 1155 if (ret) 1156 return ret; 1157 1158 mutex_unlock(&dev->struct_mutex); 1159 ret = __wait_seqno(ring, seqno, true, NULL); 1160 mutex_lock(&dev->struct_mutex); 1161 1162 i915_gem_retire_requests_ring(ring); 1163 1164 /* Manually manage the write flush as we may have not yet 1165 * retired the buffer. 1166 */ 1167 if (obj->last_write_seqno && 1168 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1169 obj->last_write_seqno = 0; 1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1171 } 1172 1173 return ret; 1174 } 1175 1176 /** 1177 * Called when user space prepares to use an object with the CPU, either 1178 * through the mmap ioctl's mapping or a GTT mapping. 1179 */ 1180 int 1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1182 struct drm_file *file) 1183 { 1184 struct drm_i915_gem_set_domain *args = data; 1185 struct drm_i915_gem_object *obj; 1186 uint32_t read_domains = args->read_domains; 1187 uint32_t write_domain = args->write_domain; 1188 int ret; 1189 1190 /* Only handle setting domains to types used by the CPU. */ 1191 if (write_domain & I915_GEM_GPU_DOMAINS) 1192 return -EINVAL; 1193 1194 if (read_domains & I915_GEM_GPU_DOMAINS) 1195 return -EINVAL; 1196 1197 /* Having something in the write domain implies it's in the read 1198 * domain, and only that read domain. Enforce that in the request. 1199 */ 1200 if (write_domain != 0 && read_domains != write_domain) 1201 return -EINVAL; 1202 1203 ret = i915_mutex_lock_interruptible(dev); 1204 if (ret) 1205 return ret; 1206 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1208 if (&obj->base == NULL) { 1209 ret = -ENOENT; 1210 goto unlock; 1211 } 1212 1213 /* Try to flush the object off the GPU without holding the lock. 1214 * We will repeat the flush holding the lock in the normal manner 1215 * to catch cases where we are gazumped. 1216 */ 1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1218 if (ret) 1219 goto unref; 1220 1221 if (read_domains & I915_GEM_DOMAIN_GTT) { 1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1223 1224 /* Silently promote "you're not bound, there was nothing to do" 1225 * to success, since the client was just asking us to 1226 * make sure everything was done. 1227 */ 1228 if (ret == -EINVAL) 1229 ret = 0; 1230 } else { 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1232 } 1233 1234 unref: 1235 drm_gem_object_unreference(&obj->base); 1236 unlock: 1237 mutex_unlock(&dev->struct_mutex); 1238 return ret; 1239 } 1240 1241 /** 1242 * Called when user space has done writes to this buffer 1243 */ 1244 int 1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1246 struct drm_file *file) 1247 { 1248 struct drm_i915_gem_sw_finish *args = data; 1249 struct drm_i915_gem_object *obj; 1250 int ret = 0; 1251 1252 ret = i915_mutex_lock_interruptible(dev); 1253 if (ret) 1254 return ret; 1255 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1257 if (&obj->base == NULL) { 1258 ret = -ENOENT; 1259 goto unlock; 1260 } 1261 1262 /* Pinned buffers may be scanout, so flush the cache */ 1263 if (obj->pin_count) 1264 i915_gem_object_flush_cpu_write_domain(obj); 1265 1266 drm_gem_object_unreference(&obj->base); 1267 unlock: 1268 mutex_unlock(&dev->struct_mutex); 1269 return ret; 1270 } 1271 1272 /** 1273 * Maps the contents of an object, returning the address it is mapped 1274 * into. 1275 * 1276 * While the mapping holds a reference on the contents of the object, it doesn't 1277 * imply a ref on the object itself. 1278 */ 1279 int 1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1281 struct drm_file *file) 1282 { 1283 struct drm_i915_gem_mmap *args = data; 1284 struct drm_gem_object *obj; 1285 unsigned long addr; 1286 1287 obj = drm_gem_object_lookup(dev, file, args->handle); 1288 if (obj == NULL) 1289 return -ENOENT; 1290 1291 /* prime objects have no backing filp to GEM mmap 1292 * pages from. 1293 */ 1294 if (!obj->filp) { 1295 drm_gem_object_unreference_unlocked(obj); 1296 return -EINVAL; 1297 } 1298 1299 addr = vm_mmap(obj->filp, 0, args->size, 1300 PROT_READ | PROT_WRITE, MAP_SHARED, 1301 args->offset); 1302 drm_gem_object_unreference_unlocked(obj); 1303 if (IS_ERR((void *)addr)) 1304 return addr; 1305 1306 args->addr_ptr = (uint64_t) addr; 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * i915_gem_fault - fault a page into the GTT 1313 * vma: VMA in question 1314 * vmf: fault info 1315 * 1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1317 * from userspace. The fault handler takes care of binding the object to 1318 * the GTT (if needed), allocating and programming a fence register (again, 1319 * only if needed based on whether the old reg is still valid or the object 1320 * is tiled) and inserting a new PTE into the faulting process. 1321 * 1322 * Note that the faulting process may involve evicting existing objects 1323 * from the GTT and/or fence registers to make room. So performance may 1324 * suffer if the GTT working set is large or there are few fence registers 1325 * left. 1326 */ 1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1328 { 1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1330 struct drm_device *dev = obj->base.dev; 1331 drm_i915_private_t *dev_priv = dev->dev_private; 1332 pgoff_t page_offset; 1333 unsigned long pfn; 1334 int ret = 0; 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1336 1337 /* We don't use vmf->pgoff since that has the fake offset */ 1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1339 PAGE_SHIFT; 1340 1341 ret = i915_mutex_lock_interruptible(dev); 1342 if (ret) 1343 goto out; 1344 1345 trace_i915_gem_object_fault(obj, page_offset, true, write); 1346 1347 /* Now bind it into the GTT if needed */ 1348 if (!obj->map_and_fenceable) { 1349 ret = i915_gem_object_unbind(obj); 1350 if (ret) 1351 goto unlock; 1352 } 1353 if (!obj->gtt_space) { 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false); 1355 if (ret) 1356 goto unlock; 1357 1358 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1359 if (ret) 1360 goto unlock; 1361 } 1362 1363 if (!obj->has_global_gtt_mapping) 1364 i915_gem_gtt_bind_object(obj, obj->cache_level); 1365 1366 ret = i915_gem_object_get_fence(obj); 1367 if (ret) 1368 goto unlock; 1369 1370 if (i915_gem_object_is_inactive(obj)) 1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1372 1373 obj->fault_mappable = true; 1374 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) + 1376 page_offset; 1377 1378 /* Finally, remap it using the new GTT offset */ 1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1380 unlock: 1381 mutex_unlock(&dev->struct_mutex); 1382 out: 1383 switch (ret) { 1384 case -EIO: 1385 /* If this -EIO is due to a gpu hang, give the reset code a 1386 * chance to clean up the mess. Otherwise return the proper 1387 * SIGBUS. */ 1388 if (!atomic_read(&dev_priv->mm.wedged)) 1389 return VM_FAULT_SIGBUS; 1390 case -EAGAIN: 1391 /* Give the error handler a chance to run and move the 1392 * objects off the GPU active list. Next time we service the 1393 * fault, we should be able to transition the page into the 1394 * GTT without touching the GPU (and so avoid further 1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1396 * with coherency, just lost writes. 1397 */ 1398 set_need_resched(); 1399 case 0: 1400 case -ERESTARTSYS: 1401 case -EINTR: 1402 case -EBUSY: 1403 /* 1404 * EBUSY is ok: this just means that another thread 1405 * already did the job. 1406 */ 1407 return VM_FAULT_NOPAGE; 1408 case -ENOMEM: 1409 return VM_FAULT_OOM; 1410 case -ENOSPC: 1411 return VM_FAULT_SIGBUS; 1412 default: 1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1414 return VM_FAULT_SIGBUS; 1415 } 1416 } 1417 1418 /** 1419 * i915_gem_release_mmap - remove physical page mappings 1420 * @obj: obj in question 1421 * 1422 * Preserve the reservation of the mmapping with the DRM core code, but 1423 * relinquish ownership of the pages back to the system. 1424 * 1425 * It is vital that we remove the page mapping if we have mapped a tiled 1426 * object through the GTT and then lose the fence register due to 1427 * resource pressure. Similarly if the object has been moved out of the 1428 * aperture, than pages mapped into userspace must be revoked. Removing the 1429 * mapping will then trigger a page fault on the next user access, allowing 1430 * fixup by i915_gem_fault(). 1431 */ 1432 void 1433 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1434 { 1435 if (!obj->fault_mappable) 1436 return; 1437 1438 if (obj->base.dev->dev_mapping) 1439 unmap_mapping_range(obj->base.dev->dev_mapping, 1440 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1441 obj->base.size, 1); 1442 1443 obj->fault_mappable = false; 1444 } 1445 1446 static uint32_t 1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1448 { 1449 uint32_t gtt_size; 1450 1451 if (INTEL_INFO(dev)->gen >= 4 || 1452 tiling_mode == I915_TILING_NONE) 1453 return size; 1454 1455 /* Previous chips need a power-of-two fence region when tiling */ 1456 if (INTEL_INFO(dev)->gen == 3) 1457 gtt_size = 1024*1024; 1458 else 1459 gtt_size = 512*1024; 1460 1461 while (gtt_size < size) 1462 gtt_size <<= 1; 1463 1464 return gtt_size; 1465 } 1466 1467 /** 1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1469 * @obj: object to check 1470 * 1471 * Return the required GTT alignment for an object, taking into account 1472 * potential fence register mapping. 1473 */ 1474 static uint32_t 1475 i915_gem_get_gtt_alignment(struct drm_device *dev, 1476 uint32_t size, 1477 int tiling_mode) 1478 { 1479 /* 1480 * Minimum alignment is 4k (GTT page size), but might be greater 1481 * if a fence register is needed for the object. 1482 */ 1483 if (INTEL_INFO(dev)->gen >= 4 || 1484 tiling_mode == I915_TILING_NONE) 1485 return 4096; 1486 1487 /* 1488 * Previous chips need to be aligned to the size of the smallest 1489 * fence register that can contain the object. 1490 */ 1491 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1492 } 1493 1494 /** 1495 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an 1496 * unfenced object 1497 * @dev: the device 1498 * @size: size of the object 1499 * @tiling_mode: tiling mode of the object 1500 * 1501 * Return the required GTT alignment for an object, only taking into account 1502 * unfenced tiled surface requirements. 1503 */ 1504 uint32_t 1505 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, 1506 uint32_t size, 1507 int tiling_mode) 1508 { 1509 /* 1510 * Minimum alignment is 4k (GTT page size) for sane hw. 1511 */ 1512 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || 1513 tiling_mode == I915_TILING_NONE) 1514 return 4096; 1515 1516 /* Previous hardware however needs to be aligned to a power-of-two 1517 * tile height. The simplest method for determining this is to reuse 1518 * the power-of-tile object size. 1519 */ 1520 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1521 } 1522 1523 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1524 { 1525 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1526 int ret; 1527 1528 if (obj->base.map_list.map) 1529 return 0; 1530 1531 ret = drm_gem_create_mmap_offset(&obj->base); 1532 if (ret != -ENOSPC) 1533 return ret; 1534 1535 /* Badly fragmented mmap space? The only way we can recover 1536 * space is by destroying unwanted objects. We can't randomly release 1537 * mmap_offsets as userspace expects them to be persistent for the 1538 * lifetime of the objects. The closest we can is to release the 1539 * offsets on purgeable objects by truncating it and marking it purged, 1540 * which prevents userspace from ever using that object again. 1541 */ 1542 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1543 ret = drm_gem_create_mmap_offset(&obj->base); 1544 if (ret != -ENOSPC) 1545 return ret; 1546 1547 i915_gem_shrink_all(dev_priv); 1548 return drm_gem_create_mmap_offset(&obj->base); 1549 } 1550 1551 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1552 { 1553 if (!obj->base.map_list.map) 1554 return; 1555 1556 drm_gem_free_mmap_offset(&obj->base); 1557 } 1558 1559 int 1560 i915_gem_mmap_gtt(struct drm_file *file, 1561 struct drm_device *dev, 1562 uint32_t handle, 1563 uint64_t *offset) 1564 { 1565 struct drm_i915_private *dev_priv = dev->dev_private; 1566 struct drm_i915_gem_object *obj; 1567 int ret; 1568 1569 ret = i915_mutex_lock_interruptible(dev); 1570 if (ret) 1571 return ret; 1572 1573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1574 if (&obj->base == NULL) { 1575 ret = -ENOENT; 1576 goto unlock; 1577 } 1578 1579 if (obj->base.size > dev_priv->mm.gtt_mappable_end) { 1580 ret = -E2BIG; 1581 goto out; 1582 } 1583 1584 if (obj->madv != I915_MADV_WILLNEED) { 1585 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1586 ret = -EINVAL; 1587 goto out; 1588 } 1589 1590 ret = i915_gem_object_create_mmap_offset(obj); 1591 if (ret) 1592 goto out; 1593 1594 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1595 1596 out: 1597 drm_gem_object_unreference(&obj->base); 1598 unlock: 1599 mutex_unlock(&dev->struct_mutex); 1600 return ret; 1601 } 1602 1603 /** 1604 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1605 * @dev: DRM device 1606 * @data: GTT mapping ioctl data 1607 * @file: GEM object info 1608 * 1609 * Simply returns the fake offset to userspace so it can mmap it. 1610 * The mmap call will end up in drm_gem_mmap(), which will set things 1611 * up so we can get faults in the handler above. 1612 * 1613 * The fault handler will take care of binding the object into the GTT 1614 * (since it may have been evicted to make room for something), allocating 1615 * a fence register, and mapping the appropriate aperture address into 1616 * userspace. 1617 */ 1618 int 1619 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1620 struct drm_file *file) 1621 { 1622 struct drm_i915_gem_mmap_gtt *args = data; 1623 1624 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1625 } 1626 1627 /* Immediately discard the backing storage */ 1628 static void 1629 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1630 { 1631 struct inode *inode; 1632 1633 i915_gem_object_free_mmap_offset(obj); 1634 1635 if (obj->base.filp == NULL) 1636 return; 1637 1638 /* Our goal here is to return as much of the memory as 1639 * is possible back to the system as we are called from OOM. 1640 * To do this we must instruct the shmfs to drop all of its 1641 * backing pages, *now*. 1642 */ 1643 inode = obj->base.filp->f_path.dentry->d_inode; 1644 shmem_truncate_range(inode, 0, (loff_t)-1); 1645 1646 obj->madv = __I915_MADV_PURGED; 1647 } 1648 1649 static inline int 1650 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1651 { 1652 return obj->madv == I915_MADV_DONTNEED; 1653 } 1654 1655 static void 1656 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1657 { 1658 int page_count = obj->base.size / PAGE_SIZE; 1659 struct scatterlist *sg; 1660 int ret, i; 1661 1662 BUG_ON(obj->madv == __I915_MADV_PURGED); 1663 1664 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1665 if (ret) { 1666 /* In the event of a disaster, abandon all caches and 1667 * hope for the best. 1668 */ 1669 WARN_ON(ret != -EIO); 1670 i915_gem_clflush_object(obj); 1671 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1672 } 1673 1674 if (i915_gem_object_needs_bit17_swizzle(obj)) 1675 i915_gem_object_save_bit_17_swizzle(obj); 1676 1677 if (obj->madv == I915_MADV_DONTNEED) 1678 obj->dirty = 0; 1679 1680 for_each_sg(obj->pages->sgl, sg, page_count, i) { 1681 struct page *page = sg_page(sg); 1682 1683 if (obj->dirty) 1684 set_page_dirty(page); 1685 1686 if (obj->madv == I915_MADV_WILLNEED) 1687 mark_page_accessed(page); 1688 1689 page_cache_release(page); 1690 } 1691 obj->dirty = 0; 1692 1693 sg_free_table(obj->pages); 1694 kfree(obj->pages); 1695 } 1696 1697 static int 1698 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1699 { 1700 const struct drm_i915_gem_object_ops *ops = obj->ops; 1701 1702 if (obj->pages == NULL) 1703 return 0; 1704 1705 BUG_ON(obj->gtt_space); 1706 1707 if (obj->pages_pin_count) 1708 return -EBUSY; 1709 1710 ops->put_pages(obj); 1711 obj->pages = NULL; 1712 1713 list_del(&obj->gtt_list); 1714 if (i915_gem_object_is_purgeable(obj)) 1715 i915_gem_object_truncate(obj); 1716 1717 return 0; 1718 } 1719 1720 static long 1721 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1722 { 1723 struct drm_i915_gem_object *obj, *next; 1724 long count = 0; 1725 1726 list_for_each_entry_safe(obj, next, 1727 &dev_priv->mm.unbound_list, 1728 gtt_list) { 1729 if (i915_gem_object_is_purgeable(obj) && 1730 i915_gem_object_put_pages(obj) == 0) { 1731 count += obj->base.size >> PAGE_SHIFT; 1732 if (count >= target) 1733 return count; 1734 } 1735 } 1736 1737 list_for_each_entry_safe(obj, next, 1738 &dev_priv->mm.inactive_list, 1739 mm_list) { 1740 if (i915_gem_object_is_purgeable(obj) && 1741 i915_gem_object_unbind(obj) == 0 && 1742 i915_gem_object_put_pages(obj) == 0) { 1743 count += obj->base.size >> PAGE_SHIFT; 1744 if (count >= target) 1745 return count; 1746 } 1747 } 1748 1749 return count; 1750 } 1751 1752 static void 1753 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1754 { 1755 struct drm_i915_gem_object *obj, *next; 1756 1757 i915_gem_evict_everything(dev_priv->dev); 1758 1759 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1760 i915_gem_object_put_pages(obj); 1761 } 1762 1763 static int 1764 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1765 { 1766 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1767 int page_count, i; 1768 struct address_space *mapping; 1769 struct sg_table *st; 1770 struct scatterlist *sg; 1771 struct page *page; 1772 gfp_t gfp; 1773 1774 /* Assert that the object is not currently in any GPU domain. As it 1775 * wasn't in the GTT, there shouldn't be any way it could have been in 1776 * a GPU cache 1777 */ 1778 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1779 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1780 1781 st = kmalloc(sizeof(*st), GFP_KERNEL); 1782 if (st == NULL) 1783 return -ENOMEM; 1784 1785 page_count = obj->base.size / PAGE_SIZE; 1786 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1787 sg_free_table(st); 1788 kfree(st); 1789 return -ENOMEM; 1790 } 1791 1792 /* Get the list of pages out of our struct file. They'll be pinned 1793 * at this point until we release them. 1794 * 1795 * Fail silently without starting the shrinker 1796 */ 1797 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 1798 gfp = mapping_gfp_mask(mapping); 1799 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1800 gfp &= ~(__GFP_IO | __GFP_WAIT); 1801 for_each_sg(st->sgl, sg, page_count, i) { 1802 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1803 if (IS_ERR(page)) { 1804 i915_gem_purge(dev_priv, page_count); 1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1806 } 1807 if (IS_ERR(page)) { 1808 /* We've tried hard to allocate the memory by reaping 1809 * our own buffer, now let the real VM do its job and 1810 * go down in flames if truly OOM. 1811 */ 1812 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN); 1813 gfp |= __GFP_IO | __GFP_WAIT; 1814 1815 i915_gem_shrink_all(dev_priv); 1816 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1817 if (IS_ERR(page)) 1818 goto err_pages; 1819 1820 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1821 gfp &= ~(__GFP_IO | __GFP_WAIT); 1822 } 1823 1824 sg_set_page(sg, page, PAGE_SIZE, 0); 1825 } 1826 1827 obj->pages = st; 1828 1829 if (i915_gem_object_needs_bit17_swizzle(obj)) 1830 i915_gem_object_do_bit_17_swizzle(obj); 1831 1832 return 0; 1833 1834 err_pages: 1835 for_each_sg(st->sgl, sg, i, page_count) 1836 page_cache_release(sg_page(sg)); 1837 sg_free_table(st); 1838 kfree(st); 1839 return PTR_ERR(page); 1840 } 1841 1842 /* Ensure that the associated pages are gathered from the backing storage 1843 * and pinned into our object. i915_gem_object_get_pages() may be called 1844 * multiple times before they are released by a single call to 1845 * i915_gem_object_put_pages() - once the pages are no longer referenced 1846 * either as a result of memory pressure (reaping pages under the shrinker) 1847 * or as the object is itself released. 1848 */ 1849 int 1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1851 { 1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1853 const struct drm_i915_gem_object_ops *ops = obj->ops; 1854 int ret; 1855 1856 if (obj->pages) 1857 return 0; 1858 1859 BUG_ON(obj->pages_pin_count); 1860 1861 ret = ops->get_pages(obj); 1862 if (ret) 1863 return ret; 1864 1865 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1866 return 0; 1867 } 1868 1869 void 1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1871 struct intel_ring_buffer *ring, 1872 u32 seqno) 1873 { 1874 struct drm_device *dev = obj->base.dev; 1875 struct drm_i915_private *dev_priv = dev->dev_private; 1876 1877 BUG_ON(ring == NULL); 1878 obj->ring = ring; 1879 1880 /* Add a reference if we're newly entering the active list. */ 1881 if (!obj->active) { 1882 drm_gem_object_reference(&obj->base); 1883 obj->active = 1; 1884 } 1885 1886 /* Move from whatever list we were on to the tail of execution. */ 1887 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1888 list_move_tail(&obj->ring_list, &ring->active_list); 1889 1890 obj->last_read_seqno = seqno; 1891 1892 if (obj->fenced_gpu_access) { 1893 obj->last_fenced_seqno = seqno; 1894 1895 /* Bump MRU to take account of the delayed flush */ 1896 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1897 struct drm_i915_fence_reg *reg; 1898 1899 reg = &dev_priv->fence_regs[obj->fence_reg]; 1900 list_move_tail(®->lru_list, 1901 &dev_priv->mm.fence_list); 1902 } 1903 } 1904 } 1905 1906 static void 1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1908 { 1909 struct drm_device *dev = obj->base.dev; 1910 struct drm_i915_private *dev_priv = dev->dev_private; 1911 1912 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1913 BUG_ON(!obj->active); 1914 1915 if (obj->pin_count) /* are we a framebuffer? */ 1916 intel_mark_fb_idle(obj); 1917 1918 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1919 1920 list_del_init(&obj->ring_list); 1921 obj->ring = NULL; 1922 1923 obj->last_read_seqno = 0; 1924 obj->last_write_seqno = 0; 1925 obj->base.write_domain = 0; 1926 1927 obj->last_fenced_seqno = 0; 1928 obj->fenced_gpu_access = false; 1929 1930 obj->active = 0; 1931 drm_gem_object_unreference(&obj->base); 1932 1933 WARN_ON(i915_verify_lists(dev)); 1934 } 1935 1936 static u32 1937 i915_gem_get_seqno(struct drm_device *dev) 1938 { 1939 drm_i915_private_t *dev_priv = dev->dev_private; 1940 u32 seqno = dev_priv->next_seqno; 1941 1942 /* reserve 0 for non-seqno */ 1943 if (++dev_priv->next_seqno == 0) 1944 dev_priv->next_seqno = 1; 1945 1946 return seqno; 1947 } 1948 1949 u32 1950 i915_gem_next_request_seqno(struct intel_ring_buffer *ring) 1951 { 1952 if (ring->outstanding_lazy_request == 0) 1953 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); 1954 1955 return ring->outstanding_lazy_request; 1956 } 1957 1958 int 1959 i915_add_request(struct intel_ring_buffer *ring, 1960 struct drm_file *file, 1961 u32 *out_seqno) 1962 { 1963 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1964 struct drm_i915_gem_request *request; 1965 u32 request_ring_position; 1966 u32 seqno; 1967 int was_empty; 1968 int ret; 1969 1970 /* 1971 * Emit any outstanding flushes - execbuf can fail to emit the flush 1972 * after having emitted the batchbuffer command. Hence we need to fix 1973 * things up similar to emitting the lazy request. The difference here 1974 * is that the flush _must_ happen before the next request, no matter 1975 * what. 1976 */ 1977 ret = intel_ring_flush_all_caches(ring); 1978 if (ret) 1979 return ret; 1980 1981 request = kmalloc(sizeof(*request), GFP_KERNEL); 1982 if (request == NULL) 1983 return -ENOMEM; 1984 1985 seqno = i915_gem_next_request_seqno(ring); 1986 1987 /* Record the position of the start of the request so that 1988 * should we detect the updated seqno part-way through the 1989 * GPU processing the request, we never over-estimate the 1990 * position of the head. 1991 */ 1992 request_ring_position = intel_ring_get_tail(ring); 1993 1994 ret = ring->add_request(ring, &seqno); 1995 if (ret) { 1996 kfree(request); 1997 return ret; 1998 } 1999 2000 trace_i915_gem_request_add(ring, seqno); 2001 2002 request->seqno = seqno; 2003 request->ring = ring; 2004 request->tail = request_ring_position; 2005 request->emitted_jiffies = jiffies; 2006 was_empty = list_empty(&ring->request_list); 2007 list_add_tail(&request->list, &ring->request_list); 2008 request->file_priv = NULL; 2009 2010 if (file) { 2011 struct drm_i915_file_private *file_priv = file->driver_priv; 2012 2013 spin_lock(&file_priv->mm.lock); 2014 request->file_priv = file_priv; 2015 list_add_tail(&request->client_list, 2016 &file_priv->mm.request_list); 2017 spin_unlock(&file_priv->mm.lock); 2018 } 2019 2020 ring->outstanding_lazy_request = 0; 2021 2022 if (!dev_priv->mm.suspended) { 2023 if (i915_enable_hangcheck) { 2024 mod_timer(&dev_priv->hangcheck_timer, 2025 jiffies + 2026 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); 2027 } 2028 if (was_empty) { 2029 queue_delayed_work(dev_priv->wq, 2030 &dev_priv->mm.retire_work, HZ); 2031 intel_mark_busy(dev_priv->dev); 2032 } 2033 } 2034 2035 if (out_seqno) 2036 *out_seqno = seqno; 2037 return 0; 2038 } 2039 2040 static inline void 2041 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2042 { 2043 struct drm_i915_file_private *file_priv = request->file_priv; 2044 2045 if (!file_priv) 2046 return; 2047 2048 spin_lock(&file_priv->mm.lock); 2049 if (request->file_priv) { 2050 list_del(&request->client_list); 2051 request->file_priv = NULL; 2052 } 2053 spin_unlock(&file_priv->mm.lock); 2054 } 2055 2056 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2057 struct intel_ring_buffer *ring) 2058 { 2059 while (!list_empty(&ring->request_list)) { 2060 struct drm_i915_gem_request *request; 2061 2062 request = list_first_entry(&ring->request_list, 2063 struct drm_i915_gem_request, 2064 list); 2065 2066 list_del(&request->list); 2067 i915_gem_request_remove_from_client(request); 2068 kfree(request); 2069 } 2070 2071 while (!list_empty(&ring->active_list)) { 2072 struct drm_i915_gem_object *obj; 2073 2074 obj = list_first_entry(&ring->active_list, 2075 struct drm_i915_gem_object, 2076 ring_list); 2077 2078 i915_gem_object_move_to_inactive(obj); 2079 } 2080 } 2081 2082 static void i915_gem_reset_fences(struct drm_device *dev) 2083 { 2084 struct drm_i915_private *dev_priv = dev->dev_private; 2085 int i; 2086 2087 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2088 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2089 2090 i915_gem_write_fence(dev, i, NULL); 2091 2092 if (reg->obj) 2093 i915_gem_object_fence_lost(reg->obj); 2094 2095 reg->pin_count = 0; 2096 reg->obj = NULL; 2097 INIT_LIST_HEAD(®->lru_list); 2098 } 2099 2100 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 2101 } 2102 2103 void i915_gem_reset(struct drm_device *dev) 2104 { 2105 struct drm_i915_private *dev_priv = dev->dev_private; 2106 struct drm_i915_gem_object *obj; 2107 struct intel_ring_buffer *ring; 2108 int i; 2109 2110 for_each_ring(ring, dev_priv, i) 2111 i915_gem_reset_ring_lists(dev_priv, ring); 2112 2113 /* Move everything out of the GPU domains to ensure we do any 2114 * necessary invalidation upon reuse. 2115 */ 2116 list_for_each_entry(obj, 2117 &dev_priv->mm.inactive_list, 2118 mm_list) 2119 { 2120 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2121 } 2122 2123 /* The fence registers are invalidated so clear them out */ 2124 i915_gem_reset_fences(dev); 2125 } 2126 2127 /** 2128 * This function clears the request list as sequence numbers are passed. 2129 */ 2130 void 2131 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2132 { 2133 uint32_t seqno; 2134 int i; 2135 2136 if (list_empty(&ring->request_list)) 2137 return; 2138 2139 WARN_ON(i915_verify_lists(ring->dev)); 2140 2141 seqno = ring->get_seqno(ring, true); 2142 2143 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) 2144 if (seqno >= ring->sync_seqno[i]) 2145 ring->sync_seqno[i] = 0; 2146 2147 while (!list_empty(&ring->request_list)) { 2148 struct drm_i915_gem_request *request; 2149 2150 request = list_first_entry(&ring->request_list, 2151 struct drm_i915_gem_request, 2152 list); 2153 2154 if (!i915_seqno_passed(seqno, request->seqno)) 2155 break; 2156 2157 trace_i915_gem_request_retire(ring, request->seqno); 2158 /* We know the GPU must have read the request to have 2159 * sent us the seqno + interrupt, so use the position 2160 * of tail of the request to update the last known position 2161 * of the GPU head. 2162 */ 2163 ring->last_retired_head = request->tail; 2164 2165 list_del(&request->list); 2166 i915_gem_request_remove_from_client(request); 2167 kfree(request); 2168 } 2169 2170 /* Move any buffers on the active list that are no longer referenced 2171 * by the ringbuffer to the flushing/inactive lists as appropriate. 2172 */ 2173 while (!list_empty(&ring->active_list)) { 2174 struct drm_i915_gem_object *obj; 2175 2176 obj = list_first_entry(&ring->active_list, 2177 struct drm_i915_gem_object, 2178 ring_list); 2179 2180 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2181 break; 2182 2183 i915_gem_object_move_to_inactive(obj); 2184 } 2185 2186 if (unlikely(ring->trace_irq_seqno && 2187 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2188 ring->irq_put(ring); 2189 ring->trace_irq_seqno = 0; 2190 } 2191 2192 WARN_ON(i915_verify_lists(ring->dev)); 2193 } 2194 2195 void 2196 i915_gem_retire_requests(struct drm_device *dev) 2197 { 2198 drm_i915_private_t *dev_priv = dev->dev_private; 2199 struct intel_ring_buffer *ring; 2200 int i; 2201 2202 for_each_ring(ring, dev_priv, i) 2203 i915_gem_retire_requests_ring(ring); 2204 } 2205 2206 static void 2207 i915_gem_retire_work_handler(struct work_struct *work) 2208 { 2209 drm_i915_private_t *dev_priv; 2210 struct drm_device *dev; 2211 struct intel_ring_buffer *ring; 2212 bool idle; 2213 int i; 2214 2215 dev_priv = container_of(work, drm_i915_private_t, 2216 mm.retire_work.work); 2217 dev = dev_priv->dev; 2218 2219 /* Come back later if the device is busy... */ 2220 if (!mutex_trylock(&dev->struct_mutex)) { 2221 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2222 return; 2223 } 2224 2225 i915_gem_retire_requests(dev); 2226 2227 /* Send a periodic flush down the ring so we don't hold onto GEM 2228 * objects indefinitely. 2229 */ 2230 idle = true; 2231 for_each_ring(ring, dev_priv, i) { 2232 if (ring->gpu_caches_dirty) 2233 i915_add_request(ring, NULL, NULL); 2234 2235 idle &= list_empty(&ring->request_list); 2236 } 2237 2238 if (!dev_priv->mm.suspended && !idle) 2239 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2240 if (idle) 2241 intel_mark_idle(dev); 2242 2243 mutex_unlock(&dev->struct_mutex); 2244 } 2245 2246 /** 2247 * Ensures that an object will eventually get non-busy by flushing any required 2248 * write domains, emitting any outstanding lazy request and retiring and 2249 * completed requests. 2250 */ 2251 static int 2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2253 { 2254 int ret; 2255 2256 if (obj->active) { 2257 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2258 if (ret) 2259 return ret; 2260 2261 i915_gem_retire_requests_ring(obj->ring); 2262 } 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2269 * @DRM_IOCTL_ARGS: standard ioctl arguments 2270 * 2271 * Returns 0 if successful, else an error is returned with the remaining time in 2272 * the timeout parameter. 2273 * -ETIME: object is still busy after timeout 2274 * -ERESTARTSYS: signal interrupted the wait 2275 * -ENONENT: object doesn't exist 2276 * Also possible, but rare: 2277 * -EAGAIN: GPU wedged 2278 * -ENOMEM: damn 2279 * -ENODEV: Internal IRQ fail 2280 * -E?: The add request failed 2281 * 2282 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2283 * non-zero timeout parameter the wait ioctl will wait for the given number of 2284 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2285 * without holding struct_mutex the object may become re-busied before this 2286 * function completes. A similar but shorter * race condition exists in the busy 2287 * ioctl 2288 */ 2289 int 2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2291 { 2292 struct drm_i915_gem_wait *args = data; 2293 struct drm_i915_gem_object *obj; 2294 struct intel_ring_buffer *ring = NULL; 2295 struct timespec timeout_stack, *timeout = NULL; 2296 u32 seqno = 0; 2297 int ret = 0; 2298 2299 if (args->timeout_ns >= 0) { 2300 timeout_stack = ns_to_timespec(args->timeout_ns); 2301 timeout = &timeout_stack; 2302 } 2303 2304 ret = i915_mutex_lock_interruptible(dev); 2305 if (ret) 2306 return ret; 2307 2308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2309 if (&obj->base == NULL) { 2310 mutex_unlock(&dev->struct_mutex); 2311 return -ENOENT; 2312 } 2313 2314 /* Need to make sure the object gets inactive eventually. */ 2315 ret = i915_gem_object_flush_active(obj); 2316 if (ret) 2317 goto out; 2318 2319 if (obj->active) { 2320 seqno = obj->last_read_seqno; 2321 ring = obj->ring; 2322 } 2323 2324 if (seqno == 0) 2325 goto out; 2326 2327 /* Do this after OLR check to make sure we make forward progress polling 2328 * on this IOCTL with a 0 timeout (like busy ioctl) 2329 */ 2330 if (!args->timeout_ns) { 2331 ret = -ETIME; 2332 goto out; 2333 } 2334 2335 drm_gem_object_unreference(&obj->base); 2336 mutex_unlock(&dev->struct_mutex); 2337 2338 ret = __wait_seqno(ring, seqno, true, timeout); 2339 if (timeout) { 2340 WARN_ON(!timespec_valid(timeout)); 2341 args->timeout_ns = timespec_to_ns(timeout); 2342 } 2343 return ret; 2344 2345 out: 2346 drm_gem_object_unreference(&obj->base); 2347 mutex_unlock(&dev->struct_mutex); 2348 return ret; 2349 } 2350 2351 /** 2352 * i915_gem_object_sync - sync an object to a ring. 2353 * 2354 * @obj: object which may be in use on another ring. 2355 * @to: ring we wish to use the object on. May be NULL. 2356 * 2357 * This code is meant to abstract object synchronization with the GPU. 2358 * Calling with NULL implies synchronizing the object with the CPU 2359 * rather than a particular GPU ring. 2360 * 2361 * Returns 0 if successful, else propagates up the lower layer error. 2362 */ 2363 int 2364 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2365 struct intel_ring_buffer *to) 2366 { 2367 struct intel_ring_buffer *from = obj->ring; 2368 u32 seqno; 2369 int ret, idx; 2370 2371 if (from == NULL || to == from) 2372 return 0; 2373 2374 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2375 return i915_gem_object_wait_rendering(obj, false); 2376 2377 idx = intel_ring_sync_index(from, to); 2378 2379 seqno = obj->last_read_seqno; 2380 if (seqno <= from->sync_seqno[idx]) 2381 return 0; 2382 2383 ret = i915_gem_check_olr(obj->ring, seqno); 2384 if (ret) 2385 return ret; 2386 2387 ret = to->sync_to(to, from, seqno); 2388 if (!ret) 2389 from->sync_seqno[idx] = seqno; 2390 2391 return ret; 2392 } 2393 2394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2395 { 2396 u32 old_write_domain, old_read_domains; 2397 2398 /* Act a barrier for all accesses through the GTT */ 2399 mb(); 2400 2401 /* Force a pagefault for domain tracking on next user access */ 2402 i915_gem_release_mmap(obj); 2403 2404 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2405 return; 2406 2407 old_read_domains = obj->base.read_domains; 2408 old_write_domain = obj->base.write_domain; 2409 2410 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2411 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2412 2413 trace_i915_gem_object_change_domain(obj, 2414 old_read_domains, 2415 old_write_domain); 2416 } 2417 2418 /** 2419 * Unbinds an object from the GTT aperture. 2420 */ 2421 int 2422 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2423 { 2424 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2425 int ret = 0; 2426 2427 if (obj->gtt_space == NULL) 2428 return 0; 2429 2430 if (obj->pin_count) 2431 return -EBUSY; 2432 2433 BUG_ON(obj->pages == NULL); 2434 2435 ret = i915_gem_object_finish_gpu(obj); 2436 if (ret) 2437 return ret; 2438 /* Continue on if we fail due to EIO, the GPU is hung so we 2439 * should be safe and we need to cleanup or else we might 2440 * cause memory corruption through use-after-free. 2441 */ 2442 2443 i915_gem_object_finish_gtt(obj); 2444 2445 /* release the fence reg _after_ flushing */ 2446 ret = i915_gem_object_put_fence(obj); 2447 if (ret) 2448 return ret; 2449 2450 trace_i915_gem_object_unbind(obj); 2451 2452 if (obj->has_global_gtt_mapping) 2453 i915_gem_gtt_unbind_object(obj); 2454 if (obj->has_aliasing_ppgtt_mapping) { 2455 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2456 obj->has_aliasing_ppgtt_mapping = 0; 2457 } 2458 i915_gem_gtt_finish_object(obj); 2459 2460 list_del(&obj->mm_list); 2461 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2462 /* Avoid an unnecessary call to unbind on rebind. */ 2463 obj->map_and_fenceable = true; 2464 2465 drm_mm_put_block(obj->gtt_space); 2466 obj->gtt_space = NULL; 2467 obj->gtt_offset = 0; 2468 2469 return 0; 2470 } 2471 2472 static int i915_ring_idle(struct intel_ring_buffer *ring) 2473 { 2474 if (list_empty(&ring->active_list)) 2475 return 0; 2476 2477 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring)); 2478 } 2479 2480 int i915_gpu_idle(struct drm_device *dev) 2481 { 2482 drm_i915_private_t *dev_priv = dev->dev_private; 2483 struct intel_ring_buffer *ring; 2484 int ret, i; 2485 2486 /* Flush everything onto the inactive list. */ 2487 for_each_ring(ring, dev_priv, i) { 2488 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2489 if (ret) 2490 return ret; 2491 2492 ret = i915_ring_idle(ring); 2493 if (ret) 2494 return ret; 2495 } 2496 2497 return 0; 2498 } 2499 2500 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, 2501 struct drm_i915_gem_object *obj) 2502 { 2503 drm_i915_private_t *dev_priv = dev->dev_private; 2504 uint64_t val; 2505 2506 if (obj) { 2507 u32 size = obj->gtt_space->size; 2508 2509 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2510 0xfffff000) << 32; 2511 val |= obj->gtt_offset & 0xfffff000; 2512 val |= (uint64_t)((obj->stride / 128) - 1) << 2513 SANDYBRIDGE_FENCE_PITCH_SHIFT; 2514 2515 if (obj->tiling_mode == I915_TILING_Y) 2516 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2517 val |= I965_FENCE_REG_VALID; 2518 } else 2519 val = 0; 2520 2521 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); 2522 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); 2523 } 2524 2525 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2526 struct drm_i915_gem_object *obj) 2527 { 2528 drm_i915_private_t *dev_priv = dev->dev_private; 2529 uint64_t val; 2530 2531 if (obj) { 2532 u32 size = obj->gtt_space->size; 2533 2534 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2535 0xfffff000) << 32; 2536 val |= obj->gtt_offset & 0xfffff000; 2537 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2538 if (obj->tiling_mode == I915_TILING_Y) 2539 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2540 val |= I965_FENCE_REG_VALID; 2541 } else 2542 val = 0; 2543 2544 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); 2545 POSTING_READ(FENCE_REG_965_0 + reg * 8); 2546 } 2547 2548 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2549 struct drm_i915_gem_object *obj) 2550 { 2551 drm_i915_private_t *dev_priv = dev->dev_private; 2552 u32 val; 2553 2554 if (obj) { 2555 u32 size = obj->gtt_space->size; 2556 int pitch_val; 2557 int tile_width; 2558 2559 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2560 (size & -size) != size || 2561 (obj->gtt_offset & (size - 1)), 2562 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2563 obj->gtt_offset, obj->map_and_fenceable, size); 2564 2565 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2566 tile_width = 128; 2567 else 2568 tile_width = 512; 2569 2570 /* Note: pitch better be a power of two tile widths */ 2571 pitch_val = obj->stride / tile_width; 2572 pitch_val = ffs(pitch_val) - 1; 2573 2574 val = obj->gtt_offset; 2575 if (obj->tiling_mode == I915_TILING_Y) 2576 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2577 val |= I915_FENCE_SIZE_BITS(size); 2578 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2579 val |= I830_FENCE_REG_VALID; 2580 } else 2581 val = 0; 2582 2583 if (reg < 8) 2584 reg = FENCE_REG_830_0 + reg * 4; 2585 else 2586 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2587 2588 I915_WRITE(reg, val); 2589 POSTING_READ(reg); 2590 } 2591 2592 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2593 struct drm_i915_gem_object *obj) 2594 { 2595 drm_i915_private_t *dev_priv = dev->dev_private; 2596 uint32_t val; 2597 2598 if (obj) { 2599 u32 size = obj->gtt_space->size; 2600 uint32_t pitch_val; 2601 2602 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2603 (size & -size) != size || 2604 (obj->gtt_offset & (size - 1)), 2605 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2606 obj->gtt_offset, size); 2607 2608 pitch_val = obj->stride / 128; 2609 pitch_val = ffs(pitch_val) - 1; 2610 2611 val = obj->gtt_offset; 2612 if (obj->tiling_mode == I915_TILING_Y) 2613 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2614 val |= I830_FENCE_SIZE_BITS(size); 2615 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2616 val |= I830_FENCE_REG_VALID; 2617 } else 2618 val = 0; 2619 2620 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2621 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2622 } 2623 2624 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2625 struct drm_i915_gem_object *obj) 2626 { 2627 switch (INTEL_INFO(dev)->gen) { 2628 case 7: 2629 case 6: sandybridge_write_fence_reg(dev, reg, obj); break; 2630 case 5: 2631 case 4: i965_write_fence_reg(dev, reg, obj); break; 2632 case 3: i915_write_fence_reg(dev, reg, obj); break; 2633 case 2: i830_write_fence_reg(dev, reg, obj); break; 2634 default: break; 2635 } 2636 } 2637 2638 static inline int fence_number(struct drm_i915_private *dev_priv, 2639 struct drm_i915_fence_reg *fence) 2640 { 2641 return fence - dev_priv->fence_regs; 2642 } 2643 2644 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2645 struct drm_i915_fence_reg *fence, 2646 bool enable) 2647 { 2648 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2649 int reg = fence_number(dev_priv, fence); 2650 2651 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2652 2653 if (enable) { 2654 obj->fence_reg = reg; 2655 fence->obj = obj; 2656 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2657 } else { 2658 obj->fence_reg = I915_FENCE_REG_NONE; 2659 fence->obj = NULL; 2660 list_del_init(&fence->lru_list); 2661 } 2662 } 2663 2664 static int 2665 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) 2666 { 2667 if (obj->last_fenced_seqno) { 2668 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2669 if (ret) 2670 return ret; 2671 2672 obj->last_fenced_seqno = 0; 2673 } 2674 2675 /* Ensure that all CPU reads are completed before installing a fence 2676 * and all writes before removing the fence. 2677 */ 2678 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) 2679 mb(); 2680 2681 obj->fenced_gpu_access = false; 2682 return 0; 2683 } 2684 2685 int 2686 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2687 { 2688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2689 int ret; 2690 2691 ret = i915_gem_object_flush_fence(obj); 2692 if (ret) 2693 return ret; 2694 2695 if (obj->fence_reg == I915_FENCE_REG_NONE) 2696 return 0; 2697 2698 i915_gem_object_update_fence(obj, 2699 &dev_priv->fence_regs[obj->fence_reg], 2700 false); 2701 i915_gem_object_fence_lost(obj); 2702 2703 return 0; 2704 } 2705 2706 static struct drm_i915_fence_reg * 2707 i915_find_fence_reg(struct drm_device *dev) 2708 { 2709 struct drm_i915_private *dev_priv = dev->dev_private; 2710 struct drm_i915_fence_reg *reg, *avail; 2711 int i; 2712 2713 /* First try to find a free reg */ 2714 avail = NULL; 2715 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2716 reg = &dev_priv->fence_regs[i]; 2717 if (!reg->obj) 2718 return reg; 2719 2720 if (!reg->pin_count) 2721 avail = reg; 2722 } 2723 2724 if (avail == NULL) 2725 return NULL; 2726 2727 /* None available, try to steal one or wait for a user to finish */ 2728 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2729 if (reg->pin_count) 2730 continue; 2731 2732 return reg; 2733 } 2734 2735 return NULL; 2736 } 2737 2738 /** 2739 * i915_gem_object_get_fence - set up fencing for an object 2740 * @obj: object to map through a fence reg 2741 * 2742 * When mapping objects through the GTT, userspace wants to be able to write 2743 * to them without having to worry about swizzling if the object is tiled. 2744 * This function walks the fence regs looking for a free one for @obj, 2745 * stealing one if it can't find any. 2746 * 2747 * It then sets up the reg based on the object's properties: address, pitch 2748 * and tiling format. 2749 * 2750 * For an untiled surface, this removes any existing fence. 2751 */ 2752 int 2753 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2754 { 2755 struct drm_device *dev = obj->base.dev; 2756 struct drm_i915_private *dev_priv = dev->dev_private; 2757 bool enable = obj->tiling_mode != I915_TILING_NONE; 2758 struct drm_i915_fence_reg *reg; 2759 int ret; 2760 2761 /* Have we updated the tiling parameters upon the object and so 2762 * will need to serialise the write to the associated fence register? 2763 */ 2764 if (obj->fence_dirty) { 2765 ret = i915_gem_object_flush_fence(obj); 2766 if (ret) 2767 return ret; 2768 } 2769 2770 /* Just update our place in the LRU if our fence is getting reused. */ 2771 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2772 reg = &dev_priv->fence_regs[obj->fence_reg]; 2773 if (!obj->fence_dirty) { 2774 list_move_tail(®->lru_list, 2775 &dev_priv->mm.fence_list); 2776 return 0; 2777 } 2778 } else if (enable) { 2779 reg = i915_find_fence_reg(dev); 2780 if (reg == NULL) 2781 return -EDEADLK; 2782 2783 if (reg->obj) { 2784 struct drm_i915_gem_object *old = reg->obj; 2785 2786 ret = i915_gem_object_flush_fence(old); 2787 if (ret) 2788 return ret; 2789 2790 i915_gem_object_fence_lost(old); 2791 } 2792 } else 2793 return 0; 2794 2795 i915_gem_object_update_fence(obj, reg, enable); 2796 obj->fence_dirty = false; 2797 2798 return 0; 2799 } 2800 2801 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2802 struct drm_mm_node *gtt_space, 2803 unsigned long cache_level) 2804 { 2805 struct drm_mm_node *other; 2806 2807 /* On non-LLC machines we have to be careful when putting differing 2808 * types of snoopable memory together to avoid the prefetcher 2809 * crossing memory domains and dieing. 2810 */ 2811 if (HAS_LLC(dev)) 2812 return true; 2813 2814 if (gtt_space == NULL) 2815 return true; 2816 2817 if (list_empty(>t_space->node_list)) 2818 return true; 2819 2820 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2821 if (other->allocated && !other->hole_follows && other->color != cache_level) 2822 return false; 2823 2824 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2825 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2826 return false; 2827 2828 return true; 2829 } 2830 2831 static void i915_gem_verify_gtt(struct drm_device *dev) 2832 { 2833 #if WATCH_GTT 2834 struct drm_i915_private *dev_priv = dev->dev_private; 2835 struct drm_i915_gem_object *obj; 2836 int err = 0; 2837 2838 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2839 if (obj->gtt_space == NULL) { 2840 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2841 err++; 2842 continue; 2843 } 2844 2845 if (obj->cache_level != obj->gtt_space->color) { 2846 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2847 obj->gtt_space->start, 2848 obj->gtt_space->start + obj->gtt_space->size, 2849 obj->cache_level, 2850 obj->gtt_space->color); 2851 err++; 2852 continue; 2853 } 2854 2855 if (!i915_gem_valid_gtt_space(dev, 2856 obj->gtt_space, 2857 obj->cache_level)) { 2858 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2859 obj->gtt_space->start, 2860 obj->gtt_space->start + obj->gtt_space->size, 2861 obj->cache_level); 2862 err++; 2863 continue; 2864 } 2865 } 2866 2867 WARN_ON(err); 2868 #endif 2869 } 2870 2871 /** 2872 * Finds free space in the GTT aperture and binds the object there. 2873 */ 2874 static int 2875 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2876 unsigned alignment, 2877 bool map_and_fenceable, 2878 bool nonblocking) 2879 { 2880 struct drm_device *dev = obj->base.dev; 2881 drm_i915_private_t *dev_priv = dev->dev_private; 2882 struct drm_mm_node *free_space; 2883 u32 size, fence_size, fence_alignment, unfenced_alignment; 2884 bool mappable, fenceable; 2885 int ret; 2886 2887 if (obj->madv != I915_MADV_WILLNEED) { 2888 DRM_ERROR("Attempting to bind a purgeable object\n"); 2889 return -EINVAL; 2890 } 2891 2892 fence_size = i915_gem_get_gtt_size(dev, 2893 obj->base.size, 2894 obj->tiling_mode); 2895 fence_alignment = i915_gem_get_gtt_alignment(dev, 2896 obj->base.size, 2897 obj->tiling_mode); 2898 unfenced_alignment = 2899 i915_gem_get_unfenced_gtt_alignment(dev, 2900 obj->base.size, 2901 obj->tiling_mode); 2902 2903 if (alignment == 0) 2904 alignment = map_and_fenceable ? fence_alignment : 2905 unfenced_alignment; 2906 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2907 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2908 return -EINVAL; 2909 } 2910 2911 size = map_and_fenceable ? fence_size : obj->base.size; 2912 2913 /* If the object is bigger than the entire aperture, reject it early 2914 * before evicting everything in a vain attempt to find space. 2915 */ 2916 if (obj->base.size > 2917 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { 2918 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2919 return -E2BIG; 2920 } 2921 2922 ret = i915_gem_object_get_pages(obj); 2923 if (ret) 2924 return ret; 2925 2926 search_free: 2927 if (map_and_fenceable) 2928 free_space = 2929 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space, 2930 size, alignment, obj->cache_level, 2931 0, dev_priv->mm.gtt_mappable_end, 2932 false); 2933 else 2934 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space, 2935 size, alignment, obj->cache_level, 2936 false); 2937 2938 if (free_space != NULL) { 2939 if (map_and_fenceable) 2940 obj->gtt_space = 2941 drm_mm_get_block_range_generic(free_space, 2942 size, alignment, obj->cache_level, 2943 0, dev_priv->mm.gtt_mappable_end, 2944 false); 2945 else 2946 obj->gtt_space = 2947 drm_mm_get_block_generic(free_space, 2948 size, alignment, obj->cache_level, 2949 false); 2950 } 2951 if (obj->gtt_space == NULL) { 2952 ret = i915_gem_evict_something(dev, size, alignment, 2953 obj->cache_level, 2954 map_and_fenceable, 2955 nonblocking); 2956 if (ret) 2957 return ret; 2958 2959 goto search_free; 2960 } 2961 if (WARN_ON(!i915_gem_valid_gtt_space(dev, 2962 obj->gtt_space, 2963 obj->cache_level))) { 2964 drm_mm_put_block(obj->gtt_space); 2965 obj->gtt_space = NULL; 2966 return -EINVAL; 2967 } 2968 2969 2970 ret = i915_gem_gtt_prepare_object(obj); 2971 if (ret) { 2972 drm_mm_put_block(obj->gtt_space); 2973 obj->gtt_space = NULL; 2974 return ret; 2975 } 2976 2977 if (!dev_priv->mm.aliasing_ppgtt) 2978 i915_gem_gtt_bind_object(obj, obj->cache_level); 2979 2980 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 2981 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2982 2983 obj->gtt_offset = obj->gtt_space->start; 2984 2985 fenceable = 2986 obj->gtt_space->size == fence_size && 2987 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 2988 2989 mappable = 2990 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; 2991 2992 obj->map_and_fenceable = mappable && fenceable; 2993 2994 trace_i915_gem_object_bind(obj, map_and_fenceable); 2995 i915_gem_verify_gtt(dev); 2996 return 0; 2997 } 2998 2999 void 3000 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3001 { 3002 /* If we don't have a page list set up, then we're not pinned 3003 * to GPU, and we can ignore the cache flush because it'll happen 3004 * again at bind time. 3005 */ 3006 if (obj->pages == NULL) 3007 return; 3008 3009 /* If the GPU is snooping the contents of the CPU cache, 3010 * we do not need to manually clear the CPU cache lines. However, 3011 * the caches are only snooped when the render cache is 3012 * flushed/invalidated. As we always have to emit invalidations 3013 * and flushes when moving into and out of the RENDER domain, correct 3014 * snooping behaviour occurs naturally as the result of our domain 3015 * tracking. 3016 */ 3017 if (obj->cache_level != I915_CACHE_NONE) 3018 return; 3019 3020 trace_i915_gem_object_clflush(obj); 3021 3022 drm_clflush_sg(obj->pages); 3023 } 3024 3025 /** Flushes the GTT write domain for the object if it's dirty. */ 3026 static void 3027 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3028 { 3029 uint32_t old_write_domain; 3030 3031 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3032 return; 3033 3034 /* No actual flushing is required for the GTT write domain. Writes 3035 * to it immediately go to main memory as far as we know, so there's 3036 * no chipset flush. It also doesn't land in render cache. 3037 * 3038 * However, we do have to enforce the order so that all writes through 3039 * the GTT land before any writes to the device, such as updates to 3040 * the GATT itself. 3041 */ 3042 wmb(); 3043 3044 old_write_domain = obj->base.write_domain; 3045 obj->base.write_domain = 0; 3046 3047 trace_i915_gem_object_change_domain(obj, 3048 obj->base.read_domains, 3049 old_write_domain); 3050 } 3051 3052 /** Flushes the CPU write domain for the object if it's dirty. */ 3053 static void 3054 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3055 { 3056 uint32_t old_write_domain; 3057 3058 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3059 return; 3060 3061 i915_gem_clflush_object(obj); 3062 intel_gtt_chipset_flush(); 3063 old_write_domain = obj->base.write_domain; 3064 obj->base.write_domain = 0; 3065 3066 trace_i915_gem_object_change_domain(obj, 3067 obj->base.read_domains, 3068 old_write_domain); 3069 } 3070 3071 /** 3072 * Moves a single object to the GTT read, and possibly write domain. 3073 * 3074 * This function returns when the move is complete, including waiting on 3075 * flushes to occur. 3076 */ 3077 int 3078 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3079 { 3080 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3081 uint32_t old_write_domain, old_read_domains; 3082 int ret; 3083 3084 /* Not valid to be called on unbound objects. */ 3085 if (obj->gtt_space == NULL) 3086 return -EINVAL; 3087 3088 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3089 return 0; 3090 3091 ret = i915_gem_object_wait_rendering(obj, !write); 3092 if (ret) 3093 return ret; 3094 3095 i915_gem_object_flush_cpu_write_domain(obj); 3096 3097 old_write_domain = obj->base.write_domain; 3098 old_read_domains = obj->base.read_domains; 3099 3100 /* It should now be out of any other write domains, and we can update 3101 * the domain values for our changes. 3102 */ 3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3105 if (write) { 3106 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3107 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3108 obj->dirty = 1; 3109 } 3110 3111 trace_i915_gem_object_change_domain(obj, 3112 old_read_domains, 3113 old_write_domain); 3114 3115 /* And bump the LRU for this access */ 3116 if (i915_gem_object_is_inactive(obj)) 3117 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3118 3119 return 0; 3120 } 3121 3122 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3123 enum i915_cache_level cache_level) 3124 { 3125 struct drm_device *dev = obj->base.dev; 3126 drm_i915_private_t *dev_priv = dev->dev_private; 3127 int ret; 3128 3129 if (obj->cache_level == cache_level) 3130 return 0; 3131 3132 if (obj->pin_count) { 3133 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3134 return -EBUSY; 3135 } 3136 3137 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3138 ret = i915_gem_object_unbind(obj); 3139 if (ret) 3140 return ret; 3141 } 3142 3143 if (obj->gtt_space) { 3144 ret = i915_gem_object_finish_gpu(obj); 3145 if (ret) 3146 return ret; 3147 3148 i915_gem_object_finish_gtt(obj); 3149 3150 /* Before SandyBridge, you could not use tiling or fence 3151 * registers with snooped memory, so relinquish any fences 3152 * currently pointing to our region in the aperture. 3153 */ 3154 if (INTEL_INFO(dev)->gen < 6) { 3155 ret = i915_gem_object_put_fence(obj); 3156 if (ret) 3157 return ret; 3158 } 3159 3160 if (obj->has_global_gtt_mapping) 3161 i915_gem_gtt_bind_object(obj, cache_level); 3162 if (obj->has_aliasing_ppgtt_mapping) 3163 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3164 obj, cache_level); 3165 3166 obj->gtt_space->color = cache_level; 3167 } 3168 3169 if (cache_level == I915_CACHE_NONE) { 3170 u32 old_read_domains, old_write_domain; 3171 3172 /* If we're coming from LLC cached, then we haven't 3173 * actually been tracking whether the data is in the 3174 * CPU cache or not, since we only allow one bit set 3175 * in obj->write_domain and have been skipping the clflushes. 3176 * Just set it to the CPU cache for now. 3177 */ 3178 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3179 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3180 3181 old_read_domains = obj->base.read_domains; 3182 old_write_domain = obj->base.write_domain; 3183 3184 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3185 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3186 3187 trace_i915_gem_object_change_domain(obj, 3188 old_read_domains, 3189 old_write_domain); 3190 } 3191 3192 obj->cache_level = cache_level; 3193 i915_gem_verify_gtt(dev); 3194 return 0; 3195 } 3196 3197 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3198 struct drm_file *file) 3199 { 3200 struct drm_i915_gem_caching *args = data; 3201 struct drm_i915_gem_object *obj; 3202 int ret; 3203 3204 ret = i915_mutex_lock_interruptible(dev); 3205 if (ret) 3206 return ret; 3207 3208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3209 if (&obj->base == NULL) { 3210 ret = -ENOENT; 3211 goto unlock; 3212 } 3213 3214 args->caching = obj->cache_level != I915_CACHE_NONE; 3215 3216 drm_gem_object_unreference(&obj->base); 3217 unlock: 3218 mutex_unlock(&dev->struct_mutex); 3219 return ret; 3220 } 3221 3222 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3223 struct drm_file *file) 3224 { 3225 struct drm_i915_gem_caching *args = data; 3226 struct drm_i915_gem_object *obj; 3227 enum i915_cache_level level; 3228 int ret; 3229 3230 switch (args->caching) { 3231 case I915_CACHING_NONE: 3232 level = I915_CACHE_NONE; 3233 break; 3234 case I915_CACHING_CACHED: 3235 level = I915_CACHE_LLC; 3236 break; 3237 default: 3238 return -EINVAL; 3239 } 3240 3241 ret = i915_mutex_lock_interruptible(dev); 3242 if (ret) 3243 return ret; 3244 3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3246 if (&obj->base == NULL) { 3247 ret = -ENOENT; 3248 goto unlock; 3249 } 3250 3251 ret = i915_gem_object_set_cache_level(obj, level); 3252 3253 drm_gem_object_unreference(&obj->base); 3254 unlock: 3255 mutex_unlock(&dev->struct_mutex); 3256 return ret; 3257 } 3258 3259 /* 3260 * Prepare buffer for display plane (scanout, cursors, etc). 3261 * Can be called from an uninterruptible phase (modesetting) and allows 3262 * any flushes to be pipelined (for pageflips). 3263 */ 3264 int 3265 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3266 u32 alignment, 3267 struct intel_ring_buffer *pipelined) 3268 { 3269 u32 old_read_domains, old_write_domain; 3270 int ret; 3271 3272 if (pipelined != obj->ring) { 3273 ret = i915_gem_object_sync(obj, pipelined); 3274 if (ret) 3275 return ret; 3276 } 3277 3278 /* The display engine is not coherent with the LLC cache on gen6. As 3279 * a result, we make sure that the pinning that is about to occur is 3280 * done with uncached PTEs. This is lowest common denominator for all 3281 * chipsets. 3282 * 3283 * However for gen6+, we could do better by using the GFDT bit instead 3284 * of uncaching, which would allow us to flush all the LLC-cached data 3285 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3286 */ 3287 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3288 if (ret) 3289 return ret; 3290 3291 /* As the user may map the buffer once pinned in the display plane 3292 * (e.g. libkms for the bootup splash), we have to ensure that we 3293 * always use map_and_fenceable for all scanout buffers. 3294 */ 3295 ret = i915_gem_object_pin(obj, alignment, true, false); 3296 if (ret) 3297 return ret; 3298 3299 i915_gem_object_flush_cpu_write_domain(obj); 3300 3301 old_write_domain = obj->base.write_domain; 3302 old_read_domains = obj->base.read_domains; 3303 3304 /* It should now be out of any other write domains, and we can update 3305 * the domain values for our changes. 3306 */ 3307 obj->base.write_domain = 0; 3308 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3309 3310 trace_i915_gem_object_change_domain(obj, 3311 old_read_domains, 3312 old_write_domain); 3313 3314 return 0; 3315 } 3316 3317 int 3318 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3319 { 3320 int ret; 3321 3322 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3323 return 0; 3324 3325 ret = i915_gem_object_wait_rendering(obj, false); 3326 if (ret) 3327 return ret; 3328 3329 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3330 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3331 return 0; 3332 } 3333 3334 /** 3335 * Moves a single object to the CPU read, and possibly write domain. 3336 * 3337 * This function returns when the move is complete, including waiting on 3338 * flushes to occur. 3339 */ 3340 int 3341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3342 { 3343 uint32_t old_write_domain, old_read_domains; 3344 int ret; 3345 3346 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3347 return 0; 3348 3349 ret = i915_gem_object_wait_rendering(obj, !write); 3350 if (ret) 3351 return ret; 3352 3353 i915_gem_object_flush_gtt_write_domain(obj); 3354 3355 old_write_domain = obj->base.write_domain; 3356 old_read_domains = obj->base.read_domains; 3357 3358 /* Flush the CPU cache if it's still invalid. */ 3359 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3360 i915_gem_clflush_object(obj); 3361 3362 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3363 } 3364 3365 /* It should now be out of any other write domains, and we can update 3366 * the domain values for our changes. 3367 */ 3368 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3369 3370 /* If we're writing through the CPU, then the GPU read domains will 3371 * need to be invalidated at next use. 3372 */ 3373 if (write) { 3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3375 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3376 } 3377 3378 trace_i915_gem_object_change_domain(obj, 3379 old_read_domains, 3380 old_write_domain); 3381 3382 return 0; 3383 } 3384 3385 /* Throttle our rendering by waiting until the ring has completed our requests 3386 * emitted over 20 msec ago. 3387 * 3388 * Note that if we were to use the current jiffies each time around the loop, 3389 * we wouldn't escape the function with any frames outstanding if the time to 3390 * render a frame was over 20ms. 3391 * 3392 * This should get us reasonable parallelism between CPU and GPU but also 3393 * relatively low latency when blocking on a particular request to finish. 3394 */ 3395 static int 3396 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3397 { 3398 struct drm_i915_private *dev_priv = dev->dev_private; 3399 struct drm_i915_file_private *file_priv = file->driver_priv; 3400 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3401 struct drm_i915_gem_request *request; 3402 struct intel_ring_buffer *ring = NULL; 3403 u32 seqno = 0; 3404 int ret; 3405 3406 if (atomic_read(&dev_priv->mm.wedged)) 3407 return -EIO; 3408 3409 spin_lock(&file_priv->mm.lock); 3410 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3411 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3412 break; 3413 3414 ring = request->ring; 3415 seqno = request->seqno; 3416 } 3417 spin_unlock(&file_priv->mm.lock); 3418 3419 if (seqno == 0) 3420 return 0; 3421 3422 ret = __wait_seqno(ring, seqno, true, NULL); 3423 if (ret == 0) 3424 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3425 3426 return ret; 3427 } 3428 3429 int 3430 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3431 uint32_t alignment, 3432 bool map_and_fenceable, 3433 bool nonblocking) 3434 { 3435 int ret; 3436 3437 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3438 return -EBUSY; 3439 3440 if (obj->gtt_space != NULL) { 3441 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3442 (map_and_fenceable && !obj->map_and_fenceable)) { 3443 WARN(obj->pin_count, 3444 "bo is already pinned with incorrect alignment:" 3445 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3446 " obj->map_and_fenceable=%d\n", 3447 obj->gtt_offset, alignment, 3448 map_and_fenceable, 3449 obj->map_and_fenceable); 3450 ret = i915_gem_object_unbind(obj); 3451 if (ret) 3452 return ret; 3453 } 3454 } 3455 3456 if (obj->gtt_space == NULL) { 3457 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3458 map_and_fenceable, 3459 nonblocking); 3460 if (ret) 3461 return ret; 3462 } 3463 3464 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3465 i915_gem_gtt_bind_object(obj, obj->cache_level); 3466 3467 obj->pin_count++; 3468 obj->pin_mappable |= map_and_fenceable; 3469 3470 return 0; 3471 } 3472 3473 void 3474 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3475 { 3476 BUG_ON(obj->pin_count == 0); 3477 BUG_ON(obj->gtt_space == NULL); 3478 3479 if (--obj->pin_count == 0) 3480 obj->pin_mappable = false; 3481 } 3482 3483 int 3484 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3485 struct drm_file *file) 3486 { 3487 struct drm_i915_gem_pin *args = data; 3488 struct drm_i915_gem_object *obj; 3489 int ret; 3490 3491 ret = i915_mutex_lock_interruptible(dev); 3492 if (ret) 3493 return ret; 3494 3495 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3496 if (&obj->base == NULL) { 3497 ret = -ENOENT; 3498 goto unlock; 3499 } 3500 3501 if (obj->madv != I915_MADV_WILLNEED) { 3502 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3503 ret = -EINVAL; 3504 goto out; 3505 } 3506 3507 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3508 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3509 args->handle); 3510 ret = -EINVAL; 3511 goto out; 3512 } 3513 3514 obj->user_pin_count++; 3515 obj->pin_filp = file; 3516 if (obj->user_pin_count == 1) { 3517 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3518 if (ret) 3519 goto out; 3520 } 3521 3522 /* XXX - flush the CPU caches for pinned objects 3523 * as the X server doesn't manage domains yet 3524 */ 3525 i915_gem_object_flush_cpu_write_domain(obj); 3526 args->offset = obj->gtt_offset; 3527 out: 3528 drm_gem_object_unreference(&obj->base); 3529 unlock: 3530 mutex_unlock(&dev->struct_mutex); 3531 return ret; 3532 } 3533 3534 int 3535 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3536 struct drm_file *file) 3537 { 3538 struct drm_i915_gem_pin *args = data; 3539 struct drm_i915_gem_object *obj; 3540 int ret; 3541 3542 ret = i915_mutex_lock_interruptible(dev); 3543 if (ret) 3544 return ret; 3545 3546 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3547 if (&obj->base == NULL) { 3548 ret = -ENOENT; 3549 goto unlock; 3550 } 3551 3552 if (obj->pin_filp != file) { 3553 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3554 args->handle); 3555 ret = -EINVAL; 3556 goto out; 3557 } 3558 obj->user_pin_count--; 3559 if (obj->user_pin_count == 0) { 3560 obj->pin_filp = NULL; 3561 i915_gem_object_unpin(obj); 3562 } 3563 3564 out: 3565 drm_gem_object_unreference(&obj->base); 3566 unlock: 3567 mutex_unlock(&dev->struct_mutex); 3568 return ret; 3569 } 3570 3571 int 3572 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3573 struct drm_file *file) 3574 { 3575 struct drm_i915_gem_busy *args = data; 3576 struct drm_i915_gem_object *obj; 3577 int ret; 3578 3579 ret = i915_mutex_lock_interruptible(dev); 3580 if (ret) 3581 return ret; 3582 3583 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3584 if (&obj->base == NULL) { 3585 ret = -ENOENT; 3586 goto unlock; 3587 } 3588 3589 /* Count all active objects as busy, even if they are currently not used 3590 * by the gpu. Users of this interface expect objects to eventually 3591 * become non-busy without any further actions, therefore emit any 3592 * necessary flushes here. 3593 */ 3594 ret = i915_gem_object_flush_active(obj); 3595 3596 args->busy = obj->active; 3597 if (obj->ring) { 3598 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3599 args->busy |= intel_ring_flag(obj->ring) << 16; 3600 } 3601 3602 drm_gem_object_unreference(&obj->base); 3603 unlock: 3604 mutex_unlock(&dev->struct_mutex); 3605 return ret; 3606 } 3607 3608 int 3609 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3610 struct drm_file *file_priv) 3611 { 3612 return i915_gem_ring_throttle(dev, file_priv); 3613 } 3614 3615 int 3616 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3617 struct drm_file *file_priv) 3618 { 3619 struct drm_i915_gem_madvise *args = data; 3620 struct drm_i915_gem_object *obj; 3621 int ret; 3622 3623 switch (args->madv) { 3624 case I915_MADV_DONTNEED: 3625 case I915_MADV_WILLNEED: 3626 break; 3627 default: 3628 return -EINVAL; 3629 } 3630 3631 ret = i915_mutex_lock_interruptible(dev); 3632 if (ret) 3633 return ret; 3634 3635 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3636 if (&obj->base == NULL) { 3637 ret = -ENOENT; 3638 goto unlock; 3639 } 3640 3641 if (obj->pin_count) { 3642 ret = -EINVAL; 3643 goto out; 3644 } 3645 3646 if (obj->madv != __I915_MADV_PURGED) 3647 obj->madv = args->madv; 3648 3649 /* if the object is no longer attached, discard its backing storage */ 3650 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3651 i915_gem_object_truncate(obj); 3652 3653 args->retained = obj->madv != __I915_MADV_PURGED; 3654 3655 out: 3656 drm_gem_object_unreference(&obj->base); 3657 unlock: 3658 mutex_unlock(&dev->struct_mutex); 3659 return ret; 3660 } 3661 3662 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3663 const struct drm_i915_gem_object_ops *ops) 3664 { 3665 INIT_LIST_HEAD(&obj->mm_list); 3666 INIT_LIST_HEAD(&obj->gtt_list); 3667 INIT_LIST_HEAD(&obj->ring_list); 3668 INIT_LIST_HEAD(&obj->exec_list); 3669 3670 obj->ops = ops; 3671 3672 obj->fence_reg = I915_FENCE_REG_NONE; 3673 obj->madv = I915_MADV_WILLNEED; 3674 /* Avoid an unnecessary call to unbind on the first bind. */ 3675 obj->map_and_fenceable = true; 3676 3677 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3678 } 3679 3680 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3681 .get_pages = i915_gem_object_get_pages_gtt, 3682 .put_pages = i915_gem_object_put_pages_gtt, 3683 }; 3684 3685 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3686 size_t size) 3687 { 3688 struct drm_i915_gem_object *obj; 3689 struct address_space *mapping; 3690 u32 mask; 3691 3692 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 3693 if (obj == NULL) 3694 return NULL; 3695 3696 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3697 kfree(obj); 3698 return NULL; 3699 } 3700 3701 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3702 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3703 /* 965gm cannot relocate objects above 4GiB. */ 3704 mask &= ~__GFP_HIGHMEM; 3705 mask |= __GFP_DMA32; 3706 } 3707 3708 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 3709 mapping_set_gfp_mask(mapping, mask); 3710 3711 i915_gem_object_init(obj, &i915_gem_object_ops); 3712 3713 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3714 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3715 3716 if (HAS_LLC(dev)) { 3717 /* On some devices, we can have the GPU use the LLC (the CPU 3718 * cache) for about a 10% performance improvement 3719 * compared to uncached. Graphics requests other than 3720 * display scanout are coherent with the CPU in 3721 * accessing this cache. This means in this mode we 3722 * don't need to clflush on the CPU side, and on the 3723 * GPU side we only need to flush internal caches to 3724 * get data visible to the CPU. 3725 * 3726 * However, we maintain the display planes as UC, and so 3727 * need to rebind when first used as such. 3728 */ 3729 obj->cache_level = I915_CACHE_LLC; 3730 } else 3731 obj->cache_level = I915_CACHE_NONE; 3732 3733 return obj; 3734 } 3735 3736 int i915_gem_init_object(struct drm_gem_object *obj) 3737 { 3738 BUG(); 3739 3740 return 0; 3741 } 3742 3743 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3744 { 3745 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3746 struct drm_device *dev = obj->base.dev; 3747 drm_i915_private_t *dev_priv = dev->dev_private; 3748 3749 trace_i915_gem_object_destroy(obj); 3750 3751 if (obj->phys_obj) 3752 i915_gem_detach_phys_object(dev, obj); 3753 3754 obj->pin_count = 0; 3755 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3756 bool was_interruptible; 3757 3758 was_interruptible = dev_priv->mm.interruptible; 3759 dev_priv->mm.interruptible = false; 3760 3761 WARN_ON(i915_gem_object_unbind(obj)); 3762 3763 dev_priv->mm.interruptible = was_interruptible; 3764 } 3765 3766 obj->pages_pin_count = 0; 3767 i915_gem_object_put_pages(obj); 3768 i915_gem_object_free_mmap_offset(obj); 3769 3770 BUG_ON(obj->pages); 3771 3772 if (obj->base.import_attach) 3773 drm_prime_gem_destroy(&obj->base, NULL); 3774 3775 drm_gem_object_release(&obj->base); 3776 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3777 3778 kfree(obj->bit_17); 3779 kfree(obj); 3780 } 3781 3782 int 3783 i915_gem_idle(struct drm_device *dev) 3784 { 3785 drm_i915_private_t *dev_priv = dev->dev_private; 3786 int ret; 3787 3788 mutex_lock(&dev->struct_mutex); 3789 3790 if (dev_priv->mm.suspended) { 3791 mutex_unlock(&dev->struct_mutex); 3792 return 0; 3793 } 3794 3795 ret = i915_gpu_idle(dev); 3796 if (ret) { 3797 mutex_unlock(&dev->struct_mutex); 3798 return ret; 3799 } 3800 i915_gem_retire_requests(dev); 3801 3802 /* Under UMS, be paranoid and evict. */ 3803 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3804 i915_gem_evict_everything(dev); 3805 3806 i915_gem_reset_fences(dev); 3807 3808 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3809 * We need to replace this with a semaphore, or something. 3810 * And not confound mm.suspended! 3811 */ 3812 dev_priv->mm.suspended = 1; 3813 del_timer_sync(&dev_priv->hangcheck_timer); 3814 3815 i915_kernel_lost_context(dev); 3816 i915_gem_cleanup_ringbuffer(dev); 3817 3818 mutex_unlock(&dev->struct_mutex); 3819 3820 /* Cancel the retire work handler, which should be idle now. */ 3821 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3822 3823 return 0; 3824 } 3825 3826 void i915_gem_l3_remap(struct drm_device *dev) 3827 { 3828 drm_i915_private_t *dev_priv = dev->dev_private; 3829 u32 misccpctl; 3830 int i; 3831 3832 if (!IS_IVYBRIDGE(dev)) 3833 return; 3834 3835 if (!dev_priv->mm.l3_remap_info) 3836 return; 3837 3838 misccpctl = I915_READ(GEN7_MISCCPCTL); 3839 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3840 POSTING_READ(GEN7_MISCCPCTL); 3841 3842 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3843 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3844 if (remap && remap != dev_priv->mm.l3_remap_info[i/4]) 3845 DRM_DEBUG("0x%x was already programmed to %x\n", 3846 GEN7_L3LOG_BASE + i, remap); 3847 if (remap && !dev_priv->mm.l3_remap_info[i/4]) 3848 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3849 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]); 3850 } 3851 3852 /* Make sure all the writes land before disabling dop clock gating */ 3853 POSTING_READ(GEN7_L3LOG_BASE); 3854 3855 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3856 } 3857 3858 void i915_gem_init_swizzling(struct drm_device *dev) 3859 { 3860 drm_i915_private_t *dev_priv = dev->dev_private; 3861 3862 if (INTEL_INFO(dev)->gen < 5 || 3863 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3864 return; 3865 3866 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3867 DISP_TILE_SURFACE_SWIZZLING); 3868 3869 if (IS_GEN5(dev)) 3870 return; 3871 3872 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3873 if (IS_GEN6(dev)) 3874 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3875 else 3876 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3877 } 3878 3879 void i915_gem_init_ppgtt(struct drm_device *dev) 3880 { 3881 drm_i915_private_t *dev_priv = dev->dev_private; 3882 uint32_t pd_offset; 3883 struct intel_ring_buffer *ring; 3884 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 3885 uint32_t __iomem *pd_addr; 3886 uint32_t pd_entry; 3887 int i; 3888 3889 if (!dev_priv->mm.aliasing_ppgtt) 3890 return; 3891 3892 3893 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); 3894 for (i = 0; i < ppgtt->num_pd_entries; i++) { 3895 dma_addr_t pt_addr; 3896 3897 if (dev_priv->mm.gtt->needs_dmar) 3898 pt_addr = ppgtt->pt_dma_addr[i]; 3899 else 3900 pt_addr = page_to_phys(ppgtt->pt_pages[i]); 3901 3902 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); 3903 pd_entry |= GEN6_PDE_VALID; 3904 3905 writel(pd_entry, pd_addr + i); 3906 } 3907 readl(pd_addr); 3908 3909 pd_offset = ppgtt->pd_offset; 3910 pd_offset /= 64; /* in cachelines, */ 3911 pd_offset <<= 16; 3912 3913 if (INTEL_INFO(dev)->gen == 6) { 3914 uint32_t ecochk, gab_ctl, ecobits; 3915 3916 ecobits = I915_READ(GAC_ECO_BITS); 3917 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 3918 3919 gab_ctl = I915_READ(GAB_CTL); 3920 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 3921 3922 ecochk = I915_READ(GAM_ECOCHK); 3923 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | 3924 ECOCHK_PPGTT_CACHE64B); 3925 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3926 } else if (INTEL_INFO(dev)->gen >= 7) { 3927 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); 3928 /* GFX_MODE is per-ring on gen7+ */ 3929 } 3930 3931 for_each_ring(ring, dev_priv, i) { 3932 if (INTEL_INFO(dev)->gen >= 7) 3933 I915_WRITE(RING_MODE_GEN7(ring), 3934 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3935 3936 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 3937 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); 3938 } 3939 } 3940 3941 static bool 3942 intel_enable_blt(struct drm_device *dev) 3943 { 3944 if (!HAS_BLT(dev)) 3945 return false; 3946 3947 /* The blitter was dysfunctional on early prototypes */ 3948 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3949 DRM_INFO("BLT not supported on this pre-production hardware;" 3950 " graphics performance will be degraded.\n"); 3951 return false; 3952 } 3953 3954 return true; 3955 } 3956 3957 int 3958 i915_gem_init_hw(struct drm_device *dev) 3959 { 3960 drm_i915_private_t *dev_priv = dev->dev_private; 3961 int ret; 3962 3963 if (!intel_enable_gtt()) 3964 return -EIO; 3965 3966 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 3967 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 3968 3969 i915_gem_l3_remap(dev); 3970 3971 i915_gem_init_swizzling(dev); 3972 3973 ret = intel_init_render_ring_buffer(dev); 3974 if (ret) 3975 return ret; 3976 3977 if (HAS_BSD(dev)) { 3978 ret = intel_init_bsd_ring_buffer(dev); 3979 if (ret) 3980 goto cleanup_render_ring; 3981 } 3982 3983 if (intel_enable_blt(dev)) { 3984 ret = intel_init_blt_ring_buffer(dev); 3985 if (ret) 3986 goto cleanup_bsd_ring; 3987 } 3988 3989 dev_priv->next_seqno = 1; 3990 3991 /* 3992 * XXX: There was some w/a described somewhere suggesting loading 3993 * contexts before PPGTT. 3994 */ 3995 i915_gem_context_init(dev); 3996 i915_gem_init_ppgtt(dev); 3997 3998 return 0; 3999 4000 cleanup_bsd_ring: 4001 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4002 cleanup_render_ring: 4003 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4004 return ret; 4005 } 4006 4007 static bool 4008 intel_enable_ppgtt(struct drm_device *dev) 4009 { 4010 if (i915_enable_ppgtt >= 0) 4011 return i915_enable_ppgtt; 4012 4013 #ifdef CONFIG_INTEL_IOMMU 4014 /* Disable ppgtt on SNB if VT-d is on. */ 4015 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 4016 return false; 4017 #endif 4018 4019 return true; 4020 } 4021 4022 int i915_gem_init(struct drm_device *dev) 4023 { 4024 struct drm_i915_private *dev_priv = dev->dev_private; 4025 unsigned long gtt_size, mappable_size; 4026 int ret; 4027 4028 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; 4029 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; 4030 4031 mutex_lock(&dev->struct_mutex); 4032 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 4033 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 4034 * aperture accordingly when using aliasing ppgtt. */ 4035 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; 4036 4037 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); 4038 4039 ret = i915_gem_init_aliasing_ppgtt(dev); 4040 if (ret) { 4041 mutex_unlock(&dev->struct_mutex); 4042 return ret; 4043 } 4044 } else { 4045 /* Let GEM Manage all of the aperture. 4046 * 4047 * However, leave one page at the end still bound to the scratch 4048 * page. There are a number of places where the hardware 4049 * apparently prefetches past the end of the object, and we've 4050 * seen multiple hangs with the GPU head pointer stuck in a 4051 * batchbuffer bound at the last page of the aperture. One page 4052 * should be enough to keep any prefetching inside of the 4053 * aperture. 4054 */ 4055 i915_gem_init_global_gtt(dev, 0, mappable_size, 4056 gtt_size); 4057 } 4058 4059 ret = i915_gem_init_hw(dev); 4060 mutex_unlock(&dev->struct_mutex); 4061 if (ret) { 4062 i915_gem_cleanup_aliasing_ppgtt(dev); 4063 return ret; 4064 } 4065 4066 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4067 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4068 dev_priv->dri1.allow_batchbuffer = 1; 4069 return 0; 4070 } 4071 4072 void 4073 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4074 { 4075 drm_i915_private_t *dev_priv = dev->dev_private; 4076 struct intel_ring_buffer *ring; 4077 int i; 4078 4079 for_each_ring(ring, dev_priv, i) 4080 intel_cleanup_ring_buffer(ring); 4081 } 4082 4083 int 4084 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4085 struct drm_file *file_priv) 4086 { 4087 drm_i915_private_t *dev_priv = dev->dev_private; 4088 int ret; 4089 4090 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4091 return 0; 4092 4093 if (atomic_read(&dev_priv->mm.wedged)) { 4094 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4095 atomic_set(&dev_priv->mm.wedged, 0); 4096 } 4097 4098 mutex_lock(&dev->struct_mutex); 4099 dev_priv->mm.suspended = 0; 4100 4101 ret = i915_gem_init_hw(dev); 4102 if (ret != 0) { 4103 mutex_unlock(&dev->struct_mutex); 4104 return ret; 4105 } 4106 4107 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4108 mutex_unlock(&dev->struct_mutex); 4109 4110 ret = drm_irq_install(dev); 4111 if (ret) 4112 goto cleanup_ringbuffer; 4113 4114 return 0; 4115 4116 cleanup_ringbuffer: 4117 mutex_lock(&dev->struct_mutex); 4118 i915_gem_cleanup_ringbuffer(dev); 4119 dev_priv->mm.suspended = 1; 4120 mutex_unlock(&dev->struct_mutex); 4121 4122 return ret; 4123 } 4124 4125 int 4126 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4127 struct drm_file *file_priv) 4128 { 4129 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4130 return 0; 4131 4132 drm_irq_uninstall(dev); 4133 return i915_gem_idle(dev); 4134 } 4135 4136 void 4137 i915_gem_lastclose(struct drm_device *dev) 4138 { 4139 int ret; 4140 4141 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4142 return; 4143 4144 ret = i915_gem_idle(dev); 4145 if (ret) 4146 DRM_ERROR("failed to idle hardware: %d\n", ret); 4147 } 4148 4149 static void 4150 init_ring_lists(struct intel_ring_buffer *ring) 4151 { 4152 INIT_LIST_HEAD(&ring->active_list); 4153 INIT_LIST_HEAD(&ring->request_list); 4154 } 4155 4156 void 4157 i915_gem_load(struct drm_device *dev) 4158 { 4159 int i; 4160 drm_i915_private_t *dev_priv = dev->dev_private; 4161 4162 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4163 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4164 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4165 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4166 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4167 for (i = 0; i < I915_NUM_RINGS; i++) 4168 init_ring_lists(&dev_priv->ring[i]); 4169 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4170 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4171 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4172 i915_gem_retire_work_handler); 4173 init_completion(&dev_priv->error_completion); 4174 4175 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4176 if (IS_GEN3(dev)) { 4177 I915_WRITE(MI_ARB_STATE, 4178 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4179 } 4180 4181 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4182 4183 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4184 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4185 dev_priv->fence_reg_start = 3; 4186 4187 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4188 dev_priv->num_fence_regs = 16; 4189 else 4190 dev_priv->num_fence_regs = 8; 4191 4192 /* Initialize fence registers to zero */ 4193 i915_gem_reset_fences(dev); 4194 4195 i915_gem_detect_bit_6_swizzle(dev); 4196 init_waitqueue_head(&dev_priv->pending_flip_queue); 4197 4198 dev_priv->mm.interruptible = true; 4199 4200 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4201 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4202 register_shrinker(&dev_priv->mm.inactive_shrinker); 4203 } 4204 4205 /* 4206 * Create a physically contiguous memory object for this object 4207 * e.g. for cursor + overlay regs 4208 */ 4209 static int i915_gem_init_phys_object(struct drm_device *dev, 4210 int id, int size, int align) 4211 { 4212 drm_i915_private_t *dev_priv = dev->dev_private; 4213 struct drm_i915_gem_phys_object *phys_obj; 4214 int ret; 4215 4216 if (dev_priv->mm.phys_objs[id - 1] || !size) 4217 return 0; 4218 4219 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4220 if (!phys_obj) 4221 return -ENOMEM; 4222 4223 phys_obj->id = id; 4224 4225 phys_obj->handle = drm_pci_alloc(dev, size, align); 4226 if (!phys_obj->handle) { 4227 ret = -ENOMEM; 4228 goto kfree_obj; 4229 } 4230 #ifdef CONFIG_X86 4231 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4232 #endif 4233 4234 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4235 4236 return 0; 4237 kfree_obj: 4238 kfree(phys_obj); 4239 return ret; 4240 } 4241 4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4243 { 4244 drm_i915_private_t *dev_priv = dev->dev_private; 4245 struct drm_i915_gem_phys_object *phys_obj; 4246 4247 if (!dev_priv->mm.phys_objs[id - 1]) 4248 return; 4249 4250 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4251 if (phys_obj->cur_obj) { 4252 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4253 } 4254 4255 #ifdef CONFIG_X86 4256 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4257 #endif 4258 drm_pci_free(dev, phys_obj->handle); 4259 kfree(phys_obj); 4260 dev_priv->mm.phys_objs[id - 1] = NULL; 4261 } 4262 4263 void i915_gem_free_all_phys_object(struct drm_device *dev) 4264 { 4265 int i; 4266 4267 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4268 i915_gem_free_phys_object(dev, i); 4269 } 4270 4271 void i915_gem_detach_phys_object(struct drm_device *dev, 4272 struct drm_i915_gem_object *obj) 4273 { 4274 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4275 char *vaddr; 4276 int i; 4277 int page_count; 4278 4279 if (!obj->phys_obj) 4280 return; 4281 vaddr = obj->phys_obj->handle->vaddr; 4282 4283 page_count = obj->base.size / PAGE_SIZE; 4284 for (i = 0; i < page_count; i++) { 4285 struct page *page = shmem_read_mapping_page(mapping, i); 4286 if (!IS_ERR(page)) { 4287 char *dst = kmap_atomic(page); 4288 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4289 kunmap_atomic(dst); 4290 4291 drm_clflush_pages(&page, 1); 4292 4293 set_page_dirty(page); 4294 mark_page_accessed(page); 4295 page_cache_release(page); 4296 } 4297 } 4298 intel_gtt_chipset_flush(); 4299 4300 obj->phys_obj->cur_obj = NULL; 4301 obj->phys_obj = NULL; 4302 } 4303 4304 int 4305 i915_gem_attach_phys_object(struct drm_device *dev, 4306 struct drm_i915_gem_object *obj, 4307 int id, 4308 int align) 4309 { 4310 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4311 drm_i915_private_t *dev_priv = dev->dev_private; 4312 int ret = 0; 4313 int page_count; 4314 int i; 4315 4316 if (id > I915_MAX_PHYS_OBJECT) 4317 return -EINVAL; 4318 4319 if (obj->phys_obj) { 4320 if (obj->phys_obj->id == id) 4321 return 0; 4322 i915_gem_detach_phys_object(dev, obj); 4323 } 4324 4325 /* create a new object */ 4326 if (!dev_priv->mm.phys_objs[id - 1]) { 4327 ret = i915_gem_init_phys_object(dev, id, 4328 obj->base.size, align); 4329 if (ret) { 4330 DRM_ERROR("failed to init phys object %d size: %zu\n", 4331 id, obj->base.size); 4332 return ret; 4333 } 4334 } 4335 4336 /* bind to the object */ 4337 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4338 obj->phys_obj->cur_obj = obj; 4339 4340 page_count = obj->base.size / PAGE_SIZE; 4341 4342 for (i = 0; i < page_count; i++) { 4343 struct page *page; 4344 char *dst, *src; 4345 4346 page = shmem_read_mapping_page(mapping, i); 4347 if (IS_ERR(page)) 4348 return PTR_ERR(page); 4349 4350 src = kmap_atomic(page); 4351 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4352 memcpy(dst, src, PAGE_SIZE); 4353 kunmap_atomic(src); 4354 4355 mark_page_accessed(page); 4356 page_cache_release(page); 4357 } 4358 4359 return 0; 4360 } 4361 4362 static int 4363 i915_gem_phys_pwrite(struct drm_device *dev, 4364 struct drm_i915_gem_object *obj, 4365 struct drm_i915_gem_pwrite *args, 4366 struct drm_file *file_priv) 4367 { 4368 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4369 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; 4370 4371 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4372 unsigned long unwritten; 4373 4374 /* The physical object once assigned is fixed for the lifetime 4375 * of the obj, so we can safely drop the lock and continue 4376 * to access vaddr. 4377 */ 4378 mutex_unlock(&dev->struct_mutex); 4379 unwritten = copy_from_user(vaddr, user_data, args->size); 4380 mutex_lock(&dev->struct_mutex); 4381 if (unwritten) 4382 return -EFAULT; 4383 } 4384 4385 intel_gtt_chipset_flush(); 4386 return 0; 4387 } 4388 4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4390 { 4391 struct drm_i915_file_private *file_priv = file->driver_priv; 4392 4393 /* Clean up our request list when the client is going away, so that 4394 * later retire_requests won't dereference our soon-to-be-gone 4395 * file_priv. 4396 */ 4397 spin_lock(&file_priv->mm.lock); 4398 while (!list_empty(&file_priv->mm.request_list)) { 4399 struct drm_i915_gem_request *request; 4400 4401 request = list_first_entry(&file_priv->mm.request_list, 4402 struct drm_i915_gem_request, 4403 client_list); 4404 list_del(&request->client_list); 4405 request->file_priv = NULL; 4406 } 4407 spin_unlock(&file_priv->mm.lock); 4408 } 4409 4410 static int 4411 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4412 { 4413 struct drm_i915_private *dev_priv = 4414 container_of(shrinker, 4415 struct drm_i915_private, 4416 mm.inactive_shrinker); 4417 struct drm_device *dev = dev_priv->dev; 4418 struct drm_i915_gem_object *obj; 4419 int nr_to_scan = sc->nr_to_scan; 4420 int cnt; 4421 4422 if (!mutex_trylock(&dev->struct_mutex)) 4423 return 0; 4424 4425 if (nr_to_scan) { 4426 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4427 if (nr_to_scan > 0) 4428 i915_gem_shrink_all(dev_priv); 4429 } 4430 4431 cnt = 0; 4432 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4433 if (obj->pages_pin_count == 0) 4434 cnt += obj->base.size >> PAGE_SHIFT; 4435 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 4436 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4437 cnt += obj->base.size >> PAGE_SHIFT; 4438 4439 mutex_unlock(&dev->struct_mutex); 4440 return cnt; 4441 } 4442