1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include <linux/dma-fence-array.h> 39 #include <linux/kthread.h> 40 #include <linux/reservation.h> 41 #include <linux/shmem_fs.h> 42 #include <linux/slab.h> 43 #include <linux/stop_machine.h> 44 #include <linux/swap.h> 45 #include <linux/pci.h> 46 #include <linux/dma-buf.h> 47 48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 49 50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 51 { 52 if (obj->cache_dirty) 53 return false; 54 55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 56 return true; 57 58 return obj->pin_display; 59 } 60 61 static int 62 insert_mappable_node(struct i915_ggtt *ggtt, 63 struct drm_mm_node *node, u32 size) 64 { 65 memset(node, 0, sizeof(*node)); 66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 67 size, 0, I915_COLOR_UNEVICTABLE, 68 0, ggtt->mappable_end, 69 DRM_MM_INSERT_LOW); 70 } 71 72 static void 73 remove_mappable_node(struct drm_mm_node *node) 74 { 75 drm_mm_remove_node(node); 76 } 77 78 /* some bookkeeping */ 79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 80 u64 size) 81 { 82 spin_lock(&dev_priv->mm.object_stat_lock); 83 dev_priv->mm.object_count++; 84 dev_priv->mm.object_memory += size; 85 spin_unlock(&dev_priv->mm.object_stat_lock); 86 } 87 88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 89 u64 size) 90 { 91 spin_lock(&dev_priv->mm.object_stat_lock); 92 dev_priv->mm.object_count--; 93 dev_priv->mm.object_memory -= size; 94 spin_unlock(&dev_priv->mm.object_stat_lock); 95 } 96 97 static int 98 i915_gem_wait_for_error(struct i915_gpu_error *error) 99 { 100 int ret; 101 102 might_sleep(); 103 104 /* 105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 106 * userspace. If it takes that long something really bad is going on and 107 * we should simply try to bail out and fail as gracefully as possible. 108 */ 109 ret = wait_event_interruptible_timeout(error->reset_queue, 110 !i915_reset_backoff(error), 111 I915_RESET_TIMEOUT); 112 if (ret == 0) { 113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 114 return -EIO; 115 } else if (ret < 0) { 116 return ret; 117 } else { 118 return 0; 119 } 120 } 121 122 int i915_mutex_lock_interruptible(struct drm_device *dev) 123 { 124 struct drm_i915_private *dev_priv = to_i915(dev); 125 int ret; 126 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 128 if (ret) 129 return ret; 130 131 ret = mutex_lock_interruptible(&dev->struct_mutex); 132 if (ret) 133 return ret; 134 135 return 0; 136 } 137 138 int 139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 140 struct drm_file *file) 141 { 142 struct drm_i915_private *dev_priv = to_i915(dev); 143 struct i915_ggtt *ggtt = &dev_priv->ggtt; 144 struct drm_i915_gem_get_aperture *args = data; 145 struct i915_vma *vma; 146 u64 pinned; 147 148 pinned = ggtt->base.reserved; 149 mutex_lock(&dev->struct_mutex); 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 151 if (i915_vma_is_pinned(vma)) 152 pinned += vma->node.size; 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 154 if (i915_vma_is_pinned(vma)) 155 pinned += vma->node.size; 156 mutex_unlock(&dev->struct_mutex); 157 158 args->aper_size = ggtt->base.total; 159 args->aper_available_size = args->aper_size - pinned; 160 161 return 0; 162 } 163 164 static struct sg_table * 165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 175 return ERR_PTR(-EINVAL); 176 177 /* Always aligning to the object size, allows a single allocation 178 * to handle all possible callers, and given typical object sizes, 179 * the alignment of the buddy allocation will naturally match. 180 */ 181 phys = drm_pci_alloc(obj->base.dev, 182 obj->base.size, 183 roundup_pow_of_two(obj->base.size)); 184 if (!phys) 185 return ERR_PTR(-ENOMEM); 186 187 vaddr = phys->vaddr; 188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 189 struct page *page; 190 char *src; 191 192 page = shmem_read_mapping_page(mapping, i); 193 if (IS_ERR(page)) { 194 st = ERR_CAST(page); 195 goto err_phys; 196 } 197 198 src = kmap_atomic(page); 199 memcpy(vaddr, src, PAGE_SIZE); 200 drm_clflush_virt_range(vaddr, PAGE_SIZE); 201 kunmap_atomic(src); 202 203 put_page(page); 204 vaddr += PAGE_SIZE; 205 } 206 207 i915_gem_chipset_flush(to_i915(obj->base.dev)); 208 209 st = kmalloc(sizeof(*st), GFP_KERNEL); 210 if (!st) { 211 st = ERR_PTR(-ENOMEM); 212 goto err_phys; 213 } 214 215 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 216 kfree(st); 217 st = ERR_PTR(-ENOMEM); 218 goto err_phys; 219 } 220 221 sg = st->sgl; 222 sg->offset = 0; 223 sg->length = obj->base.size; 224 225 sg_dma_address(sg) = phys->busaddr; 226 sg_dma_len(sg) = obj->base.size; 227 228 obj->phys_handle = phys; 229 return st; 230 231 err_phys: 232 drm_pci_free(obj->base.dev, phys); 233 return st; 234 } 235 236 static void __start_cpu_write(struct drm_i915_gem_object *obj) 237 { 238 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 239 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 240 if (cpu_write_needs_clflush(obj)) 241 obj->cache_dirty = true; 242 } 243 244 static void 245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 246 struct sg_table *pages, 247 bool needs_clflush) 248 { 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 250 251 if (obj->mm.madv == I915_MADV_DONTNEED) 252 obj->mm.dirty = false; 253 254 if (needs_clflush && 255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 257 drm_clflush_sg(pages); 258 259 __start_cpu_write(obj); 260 } 261 262 static void 263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 264 struct sg_table *pages) 265 { 266 __i915_gem_object_release_shmem(obj, pages, false); 267 268 if (obj->mm.dirty) { 269 struct address_space *mapping = obj->base.filp->f_mapping; 270 char *vaddr = obj->phys_handle->vaddr; 271 int i; 272 273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 274 struct page *page; 275 char *dst; 276 277 page = shmem_read_mapping_page(mapping, i); 278 if (IS_ERR(page)) 279 continue; 280 281 dst = kmap_atomic(page); 282 drm_clflush_virt_range(vaddr, PAGE_SIZE); 283 memcpy(dst, vaddr, PAGE_SIZE); 284 kunmap_atomic(dst); 285 286 set_page_dirty(page); 287 if (obj->mm.madv == I915_MADV_WILLNEED) 288 mark_page_accessed(page); 289 put_page(page); 290 vaddr += PAGE_SIZE; 291 } 292 obj->mm.dirty = false; 293 } 294 295 sg_free_table(pages); 296 kfree(pages); 297 298 drm_pci_free(obj->base.dev, obj->phys_handle); 299 } 300 301 static void 302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 303 { 304 i915_gem_object_unpin_pages(obj); 305 } 306 307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 308 .get_pages = i915_gem_object_get_pages_phys, 309 .put_pages = i915_gem_object_put_pages_phys, 310 .release = i915_gem_object_release_phys, 311 }; 312 313 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 314 315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 316 { 317 struct i915_vma *vma; 318 LIST_HEAD(still_in_list); 319 int ret; 320 321 lockdep_assert_held(&obj->base.dev->struct_mutex); 322 323 /* Closed vma are removed from the obj->vma_list - but they may 324 * still have an active binding on the object. To remove those we 325 * must wait for all rendering to complete to the object (as unbinding 326 * must anyway), and retire the requests. 327 */ 328 ret = i915_gem_object_wait(obj, 329 I915_WAIT_INTERRUPTIBLE | 330 I915_WAIT_LOCKED | 331 I915_WAIT_ALL, 332 MAX_SCHEDULE_TIMEOUT, 333 NULL); 334 if (ret) 335 return ret; 336 337 i915_gem_retire_requests(to_i915(obj->base.dev)); 338 339 while ((vma = list_first_entry_or_null(&obj->vma_list, 340 struct i915_vma, 341 obj_link))) { 342 list_move_tail(&vma->obj_link, &still_in_list); 343 ret = i915_vma_unbind(vma); 344 if (ret) 345 break; 346 } 347 list_splice(&still_in_list, &obj->vma_list); 348 349 return ret; 350 } 351 352 static long 353 i915_gem_object_wait_fence(struct dma_fence *fence, 354 unsigned int flags, 355 long timeout, 356 struct intel_rps_client *rps) 357 { 358 struct drm_i915_gem_request *rq; 359 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 361 362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 363 return timeout; 364 365 if (!dma_fence_is_i915(fence)) 366 return dma_fence_wait_timeout(fence, 367 flags & I915_WAIT_INTERRUPTIBLE, 368 timeout); 369 370 rq = to_request(fence); 371 if (i915_gem_request_completed(rq)) 372 goto out; 373 374 /* This client is about to stall waiting for the GPU. In many cases 375 * this is undesirable and limits the throughput of the system, as 376 * many clients cannot continue processing user input/output whilst 377 * blocked. RPS autotuning may take tens of milliseconds to respond 378 * to the GPU load and thus incurs additional latency for the client. 379 * We can circumvent that by promoting the GPU frequency to maximum 380 * before we wait. This makes the GPU throttle up much more quickly 381 * (good for benchmarks and user experience, e.g. window animations), 382 * but at a cost of spending more power processing the workload 383 * (bad for battery). Not all clients even want their results 384 * immediately and for them we should just let the GPU select its own 385 * frequency to maximise efficiency. To prevent a single client from 386 * forcing the clocks too high for the whole system, we only allow 387 * each client to waitboost once in a busy period. 388 */ 389 if (rps) { 390 if (INTEL_GEN(rq->i915) >= 6) 391 gen6_rps_boost(rq, rps); 392 else 393 rps = NULL; 394 } 395 396 timeout = i915_wait_request(rq, flags, timeout); 397 398 out: 399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 400 i915_gem_request_retire_upto(rq); 401 402 return timeout; 403 } 404 405 static long 406 i915_gem_object_wait_reservation(struct reservation_object *resv, 407 unsigned int flags, 408 long timeout, 409 struct intel_rps_client *rps) 410 { 411 unsigned int seq = __read_seqcount_begin(&resv->seq); 412 struct dma_fence *excl; 413 bool prune_fences = false; 414 415 if (flags & I915_WAIT_ALL) { 416 struct dma_fence **shared; 417 unsigned int count, i; 418 int ret; 419 420 ret = reservation_object_get_fences_rcu(resv, 421 &excl, &count, &shared); 422 if (ret) 423 return ret; 424 425 for (i = 0; i < count; i++) { 426 timeout = i915_gem_object_wait_fence(shared[i], 427 flags, timeout, 428 rps); 429 if (timeout < 0) 430 break; 431 432 dma_fence_put(shared[i]); 433 } 434 435 for (; i < count; i++) 436 dma_fence_put(shared[i]); 437 kfree(shared); 438 439 prune_fences = count && timeout >= 0; 440 } else { 441 excl = reservation_object_get_excl_rcu(resv); 442 } 443 444 if (excl && timeout >= 0) { 445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps); 446 prune_fences = timeout >= 0; 447 } 448 449 dma_fence_put(excl); 450 451 /* Oportunistically prune the fences iff we know they have *all* been 452 * signaled and that the reservation object has not been changed (i.e. 453 * no new fences have been added). 454 */ 455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 456 if (reservation_object_trylock(resv)) { 457 if (!__read_seqcount_retry(&resv->seq, seq)) 458 reservation_object_add_excl_fence(resv, NULL); 459 reservation_object_unlock(resv); 460 } 461 } 462 463 return timeout; 464 } 465 466 static void __fence_set_priority(struct dma_fence *fence, int prio) 467 { 468 struct drm_i915_gem_request *rq; 469 struct intel_engine_cs *engine; 470 471 if (!dma_fence_is_i915(fence)) 472 return; 473 474 rq = to_request(fence); 475 engine = rq->engine; 476 if (!engine->schedule) 477 return; 478 479 engine->schedule(rq, prio); 480 } 481 482 static void fence_set_priority(struct dma_fence *fence, int prio) 483 { 484 /* Recurse once into a fence-array */ 485 if (dma_fence_is_array(fence)) { 486 struct dma_fence_array *array = to_dma_fence_array(fence); 487 int i; 488 489 for (i = 0; i < array->num_fences; i++) 490 __fence_set_priority(array->fences[i], prio); 491 } else { 492 __fence_set_priority(fence, prio); 493 } 494 } 495 496 int 497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 498 unsigned int flags, 499 int prio) 500 { 501 struct dma_fence *excl; 502 503 if (flags & I915_WAIT_ALL) { 504 struct dma_fence **shared; 505 unsigned int count, i; 506 int ret; 507 508 ret = reservation_object_get_fences_rcu(obj->resv, 509 &excl, &count, &shared); 510 if (ret) 511 return ret; 512 513 for (i = 0; i < count; i++) { 514 fence_set_priority(shared[i], prio); 515 dma_fence_put(shared[i]); 516 } 517 518 kfree(shared); 519 } else { 520 excl = reservation_object_get_excl_rcu(obj->resv); 521 } 522 523 if (excl) { 524 fence_set_priority(excl, prio); 525 dma_fence_put(excl); 526 } 527 return 0; 528 } 529 530 /** 531 * Waits for rendering to the object to be completed 532 * @obj: i915 gem object 533 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 534 * @timeout: how long to wait 535 * @rps: client (user process) to charge for any waitboosting 536 */ 537 int 538 i915_gem_object_wait(struct drm_i915_gem_object *obj, 539 unsigned int flags, 540 long timeout, 541 struct intel_rps_client *rps) 542 { 543 might_sleep(); 544 #if IS_ENABLED(CONFIG_LOCKDEP) 545 GEM_BUG_ON(debug_locks && 546 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 547 !!(flags & I915_WAIT_LOCKED)); 548 #endif 549 GEM_BUG_ON(timeout < 0); 550 551 timeout = i915_gem_object_wait_reservation(obj->resv, 552 flags, timeout, 553 rps); 554 return timeout < 0 ? timeout : 0; 555 } 556 557 static struct intel_rps_client *to_rps_client(struct drm_file *file) 558 { 559 struct drm_i915_file_private *fpriv = file->driver_priv; 560 561 return &fpriv->rps; 562 } 563 564 static int 565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 566 struct drm_i915_gem_pwrite *args, 567 struct drm_file *file) 568 { 569 void *vaddr = obj->phys_handle->vaddr + args->offset; 570 char __user *user_data = u64_to_user_ptr(args->data_ptr); 571 572 /* We manually control the domain here and pretend that it 573 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 574 */ 575 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 576 if (copy_from_user(vaddr, user_data, args->size)) 577 return -EFAULT; 578 579 drm_clflush_virt_range(vaddr, args->size); 580 i915_gem_chipset_flush(to_i915(obj->base.dev)); 581 582 intel_fb_obj_flush(obj, ORIGIN_CPU); 583 return 0; 584 } 585 586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 587 { 588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 589 } 590 591 void i915_gem_object_free(struct drm_i915_gem_object *obj) 592 { 593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 594 kmem_cache_free(dev_priv->objects, obj); 595 } 596 597 static int 598 i915_gem_create(struct drm_file *file, 599 struct drm_i915_private *dev_priv, 600 uint64_t size, 601 uint32_t *handle_p) 602 { 603 struct drm_i915_gem_object *obj; 604 int ret; 605 u32 handle; 606 607 size = roundup(size, PAGE_SIZE); 608 if (size == 0) 609 return -EINVAL; 610 611 /* Allocate the new object */ 612 obj = i915_gem_object_create(dev_priv, size); 613 if (IS_ERR(obj)) 614 return PTR_ERR(obj); 615 616 ret = drm_gem_handle_create(file, &obj->base, &handle); 617 /* drop reference from allocate - handle holds it now */ 618 i915_gem_object_put(obj); 619 if (ret) 620 return ret; 621 622 *handle_p = handle; 623 return 0; 624 } 625 626 int 627 i915_gem_dumb_create(struct drm_file *file, 628 struct drm_device *dev, 629 struct drm_mode_create_dumb *args) 630 { 631 /* have to work out size/pitch and return them */ 632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 633 args->size = args->pitch * args->height; 634 return i915_gem_create(file, to_i915(dev), 635 args->size, &args->handle); 636 } 637 638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 639 { 640 return !(obj->cache_level == I915_CACHE_NONE || 641 obj->cache_level == I915_CACHE_WT); 642 } 643 644 /** 645 * Creates a new mm object and returns a handle to it. 646 * @dev: drm device pointer 647 * @data: ioctl data blob 648 * @file: drm file pointer 649 */ 650 int 651 i915_gem_create_ioctl(struct drm_device *dev, void *data, 652 struct drm_file *file) 653 { 654 struct drm_i915_private *dev_priv = to_i915(dev); 655 struct drm_i915_gem_create *args = data; 656 657 i915_gem_flush_free_objects(dev_priv); 658 659 return i915_gem_create(file, dev_priv, 660 args->size, &args->handle); 661 } 662 663 static inline enum fb_op_origin 664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 665 { 666 return (domain == I915_GEM_DOMAIN_GTT ? 667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 668 } 669 670 static void 671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 672 { 673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 674 675 if (!(obj->base.write_domain & flush_domains)) 676 return; 677 678 /* No actual flushing is required for the GTT write domain. Writes 679 * to it "immediately" go to main memory as far as we know, so there's 680 * no chipset flush. It also doesn't land in render cache. 681 * 682 * However, we do have to enforce the order so that all writes through 683 * the GTT land before any writes to the device, such as updates to 684 * the GATT itself. 685 * 686 * We also have to wait a bit for the writes to land from the GTT. 687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 688 * timing. This issue has only been observed when switching quickly 689 * between GTT writes and CPU reads from inside the kernel on recent hw, 690 * and it appears to only affect discrete GTT blocks (i.e. on LLC 691 * system agents we cannot reproduce this behaviour). 692 */ 693 wmb(); 694 695 switch (obj->base.write_domain) { 696 case I915_GEM_DOMAIN_GTT: 697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) { 698 if (intel_runtime_pm_get_if_in_use(dev_priv)) { 699 spin_lock_irq(&dev_priv->uncore.lock); 700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base)); 701 spin_unlock_irq(&dev_priv->uncore.lock); 702 intel_runtime_pm_put(dev_priv); 703 } 704 } 705 706 intel_fb_obj_flush(obj, 707 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 708 break; 709 710 case I915_GEM_DOMAIN_CPU: 711 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 712 break; 713 714 case I915_GEM_DOMAIN_RENDER: 715 if (gpu_write_needs_clflush(obj)) 716 obj->cache_dirty = true; 717 break; 718 } 719 720 obj->base.write_domain = 0; 721 } 722 723 static inline int 724 __copy_to_user_swizzled(char __user *cpu_vaddr, 725 const char *gpu_vaddr, int gpu_offset, 726 int length) 727 { 728 int ret, cpu_offset = 0; 729 730 while (length > 0) { 731 int cacheline_end = ALIGN(gpu_offset + 1, 64); 732 int this_length = min(cacheline_end - gpu_offset, length); 733 int swizzled_gpu_offset = gpu_offset ^ 64; 734 735 ret = __copy_to_user(cpu_vaddr + cpu_offset, 736 gpu_vaddr + swizzled_gpu_offset, 737 this_length); 738 if (ret) 739 return ret + length; 740 741 cpu_offset += this_length; 742 gpu_offset += this_length; 743 length -= this_length; 744 } 745 746 return 0; 747 } 748 749 static inline int 750 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 751 const char __user *cpu_vaddr, 752 int length) 753 { 754 int ret, cpu_offset = 0; 755 756 while (length > 0) { 757 int cacheline_end = ALIGN(gpu_offset + 1, 64); 758 int this_length = min(cacheline_end - gpu_offset, length); 759 int swizzled_gpu_offset = gpu_offset ^ 64; 760 761 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 762 cpu_vaddr + cpu_offset, 763 this_length); 764 if (ret) 765 return ret + length; 766 767 cpu_offset += this_length; 768 gpu_offset += this_length; 769 length -= this_length; 770 } 771 772 return 0; 773 } 774 775 /* 776 * Pins the specified object's pages and synchronizes the object with 777 * GPU accesses. Sets needs_clflush to non-zero if the caller should 778 * flush the object from the CPU cache. 779 */ 780 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 781 unsigned int *needs_clflush) 782 { 783 int ret; 784 785 lockdep_assert_held(&obj->base.dev->struct_mutex); 786 787 *needs_clflush = 0; 788 if (!i915_gem_object_has_struct_page(obj)) 789 return -ENODEV; 790 791 ret = i915_gem_object_wait(obj, 792 I915_WAIT_INTERRUPTIBLE | 793 I915_WAIT_LOCKED, 794 MAX_SCHEDULE_TIMEOUT, 795 NULL); 796 if (ret) 797 return ret; 798 799 ret = i915_gem_object_pin_pages(obj); 800 if (ret) 801 return ret; 802 803 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 804 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 805 ret = i915_gem_object_set_to_cpu_domain(obj, false); 806 if (ret) 807 goto err_unpin; 808 else 809 goto out; 810 } 811 812 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 813 814 /* If we're not in the cpu read domain, set ourself into the gtt 815 * read domain and manually flush cachelines (if required). This 816 * optimizes for the case when the gpu will dirty the data 817 * anyway again before the next pread happens. 818 */ 819 if (!obj->cache_dirty && 820 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 821 *needs_clflush = CLFLUSH_BEFORE; 822 823 out: 824 /* return with the pages pinned */ 825 return 0; 826 827 err_unpin: 828 i915_gem_object_unpin_pages(obj); 829 return ret; 830 } 831 832 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 833 unsigned int *needs_clflush) 834 { 835 int ret; 836 837 lockdep_assert_held(&obj->base.dev->struct_mutex); 838 839 *needs_clflush = 0; 840 if (!i915_gem_object_has_struct_page(obj)) 841 return -ENODEV; 842 843 ret = i915_gem_object_wait(obj, 844 I915_WAIT_INTERRUPTIBLE | 845 I915_WAIT_LOCKED | 846 I915_WAIT_ALL, 847 MAX_SCHEDULE_TIMEOUT, 848 NULL); 849 if (ret) 850 return ret; 851 852 ret = i915_gem_object_pin_pages(obj); 853 if (ret) 854 return ret; 855 856 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 857 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 858 ret = i915_gem_object_set_to_cpu_domain(obj, true); 859 if (ret) 860 goto err_unpin; 861 else 862 goto out; 863 } 864 865 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 866 867 /* If we're not in the cpu write domain, set ourself into the 868 * gtt write domain and manually flush cachelines (as required). 869 * This optimizes for the case when the gpu will use the data 870 * right away and we therefore have to clflush anyway. 871 */ 872 if (!obj->cache_dirty) { 873 *needs_clflush |= CLFLUSH_AFTER; 874 875 /* 876 * Same trick applies to invalidate partially written 877 * cachelines read before writing. 878 */ 879 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 880 *needs_clflush |= CLFLUSH_BEFORE; 881 } 882 883 out: 884 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 885 obj->mm.dirty = true; 886 /* return with the pages pinned */ 887 return 0; 888 889 err_unpin: 890 i915_gem_object_unpin_pages(obj); 891 return ret; 892 } 893 894 static void 895 shmem_clflush_swizzled_range(char *addr, unsigned long length, 896 bool swizzled) 897 { 898 if (unlikely(swizzled)) { 899 unsigned long start = (unsigned long) addr; 900 unsigned long end = (unsigned long) addr + length; 901 902 /* For swizzling simply ensure that we always flush both 903 * channels. Lame, but simple and it works. Swizzled 904 * pwrite/pread is far from a hotpath - current userspace 905 * doesn't use it at all. */ 906 start = round_down(start, 128); 907 end = round_up(end, 128); 908 909 drm_clflush_virt_range((void *)start, end - start); 910 } else { 911 drm_clflush_virt_range(addr, length); 912 } 913 914 } 915 916 /* Only difference to the fast-path function is that this can handle bit17 917 * and uses non-atomic copy and kmap functions. */ 918 static int 919 shmem_pread_slow(struct page *page, int offset, int length, 920 char __user *user_data, 921 bool page_do_bit17_swizzling, bool needs_clflush) 922 { 923 char *vaddr; 924 int ret; 925 926 vaddr = kmap(page); 927 if (needs_clflush) 928 shmem_clflush_swizzled_range(vaddr + offset, length, 929 page_do_bit17_swizzling); 930 931 if (page_do_bit17_swizzling) 932 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 933 else 934 ret = __copy_to_user(user_data, vaddr + offset, length); 935 kunmap(page); 936 937 return ret ? - EFAULT : 0; 938 } 939 940 static int 941 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 942 bool page_do_bit17_swizzling, bool needs_clflush) 943 { 944 int ret; 945 946 ret = -ENODEV; 947 if (!page_do_bit17_swizzling) { 948 char *vaddr = kmap_atomic(page); 949 950 if (needs_clflush) 951 drm_clflush_virt_range(vaddr + offset, length); 952 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 953 kunmap_atomic(vaddr); 954 } 955 if (ret == 0) 956 return 0; 957 958 return shmem_pread_slow(page, offset, length, user_data, 959 page_do_bit17_swizzling, needs_clflush); 960 } 961 962 static int 963 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 964 struct drm_i915_gem_pread *args) 965 { 966 char __user *user_data; 967 u64 remain; 968 unsigned int obj_do_bit17_swizzling; 969 unsigned int needs_clflush; 970 unsigned int idx, offset; 971 int ret; 972 973 obj_do_bit17_swizzling = 0; 974 if (i915_gem_object_needs_bit17_swizzle(obj)) 975 obj_do_bit17_swizzling = BIT(17); 976 977 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 978 if (ret) 979 return ret; 980 981 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 982 mutex_unlock(&obj->base.dev->struct_mutex); 983 if (ret) 984 return ret; 985 986 remain = args->size; 987 user_data = u64_to_user_ptr(args->data_ptr); 988 offset = offset_in_page(args->offset); 989 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 990 struct page *page = i915_gem_object_get_page(obj, idx); 991 int length; 992 993 length = remain; 994 if (offset + length > PAGE_SIZE) 995 length = PAGE_SIZE - offset; 996 997 ret = shmem_pread(page, offset, length, user_data, 998 page_to_phys(page) & obj_do_bit17_swizzling, 999 needs_clflush); 1000 if (ret) 1001 break; 1002 1003 remain -= length; 1004 user_data += length; 1005 offset = 0; 1006 } 1007 1008 i915_gem_obj_finish_shmem_access(obj); 1009 return ret; 1010 } 1011 1012 static inline bool 1013 gtt_user_read(struct io_mapping *mapping, 1014 loff_t base, int offset, 1015 char __user *user_data, int length) 1016 { 1017 void *vaddr; 1018 unsigned long unwritten; 1019 1020 /* We can use the cpu mem copy function because this is X86. */ 1021 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1022 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length); 1023 io_mapping_unmap_atomic(vaddr); 1024 if (unwritten) { 1025 vaddr = (void __force *) 1026 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1027 unwritten = copy_to_user(user_data, vaddr + offset, length); 1028 io_mapping_unmap(vaddr); 1029 } 1030 return unwritten; 1031 } 1032 1033 static int 1034 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1035 const struct drm_i915_gem_pread *args) 1036 { 1037 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1038 struct i915_ggtt *ggtt = &i915->ggtt; 1039 struct drm_mm_node node; 1040 struct i915_vma *vma; 1041 void __user *user_data; 1042 u64 remain, offset; 1043 int ret; 1044 1045 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1046 if (ret) 1047 return ret; 1048 1049 intel_runtime_pm_get(i915); 1050 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1051 PIN_MAPPABLE | PIN_NONBLOCK); 1052 if (!IS_ERR(vma)) { 1053 node.start = i915_ggtt_offset(vma); 1054 node.allocated = false; 1055 ret = i915_vma_put_fence(vma); 1056 if (ret) { 1057 i915_vma_unpin(vma); 1058 vma = ERR_PTR(ret); 1059 } 1060 } 1061 if (IS_ERR(vma)) { 1062 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1063 if (ret) 1064 goto out_unlock; 1065 GEM_BUG_ON(!node.allocated); 1066 } 1067 1068 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1069 if (ret) 1070 goto out_unpin; 1071 1072 mutex_unlock(&i915->drm.struct_mutex); 1073 1074 user_data = u64_to_user_ptr(args->data_ptr); 1075 remain = args->size; 1076 offset = args->offset; 1077 1078 while (remain > 0) { 1079 /* Operation in this page 1080 * 1081 * page_base = page offset within aperture 1082 * page_offset = offset within page 1083 * page_length = bytes to copy for this page 1084 */ 1085 u32 page_base = node.start; 1086 unsigned page_offset = offset_in_page(offset); 1087 unsigned page_length = PAGE_SIZE - page_offset; 1088 page_length = remain < page_length ? remain : page_length; 1089 if (node.allocated) { 1090 wmb(); 1091 ggtt->base.insert_page(&ggtt->base, 1092 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1093 node.start, I915_CACHE_NONE, 0); 1094 wmb(); 1095 } else { 1096 page_base += offset & PAGE_MASK; 1097 } 1098 1099 if (gtt_user_read(&ggtt->mappable, page_base, page_offset, 1100 user_data, page_length)) { 1101 ret = -EFAULT; 1102 break; 1103 } 1104 1105 remain -= page_length; 1106 user_data += page_length; 1107 offset += page_length; 1108 } 1109 1110 mutex_lock(&i915->drm.struct_mutex); 1111 out_unpin: 1112 if (node.allocated) { 1113 wmb(); 1114 ggtt->base.clear_range(&ggtt->base, 1115 node.start, node.size); 1116 remove_mappable_node(&node); 1117 } else { 1118 i915_vma_unpin(vma); 1119 } 1120 out_unlock: 1121 intel_runtime_pm_put(i915); 1122 mutex_unlock(&i915->drm.struct_mutex); 1123 1124 return ret; 1125 } 1126 1127 /** 1128 * Reads data from the object referenced by handle. 1129 * @dev: drm device pointer 1130 * @data: ioctl data blob 1131 * @file: drm file pointer 1132 * 1133 * On error, the contents of *data are undefined. 1134 */ 1135 int 1136 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1137 struct drm_file *file) 1138 { 1139 struct drm_i915_gem_pread *args = data; 1140 struct drm_i915_gem_object *obj; 1141 int ret; 1142 1143 if (args->size == 0) 1144 return 0; 1145 1146 if (!access_ok(VERIFY_WRITE, 1147 u64_to_user_ptr(args->data_ptr), 1148 args->size)) 1149 return -EFAULT; 1150 1151 obj = i915_gem_object_lookup(file, args->handle); 1152 if (!obj) 1153 return -ENOENT; 1154 1155 /* Bounds check source. */ 1156 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1157 ret = -EINVAL; 1158 goto out; 1159 } 1160 1161 trace_i915_gem_object_pread(obj, args->offset, args->size); 1162 1163 ret = i915_gem_object_wait(obj, 1164 I915_WAIT_INTERRUPTIBLE, 1165 MAX_SCHEDULE_TIMEOUT, 1166 to_rps_client(file)); 1167 if (ret) 1168 goto out; 1169 1170 ret = i915_gem_object_pin_pages(obj); 1171 if (ret) 1172 goto out; 1173 1174 ret = i915_gem_shmem_pread(obj, args); 1175 if (ret == -EFAULT || ret == -ENODEV) 1176 ret = i915_gem_gtt_pread(obj, args); 1177 1178 i915_gem_object_unpin_pages(obj); 1179 out: 1180 i915_gem_object_put(obj); 1181 return ret; 1182 } 1183 1184 /* This is the fast write path which cannot handle 1185 * page faults in the source data 1186 */ 1187 1188 static inline bool 1189 ggtt_write(struct io_mapping *mapping, 1190 loff_t base, int offset, 1191 char __user *user_data, int length) 1192 { 1193 void *vaddr; 1194 unsigned long unwritten; 1195 1196 /* We can use the cpu mem copy function because this is X86. */ 1197 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1198 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset, 1199 user_data, length); 1200 io_mapping_unmap_atomic(vaddr); 1201 if (unwritten) { 1202 vaddr = (void __force *) 1203 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1204 unwritten = copy_from_user(vaddr + offset, user_data, length); 1205 io_mapping_unmap(vaddr); 1206 } 1207 1208 return unwritten; 1209 } 1210 1211 /** 1212 * This is the fast pwrite path, where we copy the data directly from the 1213 * user into the GTT, uncached. 1214 * @obj: i915 GEM object 1215 * @args: pwrite arguments structure 1216 */ 1217 static int 1218 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1219 const struct drm_i915_gem_pwrite *args) 1220 { 1221 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1222 struct i915_ggtt *ggtt = &i915->ggtt; 1223 struct drm_mm_node node; 1224 struct i915_vma *vma; 1225 u64 remain, offset; 1226 void __user *user_data; 1227 int ret; 1228 1229 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1230 if (ret) 1231 return ret; 1232 1233 intel_runtime_pm_get(i915); 1234 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1235 PIN_MAPPABLE | PIN_NONBLOCK); 1236 if (!IS_ERR(vma)) { 1237 node.start = i915_ggtt_offset(vma); 1238 node.allocated = false; 1239 ret = i915_vma_put_fence(vma); 1240 if (ret) { 1241 i915_vma_unpin(vma); 1242 vma = ERR_PTR(ret); 1243 } 1244 } 1245 if (IS_ERR(vma)) { 1246 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1247 if (ret) 1248 goto out_unlock; 1249 GEM_BUG_ON(!node.allocated); 1250 } 1251 1252 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1253 if (ret) 1254 goto out_unpin; 1255 1256 mutex_unlock(&i915->drm.struct_mutex); 1257 1258 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1259 1260 user_data = u64_to_user_ptr(args->data_ptr); 1261 offset = args->offset; 1262 remain = args->size; 1263 while (remain) { 1264 /* Operation in this page 1265 * 1266 * page_base = page offset within aperture 1267 * page_offset = offset within page 1268 * page_length = bytes to copy for this page 1269 */ 1270 u32 page_base = node.start; 1271 unsigned int page_offset = offset_in_page(offset); 1272 unsigned int page_length = PAGE_SIZE - page_offset; 1273 page_length = remain < page_length ? remain : page_length; 1274 if (node.allocated) { 1275 wmb(); /* flush the write before we modify the GGTT */ 1276 ggtt->base.insert_page(&ggtt->base, 1277 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1278 node.start, I915_CACHE_NONE, 0); 1279 wmb(); /* flush modifications to the GGTT (insert_page) */ 1280 } else { 1281 page_base += offset & PAGE_MASK; 1282 } 1283 /* If we get a fault while copying data, then (presumably) our 1284 * source page isn't available. Return the error and we'll 1285 * retry in the slow path. 1286 * If the object is non-shmem backed, we retry again with the 1287 * path that handles page fault. 1288 */ 1289 if (ggtt_write(&ggtt->mappable, page_base, page_offset, 1290 user_data, page_length)) { 1291 ret = -EFAULT; 1292 break; 1293 } 1294 1295 remain -= page_length; 1296 user_data += page_length; 1297 offset += page_length; 1298 } 1299 intel_fb_obj_flush(obj, ORIGIN_CPU); 1300 1301 mutex_lock(&i915->drm.struct_mutex); 1302 out_unpin: 1303 if (node.allocated) { 1304 wmb(); 1305 ggtt->base.clear_range(&ggtt->base, 1306 node.start, node.size); 1307 remove_mappable_node(&node); 1308 } else { 1309 i915_vma_unpin(vma); 1310 } 1311 out_unlock: 1312 intel_runtime_pm_put(i915); 1313 mutex_unlock(&i915->drm.struct_mutex); 1314 return ret; 1315 } 1316 1317 static int 1318 shmem_pwrite_slow(struct page *page, int offset, int length, 1319 char __user *user_data, 1320 bool page_do_bit17_swizzling, 1321 bool needs_clflush_before, 1322 bool needs_clflush_after) 1323 { 1324 char *vaddr; 1325 int ret; 1326 1327 vaddr = kmap(page); 1328 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1329 shmem_clflush_swizzled_range(vaddr + offset, length, 1330 page_do_bit17_swizzling); 1331 if (page_do_bit17_swizzling) 1332 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1333 length); 1334 else 1335 ret = __copy_from_user(vaddr + offset, user_data, length); 1336 if (needs_clflush_after) 1337 shmem_clflush_swizzled_range(vaddr + offset, length, 1338 page_do_bit17_swizzling); 1339 kunmap(page); 1340 1341 return ret ? -EFAULT : 0; 1342 } 1343 1344 /* Per-page copy function for the shmem pwrite fastpath. 1345 * Flushes invalid cachelines before writing to the target if 1346 * needs_clflush_before is set and flushes out any written cachelines after 1347 * writing if needs_clflush is set. 1348 */ 1349 static int 1350 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1351 bool page_do_bit17_swizzling, 1352 bool needs_clflush_before, 1353 bool needs_clflush_after) 1354 { 1355 int ret; 1356 1357 ret = -ENODEV; 1358 if (!page_do_bit17_swizzling) { 1359 char *vaddr = kmap_atomic(page); 1360 1361 if (needs_clflush_before) 1362 drm_clflush_virt_range(vaddr + offset, len); 1363 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1364 if (needs_clflush_after) 1365 drm_clflush_virt_range(vaddr + offset, len); 1366 1367 kunmap_atomic(vaddr); 1368 } 1369 if (ret == 0) 1370 return ret; 1371 1372 return shmem_pwrite_slow(page, offset, len, user_data, 1373 page_do_bit17_swizzling, 1374 needs_clflush_before, 1375 needs_clflush_after); 1376 } 1377 1378 static int 1379 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1380 const struct drm_i915_gem_pwrite *args) 1381 { 1382 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1383 void __user *user_data; 1384 u64 remain; 1385 unsigned int obj_do_bit17_swizzling; 1386 unsigned int partial_cacheline_write; 1387 unsigned int needs_clflush; 1388 unsigned int offset, idx; 1389 int ret; 1390 1391 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1392 if (ret) 1393 return ret; 1394 1395 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1396 mutex_unlock(&i915->drm.struct_mutex); 1397 if (ret) 1398 return ret; 1399 1400 obj_do_bit17_swizzling = 0; 1401 if (i915_gem_object_needs_bit17_swizzle(obj)) 1402 obj_do_bit17_swizzling = BIT(17); 1403 1404 /* If we don't overwrite a cacheline completely we need to be 1405 * careful to have up-to-date data by first clflushing. Don't 1406 * overcomplicate things and flush the entire patch. 1407 */ 1408 partial_cacheline_write = 0; 1409 if (needs_clflush & CLFLUSH_BEFORE) 1410 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1411 1412 user_data = u64_to_user_ptr(args->data_ptr); 1413 remain = args->size; 1414 offset = offset_in_page(args->offset); 1415 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1416 struct page *page = i915_gem_object_get_page(obj, idx); 1417 int length; 1418 1419 length = remain; 1420 if (offset + length > PAGE_SIZE) 1421 length = PAGE_SIZE - offset; 1422 1423 ret = shmem_pwrite(page, offset, length, user_data, 1424 page_to_phys(page) & obj_do_bit17_swizzling, 1425 (offset | length) & partial_cacheline_write, 1426 needs_clflush & CLFLUSH_AFTER); 1427 if (ret) 1428 break; 1429 1430 remain -= length; 1431 user_data += length; 1432 offset = 0; 1433 } 1434 1435 intel_fb_obj_flush(obj, ORIGIN_CPU); 1436 i915_gem_obj_finish_shmem_access(obj); 1437 return ret; 1438 } 1439 1440 /** 1441 * Writes data to the object referenced by handle. 1442 * @dev: drm device 1443 * @data: ioctl data blob 1444 * @file: drm file 1445 * 1446 * On error, the contents of the buffer that were to be modified are undefined. 1447 */ 1448 int 1449 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1450 struct drm_file *file) 1451 { 1452 struct drm_i915_gem_pwrite *args = data; 1453 struct drm_i915_gem_object *obj; 1454 int ret; 1455 1456 if (args->size == 0) 1457 return 0; 1458 1459 if (!access_ok(VERIFY_READ, 1460 u64_to_user_ptr(args->data_ptr), 1461 args->size)) 1462 return -EFAULT; 1463 1464 obj = i915_gem_object_lookup(file, args->handle); 1465 if (!obj) 1466 return -ENOENT; 1467 1468 /* Bounds check destination. */ 1469 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1470 ret = -EINVAL; 1471 goto err; 1472 } 1473 1474 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1475 1476 ret = -ENODEV; 1477 if (obj->ops->pwrite) 1478 ret = obj->ops->pwrite(obj, args); 1479 if (ret != -ENODEV) 1480 goto err; 1481 1482 ret = i915_gem_object_wait(obj, 1483 I915_WAIT_INTERRUPTIBLE | 1484 I915_WAIT_ALL, 1485 MAX_SCHEDULE_TIMEOUT, 1486 to_rps_client(file)); 1487 if (ret) 1488 goto err; 1489 1490 ret = i915_gem_object_pin_pages(obj); 1491 if (ret) 1492 goto err; 1493 1494 ret = -EFAULT; 1495 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1496 * it would end up going through the fenced access, and we'll get 1497 * different detiling behavior between reading and writing. 1498 * pread/pwrite currently are reading and writing from the CPU 1499 * perspective, requiring manual detiling by the client. 1500 */ 1501 if (!i915_gem_object_has_struct_page(obj) || 1502 cpu_write_needs_clflush(obj)) 1503 /* Note that the gtt paths might fail with non-page-backed user 1504 * pointers (e.g. gtt mappings when moving data between 1505 * textures). Fallback to the shmem path in that case. 1506 */ 1507 ret = i915_gem_gtt_pwrite_fast(obj, args); 1508 1509 if (ret == -EFAULT || ret == -ENOSPC) { 1510 if (obj->phys_handle) 1511 ret = i915_gem_phys_pwrite(obj, args, file); 1512 else 1513 ret = i915_gem_shmem_pwrite(obj, args); 1514 } 1515 1516 i915_gem_object_unpin_pages(obj); 1517 err: 1518 i915_gem_object_put(obj); 1519 return ret; 1520 } 1521 1522 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1523 { 1524 struct drm_i915_private *i915; 1525 struct list_head *list; 1526 struct i915_vma *vma; 1527 1528 list_for_each_entry(vma, &obj->vma_list, obj_link) { 1529 if (!i915_vma_is_ggtt(vma)) 1530 break; 1531 1532 if (i915_vma_is_active(vma)) 1533 continue; 1534 1535 if (!drm_mm_node_allocated(&vma->node)) 1536 continue; 1537 1538 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1539 } 1540 1541 i915 = to_i915(obj->base.dev); 1542 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1543 list_move_tail(&obj->global_link, list); 1544 } 1545 1546 /** 1547 * Called when user space prepares to use an object with the CPU, either 1548 * through the mmap ioctl's mapping or a GTT mapping. 1549 * @dev: drm device 1550 * @data: ioctl data blob 1551 * @file: drm file 1552 */ 1553 int 1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1555 struct drm_file *file) 1556 { 1557 struct drm_i915_gem_set_domain *args = data; 1558 struct drm_i915_gem_object *obj; 1559 uint32_t read_domains = args->read_domains; 1560 uint32_t write_domain = args->write_domain; 1561 int err; 1562 1563 /* Only handle setting domains to types used by the CPU. */ 1564 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1565 return -EINVAL; 1566 1567 /* Having something in the write domain implies it's in the read 1568 * domain, and only that read domain. Enforce that in the request. 1569 */ 1570 if (write_domain != 0 && read_domains != write_domain) 1571 return -EINVAL; 1572 1573 obj = i915_gem_object_lookup(file, args->handle); 1574 if (!obj) 1575 return -ENOENT; 1576 1577 /* Try to flush the object off the GPU without holding the lock. 1578 * We will repeat the flush holding the lock in the normal manner 1579 * to catch cases where we are gazumped. 1580 */ 1581 err = i915_gem_object_wait(obj, 1582 I915_WAIT_INTERRUPTIBLE | 1583 (write_domain ? I915_WAIT_ALL : 0), 1584 MAX_SCHEDULE_TIMEOUT, 1585 to_rps_client(file)); 1586 if (err) 1587 goto out; 1588 1589 /* Flush and acquire obj->pages so that we are coherent through 1590 * direct access in memory with previous cached writes through 1591 * shmemfs and that our cache domain tracking remains valid. 1592 * For example, if the obj->filp was moved to swap without us 1593 * being notified and releasing the pages, we would mistakenly 1594 * continue to assume that the obj remained out of the CPU cached 1595 * domain. 1596 */ 1597 err = i915_gem_object_pin_pages(obj); 1598 if (err) 1599 goto out; 1600 1601 err = i915_mutex_lock_interruptible(dev); 1602 if (err) 1603 goto out_unpin; 1604 1605 if (read_domains & I915_GEM_DOMAIN_WC) 1606 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1607 else if (read_domains & I915_GEM_DOMAIN_GTT) 1608 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1609 else 1610 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1611 1612 /* And bump the LRU for this access */ 1613 i915_gem_object_bump_inactive_ggtt(obj); 1614 1615 mutex_unlock(&dev->struct_mutex); 1616 1617 if (write_domain != 0) 1618 intel_fb_obj_invalidate(obj, 1619 fb_write_origin(obj, write_domain)); 1620 1621 out_unpin: 1622 i915_gem_object_unpin_pages(obj); 1623 out: 1624 i915_gem_object_put(obj); 1625 return err; 1626 } 1627 1628 /** 1629 * Called when user space has done writes to this buffer 1630 * @dev: drm device 1631 * @data: ioctl data blob 1632 * @file: drm file 1633 */ 1634 int 1635 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1636 struct drm_file *file) 1637 { 1638 struct drm_i915_gem_sw_finish *args = data; 1639 struct drm_i915_gem_object *obj; 1640 1641 obj = i915_gem_object_lookup(file, args->handle); 1642 if (!obj) 1643 return -ENOENT; 1644 1645 /* Pinned buffers may be scanout, so flush the cache */ 1646 i915_gem_object_flush_if_display(obj); 1647 i915_gem_object_put(obj); 1648 1649 return 0; 1650 } 1651 1652 /** 1653 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1654 * it is mapped to. 1655 * @dev: drm device 1656 * @data: ioctl data blob 1657 * @file: drm file 1658 * 1659 * While the mapping holds a reference on the contents of the object, it doesn't 1660 * imply a ref on the object itself. 1661 * 1662 * IMPORTANT: 1663 * 1664 * DRM driver writers who look a this function as an example for how to do GEM 1665 * mmap support, please don't implement mmap support like here. The modern way 1666 * to implement DRM mmap support is with an mmap offset ioctl (like 1667 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1668 * That way debug tooling like valgrind will understand what's going on, hiding 1669 * the mmap call in a driver private ioctl will break that. The i915 driver only 1670 * does cpu mmaps this way because we didn't know better. 1671 */ 1672 int 1673 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1674 struct drm_file *file) 1675 { 1676 struct drm_i915_gem_mmap *args = data; 1677 struct drm_i915_gem_object *obj; 1678 unsigned long addr; 1679 1680 if (args->flags & ~(I915_MMAP_WC)) 1681 return -EINVAL; 1682 1683 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1684 return -ENODEV; 1685 1686 obj = i915_gem_object_lookup(file, args->handle); 1687 if (!obj) 1688 return -ENOENT; 1689 1690 /* prime objects have no backing filp to GEM mmap 1691 * pages from. 1692 */ 1693 if (!obj->base.filp) { 1694 i915_gem_object_put(obj); 1695 return -EINVAL; 1696 } 1697 1698 addr = vm_mmap(obj->base.filp, 0, args->size, 1699 PROT_READ | PROT_WRITE, MAP_SHARED, 1700 args->offset); 1701 if (args->flags & I915_MMAP_WC) { 1702 struct mm_struct *mm = current->mm; 1703 struct vm_area_struct *vma; 1704 1705 if (down_write_killable(&mm->mmap_sem)) { 1706 i915_gem_object_put(obj); 1707 return -EINTR; 1708 } 1709 vma = find_vma(mm, addr); 1710 if (vma) 1711 vma->vm_page_prot = 1712 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1713 else 1714 addr = -ENOMEM; 1715 up_write(&mm->mmap_sem); 1716 1717 /* This may race, but that's ok, it only gets set */ 1718 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1719 } 1720 i915_gem_object_put(obj); 1721 if (IS_ERR((void *)addr)) 1722 return addr; 1723 1724 args->addr_ptr = (uint64_t) addr; 1725 1726 return 0; 1727 } 1728 1729 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1730 { 1731 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1732 } 1733 1734 /** 1735 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1736 * 1737 * A history of the GTT mmap interface: 1738 * 1739 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1740 * aligned and suitable for fencing, and still fit into the available 1741 * mappable space left by the pinned display objects. A classic problem 1742 * we called the page-fault-of-doom where we would ping-pong between 1743 * two objects that could not fit inside the GTT and so the memcpy 1744 * would page one object in at the expense of the other between every 1745 * single byte. 1746 * 1747 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1748 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1749 * object is too large for the available space (or simply too large 1750 * for the mappable aperture!), a view is created instead and faulted 1751 * into userspace. (This view is aligned and sized appropriately for 1752 * fenced access.) 1753 * 1754 * 2 - Recognise WC as a separate cache domain so that we can flush the 1755 * delayed writes via GTT before performing direct access via WC. 1756 * 1757 * Restrictions: 1758 * 1759 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1760 * hangs on some architectures, corruption on others. An attempt to service 1761 * a GTT page fault from a snoopable object will generate a SIGBUS. 1762 * 1763 * * the object must be able to fit into RAM (physical memory, though no 1764 * limited to the mappable aperture). 1765 * 1766 * 1767 * Caveats: 1768 * 1769 * * a new GTT page fault will synchronize rendering from the GPU and flush 1770 * all data to system memory. Subsequent access will not be synchronized. 1771 * 1772 * * all mappings are revoked on runtime device suspend. 1773 * 1774 * * there are only 8, 16 or 32 fence registers to share between all users 1775 * (older machines require fence register for display and blitter access 1776 * as well). Contention of the fence registers will cause the previous users 1777 * to be unmapped and any new access will generate new page faults. 1778 * 1779 * * running out of memory while servicing a fault may generate a SIGBUS, 1780 * rather than the expected SIGSEGV. 1781 */ 1782 int i915_gem_mmap_gtt_version(void) 1783 { 1784 return 2; 1785 } 1786 1787 static inline struct i915_ggtt_view 1788 compute_partial_view(struct drm_i915_gem_object *obj, 1789 pgoff_t page_offset, 1790 unsigned int chunk) 1791 { 1792 struct i915_ggtt_view view; 1793 1794 if (i915_gem_object_is_tiled(obj)) 1795 chunk = roundup(chunk, tile_row_pages(obj)); 1796 1797 view.type = I915_GGTT_VIEW_PARTIAL; 1798 view.partial.offset = rounddown(page_offset, chunk); 1799 view.partial.size = 1800 min_t(unsigned int, chunk, 1801 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1802 1803 /* If the partial covers the entire object, just create a normal VMA. */ 1804 if (chunk >= obj->base.size >> PAGE_SHIFT) 1805 view.type = I915_GGTT_VIEW_NORMAL; 1806 1807 return view; 1808 } 1809 1810 /** 1811 * i915_gem_fault - fault a page into the GTT 1812 * @vmf: fault info 1813 * 1814 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1815 * from userspace. The fault handler takes care of binding the object to 1816 * the GTT (if needed), allocating and programming a fence register (again, 1817 * only if needed based on whether the old reg is still valid or the object 1818 * is tiled) and inserting a new PTE into the faulting process. 1819 * 1820 * Note that the faulting process may involve evicting existing objects 1821 * from the GTT and/or fence registers to make room. So performance may 1822 * suffer if the GTT working set is large or there are few fence registers 1823 * left. 1824 * 1825 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1826 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1827 */ 1828 int i915_gem_fault(struct vm_fault *vmf) 1829 { 1830 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1831 struct vm_area_struct *area = vmf->vma; 1832 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1833 struct drm_device *dev = obj->base.dev; 1834 struct drm_i915_private *dev_priv = to_i915(dev); 1835 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1836 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1837 struct i915_vma *vma; 1838 pgoff_t page_offset; 1839 unsigned int flags; 1840 int ret; 1841 1842 /* We don't use vmf->pgoff since that has the fake offset */ 1843 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1844 1845 trace_i915_gem_object_fault(obj, page_offset, true, write); 1846 1847 /* Try to flush the object off the GPU first without holding the lock. 1848 * Upon acquiring the lock, we will perform our sanity checks and then 1849 * repeat the flush holding the lock in the normal manner to catch cases 1850 * where we are gazumped. 1851 */ 1852 ret = i915_gem_object_wait(obj, 1853 I915_WAIT_INTERRUPTIBLE, 1854 MAX_SCHEDULE_TIMEOUT, 1855 NULL); 1856 if (ret) 1857 goto err; 1858 1859 ret = i915_gem_object_pin_pages(obj); 1860 if (ret) 1861 goto err; 1862 1863 intel_runtime_pm_get(dev_priv); 1864 1865 ret = i915_mutex_lock_interruptible(dev); 1866 if (ret) 1867 goto err_rpm; 1868 1869 /* Access to snoopable pages through the GTT is incoherent. */ 1870 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1871 ret = -EFAULT; 1872 goto err_unlock; 1873 } 1874 1875 /* If the object is smaller than a couple of partial vma, it is 1876 * not worth only creating a single partial vma - we may as well 1877 * clear enough space for the full object. 1878 */ 1879 flags = PIN_MAPPABLE; 1880 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1881 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1882 1883 /* Now pin it into the GTT as needed */ 1884 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1885 if (IS_ERR(vma)) { 1886 /* Use a partial view if it is bigger than available space */ 1887 struct i915_ggtt_view view = 1888 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1889 1890 /* Userspace is now writing through an untracked VMA, abandon 1891 * all hope that the hardware is able to track future writes. 1892 */ 1893 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1894 1895 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1896 } 1897 if (IS_ERR(vma)) { 1898 ret = PTR_ERR(vma); 1899 goto err_unlock; 1900 } 1901 1902 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1903 if (ret) 1904 goto err_unpin; 1905 1906 ret = i915_vma_get_fence(vma); 1907 if (ret) 1908 goto err_unpin; 1909 1910 /* Mark as being mmapped into userspace for later revocation */ 1911 assert_rpm_wakelock_held(dev_priv); 1912 if (list_empty(&obj->userfault_link)) 1913 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1914 1915 /* Finally, remap it using the new GTT offset */ 1916 ret = remap_io_mapping(area, 1917 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1918 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, 1919 min_t(u64, vma->size, area->vm_end - area->vm_start), 1920 &ggtt->mappable); 1921 1922 err_unpin: 1923 __i915_vma_unpin(vma); 1924 err_unlock: 1925 mutex_unlock(&dev->struct_mutex); 1926 err_rpm: 1927 intel_runtime_pm_put(dev_priv); 1928 i915_gem_object_unpin_pages(obj); 1929 err: 1930 switch (ret) { 1931 case -EIO: 1932 /* 1933 * We eat errors when the gpu is terminally wedged to avoid 1934 * userspace unduly crashing (gl has no provisions for mmaps to 1935 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1936 * and so needs to be reported. 1937 */ 1938 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1939 ret = VM_FAULT_SIGBUS; 1940 break; 1941 } 1942 case -EAGAIN: 1943 /* 1944 * EAGAIN means the gpu is hung and we'll wait for the error 1945 * handler to reset everything when re-faulting in 1946 * i915_mutex_lock_interruptible. 1947 */ 1948 case 0: 1949 case -ERESTARTSYS: 1950 case -EINTR: 1951 case -EBUSY: 1952 /* 1953 * EBUSY is ok: this just means that another thread 1954 * already did the job. 1955 */ 1956 ret = VM_FAULT_NOPAGE; 1957 break; 1958 case -ENOMEM: 1959 ret = VM_FAULT_OOM; 1960 break; 1961 case -ENOSPC: 1962 case -EFAULT: 1963 ret = VM_FAULT_SIGBUS; 1964 break; 1965 default: 1966 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1967 ret = VM_FAULT_SIGBUS; 1968 break; 1969 } 1970 return ret; 1971 } 1972 1973 /** 1974 * i915_gem_release_mmap - remove physical page mappings 1975 * @obj: obj in question 1976 * 1977 * Preserve the reservation of the mmapping with the DRM core code, but 1978 * relinquish ownership of the pages back to the system. 1979 * 1980 * It is vital that we remove the page mapping if we have mapped a tiled 1981 * object through the GTT and then lose the fence register due to 1982 * resource pressure. Similarly if the object has been moved out of the 1983 * aperture, than pages mapped into userspace must be revoked. Removing the 1984 * mapping will then trigger a page fault on the next user access, allowing 1985 * fixup by i915_gem_fault(). 1986 */ 1987 void 1988 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1989 { 1990 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1991 1992 /* Serialisation between user GTT access and our code depends upon 1993 * revoking the CPU's PTE whilst the mutex is held. The next user 1994 * pagefault then has to wait until we release the mutex. 1995 * 1996 * Note that RPM complicates somewhat by adding an additional 1997 * requirement that operations to the GGTT be made holding the RPM 1998 * wakeref. 1999 */ 2000 lockdep_assert_held(&i915->drm.struct_mutex); 2001 intel_runtime_pm_get(i915); 2002 2003 if (list_empty(&obj->userfault_link)) 2004 goto out; 2005 2006 list_del_init(&obj->userfault_link); 2007 drm_vma_node_unmap(&obj->base.vma_node, 2008 obj->base.dev->anon_inode->i_mapping); 2009 2010 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2011 * memory transactions from userspace before we return. The TLB 2012 * flushing implied above by changing the PTE above *should* be 2013 * sufficient, an extra barrier here just provides us with a bit 2014 * of paranoid documentation about our requirement to serialise 2015 * memory writes before touching registers / GSM. 2016 */ 2017 wmb(); 2018 2019 out: 2020 intel_runtime_pm_put(i915); 2021 } 2022 2023 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2024 { 2025 struct drm_i915_gem_object *obj, *on; 2026 int i; 2027 2028 /* 2029 * Only called during RPM suspend. All users of the userfault_list 2030 * must be holding an RPM wakeref to ensure that this can not 2031 * run concurrently with themselves (and use the struct_mutex for 2032 * protection between themselves). 2033 */ 2034 2035 list_for_each_entry_safe(obj, on, 2036 &dev_priv->mm.userfault_list, userfault_link) { 2037 list_del_init(&obj->userfault_link); 2038 drm_vma_node_unmap(&obj->base.vma_node, 2039 obj->base.dev->anon_inode->i_mapping); 2040 } 2041 2042 /* The fence will be lost when the device powers down. If any were 2043 * in use by hardware (i.e. they are pinned), we should not be powering 2044 * down! All other fences will be reacquired by the user upon waking. 2045 */ 2046 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2047 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2048 2049 /* Ideally we want to assert that the fence register is not 2050 * live at this point (i.e. that no piece of code will be 2051 * trying to write through fence + GTT, as that both violates 2052 * our tracking of activity and associated locking/barriers, 2053 * but also is illegal given that the hw is powered down). 2054 * 2055 * Previously we used reg->pin_count as a "liveness" indicator. 2056 * That is not sufficient, and we need a more fine-grained 2057 * tool if we want to have a sanity check here. 2058 */ 2059 2060 if (!reg->vma) 2061 continue; 2062 2063 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link)); 2064 reg->dirty = true; 2065 } 2066 } 2067 2068 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2069 { 2070 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2071 int err; 2072 2073 err = drm_gem_create_mmap_offset(&obj->base); 2074 if (likely(!err)) 2075 return 0; 2076 2077 /* Attempt to reap some mmap space from dead objects */ 2078 do { 2079 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2080 if (err) 2081 break; 2082 2083 i915_gem_drain_freed_objects(dev_priv); 2084 err = drm_gem_create_mmap_offset(&obj->base); 2085 if (!err) 2086 break; 2087 2088 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2089 2090 return err; 2091 } 2092 2093 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2094 { 2095 drm_gem_free_mmap_offset(&obj->base); 2096 } 2097 2098 int 2099 i915_gem_mmap_gtt(struct drm_file *file, 2100 struct drm_device *dev, 2101 uint32_t handle, 2102 uint64_t *offset) 2103 { 2104 struct drm_i915_gem_object *obj; 2105 int ret; 2106 2107 obj = i915_gem_object_lookup(file, handle); 2108 if (!obj) 2109 return -ENOENT; 2110 2111 ret = i915_gem_object_create_mmap_offset(obj); 2112 if (ret == 0) 2113 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2114 2115 i915_gem_object_put(obj); 2116 return ret; 2117 } 2118 2119 /** 2120 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2121 * @dev: DRM device 2122 * @data: GTT mapping ioctl data 2123 * @file: GEM object info 2124 * 2125 * Simply returns the fake offset to userspace so it can mmap it. 2126 * The mmap call will end up in drm_gem_mmap(), which will set things 2127 * up so we can get faults in the handler above. 2128 * 2129 * The fault handler will take care of binding the object into the GTT 2130 * (since it may have been evicted to make room for something), allocating 2131 * a fence register, and mapping the appropriate aperture address into 2132 * userspace. 2133 */ 2134 int 2135 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2136 struct drm_file *file) 2137 { 2138 struct drm_i915_gem_mmap_gtt *args = data; 2139 2140 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2141 } 2142 2143 /* Immediately discard the backing storage */ 2144 static void 2145 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2146 { 2147 i915_gem_object_free_mmap_offset(obj); 2148 2149 if (obj->base.filp == NULL) 2150 return; 2151 2152 /* Our goal here is to return as much of the memory as 2153 * is possible back to the system as we are called from OOM. 2154 * To do this we must instruct the shmfs to drop all of its 2155 * backing pages, *now*. 2156 */ 2157 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2158 obj->mm.madv = __I915_MADV_PURGED; 2159 obj->mm.pages = ERR_PTR(-EFAULT); 2160 } 2161 2162 /* Try to discard unwanted pages */ 2163 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2164 { 2165 struct address_space *mapping; 2166 2167 lockdep_assert_held(&obj->mm.lock); 2168 GEM_BUG_ON(obj->mm.pages); 2169 2170 switch (obj->mm.madv) { 2171 case I915_MADV_DONTNEED: 2172 i915_gem_object_truncate(obj); 2173 case __I915_MADV_PURGED: 2174 return; 2175 } 2176 2177 if (obj->base.filp == NULL) 2178 return; 2179 2180 mapping = obj->base.filp->f_mapping, 2181 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2182 } 2183 2184 static void 2185 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2186 struct sg_table *pages) 2187 { 2188 struct sgt_iter sgt_iter; 2189 struct page *page; 2190 2191 __i915_gem_object_release_shmem(obj, pages, true); 2192 2193 i915_gem_gtt_finish_pages(obj, pages); 2194 2195 if (i915_gem_object_needs_bit17_swizzle(obj)) 2196 i915_gem_object_save_bit_17_swizzle(obj, pages); 2197 2198 for_each_sgt_page(page, sgt_iter, pages) { 2199 if (obj->mm.dirty) 2200 set_page_dirty(page); 2201 2202 if (obj->mm.madv == I915_MADV_WILLNEED) 2203 mark_page_accessed(page); 2204 2205 put_page(page); 2206 } 2207 obj->mm.dirty = false; 2208 2209 sg_free_table(pages); 2210 kfree(pages); 2211 } 2212 2213 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2214 { 2215 struct radix_tree_iter iter; 2216 void **slot; 2217 2218 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2219 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2220 } 2221 2222 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2223 enum i915_mm_subclass subclass) 2224 { 2225 struct sg_table *pages; 2226 2227 if (i915_gem_object_has_pinned_pages(obj)) 2228 return; 2229 2230 GEM_BUG_ON(obj->bind_count); 2231 if (!READ_ONCE(obj->mm.pages)) 2232 return; 2233 2234 /* May be called by shrinker from within get_pages() (on another bo) */ 2235 mutex_lock_nested(&obj->mm.lock, subclass); 2236 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2237 goto unlock; 2238 2239 /* ->put_pages might need to allocate memory for the bit17 swizzle 2240 * array, hence protect them from being reaped by removing them from gtt 2241 * lists early. */ 2242 pages = fetch_and_zero(&obj->mm.pages); 2243 GEM_BUG_ON(!pages); 2244 2245 if (obj->mm.mapping) { 2246 void *ptr; 2247 2248 ptr = page_mask_bits(obj->mm.mapping); 2249 if (is_vmalloc_addr(ptr)) 2250 vunmap(ptr); 2251 else 2252 kunmap(kmap_to_page(ptr)); 2253 2254 obj->mm.mapping = NULL; 2255 } 2256 2257 __i915_gem_object_reset_page_iter(obj); 2258 2259 if (!IS_ERR(pages)) 2260 obj->ops->put_pages(obj, pages); 2261 2262 unlock: 2263 mutex_unlock(&obj->mm.lock); 2264 } 2265 2266 static bool i915_sg_trim(struct sg_table *orig_st) 2267 { 2268 struct sg_table new_st; 2269 struct scatterlist *sg, *new_sg; 2270 unsigned int i; 2271 2272 if (orig_st->nents == orig_st->orig_nents) 2273 return false; 2274 2275 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2276 return false; 2277 2278 new_sg = new_st.sgl; 2279 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2280 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2281 /* called before being DMA mapped, no need to copy sg->dma_* */ 2282 new_sg = sg_next(new_sg); 2283 } 2284 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2285 2286 sg_free_table(orig_st); 2287 2288 *orig_st = new_st; 2289 return true; 2290 } 2291 2292 static struct sg_table * 2293 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2294 { 2295 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2296 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2297 unsigned long i; 2298 struct address_space *mapping; 2299 struct sg_table *st; 2300 struct scatterlist *sg; 2301 struct sgt_iter sgt_iter; 2302 struct page *page; 2303 unsigned long last_pfn = 0; /* suppress gcc warning */ 2304 unsigned int max_segment; 2305 gfp_t noreclaim; 2306 int ret; 2307 2308 /* Assert that the object is not currently in any GPU domain. As it 2309 * wasn't in the GTT, there shouldn't be any way it could have been in 2310 * a GPU cache 2311 */ 2312 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2313 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2314 2315 max_segment = swiotlb_max_segment(); 2316 if (!max_segment) 2317 max_segment = rounddown(UINT_MAX, PAGE_SIZE); 2318 2319 st = kmalloc(sizeof(*st), GFP_KERNEL); 2320 if (st == NULL) 2321 return ERR_PTR(-ENOMEM); 2322 2323 rebuild_st: 2324 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2325 kfree(st); 2326 return ERR_PTR(-ENOMEM); 2327 } 2328 2329 /* Get the list of pages out of our struct file. They'll be pinned 2330 * at this point until we release them. 2331 * 2332 * Fail silently without starting the shrinker 2333 */ 2334 mapping = obj->base.filp->f_mapping; 2335 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2336 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2337 2338 sg = st->sgl; 2339 st->nents = 0; 2340 for (i = 0; i < page_count; i++) { 2341 const unsigned int shrink[] = { 2342 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2343 0, 2344 }, *s = shrink; 2345 gfp_t gfp = noreclaim; 2346 2347 do { 2348 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2349 if (likely(!IS_ERR(page))) 2350 break; 2351 2352 if (!*s) { 2353 ret = PTR_ERR(page); 2354 goto err_sg; 2355 } 2356 2357 i915_gem_shrink(dev_priv, 2 * page_count, *s++); 2358 cond_resched(); 2359 2360 /* We've tried hard to allocate the memory by reaping 2361 * our own buffer, now let the real VM do its job and 2362 * go down in flames if truly OOM. 2363 * 2364 * However, since graphics tend to be disposable, 2365 * defer the oom here by reporting the ENOMEM back 2366 * to userspace. 2367 */ 2368 if (!*s) { 2369 /* reclaim and warn, but no oom */ 2370 gfp = mapping_gfp_mask(mapping); 2371 2372 /* Our bo are always dirty and so we require 2373 * kswapd to reclaim our pages (direct reclaim 2374 * does not effectively begin pageout of our 2375 * buffers on its own). However, direct reclaim 2376 * only waits for kswapd when under allocation 2377 * congestion. So as a result __GFP_RECLAIM is 2378 * unreliable and fails to actually reclaim our 2379 * dirty pages -- unless you try over and over 2380 * again with !__GFP_NORETRY. However, we still 2381 * want to fail this allocation rather than 2382 * trigger the out-of-memory killer and for 2383 * this we want __GFP_RETRY_MAYFAIL. 2384 */ 2385 gfp |= __GFP_RETRY_MAYFAIL; 2386 } 2387 } while (1); 2388 2389 if (!i || 2390 sg->length >= max_segment || 2391 page_to_pfn(page) != last_pfn + 1) { 2392 if (i) 2393 sg = sg_next(sg); 2394 st->nents++; 2395 sg_set_page(sg, page, PAGE_SIZE, 0); 2396 } else { 2397 sg->length += PAGE_SIZE; 2398 } 2399 last_pfn = page_to_pfn(page); 2400 2401 /* Check that the i965g/gm workaround works. */ 2402 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2403 } 2404 if (sg) /* loop terminated early; short sg table */ 2405 sg_mark_end(sg); 2406 2407 /* Trim unused sg entries to avoid wasting memory. */ 2408 i915_sg_trim(st); 2409 2410 ret = i915_gem_gtt_prepare_pages(obj, st); 2411 if (ret) { 2412 /* DMA remapping failed? One possible cause is that 2413 * it could not reserve enough large entries, asking 2414 * for PAGE_SIZE chunks instead may be helpful. 2415 */ 2416 if (max_segment > PAGE_SIZE) { 2417 for_each_sgt_page(page, sgt_iter, st) 2418 put_page(page); 2419 sg_free_table(st); 2420 2421 max_segment = PAGE_SIZE; 2422 goto rebuild_st; 2423 } else { 2424 dev_warn(&dev_priv->drm.pdev->dev, 2425 "Failed to DMA remap %lu pages\n", 2426 page_count); 2427 goto err_pages; 2428 } 2429 } 2430 2431 if (i915_gem_object_needs_bit17_swizzle(obj)) 2432 i915_gem_object_do_bit_17_swizzle(obj, st); 2433 2434 return st; 2435 2436 err_sg: 2437 sg_mark_end(sg); 2438 err_pages: 2439 for_each_sgt_page(page, sgt_iter, st) 2440 put_page(page); 2441 sg_free_table(st); 2442 kfree(st); 2443 2444 /* shmemfs first checks if there is enough memory to allocate the page 2445 * and reports ENOSPC should there be insufficient, along with the usual 2446 * ENOMEM for a genuine allocation failure. 2447 * 2448 * We use ENOSPC in our driver to mean that we have run out of aperture 2449 * space and so want to translate the error from shmemfs back to our 2450 * usual understanding of ENOMEM. 2451 */ 2452 if (ret == -ENOSPC) 2453 ret = -ENOMEM; 2454 2455 return ERR_PTR(ret); 2456 } 2457 2458 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2459 struct sg_table *pages) 2460 { 2461 lockdep_assert_held(&obj->mm.lock); 2462 2463 obj->mm.get_page.sg_pos = pages->sgl; 2464 obj->mm.get_page.sg_idx = 0; 2465 2466 obj->mm.pages = pages; 2467 2468 if (i915_gem_object_is_tiled(obj) && 2469 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2470 GEM_BUG_ON(obj->mm.quirked); 2471 __i915_gem_object_pin_pages(obj); 2472 obj->mm.quirked = true; 2473 } 2474 } 2475 2476 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2477 { 2478 struct sg_table *pages; 2479 2480 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2481 2482 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2483 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2484 return -EFAULT; 2485 } 2486 2487 pages = obj->ops->get_pages(obj); 2488 if (unlikely(IS_ERR(pages))) 2489 return PTR_ERR(pages); 2490 2491 __i915_gem_object_set_pages(obj, pages); 2492 return 0; 2493 } 2494 2495 /* Ensure that the associated pages are gathered from the backing storage 2496 * and pinned into our object. i915_gem_object_pin_pages() may be called 2497 * multiple times before they are released by a single call to 2498 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2499 * either as a result of memory pressure (reaping pages under the shrinker) 2500 * or as the object is itself released. 2501 */ 2502 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2503 { 2504 int err; 2505 2506 err = mutex_lock_interruptible(&obj->mm.lock); 2507 if (err) 2508 return err; 2509 2510 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2511 err = ____i915_gem_object_get_pages(obj); 2512 if (err) 2513 goto unlock; 2514 2515 smp_mb__before_atomic(); 2516 } 2517 atomic_inc(&obj->mm.pages_pin_count); 2518 2519 unlock: 2520 mutex_unlock(&obj->mm.lock); 2521 return err; 2522 } 2523 2524 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2525 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2526 enum i915_map_type type) 2527 { 2528 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2529 struct sg_table *sgt = obj->mm.pages; 2530 struct sgt_iter sgt_iter; 2531 struct page *page; 2532 struct page *stack_pages[32]; 2533 struct page **pages = stack_pages; 2534 unsigned long i = 0; 2535 pgprot_t pgprot; 2536 void *addr; 2537 2538 /* A single page can always be kmapped */ 2539 if (n_pages == 1 && type == I915_MAP_WB) 2540 return kmap(sg_page(sgt->sgl)); 2541 2542 if (n_pages > ARRAY_SIZE(stack_pages)) { 2543 /* Too big for stack -- allocate temporary array instead */ 2544 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY); 2545 if (!pages) 2546 return NULL; 2547 } 2548 2549 for_each_sgt_page(page, sgt_iter, sgt) 2550 pages[i++] = page; 2551 2552 /* Check that we have the expected number of pages */ 2553 GEM_BUG_ON(i != n_pages); 2554 2555 switch (type) { 2556 case I915_MAP_WB: 2557 pgprot = PAGE_KERNEL; 2558 break; 2559 case I915_MAP_WC: 2560 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2561 break; 2562 } 2563 addr = vmap(pages, n_pages, 0, pgprot); 2564 2565 if (pages != stack_pages) 2566 kvfree(pages); 2567 2568 return addr; 2569 } 2570 2571 /* get, pin, and map the pages of the object into kernel space */ 2572 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2573 enum i915_map_type type) 2574 { 2575 enum i915_map_type has_type; 2576 bool pinned; 2577 void *ptr; 2578 int ret; 2579 2580 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 2581 2582 ret = mutex_lock_interruptible(&obj->mm.lock); 2583 if (ret) 2584 return ERR_PTR(ret); 2585 2586 pinned = true; 2587 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2588 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2589 ret = ____i915_gem_object_get_pages(obj); 2590 if (ret) 2591 goto err_unlock; 2592 2593 smp_mb__before_atomic(); 2594 } 2595 atomic_inc(&obj->mm.pages_pin_count); 2596 pinned = false; 2597 } 2598 GEM_BUG_ON(!obj->mm.pages); 2599 2600 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2601 if (ptr && has_type != type) { 2602 if (pinned) { 2603 ret = -EBUSY; 2604 goto err_unpin; 2605 } 2606 2607 if (is_vmalloc_addr(ptr)) 2608 vunmap(ptr); 2609 else 2610 kunmap(kmap_to_page(ptr)); 2611 2612 ptr = obj->mm.mapping = NULL; 2613 } 2614 2615 if (!ptr) { 2616 ptr = i915_gem_object_map(obj, type); 2617 if (!ptr) { 2618 ret = -ENOMEM; 2619 goto err_unpin; 2620 } 2621 2622 obj->mm.mapping = page_pack_bits(ptr, type); 2623 } 2624 2625 out_unlock: 2626 mutex_unlock(&obj->mm.lock); 2627 return ptr; 2628 2629 err_unpin: 2630 atomic_dec(&obj->mm.pages_pin_count); 2631 err_unlock: 2632 ptr = ERR_PTR(ret); 2633 goto out_unlock; 2634 } 2635 2636 static int 2637 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2638 const struct drm_i915_gem_pwrite *arg) 2639 { 2640 struct address_space *mapping = obj->base.filp->f_mapping; 2641 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2642 u64 remain, offset; 2643 unsigned int pg; 2644 2645 /* Before we instantiate/pin the backing store for our use, we 2646 * can prepopulate the shmemfs filp efficiently using a write into 2647 * the pagecache. We avoid the penalty of instantiating all the 2648 * pages, important if the user is just writing to a few and never 2649 * uses the object on the GPU, and using a direct write into shmemfs 2650 * allows it to avoid the cost of retrieving a page (either swapin 2651 * or clearing-before-use) before it is overwritten. 2652 */ 2653 if (READ_ONCE(obj->mm.pages)) 2654 return -ENODEV; 2655 2656 /* Before the pages are instantiated the object is treated as being 2657 * in the CPU domain. The pages will be clflushed as required before 2658 * use, and we can freely write into the pages directly. If userspace 2659 * races pwrite with any other operation; corruption will ensue - 2660 * that is userspace's prerogative! 2661 */ 2662 2663 remain = arg->size; 2664 offset = arg->offset; 2665 pg = offset_in_page(offset); 2666 2667 do { 2668 unsigned int len, unwritten; 2669 struct page *page; 2670 void *data, *vaddr; 2671 int err; 2672 2673 len = PAGE_SIZE - pg; 2674 if (len > remain) 2675 len = remain; 2676 2677 err = pagecache_write_begin(obj->base.filp, mapping, 2678 offset, len, 0, 2679 &page, &data); 2680 if (err < 0) 2681 return err; 2682 2683 vaddr = kmap(page); 2684 unwritten = copy_from_user(vaddr + pg, user_data, len); 2685 kunmap(page); 2686 2687 err = pagecache_write_end(obj->base.filp, mapping, 2688 offset, len, len - unwritten, 2689 page, data); 2690 if (err < 0) 2691 return err; 2692 2693 if (unwritten) 2694 return -EFAULT; 2695 2696 remain -= len; 2697 user_data += len; 2698 offset += len; 2699 pg = 0; 2700 } while (remain); 2701 2702 return 0; 2703 } 2704 2705 static bool ban_context(const struct i915_gem_context *ctx, 2706 unsigned int score) 2707 { 2708 return (i915_gem_context_is_bannable(ctx) && 2709 score >= CONTEXT_SCORE_BAN_THRESHOLD); 2710 } 2711 2712 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2713 { 2714 unsigned int score; 2715 bool banned; 2716 2717 atomic_inc(&ctx->guilty_count); 2718 2719 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); 2720 banned = ban_context(ctx, score); 2721 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2722 ctx->name, score, yesno(banned)); 2723 if (!banned) 2724 return; 2725 2726 i915_gem_context_set_banned(ctx); 2727 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2728 atomic_inc(&ctx->file_priv->context_bans); 2729 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2730 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2731 } 2732 } 2733 2734 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2735 { 2736 atomic_inc(&ctx->active_count); 2737 } 2738 2739 struct drm_i915_gem_request * 2740 i915_gem_find_active_request(struct intel_engine_cs *engine) 2741 { 2742 struct drm_i915_gem_request *request, *active = NULL; 2743 unsigned long flags; 2744 2745 /* We are called by the error capture and reset at a random 2746 * point in time. In particular, note that neither is crucially 2747 * ordered with an interrupt. After a hang, the GPU is dead and we 2748 * assume that no more writes can happen (we waited long enough for 2749 * all writes that were in transaction to be flushed) - adding an 2750 * extra delay for a recent interrupt is pointless. Hence, we do 2751 * not need an engine->irq_seqno_barrier() before the seqno reads. 2752 */ 2753 spin_lock_irqsave(&engine->timeline->lock, flags); 2754 list_for_each_entry(request, &engine->timeline->requests, link) { 2755 if (__i915_gem_request_completed(request, 2756 request->global_seqno)) 2757 continue; 2758 2759 GEM_BUG_ON(request->engine != engine); 2760 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2761 &request->fence.flags)); 2762 2763 active = request; 2764 break; 2765 } 2766 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2767 2768 return active; 2769 } 2770 2771 static bool engine_stalled(struct intel_engine_cs *engine) 2772 { 2773 if (!engine->hangcheck.stalled) 2774 return false; 2775 2776 /* Check for possible seqno movement after hang declaration */ 2777 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2778 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2779 return false; 2780 } 2781 2782 return true; 2783 } 2784 2785 /* 2786 * Ensure irq handler finishes, and not run again. 2787 * Also return the active request so that we only search for it once. 2788 */ 2789 struct drm_i915_gem_request * 2790 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2791 { 2792 struct drm_i915_gem_request *request = NULL; 2793 2794 /* Prevent the signaler thread from updating the request 2795 * state (by calling dma_fence_signal) as we are processing 2796 * the reset. The write from the GPU of the seqno is 2797 * asynchronous and the signaler thread may see a different 2798 * value to us and declare the request complete, even though 2799 * the reset routine have picked that request as the active 2800 * (incomplete) request. This conflict is not handled 2801 * gracefully! 2802 */ 2803 kthread_park(engine->breadcrumbs.signaler); 2804 2805 /* Prevent request submission to the hardware until we have 2806 * completed the reset in i915_gem_reset_finish(). If a request 2807 * is completed by one engine, it may then queue a request 2808 * to a second via its engine->irq_tasklet *just* as we are 2809 * calling engine->init_hw() and also writing the ELSP. 2810 * Turning off the engine->irq_tasklet until the reset is over 2811 * prevents the race. 2812 */ 2813 tasklet_kill(&engine->irq_tasklet); 2814 tasklet_disable(&engine->irq_tasklet); 2815 2816 if (engine->irq_seqno_barrier) 2817 engine->irq_seqno_barrier(engine); 2818 2819 request = i915_gem_find_active_request(engine); 2820 if (request && request->fence.error == -EIO) 2821 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2822 2823 return request; 2824 } 2825 2826 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2827 { 2828 struct intel_engine_cs *engine; 2829 struct drm_i915_gem_request *request; 2830 enum intel_engine_id id; 2831 int err = 0; 2832 2833 for_each_engine(engine, dev_priv, id) { 2834 request = i915_gem_reset_prepare_engine(engine); 2835 if (IS_ERR(request)) { 2836 err = PTR_ERR(request); 2837 continue; 2838 } 2839 2840 engine->hangcheck.active_request = request; 2841 } 2842 2843 i915_gem_revoke_fences(dev_priv); 2844 2845 return err; 2846 } 2847 2848 static void skip_request(struct drm_i915_gem_request *request) 2849 { 2850 void *vaddr = request->ring->vaddr; 2851 u32 head; 2852 2853 /* As this request likely depends on state from the lost 2854 * context, clear out all the user operations leaving the 2855 * breadcrumb at the end (so we get the fence notifications). 2856 */ 2857 head = request->head; 2858 if (request->postfix < head) { 2859 memset(vaddr + head, 0, request->ring->size - head); 2860 head = 0; 2861 } 2862 memset(vaddr + head, 0, request->postfix - head); 2863 2864 dma_fence_set_error(&request->fence, -EIO); 2865 } 2866 2867 static void engine_skip_context(struct drm_i915_gem_request *request) 2868 { 2869 struct intel_engine_cs *engine = request->engine; 2870 struct i915_gem_context *hung_ctx = request->ctx; 2871 struct intel_timeline *timeline; 2872 unsigned long flags; 2873 2874 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 2875 2876 spin_lock_irqsave(&engine->timeline->lock, flags); 2877 spin_lock(&timeline->lock); 2878 2879 list_for_each_entry_continue(request, &engine->timeline->requests, link) 2880 if (request->ctx == hung_ctx) 2881 skip_request(request); 2882 2883 list_for_each_entry(request, &timeline->requests, link) 2884 skip_request(request); 2885 2886 spin_unlock(&timeline->lock); 2887 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2888 } 2889 2890 /* Returns the request if it was guilty of the hang */ 2891 static struct drm_i915_gem_request * 2892 i915_gem_reset_request(struct intel_engine_cs *engine, 2893 struct drm_i915_gem_request *request) 2894 { 2895 /* The guilty request will get skipped on a hung engine. 2896 * 2897 * Users of client default contexts do not rely on logical 2898 * state preserved between batches so it is safe to execute 2899 * queued requests following the hang. Non default contexts 2900 * rely on preserved state, so skipping a batch loses the 2901 * evolution of the state and it needs to be considered corrupted. 2902 * Executing more queued batches on top of corrupted state is 2903 * risky. But we take the risk by trying to advance through 2904 * the queued requests in order to make the client behaviour 2905 * more predictable around resets, by not throwing away random 2906 * amount of batches it has prepared for execution. Sophisticated 2907 * clients can use gem_reset_stats_ioctl and dma fence status 2908 * (exported via sync_file info ioctl on explicit fences) to observe 2909 * when it loses the context state and should rebuild accordingly. 2910 * 2911 * The context ban, and ultimately the client ban, mechanism are safety 2912 * valves if client submission ends up resulting in nothing more than 2913 * subsequent hangs. 2914 */ 2915 2916 if (engine_stalled(engine)) { 2917 i915_gem_context_mark_guilty(request->ctx); 2918 skip_request(request); 2919 2920 /* If this context is now banned, skip all pending requests. */ 2921 if (i915_gem_context_is_banned(request->ctx)) 2922 engine_skip_context(request); 2923 } else { 2924 /* 2925 * Since this is not the hung engine, it may have advanced 2926 * since the hang declaration. Double check by refinding 2927 * the active request at the time of the reset. 2928 */ 2929 request = i915_gem_find_active_request(engine); 2930 if (request) { 2931 i915_gem_context_mark_innocent(request->ctx); 2932 dma_fence_set_error(&request->fence, -EAGAIN); 2933 2934 /* Rewind the engine to replay the incomplete rq */ 2935 spin_lock_irq(&engine->timeline->lock); 2936 request = list_prev_entry(request, link); 2937 if (&request->link == &engine->timeline->requests) 2938 request = NULL; 2939 spin_unlock_irq(&engine->timeline->lock); 2940 } 2941 } 2942 2943 return request; 2944 } 2945 2946 void i915_gem_reset_engine(struct intel_engine_cs *engine, 2947 struct drm_i915_gem_request *request) 2948 { 2949 engine->irq_posted = 0; 2950 2951 if (request) 2952 request = i915_gem_reset_request(engine, request); 2953 2954 if (request) { 2955 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 2956 engine->name, request->global_seqno); 2957 } 2958 2959 /* Setup the CS to resume from the breadcrumb of the hung request */ 2960 engine->reset_hw(engine, request); 2961 } 2962 2963 void i915_gem_reset(struct drm_i915_private *dev_priv) 2964 { 2965 struct intel_engine_cs *engine; 2966 enum intel_engine_id id; 2967 2968 lockdep_assert_held(&dev_priv->drm.struct_mutex); 2969 2970 i915_gem_retire_requests(dev_priv); 2971 2972 for_each_engine(engine, dev_priv, id) { 2973 struct i915_gem_context *ctx; 2974 2975 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 2976 ctx = fetch_and_zero(&engine->last_retired_context); 2977 if (ctx) 2978 engine->context_unpin(engine, ctx); 2979 } 2980 2981 i915_gem_restore_fences(dev_priv); 2982 2983 if (dev_priv->gt.awake) { 2984 intel_sanitize_gt_powersave(dev_priv); 2985 intel_enable_gt_powersave(dev_priv); 2986 if (INTEL_GEN(dev_priv) >= 6) 2987 gen6_rps_busy(dev_priv); 2988 } 2989 } 2990 2991 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 2992 { 2993 tasklet_enable(&engine->irq_tasklet); 2994 kthread_unpark(engine->breadcrumbs.signaler); 2995 } 2996 2997 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 2998 { 2999 struct intel_engine_cs *engine; 3000 enum intel_engine_id id; 3001 3002 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3003 3004 for_each_engine(engine, dev_priv, id) { 3005 engine->hangcheck.active_request = NULL; 3006 i915_gem_reset_finish_engine(engine); 3007 } 3008 } 3009 3010 static void nop_submit_request(struct drm_i915_gem_request *request) 3011 { 3012 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error)); 3013 dma_fence_set_error(&request->fence, -EIO); 3014 i915_gem_request_submit(request); 3015 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3016 } 3017 3018 static void engine_set_wedged(struct intel_engine_cs *engine) 3019 { 3020 struct drm_i915_gem_request *request; 3021 unsigned long flags; 3022 3023 /* We need to be sure that no thread is running the old callback as 3024 * we install the nop handler (otherwise we would submit a request 3025 * to hardware that will never complete). In order to prevent this 3026 * race, we wait until the machine is idle before making the swap 3027 * (using stop_machine()). 3028 */ 3029 engine->submit_request = nop_submit_request; 3030 3031 /* Mark all executing requests as skipped */ 3032 spin_lock_irqsave(&engine->timeline->lock, flags); 3033 list_for_each_entry(request, &engine->timeline->requests, link) 3034 if (!i915_gem_request_completed(request)) 3035 dma_fence_set_error(&request->fence, -EIO); 3036 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3037 3038 /* 3039 * Clear the execlists queue up before freeing the requests, as those 3040 * are the ones that keep the context and ringbuffer backing objects 3041 * pinned in place. 3042 */ 3043 3044 if (i915.enable_execlists) { 3045 struct execlist_port *port = engine->execlist_port; 3046 unsigned long flags; 3047 unsigned int n; 3048 3049 spin_lock_irqsave(&engine->timeline->lock, flags); 3050 3051 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) 3052 i915_gem_request_put(port_request(&port[n])); 3053 memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); 3054 engine->execlist_queue = RB_ROOT; 3055 engine->execlist_first = NULL; 3056 3057 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3058 3059 /* The port is checked prior to scheduling a tasklet, but 3060 * just in case we have suspended the tasklet to do the 3061 * wedging make sure that when it wakes, it decides there 3062 * is no work to do by clearing the irq_posted bit. 3063 */ 3064 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted); 3065 } 3066 3067 /* Mark all pending requests as complete so that any concurrent 3068 * (lockless) lookup doesn't try and wait upon the request as we 3069 * reset it. 3070 */ 3071 intel_engine_init_global_seqno(engine, 3072 intel_engine_last_submit(engine)); 3073 } 3074 3075 static int __i915_gem_set_wedged_BKL(void *data) 3076 { 3077 struct drm_i915_private *i915 = data; 3078 struct intel_engine_cs *engine; 3079 enum intel_engine_id id; 3080 3081 for_each_engine(engine, i915, id) 3082 engine_set_wedged(engine); 3083 3084 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3085 wake_up_all(&i915->gpu_error.reset_queue); 3086 3087 return 0; 3088 } 3089 3090 void i915_gem_set_wedged(struct drm_i915_private *dev_priv) 3091 { 3092 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL); 3093 } 3094 3095 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3096 { 3097 struct i915_gem_timeline *tl; 3098 int i; 3099 3100 lockdep_assert_held(&i915->drm.struct_mutex); 3101 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3102 return true; 3103 3104 /* Before unwedging, make sure that all pending operations 3105 * are flushed and errored out - we may have requests waiting upon 3106 * third party fences. We marked all inflight requests as EIO, and 3107 * every execbuf since returned EIO, for consistency we want all 3108 * the currently pending requests to also be marked as EIO, which 3109 * is done inside our nop_submit_request - and so we must wait. 3110 * 3111 * No more can be submitted until we reset the wedged bit. 3112 */ 3113 list_for_each_entry(tl, &i915->gt.timelines, link) { 3114 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3115 struct drm_i915_gem_request *rq; 3116 3117 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3118 &i915->drm.struct_mutex); 3119 if (!rq) 3120 continue; 3121 3122 /* We can't use our normal waiter as we want to 3123 * avoid recursively trying to handle the current 3124 * reset. The basic dma_fence_default_wait() installs 3125 * a callback for dma_fence_signal(), which is 3126 * triggered by our nop handler (indirectly, the 3127 * callback enables the signaler thread which is 3128 * woken by the nop_submit_request() advancing the seqno 3129 * and when the seqno passes the fence, the signaler 3130 * then signals the fence waking us up). 3131 */ 3132 if (dma_fence_default_wait(&rq->fence, true, 3133 MAX_SCHEDULE_TIMEOUT) < 0) 3134 return false; 3135 } 3136 } 3137 3138 /* Undo nop_submit_request. We prevent all new i915 requests from 3139 * being queued (by disallowing execbuf whilst wedged) so having 3140 * waited for all active requests above, we know the system is idle 3141 * and do not have to worry about a thread being inside 3142 * engine->submit_request() as we swap over. So unlike installing 3143 * the nop_submit_request on reset, we can do this from normal 3144 * context and do not require stop_machine(). 3145 */ 3146 intel_engines_reset_default_submission(i915); 3147 i915_gem_contexts_lost(i915); 3148 3149 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3150 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3151 3152 return true; 3153 } 3154 3155 static void 3156 i915_gem_retire_work_handler(struct work_struct *work) 3157 { 3158 struct drm_i915_private *dev_priv = 3159 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3160 struct drm_device *dev = &dev_priv->drm; 3161 3162 /* Come back later if the device is busy... */ 3163 if (mutex_trylock(&dev->struct_mutex)) { 3164 i915_gem_retire_requests(dev_priv); 3165 mutex_unlock(&dev->struct_mutex); 3166 } 3167 3168 /* Keep the retire handler running until we are finally idle. 3169 * We do not need to do this test under locking as in the worst-case 3170 * we queue the retire worker once too often. 3171 */ 3172 if (READ_ONCE(dev_priv->gt.awake)) { 3173 i915_queue_hangcheck(dev_priv); 3174 queue_delayed_work(dev_priv->wq, 3175 &dev_priv->gt.retire_work, 3176 round_jiffies_up_relative(HZ)); 3177 } 3178 } 3179 3180 static void 3181 i915_gem_idle_work_handler(struct work_struct *work) 3182 { 3183 struct drm_i915_private *dev_priv = 3184 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3185 struct drm_device *dev = &dev_priv->drm; 3186 bool rearm_hangcheck; 3187 3188 if (!READ_ONCE(dev_priv->gt.awake)) 3189 return; 3190 3191 /* 3192 * Wait for last execlists context complete, but bail out in case a 3193 * new request is submitted. 3194 */ 3195 wait_for(intel_engines_are_idle(dev_priv), 10); 3196 if (READ_ONCE(dev_priv->gt.active_requests)) 3197 return; 3198 3199 rearm_hangcheck = 3200 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3201 3202 if (!mutex_trylock(&dev->struct_mutex)) { 3203 /* Currently busy, come back later */ 3204 mod_delayed_work(dev_priv->wq, 3205 &dev_priv->gt.idle_work, 3206 msecs_to_jiffies(50)); 3207 goto out_rearm; 3208 } 3209 3210 /* 3211 * New request retired after this work handler started, extend active 3212 * period until next instance of the work. 3213 */ 3214 if (work_pending(work)) 3215 goto out_unlock; 3216 3217 if (dev_priv->gt.active_requests) 3218 goto out_unlock; 3219 3220 if (wait_for(intel_engines_are_idle(dev_priv), 10)) 3221 DRM_ERROR("Timeout waiting for engines to idle\n"); 3222 3223 intel_engines_mark_idle(dev_priv); 3224 i915_gem_timelines_mark_idle(dev_priv); 3225 3226 GEM_BUG_ON(!dev_priv->gt.awake); 3227 dev_priv->gt.awake = false; 3228 rearm_hangcheck = false; 3229 3230 if (INTEL_GEN(dev_priv) >= 6) 3231 gen6_rps_idle(dev_priv); 3232 intel_runtime_pm_put(dev_priv); 3233 out_unlock: 3234 mutex_unlock(&dev->struct_mutex); 3235 3236 out_rearm: 3237 if (rearm_hangcheck) { 3238 GEM_BUG_ON(!dev_priv->gt.awake); 3239 i915_queue_hangcheck(dev_priv); 3240 } 3241 } 3242 3243 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3244 { 3245 struct drm_i915_private *i915 = to_i915(gem->dev); 3246 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3247 struct drm_i915_file_private *fpriv = file->driver_priv; 3248 struct i915_lut_handle *lut, *ln; 3249 3250 mutex_lock(&i915->drm.struct_mutex); 3251 3252 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3253 struct i915_gem_context *ctx = lut->ctx; 3254 struct i915_vma *vma; 3255 3256 if (ctx->file_priv != fpriv) 3257 continue; 3258 3259 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3260 3261 if (!i915_vma_is_ggtt(vma)) 3262 i915_vma_close(vma); 3263 3264 list_del(&lut->obj_link); 3265 list_del(&lut->ctx_link); 3266 3267 kmem_cache_free(i915->luts, lut); 3268 __i915_gem_object_release_unless_active(obj); 3269 } 3270 3271 mutex_unlock(&i915->drm.struct_mutex); 3272 } 3273 3274 static unsigned long to_wait_timeout(s64 timeout_ns) 3275 { 3276 if (timeout_ns < 0) 3277 return MAX_SCHEDULE_TIMEOUT; 3278 3279 if (timeout_ns == 0) 3280 return 0; 3281 3282 return nsecs_to_jiffies_timeout(timeout_ns); 3283 } 3284 3285 /** 3286 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3287 * @dev: drm device pointer 3288 * @data: ioctl data blob 3289 * @file: drm file pointer 3290 * 3291 * Returns 0 if successful, else an error is returned with the remaining time in 3292 * the timeout parameter. 3293 * -ETIME: object is still busy after timeout 3294 * -ERESTARTSYS: signal interrupted the wait 3295 * -ENONENT: object doesn't exist 3296 * Also possible, but rare: 3297 * -EAGAIN: incomplete, restart syscall 3298 * -ENOMEM: damn 3299 * -ENODEV: Internal IRQ fail 3300 * -E?: The add request failed 3301 * 3302 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3303 * non-zero timeout parameter the wait ioctl will wait for the given number of 3304 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3305 * without holding struct_mutex the object may become re-busied before this 3306 * function completes. A similar but shorter * race condition exists in the busy 3307 * ioctl 3308 */ 3309 int 3310 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3311 { 3312 struct drm_i915_gem_wait *args = data; 3313 struct drm_i915_gem_object *obj; 3314 ktime_t start; 3315 long ret; 3316 3317 if (args->flags != 0) 3318 return -EINVAL; 3319 3320 obj = i915_gem_object_lookup(file, args->bo_handle); 3321 if (!obj) 3322 return -ENOENT; 3323 3324 start = ktime_get(); 3325 3326 ret = i915_gem_object_wait(obj, 3327 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3328 to_wait_timeout(args->timeout_ns), 3329 to_rps_client(file)); 3330 3331 if (args->timeout_ns > 0) { 3332 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3333 if (args->timeout_ns < 0) 3334 args->timeout_ns = 0; 3335 3336 /* 3337 * Apparently ktime isn't accurate enough and occasionally has a 3338 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3339 * things up to make the test happy. We allow up to 1 jiffy. 3340 * 3341 * This is a regression from the timespec->ktime conversion. 3342 */ 3343 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3344 args->timeout_ns = 0; 3345 3346 /* Asked to wait beyond the jiffie/scheduler precision? */ 3347 if (ret == -ETIME && args->timeout_ns) 3348 ret = -EAGAIN; 3349 } 3350 3351 i915_gem_object_put(obj); 3352 return ret; 3353 } 3354 3355 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3356 { 3357 int ret, i; 3358 3359 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3360 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3361 if (ret) 3362 return ret; 3363 } 3364 3365 return 0; 3366 } 3367 3368 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms) 3369 { 3370 return wait_for(intel_engine_is_idle(engine), timeout_ms); 3371 } 3372 3373 static int wait_for_engines(struct drm_i915_private *i915) 3374 { 3375 struct intel_engine_cs *engine; 3376 enum intel_engine_id id; 3377 3378 for_each_engine(engine, i915, id) { 3379 if (GEM_WARN_ON(wait_for_engine(engine, 50))) { 3380 i915_gem_set_wedged(i915); 3381 return -EIO; 3382 } 3383 3384 GEM_BUG_ON(intel_engine_get_seqno(engine) != 3385 intel_engine_last_submit(engine)); 3386 } 3387 3388 return 0; 3389 } 3390 3391 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3392 { 3393 int ret; 3394 3395 /* If the device is asleep, we have no requests outstanding */ 3396 if (!READ_ONCE(i915->gt.awake)) 3397 return 0; 3398 3399 if (flags & I915_WAIT_LOCKED) { 3400 struct i915_gem_timeline *tl; 3401 3402 lockdep_assert_held(&i915->drm.struct_mutex); 3403 3404 list_for_each_entry(tl, &i915->gt.timelines, link) { 3405 ret = wait_for_timeline(tl, flags); 3406 if (ret) 3407 return ret; 3408 } 3409 3410 i915_gem_retire_requests(i915); 3411 GEM_BUG_ON(i915->gt.active_requests); 3412 3413 ret = wait_for_engines(i915); 3414 } else { 3415 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3416 } 3417 3418 return ret; 3419 } 3420 3421 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3422 { 3423 /* 3424 * We manually flush the CPU domain so that we can override and 3425 * force the flush for the display, and perform it asyncrhonously. 3426 */ 3427 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3428 if (obj->cache_dirty) 3429 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3430 obj->base.write_domain = 0; 3431 } 3432 3433 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3434 { 3435 if (!READ_ONCE(obj->pin_display)) 3436 return; 3437 3438 mutex_lock(&obj->base.dev->struct_mutex); 3439 __i915_gem_object_flush_for_display(obj); 3440 mutex_unlock(&obj->base.dev->struct_mutex); 3441 } 3442 3443 /** 3444 * Moves a single object to the WC read, and possibly write domain. 3445 * @obj: object to act on 3446 * @write: ask for write access or read only 3447 * 3448 * This function returns when the move is complete, including waiting on 3449 * flushes to occur. 3450 */ 3451 int 3452 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3453 { 3454 int ret; 3455 3456 lockdep_assert_held(&obj->base.dev->struct_mutex); 3457 3458 ret = i915_gem_object_wait(obj, 3459 I915_WAIT_INTERRUPTIBLE | 3460 I915_WAIT_LOCKED | 3461 (write ? I915_WAIT_ALL : 0), 3462 MAX_SCHEDULE_TIMEOUT, 3463 NULL); 3464 if (ret) 3465 return ret; 3466 3467 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3468 return 0; 3469 3470 /* Flush and acquire obj->pages so that we are coherent through 3471 * direct access in memory with previous cached writes through 3472 * shmemfs and that our cache domain tracking remains valid. 3473 * For example, if the obj->filp was moved to swap without us 3474 * being notified and releasing the pages, we would mistakenly 3475 * continue to assume that the obj remained out of the CPU cached 3476 * domain. 3477 */ 3478 ret = i915_gem_object_pin_pages(obj); 3479 if (ret) 3480 return ret; 3481 3482 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3483 3484 /* Serialise direct access to this object with the barriers for 3485 * coherent writes from the GPU, by effectively invalidating the 3486 * WC domain upon first access. 3487 */ 3488 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3489 mb(); 3490 3491 /* It should now be out of any other write domains, and we can update 3492 * the domain values for our changes. 3493 */ 3494 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3495 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3496 if (write) { 3497 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3498 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3499 obj->mm.dirty = true; 3500 } 3501 3502 i915_gem_object_unpin_pages(obj); 3503 return 0; 3504 } 3505 3506 /** 3507 * Moves a single object to the GTT read, and possibly write domain. 3508 * @obj: object to act on 3509 * @write: ask for write access or read only 3510 * 3511 * This function returns when the move is complete, including waiting on 3512 * flushes to occur. 3513 */ 3514 int 3515 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3516 { 3517 int ret; 3518 3519 lockdep_assert_held(&obj->base.dev->struct_mutex); 3520 3521 ret = i915_gem_object_wait(obj, 3522 I915_WAIT_INTERRUPTIBLE | 3523 I915_WAIT_LOCKED | 3524 (write ? I915_WAIT_ALL : 0), 3525 MAX_SCHEDULE_TIMEOUT, 3526 NULL); 3527 if (ret) 3528 return ret; 3529 3530 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3531 return 0; 3532 3533 /* Flush and acquire obj->pages so that we are coherent through 3534 * direct access in memory with previous cached writes through 3535 * shmemfs and that our cache domain tracking remains valid. 3536 * For example, if the obj->filp was moved to swap without us 3537 * being notified and releasing the pages, we would mistakenly 3538 * continue to assume that the obj remained out of the CPU cached 3539 * domain. 3540 */ 3541 ret = i915_gem_object_pin_pages(obj); 3542 if (ret) 3543 return ret; 3544 3545 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3546 3547 /* Serialise direct access to this object with the barriers for 3548 * coherent writes from the GPU, by effectively invalidating the 3549 * GTT domain upon first access. 3550 */ 3551 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3552 mb(); 3553 3554 /* It should now be out of any other write domains, and we can update 3555 * the domain values for our changes. 3556 */ 3557 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3558 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3559 if (write) { 3560 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3561 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3562 obj->mm.dirty = true; 3563 } 3564 3565 i915_gem_object_unpin_pages(obj); 3566 return 0; 3567 } 3568 3569 /** 3570 * Changes the cache-level of an object across all VMA. 3571 * @obj: object to act on 3572 * @cache_level: new cache level to set for the object 3573 * 3574 * After this function returns, the object will be in the new cache-level 3575 * across all GTT and the contents of the backing storage will be coherent, 3576 * with respect to the new cache-level. In order to keep the backing storage 3577 * coherent for all users, we only allow a single cache level to be set 3578 * globally on the object and prevent it from being changed whilst the 3579 * hardware is reading from the object. That is if the object is currently 3580 * on the scanout it will be set to uncached (or equivalent display 3581 * cache coherency) and all non-MOCS GPU access will also be uncached so 3582 * that all direct access to the scanout remains coherent. 3583 */ 3584 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3585 enum i915_cache_level cache_level) 3586 { 3587 struct i915_vma *vma; 3588 int ret; 3589 3590 lockdep_assert_held(&obj->base.dev->struct_mutex); 3591 3592 if (obj->cache_level == cache_level) 3593 return 0; 3594 3595 /* Inspect the list of currently bound VMA and unbind any that would 3596 * be invalid given the new cache-level. This is principally to 3597 * catch the issue of the CS prefetch crossing page boundaries and 3598 * reading an invalid PTE on older architectures. 3599 */ 3600 restart: 3601 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3602 if (!drm_mm_node_allocated(&vma->node)) 3603 continue; 3604 3605 if (i915_vma_is_pinned(vma)) { 3606 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3607 return -EBUSY; 3608 } 3609 3610 if (i915_gem_valid_gtt_space(vma, cache_level)) 3611 continue; 3612 3613 ret = i915_vma_unbind(vma); 3614 if (ret) 3615 return ret; 3616 3617 /* As unbinding may affect other elements in the 3618 * obj->vma_list (due to side-effects from retiring 3619 * an active vma), play safe and restart the iterator. 3620 */ 3621 goto restart; 3622 } 3623 3624 /* We can reuse the existing drm_mm nodes but need to change the 3625 * cache-level on the PTE. We could simply unbind them all and 3626 * rebind with the correct cache-level on next use. However since 3627 * we already have a valid slot, dma mapping, pages etc, we may as 3628 * rewrite the PTE in the belief that doing so tramples upon less 3629 * state and so involves less work. 3630 */ 3631 if (obj->bind_count) { 3632 /* Before we change the PTE, the GPU must not be accessing it. 3633 * If we wait upon the object, we know that all the bound 3634 * VMA are no longer active. 3635 */ 3636 ret = i915_gem_object_wait(obj, 3637 I915_WAIT_INTERRUPTIBLE | 3638 I915_WAIT_LOCKED | 3639 I915_WAIT_ALL, 3640 MAX_SCHEDULE_TIMEOUT, 3641 NULL); 3642 if (ret) 3643 return ret; 3644 3645 if (!HAS_LLC(to_i915(obj->base.dev)) && 3646 cache_level != I915_CACHE_NONE) { 3647 /* Access to snoopable pages through the GTT is 3648 * incoherent and on some machines causes a hard 3649 * lockup. Relinquish the CPU mmaping to force 3650 * userspace to refault in the pages and we can 3651 * then double check if the GTT mapping is still 3652 * valid for that pointer access. 3653 */ 3654 i915_gem_release_mmap(obj); 3655 3656 /* As we no longer need a fence for GTT access, 3657 * we can relinquish it now (and so prevent having 3658 * to steal a fence from someone else on the next 3659 * fence request). Note GPU activity would have 3660 * dropped the fence as all snoopable access is 3661 * supposed to be linear. 3662 */ 3663 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3664 ret = i915_vma_put_fence(vma); 3665 if (ret) 3666 return ret; 3667 } 3668 } else { 3669 /* We either have incoherent backing store and 3670 * so no GTT access or the architecture is fully 3671 * coherent. In such cases, existing GTT mmaps 3672 * ignore the cache bit in the PTE and we can 3673 * rewrite it without confusing the GPU or having 3674 * to force userspace to fault back in its mmaps. 3675 */ 3676 } 3677 3678 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3679 if (!drm_mm_node_allocated(&vma->node)) 3680 continue; 3681 3682 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3683 if (ret) 3684 return ret; 3685 } 3686 } 3687 3688 list_for_each_entry(vma, &obj->vma_list, obj_link) 3689 vma->node.color = cache_level; 3690 i915_gem_object_set_cache_coherency(obj, cache_level); 3691 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3692 3693 return 0; 3694 } 3695 3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3697 struct drm_file *file) 3698 { 3699 struct drm_i915_gem_caching *args = data; 3700 struct drm_i915_gem_object *obj; 3701 int err = 0; 3702 3703 rcu_read_lock(); 3704 obj = i915_gem_object_lookup_rcu(file, args->handle); 3705 if (!obj) { 3706 err = -ENOENT; 3707 goto out; 3708 } 3709 3710 switch (obj->cache_level) { 3711 case I915_CACHE_LLC: 3712 case I915_CACHE_L3_LLC: 3713 args->caching = I915_CACHING_CACHED; 3714 break; 3715 3716 case I915_CACHE_WT: 3717 args->caching = I915_CACHING_DISPLAY; 3718 break; 3719 3720 default: 3721 args->caching = I915_CACHING_NONE; 3722 break; 3723 } 3724 out: 3725 rcu_read_unlock(); 3726 return err; 3727 } 3728 3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3730 struct drm_file *file) 3731 { 3732 struct drm_i915_private *i915 = to_i915(dev); 3733 struct drm_i915_gem_caching *args = data; 3734 struct drm_i915_gem_object *obj; 3735 enum i915_cache_level level; 3736 int ret = 0; 3737 3738 switch (args->caching) { 3739 case I915_CACHING_NONE: 3740 level = I915_CACHE_NONE; 3741 break; 3742 case I915_CACHING_CACHED: 3743 /* 3744 * Due to a HW issue on BXT A stepping, GPU stores via a 3745 * snooped mapping may leave stale data in a corresponding CPU 3746 * cacheline, whereas normally such cachelines would get 3747 * invalidated. 3748 */ 3749 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3750 return -ENODEV; 3751 3752 level = I915_CACHE_LLC; 3753 break; 3754 case I915_CACHING_DISPLAY: 3755 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3756 break; 3757 default: 3758 return -EINVAL; 3759 } 3760 3761 obj = i915_gem_object_lookup(file, args->handle); 3762 if (!obj) 3763 return -ENOENT; 3764 3765 if (obj->cache_level == level) 3766 goto out; 3767 3768 ret = i915_gem_object_wait(obj, 3769 I915_WAIT_INTERRUPTIBLE, 3770 MAX_SCHEDULE_TIMEOUT, 3771 to_rps_client(file)); 3772 if (ret) 3773 goto out; 3774 3775 ret = i915_mutex_lock_interruptible(dev); 3776 if (ret) 3777 goto out; 3778 3779 ret = i915_gem_object_set_cache_level(obj, level); 3780 mutex_unlock(&dev->struct_mutex); 3781 3782 out: 3783 i915_gem_object_put(obj); 3784 return ret; 3785 } 3786 3787 /* 3788 * Prepare buffer for display plane (scanout, cursors, etc). 3789 * Can be called from an uninterruptible phase (modesetting) and allows 3790 * any flushes to be pipelined (for pageflips). 3791 */ 3792 struct i915_vma * 3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3794 u32 alignment, 3795 const struct i915_ggtt_view *view) 3796 { 3797 struct i915_vma *vma; 3798 int ret; 3799 3800 lockdep_assert_held(&obj->base.dev->struct_mutex); 3801 3802 /* Mark the pin_display early so that we account for the 3803 * display coherency whilst setting up the cache domains. 3804 */ 3805 obj->pin_display++; 3806 3807 /* The display engine is not coherent with the LLC cache on gen6. As 3808 * a result, we make sure that the pinning that is about to occur is 3809 * done with uncached PTEs. This is lowest common denominator for all 3810 * chipsets. 3811 * 3812 * However for gen6+, we could do better by using the GFDT bit instead 3813 * of uncaching, which would allow us to flush all the LLC-cached data 3814 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3815 */ 3816 ret = i915_gem_object_set_cache_level(obj, 3817 HAS_WT(to_i915(obj->base.dev)) ? 3818 I915_CACHE_WT : I915_CACHE_NONE); 3819 if (ret) { 3820 vma = ERR_PTR(ret); 3821 goto err_unpin_display; 3822 } 3823 3824 /* As the user may map the buffer once pinned in the display plane 3825 * (e.g. libkms for the bootup splash), we have to ensure that we 3826 * always use map_and_fenceable for all scanout buffers. However, 3827 * it may simply be too big to fit into mappable, in which case 3828 * put it anyway and hope that userspace can cope (but always first 3829 * try to preserve the existing ABI). 3830 */ 3831 vma = ERR_PTR(-ENOSPC); 3832 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 3833 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 3834 PIN_MAPPABLE | PIN_NONBLOCK); 3835 if (IS_ERR(vma)) { 3836 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3837 unsigned int flags; 3838 3839 /* Valleyview is definitely limited to scanning out the first 3840 * 512MiB. Lets presume this behaviour was inherited from the 3841 * g4x display engine and that all earlier gen are similarly 3842 * limited. Testing suggests that it is a little more 3843 * complicated than this. For example, Cherryview appears quite 3844 * happy to scanout from anywhere within its global aperture. 3845 */ 3846 flags = 0; 3847 if (HAS_GMCH_DISPLAY(i915)) 3848 flags = PIN_MAPPABLE; 3849 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 3850 } 3851 if (IS_ERR(vma)) 3852 goto err_unpin_display; 3853 3854 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 3855 3856 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 3857 __i915_gem_object_flush_for_display(obj); 3858 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 3859 3860 /* It should now be out of any other write domains, and we can update 3861 * the domain values for our changes. 3862 */ 3863 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3864 3865 return vma; 3866 3867 err_unpin_display: 3868 obj->pin_display--; 3869 return vma; 3870 } 3871 3872 void 3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 3874 { 3875 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 3876 3877 if (WARN_ON(vma->obj->pin_display == 0)) 3878 return; 3879 3880 if (--vma->obj->pin_display == 0) 3881 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 3882 3883 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 3884 i915_gem_object_bump_inactive_ggtt(vma->obj); 3885 3886 i915_vma_unpin(vma); 3887 } 3888 3889 /** 3890 * Moves a single object to the CPU read, and possibly write domain. 3891 * @obj: object to act on 3892 * @write: requesting write or read-only access 3893 * 3894 * This function returns when the move is complete, including waiting on 3895 * flushes to occur. 3896 */ 3897 int 3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3899 { 3900 int ret; 3901 3902 lockdep_assert_held(&obj->base.dev->struct_mutex); 3903 3904 ret = i915_gem_object_wait(obj, 3905 I915_WAIT_INTERRUPTIBLE | 3906 I915_WAIT_LOCKED | 3907 (write ? I915_WAIT_ALL : 0), 3908 MAX_SCHEDULE_TIMEOUT, 3909 NULL); 3910 if (ret) 3911 return ret; 3912 3913 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3914 3915 /* Flush the CPU cache if it's still invalid. */ 3916 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3917 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 3918 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3919 } 3920 3921 /* It should now be out of any other write domains, and we can update 3922 * the domain values for our changes. 3923 */ 3924 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3925 3926 /* If we're writing through the CPU, then the GPU read domains will 3927 * need to be invalidated at next use. 3928 */ 3929 if (write) 3930 __start_cpu_write(obj); 3931 3932 return 0; 3933 } 3934 3935 /* Throttle our rendering by waiting until the ring has completed our requests 3936 * emitted over 20 msec ago. 3937 * 3938 * Note that if we were to use the current jiffies each time around the loop, 3939 * we wouldn't escape the function with any frames outstanding if the time to 3940 * render a frame was over 20ms. 3941 * 3942 * This should get us reasonable parallelism between CPU and GPU but also 3943 * relatively low latency when blocking on a particular request to finish. 3944 */ 3945 static int 3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3947 { 3948 struct drm_i915_private *dev_priv = to_i915(dev); 3949 struct drm_i915_file_private *file_priv = file->driver_priv; 3950 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 3951 struct drm_i915_gem_request *request, *target = NULL; 3952 long ret; 3953 3954 /* ABI: return -EIO if already wedged */ 3955 if (i915_terminally_wedged(&dev_priv->gpu_error)) 3956 return -EIO; 3957 3958 spin_lock(&file_priv->mm.lock); 3959 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 3960 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3961 break; 3962 3963 if (target) { 3964 list_del(&target->client_link); 3965 target->file_priv = NULL; 3966 } 3967 3968 target = request; 3969 } 3970 if (target) 3971 i915_gem_request_get(target); 3972 spin_unlock(&file_priv->mm.lock); 3973 3974 if (target == NULL) 3975 return 0; 3976 3977 ret = i915_wait_request(target, 3978 I915_WAIT_INTERRUPTIBLE, 3979 MAX_SCHEDULE_TIMEOUT); 3980 i915_gem_request_put(target); 3981 3982 return ret < 0 ? ret : 0; 3983 } 3984 3985 struct i915_vma * 3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3987 const struct i915_ggtt_view *view, 3988 u64 size, 3989 u64 alignment, 3990 u64 flags) 3991 { 3992 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3993 struct i915_address_space *vm = &dev_priv->ggtt.base; 3994 struct i915_vma *vma; 3995 int ret; 3996 3997 lockdep_assert_held(&obj->base.dev->struct_mutex); 3998 3999 vma = i915_vma_instance(obj, vm, view); 4000 if (unlikely(IS_ERR(vma))) 4001 return vma; 4002 4003 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4004 if (flags & PIN_NONBLOCK && 4005 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) 4006 return ERR_PTR(-ENOSPC); 4007 4008 if (flags & PIN_MAPPABLE) { 4009 /* If the required space is larger than the available 4010 * aperture, we will not able to find a slot for the 4011 * object and unbinding the object now will be in 4012 * vain. Worse, doing so may cause us to ping-pong 4013 * the object in and out of the Global GTT and 4014 * waste a lot of cycles under the mutex. 4015 */ 4016 if (vma->fence_size > dev_priv->ggtt.mappable_end) 4017 return ERR_PTR(-E2BIG); 4018 4019 /* If NONBLOCK is set the caller is optimistically 4020 * trying to cache the full object within the mappable 4021 * aperture, and *must* have a fallback in place for 4022 * situations where we cannot bind the object. We 4023 * can be a little more lax here and use the fallback 4024 * more often to avoid costly migrations of ourselves 4025 * and other objects within the aperture. 4026 * 4027 * Half-the-aperture is used as a simple heuristic. 4028 * More interesting would to do search for a free 4029 * block prior to making the commitment to unbind. 4030 * That caters for the self-harm case, and with a 4031 * little more heuristics (e.g. NOFAULT, NOEVICT) 4032 * we could try to minimise harm to others. 4033 */ 4034 if (flags & PIN_NONBLOCK && 4035 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4036 return ERR_PTR(-ENOSPC); 4037 } 4038 4039 WARN(i915_vma_is_pinned(vma), 4040 "bo is already pinned in ggtt with incorrect alignment:" 4041 " offset=%08x, req.alignment=%llx," 4042 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4043 i915_ggtt_offset(vma), alignment, 4044 !!(flags & PIN_MAPPABLE), 4045 i915_vma_is_map_and_fenceable(vma)); 4046 ret = i915_vma_unbind(vma); 4047 if (ret) 4048 return ERR_PTR(ret); 4049 } 4050 4051 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4052 if (ret) 4053 return ERR_PTR(ret); 4054 4055 return vma; 4056 } 4057 4058 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4059 { 4060 /* Note that we could alias engines in the execbuf API, but 4061 * that would be very unwise as it prevents userspace from 4062 * fine control over engine selection. Ahem. 4063 * 4064 * This should be something like EXEC_MAX_ENGINE instead of 4065 * I915_NUM_ENGINES. 4066 */ 4067 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4068 return 0x10000 << id; 4069 } 4070 4071 static __always_inline unsigned int __busy_write_id(unsigned int id) 4072 { 4073 /* The uABI guarantees an active writer is also amongst the read 4074 * engines. This would be true if we accessed the activity tracking 4075 * under the lock, but as we perform the lookup of the object and 4076 * its activity locklessly we can not guarantee that the last_write 4077 * being active implies that we have set the same engine flag from 4078 * last_read - hence we always set both read and write busy for 4079 * last_write. 4080 */ 4081 return id | __busy_read_flag(id); 4082 } 4083 4084 static __always_inline unsigned int 4085 __busy_set_if_active(const struct dma_fence *fence, 4086 unsigned int (*flag)(unsigned int id)) 4087 { 4088 struct drm_i915_gem_request *rq; 4089 4090 /* We have to check the current hw status of the fence as the uABI 4091 * guarantees forward progress. We could rely on the idle worker 4092 * to eventually flush us, but to minimise latency just ask the 4093 * hardware. 4094 * 4095 * Note we only report on the status of native fences. 4096 */ 4097 if (!dma_fence_is_i915(fence)) 4098 return 0; 4099 4100 /* opencode to_request() in order to avoid const warnings */ 4101 rq = container_of(fence, struct drm_i915_gem_request, fence); 4102 if (i915_gem_request_completed(rq)) 4103 return 0; 4104 4105 return flag(rq->engine->uabi_id); 4106 } 4107 4108 static __always_inline unsigned int 4109 busy_check_reader(const struct dma_fence *fence) 4110 { 4111 return __busy_set_if_active(fence, __busy_read_flag); 4112 } 4113 4114 static __always_inline unsigned int 4115 busy_check_writer(const struct dma_fence *fence) 4116 { 4117 if (!fence) 4118 return 0; 4119 4120 return __busy_set_if_active(fence, __busy_write_id); 4121 } 4122 4123 int 4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4125 struct drm_file *file) 4126 { 4127 struct drm_i915_gem_busy *args = data; 4128 struct drm_i915_gem_object *obj; 4129 struct reservation_object_list *list; 4130 unsigned int seq; 4131 int err; 4132 4133 err = -ENOENT; 4134 rcu_read_lock(); 4135 obj = i915_gem_object_lookup_rcu(file, args->handle); 4136 if (!obj) 4137 goto out; 4138 4139 /* A discrepancy here is that we do not report the status of 4140 * non-i915 fences, i.e. even though we may report the object as idle, 4141 * a call to set-domain may still stall waiting for foreign rendering. 4142 * This also means that wait-ioctl may report an object as busy, 4143 * where busy-ioctl considers it idle. 4144 * 4145 * We trade the ability to warn of foreign fences to report on which 4146 * i915 engines are active for the object. 4147 * 4148 * Alternatively, we can trade that extra information on read/write 4149 * activity with 4150 * args->busy = 4151 * !reservation_object_test_signaled_rcu(obj->resv, true); 4152 * to report the overall busyness. This is what the wait-ioctl does. 4153 * 4154 */ 4155 retry: 4156 seq = raw_read_seqcount(&obj->resv->seq); 4157 4158 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4159 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4160 4161 /* Translate shared fences to READ set of engines */ 4162 list = rcu_dereference(obj->resv->fence); 4163 if (list) { 4164 unsigned int shared_count = list->shared_count, i; 4165 4166 for (i = 0; i < shared_count; ++i) { 4167 struct dma_fence *fence = 4168 rcu_dereference(list->shared[i]); 4169 4170 args->busy |= busy_check_reader(fence); 4171 } 4172 } 4173 4174 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4175 goto retry; 4176 4177 err = 0; 4178 out: 4179 rcu_read_unlock(); 4180 return err; 4181 } 4182 4183 int 4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4185 struct drm_file *file_priv) 4186 { 4187 return i915_gem_ring_throttle(dev, file_priv); 4188 } 4189 4190 int 4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4192 struct drm_file *file_priv) 4193 { 4194 struct drm_i915_private *dev_priv = to_i915(dev); 4195 struct drm_i915_gem_madvise *args = data; 4196 struct drm_i915_gem_object *obj; 4197 int err; 4198 4199 switch (args->madv) { 4200 case I915_MADV_DONTNEED: 4201 case I915_MADV_WILLNEED: 4202 break; 4203 default: 4204 return -EINVAL; 4205 } 4206 4207 obj = i915_gem_object_lookup(file_priv, args->handle); 4208 if (!obj) 4209 return -ENOENT; 4210 4211 err = mutex_lock_interruptible(&obj->mm.lock); 4212 if (err) 4213 goto out; 4214 4215 if (obj->mm.pages && 4216 i915_gem_object_is_tiled(obj) && 4217 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4218 if (obj->mm.madv == I915_MADV_WILLNEED) { 4219 GEM_BUG_ON(!obj->mm.quirked); 4220 __i915_gem_object_unpin_pages(obj); 4221 obj->mm.quirked = false; 4222 } 4223 if (args->madv == I915_MADV_WILLNEED) { 4224 GEM_BUG_ON(obj->mm.quirked); 4225 __i915_gem_object_pin_pages(obj); 4226 obj->mm.quirked = true; 4227 } 4228 } 4229 4230 if (obj->mm.madv != __I915_MADV_PURGED) 4231 obj->mm.madv = args->madv; 4232 4233 /* if the object is no longer attached, discard its backing storage */ 4234 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages) 4235 i915_gem_object_truncate(obj); 4236 4237 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4238 mutex_unlock(&obj->mm.lock); 4239 4240 out: 4241 i915_gem_object_put(obj); 4242 return err; 4243 } 4244 4245 static void 4246 frontbuffer_retire(struct i915_gem_active *active, 4247 struct drm_i915_gem_request *request) 4248 { 4249 struct drm_i915_gem_object *obj = 4250 container_of(active, typeof(*obj), frontbuffer_write); 4251 4252 intel_fb_obj_flush(obj, ORIGIN_CS); 4253 } 4254 4255 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4256 const struct drm_i915_gem_object_ops *ops) 4257 { 4258 mutex_init(&obj->mm.lock); 4259 4260 INIT_LIST_HEAD(&obj->global_link); 4261 INIT_LIST_HEAD(&obj->userfault_link); 4262 INIT_LIST_HEAD(&obj->vma_list); 4263 INIT_LIST_HEAD(&obj->lut_list); 4264 INIT_LIST_HEAD(&obj->batch_pool_link); 4265 4266 obj->ops = ops; 4267 4268 reservation_object_init(&obj->__builtin_resv); 4269 obj->resv = &obj->__builtin_resv; 4270 4271 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4272 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4273 4274 obj->mm.madv = I915_MADV_WILLNEED; 4275 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4276 mutex_init(&obj->mm.get_page.lock); 4277 4278 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4279 } 4280 4281 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4282 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4283 I915_GEM_OBJECT_IS_SHRINKABLE, 4284 4285 .get_pages = i915_gem_object_get_pages_gtt, 4286 .put_pages = i915_gem_object_put_pages_gtt, 4287 4288 .pwrite = i915_gem_object_pwrite_gtt, 4289 }; 4290 4291 struct drm_i915_gem_object * 4292 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4293 { 4294 struct drm_i915_gem_object *obj; 4295 struct address_space *mapping; 4296 unsigned int cache_level; 4297 gfp_t mask; 4298 int ret; 4299 4300 /* There is a prevalence of the assumption that we fit the object's 4301 * page count inside a 32bit _signed_ variable. Let's document this and 4302 * catch if we ever need to fix it. In the meantime, if you do spot 4303 * such a local variable, please consider fixing! 4304 */ 4305 if (size >> PAGE_SHIFT > INT_MAX) 4306 return ERR_PTR(-E2BIG); 4307 4308 if (overflows_type(size, obj->base.size)) 4309 return ERR_PTR(-E2BIG); 4310 4311 obj = i915_gem_object_alloc(dev_priv); 4312 if (obj == NULL) 4313 return ERR_PTR(-ENOMEM); 4314 4315 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size); 4316 if (ret) 4317 goto fail; 4318 4319 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4320 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4321 /* 965gm cannot relocate objects above 4GiB. */ 4322 mask &= ~__GFP_HIGHMEM; 4323 mask |= __GFP_DMA32; 4324 } 4325 4326 mapping = obj->base.filp->f_mapping; 4327 mapping_set_gfp_mask(mapping, mask); 4328 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4329 4330 i915_gem_object_init(obj, &i915_gem_object_ops); 4331 4332 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4333 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4334 4335 if (HAS_LLC(dev_priv)) 4336 /* On some devices, we can have the GPU use the LLC (the CPU 4337 * cache) for about a 10% performance improvement 4338 * compared to uncached. Graphics requests other than 4339 * display scanout are coherent with the CPU in 4340 * accessing this cache. This means in this mode we 4341 * don't need to clflush on the CPU side, and on the 4342 * GPU side we only need to flush internal caches to 4343 * get data visible to the CPU. 4344 * 4345 * However, we maintain the display planes as UC, and so 4346 * need to rebind when first used as such. 4347 */ 4348 cache_level = I915_CACHE_LLC; 4349 else 4350 cache_level = I915_CACHE_NONE; 4351 4352 i915_gem_object_set_cache_coherency(obj, cache_level); 4353 4354 trace_i915_gem_object_create(obj); 4355 4356 return obj; 4357 4358 fail: 4359 i915_gem_object_free(obj); 4360 return ERR_PTR(ret); 4361 } 4362 4363 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4364 { 4365 /* If we are the last user of the backing storage (be it shmemfs 4366 * pages or stolen etc), we know that the pages are going to be 4367 * immediately released. In this case, we can then skip copying 4368 * back the contents from the GPU. 4369 */ 4370 4371 if (obj->mm.madv != I915_MADV_WILLNEED) 4372 return false; 4373 4374 if (obj->base.filp == NULL) 4375 return true; 4376 4377 /* At first glance, this looks racy, but then again so would be 4378 * userspace racing mmap against close. However, the first external 4379 * reference to the filp can only be obtained through the 4380 * i915_gem_mmap_ioctl() which safeguards us against the user 4381 * acquiring such a reference whilst we are in the middle of 4382 * freeing the object. 4383 */ 4384 return atomic_long_read(&obj->base.filp->f_count) == 1; 4385 } 4386 4387 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4388 struct llist_node *freed) 4389 { 4390 struct drm_i915_gem_object *obj, *on; 4391 4392 mutex_lock(&i915->drm.struct_mutex); 4393 intel_runtime_pm_get(i915); 4394 llist_for_each_entry(obj, freed, freed) { 4395 struct i915_vma *vma, *vn; 4396 4397 trace_i915_gem_object_destroy(obj); 4398 4399 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4400 list_for_each_entry_safe(vma, vn, 4401 &obj->vma_list, obj_link) { 4402 GEM_BUG_ON(i915_vma_is_active(vma)); 4403 vma->flags &= ~I915_VMA_PIN_MASK; 4404 i915_vma_close(vma); 4405 } 4406 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4407 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4408 4409 list_del(&obj->global_link); 4410 } 4411 intel_runtime_pm_put(i915); 4412 mutex_unlock(&i915->drm.struct_mutex); 4413 4414 cond_resched(); 4415 4416 llist_for_each_entry_safe(obj, on, freed, freed) { 4417 GEM_BUG_ON(obj->bind_count); 4418 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4419 4420 if (obj->ops->release) 4421 obj->ops->release(obj); 4422 4423 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4424 atomic_set(&obj->mm.pages_pin_count, 0); 4425 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4426 GEM_BUG_ON(obj->mm.pages); 4427 4428 if (obj->base.import_attach) 4429 drm_prime_gem_destroy(&obj->base, NULL); 4430 4431 reservation_object_fini(&obj->__builtin_resv); 4432 drm_gem_object_release(&obj->base); 4433 i915_gem_info_remove_obj(i915, obj->base.size); 4434 4435 kfree(obj->bit_17); 4436 i915_gem_object_free(obj); 4437 } 4438 } 4439 4440 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4441 { 4442 struct llist_node *freed; 4443 4444 freed = llist_del_all(&i915->mm.free_list); 4445 if (unlikely(freed)) 4446 __i915_gem_free_objects(i915, freed); 4447 } 4448 4449 static void __i915_gem_free_work(struct work_struct *work) 4450 { 4451 struct drm_i915_private *i915 = 4452 container_of(work, struct drm_i915_private, mm.free_work); 4453 struct llist_node *freed; 4454 4455 /* All file-owned VMA should have been released by this point through 4456 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4457 * However, the object may also be bound into the global GTT (e.g. 4458 * older GPUs without per-process support, or for direct access through 4459 * the GTT either for the user or for scanout). Those VMA still need to 4460 * unbound now. 4461 */ 4462 4463 while ((freed = llist_del_all(&i915->mm.free_list))) { 4464 __i915_gem_free_objects(i915, freed); 4465 if (need_resched()) 4466 break; 4467 } 4468 } 4469 4470 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4471 { 4472 struct drm_i915_gem_object *obj = 4473 container_of(head, typeof(*obj), rcu); 4474 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4475 4476 /* We can't simply use call_rcu() from i915_gem_free_object() 4477 * as we need to block whilst unbinding, and the call_rcu 4478 * task may be called from softirq context. So we take a 4479 * detour through a worker. 4480 */ 4481 if (llist_add(&obj->freed, &i915->mm.free_list)) 4482 schedule_work(&i915->mm.free_work); 4483 } 4484 4485 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4486 { 4487 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4488 4489 if (obj->mm.quirked) 4490 __i915_gem_object_unpin_pages(obj); 4491 4492 if (discard_backing_storage(obj)) 4493 obj->mm.madv = I915_MADV_DONTNEED; 4494 4495 /* Before we free the object, make sure any pure RCU-only 4496 * read-side critical sections are complete, e.g. 4497 * i915_gem_busy_ioctl(). For the corresponding synchronized 4498 * lookup see i915_gem_object_lookup_rcu(). 4499 */ 4500 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4501 } 4502 4503 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4504 { 4505 lockdep_assert_held(&obj->base.dev->struct_mutex); 4506 4507 if (!i915_gem_object_has_active_reference(obj) && 4508 i915_gem_object_is_active(obj)) 4509 i915_gem_object_set_active_reference(obj); 4510 else 4511 i915_gem_object_put(obj); 4512 } 4513 4514 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv) 4515 { 4516 struct intel_engine_cs *engine; 4517 enum intel_engine_id id; 4518 4519 for_each_engine(engine, dev_priv, id) 4520 GEM_BUG_ON(engine->last_retired_context && 4521 !i915_gem_context_is_kernel(engine->last_retired_context)); 4522 } 4523 4524 void i915_gem_sanitize(struct drm_i915_private *i915) 4525 { 4526 /* 4527 * If we inherit context state from the BIOS or earlier occupants 4528 * of the GPU, the GPU may be in an inconsistent state when we 4529 * try to take over. The only way to remove the earlier state 4530 * is by resetting. However, resetting on earlier gen is tricky as 4531 * it may impact the display and we are uncertain about the stability 4532 * of the reset, so this could be applied to even earlier gen. 4533 */ 4534 if (INTEL_GEN(i915) >= 5) { 4535 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4536 WARN_ON(reset && reset != -ENODEV); 4537 } 4538 } 4539 4540 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4541 { 4542 struct drm_device *dev = &dev_priv->drm; 4543 int ret; 4544 4545 intel_runtime_pm_get(dev_priv); 4546 intel_suspend_gt_powersave(dev_priv); 4547 4548 mutex_lock(&dev->struct_mutex); 4549 4550 /* We have to flush all the executing contexts to main memory so 4551 * that they can saved in the hibernation image. To ensure the last 4552 * context image is coherent, we have to switch away from it. That 4553 * leaves the dev_priv->kernel_context still active when 4554 * we actually suspend, and its image in memory may not match the GPU 4555 * state. Fortunately, the kernel_context is disposable and we do 4556 * not rely on its state. 4557 */ 4558 ret = i915_gem_switch_to_kernel_context(dev_priv); 4559 if (ret) 4560 goto err_unlock; 4561 4562 ret = i915_gem_wait_for_idle(dev_priv, 4563 I915_WAIT_INTERRUPTIBLE | 4564 I915_WAIT_LOCKED); 4565 if (ret) 4566 goto err_unlock; 4567 4568 assert_kernel_context_is_current(dev_priv); 4569 i915_gem_contexts_lost(dev_priv); 4570 mutex_unlock(&dev->struct_mutex); 4571 4572 intel_guc_suspend(dev_priv); 4573 4574 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4575 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4576 4577 /* As the idle_work is rearming if it detects a race, play safe and 4578 * repeat the flush until it is definitely idle. 4579 */ 4580 while (flush_delayed_work(&dev_priv->gt.idle_work)) 4581 ; 4582 4583 /* Assert that we sucessfully flushed all the work and 4584 * reset the GPU back to its idle, low power state. 4585 */ 4586 WARN_ON(dev_priv->gt.awake); 4587 WARN_ON(!intel_engines_are_idle(dev_priv)); 4588 4589 /* 4590 * Neither the BIOS, ourselves or any other kernel 4591 * expects the system to be in execlists mode on startup, 4592 * so we need to reset the GPU back to legacy mode. And the only 4593 * known way to disable logical contexts is through a GPU reset. 4594 * 4595 * So in order to leave the system in a known default configuration, 4596 * always reset the GPU upon unload and suspend. Afterwards we then 4597 * clean up the GEM state tracking, flushing off the requests and 4598 * leaving the system in a known idle state. 4599 * 4600 * Note that is of the upmost importance that the GPU is idle and 4601 * all stray writes are flushed *before* we dismantle the backing 4602 * storage for the pinned objects. 4603 * 4604 * However, since we are uncertain that resetting the GPU on older 4605 * machines is a good idea, we don't - just in case it leaves the 4606 * machine in an unusable condition. 4607 */ 4608 i915_gem_sanitize(dev_priv); 4609 goto out_rpm_put; 4610 4611 err_unlock: 4612 mutex_unlock(&dev->struct_mutex); 4613 out_rpm_put: 4614 intel_runtime_pm_put(dev_priv); 4615 return ret; 4616 } 4617 4618 void i915_gem_resume(struct drm_i915_private *dev_priv) 4619 { 4620 struct drm_device *dev = &dev_priv->drm; 4621 4622 WARN_ON(dev_priv->gt.awake); 4623 4624 mutex_lock(&dev->struct_mutex); 4625 i915_gem_restore_gtt_mappings(dev_priv); 4626 4627 /* As we didn't flush the kernel context before suspend, we cannot 4628 * guarantee that the context image is complete. So let's just reset 4629 * it and start again. 4630 */ 4631 dev_priv->gt.resume(dev_priv); 4632 4633 mutex_unlock(&dev->struct_mutex); 4634 } 4635 4636 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4637 { 4638 if (INTEL_GEN(dev_priv) < 5 || 4639 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4640 return; 4641 4642 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4643 DISP_TILE_SURFACE_SWIZZLING); 4644 4645 if (IS_GEN5(dev_priv)) 4646 return; 4647 4648 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4649 if (IS_GEN6(dev_priv)) 4650 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4651 else if (IS_GEN7(dev_priv)) 4652 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4653 else if (IS_GEN8(dev_priv)) 4654 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4655 else 4656 BUG(); 4657 } 4658 4659 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4660 { 4661 I915_WRITE(RING_CTL(base), 0); 4662 I915_WRITE(RING_HEAD(base), 0); 4663 I915_WRITE(RING_TAIL(base), 0); 4664 I915_WRITE(RING_START(base), 0); 4665 } 4666 4667 static void init_unused_rings(struct drm_i915_private *dev_priv) 4668 { 4669 if (IS_I830(dev_priv)) { 4670 init_unused_ring(dev_priv, PRB1_BASE); 4671 init_unused_ring(dev_priv, SRB0_BASE); 4672 init_unused_ring(dev_priv, SRB1_BASE); 4673 init_unused_ring(dev_priv, SRB2_BASE); 4674 init_unused_ring(dev_priv, SRB3_BASE); 4675 } else if (IS_GEN2(dev_priv)) { 4676 init_unused_ring(dev_priv, SRB0_BASE); 4677 init_unused_ring(dev_priv, SRB1_BASE); 4678 } else if (IS_GEN3(dev_priv)) { 4679 init_unused_ring(dev_priv, PRB1_BASE); 4680 init_unused_ring(dev_priv, PRB2_BASE); 4681 } 4682 } 4683 4684 static int __i915_gem_restart_engines(void *data) 4685 { 4686 struct drm_i915_private *i915 = data; 4687 struct intel_engine_cs *engine; 4688 enum intel_engine_id id; 4689 int err; 4690 4691 for_each_engine(engine, i915, id) { 4692 err = engine->init_hw(engine); 4693 if (err) 4694 return err; 4695 } 4696 4697 return 0; 4698 } 4699 4700 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4701 { 4702 int ret; 4703 4704 dev_priv->gt.last_init_time = ktime_get(); 4705 4706 /* Double layer security blanket, see i915_gem_init() */ 4707 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4708 4709 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4710 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4711 4712 if (IS_HASWELL(dev_priv)) 4713 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 4714 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4715 4716 if (HAS_PCH_NOP(dev_priv)) { 4717 if (IS_IVYBRIDGE(dev_priv)) { 4718 u32 temp = I915_READ(GEN7_MSG_CTL); 4719 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4720 I915_WRITE(GEN7_MSG_CTL, temp); 4721 } else if (INTEL_GEN(dev_priv) >= 7) { 4722 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4723 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4724 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4725 } 4726 } 4727 4728 i915_gem_init_swizzling(dev_priv); 4729 4730 /* 4731 * At least 830 can leave some of the unused rings 4732 * "active" (ie. head != tail) after resume which 4733 * will prevent c3 entry. Makes sure all unused rings 4734 * are totally idle. 4735 */ 4736 init_unused_rings(dev_priv); 4737 4738 BUG_ON(!dev_priv->kernel_context); 4739 4740 ret = i915_ppgtt_init_hw(dev_priv); 4741 if (ret) { 4742 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4743 goto out; 4744 } 4745 4746 /* Need to do basic initialisation of all rings first: */ 4747 ret = __i915_gem_restart_engines(dev_priv); 4748 if (ret) 4749 goto out; 4750 4751 intel_mocs_init_l3cc_table(dev_priv); 4752 4753 /* We can't enable contexts until all firmware is loaded */ 4754 ret = intel_uc_init_hw(dev_priv); 4755 if (ret) 4756 goto out; 4757 4758 out: 4759 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4760 return ret; 4761 } 4762 4763 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) 4764 { 4765 if (INTEL_INFO(dev_priv)->gen < 6) 4766 return false; 4767 4768 /* TODO: make semaphores and Execlists play nicely together */ 4769 if (i915.enable_execlists) 4770 return false; 4771 4772 if (value >= 0) 4773 return value; 4774 4775 /* Enable semaphores on SNB when IO remapping is off */ 4776 if (IS_GEN6(dev_priv) && intel_vtd_active()) 4777 return false; 4778 4779 return true; 4780 } 4781 4782 int i915_gem_init(struct drm_i915_private *dev_priv) 4783 { 4784 int ret; 4785 4786 mutex_lock(&dev_priv->drm.struct_mutex); 4787 4788 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 4789 4790 if (!i915.enable_execlists) { 4791 dev_priv->gt.resume = intel_legacy_submission_resume; 4792 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 4793 } else { 4794 dev_priv->gt.resume = intel_lr_context_resume; 4795 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 4796 } 4797 4798 /* This is just a security blanket to placate dragons. 4799 * On some systems, we very sporadically observe that the first TLBs 4800 * used by the CS may be stale, despite us poking the TLB reset. If 4801 * we hold the forcewake during initialisation these problems 4802 * just magically go away. 4803 */ 4804 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4805 4806 ret = i915_gem_init_userptr(dev_priv); 4807 if (ret) 4808 goto out_unlock; 4809 4810 ret = i915_gem_init_ggtt(dev_priv); 4811 if (ret) 4812 goto out_unlock; 4813 4814 ret = i915_gem_contexts_init(dev_priv); 4815 if (ret) 4816 goto out_unlock; 4817 4818 ret = intel_engines_init(dev_priv); 4819 if (ret) 4820 goto out_unlock; 4821 4822 ret = i915_gem_init_hw(dev_priv); 4823 if (ret == -EIO) { 4824 /* Allow engine initialisation to fail by marking the GPU as 4825 * wedged. But we only want to do this where the GPU is angry, 4826 * for all other failure, such as an allocation failure, bail. 4827 */ 4828 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4829 i915_gem_set_wedged(dev_priv); 4830 ret = 0; 4831 } 4832 4833 out_unlock: 4834 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4835 mutex_unlock(&dev_priv->drm.struct_mutex); 4836 4837 return ret; 4838 } 4839 4840 void i915_gem_init_mmio(struct drm_i915_private *i915) 4841 { 4842 i915_gem_sanitize(i915); 4843 } 4844 4845 void 4846 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 4847 { 4848 struct intel_engine_cs *engine; 4849 enum intel_engine_id id; 4850 4851 for_each_engine(engine, dev_priv, id) 4852 dev_priv->gt.cleanup_engine(engine); 4853 } 4854 4855 void 4856 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 4857 { 4858 int i; 4859 4860 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 4861 !IS_CHERRYVIEW(dev_priv)) 4862 dev_priv->num_fence_regs = 32; 4863 else if (INTEL_INFO(dev_priv)->gen >= 4 || 4864 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 4865 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 4866 dev_priv->num_fence_regs = 16; 4867 else 4868 dev_priv->num_fence_regs = 8; 4869 4870 if (intel_vgpu_active(dev_priv)) 4871 dev_priv->num_fence_regs = 4872 I915_READ(vgtif_reg(avail_rs.fence_num)); 4873 4874 /* Initialize fence registers to zero */ 4875 for (i = 0; i < dev_priv->num_fence_regs; i++) { 4876 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 4877 4878 fence->i915 = dev_priv; 4879 fence->id = i; 4880 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 4881 } 4882 i915_gem_restore_fences(dev_priv); 4883 4884 i915_gem_detect_bit_6_swizzle(dev_priv); 4885 } 4886 4887 int 4888 i915_gem_load_init(struct drm_i915_private *dev_priv) 4889 { 4890 int err = -ENOMEM; 4891 4892 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 4893 if (!dev_priv->objects) 4894 goto err_out; 4895 4896 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 4897 if (!dev_priv->vmas) 4898 goto err_objects; 4899 4900 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 4901 if (!dev_priv->luts) 4902 goto err_vmas; 4903 4904 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 4905 SLAB_HWCACHE_ALIGN | 4906 SLAB_RECLAIM_ACCOUNT | 4907 SLAB_TYPESAFE_BY_RCU); 4908 if (!dev_priv->requests) 4909 goto err_luts; 4910 4911 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 4912 SLAB_HWCACHE_ALIGN | 4913 SLAB_RECLAIM_ACCOUNT); 4914 if (!dev_priv->dependencies) 4915 goto err_requests; 4916 4917 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 4918 if (!dev_priv->priorities) 4919 goto err_dependencies; 4920 4921 mutex_lock(&dev_priv->drm.struct_mutex); 4922 INIT_LIST_HEAD(&dev_priv->gt.timelines); 4923 err = i915_gem_timeline_init__global(dev_priv); 4924 mutex_unlock(&dev_priv->drm.struct_mutex); 4925 if (err) 4926 goto err_priorities; 4927 4928 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work); 4929 init_llist_head(&dev_priv->mm.free_list); 4930 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4931 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4932 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4933 INIT_LIST_HEAD(&dev_priv->mm.userfault_list); 4934 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 4935 i915_gem_retire_work_handler); 4936 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 4937 i915_gem_idle_work_handler); 4938 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 4939 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4940 4941 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 4942 4943 spin_lock_init(&dev_priv->fb_tracking.lock); 4944 4945 return 0; 4946 4947 err_priorities: 4948 kmem_cache_destroy(dev_priv->priorities); 4949 err_dependencies: 4950 kmem_cache_destroy(dev_priv->dependencies); 4951 err_requests: 4952 kmem_cache_destroy(dev_priv->requests); 4953 err_luts: 4954 kmem_cache_destroy(dev_priv->luts); 4955 err_vmas: 4956 kmem_cache_destroy(dev_priv->vmas); 4957 err_objects: 4958 kmem_cache_destroy(dev_priv->objects); 4959 err_out: 4960 return err; 4961 } 4962 4963 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 4964 { 4965 i915_gem_drain_freed_objects(dev_priv); 4966 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 4967 WARN_ON(dev_priv->mm.object_count); 4968 4969 mutex_lock(&dev_priv->drm.struct_mutex); 4970 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 4971 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 4972 mutex_unlock(&dev_priv->drm.struct_mutex); 4973 4974 kmem_cache_destroy(dev_priv->priorities); 4975 kmem_cache_destroy(dev_priv->dependencies); 4976 kmem_cache_destroy(dev_priv->requests); 4977 kmem_cache_destroy(dev_priv->luts); 4978 kmem_cache_destroy(dev_priv->vmas); 4979 kmem_cache_destroy(dev_priv->objects); 4980 4981 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 4982 rcu_barrier(); 4983 } 4984 4985 int i915_gem_freeze(struct drm_i915_private *dev_priv) 4986 { 4987 /* Discard all purgeable objects, let userspace recover those as 4988 * required after resuming. 4989 */ 4990 i915_gem_shrink_all(dev_priv); 4991 4992 return 0; 4993 } 4994 4995 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 4996 { 4997 struct drm_i915_gem_object *obj; 4998 struct list_head *phases[] = { 4999 &dev_priv->mm.unbound_list, 5000 &dev_priv->mm.bound_list, 5001 NULL 5002 }, **p; 5003 5004 /* Called just before we write the hibernation image. 5005 * 5006 * We need to update the domain tracking to reflect that the CPU 5007 * will be accessing all the pages to create and restore from the 5008 * hibernation, and so upon restoration those pages will be in the 5009 * CPU domain. 5010 * 5011 * To make sure the hibernation image contains the latest state, 5012 * we update that state just before writing out the image. 5013 * 5014 * To try and reduce the hibernation image, we manually shrink 5015 * the objects as well, see i915_gem_freeze() 5016 */ 5017 5018 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND); 5019 i915_gem_drain_freed_objects(dev_priv); 5020 5021 mutex_lock(&dev_priv->drm.struct_mutex); 5022 for (p = phases; *p; p++) { 5023 list_for_each_entry(obj, *p, global_link) 5024 __start_cpu_write(obj); 5025 } 5026 mutex_unlock(&dev_priv->drm.struct_mutex); 5027 5028 return 0; 5029 } 5030 5031 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5032 { 5033 struct drm_i915_file_private *file_priv = file->driver_priv; 5034 struct drm_i915_gem_request *request; 5035 5036 /* Clean up our request list when the client is going away, so that 5037 * later retire_requests won't dereference our soon-to-be-gone 5038 * file_priv. 5039 */ 5040 spin_lock(&file_priv->mm.lock); 5041 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5042 request->file_priv = NULL; 5043 spin_unlock(&file_priv->mm.lock); 5044 } 5045 5046 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5047 { 5048 struct drm_i915_file_private *file_priv; 5049 int ret; 5050 5051 DRM_DEBUG("\n"); 5052 5053 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5054 if (!file_priv) 5055 return -ENOMEM; 5056 5057 file->driver_priv = file_priv; 5058 file_priv->dev_priv = i915; 5059 file_priv->file = file; 5060 5061 spin_lock_init(&file_priv->mm.lock); 5062 INIT_LIST_HEAD(&file_priv->mm.request_list); 5063 5064 file_priv->bsd_engine = -1; 5065 5066 ret = i915_gem_context_open(i915, file); 5067 if (ret) 5068 kfree(file_priv); 5069 5070 return ret; 5071 } 5072 5073 /** 5074 * i915_gem_track_fb - update frontbuffer tracking 5075 * @old: current GEM buffer for the frontbuffer slots 5076 * @new: new GEM buffer for the frontbuffer slots 5077 * @frontbuffer_bits: bitmask of frontbuffer slots 5078 * 5079 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5080 * from @old and setting them in @new. Both @old and @new can be NULL. 5081 */ 5082 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5083 struct drm_i915_gem_object *new, 5084 unsigned frontbuffer_bits) 5085 { 5086 /* Control of individual bits within the mask are guarded by 5087 * the owning plane->mutex, i.e. we can never see concurrent 5088 * manipulation of individual bits. But since the bitfield as a whole 5089 * is updated using RMW, we need to use atomics in order to update 5090 * the bits. 5091 */ 5092 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5093 sizeof(atomic_t) * BITS_PER_BYTE); 5094 5095 if (old) { 5096 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5097 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5098 } 5099 5100 if (new) { 5101 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5102 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5103 } 5104 } 5105 5106 /* Allocate a new GEM object and fill it with the supplied data */ 5107 struct drm_i915_gem_object * 5108 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5109 const void *data, size_t size) 5110 { 5111 struct drm_i915_gem_object *obj; 5112 struct file *file; 5113 size_t offset; 5114 int err; 5115 5116 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5117 if (IS_ERR(obj)) 5118 return obj; 5119 5120 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5121 5122 file = obj->base.filp; 5123 offset = 0; 5124 do { 5125 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5126 struct page *page; 5127 void *pgdata, *vaddr; 5128 5129 err = pagecache_write_begin(file, file->f_mapping, 5130 offset, len, 0, 5131 &page, &pgdata); 5132 if (err < 0) 5133 goto fail; 5134 5135 vaddr = kmap(page); 5136 memcpy(vaddr, data, len); 5137 kunmap(page); 5138 5139 err = pagecache_write_end(file, file->f_mapping, 5140 offset, len, len, 5141 page, pgdata); 5142 if (err < 0) 5143 goto fail; 5144 5145 size -= len; 5146 data += len; 5147 offset += len; 5148 } while (size); 5149 5150 return obj; 5151 5152 fail: 5153 i915_gem_object_put(obj); 5154 return ERR_PTR(err); 5155 } 5156 5157 struct scatterlist * 5158 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5159 unsigned int n, 5160 unsigned int *offset) 5161 { 5162 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5163 struct scatterlist *sg; 5164 unsigned int idx, count; 5165 5166 might_sleep(); 5167 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5168 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5169 5170 /* As we iterate forward through the sg, we record each entry in a 5171 * radixtree for quick repeated (backwards) lookups. If we have seen 5172 * this index previously, we will have an entry for it. 5173 * 5174 * Initial lookup is O(N), but this is amortized to O(1) for 5175 * sequential page access (where each new request is consecutive 5176 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5177 * i.e. O(1) with a large constant! 5178 */ 5179 if (n < READ_ONCE(iter->sg_idx)) 5180 goto lookup; 5181 5182 mutex_lock(&iter->lock); 5183 5184 /* We prefer to reuse the last sg so that repeated lookup of this 5185 * (or the subsequent) sg are fast - comparing against the last 5186 * sg is faster than going through the radixtree. 5187 */ 5188 5189 sg = iter->sg_pos; 5190 idx = iter->sg_idx; 5191 count = __sg_page_count(sg); 5192 5193 while (idx + count <= n) { 5194 unsigned long exception, i; 5195 int ret; 5196 5197 /* If we cannot allocate and insert this entry, or the 5198 * individual pages from this range, cancel updating the 5199 * sg_idx so that on this lookup we are forced to linearly 5200 * scan onwards, but on future lookups we will try the 5201 * insertion again (in which case we need to be careful of 5202 * the error return reporting that we have already inserted 5203 * this index). 5204 */ 5205 ret = radix_tree_insert(&iter->radix, idx, sg); 5206 if (ret && ret != -EEXIST) 5207 goto scan; 5208 5209 exception = 5210 RADIX_TREE_EXCEPTIONAL_ENTRY | 5211 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5212 for (i = 1; i < count; i++) { 5213 ret = radix_tree_insert(&iter->radix, idx + i, 5214 (void *)exception); 5215 if (ret && ret != -EEXIST) 5216 goto scan; 5217 } 5218 5219 idx += count; 5220 sg = ____sg_next(sg); 5221 count = __sg_page_count(sg); 5222 } 5223 5224 scan: 5225 iter->sg_pos = sg; 5226 iter->sg_idx = idx; 5227 5228 mutex_unlock(&iter->lock); 5229 5230 if (unlikely(n < idx)) /* insertion completed by another thread */ 5231 goto lookup; 5232 5233 /* In case we failed to insert the entry into the radixtree, we need 5234 * to look beyond the current sg. 5235 */ 5236 while (idx + count <= n) { 5237 idx += count; 5238 sg = ____sg_next(sg); 5239 count = __sg_page_count(sg); 5240 } 5241 5242 *offset = n - idx; 5243 return sg; 5244 5245 lookup: 5246 rcu_read_lock(); 5247 5248 sg = radix_tree_lookup(&iter->radix, n); 5249 GEM_BUG_ON(!sg); 5250 5251 /* If this index is in the middle of multi-page sg entry, 5252 * the radixtree will contain an exceptional entry that points 5253 * to the start of that range. We will return the pointer to 5254 * the base page and the offset of this page within the 5255 * sg entry's range. 5256 */ 5257 *offset = 0; 5258 if (unlikely(radix_tree_exception(sg))) { 5259 unsigned long base = 5260 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5261 5262 sg = radix_tree_lookup(&iter->radix, base); 5263 GEM_BUG_ON(!sg); 5264 5265 *offset = n - base; 5266 } 5267 5268 rcu_read_unlock(); 5269 5270 return sg; 5271 } 5272 5273 struct page * 5274 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5275 { 5276 struct scatterlist *sg; 5277 unsigned int offset; 5278 5279 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5280 5281 sg = i915_gem_object_get_sg(obj, n, &offset); 5282 return nth_page(sg_page(sg), offset); 5283 } 5284 5285 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5286 struct page * 5287 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5288 unsigned int n) 5289 { 5290 struct page *page; 5291 5292 page = i915_gem_object_get_page(obj, n); 5293 if (!obj->mm.dirty) 5294 set_page_dirty(page); 5295 5296 return page; 5297 } 5298 5299 dma_addr_t 5300 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5301 unsigned long n) 5302 { 5303 struct scatterlist *sg; 5304 unsigned int offset; 5305 5306 sg = i915_gem_object_get_sg(obj, n, &offset); 5307 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5308 } 5309 5310 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5311 { 5312 struct sg_table *pages; 5313 int err; 5314 5315 if (align > obj->base.size) 5316 return -EINVAL; 5317 5318 if (obj->ops == &i915_gem_phys_ops) 5319 return 0; 5320 5321 if (obj->ops != &i915_gem_object_ops) 5322 return -EINVAL; 5323 5324 err = i915_gem_object_unbind(obj); 5325 if (err) 5326 return err; 5327 5328 mutex_lock(&obj->mm.lock); 5329 5330 if (obj->mm.madv != I915_MADV_WILLNEED) { 5331 err = -EFAULT; 5332 goto err_unlock; 5333 } 5334 5335 if (obj->mm.quirked) { 5336 err = -EFAULT; 5337 goto err_unlock; 5338 } 5339 5340 if (obj->mm.mapping) { 5341 err = -EBUSY; 5342 goto err_unlock; 5343 } 5344 5345 pages = obj->mm.pages; 5346 obj->ops = &i915_gem_phys_ops; 5347 5348 err = ____i915_gem_object_get_pages(obj); 5349 if (err) 5350 goto err_xfer; 5351 5352 /* Perma-pin (until release) the physical set of pages */ 5353 __i915_gem_object_pin_pages(obj); 5354 5355 if (!IS_ERR_OR_NULL(pages)) 5356 i915_gem_object_ops.put_pages(obj, pages); 5357 mutex_unlock(&obj->mm.lock); 5358 return 0; 5359 5360 err_xfer: 5361 obj->ops = &i915_gem_object_ops; 5362 obj->mm.pages = pages; 5363 err_unlock: 5364 mutex_unlock(&obj->mm.lock); 5365 return err; 5366 } 5367 5368 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5369 #include "selftests/scatterlist.c" 5370 #include "selftests/mock_gem_device.c" 5371 #include "selftests/huge_gem_object.c" 5372 #include "selftests/i915_gem_object.c" 5373 #include "selftests/i915_gem_coherency.c" 5374 #endif 5375