xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision ef40b2346563aa11575446c8e3b04af44c31abb5)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 	if (obj->cache_dirty)
53 		return false;
54 
55 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 		return true;
57 
58 	return obj->pin_display;
59 }
60 
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65 	memset(node, 0, sizeof(*node));
66 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 					   size, 0, I915_COLOR_UNEVICTABLE,
68 					   0, ggtt->mappable_end,
69 					   DRM_MM_INSERT_LOW);
70 }
71 
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 	drm_mm_remove_node(node);
76 }
77 
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 				  u64 size)
81 {
82 	spin_lock(&dev_priv->mm.object_stat_lock);
83 	dev_priv->mm.object_count++;
84 	dev_priv->mm.object_memory += size;
85 	spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87 
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 				     u64 size)
90 {
91 	spin_lock(&dev_priv->mm.object_stat_lock);
92 	dev_priv->mm.object_count--;
93 	dev_priv->mm.object_memory -= size;
94 	spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96 
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 	int ret;
101 
102 	might_sleep();
103 
104 	/*
105 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 	 * userspace. If it takes that long something really bad is going on and
107 	 * we should simply try to bail out and fail as gracefully as possible.
108 	 */
109 	ret = wait_event_interruptible_timeout(error->reset_queue,
110 					       !i915_reset_backoff(error),
111 					       I915_RESET_TIMEOUT);
112 	if (ret == 0) {
113 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 		return -EIO;
115 	} else if (ret < 0) {
116 		return ret;
117 	} else {
118 		return 0;
119 	}
120 }
121 
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 	struct drm_i915_private *dev_priv = to_i915(dev);
125 	int ret;
126 
127 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 	if (ret)
129 		return ret;
130 
131 	ret = mutex_lock_interruptible(&dev->struct_mutex);
132 	if (ret)
133 		return ret;
134 
135 	return 0;
136 }
137 
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 			    struct drm_file *file)
141 {
142 	struct drm_i915_private *dev_priv = to_i915(dev);
143 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 	struct drm_i915_gem_get_aperture *args = data;
145 	struct i915_vma *vma;
146 	u64 pinned;
147 
148 	pinned = ggtt->base.reserved;
149 	mutex_lock(&dev->struct_mutex);
150 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 		if (i915_vma_is_pinned(vma))
152 			pinned += vma->node.size;
153 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 		if (i915_vma_is_pinned(vma))
155 			pinned += vma->node.size;
156 	mutex_unlock(&dev->struct_mutex);
157 
158 	args->aper_size = ggtt->base.total;
159 	args->aper_available_size = args->aper_size - pinned;
160 
161 	return 0;
162 }
163 
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 
174 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 		return ERR_PTR(-EINVAL);
176 
177 	/* Always aligning to the object size, allows a single allocation
178 	 * to handle all possible callers, and given typical object sizes,
179 	 * the alignment of the buddy allocation will naturally match.
180 	 */
181 	phys = drm_pci_alloc(obj->base.dev,
182 			     obj->base.size,
183 			     roundup_pow_of_two(obj->base.size));
184 	if (!phys)
185 		return ERR_PTR(-ENOMEM);
186 
187 	vaddr = phys->vaddr;
188 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 		struct page *page;
190 		char *src;
191 
192 		page = shmem_read_mapping_page(mapping, i);
193 		if (IS_ERR(page)) {
194 			st = ERR_CAST(page);
195 			goto err_phys;
196 		}
197 
198 		src = kmap_atomic(page);
199 		memcpy(vaddr, src, PAGE_SIZE);
200 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 		kunmap_atomic(src);
202 
203 		put_page(page);
204 		vaddr += PAGE_SIZE;
205 	}
206 
207 	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 
209 	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 	if (!st) {
211 		st = ERR_PTR(-ENOMEM);
212 		goto err_phys;
213 	}
214 
215 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 		kfree(st);
217 		st = ERR_PTR(-ENOMEM);
218 		goto err_phys;
219 	}
220 
221 	sg = st->sgl;
222 	sg->offset = 0;
223 	sg->length = obj->base.size;
224 
225 	sg_dma_address(sg) = phys->busaddr;
226 	sg_dma_len(sg) = obj->base.size;
227 
228 	obj->phys_handle = phys;
229 	return st;
230 
231 err_phys:
232 	drm_pci_free(obj->base.dev, phys);
233 	return st;
234 }
235 
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 	if (cpu_write_needs_clflush(obj))
241 		obj->cache_dirty = true;
242 }
243 
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 				struct sg_table *pages,
247 				bool needs_clflush)
248 {
249 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250 
251 	if (obj->mm.madv == I915_MADV_DONTNEED)
252 		obj->mm.dirty = false;
253 
254 	if (needs_clflush &&
255 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 		drm_clflush_sg(pages);
258 
259 	__start_cpu_write(obj);
260 }
261 
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 			       struct sg_table *pages)
265 {
266 	__i915_gem_object_release_shmem(obj, pages, false);
267 
268 	if (obj->mm.dirty) {
269 		struct address_space *mapping = obj->base.filp->f_mapping;
270 		char *vaddr = obj->phys_handle->vaddr;
271 		int i;
272 
273 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 			struct page *page;
275 			char *dst;
276 
277 			page = shmem_read_mapping_page(mapping, i);
278 			if (IS_ERR(page))
279 				continue;
280 
281 			dst = kmap_atomic(page);
282 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 			memcpy(dst, vaddr, PAGE_SIZE);
284 			kunmap_atomic(dst);
285 
286 			set_page_dirty(page);
287 			if (obj->mm.madv == I915_MADV_WILLNEED)
288 				mark_page_accessed(page);
289 			put_page(page);
290 			vaddr += PAGE_SIZE;
291 		}
292 		obj->mm.dirty = false;
293 	}
294 
295 	sg_free_table(pages);
296 	kfree(pages);
297 
298 	drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300 
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 	i915_gem_object_unpin_pages(obj);
305 }
306 
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 	.get_pages = i915_gem_object_get_pages_phys,
309 	.put_pages = i915_gem_object_put_pages_phys,
310 	.release = i915_gem_object_release_phys,
311 };
312 
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq, rps);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	return timeout;
403 }
404 
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 				 unsigned int flags,
408 				 long timeout,
409 				 struct intel_rps_client *rps)
410 {
411 	unsigned int seq = __read_seqcount_begin(&resv->seq);
412 	struct dma_fence *excl;
413 	bool prune_fences = false;
414 
415 	if (flags & I915_WAIT_ALL) {
416 		struct dma_fence **shared;
417 		unsigned int count, i;
418 		int ret;
419 
420 		ret = reservation_object_get_fences_rcu(resv,
421 							&excl, &count, &shared);
422 		if (ret)
423 			return ret;
424 
425 		for (i = 0; i < count; i++) {
426 			timeout = i915_gem_object_wait_fence(shared[i],
427 							     flags, timeout,
428 							     rps);
429 			if (timeout < 0)
430 				break;
431 
432 			dma_fence_put(shared[i]);
433 		}
434 
435 		for (; i < count; i++)
436 			dma_fence_put(shared[i]);
437 		kfree(shared);
438 
439 		prune_fences = count && timeout >= 0;
440 	} else {
441 		excl = reservation_object_get_excl_rcu(resv);
442 	}
443 
444 	if (excl && timeout >= 0) {
445 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 		prune_fences = timeout >= 0;
447 	}
448 
449 	dma_fence_put(excl);
450 
451 	/* Oportunistically prune the fences iff we know they have *all* been
452 	 * signaled and that the reservation object has not been changed (i.e.
453 	 * no new fences have been added).
454 	 */
455 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 		if (reservation_object_trylock(resv)) {
457 			if (!__read_seqcount_retry(&resv->seq, seq))
458 				reservation_object_add_excl_fence(resv, NULL);
459 			reservation_object_unlock(resv);
460 		}
461 	}
462 
463 	return timeout;
464 }
465 
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 	struct drm_i915_gem_request *rq;
469 	struct intel_engine_cs *engine;
470 
471 	if (!dma_fence_is_i915(fence))
472 		return;
473 
474 	rq = to_request(fence);
475 	engine = rq->engine;
476 	if (!engine->schedule)
477 		return;
478 
479 	engine->schedule(rq, prio);
480 }
481 
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 	/* Recurse once into a fence-array */
485 	if (dma_fence_is_array(fence)) {
486 		struct dma_fence_array *array = to_dma_fence_array(fence);
487 		int i;
488 
489 		for (i = 0; i < array->num_fences; i++)
490 			__fence_set_priority(array->fences[i], prio);
491 	} else {
492 		__fence_set_priority(fence, prio);
493 	}
494 }
495 
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 			      unsigned int flags,
499 			      int prio)
500 {
501 	struct dma_fence *excl;
502 
503 	if (flags & I915_WAIT_ALL) {
504 		struct dma_fence **shared;
505 		unsigned int count, i;
506 		int ret;
507 
508 		ret = reservation_object_get_fences_rcu(obj->resv,
509 							&excl, &count, &shared);
510 		if (ret)
511 			return ret;
512 
513 		for (i = 0; i < count; i++) {
514 			fence_set_priority(shared[i], prio);
515 			dma_fence_put(shared[i]);
516 		}
517 
518 		kfree(shared);
519 	} else {
520 		excl = reservation_object_get_excl_rcu(obj->resv);
521 	}
522 
523 	if (excl) {
524 		fence_set_priority(excl, prio);
525 		dma_fence_put(excl);
526 	}
527 	return 0;
528 }
529 
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 		     unsigned int flags,
540 		     long timeout,
541 		     struct intel_rps_client *rps)
542 {
543 	might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 	GEM_BUG_ON(debug_locks &&
546 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 		   !!(flags & I915_WAIT_LOCKED));
548 #endif
549 	GEM_BUG_ON(timeout < 0);
550 
551 	timeout = i915_gem_object_wait_reservation(obj->resv,
552 						   flags, timeout,
553 						   rps);
554 	return timeout < 0 ? timeout : 0;
555 }
556 
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 	struct drm_i915_file_private *fpriv = file->driver_priv;
560 
561 	return &fpriv->rps;
562 }
563 
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 		     struct drm_i915_gem_pwrite *args,
567 		     struct drm_file *file)
568 {
569 	void *vaddr = obj->phys_handle->vaddr + args->offset;
570 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 
572 	/* We manually control the domain here and pretend that it
573 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 	 */
575 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 	if (copy_from_user(vaddr, user_data, args->size))
577 		return -EFAULT;
578 
579 	drm_clflush_virt_range(vaddr, args->size);
580 	i915_gem_chipset_flush(to_i915(obj->base.dev));
581 
582 	intel_fb_obj_flush(obj, ORIGIN_CPU);
583 	return 0;
584 }
585 
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590 
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 	kmem_cache_free(dev_priv->objects, obj);
595 }
596 
597 static int
598 i915_gem_create(struct drm_file *file,
599 		struct drm_i915_private *dev_priv,
600 		uint64_t size,
601 		uint32_t *handle_p)
602 {
603 	struct drm_i915_gem_object *obj;
604 	int ret;
605 	u32 handle;
606 
607 	size = roundup(size, PAGE_SIZE);
608 	if (size == 0)
609 		return -EINVAL;
610 
611 	/* Allocate the new object */
612 	obj = i915_gem_object_create(dev_priv, size);
613 	if (IS_ERR(obj))
614 		return PTR_ERR(obj);
615 
616 	ret = drm_gem_handle_create(file, &obj->base, &handle);
617 	/* drop reference from allocate - handle holds it now */
618 	i915_gem_object_put(obj);
619 	if (ret)
620 		return ret;
621 
622 	*handle_p = handle;
623 	return 0;
624 }
625 
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628 		     struct drm_device *dev,
629 		     struct drm_mode_create_dumb *args)
630 {
631 	/* have to work out size/pitch and return them */
632 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 	args->size = args->pitch * args->height;
634 	return i915_gem_create(file, to_i915(dev),
635 			       args->size, &args->handle);
636 }
637 
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640 	return !(obj->cache_level == I915_CACHE_NONE ||
641 		 obj->cache_level == I915_CACHE_WT);
642 }
643 
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 		      struct drm_file *file)
653 {
654 	struct drm_i915_private *dev_priv = to_i915(dev);
655 	struct drm_i915_gem_create *args = data;
656 
657 	i915_gem_flush_free_objects(dev_priv);
658 
659 	return i915_gem_create(file, dev_priv,
660 			       args->size, &args->handle);
661 }
662 
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666 	return (domain == I915_GEM_DOMAIN_GTT ?
667 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669 
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674 
675 	if (!(obj->base.write_domain & flush_domains))
676 		return;
677 
678 	/* No actual flushing is required for the GTT write domain.  Writes
679 	 * to it "immediately" go to main memory as far as we know, so there's
680 	 * no chipset flush.  It also doesn't land in render cache.
681 	 *
682 	 * However, we do have to enforce the order so that all writes through
683 	 * the GTT land before any writes to the device, such as updates to
684 	 * the GATT itself.
685 	 *
686 	 * We also have to wait a bit for the writes to land from the GTT.
687 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 	 * timing. This issue has only been observed when switching quickly
689 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 	 * system agents we cannot reproduce this behaviour).
692 	 */
693 	wmb();
694 
695 	switch (obj->base.write_domain) {
696 	case I915_GEM_DOMAIN_GTT:
697 		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
699 				spin_lock_irq(&dev_priv->uncore.lock);
700 				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 				spin_unlock_irq(&dev_priv->uncore.lock);
702 				intel_runtime_pm_put(dev_priv);
703 			}
704 		}
705 
706 		intel_fb_obj_flush(obj,
707 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
708 		break;
709 
710 	case I915_GEM_DOMAIN_CPU:
711 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
712 		break;
713 
714 	case I915_GEM_DOMAIN_RENDER:
715 		if (gpu_write_needs_clflush(obj))
716 			obj->cache_dirty = true;
717 		break;
718 	}
719 
720 	obj->base.write_domain = 0;
721 }
722 
723 static inline int
724 __copy_to_user_swizzled(char __user *cpu_vaddr,
725 			const char *gpu_vaddr, int gpu_offset,
726 			int length)
727 {
728 	int ret, cpu_offset = 0;
729 
730 	while (length > 0) {
731 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
732 		int this_length = min(cacheline_end - gpu_offset, length);
733 		int swizzled_gpu_offset = gpu_offset ^ 64;
734 
735 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
736 				     gpu_vaddr + swizzled_gpu_offset,
737 				     this_length);
738 		if (ret)
739 			return ret + length;
740 
741 		cpu_offset += this_length;
742 		gpu_offset += this_length;
743 		length -= this_length;
744 	}
745 
746 	return 0;
747 }
748 
749 static inline int
750 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
751 			  const char __user *cpu_vaddr,
752 			  int length)
753 {
754 	int ret, cpu_offset = 0;
755 
756 	while (length > 0) {
757 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
758 		int this_length = min(cacheline_end - gpu_offset, length);
759 		int swizzled_gpu_offset = gpu_offset ^ 64;
760 
761 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
762 				       cpu_vaddr + cpu_offset,
763 				       this_length);
764 		if (ret)
765 			return ret + length;
766 
767 		cpu_offset += this_length;
768 		gpu_offset += this_length;
769 		length -= this_length;
770 	}
771 
772 	return 0;
773 }
774 
775 /*
776  * Pins the specified object's pages and synchronizes the object with
777  * GPU accesses. Sets needs_clflush to non-zero if the caller should
778  * flush the object from the CPU cache.
779  */
780 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781 				    unsigned int *needs_clflush)
782 {
783 	int ret;
784 
785 	lockdep_assert_held(&obj->base.dev->struct_mutex);
786 
787 	*needs_clflush = 0;
788 	if (!i915_gem_object_has_struct_page(obj))
789 		return -ENODEV;
790 
791 	ret = i915_gem_object_wait(obj,
792 				   I915_WAIT_INTERRUPTIBLE |
793 				   I915_WAIT_LOCKED,
794 				   MAX_SCHEDULE_TIMEOUT,
795 				   NULL);
796 	if (ret)
797 		return ret;
798 
799 	ret = i915_gem_object_pin_pages(obj);
800 	if (ret)
801 		return ret;
802 
803 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
804 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
806 		if (ret)
807 			goto err_unpin;
808 		else
809 			goto out;
810 	}
811 
812 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813 
814 	/* If we're not in the cpu read domain, set ourself into the gtt
815 	 * read domain and manually flush cachelines (if required). This
816 	 * optimizes for the case when the gpu will dirty the data
817 	 * anyway again before the next pread happens.
818 	 */
819 	if (!obj->cache_dirty &&
820 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821 		*needs_clflush = CLFLUSH_BEFORE;
822 
823 out:
824 	/* return with the pages pinned */
825 	return 0;
826 
827 err_unpin:
828 	i915_gem_object_unpin_pages(obj);
829 	return ret;
830 }
831 
832 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
833 				     unsigned int *needs_clflush)
834 {
835 	int ret;
836 
837 	lockdep_assert_held(&obj->base.dev->struct_mutex);
838 
839 	*needs_clflush = 0;
840 	if (!i915_gem_object_has_struct_page(obj))
841 		return -ENODEV;
842 
843 	ret = i915_gem_object_wait(obj,
844 				   I915_WAIT_INTERRUPTIBLE |
845 				   I915_WAIT_LOCKED |
846 				   I915_WAIT_ALL,
847 				   MAX_SCHEDULE_TIMEOUT,
848 				   NULL);
849 	if (ret)
850 		return ret;
851 
852 	ret = i915_gem_object_pin_pages(obj);
853 	if (ret)
854 		return ret;
855 
856 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
857 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
859 		if (ret)
860 			goto err_unpin;
861 		else
862 			goto out;
863 	}
864 
865 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866 
867 	/* If we're not in the cpu write domain, set ourself into the
868 	 * gtt write domain and manually flush cachelines (as required).
869 	 * This optimizes for the case when the gpu will use the data
870 	 * right away and we therefore have to clflush anyway.
871 	 */
872 	if (!obj->cache_dirty) {
873 		*needs_clflush |= CLFLUSH_AFTER;
874 
875 		/*
876 		 * Same trick applies to invalidate partially written
877 		 * cachelines read before writing.
878 		 */
879 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
880 			*needs_clflush |= CLFLUSH_BEFORE;
881 	}
882 
883 out:
884 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
885 	obj->mm.dirty = true;
886 	/* return with the pages pinned */
887 	return 0;
888 
889 err_unpin:
890 	i915_gem_object_unpin_pages(obj);
891 	return ret;
892 }
893 
894 static void
895 shmem_clflush_swizzled_range(char *addr, unsigned long length,
896 			     bool swizzled)
897 {
898 	if (unlikely(swizzled)) {
899 		unsigned long start = (unsigned long) addr;
900 		unsigned long end = (unsigned long) addr + length;
901 
902 		/* For swizzling simply ensure that we always flush both
903 		 * channels. Lame, but simple and it works. Swizzled
904 		 * pwrite/pread is far from a hotpath - current userspace
905 		 * doesn't use it at all. */
906 		start = round_down(start, 128);
907 		end = round_up(end, 128);
908 
909 		drm_clflush_virt_range((void *)start, end - start);
910 	} else {
911 		drm_clflush_virt_range(addr, length);
912 	}
913 
914 }
915 
916 /* Only difference to the fast-path function is that this can handle bit17
917  * and uses non-atomic copy and kmap functions. */
918 static int
919 shmem_pread_slow(struct page *page, int offset, int length,
920 		 char __user *user_data,
921 		 bool page_do_bit17_swizzling, bool needs_clflush)
922 {
923 	char *vaddr;
924 	int ret;
925 
926 	vaddr = kmap(page);
927 	if (needs_clflush)
928 		shmem_clflush_swizzled_range(vaddr + offset, length,
929 					     page_do_bit17_swizzling);
930 
931 	if (page_do_bit17_swizzling)
932 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933 	else
934 		ret = __copy_to_user(user_data, vaddr + offset, length);
935 	kunmap(page);
936 
937 	return ret ? - EFAULT : 0;
938 }
939 
940 static int
941 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
942 	    bool page_do_bit17_swizzling, bool needs_clflush)
943 {
944 	int ret;
945 
946 	ret = -ENODEV;
947 	if (!page_do_bit17_swizzling) {
948 		char *vaddr = kmap_atomic(page);
949 
950 		if (needs_clflush)
951 			drm_clflush_virt_range(vaddr + offset, length);
952 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
953 		kunmap_atomic(vaddr);
954 	}
955 	if (ret == 0)
956 		return 0;
957 
958 	return shmem_pread_slow(page, offset, length, user_data,
959 				page_do_bit17_swizzling, needs_clflush);
960 }
961 
962 static int
963 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
964 		     struct drm_i915_gem_pread *args)
965 {
966 	char __user *user_data;
967 	u64 remain;
968 	unsigned int obj_do_bit17_swizzling;
969 	unsigned int needs_clflush;
970 	unsigned int idx, offset;
971 	int ret;
972 
973 	obj_do_bit17_swizzling = 0;
974 	if (i915_gem_object_needs_bit17_swizzle(obj))
975 		obj_do_bit17_swizzling = BIT(17);
976 
977 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
978 	if (ret)
979 		return ret;
980 
981 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
982 	mutex_unlock(&obj->base.dev->struct_mutex);
983 	if (ret)
984 		return ret;
985 
986 	remain = args->size;
987 	user_data = u64_to_user_ptr(args->data_ptr);
988 	offset = offset_in_page(args->offset);
989 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
990 		struct page *page = i915_gem_object_get_page(obj, idx);
991 		int length;
992 
993 		length = remain;
994 		if (offset + length > PAGE_SIZE)
995 			length = PAGE_SIZE - offset;
996 
997 		ret = shmem_pread(page, offset, length, user_data,
998 				  page_to_phys(page) & obj_do_bit17_swizzling,
999 				  needs_clflush);
1000 		if (ret)
1001 			break;
1002 
1003 		remain -= length;
1004 		user_data += length;
1005 		offset = 0;
1006 	}
1007 
1008 	i915_gem_obj_finish_shmem_access(obj);
1009 	return ret;
1010 }
1011 
1012 static inline bool
1013 gtt_user_read(struct io_mapping *mapping,
1014 	      loff_t base, int offset,
1015 	      char __user *user_data, int length)
1016 {
1017 	void *vaddr;
1018 	unsigned long unwritten;
1019 
1020 	/* We can use the cpu mem copy function because this is X86. */
1021 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1022 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1023 	io_mapping_unmap_atomic(vaddr);
1024 	if (unwritten) {
1025 		vaddr = (void __force *)
1026 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1027 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1028 		io_mapping_unmap(vaddr);
1029 	}
1030 	return unwritten;
1031 }
1032 
1033 static int
1034 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1035 		   const struct drm_i915_gem_pread *args)
1036 {
1037 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1038 	struct i915_ggtt *ggtt = &i915->ggtt;
1039 	struct drm_mm_node node;
1040 	struct i915_vma *vma;
1041 	void __user *user_data;
1042 	u64 remain, offset;
1043 	int ret;
1044 
1045 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1046 	if (ret)
1047 		return ret;
1048 
1049 	intel_runtime_pm_get(i915);
1050 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1051 				       PIN_MAPPABLE | PIN_NONBLOCK);
1052 	if (!IS_ERR(vma)) {
1053 		node.start = i915_ggtt_offset(vma);
1054 		node.allocated = false;
1055 		ret = i915_vma_put_fence(vma);
1056 		if (ret) {
1057 			i915_vma_unpin(vma);
1058 			vma = ERR_PTR(ret);
1059 		}
1060 	}
1061 	if (IS_ERR(vma)) {
1062 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1063 		if (ret)
1064 			goto out_unlock;
1065 		GEM_BUG_ON(!node.allocated);
1066 	}
1067 
1068 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1069 	if (ret)
1070 		goto out_unpin;
1071 
1072 	mutex_unlock(&i915->drm.struct_mutex);
1073 
1074 	user_data = u64_to_user_ptr(args->data_ptr);
1075 	remain = args->size;
1076 	offset = args->offset;
1077 
1078 	while (remain > 0) {
1079 		/* Operation in this page
1080 		 *
1081 		 * page_base = page offset within aperture
1082 		 * page_offset = offset within page
1083 		 * page_length = bytes to copy for this page
1084 		 */
1085 		u32 page_base = node.start;
1086 		unsigned page_offset = offset_in_page(offset);
1087 		unsigned page_length = PAGE_SIZE - page_offset;
1088 		page_length = remain < page_length ? remain : page_length;
1089 		if (node.allocated) {
1090 			wmb();
1091 			ggtt->base.insert_page(&ggtt->base,
1092 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1093 					       node.start, I915_CACHE_NONE, 0);
1094 			wmb();
1095 		} else {
1096 			page_base += offset & PAGE_MASK;
1097 		}
1098 
1099 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1100 				  user_data, page_length)) {
1101 			ret = -EFAULT;
1102 			break;
1103 		}
1104 
1105 		remain -= page_length;
1106 		user_data += page_length;
1107 		offset += page_length;
1108 	}
1109 
1110 	mutex_lock(&i915->drm.struct_mutex);
1111 out_unpin:
1112 	if (node.allocated) {
1113 		wmb();
1114 		ggtt->base.clear_range(&ggtt->base,
1115 				       node.start, node.size);
1116 		remove_mappable_node(&node);
1117 	} else {
1118 		i915_vma_unpin(vma);
1119 	}
1120 out_unlock:
1121 	intel_runtime_pm_put(i915);
1122 	mutex_unlock(&i915->drm.struct_mutex);
1123 
1124 	return ret;
1125 }
1126 
1127 /**
1128  * Reads data from the object referenced by handle.
1129  * @dev: drm device pointer
1130  * @data: ioctl data blob
1131  * @file: drm file pointer
1132  *
1133  * On error, the contents of *data are undefined.
1134  */
1135 int
1136 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1137 		     struct drm_file *file)
1138 {
1139 	struct drm_i915_gem_pread *args = data;
1140 	struct drm_i915_gem_object *obj;
1141 	int ret;
1142 
1143 	if (args->size == 0)
1144 		return 0;
1145 
1146 	if (!access_ok(VERIFY_WRITE,
1147 		       u64_to_user_ptr(args->data_ptr),
1148 		       args->size))
1149 		return -EFAULT;
1150 
1151 	obj = i915_gem_object_lookup(file, args->handle);
1152 	if (!obj)
1153 		return -ENOENT;
1154 
1155 	/* Bounds check source.  */
1156 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1157 		ret = -EINVAL;
1158 		goto out;
1159 	}
1160 
1161 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1162 
1163 	ret = i915_gem_object_wait(obj,
1164 				   I915_WAIT_INTERRUPTIBLE,
1165 				   MAX_SCHEDULE_TIMEOUT,
1166 				   to_rps_client(file));
1167 	if (ret)
1168 		goto out;
1169 
1170 	ret = i915_gem_object_pin_pages(obj);
1171 	if (ret)
1172 		goto out;
1173 
1174 	ret = i915_gem_shmem_pread(obj, args);
1175 	if (ret == -EFAULT || ret == -ENODEV)
1176 		ret = i915_gem_gtt_pread(obj, args);
1177 
1178 	i915_gem_object_unpin_pages(obj);
1179 out:
1180 	i915_gem_object_put(obj);
1181 	return ret;
1182 }
1183 
1184 /* This is the fast write path which cannot handle
1185  * page faults in the source data
1186  */
1187 
1188 static inline bool
1189 ggtt_write(struct io_mapping *mapping,
1190 	   loff_t base, int offset,
1191 	   char __user *user_data, int length)
1192 {
1193 	void *vaddr;
1194 	unsigned long unwritten;
1195 
1196 	/* We can use the cpu mem copy function because this is X86. */
1197 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1198 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199 						      user_data, length);
1200 	io_mapping_unmap_atomic(vaddr);
1201 	if (unwritten) {
1202 		vaddr = (void __force *)
1203 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1204 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1205 		io_mapping_unmap(vaddr);
1206 	}
1207 
1208 	return unwritten;
1209 }
1210 
1211 /**
1212  * This is the fast pwrite path, where we copy the data directly from the
1213  * user into the GTT, uncached.
1214  * @obj: i915 GEM object
1215  * @args: pwrite arguments structure
1216  */
1217 static int
1218 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1219 			 const struct drm_i915_gem_pwrite *args)
1220 {
1221 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222 	struct i915_ggtt *ggtt = &i915->ggtt;
1223 	struct drm_mm_node node;
1224 	struct i915_vma *vma;
1225 	u64 remain, offset;
1226 	void __user *user_data;
1227 	int ret;
1228 
1229 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1230 	if (ret)
1231 		return ret;
1232 
1233 	intel_runtime_pm_get(i915);
1234 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1235 				       PIN_MAPPABLE | PIN_NONBLOCK);
1236 	if (!IS_ERR(vma)) {
1237 		node.start = i915_ggtt_offset(vma);
1238 		node.allocated = false;
1239 		ret = i915_vma_put_fence(vma);
1240 		if (ret) {
1241 			i915_vma_unpin(vma);
1242 			vma = ERR_PTR(ret);
1243 		}
1244 	}
1245 	if (IS_ERR(vma)) {
1246 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1247 		if (ret)
1248 			goto out_unlock;
1249 		GEM_BUG_ON(!node.allocated);
1250 	}
1251 
1252 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1253 	if (ret)
1254 		goto out_unpin;
1255 
1256 	mutex_unlock(&i915->drm.struct_mutex);
1257 
1258 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259 
1260 	user_data = u64_to_user_ptr(args->data_ptr);
1261 	offset = args->offset;
1262 	remain = args->size;
1263 	while (remain) {
1264 		/* Operation in this page
1265 		 *
1266 		 * page_base = page offset within aperture
1267 		 * page_offset = offset within page
1268 		 * page_length = bytes to copy for this page
1269 		 */
1270 		u32 page_base = node.start;
1271 		unsigned int page_offset = offset_in_page(offset);
1272 		unsigned int page_length = PAGE_SIZE - page_offset;
1273 		page_length = remain < page_length ? remain : page_length;
1274 		if (node.allocated) {
1275 			wmb(); /* flush the write before we modify the GGTT */
1276 			ggtt->base.insert_page(&ggtt->base,
1277 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1278 					       node.start, I915_CACHE_NONE, 0);
1279 			wmb(); /* flush modifications to the GGTT (insert_page) */
1280 		} else {
1281 			page_base += offset & PAGE_MASK;
1282 		}
1283 		/* If we get a fault while copying data, then (presumably) our
1284 		 * source page isn't available.  Return the error and we'll
1285 		 * retry in the slow path.
1286 		 * If the object is non-shmem backed, we retry again with the
1287 		 * path that handles page fault.
1288 		 */
1289 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1290 			       user_data, page_length)) {
1291 			ret = -EFAULT;
1292 			break;
1293 		}
1294 
1295 		remain -= page_length;
1296 		user_data += page_length;
1297 		offset += page_length;
1298 	}
1299 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1300 
1301 	mutex_lock(&i915->drm.struct_mutex);
1302 out_unpin:
1303 	if (node.allocated) {
1304 		wmb();
1305 		ggtt->base.clear_range(&ggtt->base,
1306 				       node.start, node.size);
1307 		remove_mappable_node(&node);
1308 	} else {
1309 		i915_vma_unpin(vma);
1310 	}
1311 out_unlock:
1312 	intel_runtime_pm_put(i915);
1313 	mutex_unlock(&i915->drm.struct_mutex);
1314 	return ret;
1315 }
1316 
1317 static int
1318 shmem_pwrite_slow(struct page *page, int offset, int length,
1319 		  char __user *user_data,
1320 		  bool page_do_bit17_swizzling,
1321 		  bool needs_clflush_before,
1322 		  bool needs_clflush_after)
1323 {
1324 	char *vaddr;
1325 	int ret;
1326 
1327 	vaddr = kmap(page);
1328 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1329 		shmem_clflush_swizzled_range(vaddr + offset, length,
1330 					     page_do_bit17_swizzling);
1331 	if (page_do_bit17_swizzling)
1332 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1333 						length);
1334 	else
1335 		ret = __copy_from_user(vaddr + offset, user_data, length);
1336 	if (needs_clflush_after)
1337 		shmem_clflush_swizzled_range(vaddr + offset, length,
1338 					     page_do_bit17_swizzling);
1339 	kunmap(page);
1340 
1341 	return ret ? -EFAULT : 0;
1342 }
1343 
1344 /* Per-page copy function for the shmem pwrite fastpath.
1345  * Flushes invalid cachelines before writing to the target if
1346  * needs_clflush_before is set and flushes out any written cachelines after
1347  * writing if needs_clflush is set.
1348  */
1349 static int
1350 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1351 	     bool page_do_bit17_swizzling,
1352 	     bool needs_clflush_before,
1353 	     bool needs_clflush_after)
1354 {
1355 	int ret;
1356 
1357 	ret = -ENODEV;
1358 	if (!page_do_bit17_swizzling) {
1359 		char *vaddr = kmap_atomic(page);
1360 
1361 		if (needs_clflush_before)
1362 			drm_clflush_virt_range(vaddr + offset, len);
1363 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1364 		if (needs_clflush_after)
1365 			drm_clflush_virt_range(vaddr + offset, len);
1366 
1367 		kunmap_atomic(vaddr);
1368 	}
1369 	if (ret == 0)
1370 		return ret;
1371 
1372 	return shmem_pwrite_slow(page, offset, len, user_data,
1373 				 page_do_bit17_swizzling,
1374 				 needs_clflush_before,
1375 				 needs_clflush_after);
1376 }
1377 
1378 static int
1379 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1380 		      const struct drm_i915_gem_pwrite *args)
1381 {
1382 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1383 	void __user *user_data;
1384 	u64 remain;
1385 	unsigned int obj_do_bit17_swizzling;
1386 	unsigned int partial_cacheline_write;
1387 	unsigned int needs_clflush;
1388 	unsigned int offset, idx;
1389 	int ret;
1390 
1391 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1392 	if (ret)
1393 		return ret;
1394 
1395 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1396 	mutex_unlock(&i915->drm.struct_mutex);
1397 	if (ret)
1398 		return ret;
1399 
1400 	obj_do_bit17_swizzling = 0;
1401 	if (i915_gem_object_needs_bit17_swizzle(obj))
1402 		obj_do_bit17_swizzling = BIT(17);
1403 
1404 	/* If we don't overwrite a cacheline completely we need to be
1405 	 * careful to have up-to-date data by first clflushing. Don't
1406 	 * overcomplicate things and flush the entire patch.
1407 	 */
1408 	partial_cacheline_write = 0;
1409 	if (needs_clflush & CLFLUSH_BEFORE)
1410 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411 
1412 	user_data = u64_to_user_ptr(args->data_ptr);
1413 	remain = args->size;
1414 	offset = offset_in_page(args->offset);
1415 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1416 		struct page *page = i915_gem_object_get_page(obj, idx);
1417 		int length;
1418 
1419 		length = remain;
1420 		if (offset + length > PAGE_SIZE)
1421 			length = PAGE_SIZE - offset;
1422 
1423 		ret = shmem_pwrite(page, offset, length, user_data,
1424 				   page_to_phys(page) & obj_do_bit17_swizzling,
1425 				   (offset | length) & partial_cacheline_write,
1426 				   needs_clflush & CLFLUSH_AFTER);
1427 		if (ret)
1428 			break;
1429 
1430 		remain -= length;
1431 		user_data += length;
1432 		offset = 0;
1433 	}
1434 
1435 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1436 	i915_gem_obj_finish_shmem_access(obj);
1437 	return ret;
1438 }
1439 
1440 /**
1441  * Writes data to the object referenced by handle.
1442  * @dev: drm device
1443  * @data: ioctl data blob
1444  * @file: drm file
1445  *
1446  * On error, the contents of the buffer that were to be modified are undefined.
1447  */
1448 int
1449 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1450 		      struct drm_file *file)
1451 {
1452 	struct drm_i915_gem_pwrite *args = data;
1453 	struct drm_i915_gem_object *obj;
1454 	int ret;
1455 
1456 	if (args->size == 0)
1457 		return 0;
1458 
1459 	if (!access_ok(VERIFY_READ,
1460 		       u64_to_user_ptr(args->data_ptr),
1461 		       args->size))
1462 		return -EFAULT;
1463 
1464 	obj = i915_gem_object_lookup(file, args->handle);
1465 	if (!obj)
1466 		return -ENOENT;
1467 
1468 	/* Bounds check destination. */
1469 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1470 		ret = -EINVAL;
1471 		goto err;
1472 	}
1473 
1474 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1475 
1476 	ret = -ENODEV;
1477 	if (obj->ops->pwrite)
1478 		ret = obj->ops->pwrite(obj, args);
1479 	if (ret != -ENODEV)
1480 		goto err;
1481 
1482 	ret = i915_gem_object_wait(obj,
1483 				   I915_WAIT_INTERRUPTIBLE |
1484 				   I915_WAIT_ALL,
1485 				   MAX_SCHEDULE_TIMEOUT,
1486 				   to_rps_client(file));
1487 	if (ret)
1488 		goto err;
1489 
1490 	ret = i915_gem_object_pin_pages(obj);
1491 	if (ret)
1492 		goto err;
1493 
1494 	ret = -EFAULT;
1495 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1496 	 * it would end up going through the fenced access, and we'll get
1497 	 * different detiling behavior between reading and writing.
1498 	 * pread/pwrite currently are reading and writing from the CPU
1499 	 * perspective, requiring manual detiling by the client.
1500 	 */
1501 	if (!i915_gem_object_has_struct_page(obj) ||
1502 	    cpu_write_needs_clflush(obj))
1503 		/* Note that the gtt paths might fail with non-page-backed user
1504 		 * pointers (e.g. gtt mappings when moving data between
1505 		 * textures). Fallback to the shmem path in that case.
1506 		 */
1507 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1508 
1509 	if (ret == -EFAULT || ret == -ENOSPC) {
1510 		if (obj->phys_handle)
1511 			ret = i915_gem_phys_pwrite(obj, args, file);
1512 		else
1513 			ret = i915_gem_shmem_pwrite(obj, args);
1514 	}
1515 
1516 	i915_gem_object_unpin_pages(obj);
1517 err:
1518 	i915_gem_object_put(obj);
1519 	return ret;
1520 }
1521 
1522 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1523 {
1524 	struct drm_i915_private *i915;
1525 	struct list_head *list;
1526 	struct i915_vma *vma;
1527 
1528 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1529 		if (!i915_vma_is_ggtt(vma))
1530 			break;
1531 
1532 		if (i915_vma_is_active(vma))
1533 			continue;
1534 
1535 		if (!drm_mm_node_allocated(&vma->node))
1536 			continue;
1537 
1538 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1539 	}
1540 
1541 	i915 = to_i915(obj->base.dev);
1542 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1543 	list_move_tail(&obj->global_link, list);
1544 }
1545 
1546 /**
1547  * Called when user space prepares to use an object with the CPU, either
1548  * through the mmap ioctl's mapping or a GTT mapping.
1549  * @dev: drm device
1550  * @data: ioctl data blob
1551  * @file: drm file
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555 			  struct drm_file *file)
1556 {
1557 	struct drm_i915_gem_set_domain *args = data;
1558 	struct drm_i915_gem_object *obj;
1559 	uint32_t read_domains = args->read_domains;
1560 	uint32_t write_domain = args->write_domain;
1561 	int err;
1562 
1563 	/* Only handle setting domains to types used by the CPU. */
1564 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1565 		return -EINVAL;
1566 
1567 	/* Having something in the write domain implies it's in the read
1568 	 * domain, and only that read domain.  Enforce that in the request.
1569 	 */
1570 	if (write_domain != 0 && read_domains != write_domain)
1571 		return -EINVAL;
1572 
1573 	obj = i915_gem_object_lookup(file, args->handle);
1574 	if (!obj)
1575 		return -ENOENT;
1576 
1577 	/* Try to flush the object off the GPU without holding the lock.
1578 	 * We will repeat the flush holding the lock in the normal manner
1579 	 * to catch cases where we are gazumped.
1580 	 */
1581 	err = i915_gem_object_wait(obj,
1582 				   I915_WAIT_INTERRUPTIBLE |
1583 				   (write_domain ? I915_WAIT_ALL : 0),
1584 				   MAX_SCHEDULE_TIMEOUT,
1585 				   to_rps_client(file));
1586 	if (err)
1587 		goto out;
1588 
1589 	/* Flush and acquire obj->pages so that we are coherent through
1590 	 * direct access in memory with previous cached writes through
1591 	 * shmemfs and that our cache domain tracking remains valid.
1592 	 * For example, if the obj->filp was moved to swap without us
1593 	 * being notified and releasing the pages, we would mistakenly
1594 	 * continue to assume that the obj remained out of the CPU cached
1595 	 * domain.
1596 	 */
1597 	err = i915_gem_object_pin_pages(obj);
1598 	if (err)
1599 		goto out;
1600 
1601 	err = i915_mutex_lock_interruptible(dev);
1602 	if (err)
1603 		goto out_unpin;
1604 
1605 	if (read_domains & I915_GEM_DOMAIN_WC)
1606 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1607 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1608 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609 	else
1610 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611 
1612 	/* And bump the LRU for this access */
1613 	i915_gem_object_bump_inactive_ggtt(obj);
1614 
1615 	mutex_unlock(&dev->struct_mutex);
1616 
1617 	if (write_domain != 0)
1618 		intel_fb_obj_invalidate(obj,
1619 					fb_write_origin(obj, write_domain));
1620 
1621 out_unpin:
1622 	i915_gem_object_unpin_pages(obj);
1623 out:
1624 	i915_gem_object_put(obj);
1625 	return err;
1626 }
1627 
1628 /**
1629  * Called when user space has done writes to this buffer
1630  * @dev: drm device
1631  * @data: ioctl data blob
1632  * @file: drm file
1633  */
1634 int
1635 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1636 			 struct drm_file *file)
1637 {
1638 	struct drm_i915_gem_sw_finish *args = data;
1639 	struct drm_i915_gem_object *obj;
1640 
1641 	obj = i915_gem_object_lookup(file, args->handle);
1642 	if (!obj)
1643 		return -ENOENT;
1644 
1645 	/* Pinned buffers may be scanout, so flush the cache */
1646 	i915_gem_object_flush_if_display(obj);
1647 	i915_gem_object_put(obj);
1648 
1649 	return 0;
1650 }
1651 
1652 /**
1653  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1654  *			 it is mapped to.
1655  * @dev: drm device
1656  * @data: ioctl data blob
1657  * @file: drm file
1658  *
1659  * While the mapping holds a reference on the contents of the object, it doesn't
1660  * imply a ref on the object itself.
1661  *
1662  * IMPORTANT:
1663  *
1664  * DRM driver writers who look a this function as an example for how to do GEM
1665  * mmap support, please don't implement mmap support like here. The modern way
1666  * to implement DRM mmap support is with an mmap offset ioctl (like
1667  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1668  * That way debug tooling like valgrind will understand what's going on, hiding
1669  * the mmap call in a driver private ioctl will break that. The i915 driver only
1670  * does cpu mmaps this way because we didn't know better.
1671  */
1672 int
1673 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1674 		    struct drm_file *file)
1675 {
1676 	struct drm_i915_gem_mmap *args = data;
1677 	struct drm_i915_gem_object *obj;
1678 	unsigned long addr;
1679 
1680 	if (args->flags & ~(I915_MMAP_WC))
1681 		return -EINVAL;
1682 
1683 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1684 		return -ENODEV;
1685 
1686 	obj = i915_gem_object_lookup(file, args->handle);
1687 	if (!obj)
1688 		return -ENOENT;
1689 
1690 	/* prime objects have no backing filp to GEM mmap
1691 	 * pages from.
1692 	 */
1693 	if (!obj->base.filp) {
1694 		i915_gem_object_put(obj);
1695 		return -EINVAL;
1696 	}
1697 
1698 	addr = vm_mmap(obj->base.filp, 0, args->size,
1699 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1700 		       args->offset);
1701 	if (args->flags & I915_MMAP_WC) {
1702 		struct mm_struct *mm = current->mm;
1703 		struct vm_area_struct *vma;
1704 
1705 		if (down_write_killable(&mm->mmap_sem)) {
1706 			i915_gem_object_put(obj);
1707 			return -EINTR;
1708 		}
1709 		vma = find_vma(mm, addr);
1710 		if (vma)
1711 			vma->vm_page_prot =
1712 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1713 		else
1714 			addr = -ENOMEM;
1715 		up_write(&mm->mmap_sem);
1716 
1717 		/* This may race, but that's ok, it only gets set */
1718 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719 	}
1720 	i915_gem_object_put(obj);
1721 	if (IS_ERR((void *)addr))
1722 		return addr;
1723 
1724 	args->addr_ptr = (uint64_t) addr;
1725 
1726 	return 0;
1727 }
1728 
1729 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1730 {
1731 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1732 }
1733 
1734 /**
1735  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1736  *
1737  * A history of the GTT mmap interface:
1738  *
1739  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1740  *     aligned and suitable for fencing, and still fit into the available
1741  *     mappable space left by the pinned display objects. A classic problem
1742  *     we called the page-fault-of-doom where we would ping-pong between
1743  *     two objects that could not fit inside the GTT and so the memcpy
1744  *     would page one object in at the expense of the other between every
1745  *     single byte.
1746  *
1747  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1748  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1749  *     object is too large for the available space (or simply too large
1750  *     for the mappable aperture!), a view is created instead and faulted
1751  *     into userspace. (This view is aligned and sized appropriately for
1752  *     fenced access.)
1753  *
1754  * 2 - Recognise WC as a separate cache domain so that we can flush the
1755  *     delayed writes via GTT before performing direct access via WC.
1756  *
1757  * Restrictions:
1758  *
1759  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1760  *    hangs on some architectures, corruption on others. An attempt to service
1761  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1762  *
1763  *  * the object must be able to fit into RAM (physical memory, though no
1764  *    limited to the mappable aperture).
1765  *
1766  *
1767  * Caveats:
1768  *
1769  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1770  *    all data to system memory. Subsequent access will not be synchronized.
1771  *
1772  *  * all mappings are revoked on runtime device suspend.
1773  *
1774  *  * there are only 8, 16 or 32 fence registers to share between all users
1775  *    (older machines require fence register for display and blitter access
1776  *    as well). Contention of the fence registers will cause the previous users
1777  *    to be unmapped and any new access will generate new page faults.
1778  *
1779  *  * running out of memory while servicing a fault may generate a SIGBUS,
1780  *    rather than the expected SIGSEGV.
1781  */
1782 int i915_gem_mmap_gtt_version(void)
1783 {
1784 	return 2;
1785 }
1786 
1787 static inline struct i915_ggtt_view
1788 compute_partial_view(struct drm_i915_gem_object *obj,
1789 		     pgoff_t page_offset,
1790 		     unsigned int chunk)
1791 {
1792 	struct i915_ggtt_view view;
1793 
1794 	if (i915_gem_object_is_tiled(obj))
1795 		chunk = roundup(chunk, tile_row_pages(obj));
1796 
1797 	view.type = I915_GGTT_VIEW_PARTIAL;
1798 	view.partial.offset = rounddown(page_offset, chunk);
1799 	view.partial.size =
1800 		min_t(unsigned int, chunk,
1801 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802 
1803 	/* If the partial covers the entire object, just create a normal VMA. */
1804 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1805 		view.type = I915_GGTT_VIEW_NORMAL;
1806 
1807 	return view;
1808 }
1809 
1810 /**
1811  * i915_gem_fault - fault a page into the GTT
1812  * @vmf: fault info
1813  *
1814  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1815  * from userspace.  The fault handler takes care of binding the object to
1816  * the GTT (if needed), allocating and programming a fence register (again,
1817  * only if needed based on whether the old reg is still valid or the object
1818  * is tiled) and inserting a new PTE into the faulting process.
1819  *
1820  * Note that the faulting process may involve evicting existing objects
1821  * from the GTT and/or fence registers to make room.  So performance may
1822  * suffer if the GTT working set is large or there are few fence registers
1823  * left.
1824  *
1825  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1826  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827  */
1828 int i915_gem_fault(struct vm_fault *vmf)
1829 {
1830 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1831 	struct vm_area_struct *area = vmf->vma;
1832 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1833 	struct drm_device *dev = obj->base.dev;
1834 	struct drm_i915_private *dev_priv = to_i915(dev);
1835 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1836 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1837 	struct i915_vma *vma;
1838 	pgoff_t page_offset;
1839 	unsigned int flags;
1840 	int ret;
1841 
1842 	/* We don't use vmf->pgoff since that has the fake offset */
1843 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844 
1845 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1846 
1847 	/* Try to flush the object off the GPU first without holding the lock.
1848 	 * Upon acquiring the lock, we will perform our sanity checks and then
1849 	 * repeat the flush holding the lock in the normal manner to catch cases
1850 	 * where we are gazumped.
1851 	 */
1852 	ret = i915_gem_object_wait(obj,
1853 				   I915_WAIT_INTERRUPTIBLE,
1854 				   MAX_SCHEDULE_TIMEOUT,
1855 				   NULL);
1856 	if (ret)
1857 		goto err;
1858 
1859 	ret = i915_gem_object_pin_pages(obj);
1860 	if (ret)
1861 		goto err;
1862 
1863 	intel_runtime_pm_get(dev_priv);
1864 
1865 	ret = i915_mutex_lock_interruptible(dev);
1866 	if (ret)
1867 		goto err_rpm;
1868 
1869 	/* Access to snoopable pages through the GTT is incoherent. */
1870 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1871 		ret = -EFAULT;
1872 		goto err_unlock;
1873 	}
1874 
1875 	/* If the object is smaller than a couple of partial vma, it is
1876 	 * not worth only creating a single partial vma - we may as well
1877 	 * clear enough space for the full object.
1878 	 */
1879 	flags = PIN_MAPPABLE;
1880 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1881 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1882 
1883 	/* Now pin it into the GTT as needed */
1884 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885 	if (IS_ERR(vma)) {
1886 		/* Use a partial view if it is bigger than available space */
1887 		struct i915_ggtt_view view =
1888 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889 
1890 		/* Userspace is now writing through an untracked VMA, abandon
1891 		 * all hope that the hardware is able to track future writes.
1892 		 */
1893 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1894 
1895 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1896 	}
1897 	if (IS_ERR(vma)) {
1898 		ret = PTR_ERR(vma);
1899 		goto err_unlock;
1900 	}
1901 
1902 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1903 	if (ret)
1904 		goto err_unpin;
1905 
1906 	ret = i915_vma_get_fence(vma);
1907 	if (ret)
1908 		goto err_unpin;
1909 
1910 	/* Mark as being mmapped into userspace for later revocation */
1911 	assert_rpm_wakelock_held(dev_priv);
1912 	if (list_empty(&obj->userfault_link))
1913 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1914 
1915 	/* Finally, remap it using the new GTT offset */
1916 	ret = remap_io_mapping(area,
1917 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1918 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1919 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1920 			       &ggtt->mappable);
1921 
1922 err_unpin:
1923 	__i915_vma_unpin(vma);
1924 err_unlock:
1925 	mutex_unlock(&dev->struct_mutex);
1926 err_rpm:
1927 	intel_runtime_pm_put(dev_priv);
1928 	i915_gem_object_unpin_pages(obj);
1929 err:
1930 	switch (ret) {
1931 	case -EIO:
1932 		/*
1933 		 * We eat errors when the gpu is terminally wedged to avoid
1934 		 * userspace unduly crashing (gl has no provisions for mmaps to
1935 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1936 		 * and so needs to be reported.
1937 		 */
1938 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1939 			ret = VM_FAULT_SIGBUS;
1940 			break;
1941 		}
1942 	case -EAGAIN:
1943 		/*
1944 		 * EAGAIN means the gpu is hung and we'll wait for the error
1945 		 * handler to reset everything when re-faulting in
1946 		 * i915_mutex_lock_interruptible.
1947 		 */
1948 	case 0:
1949 	case -ERESTARTSYS:
1950 	case -EINTR:
1951 	case -EBUSY:
1952 		/*
1953 		 * EBUSY is ok: this just means that another thread
1954 		 * already did the job.
1955 		 */
1956 		ret = VM_FAULT_NOPAGE;
1957 		break;
1958 	case -ENOMEM:
1959 		ret = VM_FAULT_OOM;
1960 		break;
1961 	case -ENOSPC:
1962 	case -EFAULT:
1963 		ret = VM_FAULT_SIGBUS;
1964 		break;
1965 	default:
1966 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1967 		ret = VM_FAULT_SIGBUS;
1968 		break;
1969 	}
1970 	return ret;
1971 }
1972 
1973 /**
1974  * i915_gem_release_mmap - remove physical page mappings
1975  * @obj: obj in question
1976  *
1977  * Preserve the reservation of the mmapping with the DRM core code, but
1978  * relinquish ownership of the pages back to the system.
1979  *
1980  * It is vital that we remove the page mapping if we have mapped a tiled
1981  * object through the GTT and then lose the fence register due to
1982  * resource pressure. Similarly if the object has been moved out of the
1983  * aperture, than pages mapped into userspace must be revoked. Removing the
1984  * mapping will then trigger a page fault on the next user access, allowing
1985  * fixup by i915_gem_fault().
1986  */
1987 void
1988 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989 {
1990 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1991 
1992 	/* Serialisation between user GTT access and our code depends upon
1993 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1994 	 * pagefault then has to wait until we release the mutex.
1995 	 *
1996 	 * Note that RPM complicates somewhat by adding an additional
1997 	 * requirement that operations to the GGTT be made holding the RPM
1998 	 * wakeref.
1999 	 */
2000 	lockdep_assert_held(&i915->drm.struct_mutex);
2001 	intel_runtime_pm_get(i915);
2002 
2003 	if (list_empty(&obj->userfault_link))
2004 		goto out;
2005 
2006 	list_del_init(&obj->userfault_link);
2007 	drm_vma_node_unmap(&obj->base.vma_node,
2008 			   obj->base.dev->anon_inode->i_mapping);
2009 
2010 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2011 	 * memory transactions from userspace before we return. The TLB
2012 	 * flushing implied above by changing the PTE above *should* be
2013 	 * sufficient, an extra barrier here just provides us with a bit
2014 	 * of paranoid documentation about our requirement to serialise
2015 	 * memory writes before touching registers / GSM.
2016 	 */
2017 	wmb();
2018 
2019 out:
2020 	intel_runtime_pm_put(i915);
2021 }
2022 
2023 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024 {
2025 	struct drm_i915_gem_object *obj, *on;
2026 	int i;
2027 
2028 	/*
2029 	 * Only called during RPM suspend. All users of the userfault_list
2030 	 * must be holding an RPM wakeref to ensure that this can not
2031 	 * run concurrently with themselves (and use the struct_mutex for
2032 	 * protection between themselves).
2033 	 */
2034 
2035 	list_for_each_entry_safe(obj, on,
2036 				 &dev_priv->mm.userfault_list, userfault_link) {
2037 		list_del_init(&obj->userfault_link);
2038 		drm_vma_node_unmap(&obj->base.vma_node,
2039 				   obj->base.dev->anon_inode->i_mapping);
2040 	}
2041 
2042 	/* The fence will be lost when the device powers down. If any were
2043 	 * in use by hardware (i.e. they are pinned), we should not be powering
2044 	 * down! All other fences will be reacquired by the user upon waking.
2045 	 */
2046 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2047 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2048 
2049 		/* Ideally we want to assert that the fence register is not
2050 		 * live at this point (i.e. that no piece of code will be
2051 		 * trying to write through fence + GTT, as that both violates
2052 		 * our tracking of activity and associated locking/barriers,
2053 		 * but also is illegal given that the hw is powered down).
2054 		 *
2055 		 * Previously we used reg->pin_count as a "liveness" indicator.
2056 		 * That is not sufficient, and we need a more fine-grained
2057 		 * tool if we want to have a sanity check here.
2058 		 */
2059 
2060 		if (!reg->vma)
2061 			continue;
2062 
2063 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2064 		reg->dirty = true;
2065 	}
2066 }
2067 
2068 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2069 {
2070 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071 	int err;
2072 
2073 	err = drm_gem_create_mmap_offset(&obj->base);
2074 	if (likely(!err))
2075 		return 0;
2076 
2077 	/* Attempt to reap some mmap space from dead objects */
2078 	do {
2079 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2080 		if (err)
2081 			break;
2082 
2083 		i915_gem_drain_freed_objects(dev_priv);
2084 		err = drm_gem_create_mmap_offset(&obj->base);
2085 		if (!err)
2086 			break;
2087 
2088 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2089 
2090 	return err;
2091 }
2092 
2093 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2094 {
2095 	drm_gem_free_mmap_offset(&obj->base);
2096 }
2097 
2098 int
2099 i915_gem_mmap_gtt(struct drm_file *file,
2100 		  struct drm_device *dev,
2101 		  uint32_t handle,
2102 		  uint64_t *offset)
2103 {
2104 	struct drm_i915_gem_object *obj;
2105 	int ret;
2106 
2107 	obj = i915_gem_object_lookup(file, handle);
2108 	if (!obj)
2109 		return -ENOENT;
2110 
2111 	ret = i915_gem_object_create_mmap_offset(obj);
2112 	if (ret == 0)
2113 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114 
2115 	i915_gem_object_put(obj);
2116 	return ret;
2117 }
2118 
2119 /**
2120  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2121  * @dev: DRM device
2122  * @data: GTT mapping ioctl data
2123  * @file: GEM object info
2124  *
2125  * Simply returns the fake offset to userspace so it can mmap it.
2126  * The mmap call will end up in drm_gem_mmap(), which will set things
2127  * up so we can get faults in the handler above.
2128  *
2129  * The fault handler will take care of binding the object into the GTT
2130  * (since it may have been evicted to make room for something), allocating
2131  * a fence register, and mapping the appropriate aperture address into
2132  * userspace.
2133  */
2134 int
2135 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2136 			struct drm_file *file)
2137 {
2138 	struct drm_i915_gem_mmap_gtt *args = data;
2139 
2140 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2141 }
2142 
2143 /* Immediately discard the backing storage */
2144 static void
2145 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146 {
2147 	i915_gem_object_free_mmap_offset(obj);
2148 
2149 	if (obj->base.filp == NULL)
2150 		return;
2151 
2152 	/* Our goal here is to return as much of the memory as
2153 	 * is possible back to the system as we are called from OOM.
2154 	 * To do this we must instruct the shmfs to drop all of its
2155 	 * backing pages, *now*.
2156 	 */
2157 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2158 	obj->mm.madv = __I915_MADV_PURGED;
2159 	obj->mm.pages = ERR_PTR(-EFAULT);
2160 }
2161 
2162 /* Try to discard unwanted pages */
2163 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2164 {
2165 	struct address_space *mapping;
2166 
2167 	lockdep_assert_held(&obj->mm.lock);
2168 	GEM_BUG_ON(obj->mm.pages);
2169 
2170 	switch (obj->mm.madv) {
2171 	case I915_MADV_DONTNEED:
2172 		i915_gem_object_truncate(obj);
2173 	case __I915_MADV_PURGED:
2174 		return;
2175 	}
2176 
2177 	if (obj->base.filp == NULL)
2178 		return;
2179 
2180 	mapping = obj->base.filp->f_mapping,
2181 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2182 }
2183 
2184 static void
2185 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2186 			      struct sg_table *pages)
2187 {
2188 	struct sgt_iter sgt_iter;
2189 	struct page *page;
2190 
2191 	__i915_gem_object_release_shmem(obj, pages, true);
2192 
2193 	i915_gem_gtt_finish_pages(obj, pages);
2194 
2195 	if (i915_gem_object_needs_bit17_swizzle(obj))
2196 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2197 
2198 	for_each_sgt_page(page, sgt_iter, pages) {
2199 		if (obj->mm.dirty)
2200 			set_page_dirty(page);
2201 
2202 		if (obj->mm.madv == I915_MADV_WILLNEED)
2203 			mark_page_accessed(page);
2204 
2205 		put_page(page);
2206 	}
2207 	obj->mm.dirty = false;
2208 
2209 	sg_free_table(pages);
2210 	kfree(pages);
2211 }
2212 
2213 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2214 {
2215 	struct radix_tree_iter iter;
2216 	void **slot;
2217 
2218 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 }
2221 
2222 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2223 				 enum i915_mm_subclass subclass)
2224 {
2225 	struct sg_table *pages;
2226 
2227 	if (i915_gem_object_has_pinned_pages(obj))
2228 		return;
2229 
2230 	GEM_BUG_ON(obj->bind_count);
2231 	if (!READ_ONCE(obj->mm.pages))
2232 		return;
2233 
2234 	/* May be called by shrinker from within get_pages() (on another bo) */
2235 	mutex_lock_nested(&obj->mm.lock, subclass);
2236 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2237 		goto unlock;
2238 
2239 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2240 	 * array, hence protect them from being reaped by removing them from gtt
2241 	 * lists early. */
2242 	pages = fetch_and_zero(&obj->mm.pages);
2243 	GEM_BUG_ON(!pages);
2244 
2245 	if (obj->mm.mapping) {
2246 		void *ptr;
2247 
2248 		ptr = page_mask_bits(obj->mm.mapping);
2249 		if (is_vmalloc_addr(ptr))
2250 			vunmap(ptr);
2251 		else
2252 			kunmap(kmap_to_page(ptr));
2253 
2254 		obj->mm.mapping = NULL;
2255 	}
2256 
2257 	__i915_gem_object_reset_page_iter(obj);
2258 
2259 	if (!IS_ERR(pages))
2260 		obj->ops->put_pages(obj, pages);
2261 
2262 unlock:
2263 	mutex_unlock(&obj->mm.lock);
2264 }
2265 
2266 static bool i915_sg_trim(struct sg_table *orig_st)
2267 {
2268 	struct sg_table new_st;
2269 	struct scatterlist *sg, *new_sg;
2270 	unsigned int i;
2271 
2272 	if (orig_st->nents == orig_st->orig_nents)
2273 		return false;
2274 
2275 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2276 		return false;
2277 
2278 	new_sg = new_st.sgl;
2279 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2280 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2281 		/* called before being DMA mapped, no need to copy sg->dma_* */
2282 		new_sg = sg_next(new_sg);
2283 	}
2284 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285 
2286 	sg_free_table(orig_st);
2287 
2288 	*orig_st = new_st;
2289 	return true;
2290 }
2291 
2292 static struct sg_table *
2293 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294 {
2295 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2296 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2297 	unsigned long i;
2298 	struct address_space *mapping;
2299 	struct sg_table *st;
2300 	struct scatterlist *sg;
2301 	struct sgt_iter sgt_iter;
2302 	struct page *page;
2303 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2304 	unsigned int max_segment;
2305 	gfp_t noreclaim;
2306 	int ret;
2307 
2308 	/* Assert that the object is not currently in any GPU domain. As it
2309 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2310 	 * a GPU cache
2311 	 */
2312 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2313 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2314 
2315 	max_segment = swiotlb_max_segment();
2316 	if (!max_segment)
2317 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318 
2319 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2320 	if (st == NULL)
2321 		return ERR_PTR(-ENOMEM);
2322 
2323 rebuild_st:
2324 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2325 		kfree(st);
2326 		return ERR_PTR(-ENOMEM);
2327 	}
2328 
2329 	/* Get the list of pages out of our struct file.  They'll be pinned
2330 	 * at this point until we release them.
2331 	 *
2332 	 * Fail silently without starting the shrinker
2333 	 */
2334 	mapping = obj->base.filp->f_mapping;
2335 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2336 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2337 
2338 	sg = st->sgl;
2339 	st->nents = 0;
2340 	for (i = 0; i < page_count; i++) {
2341 		const unsigned int shrink[] = {
2342 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2343 			0,
2344 		}, *s = shrink;
2345 		gfp_t gfp = noreclaim;
2346 
2347 		do {
2348 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2349 			if (likely(!IS_ERR(page)))
2350 				break;
2351 
2352 			if (!*s) {
2353 				ret = PTR_ERR(page);
2354 				goto err_sg;
2355 			}
2356 
2357 			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2358 			cond_resched();
2359 
2360 			/* We've tried hard to allocate the memory by reaping
2361 			 * our own buffer, now let the real VM do its job and
2362 			 * go down in flames if truly OOM.
2363 			 *
2364 			 * However, since graphics tend to be disposable,
2365 			 * defer the oom here by reporting the ENOMEM back
2366 			 * to userspace.
2367 			 */
2368 			if (!*s) {
2369 				/* reclaim and warn, but no oom */
2370 				gfp = mapping_gfp_mask(mapping);
2371 
2372 				/* Our bo are always dirty and so we require
2373 				 * kswapd to reclaim our pages (direct reclaim
2374 				 * does not effectively begin pageout of our
2375 				 * buffers on its own). However, direct reclaim
2376 				 * only waits for kswapd when under allocation
2377 				 * congestion. So as a result __GFP_RECLAIM is
2378 				 * unreliable and fails to actually reclaim our
2379 				 * dirty pages -- unless you try over and over
2380 				 * again with !__GFP_NORETRY. However, we still
2381 				 * want to fail this allocation rather than
2382 				 * trigger the out-of-memory killer and for
2383 				 * this we want __GFP_RETRY_MAYFAIL.
2384 				 */
2385 				gfp |= __GFP_RETRY_MAYFAIL;
2386 			}
2387 		} while (1);
2388 
2389 		if (!i ||
2390 		    sg->length >= max_segment ||
2391 		    page_to_pfn(page) != last_pfn + 1) {
2392 			if (i)
2393 				sg = sg_next(sg);
2394 			st->nents++;
2395 			sg_set_page(sg, page, PAGE_SIZE, 0);
2396 		} else {
2397 			sg->length += PAGE_SIZE;
2398 		}
2399 		last_pfn = page_to_pfn(page);
2400 
2401 		/* Check that the i965g/gm workaround works. */
2402 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403 	}
2404 	if (sg) /* loop terminated early; short sg table */
2405 		sg_mark_end(sg);
2406 
2407 	/* Trim unused sg entries to avoid wasting memory. */
2408 	i915_sg_trim(st);
2409 
2410 	ret = i915_gem_gtt_prepare_pages(obj, st);
2411 	if (ret) {
2412 		/* DMA remapping failed? One possible cause is that
2413 		 * it could not reserve enough large entries, asking
2414 		 * for PAGE_SIZE chunks instead may be helpful.
2415 		 */
2416 		if (max_segment > PAGE_SIZE) {
2417 			for_each_sgt_page(page, sgt_iter, st)
2418 				put_page(page);
2419 			sg_free_table(st);
2420 
2421 			max_segment = PAGE_SIZE;
2422 			goto rebuild_st;
2423 		} else {
2424 			dev_warn(&dev_priv->drm.pdev->dev,
2425 				 "Failed to DMA remap %lu pages\n",
2426 				 page_count);
2427 			goto err_pages;
2428 		}
2429 	}
2430 
2431 	if (i915_gem_object_needs_bit17_swizzle(obj))
2432 		i915_gem_object_do_bit_17_swizzle(obj, st);
2433 
2434 	return st;
2435 
2436 err_sg:
2437 	sg_mark_end(sg);
2438 err_pages:
2439 	for_each_sgt_page(page, sgt_iter, st)
2440 		put_page(page);
2441 	sg_free_table(st);
2442 	kfree(st);
2443 
2444 	/* shmemfs first checks if there is enough memory to allocate the page
2445 	 * and reports ENOSPC should there be insufficient, along with the usual
2446 	 * ENOMEM for a genuine allocation failure.
2447 	 *
2448 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2449 	 * space and so want to translate the error from shmemfs back to our
2450 	 * usual understanding of ENOMEM.
2451 	 */
2452 	if (ret == -ENOSPC)
2453 		ret = -ENOMEM;
2454 
2455 	return ERR_PTR(ret);
2456 }
2457 
2458 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2459 				 struct sg_table *pages)
2460 {
2461 	lockdep_assert_held(&obj->mm.lock);
2462 
2463 	obj->mm.get_page.sg_pos = pages->sgl;
2464 	obj->mm.get_page.sg_idx = 0;
2465 
2466 	obj->mm.pages = pages;
2467 
2468 	if (i915_gem_object_is_tiled(obj) &&
2469 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2470 		GEM_BUG_ON(obj->mm.quirked);
2471 		__i915_gem_object_pin_pages(obj);
2472 		obj->mm.quirked = true;
2473 	}
2474 }
2475 
2476 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2477 {
2478 	struct sg_table *pages;
2479 
2480 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2481 
2482 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2483 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2484 		return -EFAULT;
2485 	}
2486 
2487 	pages = obj->ops->get_pages(obj);
2488 	if (unlikely(IS_ERR(pages)))
2489 		return PTR_ERR(pages);
2490 
2491 	__i915_gem_object_set_pages(obj, pages);
2492 	return 0;
2493 }
2494 
2495 /* Ensure that the associated pages are gathered from the backing storage
2496  * and pinned into our object. i915_gem_object_pin_pages() may be called
2497  * multiple times before they are released by a single call to
2498  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499  * either as a result of memory pressure (reaping pages under the shrinker)
2500  * or as the object is itself released.
2501  */
2502 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503 {
2504 	int err;
2505 
2506 	err = mutex_lock_interruptible(&obj->mm.lock);
2507 	if (err)
2508 		return err;
2509 
2510 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511 		err = ____i915_gem_object_get_pages(obj);
2512 		if (err)
2513 			goto unlock;
2514 
2515 		smp_mb__before_atomic();
2516 	}
2517 	atomic_inc(&obj->mm.pages_pin_count);
2518 
2519 unlock:
2520 	mutex_unlock(&obj->mm.lock);
2521 	return err;
2522 }
2523 
2524 /* The 'mapping' part of i915_gem_object_pin_map() below */
2525 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2526 				 enum i915_map_type type)
2527 {
2528 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2529 	struct sg_table *sgt = obj->mm.pages;
2530 	struct sgt_iter sgt_iter;
2531 	struct page *page;
2532 	struct page *stack_pages[32];
2533 	struct page **pages = stack_pages;
2534 	unsigned long i = 0;
2535 	pgprot_t pgprot;
2536 	void *addr;
2537 
2538 	/* A single page can always be kmapped */
2539 	if (n_pages == 1 && type == I915_MAP_WB)
2540 		return kmap(sg_page(sgt->sgl));
2541 
2542 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2543 		/* Too big for stack -- allocate temporary array instead */
2544 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2545 		if (!pages)
2546 			return NULL;
2547 	}
2548 
2549 	for_each_sgt_page(page, sgt_iter, sgt)
2550 		pages[i++] = page;
2551 
2552 	/* Check that we have the expected number of pages */
2553 	GEM_BUG_ON(i != n_pages);
2554 
2555 	switch (type) {
2556 	case I915_MAP_WB:
2557 		pgprot = PAGE_KERNEL;
2558 		break;
2559 	case I915_MAP_WC:
2560 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2561 		break;
2562 	}
2563 	addr = vmap(pages, n_pages, 0, pgprot);
2564 
2565 	if (pages != stack_pages)
2566 		kvfree(pages);
2567 
2568 	return addr;
2569 }
2570 
2571 /* get, pin, and map the pages of the object into kernel space */
2572 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2573 			      enum i915_map_type type)
2574 {
2575 	enum i915_map_type has_type;
2576 	bool pinned;
2577 	void *ptr;
2578 	int ret;
2579 
2580 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2581 
2582 	ret = mutex_lock_interruptible(&obj->mm.lock);
2583 	if (ret)
2584 		return ERR_PTR(ret);
2585 
2586 	pinned = true;
2587 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2588 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2589 			ret = ____i915_gem_object_get_pages(obj);
2590 			if (ret)
2591 				goto err_unlock;
2592 
2593 			smp_mb__before_atomic();
2594 		}
2595 		atomic_inc(&obj->mm.pages_pin_count);
2596 		pinned = false;
2597 	}
2598 	GEM_BUG_ON(!obj->mm.pages);
2599 
2600 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2601 	if (ptr && has_type != type) {
2602 		if (pinned) {
2603 			ret = -EBUSY;
2604 			goto err_unpin;
2605 		}
2606 
2607 		if (is_vmalloc_addr(ptr))
2608 			vunmap(ptr);
2609 		else
2610 			kunmap(kmap_to_page(ptr));
2611 
2612 		ptr = obj->mm.mapping = NULL;
2613 	}
2614 
2615 	if (!ptr) {
2616 		ptr = i915_gem_object_map(obj, type);
2617 		if (!ptr) {
2618 			ret = -ENOMEM;
2619 			goto err_unpin;
2620 		}
2621 
2622 		obj->mm.mapping = page_pack_bits(ptr, type);
2623 	}
2624 
2625 out_unlock:
2626 	mutex_unlock(&obj->mm.lock);
2627 	return ptr;
2628 
2629 err_unpin:
2630 	atomic_dec(&obj->mm.pages_pin_count);
2631 err_unlock:
2632 	ptr = ERR_PTR(ret);
2633 	goto out_unlock;
2634 }
2635 
2636 static int
2637 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2638 			   const struct drm_i915_gem_pwrite *arg)
2639 {
2640 	struct address_space *mapping = obj->base.filp->f_mapping;
2641 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2642 	u64 remain, offset;
2643 	unsigned int pg;
2644 
2645 	/* Before we instantiate/pin the backing store for our use, we
2646 	 * can prepopulate the shmemfs filp efficiently using a write into
2647 	 * the pagecache. We avoid the penalty of instantiating all the
2648 	 * pages, important if the user is just writing to a few and never
2649 	 * uses the object on the GPU, and using a direct write into shmemfs
2650 	 * allows it to avoid the cost of retrieving a page (either swapin
2651 	 * or clearing-before-use) before it is overwritten.
2652 	 */
2653 	if (READ_ONCE(obj->mm.pages))
2654 		return -ENODEV;
2655 
2656 	/* Before the pages are instantiated the object is treated as being
2657 	 * in the CPU domain. The pages will be clflushed as required before
2658 	 * use, and we can freely write into the pages directly. If userspace
2659 	 * races pwrite with any other operation; corruption will ensue -
2660 	 * that is userspace's prerogative!
2661 	 */
2662 
2663 	remain = arg->size;
2664 	offset = arg->offset;
2665 	pg = offset_in_page(offset);
2666 
2667 	do {
2668 		unsigned int len, unwritten;
2669 		struct page *page;
2670 		void *data, *vaddr;
2671 		int err;
2672 
2673 		len = PAGE_SIZE - pg;
2674 		if (len > remain)
2675 			len = remain;
2676 
2677 		err = pagecache_write_begin(obj->base.filp, mapping,
2678 					    offset, len, 0,
2679 					    &page, &data);
2680 		if (err < 0)
2681 			return err;
2682 
2683 		vaddr = kmap(page);
2684 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2685 		kunmap(page);
2686 
2687 		err = pagecache_write_end(obj->base.filp, mapping,
2688 					  offset, len, len - unwritten,
2689 					  page, data);
2690 		if (err < 0)
2691 			return err;
2692 
2693 		if (unwritten)
2694 			return -EFAULT;
2695 
2696 		remain -= len;
2697 		user_data += len;
2698 		offset += len;
2699 		pg = 0;
2700 	} while (remain);
2701 
2702 	return 0;
2703 }
2704 
2705 static bool ban_context(const struct i915_gem_context *ctx,
2706 			unsigned int score)
2707 {
2708 	return (i915_gem_context_is_bannable(ctx) &&
2709 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2710 }
2711 
2712 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2713 {
2714 	unsigned int score;
2715 	bool banned;
2716 
2717 	atomic_inc(&ctx->guilty_count);
2718 
2719 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2720 	banned = ban_context(ctx, score);
2721 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2722 			 ctx->name, score, yesno(banned));
2723 	if (!banned)
2724 		return;
2725 
2726 	i915_gem_context_set_banned(ctx);
2727 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2728 		atomic_inc(&ctx->file_priv->context_bans);
2729 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2730 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2731 	}
2732 }
2733 
2734 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2735 {
2736 	atomic_inc(&ctx->active_count);
2737 }
2738 
2739 struct drm_i915_gem_request *
2740 i915_gem_find_active_request(struct intel_engine_cs *engine)
2741 {
2742 	struct drm_i915_gem_request *request, *active = NULL;
2743 	unsigned long flags;
2744 
2745 	/* We are called by the error capture and reset at a random
2746 	 * point in time. In particular, note that neither is crucially
2747 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2748 	 * assume that no more writes can happen (we waited long enough for
2749 	 * all writes that were in transaction to be flushed) - adding an
2750 	 * extra delay for a recent interrupt is pointless. Hence, we do
2751 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2752 	 */
2753 	spin_lock_irqsave(&engine->timeline->lock, flags);
2754 	list_for_each_entry(request, &engine->timeline->requests, link) {
2755 		if (__i915_gem_request_completed(request,
2756 						 request->global_seqno))
2757 			continue;
2758 
2759 		GEM_BUG_ON(request->engine != engine);
2760 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2761 				    &request->fence.flags));
2762 
2763 		active = request;
2764 		break;
2765 	}
2766 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2767 
2768 	return active;
2769 }
2770 
2771 static bool engine_stalled(struct intel_engine_cs *engine)
2772 {
2773 	if (!engine->hangcheck.stalled)
2774 		return false;
2775 
2776 	/* Check for possible seqno movement after hang declaration */
2777 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2778 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2779 		return false;
2780 	}
2781 
2782 	return true;
2783 }
2784 
2785 /*
2786  * Ensure irq handler finishes, and not run again.
2787  * Also return the active request so that we only search for it once.
2788  */
2789 struct drm_i915_gem_request *
2790 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2791 {
2792 	struct drm_i915_gem_request *request = NULL;
2793 
2794 	/* Prevent the signaler thread from updating the request
2795 	 * state (by calling dma_fence_signal) as we are processing
2796 	 * the reset. The write from the GPU of the seqno is
2797 	 * asynchronous and the signaler thread may see a different
2798 	 * value to us and declare the request complete, even though
2799 	 * the reset routine have picked that request as the active
2800 	 * (incomplete) request. This conflict is not handled
2801 	 * gracefully!
2802 	 */
2803 	kthread_park(engine->breadcrumbs.signaler);
2804 
2805 	/* Prevent request submission to the hardware until we have
2806 	 * completed the reset in i915_gem_reset_finish(). If a request
2807 	 * is completed by one engine, it may then queue a request
2808 	 * to a second via its engine->irq_tasklet *just* as we are
2809 	 * calling engine->init_hw() and also writing the ELSP.
2810 	 * Turning off the engine->irq_tasklet until the reset is over
2811 	 * prevents the race.
2812 	 */
2813 	tasklet_kill(&engine->irq_tasklet);
2814 	tasklet_disable(&engine->irq_tasklet);
2815 
2816 	if (engine->irq_seqno_barrier)
2817 		engine->irq_seqno_barrier(engine);
2818 
2819 	request = i915_gem_find_active_request(engine);
2820 	if (request && request->fence.error == -EIO)
2821 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2822 
2823 	return request;
2824 }
2825 
2826 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2827 {
2828 	struct intel_engine_cs *engine;
2829 	struct drm_i915_gem_request *request;
2830 	enum intel_engine_id id;
2831 	int err = 0;
2832 
2833 	for_each_engine(engine, dev_priv, id) {
2834 		request = i915_gem_reset_prepare_engine(engine);
2835 		if (IS_ERR(request)) {
2836 			err = PTR_ERR(request);
2837 			continue;
2838 		}
2839 
2840 		engine->hangcheck.active_request = request;
2841 	}
2842 
2843 	i915_gem_revoke_fences(dev_priv);
2844 
2845 	return err;
2846 }
2847 
2848 static void skip_request(struct drm_i915_gem_request *request)
2849 {
2850 	void *vaddr = request->ring->vaddr;
2851 	u32 head;
2852 
2853 	/* As this request likely depends on state from the lost
2854 	 * context, clear out all the user operations leaving the
2855 	 * breadcrumb at the end (so we get the fence notifications).
2856 	 */
2857 	head = request->head;
2858 	if (request->postfix < head) {
2859 		memset(vaddr + head, 0, request->ring->size - head);
2860 		head = 0;
2861 	}
2862 	memset(vaddr + head, 0, request->postfix - head);
2863 
2864 	dma_fence_set_error(&request->fence, -EIO);
2865 }
2866 
2867 static void engine_skip_context(struct drm_i915_gem_request *request)
2868 {
2869 	struct intel_engine_cs *engine = request->engine;
2870 	struct i915_gem_context *hung_ctx = request->ctx;
2871 	struct intel_timeline *timeline;
2872 	unsigned long flags;
2873 
2874 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2875 
2876 	spin_lock_irqsave(&engine->timeline->lock, flags);
2877 	spin_lock(&timeline->lock);
2878 
2879 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2880 		if (request->ctx == hung_ctx)
2881 			skip_request(request);
2882 
2883 	list_for_each_entry(request, &timeline->requests, link)
2884 		skip_request(request);
2885 
2886 	spin_unlock(&timeline->lock);
2887 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2888 }
2889 
2890 /* Returns the request if it was guilty of the hang */
2891 static struct drm_i915_gem_request *
2892 i915_gem_reset_request(struct intel_engine_cs *engine,
2893 		       struct drm_i915_gem_request *request)
2894 {
2895 	/* The guilty request will get skipped on a hung engine.
2896 	 *
2897 	 * Users of client default contexts do not rely on logical
2898 	 * state preserved between batches so it is safe to execute
2899 	 * queued requests following the hang. Non default contexts
2900 	 * rely on preserved state, so skipping a batch loses the
2901 	 * evolution of the state and it needs to be considered corrupted.
2902 	 * Executing more queued batches on top of corrupted state is
2903 	 * risky. But we take the risk by trying to advance through
2904 	 * the queued requests in order to make the client behaviour
2905 	 * more predictable around resets, by not throwing away random
2906 	 * amount of batches it has prepared for execution. Sophisticated
2907 	 * clients can use gem_reset_stats_ioctl and dma fence status
2908 	 * (exported via sync_file info ioctl on explicit fences) to observe
2909 	 * when it loses the context state and should rebuild accordingly.
2910 	 *
2911 	 * The context ban, and ultimately the client ban, mechanism are safety
2912 	 * valves if client submission ends up resulting in nothing more than
2913 	 * subsequent hangs.
2914 	 */
2915 
2916 	if (engine_stalled(engine)) {
2917 		i915_gem_context_mark_guilty(request->ctx);
2918 		skip_request(request);
2919 
2920 		/* If this context is now banned, skip all pending requests. */
2921 		if (i915_gem_context_is_banned(request->ctx))
2922 			engine_skip_context(request);
2923 	} else {
2924 		/*
2925 		 * Since this is not the hung engine, it may have advanced
2926 		 * since the hang declaration. Double check by refinding
2927 		 * the active request at the time of the reset.
2928 		 */
2929 		request = i915_gem_find_active_request(engine);
2930 		if (request) {
2931 			i915_gem_context_mark_innocent(request->ctx);
2932 			dma_fence_set_error(&request->fence, -EAGAIN);
2933 
2934 			/* Rewind the engine to replay the incomplete rq */
2935 			spin_lock_irq(&engine->timeline->lock);
2936 			request = list_prev_entry(request, link);
2937 			if (&request->link == &engine->timeline->requests)
2938 				request = NULL;
2939 			spin_unlock_irq(&engine->timeline->lock);
2940 		}
2941 	}
2942 
2943 	return request;
2944 }
2945 
2946 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2947 			   struct drm_i915_gem_request *request)
2948 {
2949 	engine->irq_posted = 0;
2950 
2951 	if (request)
2952 		request = i915_gem_reset_request(engine, request);
2953 
2954 	if (request) {
2955 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2956 				 engine->name, request->global_seqno);
2957 	}
2958 
2959 	/* Setup the CS to resume from the breadcrumb of the hung request */
2960 	engine->reset_hw(engine, request);
2961 }
2962 
2963 void i915_gem_reset(struct drm_i915_private *dev_priv)
2964 {
2965 	struct intel_engine_cs *engine;
2966 	enum intel_engine_id id;
2967 
2968 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2969 
2970 	i915_gem_retire_requests(dev_priv);
2971 
2972 	for_each_engine(engine, dev_priv, id) {
2973 		struct i915_gem_context *ctx;
2974 
2975 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2976 		ctx = fetch_and_zero(&engine->last_retired_context);
2977 		if (ctx)
2978 			engine->context_unpin(engine, ctx);
2979 	}
2980 
2981 	i915_gem_restore_fences(dev_priv);
2982 
2983 	if (dev_priv->gt.awake) {
2984 		intel_sanitize_gt_powersave(dev_priv);
2985 		intel_enable_gt_powersave(dev_priv);
2986 		if (INTEL_GEN(dev_priv) >= 6)
2987 			gen6_rps_busy(dev_priv);
2988 	}
2989 }
2990 
2991 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2992 {
2993 	tasklet_enable(&engine->irq_tasklet);
2994 	kthread_unpark(engine->breadcrumbs.signaler);
2995 }
2996 
2997 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2998 {
2999 	struct intel_engine_cs *engine;
3000 	enum intel_engine_id id;
3001 
3002 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3003 
3004 	for_each_engine(engine, dev_priv, id) {
3005 		engine->hangcheck.active_request = NULL;
3006 		i915_gem_reset_finish_engine(engine);
3007 	}
3008 }
3009 
3010 static void nop_submit_request(struct drm_i915_gem_request *request)
3011 {
3012 	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3013 	dma_fence_set_error(&request->fence, -EIO);
3014 	i915_gem_request_submit(request);
3015 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3016 }
3017 
3018 static void engine_set_wedged(struct intel_engine_cs *engine)
3019 {
3020 	struct drm_i915_gem_request *request;
3021 	unsigned long flags;
3022 
3023 	/* We need to be sure that no thread is running the old callback as
3024 	 * we install the nop handler (otherwise we would submit a request
3025 	 * to hardware that will never complete). In order to prevent this
3026 	 * race, we wait until the machine is idle before making the swap
3027 	 * (using stop_machine()).
3028 	 */
3029 	engine->submit_request = nop_submit_request;
3030 
3031 	/* Mark all executing requests as skipped */
3032 	spin_lock_irqsave(&engine->timeline->lock, flags);
3033 	list_for_each_entry(request, &engine->timeline->requests, link)
3034 		if (!i915_gem_request_completed(request))
3035 			dma_fence_set_error(&request->fence, -EIO);
3036 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3037 
3038 	/*
3039 	 * Clear the execlists queue up before freeing the requests, as those
3040 	 * are the ones that keep the context and ringbuffer backing objects
3041 	 * pinned in place.
3042 	 */
3043 
3044 	if (i915.enable_execlists) {
3045 		struct execlist_port *port = engine->execlist_port;
3046 		unsigned long flags;
3047 		unsigned int n;
3048 
3049 		spin_lock_irqsave(&engine->timeline->lock, flags);
3050 
3051 		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3052 			i915_gem_request_put(port_request(&port[n]));
3053 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3054 		engine->execlist_queue = RB_ROOT;
3055 		engine->execlist_first = NULL;
3056 
3057 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3058 
3059 		/* The port is checked prior to scheduling a tasklet, but
3060 		 * just in case we have suspended the tasklet to do the
3061 		 * wedging make sure that when it wakes, it decides there
3062 		 * is no work to do by clearing the irq_posted bit.
3063 		 */
3064 		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3065 	}
3066 
3067 	/* Mark all pending requests as complete so that any concurrent
3068 	 * (lockless) lookup doesn't try and wait upon the request as we
3069 	 * reset it.
3070 	 */
3071 	intel_engine_init_global_seqno(engine,
3072 				       intel_engine_last_submit(engine));
3073 }
3074 
3075 static int __i915_gem_set_wedged_BKL(void *data)
3076 {
3077 	struct drm_i915_private *i915 = data;
3078 	struct intel_engine_cs *engine;
3079 	enum intel_engine_id id;
3080 
3081 	for_each_engine(engine, i915, id)
3082 		engine_set_wedged(engine);
3083 
3084 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3085 	wake_up_all(&i915->gpu_error.reset_queue);
3086 
3087 	return 0;
3088 }
3089 
3090 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3091 {
3092 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3093 }
3094 
3095 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3096 {
3097 	struct i915_gem_timeline *tl;
3098 	int i;
3099 
3100 	lockdep_assert_held(&i915->drm.struct_mutex);
3101 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3102 		return true;
3103 
3104 	/* Before unwedging, make sure that all pending operations
3105 	 * are flushed and errored out - we may have requests waiting upon
3106 	 * third party fences. We marked all inflight requests as EIO, and
3107 	 * every execbuf since returned EIO, for consistency we want all
3108 	 * the currently pending requests to also be marked as EIO, which
3109 	 * is done inside our nop_submit_request - and so we must wait.
3110 	 *
3111 	 * No more can be submitted until we reset the wedged bit.
3112 	 */
3113 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3114 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3115 			struct drm_i915_gem_request *rq;
3116 
3117 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3118 						  &i915->drm.struct_mutex);
3119 			if (!rq)
3120 				continue;
3121 
3122 			/* We can't use our normal waiter as we want to
3123 			 * avoid recursively trying to handle the current
3124 			 * reset. The basic dma_fence_default_wait() installs
3125 			 * a callback for dma_fence_signal(), which is
3126 			 * triggered by our nop handler (indirectly, the
3127 			 * callback enables the signaler thread which is
3128 			 * woken by the nop_submit_request() advancing the seqno
3129 			 * and when the seqno passes the fence, the signaler
3130 			 * then signals the fence waking us up).
3131 			 */
3132 			if (dma_fence_default_wait(&rq->fence, true,
3133 						   MAX_SCHEDULE_TIMEOUT) < 0)
3134 				return false;
3135 		}
3136 	}
3137 
3138 	/* Undo nop_submit_request. We prevent all new i915 requests from
3139 	 * being queued (by disallowing execbuf whilst wedged) so having
3140 	 * waited for all active requests above, we know the system is idle
3141 	 * and do not have to worry about a thread being inside
3142 	 * engine->submit_request() as we swap over. So unlike installing
3143 	 * the nop_submit_request on reset, we can do this from normal
3144 	 * context and do not require stop_machine().
3145 	 */
3146 	intel_engines_reset_default_submission(i915);
3147 	i915_gem_contexts_lost(i915);
3148 
3149 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3150 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3151 
3152 	return true;
3153 }
3154 
3155 static void
3156 i915_gem_retire_work_handler(struct work_struct *work)
3157 {
3158 	struct drm_i915_private *dev_priv =
3159 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3160 	struct drm_device *dev = &dev_priv->drm;
3161 
3162 	/* Come back later if the device is busy... */
3163 	if (mutex_trylock(&dev->struct_mutex)) {
3164 		i915_gem_retire_requests(dev_priv);
3165 		mutex_unlock(&dev->struct_mutex);
3166 	}
3167 
3168 	/* Keep the retire handler running until we are finally idle.
3169 	 * We do not need to do this test under locking as in the worst-case
3170 	 * we queue the retire worker once too often.
3171 	 */
3172 	if (READ_ONCE(dev_priv->gt.awake)) {
3173 		i915_queue_hangcheck(dev_priv);
3174 		queue_delayed_work(dev_priv->wq,
3175 				   &dev_priv->gt.retire_work,
3176 				   round_jiffies_up_relative(HZ));
3177 	}
3178 }
3179 
3180 static void
3181 i915_gem_idle_work_handler(struct work_struct *work)
3182 {
3183 	struct drm_i915_private *dev_priv =
3184 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3185 	struct drm_device *dev = &dev_priv->drm;
3186 	bool rearm_hangcheck;
3187 
3188 	if (!READ_ONCE(dev_priv->gt.awake))
3189 		return;
3190 
3191 	/*
3192 	 * Wait for last execlists context complete, but bail out in case a
3193 	 * new request is submitted.
3194 	 */
3195 	wait_for(intel_engines_are_idle(dev_priv), 10);
3196 	if (READ_ONCE(dev_priv->gt.active_requests))
3197 		return;
3198 
3199 	rearm_hangcheck =
3200 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3201 
3202 	if (!mutex_trylock(&dev->struct_mutex)) {
3203 		/* Currently busy, come back later */
3204 		mod_delayed_work(dev_priv->wq,
3205 				 &dev_priv->gt.idle_work,
3206 				 msecs_to_jiffies(50));
3207 		goto out_rearm;
3208 	}
3209 
3210 	/*
3211 	 * New request retired after this work handler started, extend active
3212 	 * period until next instance of the work.
3213 	 */
3214 	if (work_pending(work))
3215 		goto out_unlock;
3216 
3217 	if (dev_priv->gt.active_requests)
3218 		goto out_unlock;
3219 
3220 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3221 		DRM_ERROR("Timeout waiting for engines to idle\n");
3222 
3223 	intel_engines_mark_idle(dev_priv);
3224 	i915_gem_timelines_mark_idle(dev_priv);
3225 
3226 	GEM_BUG_ON(!dev_priv->gt.awake);
3227 	dev_priv->gt.awake = false;
3228 	rearm_hangcheck = false;
3229 
3230 	if (INTEL_GEN(dev_priv) >= 6)
3231 		gen6_rps_idle(dev_priv);
3232 	intel_runtime_pm_put(dev_priv);
3233 out_unlock:
3234 	mutex_unlock(&dev->struct_mutex);
3235 
3236 out_rearm:
3237 	if (rearm_hangcheck) {
3238 		GEM_BUG_ON(!dev_priv->gt.awake);
3239 		i915_queue_hangcheck(dev_priv);
3240 	}
3241 }
3242 
3243 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3244 {
3245 	struct drm_i915_private *i915 = to_i915(gem->dev);
3246 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3247 	struct drm_i915_file_private *fpriv = file->driver_priv;
3248 	struct i915_lut_handle *lut, *ln;
3249 
3250 	mutex_lock(&i915->drm.struct_mutex);
3251 
3252 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3253 		struct i915_gem_context *ctx = lut->ctx;
3254 		struct i915_vma *vma;
3255 
3256 		if (ctx->file_priv != fpriv)
3257 			continue;
3258 
3259 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3260 
3261 		if (!i915_vma_is_ggtt(vma))
3262 			i915_vma_close(vma);
3263 
3264 		list_del(&lut->obj_link);
3265 		list_del(&lut->ctx_link);
3266 
3267 		kmem_cache_free(i915->luts, lut);
3268 		__i915_gem_object_release_unless_active(obj);
3269 	}
3270 
3271 	mutex_unlock(&i915->drm.struct_mutex);
3272 }
3273 
3274 static unsigned long to_wait_timeout(s64 timeout_ns)
3275 {
3276 	if (timeout_ns < 0)
3277 		return MAX_SCHEDULE_TIMEOUT;
3278 
3279 	if (timeout_ns == 0)
3280 		return 0;
3281 
3282 	return nsecs_to_jiffies_timeout(timeout_ns);
3283 }
3284 
3285 /**
3286  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3287  * @dev: drm device pointer
3288  * @data: ioctl data blob
3289  * @file: drm file pointer
3290  *
3291  * Returns 0 if successful, else an error is returned with the remaining time in
3292  * the timeout parameter.
3293  *  -ETIME: object is still busy after timeout
3294  *  -ERESTARTSYS: signal interrupted the wait
3295  *  -ENONENT: object doesn't exist
3296  * Also possible, but rare:
3297  *  -EAGAIN: incomplete, restart syscall
3298  *  -ENOMEM: damn
3299  *  -ENODEV: Internal IRQ fail
3300  *  -E?: The add request failed
3301  *
3302  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3303  * non-zero timeout parameter the wait ioctl will wait for the given number of
3304  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3305  * without holding struct_mutex the object may become re-busied before this
3306  * function completes. A similar but shorter * race condition exists in the busy
3307  * ioctl
3308  */
3309 int
3310 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3311 {
3312 	struct drm_i915_gem_wait *args = data;
3313 	struct drm_i915_gem_object *obj;
3314 	ktime_t start;
3315 	long ret;
3316 
3317 	if (args->flags != 0)
3318 		return -EINVAL;
3319 
3320 	obj = i915_gem_object_lookup(file, args->bo_handle);
3321 	if (!obj)
3322 		return -ENOENT;
3323 
3324 	start = ktime_get();
3325 
3326 	ret = i915_gem_object_wait(obj,
3327 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3328 				   to_wait_timeout(args->timeout_ns),
3329 				   to_rps_client(file));
3330 
3331 	if (args->timeout_ns > 0) {
3332 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3333 		if (args->timeout_ns < 0)
3334 			args->timeout_ns = 0;
3335 
3336 		/*
3337 		 * Apparently ktime isn't accurate enough and occasionally has a
3338 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3339 		 * things up to make the test happy. We allow up to 1 jiffy.
3340 		 *
3341 		 * This is a regression from the timespec->ktime conversion.
3342 		 */
3343 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3344 			args->timeout_ns = 0;
3345 
3346 		/* Asked to wait beyond the jiffie/scheduler precision? */
3347 		if (ret == -ETIME && args->timeout_ns)
3348 			ret = -EAGAIN;
3349 	}
3350 
3351 	i915_gem_object_put(obj);
3352 	return ret;
3353 }
3354 
3355 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3356 {
3357 	int ret, i;
3358 
3359 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3360 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3361 		if (ret)
3362 			return ret;
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3369 {
3370 	return wait_for(intel_engine_is_idle(engine), timeout_ms);
3371 }
3372 
3373 static int wait_for_engines(struct drm_i915_private *i915)
3374 {
3375 	struct intel_engine_cs *engine;
3376 	enum intel_engine_id id;
3377 
3378 	for_each_engine(engine, i915, id) {
3379 		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3380 			i915_gem_set_wedged(i915);
3381 			return -EIO;
3382 		}
3383 
3384 		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3385 			   intel_engine_last_submit(engine));
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3392 {
3393 	int ret;
3394 
3395 	/* If the device is asleep, we have no requests outstanding */
3396 	if (!READ_ONCE(i915->gt.awake))
3397 		return 0;
3398 
3399 	if (flags & I915_WAIT_LOCKED) {
3400 		struct i915_gem_timeline *tl;
3401 
3402 		lockdep_assert_held(&i915->drm.struct_mutex);
3403 
3404 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3405 			ret = wait_for_timeline(tl, flags);
3406 			if (ret)
3407 				return ret;
3408 		}
3409 
3410 		i915_gem_retire_requests(i915);
3411 		GEM_BUG_ON(i915->gt.active_requests);
3412 
3413 		ret = wait_for_engines(i915);
3414 	} else {
3415 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3416 	}
3417 
3418 	return ret;
3419 }
3420 
3421 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3422 {
3423 	/*
3424 	 * We manually flush the CPU domain so that we can override and
3425 	 * force the flush for the display, and perform it asyncrhonously.
3426 	 */
3427 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3428 	if (obj->cache_dirty)
3429 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3430 	obj->base.write_domain = 0;
3431 }
3432 
3433 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3434 {
3435 	if (!READ_ONCE(obj->pin_display))
3436 		return;
3437 
3438 	mutex_lock(&obj->base.dev->struct_mutex);
3439 	__i915_gem_object_flush_for_display(obj);
3440 	mutex_unlock(&obj->base.dev->struct_mutex);
3441 }
3442 
3443 /**
3444  * Moves a single object to the WC read, and possibly write domain.
3445  * @obj: object to act on
3446  * @write: ask for write access or read only
3447  *
3448  * This function returns when the move is complete, including waiting on
3449  * flushes to occur.
3450  */
3451 int
3452 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3453 {
3454 	int ret;
3455 
3456 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3457 
3458 	ret = i915_gem_object_wait(obj,
3459 				   I915_WAIT_INTERRUPTIBLE |
3460 				   I915_WAIT_LOCKED |
3461 				   (write ? I915_WAIT_ALL : 0),
3462 				   MAX_SCHEDULE_TIMEOUT,
3463 				   NULL);
3464 	if (ret)
3465 		return ret;
3466 
3467 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3468 		return 0;
3469 
3470 	/* Flush and acquire obj->pages so that we are coherent through
3471 	 * direct access in memory with previous cached writes through
3472 	 * shmemfs and that our cache domain tracking remains valid.
3473 	 * For example, if the obj->filp was moved to swap without us
3474 	 * being notified and releasing the pages, we would mistakenly
3475 	 * continue to assume that the obj remained out of the CPU cached
3476 	 * domain.
3477 	 */
3478 	ret = i915_gem_object_pin_pages(obj);
3479 	if (ret)
3480 		return ret;
3481 
3482 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3483 
3484 	/* Serialise direct access to this object with the barriers for
3485 	 * coherent writes from the GPU, by effectively invalidating the
3486 	 * WC domain upon first access.
3487 	 */
3488 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3489 		mb();
3490 
3491 	/* It should now be out of any other write domains, and we can update
3492 	 * the domain values for our changes.
3493 	 */
3494 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3495 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3496 	if (write) {
3497 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3498 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3499 		obj->mm.dirty = true;
3500 	}
3501 
3502 	i915_gem_object_unpin_pages(obj);
3503 	return 0;
3504 }
3505 
3506 /**
3507  * Moves a single object to the GTT read, and possibly write domain.
3508  * @obj: object to act on
3509  * @write: ask for write access or read only
3510  *
3511  * This function returns when the move is complete, including waiting on
3512  * flushes to occur.
3513  */
3514 int
3515 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3516 {
3517 	int ret;
3518 
3519 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3520 
3521 	ret = i915_gem_object_wait(obj,
3522 				   I915_WAIT_INTERRUPTIBLE |
3523 				   I915_WAIT_LOCKED |
3524 				   (write ? I915_WAIT_ALL : 0),
3525 				   MAX_SCHEDULE_TIMEOUT,
3526 				   NULL);
3527 	if (ret)
3528 		return ret;
3529 
3530 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3531 		return 0;
3532 
3533 	/* Flush and acquire obj->pages so that we are coherent through
3534 	 * direct access in memory with previous cached writes through
3535 	 * shmemfs and that our cache domain tracking remains valid.
3536 	 * For example, if the obj->filp was moved to swap without us
3537 	 * being notified and releasing the pages, we would mistakenly
3538 	 * continue to assume that the obj remained out of the CPU cached
3539 	 * domain.
3540 	 */
3541 	ret = i915_gem_object_pin_pages(obj);
3542 	if (ret)
3543 		return ret;
3544 
3545 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3546 
3547 	/* Serialise direct access to this object with the barriers for
3548 	 * coherent writes from the GPU, by effectively invalidating the
3549 	 * GTT domain upon first access.
3550 	 */
3551 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3552 		mb();
3553 
3554 	/* It should now be out of any other write domains, and we can update
3555 	 * the domain values for our changes.
3556 	 */
3557 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3558 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3559 	if (write) {
3560 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3561 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3562 		obj->mm.dirty = true;
3563 	}
3564 
3565 	i915_gem_object_unpin_pages(obj);
3566 	return 0;
3567 }
3568 
3569 /**
3570  * Changes the cache-level of an object across all VMA.
3571  * @obj: object to act on
3572  * @cache_level: new cache level to set for the object
3573  *
3574  * After this function returns, the object will be in the new cache-level
3575  * across all GTT and the contents of the backing storage will be coherent,
3576  * with respect to the new cache-level. In order to keep the backing storage
3577  * coherent for all users, we only allow a single cache level to be set
3578  * globally on the object and prevent it from being changed whilst the
3579  * hardware is reading from the object. That is if the object is currently
3580  * on the scanout it will be set to uncached (or equivalent display
3581  * cache coherency) and all non-MOCS GPU access will also be uncached so
3582  * that all direct access to the scanout remains coherent.
3583  */
3584 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3585 				    enum i915_cache_level cache_level)
3586 {
3587 	struct i915_vma *vma;
3588 	int ret;
3589 
3590 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3591 
3592 	if (obj->cache_level == cache_level)
3593 		return 0;
3594 
3595 	/* Inspect the list of currently bound VMA and unbind any that would
3596 	 * be invalid given the new cache-level. This is principally to
3597 	 * catch the issue of the CS prefetch crossing page boundaries and
3598 	 * reading an invalid PTE on older architectures.
3599 	 */
3600 restart:
3601 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3602 		if (!drm_mm_node_allocated(&vma->node))
3603 			continue;
3604 
3605 		if (i915_vma_is_pinned(vma)) {
3606 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3607 			return -EBUSY;
3608 		}
3609 
3610 		if (i915_gem_valid_gtt_space(vma, cache_level))
3611 			continue;
3612 
3613 		ret = i915_vma_unbind(vma);
3614 		if (ret)
3615 			return ret;
3616 
3617 		/* As unbinding may affect other elements in the
3618 		 * obj->vma_list (due to side-effects from retiring
3619 		 * an active vma), play safe and restart the iterator.
3620 		 */
3621 		goto restart;
3622 	}
3623 
3624 	/* We can reuse the existing drm_mm nodes but need to change the
3625 	 * cache-level on the PTE. We could simply unbind them all and
3626 	 * rebind with the correct cache-level on next use. However since
3627 	 * we already have a valid slot, dma mapping, pages etc, we may as
3628 	 * rewrite the PTE in the belief that doing so tramples upon less
3629 	 * state and so involves less work.
3630 	 */
3631 	if (obj->bind_count) {
3632 		/* Before we change the PTE, the GPU must not be accessing it.
3633 		 * If we wait upon the object, we know that all the bound
3634 		 * VMA are no longer active.
3635 		 */
3636 		ret = i915_gem_object_wait(obj,
3637 					   I915_WAIT_INTERRUPTIBLE |
3638 					   I915_WAIT_LOCKED |
3639 					   I915_WAIT_ALL,
3640 					   MAX_SCHEDULE_TIMEOUT,
3641 					   NULL);
3642 		if (ret)
3643 			return ret;
3644 
3645 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3646 		    cache_level != I915_CACHE_NONE) {
3647 			/* Access to snoopable pages through the GTT is
3648 			 * incoherent and on some machines causes a hard
3649 			 * lockup. Relinquish the CPU mmaping to force
3650 			 * userspace to refault in the pages and we can
3651 			 * then double check if the GTT mapping is still
3652 			 * valid for that pointer access.
3653 			 */
3654 			i915_gem_release_mmap(obj);
3655 
3656 			/* As we no longer need a fence for GTT access,
3657 			 * we can relinquish it now (and so prevent having
3658 			 * to steal a fence from someone else on the next
3659 			 * fence request). Note GPU activity would have
3660 			 * dropped the fence as all snoopable access is
3661 			 * supposed to be linear.
3662 			 */
3663 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3664 				ret = i915_vma_put_fence(vma);
3665 				if (ret)
3666 					return ret;
3667 			}
3668 		} else {
3669 			/* We either have incoherent backing store and
3670 			 * so no GTT access or the architecture is fully
3671 			 * coherent. In such cases, existing GTT mmaps
3672 			 * ignore the cache bit in the PTE and we can
3673 			 * rewrite it without confusing the GPU or having
3674 			 * to force userspace to fault back in its mmaps.
3675 			 */
3676 		}
3677 
3678 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3679 			if (!drm_mm_node_allocated(&vma->node))
3680 				continue;
3681 
3682 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3683 			if (ret)
3684 				return ret;
3685 		}
3686 	}
3687 
3688 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3689 		vma->node.color = cache_level;
3690 	i915_gem_object_set_cache_coherency(obj, cache_level);
3691 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3692 
3693 	return 0;
3694 }
3695 
3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3697 			       struct drm_file *file)
3698 {
3699 	struct drm_i915_gem_caching *args = data;
3700 	struct drm_i915_gem_object *obj;
3701 	int err = 0;
3702 
3703 	rcu_read_lock();
3704 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3705 	if (!obj) {
3706 		err = -ENOENT;
3707 		goto out;
3708 	}
3709 
3710 	switch (obj->cache_level) {
3711 	case I915_CACHE_LLC:
3712 	case I915_CACHE_L3_LLC:
3713 		args->caching = I915_CACHING_CACHED;
3714 		break;
3715 
3716 	case I915_CACHE_WT:
3717 		args->caching = I915_CACHING_DISPLAY;
3718 		break;
3719 
3720 	default:
3721 		args->caching = I915_CACHING_NONE;
3722 		break;
3723 	}
3724 out:
3725 	rcu_read_unlock();
3726 	return err;
3727 }
3728 
3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730 			       struct drm_file *file)
3731 {
3732 	struct drm_i915_private *i915 = to_i915(dev);
3733 	struct drm_i915_gem_caching *args = data;
3734 	struct drm_i915_gem_object *obj;
3735 	enum i915_cache_level level;
3736 	int ret = 0;
3737 
3738 	switch (args->caching) {
3739 	case I915_CACHING_NONE:
3740 		level = I915_CACHE_NONE;
3741 		break;
3742 	case I915_CACHING_CACHED:
3743 		/*
3744 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3745 		 * snooped mapping may leave stale data in a corresponding CPU
3746 		 * cacheline, whereas normally such cachelines would get
3747 		 * invalidated.
3748 		 */
3749 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3750 			return -ENODEV;
3751 
3752 		level = I915_CACHE_LLC;
3753 		break;
3754 	case I915_CACHING_DISPLAY:
3755 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3756 		break;
3757 	default:
3758 		return -EINVAL;
3759 	}
3760 
3761 	obj = i915_gem_object_lookup(file, args->handle);
3762 	if (!obj)
3763 		return -ENOENT;
3764 
3765 	if (obj->cache_level == level)
3766 		goto out;
3767 
3768 	ret = i915_gem_object_wait(obj,
3769 				   I915_WAIT_INTERRUPTIBLE,
3770 				   MAX_SCHEDULE_TIMEOUT,
3771 				   to_rps_client(file));
3772 	if (ret)
3773 		goto out;
3774 
3775 	ret = i915_mutex_lock_interruptible(dev);
3776 	if (ret)
3777 		goto out;
3778 
3779 	ret = i915_gem_object_set_cache_level(obj, level);
3780 	mutex_unlock(&dev->struct_mutex);
3781 
3782 out:
3783 	i915_gem_object_put(obj);
3784 	return ret;
3785 }
3786 
3787 /*
3788  * Prepare buffer for display plane (scanout, cursors, etc).
3789  * Can be called from an uninterruptible phase (modesetting) and allows
3790  * any flushes to be pipelined (for pageflips).
3791  */
3792 struct i915_vma *
3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3794 				     u32 alignment,
3795 				     const struct i915_ggtt_view *view)
3796 {
3797 	struct i915_vma *vma;
3798 	int ret;
3799 
3800 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3801 
3802 	/* Mark the pin_display early so that we account for the
3803 	 * display coherency whilst setting up the cache domains.
3804 	 */
3805 	obj->pin_display++;
3806 
3807 	/* The display engine is not coherent with the LLC cache on gen6.  As
3808 	 * a result, we make sure that the pinning that is about to occur is
3809 	 * done with uncached PTEs. This is lowest common denominator for all
3810 	 * chipsets.
3811 	 *
3812 	 * However for gen6+, we could do better by using the GFDT bit instead
3813 	 * of uncaching, which would allow us to flush all the LLC-cached data
3814 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3815 	 */
3816 	ret = i915_gem_object_set_cache_level(obj,
3817 					      HAS_WT(to_i915(obj->base.dev)) ?
3818 					      I915_CACHE_WT : I915_CACHE_NONE);
3819 	if (ret) {
3820 		vma = ERR_PTR(ret);
3821 		goto err_unpin_display;
3822 	}
3823 
3824 	/* As the user may map the buffer once pinned in the display plane
3825 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3826 	 * always use map_and_fenceable for all scanout buffers. However,
3827 	 * it may simply be too big to fit into mappable, in which case
3828 	 * put it anyway and hope that userspace can cope (but always first
3829 	 * try to preserve the existing ABI).
3830 	 */
3831 	vma = ERR_PTR(-ENOSPC);
3832 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3833 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3834 					       PIN_MAPPABLE | PIN_NONBLOCK);
3835 	if (IS_ERR(vma)) {
3836 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3837 		unsigned int flags;
3838 
3839 		/* Valleyview is definitely limited to scanning out the first
3840 		 * 512MiB. Lets presume this behaviour was inherited from the
3841 		 * g4x display engine and that all earlier gen are similarly
3842 		 * limited. Testing suggests that it is a little more
3843 		 * complicated than this. For example, Cherryview appears quite
3844 		 * happy to scanout from anywhere within its global aperture.
3845 		 */
3846 		flags = 0;
3847 		if (HAS_GMCH_DISPLAY(i915))
3848 			flags = PIN_MAPPABLE;
3849 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3850 	}
3851 	if (IS_ERR(vma))
3852 		goto err_unpin_display;
3853 
3854 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3855 
3856 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3857 	__i915_gem_object_flush_for_display(obj);
3858 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3859 
3860 	/* It should now be out of any other write domains, and we can update
3861 	 * the domain values for our changes.
3862 	 */
3863 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3864 
3865 	return vma;
3866 
3867 err_unpin_display:
3868 	obj->pin_display--;
3869 	return vma;
3870 }
3871 
3872 void
3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3874 {
3875 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3876 
3877 	if (WARN_ON(vma->obj->pin_display == 0))
3878 		return;
3879 
3880 	if (--vma->obj->pin_display == 0)
3881 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3882 
3883 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3884 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3885 
3886 	i915_vma_unpin(vma);
3887 }
3888 
3889 /**
3890  * Moves a single object to the CPU read, and possibly write domain.
3891  * @obj: object to act on
3892  * @write: requesting write or read-only access
3893  *
3894  * This function returns when the move is complete, including waiting on
3895  * flushes to occur.
3896  */
3897 int
3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3899 {
3900 	int ret;
3901 
3902 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3903 
3904 	ret = i915_gem_object_wait(obj,
3905 				   I915_WAIT_INTERRUPTIBLE |
3906 				   I915_WAIT_LOCKED |
3907 				   (write ? I915_WAIT_ALL : 0),
3908 				   MAX_SCHEDULE_TIMEOUT,
3909 				   NULL);
3910 	if (ret)
3911 		return ret;
3912 
3913 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3914 
3915 	/* Flush the CPU cache if it's still invalid. */
3916 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3917 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3918 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3919 	}
3920 
3921 	/* It should now be out of any other write domains, and we can update
3922 	 * the domain values for our changes.
3923 	 */
3924 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3925 
3926 	/* If we're writing through the CPU, then the GPU read domains will
3927 	 * need to be invalidated at next use.
3928 	 */
3929 	if (write)
3930 		__start_cpu_write(obj);
3931 
3932 	return 0;
3933 }
3934 
3935 /* Throttle our rendering by waiting until the ring has completed our requests
3936  * emitted over 20 msec ago.
3937  *
3938  * Note that if we were to use the current jiffies each time around the loop,
3939  * we wouldn't escape the function with any frames outstanding if the time to
3940  * render a frame was over 20ms.
3941  *
3942  * This should get us reasonable parallelism between CPU and GPU but also
3943  * relatively low latency when blocking on a particular request to finish.
3944  */
3945 static int
3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3947 {
3948 	struct drm_i915_private *dev_priv = to_i915(dev);
3949 	struct drm_i915_file_private *file_priv = file->driver_priv;
3950 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3951 	struct drm_i915_gem_request *request, *target = NULL;
3952 	long ret;
3953 
3954 	/* ABI: return -EIO if already wedged */
3955 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3956 		return -EIO;
3957 
3958 	spin_lock(&file_priv->mm.lock);
3959 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3960 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3961 			break;
3962 
3963 		if (target) {
3964 			list_del(&target->client_link);
3965 			target->file_priv = NULL;
3966 		}
3967 
3968 		target = request;
3969 	}
3970 	if (target)
3971 		i915_gem_request_get(target);
3972 	spin_unlock(&file_priv->mm.lock);
3973 
3974 	if (target == NULL)
3975 		return 0;
3976 
3977 	ret = i915_wait_request(target,
3978 				I915_WAIT_INTERRUPTIBLE,
3979 				MAX_SCHEDULE_TIMEOUT);
3980 	i915_gem_request_put(target);
3981 
3982 	return ret < 0 ? ret : 0;
3983 }
3984 
3985 struct i915_vma *
3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3987 			 const struct i915_ggtt_view *view,
3988 			 u64 size,
3989 			 u64 alignment,
3990 			 u64 flags)
3991 {
3992 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3993 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3994 	struct i915_vma *vma;
3995 	int ret;
3996 
3997 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3998 
3999 	vma = i915_vma_instance(obj, vm, view);
4000 	if (unlikely(IS_ERR(vma)))
4001 		return vma;
4002 
4003 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4004 		if (flags & PIN_NONBLOCK &&
4005 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4006 			return ERR_PTR(-ENOSPC);
4007 
4008 		if (flags & PIN_MAPPABLE) {
4009 			/* If the required space is larger than the available
4010 			 * aperture, we will not able to find a slot for the
4011 			 * object and unbinding the object now will be in
4012 			 * vain. Worse, doing so may cause us to ping-pong
4013 			 * the object in and out of the Global GTT and
4014 			 * waste a lot of cycles under the mutex.
4015 			 */
4016 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4017 				return ERR_PTR(-E2BIG);
4018 
4019 			/* If NONBLOCK is set the caller is optimistically
4020 			 * trying to cache the full object within the mappable
4021 			 * aperture, and *must* have a fallback in place for
4022 			 * situations where we cannot bind the object. We
4023 			 * can be a little more lax here and use the fallback
4024 			 * more often to avoid costly migrations of ourselves
4025 			 * and other objects within the aperture.
4026 			 *
4027 			 * Half-the-aperture is used as a simple heuristic.
4028 			 * More interesting would to do search for a free
4029 			 * block prior to making the commitment to unbind.
4030 			 * That caters for the self-harm case, and with a
4031 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
4032 			 * we could try to minimise harm to others.
4033 			 */
4034 			if (flags & PIN_NONBLOCK &&
4035 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4036 				return ERR_PTR(-ENOSPC);
4037 		}
4038 
4039 		WARN(i915_vma_is_pinned(vma),
4040 		     "bo is already pinned in ggtt with incorrect alignment:"
4041 		     " offset=%08x, req.alignment=%llx,"
4042 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4043 		     i915_ggtt_offset(vma), alignment,
4044 		     !!(flags & PIN_MAPPABLE),
4045 		     i915_vma_is_map_and_fenceable(vma));
4046 		ret = i915_vma_unbind(vma);
4047 		if (ret)
4048 			return ERR_PTR(ret);
4049 	}
4050 
4051 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4052 	if (ret)
4053 		return ERR_PTR(ret);
4054 
4055 	return vma;
4056 }
4057 
4058 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4059 {
4060 	/* Note that we could alias engines in the execbuf API, but
4061 	 * that would be very unwise as it prevents userspace from
4062 	 * fine control over engine selection. Ahem.
4063 	 *
4064 	 * This should be something like EXEC_MAX_ENGINE instead of
4065 	 * I915_NUM_ENGINES.
4066 	 */
4067 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4068 	return 0x10000 << id;
4069 }
4070 
4071 static __always_inline unsigned int __busy_write_id(unsigned int id)
4072 {
4073 	/* The uABI guarantees an active writer is also amongst the read
4074 	 * engines. This would be true if we accessed the activity tracking
4075 	 * under the lock, but as we perform the lookup of the object and
4076 	 * its activity locklessly we can not guarantee that the last_write
4077 	 * being active implies that we have set the same engine flag from
4078 	 * last_read - hence we always set both read and write busy for
4079 	 * last_write.
4080 	 */
4081 	return id | __busy_read_flag(id);
4082 }
4083 
4084 static __always_inline unsigned int
4085 __busy_set_if_active(const struct dma_fence *fence,
4086 		     unsigned int (*flag)(unsigned int id))
4087 {
4088 	struct drm_i915_gem_request *rq;
4089 
4090 	/* We have to check the current hw status of the fence as the uABI
4091 	 * guarantees forward progress. We could rely on the idle worker
4092 	 * to eventually flush us, but to minimise latency just ask the
4093 	 * hardware.
4094 	 *
4095 	 * Note we only report on the status of native fences.
4096 	 */
4097 	if (!dma_fence_is_i915(fence))
4098 		return 0;
4099 
4100 	/* opencode to_request() in order to avoid const warnings */
4101 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4102 	if (i915_gem_request_completed(rq))
4103 		return 0;
4104 
4105 	return flag(rq->engine->uabi_id);
4106 }
4107 
4108 static __always_inline unsigned int
4109 busy_check_reader(const struct dma_fence *fence)
4110 {
4111 	return __busy_set_if_active(fence, __busy_read_flag);
4112 }
4113 
4114 static __always_inline unsigned int
4115 busy_check_writer(const struct dma_fence *fence)
4116 {
4117 	if (!fence)
4118 		return 0;
4119 
4120 	return __busy_set_if_active(fence, __busy_write_id);
4121 }
4122 
4123 int
4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4125 		    struct drm_file *file)
4126 {
4127 	struct drm_i915_gem_busy *args = data;
4128 	struct drm_i915_gem_object *obj;
4129 	struct reservation_object_list *list;
4130 	unsigned int seq;
4131 	int err;
4132 
4133 	err = -ENOENT;
4134 	rcu_read_lock();
4135 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4136 	if (!obj)
4137 		goto out;
4138 
4139 	/* A discrepancy here is that we do not report the status of
4140 	 * non-i915 fences, i.e. even though we may report the object as idle,
4141 	 * a call to set-domain may still stall waiting for foreign rendering.
4142 	 * This also means that wait-ioctl may report an object as busy,
4143 	 * where busy-ioctl considers it idle.
4144 	 *
4145 	 * We trade the ability to warn of foreign fences to report on which
4146 	 * i915 engines are active for the object.
4147 	 *
4148 	 * Alternatively, we can trade that extra information on read/write
4149 	 * activity with
4150 	 *	args->busy =
4151 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4152 	 * to report the overall busyness. This is what the wait-ioctl does.
4153 	 *
4154 	 */
4155 retry:
4156 	seq = raw_read_seqcount(&obj->resv->seq);
4157 
4158 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4159 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4160 
4161 	/* Translate shared fences to READ set of engines */
4162 	list = rcu_dereference(obj->resv->fence);
4163 	if (list) {
4164 		unsigned int shared_count = list->shared_count, i;
4165 
4166 		for (i = 0; i < shared_count; ++i) {
4167 			struct dma_fence *fence =
4168 				rcu_dereference(list->shared[i]);
4169 
4170 			args->busy |= busy_check_reader(fence);
4171 		}
4172 	}
4173 
4174 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4175 		goto retry;
4176 
4177 	err = 0;
4178 out:
4179 	rcu_read_unlock();
4180 	return err;
4181 }
4182 
4183 int
4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4185 			struct drm_file *file_priv)
4186 {
4187 	return i915_gem_ring_throttle(dev, file_priv);
4188 }
4189 
4190 int
4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4192 		       struct drm_file *file_priv)
4193 {
4194 	struct drm_i915_private *dev_priv = to_i915(dev);
4195 	struct drm_i915_gem_madvise *args = data;
4196 	struct drm_i915_gem_object *obj;
4197 	int err;
4198 
4199 	switch (args->madv) {
4200 	case I915_MADV_DONTNEED:
4201 	case I915_MADV_WILLNEED:
4202 	    break;
4203 	default:
4204 	    return -EINVAL;
4205 	}
4206 
4207 	obj = i915_gem_object_lookup(file_priv, args->handle);
4208 	if (!obj)
4209 		return -ENOENT;
4210 
4211 	err = mutex_lock_interruptible(&obj->mm.lock);
4212 	if (err)
4213 		goto out;
4214 
4215 	if (obj->mm.pages &&
4216 	    i915_gem_object_is_tiled(obj) &&
4217 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4218 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4219 			GEM_BUG_ON(!obj->mm.quirked);
4220 			__i915_gem_object_unpin_pages(obj);
4221 			obj->mm.quirked = false;
4222 		}
4223 		if (args->madv == I915_MADV_WILLNEED) {
4224 			GEM_BUG_ON(obj->mm.quirked);
4225 			__i915_gem_object_pin_pages(obj);
4226 			obj->mm.quirked = true;
4227 		}
4228 	}
4229 
4230 	if (obj->mm.madv != __I915_MADV_PURGED)
4231 		obj->mm.madv = args->madv;
4232 
4233 	/* if the object is no longer attached, discard its backing storage */
4234 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4235 		i915_gem_object_truncate(obj);
4236 
4237 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4238 	mutex_unlock(&obj->mm.lock);
4239 
4240 out:
4241 	i915_gem_object_put(obj);
4242 	return err;
4243 }
4244 
4245 static void
4246 frontbuffer_retire(struct i915_gem_active *active,
4247 		   struct drm_i915_gem_request *request)
4248 {
4249 	struct drm_i915_gem_object *obj =
4250 		container_of(active, typeof(*obj), frontbuffer_write);
4251 
4252 	intel_fb_obj_flush(obj, ORIGIN_CS);
4253 }
4254 
4255 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4256 			  const struct drm_i915_gem_object_ops *ops)
4257 {
4258 	mutex_init(&obj->mm.lock);
4259 
4260 	INIT_LIST_HEAD(&obj->global_link);
4261 	INIT_LIST_HEAD(&obj->userfault_link);
4262 	INIT_LIST_HEAD(&obj->vma_list);
4263 	INIT_LIST_HEAD(&obj->lut_list);
4264 	INIT_LIST_HEAD(&obj->batch_pool_link);
4265 
4266 	obj->ops = ops;
4267 
4268 	reservation_object_init(&obj->__builtin_resv);
4269 	obj->resv = &obj->__builtin_resv;
4270 
4271 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4272 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4273 
4274 	obj->mm.madv = I915_MADV_WILLNEED;
4275 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4276 	mutex_init(&obj->mm.get_page.lock);
4277 
4278 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4279 }
4280 
4281 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4282 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4283 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4284 
4285 	.get_pages = i915_gem_object_get_pages_gtt,
4286 	.put_pages = i915_gem_object_put_pages_gtt,
4287 
4288 	.pwrite = i915_gem_object_pwrite_gtt,
4289 };
4290 
4291 struct drm_i915_gem_object *
4292 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4293 {
4294 	struct drm_i915_gem_object *obj;
4295 	struct address_space *mapping;
4296 	unsigned int cache_level;
4297 	gfp_t mask;
4298 	int ret;
4299 
4300 	/* There is a prevalence of the assumption that we fit the object's
4301 	 * page count inside a 32bit _signed_ variable. Let's document this and
4302 	 * catch if we ever need to fix it. In the meantime, if you do spot
4303 	 * such a local variable, please consider fixing!
4304 	 */
4305 	if (size >> PAGE_SHIFT > INT_MAX)
4306 		return ERR_PTR(-E2BIG);
4307 
4308 	if (overflows_type(size, obj->base.size))
4309 		return ERR_PTR(-E2BIG);
4310 
4311 	obj = i915_gem_object_alloc(dev_priv);
4312 	if (obj == NULL)
4313 		return ERR_PTR(-ENOMEM);
4314 
4315 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4316 	if (ret)
4317 		goto fail;
4318 
4319 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4320 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4321 		/* 965gm cannot relocate objects above 4GiB. */
4322 		mask &= ~__GFP_HIGHMEM;
4323 		mask |= __GFP_DMA32;
4324 	}
4325 
4326 	mapping = obj->base.filp->f_mapping;
4327 	mapping_set_gfp_mask(mapping, mask);
4328 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4329 
4330 	i915_gem_object_init(obj, &i915_gem_object_ops);
4331 
4332 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4333 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4334 
4335 	if (HAS_LLC(dev_priv))
4336 		/* On some devices, we can have the GPU use the LLC (the CPU
4337 		 * cache) for about a 10% performance improvement
4338 		 * compared to uncached.  Graphics requests other than
4339 		 * display scanout are coherent with the CPU in
4340 		 * accessing this cache.  This means in this mode we
4341 		 * don't need to clflush on the CPU side, and on the
4342 		 * GPU side we only need to flush internal caches to
4343 		 * get data visible to the CPU.
4344 		 *
4345 		 * However, we maintain the display planes as UC, and so
4346 		 * need to rebind when first used as such.
4347 		 */
4348 		cache_level = I915_CACHE_LLC;
4349 	else
4350 		cache_level = I915_CACHE_NONE;
4351 
4352 	i915_gem_object_set_cache_coherency(obj, cache_level);
4353 
4354 	trace_i915_gem_object_create(obj);
4355 
4356 	return obj;
4357 
4358 fail:
4359 	i915_gem_object_free(obj);
4360 	return ERR_PTR(ret);
4361 }
4362 
4363 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4364 {
4365 	/* If we are the last user of the backing storage (be it shmemfs
4366 	 * pages or stolen etc), we know that the pages are going to be
4367 	 * immediately released. In this case, we can then skip copying
4368 	 * back the contents from the GPU.
4369 	 */
4370 
4371 	if (obj->mm.madv != I915_MADV_WILLNEED)
4372 		return false;
4373 
4374 	if (obj->base.filp == NULL)
4375 		return true;
4376 
4377 	/* At first glance, this looks racy, but then again so would be
4378 	 * userspace racing mmap against close. However, the first external
4379 	 * reference to the filp can only be obtained through the
4380 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4381 	 * acquiring such a reference whilst we are in the middle of
4382 	 * freeing the object.
4383 	 */
4384 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4385 }
4386 
4387 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4388 				    struct llist_node *freed)
4389 {
4390 	struct drm_i915_gem_object *obj, *on;
4391 
4392 	mutex_lock(&i915->drm.struct_mutex);
4393 	intel_runtime_pm_get(i915);
4394 	llist_for_each_entry(obj, freed, freed) {
4395 		struct i915_vma *vma, *vn;
4396 
4397 		trace_i915_gem_object_destroy(obj);
4398 
4399 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4400 		list_for_each_entry_safe(vma, vn,
4401 					 &obj->vma_list, obj_link) {
4402 			GEM_BUG_ON(i915_vma_is_active(vma));
4403 			vma->flags &= ~I915_VMA_PIN_MASK;
4404 			i915_vma_close(vma);
4405 		}
4406 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4407 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4408 
4409 		list_del(&obj->global_link);
4410 	}
4411 	intel_runtime_pm_put(i915);
4412 	mutex_unlock(&i915->drm.struct_mutex);
4413 
4414 	cond_resched();
4415 
4416 	llist_for_each_entry_safe(obj, on, freed, freed) {
4417 		GEM_BUG_ON(obj->bind_count);
4418 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4419 
4420 		if (obj->ops->release)
4421 			obj->ops->release(obj);
4422 
4423 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4424 			atomic_set(&obj->mm.pages_pin_count, 0);
4425 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4426 		GEM_BUG_ON(obj->mm.pages);
4427 
4428 		if (obj->base.import_attach)
4429 			drm_prime_gem_destroy(&obj->base, NULL);
4430 
4431 		reservation_object_fini(&obj->__builtin_resv);
4432 		drm_gem_object_release(&obj->base);
4433 		i915_gem_info_remove_obj(i915, obj->base.size);
4434 
4435 		kfree(obj->bit_17);
4436 		i915_gem_object_free(obj);
4437 	}
4438 }
4439 
4440 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4441 {
4442 	struct llist_node *freed;
4443 
4444 	freed = llist_del_all(&i915->mm.free_list);
4445 	if (unlikely(freed))
4446 		__i915_gem_free_objects(i915, freed);
4447 }
4448 
4449 static void __i915_gem_free_work(struct work_struct *work)
4450 {
4451 	struct drm_i915_private *i915 =
4452 		container_of(work, struct drm_i915_private, mm.free_work);
4453 	struct llist_node *freed;
4454 
4455 	/* All file-owned VMA should have been released by this point through
4456 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4457 	 * However, the object may also be bound into the global GTT (e.g.
4458 	 * older GPUs without per-process support, or for direct access through
4459 	 * the GTT either for the user or for scanout). Those VMA still need to
4460 	 * unbound now.
4461 	 */
4462 
4463 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4464 		__i915_gem_free_objects(i915, freed);
4465 		if (need_resched())
4466 			break;
4467 	}
4468 }
4469 
4470 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4471 {
4472 	struct drm_i915_gem_object *obj =
4473 		container_of(head, typeof(*obj), rcu);
4474 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4475 
4476 	/* We can't simply use call_rcu() from i915_gem_free_object()
4477 	 * as we need to block whilst unbinding, and the call_rcu
4478 	 * task may be called from softirq context. So we take a
4479 	 * detour through a worker.
4480 	 */
4481 	if (llist_add(&obj->freed, &i915->mm.free_list))
4482 		schedule_work(&i915->mm.free_work);
4483 }
4484 
4485 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4486 {
4487 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4488 
4489 	if (obj->mm.quirked)
4490 		__i915_gem_object_unpin_pages(obj);
4491 
4492 	if (discard_backing_storage(obj))
4493 		obj->mm.madv = I915_MADV_DONTNEED;
4494 
4495 	/* Before we free the object, make sure any pure RCU-only
4496 	 * read-side critical sections are complete, e.g.
4497 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4498 	 * lookup see i915_gem_object_lookup_rcu().
4499 	 */
4500 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4501 }
4502 
4503 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4504 {
4505 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4506 
4507 	if (!i915_gem_object_has_active_reference(obj) &&
4508 	    i915_gem_object_is_active(obj))
4509 		i915_gem_object_set_active_reference(obj);
4510 	else
4511 		i915_gem_object_put(obj);
4512 }
4513 
4514 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4515 {
4516 	struct intel_engine_cs *engine;
4517 	enum intel_engine_id id;
4518 
4519 	for_each_engine(engine, dev_priv, id)
4520 		GEM_BUG_ON(engine->last_retired_context &&
4521 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4522 }
4523 
4524 void i915_gem_sanitize(struct drm_i915_private *i915)
4525 {
4526 	/*
4527 	 * If we inherit context state from the BIOS or earlier occupants
4528 	 * of the GPU, the GPU may be in an inconsistent state when we
4529 	 * try to take over. The only way to remove the earlier state
4530 	 * is by resetting. However, resetting on earlier gen is tricky as
4531 	 * it may impact the display and we are uncertain about the stability
4532 	 * of the reset, so this could be applied to even earlier gen.
4533 	 */
4534 	if (INTEL_GEN(i915) >= 5) {
4535 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4536 		WARN_ON(reset && reset != -ENODEV);
4537 	}
4538 }
4539 
4540 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4541 {
4542 	struct drm_device *dev = &dev_priv->drm;
4543 	int ret;
4544 
4545 	intel_runtime_pm_get(dev_priv);
4546 	intel_suspend_gt_powersave(dev_priv);
4547 
4548 	mutex_lock(&dev->struct_mutex);
4549 
4550 	/* We have to flush all the executing contexts to main memory so
4551 	 * that they can saved in the hibernation image. To ensure the last
4552 	 * context image is coherent, we have to switch away from it. That
4553 	 * leaves the dev_priv->kernel_context still active when
4554 	 * we actually suspend, and its image in memory may not match the GPU
4555 	 * state. Fortunately, the kernel_context is disposable and we do
4556 	 * not rely on its state.
4557 	 */
4558 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4559 	if (ret)
4560 		goto err_unlock;
4561 
4562 	ret = i915_gem_wait_for_idle(dev_priv,
4563 				     I915_WAIT_INTERRUPTIBLE |
4564 				     I915_WAIT_LOCKED);
4565 	if (ret)
4566 		goto err_unlock;
4567 
4568 	assert_kernel_context_is_current(dev_priv);
4569 	i915_gem_contexts_lost(dev_priv);
4570 	mutex_unlock(&dev->struct_mutex);
4571 
4572 	intel_guc_suspend(dev_priv);
4573 
4574 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4575 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4576 
4577 	/* As the idle_work is rearming if it detects a race, play safe and
4578 	 * repeat the flush until it is definitely idle.
4579 	 */
4580 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4581 		;
4582 
4583 	/* Assert that we sucessfully flushed all the work and
4584 	 * reset the GPU back to its idle, low power state.
4585 	 */
4586 	WARN_ON(dev_priv->gt.awake);
4587 	WARN_ON(!intel_engines_are_idle(dev_priv));
4588 
4589 	/*
4590 	 * Neither the BIOS, ourselves or any other kernel
4591 	 * expects the system to be in execlists mode on startup,
4592 	 * so we need to reset the GPU back to legacy mode. And the only
4593 	 * known way to disable logical contexts is through a GPU reset.
4594 	 *
4595 	 * So in order to leave the system in a known default configuration,
4596 	 * always reset the GPU upon unload and suspend. Afterwards we then
4597 	 * clean up the GEM state tracking, flushing off the requests and
4598 	 * leaving the system in a known idle state.
4599 	 *
4600 	 * Note that is of the upmost importance that the GPU is idle and
4601 	 * all stray writes are flushed *before* we dismantle the backing
4602 	 * storage for the pinned objects.
4603 	 *
4604 	 * However, since we are uncertain that resetting the GPU on older
4605 	 * machines is a good idea, we don't - just in case it leaves the
4606 	 * machine in an unusable condition.
4607 	 */
4608 	i915_gem_sanitize(dev_priv);
4609 	goto out_rpm_put;
4610 
4611 err_unlock:
4612 	mutex_unlock(&dev->struct_mutex);
4613 out_rpm_put:
4614 	intel_runtime_pm_put(dev_priv);
4615 	return ret;
4616 }
4617 
4618 void i915_gem_resume(struct drm_i915_private *dev_priv)
4619 {
4620 	struct drm_device *dev = &dev_priv->drm;
4621 
4622 	WARN_ON(dev_priv->gt.awake);
4623 
4624 	mutex_lock(&dev->struct_mutex);
4625 	i915_gem_restore_gtt_mappings(dev_priv);
4626 
4627 	/* As we didn't flush the kernel context before suspend, we cannot
4628 	 * guarantee that the context image is complete. So let's just reset
4629 	 * it and start again.
4630 	 */
4631 	dev_priv->gt.resume(dev_priv);
4632 
4633 	mutex_unlock(&dev->struct_mutex);
4634 }
4635 
4636 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4637 {
4638 	if (INTEL_GEN(dev_priv) < 5 ||
4639 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4640 		return;
4641 
4642 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4643 				 DISP_TILE_SURFACE_SWIZZLING);
4644 
4645 	if (IS_GEN5(dev_priv))
4646 		return;
4647 
4648 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4649 	if (IS_GEN6(dev_priv))
4650 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4651 	else if (IS_GEN7(dev_priv))
4652 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4653 	else if (IS_GEN8(dev_priv))
4654 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4655 	else
4656 		BUG();
4657 }
4658 
4659 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4660 {
4661 	I915_WRITE(RING_CTL(base), 0);
4662 	I915_WRITE(RING_HEAD(base), 0);
4663 	I915_WRITE(RING_TAIL(base), 0);
4664 	I915_WRITE(RING_START(base), 0);
4665 }
4666 
4667 static void init_unused_rings(struct drm_i915_private *dev_priv)
4668 {
4669 	if (IS_I830(dev_priv)) {
4670 		init_unused_ring(dev_priv, PRB1_BASE);
4671 		init_unused_ring(dev_priv, SRB0_BASE);
4672 		init_unused_ring(dev_priv, SRB1_BASE);
4673 		init_unused_ring(dev_priv, SRB2_BASE);
4674 		init_unused_ring(dev_priv, SRB3_BASE);
4675 	} else if (IS_GEN2(dev_priv)) {
4676 		init_unused_ring(dev_priv, SRB0_BASE);
4677 		init_unused_ring(dev_priv, SRB1_BASE);
4678 	} else if (IS_GEN3(dev_priv)) {
4679 		init_unused_ring(dev_priv, PRB1_BASE);
4680 		init_unused_ring(dev_priv, PRB2_BASE);
4681 	}
4682 }
4683 
4684 static int __i915_gem_restart_engines(void *data)
4685 {
4686 	struct drm_i915_private *i915 = data;
4687 	struct intel_engine_cs *engine;
4688 	enum intel_engine_id id;
4689 	int err;
4690 
4691 	for_each_engine(engine, i915, id) {
4692 		err = engine->init_hw(engine);
4693 		if (err)
4694 			return err;
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4701 {
4702 	int ret;
4703 
4704 	dev_priv->gt.last_init_time = ktime_get();
4705 
4706 	/* Double layer security blanket, see i915_gem_init() */
4707 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4708 
4709 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4710 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4711 
4712 	if (IS_HASWELL(dev_priv))
4713 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4714 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4715 
4716 	if (HAS_PCH_NOP(dev_priv)) {
4717 		if (IS_IVYBRIDGE(dev_priv)) {
4718 			u32 temp = I915_READ(GEN7_MSG_CTL);
4719 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4720 			I915_WRITE(GEN7_MSG_CTL, temp);
4721 		} else if (INTEL_GEN(dev_priv) >= 7) {
4722 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4723 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4724 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4725 		}
4726 	}
4727 
4728 	i915_gem_init_swizzling(dev_priv);
4729 
4730 	/*
4731 	 * At least 830 can leave some of the unused rings
4732 	 * "active" (ie. head != tail) after resume which
4733 	 * will prevent c3 entry. Makes sure all unused rings
4734 	 * are totally idle.
4735 	 */
4736 	init_unused_rings(dev_priv);
4737 
4738 	BUG_ON(!dev_priv->kernel_context);
4739 
4740 	ret = i915_ppgtt_init_hw(dev_priv);
4741 	if (ret) {
4742 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4743 		goto out;
4744 	}
4745 
4746 	/* Need to do basic initialisation of all rings first: */
4747 	ret = __i915_gem_restart_engines(dev_priv);
4748 	if (ret)
4749 		goto out;
4750 
4751 	intel_mocs_init_l3cc_table(dev_priv);
4752 
4753 	/* We can't enable contexts until all firmware is loaded */
4754 	ret = intel_uc_init_hw(dev_priv);
4755 	if (ret)
4756 		goto out;
4757 
4758 out:
4759 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4760 	return ret;
4761 }
4762 
4763 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4764 {
4765 	if (INTEL_INFO(dev_priv)->gen < 6)
4766 		return false;
4767 
4768 	/* TODO: make semaphores and Execlists play nicely together */
4769 	if (i915.enable_execlists)
4770 		return false;
4771 
4772 	if (value >= 0)
4773 		return value;
4774 
4775 	/* Enable semaphores on SNB when IO remapping is off */
4776 	if (IS_GEN6(dev_priv) && intel_vtd_active())
4777 		return false;
4778 
4779 	return true;
4780 }
4781 
4782 int i915_gem_init(struct drm_i915_private *dev_priv)
4783 {
4784 	int ret;
4785 
4786 	mutex_lock(&dev_priv->drm.struct_mutex);
4787 
4788 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4789 
4790 	if (!i915.enable_execlists) {
4791 		dev_priv->gt.resume = intel_legacy_submission_resume;
4792 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4793 	} else {
4794 		dev_priv->gt.resume = intel_lr_context_resume;
4795 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4796 	}
4797 
4798 	/* This is just a security blanket to placate dragons.
4799 	 * On some systems, we very sporadically observe that the first TLBs
4800 	 * used by the CS may be stale, despite us poking the TLB reset. If
4801 	 * we hold the forcewake during initialisation these problems
4802 	 * just magically go away.
4803 	 */
4804 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4805 
4806 	ret = i915_gem_init_userptr(dev_priv);
4807 	if (ret)
4808 		goto out_unlock;
4809 
4810 	ret = i915_gem_init_ggtt(dev_priv);
4811 	if (ret)
4812 		goto out_unlock;
4813 
4814 	ret = i915_gem_contexts_init(dev_priv);
4815 	if (ret)
4816 		goto out_unlock;
4817 
4818 	ret = intel_engines_init(dev_priv);
4819 	if (ret)
4820 		goto out_unlock;
4821 
4822 	ret = i915_gem_init_hw(dev_priv);
4823 	if (ret == -EIO) {
4824 		/* Allow engine initialisation to fail by marking the GPU as
4825 		 * wedged. But we only want to do this where the GPU is angry,
4826 		 * for all other failure, such as an allocation failure, bail.
4827 		 */
4828 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4829 		i915_gem_set_wedged(dev_priv);
4830 		ret = 0;
4831 	}
4832 
4833 out_unlock:
4834 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4835 	mutex_unlock(&dev_priv->drm.struct_mutex);
4836 
4837 	return ret;
4838 }
4839 
4840 void i915_gem_init_mmio(struct drm_i915_private *i915)
4841 {
4842 	i915_gem_sanitize(i915);
4843 }
4844 
4845 void
4846 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4847 {
4848 	struct intel_engine_cs *engine;
4849 	enum intel_engine_id id;
4850 
4851 	for_each_engine(engine, dev_priv, id)
4852 		dev_priv->gt.cleanup_engine(engine);
4853 }
4854 
4855 void
4856 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4857 {
4858 	int i;
4859 
4860 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4861 	    !IS_CHERRYVIEW(dev_priv))
4862 		dev_priv->num_fence_regs = 32;
4863 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4864 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4865 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4866 		dev_priv->num_fence_regs = 16;
4867 	else
4868 		dev_priv->num_fence_regs = 8;
4869 
4870 	if (intel_vgpu_active(dev_priv))
4871 		dev_priv->num_fence_regs =
4872 				I915_READ(vgtif_reg(avail_rs.fence_num));
4873 
4874 	/* Initialize fence registers to zero */
4875 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4876 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4877 
4878 		fence->i915 = dev_priv;
4879 		fence->id = i;
4880 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4881 	}
4882 	i915_gem_restore_fences(dev_priv);
4883 
4884 	i915_gem_detect_bit_6_swizzle(dev_priv);
4885 }
4886 
4887 int
4888 i915_gem_load_init(struct drm_i915_private *dev_priv)
4889 {
4890 	int err = -ENOMEM;
4891 
4892 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4893 	if (!dev_priv->objects)
4894 		goto err_out;
4895 
4896 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4897 	if (!dev_priv->vmas)
4898 		goto err_objects;
4899 
4900 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4901 	if (!dev_priv->luts)
4902 		goto err_vmas;
4903 
4904 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4905 					SLAB_HWCACHE_ALIGN |
4906 					SLAB_RECLAIM_ACCOUNT |
4907 					SLAB_TYPESAFE_BY_RCU);
4908 	if (!dev_priv->requests)
4909 		goto err_luts;
4910 
4911 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4912 					    SLAB_HWCACHE_ALIGN |
4913 					    SLAB_RECLAIM_ACCOUNT);
4914 	if (!dev_priv->dependencies)
4915 		goto err_requests;
4916 
4917 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4918 	if (!dev_priv->priorities)
4919 		goto err_dependencies;
4920 
4921 	mutex_lock(&dev_priv->drm.struct_mutex);
4922 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4923 	err = i915_gem_timeline_init__global(dev_priv);
4924 	mutex_unlock(&dev_priv->drm.struct_mutex);
4925 	if (err)
4926 		goto err_priorities;
4927 
4928 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4929 	init_llist_head(&dev_priv->mm.free_list);
4930 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4931 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4932 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4933 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4934 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4935 			  i915_gem_retire_work_handler);
4936 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4937 			  i915_gem_idle_work_handler);
4938 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4939 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4940 
4941 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4942 
4943 	spin_lock_init(&dev_priv->fb_tracking.lock);
4944 
4945 	return 0;
4946 
4947 err_priorities:
4948 	kmem_cache_destroy(dev_priv->priorities);
4949 err_dependencies:
4950 	kmem_cache_destroy(dev_priv->dependencies);
4951 err_requests:
4952 	kmem_cache_destroy(dev_priv->requests);
4953 err_luts:
4954 	kmem_cache_destroy(dev_priv->luts);
4955 err_vmas:
4956 	kmem_cache_destroy(dev_priv->vmas);
4957 err_objects:
4958 	kmem_cache_destroy(dev_priv->objects);
4959 err_out:
4960 	return err;
4961 }
4962 
4963 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4964 {
4965 	i915_gem_drain_freed_objects(dev_priv);
4966 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4967 	WARN_ON(dev_priv->mm.object_count);
4968 
4969 	mutex_lock(&dev_priv->drm.struct_mutex);
4970 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4971 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4972 	mutex_unlock(&dev_priv->drm.struct_mutex);
4973 
4974 	kmem_cache_destroy(dev_priv->priorities);
4975 	kmem_cache_destroy(dev_priv->dependencies);
4976 	kmem_cache_destroy(dev_priv->requests);
4977 	kmem_cache_destroy(dev_priv->luts);
4978 	kmem_cache_destroy(dev_priv->vmas);
4979 	kmem_cache_destroy(dev_priv->objects);
4980 
4981 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4982 	rcu_barrier();
4983 }
4984 
4985 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4986 {
4987 	/* Discard all purgeable objects, let userspace recover those as
4988 	 * required after resuming.
4989 	 */
4990 	i915_gem_shrink_all(dev_priv);
4991 
4992 	return 0;
4993 }
4994 
4995 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4996 {
4997 	struct drm_i915_gem_object *obj;
4998 	struct list_head *phases[] = {
4999 		&dev_priv->mm.unbound_list,
5000 		&dev_priv->mm.bound_list,
5001 		NULL
5002 	}, **p;
5003 
5004 	/* Called just before we write the hibernation image.
5005 	 *
5006 	 * We need to update the domain tracking to reflect that the CPU
5007 	 * will be accessing all the pages to create and restore from the
5008 	 * hibernation, and so upon restoration those pages will be in the
5009 	 * CPU domain.
5010 	 *
5011 	 * To make sure the hibernation image contains the latest state,
5012 	 * we update that state just before writing out the image.
5013 	 *
5014 	 * To try and reduce the hibernation image, we manually shrink
5015 	 * the objects as well, see i915_gem_freeze()
5016 	 */
5017 
5018 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5019 	i915_gem_drain_freed_objects(dev_priv);
5020 
5021 	mutex_lock(&dev_priv->drm.struct_mutex);
5022 	for (p = phases; *p; p++) {
5023 		list_for_each_entry(obj, *p, global_link)
5024 			__start_cpu_write(obj);
5025 	}
5026 	mutex_unlock(&dev_priv->drm.struct_mutex);
5027 
5028 	return 0;
5029 }
5030 
5031 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5032 {
5033 	struct drm_i915_file_private *file_priv = file->driver_priv;
5034 	struct drm_i915_gem_request *request;
5035 
5036 	/* Clean up our request list when the client is going away, so that
5037 	 * later retire_requests won't dereference our soon-to-be-gone
5038 	 * file_priv.
5039 	 */
5040 	spin_lock(&file_priv->mm.lock);
5041 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5042 		request->file_priv = NULL;
5043 	spin_unlock(&file_priv->mm.lock);
5044 }
5045 
5046 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5047 {
5048 	struct drm_i915_file_private *file_priv;
5049 	int ret;
5050 
5051 	DRM_DEBUG("\n");
5052 
5053 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5054 	if (!file_priv)
5055 		return -ENOMEM;
5056 
5057 	file->driver_priv = file_priv;
5058 	file_priv->dev_priv = i915;
5059 	file_priv->file = file;
5060 
5061 	spin_lock_init(&file_priv->mm.lock);
5062 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5063 
5064 	file_priv->bsd_engine = -1;
5065 
5066 	ret = i915_gem_context_open(i915, file);
5067 	if (ret)
5068 		kfree(file_priv);
5069 
5070 	return ret;
5071 }
5072 
5073 /**
5074  * i915_gem_track_fb - update frontbuffer tracking
5075  * @old: current GEM buffer for the frontbuffer slots
5076  * @new: new GEM buffer for the frontbuffer slots
5077  * @frontbuffer_bits: bitmask of frontbuffer slots
5078  *
5079  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5080  * from @old and setting them in @new. Both @old and @new can be NULL.
5081  */
5082 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5083 		       struct drm_i915_gem_object *new,
5084 		       unsigned frontbuffer_bits)
5085 {
5086 	/* Control of individual bits within the mask are guarded by
5087 	 * the owning plane->mutex, i.e. we can never see concurrent
5088 	 * manipulation of individual bits. But since the bitfield as a whole
5089 	 * is updated using RMW, we need to use atomics in order to update
5090 	 * the bits.
5091 	 */
5092 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5093 		     sizeof(atomic_t) * BITS_PER_BYTE);
5094 
5095 	if (old) {
5096 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5097 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5098 	}
5099 
5100 	if (new) {
5101 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5102 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5103 	}
5104 }
5105 
5106 /* Allocate a new GEM object and fill it with the supplied data */
5107 struct drm_i915_gem_object *
5108 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5109 			         const void *data, size_t size)
5110 {
5111 	struct drm_i915_gem_object *obj;
5112 	struct file *file;
5113 	size_t offset;
5114 	int err;
5115 
5116 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5117 	if (IS_ERR(obj))
5118 		return obj;
5119 
5120 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5121 
5122 	file = obj->base.filp;
5123 	offset = 0;
5124 	do {
5125 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5126 		struct page *page;
5127 		void *pgdata, *vaddr;
5128 
5129 		err = pagecache_write_begin(file, file->f_mapping,
5130 					    offset, len, 0,
5131 					    &page, &pgdata);
5132 		if (err < 0)
5133 			goto fail;
5134 
5135 		vaddr = kmap(page);
5136 		memcpy(vaddr, data, len);
5137 		kunmap(page);
5138 
5139 		err = pagecache_write_end(file, file->f_mapping,
5140 					  offset, len, len,
5141 					  page, pgdata);
5142 		if (err < 0)
5143 			goto fail;
5144 
5145 		size -= len;
5146 		data += len;
5147 		offset += len;
5148 	} while (size);
5149 
5150 	return obj;
5151 
5152 fail:
5153 	i915_gem_object_put(obj);
5154 	return ERR_PTR(err);
5155 }
5156 
5157 struct scatterlist *
5158 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5159 		       unsigned int n,
5160 		       unsigned int *offset)
5161 {
5162 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5163 	struct scatterlist *sg;
5164 	unsigned int idx, count;
5165 
5166 	might_sleep();
5167 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5168 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5169 
5170 	/* As we iterate forward through the sg, we record each entry in a
5171 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5172 	 * this index previously, we will have an entry for it.
5173 	 *
5174 	 * Initial lookup is O(N), but this is amortized to O(1) for
5175 	 * sequential page access (where each new request is consecutive
5176 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5177 	 * i.e. O(1) with a large constant!
5178 	 */
5179 	if (n < READ_ONCE(iter->sg_idx))
5180 		goto lookup;
5181 
5182 	mutex_lock(&iter->lock);
5183 
5184 	/* We prefer to reuse the last sg so that repeated lookup of this
5185 	 * (or the subsequent) sg are fast - comparing against the last
5186 	 * sg is faster than going through the radixtree.
5187 	 */
5188 
5189 	sg = iter->sg_pos;
5190 	idx = iter->sg_idx;
5191 	count = __sg_page_count(sg);
5192 
5193 	while (idx + count <= n) {
5194 		unsigned long exception, i;
5195 		int ret;
5196 
5197 		/* If we cannot allocate and insert this entry, or the
5198 		 * individual pages from this range, cancel updating the
5199 		 * sg_idx so that on this lookup we are forced to linearly
5200 		 * scan onwards, but on future lookups we will try the
5201 		 * insertion again (in which case we need to be careful of
5202 		 * the error return reporting that we have already inserted
5203 		 * this index).
5204 		 */
5205 		ret = radix_tree_insert(&iter->radix, idx, sg);
5206 		if (ret && ret != -EEXIST)
5207 			goto scan;
5208 
5209 		exception =
5210 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5211 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5212 		for (i = 1; i < count; i++) {
5213 			ret = radix_tree_insert(&iter->radix, idx + i,
5214 						(void *)exception);
5215 			if (ret && ret != -EEXIST)
5216 				goto scan;
5217 		}
5218 
5219 		idx += count;
5220 		sg = ____sg_next(sg);
5221 		count = __sg_page_count(sg);
5222 	}
5223 
5224 scan:
5225 	iter->sg_pos = sg;
5226 	iter->sg_idx = idx;
5227 
5228 	mutex_unlock(&iter->lock);
5229 
5230 	if (unlikely(n < idx)) /* insertion completed by another thread */
5231 		goto lookup;
5232 
5233 	/* In case we failed to insert the entry into the radixtree, we need
5234 	 * to look beyond the current sg.
5235 	 */
5236 	while (idx + count <= n) {
5237 		idx += count;
5238 		sg = ____sg_next(sg);
5239 		count = __sg_page_count(sg);
5240 	}
5241 
5242 	*offset = n - idx;
5243 	return sg;
5244 
5245 lookup:
5246 	rcu_read_lock();
5247 
5248 	sg = radix_tree_lookup(&iter->radix, n);
5249 	GEM_BUG_ON(!sg);
5250 
5251 	/* If this index is in the middle of multi-page sg entry,
5252 	 * the radixtree will contain an exceptional entry that points
5253 	 * to the start of that range. We will return the pointer to
5254 	 * the base page and the offset of this page within the
5255 	 * sg entry's range.
5256 	 */
5257 	*offset = 0;
5258 	if (unlikely(radix_tree_exception(sg))) {
5259 		unsigned long base =
5260 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5261 
5262 		sg = radix_tree_lookup(&iter->radix, base);
5263 		GEM_BUG_ON(!sg);
5264 
5265 		*offset = n - base;
5266 	}
5267 
5268 	rcu_read_unlock();
5269 
5270 	return sg;
5271 }
5272 
5273 struct page *
5274 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5275 {
5276 	struct scatterlist *sg;
5277 	unsigned int offset;
5278 
5279 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5280 
5281 	sg = i915_gem_object_get_sg(obj, n, &offset);
5282 	return nth_page(sg_page(sg), offset);
5283 }
5284 
5285 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5286 struct page *
5287 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5288 			       unsigned int n)
5289 {
5290 	struct page *page;
5291 
5292 	page = i915_gem_object_get_page(obj, n);
5293 	if (!obj->mm.dirty)
5294 		set_page_dirty(page);
5295 
5296 	return page;
5297 }
5298 
5299 dma_addr_t
5300 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5301 				unsigned long n)
5302 {
5303 	struct scatterlist *sg;
5304 	unsigned int offset;
5305 
5306 	sg = i915_gem_object_get_sg(obj, n, &offset);
5307 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5308 }
5309 
5310 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5311 {
5312 	struct sg_table *pages;
5313 	int err;
5314 
5315 	if (align > obj->base.size)
5316 		return -EINVAL;
5317 
5318 	if (obj->ops == &i915_gem_phys_ops)
5319 		return 0;
5320 
5321 	if (obj->ops != &i915_gem_object_ops)
5322 		return -EINVAL;
5323 
5324 	err = i915_gem_object_unbind(obj);
5325 	if (err)
5326 		return err;
5327 
5328 	mutex_lock(&obj->mm.lock);
5329 
5330 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5331 		err = -EFAULT;
5332 		goto err_unlock;
5333 	}
5334 
5335 	if (obj->mm.quirked) {
5336 		err = -EFAULT;
5337 		goto err_unlock;
5338 	}
5339 
5340 	if (obj->mm.mapping) {
5341 		err = -EBUSY;
5342 		goto err_unlock;
5343 	}
5344 
5345 	pages = obj->mm.pages;
5346 	obj->ops = &i915_gem_phys_ops;
5347 
5348 	err = ____i915_gem_object_get_pages(obj);
5349 	if (err)
5350 		goto err_xfer;
5351 
5352 	/* Perma-pin (until release) the physical set of pages */
5353 	__i915_gem_object_pin_pages(obj);
5354 
5355 	if (!IS_ERR_OR_NULL(pages))
5356 		i915_gem_object_ops.put_pages(obj, pages);
5357 	mutex_unlock(&obj->mm.lock);
5358 	return 0;
5359 
5360 err_xfer:
5361 	obj->ops = &i915_gem_object_ops;
5362 	obj->mm.pages = pages;
5363 err_unlock:
5364 	mutex_unlock(&obj->mm.lock);
5365 	return err;
5366 }
5367 
5368 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5369 #include "selftests/scatterlist.c"
5370 #include "selftests/mock_gem_device.c"
5371 #include "selftests/huge_gem_object.c"
5372 #include "selftests/i915_gem_object.c"
5373 #include "selftests/i915_gem_coherency.c"
5374 #endif
5375