xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision ee114b97e67b2a572f94982567a21ac4ee17c133)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 	int ret;
93 
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 		   i915_terminally_wedged(error))
96 	if (EXIT_COND)
97 		return 0;
98 
99 	/*
100 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 	 * userspace. If it takes that long something really bad is going on and
102 	 * we should simply try to bail out and fail as gracefully as possible.
103 	 */
104 	ret = wait_event_interruptible_timeout(error->reset_queue,
105 					       EXIT_COND,
106 					       10*HZ);
107 	if (ret == 0) {
108 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 		return -EIO;
110 	} else if (ret < 0) {
111 		return ret;
112 	}
113 #undef EXIT_COND
114 
115 	return 0;
116 }
117 
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	int ret;
122 
123 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 	if (ret)
125 		return ret;
126 
127 	ret = mutex_lock_interruptible(&dev->struct_mutex);
128 	if (ret)
129 		return ret;
130 
131 	WARN_ON(i915_verify_lists(dev));
132 	return 0;
133 }
134 
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 	return obj->gtt_space && !obj->active;
139 }
140 
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 		    struct drm_file *file)
144 {
145 	struct drm_i915_private *dev_priv = dev->dev_private;
146 	struct drm_i915_gem_init *args = data;
147 
148 	if (drm_core_check_feature(dev, DRIVER_MODESET))
149 		return -ENODEV;
150 
151 	if (args->gtt_start >= args->gtt_end ||
152 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 		return -EINVAL;
154 
155 	/* GEM with user mode setting was never supported on ilk and later. */
156 	if (INTEL_INFO(dev)->gen >= 5)
157 		return -ENODEV;
158 
159 	mutex_lock(&dev->struct_mutex);
160 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 				  args->gtt_end);
162 	dev_priv->gtt.mappable_end = args->gtt_end;
163 	mutex_unlock(&dev->struct_mutex);
164 
165 	return 0;
166 }
167 
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 			    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_get_aperture *args = data;
174 	struct drm_i915_gem_object *obj;
175 	size_t pinned;
176 
177 	pinned = 0;
178 	mutex_lock(&dev->struct_mutex);
179 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 		if (obj->pin_count)
181 			pinned += obj->gtt_space->size;
182 	mutex_unlock(&dev->struct_mutex);
183 
184 	args->aper_size = dev_priv->gtt.total;
185 	args->aper_available_size = args->aper_size - pinned;
186 
187 	return 0;
188 }
189 
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 	struct drm_i915_private *dev_priv = dev->dev_private;
193 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195 
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 	kmem_cache_free(dev_priv->slab, obj);
200 }
201 
202 static int
203 i915_gem_create(struct drm_file *file,
204 		struct drm_device *dev,
205 		uint64_t size,
206 		uint32_t *handle_p)
207 {
208 	struct drm_i915_gem_object *obj;
209 	int ret;
210 	u32 handle;
211 
212 	size = roundup(size, PAGE_SIZE);
213 	if (size == 0)
214 		return -EINVAL;
215 
216 	/* Allocate the new object */
217 	obj = i915_gem_alloc_object(dev, size);
218 	if (obj == NULL)
219 		return -ENOMEM;
220 
221 	ret = drm_gem_handle_create(file, &obj->base, &handle);
222 	if (ret) {
223 		drm_gem_object_release(&obj->base);
224 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 		i915_gem_object_free(obj);
226 		return ret;
227 	}
228 
229 	/* drop reference from allocate - handle holds it now */
230 	drm_gem_object_unreference(&obj->base);
231 	trace_i915_gem_object_create(obj);
232 
233 	*handle_p = handle;
234 	return 0;
235 }
236 
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 		     struct drm_device *dev,
240 		     struct drm_mode_create_dumb *args)
241 {
242 	/* have to work out size/pitch and return them */
243 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 	args->size = args->pitch * args->height;
245 	return i915_gem_create(file, dev,
246 			       args->size, &args->handle);
247 }
248 
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 			  struct drm_device *dev,
251 			  uint32_t handle)
252 {
253 	return drm_gem_handle_delete(file, handle);
254 }
255 
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 		      struct drm_file *file)
262 {
263 	struct drm_i915_gem_create *args = data;
264 
265 	return i915_gem_create(file, dev,
266 			       args->size, &args->handle);
267 }
268 
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 			const char *gpu_vaddr, int gpu_offset,
272 			int length)
273 {
274 	int ret, cpu_offset = 0;
275 
276 	while (length > 0) {
277 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 		int this_length = min(cacheline_end - gpu_offset, length);
279 		int swizzled_gpu_offset = gpu_offset ^ 64;
280 
281 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 				     gpu_vaddr + swizzled_gpu_offset,
283 				     this_length);
284 		if (ret)
285 			return ret + length;
286 
287 		cpu_offset += this_length;
288 		gpu_offset += this_length;
289 		length -= this_length;
290 	}
291 
292 	return 0;
293 }
294 
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 			  const char __user *cpu_vaddr,
298 			  int length)
299 {
300 	int ret, cpu_offset = 0;
301 
302 	while (length > 0) {
303 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 		int this_length = min(cacheline_end - gpu_offset, length);
305 		int swizzled_gpu_offset = gpu_offset ^ 64;
306 
307 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 				       cpu_vaddr + cpu_offset,
309 				       this_length);
310 		if (ret)
311 			return ret + length;
312 
313 		cpu_offset += this_length;
314 		gpu_offset += this_length;
315 		length -= this_length;
316 	}
317 
318 	return 0;
319 }
320 
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 		 char __user *user_data,
327 		 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 	char *vaddr;
330 	int ret;
331 
332 	if (unlikely(page_do_bit17_swizzling))
333 		return -EINVAL;
334 
335 	vaddr = kmap_atomic(page);
336 	if (needs_clflush)
337 		drm_clflush_virt_range(vaddr + shmem_page_offset,
338 				       page_length);
339 	ret = __copy_to_user_inatomic(user_data,
340 				      vaddr + shmem_page_offset,
341 				      page_length);
342 	kunmap_atomic(vaddr);
343 
344 	return ret ? -EFAULT : 0;
345 }
346 
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 			     bool swizzled)
350 {
351 	if (unlikely(swizzled)) {
352 		unsigned long start = (unsigned long) addr;
353 		unsigned long end = (unsigned long) addr + length;
354 
355 		/* For swizzling simply ensure that we always flush both
356 		 * channels. Lame, but simple and it works. Swizzled
357 		 * pwrite/pread is far from a hotpath - current userspace
358 		 * doesn't use it at all. */
359 		start = round_down(start, 128);
360 		end = round_up(end, 128);
361 
362 		drm_clflush_virt_range((void *)start, end - start);
363 	} else {
364 		drm_clflush_virt_range(addr, length);
365 	}
366 
367 }
368 
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 		 char __user *user_data,
374 		 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 	char *vaddr;
377 	int ret;
378 
379 	vaddr = kmap(page);
380 	if (needs_clflush)
381 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 					     page_length,
383 					     page_do_bit17_swizzling);
384 
385 	if (page_do_bit17_swizzling)
386 		ret = __copy_to_user_swizzled(user_data,
387 					      vaddr, shmem_page_offset,
388 					      page_length);
389 	else
390 		ret = __copy_to_user(user_data,
391 				     vaddr + shmem_page_offset,
392 				     page_length);
393 	kunmap(page);
394 
395 	return ret ? - EFAULT : 0;
396 }
397 
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 		     struct drm_i915_gem_object *obj,
401 		     struct drm_i915_gem_pread *args,
402 		     struct drm_file *file)
403 {
404 	char __user *user_data;
405 	ssize_t remain;
406 	loff_t offset;
407 	int shmem_page_offset, page_length, ret = 0;
408 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 	int prefaulted = 0;
410 	int needs_clflush = 0;
411 	struct sg_page_iter sg_iter;
412 
413 	user_data = to_user_ptr(args->data_ptr);
414 	remain = args->size;
415 
416 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417 
418 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 		/* If we're not in the cpu read domain, set ourself into the gtt
420 		 * read domain and manually flush cachelines (if required). This
421 		 * optimizes for the case when the gpu will dirty the data
422 		 * anyway again before the next pread happens. */
423 		if (obj->cache_level == I915_CACHE_NONE)
424 			needs_clflush = 1;
425 		if (obj->gtt_space) {
426 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 			if (ret)
428 				return ret;
429 		}
430 	}
431 
432 	ret = i915_gem_object_get_pages(obj);
433 	if (ret)
434 		return ret;
435 
436 	i915_gem_object_pin_pages(obj);
437 
438 	offset = args->offset;
439 
440 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 			 offset >> PAGE_SHIFT) {
442 		struct page *page = sg_page_iter_page(&sg_iter);
443 
444 		if (remain <= 0)
445 			break;
446 
447 		/* Operation in this page
448 		 *
449 		 * shmem_page_offset = offset within page in shmem file
450 		 * page_length = bytes to copy for this page
451 		 */
452 		shmem_page_offset = offset_in_page(offset);
453 		page_length = remain;
454 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 			page_length = PAGE_SIZE - shmem_page_offset;
456 
457 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 			(page_to_phys(page) & (1 << 17)) != 0;
459 
460 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 				       user_data, page_do_bit17_swizzling,
462 				       needs_clflush);
463 		if (ret == 0)
464 			goto next_page;
465 
466 		mutex_unlock(&dev->struct_mutex);
467 
468 		if (!prefaulted) {
469 			ret = fault_in_multipages_writeable(user_data, remain);
470 			/* Userspace is tricking us, but we've already clobbered
471 			 * its pages with the prefault and promised to write the
472 			 * data up to the first fault. Hence ignore any errors
473 			 * and just continue. */
474 			(void)ret;
475 			prefaulted = 1;
476 		}
477 
478 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 				       user_data, page_do_bit17_swizzling,
480 				       needs_clflush);
481 
482 		mutex_lock(&dev->struct_mutex);
483 
484 next_page:
485 		mark_page_accessed(page);
486 
487 		if (ret)
488 			goto out;
489 
490 		remain -= page_length;
491 		user_data += page_length;
492 		offset += page_length;
493 	}
494 
495 out:
496 	i915_gem_object_unpin_pages(obj);
497 
498 	return ret;
499 }
500 
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 		     struct drm_file *file)
509 {
510 	struct drm_i915_gem_pread *args = data;
511 	struct drm_i915_gem_object *obj;
512 	int ret = 0;
513 
514 	if (args->size == 0)
515 		return 0;
516 
517 	if (!access_ok(VERIFY_WRITE,
518 		       to_user_ptr(args->data_ptr),
519 		       args->size))
520 		return -EFAULT;
521 
522 	ret = i915_mutex_lock_interruptible(dev);
523 	if (ret)
524 		return ret;
525 
526 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 	if (&obj->base == NULL) {
528 		ret = -ENOENT;
529 		goto unlock;
530 	}
531 
532 	/* Bounds check source.  */
533 	if (args->offset > obj->base.size ||
534 	    args->size > obj->base.size - args->offset) {
535 		ret = -EINVAL;
536 		goto out;
537 	}
538 
539 	/* prime objects have no backing filp to GEM pread/pwrite
540 	 * pages from.
541 	 */
542 	if (!obj->base.filp) {
543 		ret = -EINVAL;
544 		goto out;
545 	}
546 
547 	trace_i915_gem_object_pread(obj, args->offset, args->size);
548 
549 	ret = i915_gem_shmem_pread(dev, obj, args, file);
550 
551 out:
552 	drm_gem_object_unreference(&obj->base);
553 unlock:
554 	mutex_unlock(&dev->struct_mutex);
555 	return ret;
556 }
557 
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561 
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 		loff_t page_base, int page_offset,
565 		char __user *user_data,
566 		int length)
567 {
568 	void __iomem *vaddr_atomic;
569 	void *vaddr;
570 	unsigned long unwritten;
571 
572 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 	/* We can use the cpu mem copy function because this is X86. */
574 	vaddr = (void __force*)vaddr_atomic + page_offset;
575 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 						      user_data, length);
577 	io_mapping_unmap_atomic(vaddr_atomic);
578 	return unwritten;
579 }
580 
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 			 struct drm_i915_gem_object *obj,
588 			 struct drm_i915_gem_pwrite *args,
589 			 struct drm_file *file)
590 {
591 	drm_i915_private_t *dev_priv = dev->dev_private;
592 	ssize_t remain;
593 	loff_t offset, page_base;
594 	char __user *user_data;
595 	int page_offset, page_length, ret;
596 
597 	ret = i915_gem_object_pin(obj, 0, true, true);
598 	if (ret)
599 		goto out;
600 
601 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 	if (ret)
603 		goto out_unpin;
604 
605 	ret = i915_gem_object_put_fence(obj);
606 	if (ret)
607 		goto out_unpin;
608 
609 	user_data = to_user_ptr(args->data_ptr);
610 	remain = args->size;
611 
612 	offset = obj->gtt_offset + args->offset;
613 
614 	while (remain > 0) {
615 		/* Operation in this page
616 		 *
617 		 * page_base = page offset within aperture
618 		 * page_offset = offset within page
619 		 * page_length = bytes to copy for this page
620 		 */
621 		page_base = offset & PAGE_MASK;
622 		page_offset = offset_in_page(offset);
623 		page_length = remain;
624 		if ((page_offset + remain) > PAGE_SIZE)
625 			page_length = PAGE_SIZE - page_offset;
626 
627 		/* If we get a fault while copying data, then (presumably) our
628 		 * source page isn't available.  Return the error and we'll
629 		 * retry in the slow path.
630 		 */
631 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 				    page_offset, user_data, page_length)) {
633 			ret = -EFAULT;
634 			goto out_unpin;
635 		}
636 
637 		remain -= page_length;
638 		user_data += page_length;
639 		offset += page_length;
640 	}
641 
642 out_unpin:
643 	i915_gem_object_unpin(obj);
644 out:
645 	return ret;
646 }
647 
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 		  char __user *user_data,
655 		  bool page_do_bit17_swizzling,
656 		  bool needs_clflush_before,
657 		  bool needs_clflush_after)
658 {
659 	char *vaddr;
660 	int ret;
661 
662 	if (unlikely(page_do_bit17_swizzling))
663 		return -EINVAL;
664 
665 	vaddr = kmap_atomic(page);
666 	if (needs_clflush_before)
667 		drm_clflush_virt_range(vaddr + shmem_page_offset,
668 				       page_length);
669 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 						user_data,
671 						page_length);
672 	if (needs_clflush_after)
673 		drm_clflush_virt_range(vaddr + shmem_page_offset,
674 				       page_length);
675 	kunmap_atomic(vaddr);
676 
677 	return ret ? -EFAULT : 0;
678 }
679 
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 		  char __user *user_data,
685 		  bool page_do_bit17_swizzling,
686 		  bool needs_clflush_before,
687 		  bool needs_clflush_after)
688 {
689 	char *vaddr;
690 	int ret;
691 
692 	vaddr = kmap(page);
693 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 					     page_length,
696 					     page_do_bit17_swizzling);
697 	if (page_do_bit17_swizzling)
698 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 						user_data,
700 						page_length);
701 	else
702 		ret = __copy_from_user(vaddr + shmem_page_offset,
703 				       user_data,
704 				       page_length);
705 	if (needs_clflush_after)
706 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 					     page_length,
708 					     page_do_bit17_swizzling);
709 	kunmap(page);
710 
711 	return ret ? -EFAULT : 0;
712 }
713 
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 		      struct drm_i915_gem_object *obj,
717 		      struct drm_i915_gem_pwrite *args,
718 		      struct drm_file *file)
719 {
720 	ssize_t remain;
721 	loff_t offset;
722 	char __user *user_data;
723 	int shmem_page_offset, page_length, ret = 0;
724 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 	int hit_slowpath = 0;
726 	int needs_clflush_after = 0;
727 	int needs_clflush_before = 0;
728 	struct sg_page_iter sg_iter;
729 
730 	user_data = to_user_ptr(args->data_ptr);
731 	remain = args->size;
732 
733 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734 
735 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 		/* If we're not in the cpu write domain, set ourself into the gtt
737 		 * write domain and manually flush cachelines (if required). This
738 		 * optimizes for the case when the gpu will use the data
739 		 * right away and we therefore have to clflush anyway. */
740 		if (obj->cache_level == I915_CACHE_NONE)
741 			needs_clflush_after = 1;
742 		if (obj->gtt_space) {
743 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	/* Same trick applies for invalidate partially written cachelines before
749 	 * writing.  */
750 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 	    && obj->cache_level == I915_CACHE_NONE)
752 		needs_clflush_before = 1;
753 
754 	ret = i915_gem_object_get_pages(obj);
755 	if (ret)
756 		return ret;
757 
758 	i915_gem_object_pin_pages(obj);
759 
760 	offset = args->offset;
761 	obj->dirty = 1;
762 
763 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 			 offset >> PAGE_SHIFT) {
765 		struct page *page = sg_page_iter_page(&sg_iter);
766 		int partial_cacheline_write;
767 
768 		if (remain <= 0)
769 			break;
770 
771 		/* Operation in this page
772 		 *
773 		 * shmem_page_offset = offset within page in shmem file
774 		 * page_length = bytes to copy for this page
775 		 */
776 		shmem_page_offset = offset_in_page(offset);
777 
778 		page_length = remain;
779 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 			page_length = PAGE_SIZE - shmem_page_offset;
781 
782 		/* If we don't overwrite a cacheline completely we need to be
783 		 * careful to have up-to-date data by first clflushing. Don't
784 		 * overcomplicate things and flush the entire patch. */
785 		partial_cacheline_write = needs_clflush_before &&
786 			((shmem_page_offset | page_length)
787 				& (boot_cpu_data.x86_clflush_size - 1));
788 
789 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 			(page_to_phys(page) & (1 << 17)) != 0;
791 
792 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 					user_data, page_do_bit17_swizzling,
794 					partial_cacheline_write,
795 					needs_clflush_after);
796 		if (ret == 0)
797 			goto next_page;
798 
799 		hit_slowpath = 1;
800 		mutex_unlock(&dev->struct_mutex);
801 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 					user_data, page_do_bit17_swizzling,
803 					partial_cacheline_write,
804 					needs_clflush_after);
805 
806 		mutex_lock(&dev->struct_mutex);
807 
808 next_page:
809 		set_page_dirty(page);
810 		mark_page_accessed(page);
811 
812 		if (ret)
813 			goto out;
814 
815 		remain -= page_length;
816 		user_data += page_length;
817 		offset += page_length;
818 	}
819 
820 out:
821 	i915_gem_object_unpin_pages(obj);
822 
823 	if (hit_slowpath) {
824 		/*
825 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 		 * cachelines in-line while writing and the object moved
827 		 * out of the cpu write domain while we've dropped the lock.
828 		 */
829 		if (!needs_clflush_after &&
830 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 			i915_gem_clflush_object(obj);
832 			i915_gem_chipset_flush(dev);
833 		}
834 	}
835 
836 	if (needs_clflush_after)
837 		i915_gem_chipset_flush(dev);
838 
839 	return ret;
840 }
841 
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 		      struct drm_file *file)
850 {
851 	struct drm_i915_gem_pwrite *args = data;
852 	struct drm_i915_gem_object *obj;
853 	int ret;
854 
855 	if (args->size == 0)
856 		return 0;
857 
858 	if (!access_ok(VERIFY_READ,
859 		       to_user_ptr(args->data_ptr),
860 		       args->size))
861 		return -EFAULT;
862 
863 	ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 					   args->size);
865 	if (ret)
866 		return -EFAULT;
867 
868 	ret = i915_mutex_lock_interruptible(dev);
869 	if (ret)
870 		return ret;
871 
872 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 	if (&obj->base == NULL) {
874 		ret = -ENOENT;
875 		goto unlock;
876 	}
877 
878 	/* Bounds check destination. */
879 	if (args->offset > obj->base.size ||
880 	    args->size > obj->base.size - args->offset) {
881 		ret = -EINVAL;
882 		goto out;
883 	}
884 
885 	/* prime objects have no backing filp to GEM pread/pwrite
886 	 * pages from.
887 	 */
888 	if (!obj->base.filp) {
889 		ret = -EINVAL;
890 		goto out;
891 	}
892 
893 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894 
895 	ret = -EFAULT;
896 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
897 	 * it would end up going through the fenced access, and we'll get
898 	 * different detiling behavior between reading and writing.
899 	 * pread/pwrite currently are reading and writing from the CPU
900 	 * perspective, requiring manual detiling by the client.
901 	 */
902 	if (obj->phys_obj) {
903 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 		goto out;
905 	}
906 
907 	if (obj->cache_level == I915_CACHE_NONE &&
908 	    obj->tiling_mode == I915_TILING_NONE &&
909 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 		/* Note that the gtt paths might fail with non-page-backed user
912 		 * pointers (e.g. gtt mappings when moving data between
913 		 * textures). Fallback to the shmem path in that case. */
914 	}
915 
916 	if (ret == -EFAULT || ret == -ENOSPC)
917 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918 
919 out:
920 	drm_gem_object_unreference(&obj->base);
921 unlock:
922 	mutex_unlock(&dev->struct_mutex);
923 	return ret;
924 }
925 
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 		     bool interruptible)
929 {
930 	if (i915_reset_in_progress(error)) {
931 		/* Non-interruptible callers can't handle -EAGAIN, hence return
932 		 * -EIO unconditionally for these. */
933 		if (!interruptible)
934 			return -EIO;
935 
936 		/* Recovery complete, but the reset failed ... */
937 		if (i915_terminally_wedged(error))
938 			return -EIO;
939 
940 		return -EAGAIN;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 	int ret;
954 
955 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956 
957 	ret = 0;
958 	if (seqno == ring->outstanding_lazy_request)
959 		ret = i915_add_request(ring, NULL);
960 
961 	return ret;
962 }
963 
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 			unsigned reset_counter,
984 			bool interruptible, struct timespec *timeout)
985 {
986 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 	struct timespec before, now, wait_time={1,0};
988 	unsigned long timeout_jiffies;
989 	long end;
990 	bool wait_forever = true;
991 	int ret;
992 
993 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 		return 0;
995 
996 	trace_i915_gem_request_wait_begin(ring, seqno);
997 
998 	if (timeout != NULL) {
999 		wait_time = *timeout;
1000 		wait_forever = false;
1001 	}
1002 
1003 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004 
1005 	if (WARN_ON(!ring->irq_get(ring)))
1006 		return -ENODEV;
1007 
1008 	/* Record current time in case interrupted by signal, or wedged * */
1009 	getrawmonotonic(&before);
1010 
1011 #define EXIT_COND \
1012 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 	do {
1016 		if (interruptible)
1017 			end = wait_event_interruptible_timeout(ring->irq_queue,
1018 							       EXIT_COND,
1019 							       timeout_jiffies);
1020 		else
1021 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 						 timeout_jiffies);
1023 
1024 		/* We need to check whether any gpu reset happened in between
1025 		 * the caller grabbing the seqno and now ... */
1026 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 			end = -EAGAIN;
1028 
1029 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 		 * gone. */
1031 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 		if (ret)
1033 			end = ret;
1034 	} while (end == 0 && wait_forever);
1035 
1036 	getrawmonotonic(&now);
1037 
1038 	ring->irq_put(ring);
1039 	trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041 
1042 	if (timeout) {
1043 		struct timespec sleep_time = timespec_sub(now, before);
1044 		*timeout = timespec_sub(*timeout, sleep_time);
1045 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 			set_normalized_timespec(timeout, 0, 0);
1047 	}
1048 
1049 	switch (end) {
1050 	case -EIO:
1051 	case -EAGAIN: /* Wedged */
1052 	case -ERESTARTSYS: /* Signal */
1053 		return (int)end;
1054 	case 0: /* Timeout */
1055 		return -ETIME;
1056 	default: /* Completed */
1057 		WARN_ON(end < 0); /* We're not aware of other errors */
1058 		return 0;
1059 	}
1060 }
1061 
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 	struct drm_device *dev = ring->dev;
1070 	struct drm_i915_private *dev_priv = dev->dev_private;
1071 	bool interruptible = dev_priv->mm.interruptible;
1072 	int ret;
1073 
1074 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 	BUG_ON(seqno == 0);
1076 
1077 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = i915_gem_check_olr(ring, seqno);
1082 	if (ret)
1083 		return ret;
1084 
1085 	return __wait_seqno(ring, seqno,
1086 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1087 			    interruptible, NULL);
1088 }
1089 
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 				     struct intel_ring_buffer *ring)
1093 {
1094 	i915_gem_retire_requests_ring(ring);
1095 
1096 	/* Manually manage the write flush as we may have not yet
1097 	 * retired the buffer.
1098 	 *
1099 	 * Note that the last_write_seqno is always the earlier of
1100 	 * the two (read/write) seqno, so if we haved successfully waited,
1101 	 * we know we have passed the last write.
1102 	 */
1103 	obj->last_write_seqno = 0;
1104 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * Ensures that all rendering to the object has completed and the object is
1111  * safe to unbind from the GTT or access from the CPU.
1112  */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 			       bool readonly)
1116 {
1117 	struct intel_ring_buffer *ring = obj->ring;
1118 	u32 seqno;
1119 	int ret;
1120 
1121 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 	if (seqno == 0)
1123 		return 0;
1124 
1125 	ret = i915_wait_seqno(ring, seqno);
1126 	if (ret)
1127 		return ret;
1128 
1129 	return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131 
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133  * as the object state may change during this call.
1134  */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 					    bool readonly)
1138 {
1139 	struct drm_device *dev = obj->base.dev;
1140 	struct drm_i915_private *dev_priv = dev->dev_private;
1141 	struct intel_ring_buffer *ring = obj->ring;
1142 	unsigned reset_counter;
1143 	u32 seqno;
1144 	int ret;
1145 
1146 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 	BUG_ON(!dev_priv->mm.interruptible);
1148 
1149 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 	if (seqno == 0)
1151 		return 0;
1152 
1153 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ret = i915_gem_check_olr(ring, seqno);
1158 	if (ret)
1159 		return ret;
1160 
1161 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 	mutex_unlock(&dev->struct_mutex);
1163 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 	mutex_lock(&dev->struct_mutex);
1165 	if (ret)
1166 		return ret;
1167 
1168 	return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170 
1171 /**
1172  * Called when user space prepares to use an object with the CPU, either
1173  * through the mmap ioctl's mapping or a GTT mapping.
1174  */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 			  struct drm_file *file)
1178 {
1179 	struct drm_i915_gem_set_domain *args = data;
1180 	struct drm_i915_gem_object *obj;
1181 	uint32_t read_domains = args->read_domains;
1182 	uint32_t write_domain = args->write_domain;
1183 	int ret;
1184 
1185 	/* Only handle setting domains to types used by the CPU. */
1186 	if (write_domain & I915_GEM_GPU_DOMAINS)
1187 		return -EINVAL;
1188 
1189 	if (read_domains & I915_GEM_GPU_DOMAINS)
1190 		return -EINVAL;
1191 
1192 	/* Having something in the write domain implies it's in the read
1193 	 * domain, and only that read domain.  Enforce that in the request.
1194 	 */
1195 	if (write_domain != 0 && read_domains != write_domain)
1196 		return -EINVAL;
1197 
1198 	ret = i915_mutex_lock_interruptible(dev);
1199 	if (ret)
1200 		return ret;
1201 
1202 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 	if (&obj->base == NULL) {
1204 		ret = -ENOENT;
1205 		goto unlock;
1206 	}
1207 
1208 	/* Try to flush the object off the GPU without holding the lock.
1209 	 * We will repeat the flush holding the lock in the normal manner
1210 	 * to catch cases where we are gazumped.
1211 	 */
1212 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 	if (ret)
1214 		goto unref;
1215 
1216 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218 
1219 		/* Silently promote "you're not bound, there was nothing to do"
1220 		 * to success, since the client was just asking us to
1221 		 * make sure everything was done.
1222 		 */
1223 		if (ret == -EINVAL)
1224 			ret = 0;
1225 	} else {
1226 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 	}
1228 
1229 unref:
1230 	drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 	mutex_unlock(&dev->struct_mutex);
1233 	return ret;
1234 }
1235 
1236 /**
1237  * Called when user space has done writes to this buffer
1238  */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 			 struct drm_file *file)
1242 {
1243 	struct drm_i915_gem_sw_finish *args = data;
1244 	struct drm_i915_gem_object *obj;
1245 	int ret = 0;
1246 
1247 	ret = i915_mutex_lock_interruptible(dev);
1248 	if (ret)
1249 		return ret;
1250 
1251 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 	if (&obj->base == NULL) {
1253 		ret = -ENOENT;
1254 		goto unlock;
1255 	}
1256 
1257 	/* Pinned buffers may be scanout, so flush the cache */
1258 	if (obj->pin_count)
1259 		i915_gem_object_flush_cpu_write_domain(obj);
1260 
1261 	drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 	mutex_unlock(&dev->struct_mutex);
1264 	return ret;
1265 }
1266 
1267 /**
1268  * Maps the contents of an object, returning the address it is mapped
1269  * into.
1270  *
1271  * While the mapping holds a reference on the contents of the object, it doesn't
1272  * imply a ref on the object itself.
1273  */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 		    struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_mmap *args = data;
1279 	struct drm_gem_object *obj;
1280 	unsigned long addr;
1281 
1282 	obj = drm_gem_object_lookup(dev, file, args->handle);
1283 	if (obj == NULL)
1284 		return -ENOENT;
1285 
1286 	/* prime objects have no backing filp to GEM mmap
1287 	 * pages from.
1288 	 */
1289 	if (!obj->filp) {
1290 		drm_gem_object_unreference_unlocked(obj);
1291 		return -EINVAL;
1292 	}
1293 
1294 	addr = vm_mmap(obj->filp, 0, args->size,
1295 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1296 		       args->offset);
1297 	drm_gem_object_unreference_unlocked(obj);
1298 	if (IS_ERR((void *)addr))
1299 		return addr;
1300 
1301 	args->addr_ptr = (uint64_t) addr;
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * i915_gem_fault - fault a page into the GTT
1308  * vma: VMA in question
1309  * vmf: fault info
1310  *
1311  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312  * from userspace.  The fault handler takes care of binding the object to
1313  * the GTT (if needed), allocating and programming a fence register (again,
1314  * only if needed based on whether the old reg is still valid or the object
1315  * is tiled) and inserting a new PTE into the faulting process.
1316  *
1317  * Note that the faulting process may involve evicting existing objects
1318  * from the GTT and/or fence registers to make room.  So performance may
1319  * suffer if the GTT working set is large or there are few fence registers
1320  * left.
1321  */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 	struct drm_device *dev = obj->base.dev;
1326 	drm_i915_private_t *dev_priv = dev->dev_private;
1327 	pgoff_t page_offset;
1328 	unsigned long pfn;
1329 	int ret = 0;
1330 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331 
1332 	/* We don't use vmf->pgoff since that has the fake offset */
1333 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 		PAGE_SHIFT;
1335 
1336 	ret = i915_mutex_lock_interruptible(dev);
1337 	if (ret)
1338 		goto out;
1339 
1340 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1341 
1342 	/* Access to snoopable pages through the GTT is incoherent. */
1343 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 		ret = -EINVAL;
1345 		goto unlock;
1346 	}
1347 
1348 	/* Now bind it into the GTT if needed */
1349 	ret = i915_gem_object_pin(obj, 0, true, false);
1350 	if (ret)
1351 		goto unlock;
1352 
1353 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 	if (ret)
1355 		goto unpin;
1356 
1357 	ret = i915_gem_object_get_fence(obj);
1358 	if (ret)
1359 		goto unpin;
1360 
1361 	obj->fault_mappable = true;
1362 
1363 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1364 		page_offset;
1365 
1366 	/* Finally, remap it using the new GTT offset */
1367 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1368 unpin:
1369 	i915_gem_object_unpin(obj);
1370 unlock:
1371 	mutex_unlock(&dev->struct_mutex);
1372 out:
1373 	switch (ret) {
1374 	case -EIO:
1375 		/* If this -EIO is due to a gpu hang, give the reset code a
1376 		 * chance to clean up the mess. Otherwise return the proper
1377 		 * SIGBUS. */
1378 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1379 			return VM_FAULT_SIGBUS;
1380 	case -EAGAIN:
1381 		/* Give the error handler a chance to run and move the
1382 		 * objects off the GPU active list. Next time we service the
1383 		 * fault, we should be able to transition the page into the
1384 		 * GTT without touching the GPU (and so avoid further
1385 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 		 * with coherency, just lost writes.
1387 		 */
1388 		set_need_resched();
1389 	case 0:
1390 	case -ERESTARTSYS:
1391 	case -EINTR:
1392 	case -EBUSY:
1393 		/*
1394 		 * EBUSY is ok: this just means that another thread
1395 		 * already did the job.
1396 		 */
1397 		return VM_FAULT_NOPAGE;
1398 	case -ENOMEM:
1399 		return VM_FAULT_OOM;
1400 	case -ENOSPC:
1401 		return VM_FAULT_SIGBUS;
1402 	default:
1403 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1404 		return VM_FAULT_SIGBUS;
1405 	}
1406 }
1407 
1408 /**
1409  * i915_gem_release_mmap - remove physical page mappings
1410  * @obj: obj in question
1411  *
1412  * Preserve the reservation of the mmapping with the DRM core code, but
1413  * relinquish ownership of the pages back to the system.
1414  *
1415  * It is vital that we remove the page mapping if we have mapped a tiled
1416  * object through the GTT and then lose the fence register due to
1417  * resource pressure. Similarly if the object has been moved out of the
1418  * aperture, than pages mapped into userspace must be revoked. Removing the
1419  * mapping will then trigger a page fault on the next user access, allowing
1420  * fixup by i915_gem_fault().
1421  */
1422 void
1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1424 {
1425 	if (!obj->fault_mappable)
1426 		return;
1427 
1428 	if (obj->base.dev->dev_mapping)
1429 		unmap_mapping_range(obj->base.dev->dev_mapping,
1430 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 				    obj->base.size, 1);
1432 
1433 	obj->fault_mappable = false;
1434 }
1435 
1436 uint32_t
1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1438 {
1439 	uint32_t gtt_size;
1440 
1441 	if (INTEL_INFO(dev)->gen >= 4 ||
1442 	    tiling_mode == I915_TILING_NONE)
1443 		return size;
1444 
1445 	/* Previous chips need a power-of-two fence region when tiling */
1446 	if (INTEL_INFO(dev)->gen == 3)
1447 		gtt_size = 1024*1024;
1448 	else
1449 		gtt_size = 512*1024;
1450 
1451 	while (gtt_size < size)
1452 		gtt_size <<= 1;
1453 
1454 	return gtt_size;
1455 }
1456 
1457 /**
1458  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459  * @obj: object to check
1460  *
1461  * Return the required GTT alignment for an object, taking into account
1462  * potential fence register mapping.
1463  */
1464 uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 			   int tiling_mode, bool fenced)
1467 {
1468 	/*
1469 	 * Minimum alignment is 4k (GTT page size), but might be greater
1470 	 * if a fence register is needed for the object.
1471 	 */
1472 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1473 	    tiling_mode == I915_TILING_NONE)
1474 		return 4096;
1475 
1476 	/*
1477 	 * Previous chips need to be aligned to the size of the smallest
1478 	 * fence register that can contain the object.
1479 	 */
1480 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482 
1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484 {
1485 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 	int ret;
1487 
1488 	if (obj->base.map_list.map)
1489 		return 0;
1490 
1491 	dev_priv->mm.shrinker_no_lock_stealing = true;
1492 
1493 	ret = drm_gem_create_mmap_offset(&obj->base);
1494 	if (ret != -ENOSPC)
1495 		goto out;
1496 
1497 	/* Badly fragmented mmap space? The only way we can recover
1498 	 * space is by destroying unwanted objects. We can't randomly release
1499 	 * mmap_offsets as userspace expects them to be persistent for the
1500 	 * lifetime of the objects. The closest we can is to release the
1501 	 * offsets on purgeable objects by truncating it and marking it purged,
1502 	 * which prevents userspace from ever using that object again.
1503 	 */
1504 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 	ret = drm_gem_create_mmap_offset(&obj->base);
1506 	if (ret != -ENOSPC)
1507 		goto out;
1508 
1509 	i915_gem_shrink_all(dev_priv);
1510 	ret = drm_gem_create_mmap_offset(&obj->base);
1511 out:
1512 	dev_priv->mm.shrinker_no_lock_stealing = false;
1513 
1514 	return ret;
1515 }
1516 
1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519 	if (!obj->base.map_list.map)
1520 		return;
1521 
1522 	drm_gem_free_mmap_offset(&obj->base);
1523 }
1524 
1525 int
1526 i915_gem_mmap_gtt(struct drm_file *file,
1527 		  struct drm_device *dev,
1528 		  uint32_t handle,
1529 		  uint64_t *offset)
1530 {
1531 	struct drm_i915_private *dev_priv = dev->dev_private;
1532 	struct drm_i915_gem_object *obj;
1533 	int ret;
1534 
1535 	ret = i915_mutex_lock_interruptible(dev);
1536 	if (ret)
1537 		return ret;
1538 
1539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1540 	if (&obj->base == NULL) {
1541 		ret = -ENOENT;
1542 		goto unlock;
1543 	}
1544 
1545 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1546 		ret = -E2BIG;
1547 		goto out;
1548 	}
1549 
1550 	if (obj->madv != I915_MADV_WILLNEED) {
1551 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1552 		ret = -EINVAL;
1553 		goto out;
1554 	}
1555 
1556 	ret = i915_gem_object_create_mmap_offset(obj);
1557 	if (ret)
1558 		goto out;
1559 
1560 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1561 
1562 out:
1563 	drm_gem_object_unreference(&obj->base);
1564 unlock:
1565 	mutex_unlock(&dev->struct_mutex);
1566 	return ret;
1567 }
1568 
1569 /**
1570  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571  * @dev: DRM device
1572  * @data: GTT mapping ioctl data
1573  * @file: GEM object info
1574  *
1575  * Simply returns the fake offset to userspace so it can mmap it.
1576  * The mmap call will end up in drm_gem_mmap(), which will set things
1577  * up so we can get faults in the handler above.
1578  *
1579  * The fault handler will take care of binding the object into the GTT
1580  * (since it may have been evicted to make room for something), allocating
1581  * a fence register, and mapping the appropriate aperture address into
1582  * userspace.
1583  */
1584 int
1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 			struct drm_file *file)
1587 {
1588 	struct drm_i915_gem_mmap_gtt *args = data;
1589 
1590 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591 }
1592 
1593 /* Immediately discard the backing storage */
1594 static void
1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1596 {
1597 	struct inode *inode;
1598 
1599 	i915_gem_object_free_mmap_offset(obj);
1600 
1601 	if (obj->base.filp == NULL)
1602 		return;
1603 
1604 	/* Our goal here is to return as much of the memory as
1605 	 * is possible back to the system as we are called from OOM.
1606 	 * To do this we must instruct the shmfs to drop all of its
1607 	 * backing pages, *now*.
1608 	 */
1609 	inode = file_inode(obj->base.filp);
1610 	shmem_truncate_range(inode, 0, (loff_t)-1);
1611 
1612 	obj->madv = __I915_MADV_PURGED;
1613 }
1614 
1615 static inline int
1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617 {
1618 	return obj->madv == I915_MADV_DONTNEED;
1619 }
1620 
1621 static void
1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1623 {
1624 	struct sg_page_iter sg_iter;
1625 	int ret;
1626 
1627 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1628 
1629 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 	if (ret) {
1631 		/* In the event of a disaster, abandon all caches and
1632 		 * hope for the best.
1633 		 */
1634 		WARN_ON(ret != -EIO);
1635 		i915_gem_clflush_object(obj);
1636 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 	}
1638 
1639 	if (i915_gem_object_needs_bit17_swizzle(obj))
1640 		i915_gem_object_save_bit_17_swizzle(obj);
1641 
1642 	if (obj->madv == I915_MADV_DONTNEED)
1643 		obj->dirty = 0;
1644 
1645 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1646 		struct page *page = sg_page_iter_page(&sg_iter);
1647 
1648 		if (obj->dirty)
1649 			set_page_dirty(page);
1650 
1651 		if (obj->madv == I915_MADV_WILLNEED)
1652 			mark_page_accessed(page);
1653 
1654 		page_cache_release(page);
1655 	}
1656 	obj->dirty = 0;
1657 
1658 	sg_free_table(obj->pages);
1659 	kfree(obj->pages);
1660 }
1661 
1662 int
1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664 {
1665 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1666 
1667 	if (obj->pages == NULL)
1668 		return 0;
1669 
1670 	BUG_ON(obj->gtt_space);
1671 
1672 	if (obj->pages_pin_count)
1673 		return -EBUSY;
1674 
1675 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1676 	 * array, hence protect them from being reaped by removing them from gtt
1677 	 * lists early. */
1678 	list_del(&obj->global_list);
1679 
1680 	ops->put_pages(obj);
1681 	obj->pages = NULL;
1682 
1683 	if (i915_gem_object_is_purgeable(obj))
1684 		i915_gem_object_truncate(obj);
1685 
1686 	return 0;
1687 }
1688 
1689 static long
1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 		  bool purgeable_only)
1692 {
1693 	struct drm_i915_gem_object *obj, *next;
1694 	long count = 0;
1695 
1696 	list_for_each_entry_safe(obj, next,
1697 				 &dev_priv->mm.unbound_list,
1698 				 global_list) {
1699 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1700 		    i915_gem_object_put_pages(obj) == 0) {
1701 			count += obj->base.size >> PAGE_SHIFT;
1702 			if (count >= target)
1703 				return count;
1704 		}
1705 	}
1706 
1707 	list_for_each_entry_safe(obj, next,
1708 				 &dev_priv->mm.inactive_list,
1709 				 mm_list) {
1710 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 		    i915_gem_object_unbind(obj) == 0 &&
1712 		    i915_gem_object_put_pages(obj) == 0) {
1713 			count += obj->base.size >> PAGE_SHIFT;
1714 			if (count >= target)
1715 				return count;
1716 		}
1717 	}
1718 
1719 	return count;
1720 }
1721 
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 	return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727 
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 	struct drm_i915_gem_object *obj, *next;
1732 
1733 	i915_gem_evict_everything(dev_priv->dev);
1734 
1735 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 				 global_list)
1737 		i915_gem_object_put_pages(obj);
1738 }
1739 
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 	int page_count, i;
1745 	struct address_space *mapping;
1746 	struct sg_table *st;
1747 	struct scatterlist *sg;
1748 	struct sg_page_iter sg_iter;
1749 	struct page *page;
1750 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1751 	gfp_t gfp;
1752 
1753 	/* Assert that the object is not currently in any GPU domain. As it
1754 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 	 * a GPU cache
1756 	 */
1757 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759 
1760 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 	if (st == NULL)
1762 		return -ENOMEM;
1763 
1764 	page_count = obj->base.size / PAGE_SIZE;
1765 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 		sg_free_table(st);
1767 		kfree(st);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	/* Get the list of pages out of our struct file.  They'll be pinned
1772 	 * at this point until we release them.
1773 	 *
1774 	 * Fail silently without starting the shrinker
1775 	 */
1776 	mapping = file_inode(obj->base.filp)->i_mapping;
1777 	gfp = mapping_gfp_mask(mapping);
1778 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 	sg = st->sgl;
1781 	st->nents = 0;
1782 	for (i = 0; i < page_count; i++) {
1783 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 		if (IS_ERR(page)) {
1785 			i915_gem_purge(dev_priv, page_count);
1786 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 		}
1788 		if (IS_ERR(page)) {
1789 			/* We've tried hard to allocate the memory by reaping
1790 			 * our own buffer, now let the real VM do its job and
1791 			 * go down in flames if truly OOM.
1792 			 */
1793 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 			gfp |= __GFP_IO | __GFP_WAIT;
1795 
1796 			i915_gem_shrink_all(dev_priv);
1797 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 			if (IS_ERR(page))
1799 				goto err_pages;
1800 
1801 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 		}
1804 #ifdef CONFIG_SWIOTLB
1805 		if (swiotlb_nr_tbl()) {
1806 			st->nents++;
1807 			sg_set_page(sg, page, PAGE_SIZE, 0);
1808 			sg = sg_next(sg);
1809 			continue;
1810 		}
1811 #endif
1812 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 			if (i)
1814 				sg = sg_next(sg);
1815 			st->nents++;
1816 			sg_set_page(sg, page, PAGE_SIZE, 0);
1817 		} else {
1818 			sg->length += PAGE_SIZE;
1819 		}
1820 		last_pfn = page_to_pfn(page);
1821 	}
1822 #ifdef CONFIG_SWIOTLB
1823 	if (!swiotlb_nr_tbl())
1824 #endif
1825 		sg_mark_end(sg);
1826 	obj->pages = st;
1827 
1828 	if (i915_gem_object_needs_bit17_swizzle(obj))
1829 		i915_gem_object_do_bit_17_swizzle(obj);
1830 
1831 	return 0;
1832 
1833 err_pages:
1834 	sg_mark_end(sg);
1835 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 		page_cache_release(sg_page_iter_page(&sg_iter));
1837 	sg_free_table(st);
1838 	kfree(st);
1839 	return PTR_ERR(page);
1840 }
1841 
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 	int ret;
1855 
1856 	if (obj->pages)
1857 		return 0;
1858 
1859 	if (obj->madv != I915_MADV_WILLNEED) {
1860 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	BUG_ON(obj->pages_pin_count);
1865 
1866 	ret = ops->get_pages(obj);
1867 	if (ret)
1868 		return ret;
1869 
1870 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 	return 0;
1872 }
1873 
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 			       struct intel_ring_buffer *ring)
1877 {
1878 	struct drm_device *dev = obj->base.dev;
1879 	struct drm_i915_private *dev_priv = dev->dev_private;
1880 	u32 seqno = intel_ring_get_seqno(ring);
1881 
1882 	BUG_ON(ring == NULL);
1883 	if (obj->ring != ring && obj->last_write_seqno) {
1884 		/* Keep the seqno relative to the current ring */
1885 		obj->last_write_seqno = seqno;
1886 	}
1887 	obj->ring = ring;
1888 
1889 	/* Add a reference if we're newly entering the active list. */
1890 	if (!obj->active) {
1891 		drm_gem_object_reference(&obj->base);
1892 		obj->active = 1;
1893 	}
1894 
1895 	/* Move from whatever list we were on to the tail of execution. */
1896 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1897 	list_move_tail(&obj->ring_list, &ring->active_list);
1898 
1899 	obj->last_read_seqno = seqno;
1900 
1901 	if (obj->fenced_gpu_access) {
1902 		obj->last_fenced_seqno = seqno;
1903 
1904 		/* Bump MRU to take account of the delayed flush */
1905 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1906 			struct drm_i915_fence_reg *reg;
1907 
1908 			reg = &dev_priv->fence_regs[obj->fence_reg];
1909 			list_move_tail(&reg->lru_list,
1910 				       &dev_priv->mm.fence_list);
1911 		}
1912 	}
1913 }
1914 
1915 static void
1916 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1917 {
1918 	struct drm_device *dev = obj->base.dev;
1919 	struct drm_i915_private *dev_priv = dev->dev_private;
1920 
1921 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1922 	BUG_ON(!obj->active);
1923 
1924 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1925 
1926 	list_del_init(&obj->ring_list);
1927 	obj->ring = NULL;
1928 
1929 	obj->last_read_seqno = 0;
1930 	obj->last_write_seqno = 0;
1931 	obj->base.write_domain = 0;
1932 
1933 	obj->last_fenced_seqno = 0;
1934 	obj->fenced_gpu_access = false;
1935 
1936 	obj->active = 0;
1937 	drm_gem_object_unreference(&obj->base);
1938 
1939 	WARN_ON(i915_verify_lists(dev));
1940 }
1941 
1942 static int
1943 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1944 {
1945 	struct drm_i915_private *dev_priv = dev->dev_private;
1946 	struct intel_ring_buffer *ring;
1947 	int ret, i, j;
1948 
1949 	/* Carefully retire all requests without writing to the rings */
1950 	for_each_ring(ring, dev_priv, i) {
1951 		ret = intel_ring_idle(ring);
1952 		if (ret)
1953 			return ret;
1954 	}
1955 	i915_gem_retire_requests(dev);
1956 
1957 	/* Finally reset hw state */
1958 	for_each_ring(ring, dev_priv, i) {
1959 		intel_ring_init_seqno(ring, seqno);
1960 
1961 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1962 			ring->sync_seqno[j] = 0;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1969 {
1970 	struct drm_i915_private *dev_priv = dev->dev_private;
1971 	int ret;
1972 
1973 	if (seqno == 0)
1974 		return -EINVAL;
1975 
1976 	/* HWS page needs to be set less than what we
1977 	 * will inject to ring
1978 	 */
1979 	ret = i915_gem_init_seqno(dev, seqno - 1);
1980 	if (ret)
1981 		return ret;
1982 
1983 	/* Carefully set the last_seqno value so that wrap
1984 	 * detection still works
1985 	 */
1986 	dev_priv->next_seqno = seqno;
1987 	dev_priv->last_seqno = seqno - 1;
1988 	if (dev_priv->last_seqno == 0)
1989 		dev_priv->last_seqno--;
1990 
1991 	return 0;
1992 }
1993 
1994 int
1995 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1996 {
1997 	struct drm_i915_private *dev_priv = dev->dev_private;
1998 
1999 	/* reserve 0 for non-seqno */
2000 	if (dev_priv->next_seqno == 0) {
2001 		int ret = i915_gem_init_seqno(dev, 0);
2002 		if (ret)
2003 			return ret;
2004 
2005 		dev_priv->next_seqno = 1;
2006 	}
2007 
2008 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2009 	return 0;
2010 }
2011 
2012 int __i915_add_request(struct intel_ring_buffer *ring,
2013 		       struct drm_file *file,
2014 		       struct drm_i915_gem_object *obj,
2015 		       u32 *out_seqno)
2016 {
2017 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2018 	struct drm_i915_gem_request *request;
2019 	u32 request_ring_position, request_start;
2020 	int was_empty;
2021 	int ret;
2022 
2023 	request_start = intel_ring_get_tail(ring);
2024 	/*
2025 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2026 	 * after having emitted the batchbuffer command. Hence we need to fix
2027 	 * things up similar to emitting the lazy request. The difference here
2028 	 * is that the flush _must_ happen before the next request, no matter
2029 	 * what.
2030 	 */
2031 	ret = intel_ring_flush_all_caches(ring);
2032 	if (ret)
2033 		return ret;
2034 
2035 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2036 	if (request == NULL)
2037 		return -ENOMEM;
2038 
2039 
2040 	/* Record the position of the start of the request so that
2041 	 * should we detect the updated seqno part-way through the
2042 	 * GPU processing the request, we never over-estimate the
2043 	 * position of the head.
2044 	 */
2045 	request_ring_position = intel_ring_get_tail(ring);
2046 
2047 	ret = ring->add_request(ring);
2048 	if (ret) {
2049 		kfree(request);
2050 		return ret;
2051 	}
2052 
2053 	request->seqno = intel_ring_get_seqno(ring);
2054 	request->ring = ring;
2055 	request->head = request_start;
2056 	request->tail = request_ring_position;
2057 	request->ctx = ring->last_context;
2058 	request->batch_obj = obj;
2059 
2060 	/* Whilst this request exists, batch_obj will be on the
2061 	 * active_list, and so will hold the active reference. Only when this
2062 	 * request is retired will the the batch_obj be moved onto the
2063 	 * inactive_list and lose its active reference. Hence we do not need
2064 	 * to explicitly hold another reference here.
2065 	 */
2066 
2067 	if (request->ctx)
2068 		i915_gem_context_reference(request->ctx);
2069 
2070 	request->emitted_jiffies = jiffies;
2071 	was_empty = list_empty(&ring->request_list);
2072 	list_add_tail(&request->list, &ring->request_list);
2073 	request->file_priv = NULL;
2074 
2075 	if (file) {
2076 		struct drm_i915_file_private *file_priv = file->driver_priv;
2077 
2078 		spin_lock(&file_priv->mm.lock);
2079 		request->file_priv = file_priv;
2080 		list_add_tail(&request->client_list,
2081 			      &file_priv->mm.request_list);
2082 		spin_unlock(&file_priv->mm.lock);
2083 	}
2084 
2085 	trace_i915_gem_request_add(ring, request->seqno);
2086 	ring->outstanding_lazy_request = 0;
2087 
2088 	if (!dev_priv->mm.suspended) {
2089 		if (i915_enable_hangcheck) {
2090 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2091 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2092 		}
2093 		if (was_empty) {
2094 			queue_delayed_work(dev_priv->wq,
2095 					   &dev_priv->mm.retire_work,
2096 					   round_jiffies_up_relative(HZ));
2097 			intel_mark_busy(dev_priv->dev);
2098 		}
2099 	}
2100 
2101 	if (out_seqno)
2102 		*out_seqno = request->seqno;
2103 	return 0;
2104 }
2105 
2106 static inline void
2107 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2108 {
2109 	struct drm_i915_file_private *file_priv = request->file_priv;
2110 
2111 	if (!file_priv)
2112 		return;
2113 
2114 	spin_lock(&file_priv->mm.lock);
2115 	if (request->file_priv) {
2116 		list_del(&request->client_list);
2117 		request->file_priv = NULL;
2118 	}
2119 	spin_unlock(&file_priv->mm.lock);
2120 }
2121 
2122 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2123 {
2124 	if (acthd >= obj->gtt_offset &&
2125 	    acthd < obj->gtt_offset + obj->base.size)
2126 		return true;
2127 
2128 	return false;
2129 }
2130 
2131 static bool i915_head_inside_request(const u32 acthd_unmasked,
2132 				     const u32 request_start,
2133 				     const u32 request_end)
2134 {
2135 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2136 
2137 	if (request_start < request_end) {
2138 		if (acthd >= request_start && acthd < request_end)
2139 			return true;
2140 	} else if (request_start > request_end) {
2141 		if (acthd >= request_start || acthd < request_end)
2142 			return true;
2143 	}
2144 
2145 	return false;
2146 }
2147 
2148 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2149 				const u32 acthd, bool *inside)
2150 {
2151 	/* There is a possibility that unmasked head address
2152 	 * pointing inside the ring, matches the batch_obj address range.
2153 	 * However this is extremely unlikely.
2154 	 */
2155 
2156 	if (request->batch_obj) {
2157 		if (i915_head_inside_object(acthd, request->batch_obj)) {
2158 			*inside = true;
2159 			return true;
2160 		}
2161 	}
2162 
2163 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2164 		*inside = false;
2165 		return true;
2166 	}
2167 
2168 	return false;
2169 }
2170 
2171 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2172 				  struct drm_i915_gem_request *request,
2173 				  u32 acthd)
2174 {
2175 	struct i915_ctx_hang_stats *hs = NULL;
2176 	bool inside, guilty;
2177 
2178 	/* Innocent until proven guilty */
2179 	guilty = false;
2180 
2181 	if (ring->hangcheck.action != wait &&
2182 	    i915_request_guilty(request, acthd, &inside)) {
2183 		DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2184 			  ring->name,
2185 			  inside ? "inside" : "flushing",
2186 			  request->batch_obj ?
2187 			  request->batch_obj->gtt_offset : 0,
2188 			  request->ctx ? request->ctx->id : 0,
2189 			  acthd);
2190 
2191 		guilty = true;
2192 	}
2193 
2194 	/* If contexts are disabled or this is the default context, use
2195 	 * file_priv->reset_state
2196 	 */
2197 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2198 		hs = &request->ctx->hang_stats;
2199 	else if (request->file_priv)
2200 		hs = &request->file_priv->hang_stats;
2201 
2202 	if (hs) {
2203 		if (guilty)
2204 			hs->batch_active++;
2205 		else
2206 			hs->batch_pending++;
2207 	}
2208 }
2209 
2210 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2211 {
2212 	list_del(&request->list);
2213 	i915_gem_request_remove_from_client(request);
2214 
2215 	if (request->ctx)
2216 		i915_gem_context_unreference(request->ctx);
2217 
2218 	kfree(request);
2219 }
2220 
2221 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2222 				      struct intel_ring_buffer *ring)
2223 {
2224 	u32 completed_seqno;
2225 	u32 acthd;
2226 
2227 	acthd = intel_ring_get_active_head(ring);
2228 	completed_seqno = ring->get_seqno(ring, false);
2229 
2230 	while (!list_empty(&ring->request_list)) {
2231 		struct drm_i915_gem_request *request;
2232 
2233 		request = list_first_entry(&ring->request_list,
2234 					   struct drm_i915_gem_request,
2235 					   list);
2236 
2237 		if (request->seqno > completed_seqno)
2238 			i915_set_reset_status(ring, request, acthd);
2239 
2240 		i915_gem_free_request(request);
2241 	}
2242 
2243 	while (!list_empty(&ring->active_list)) {
2244 		struct drm_i915_gem_object *obj;
2245 
2246 		obj = list_first_entry(&ring->active_list,
2247 				       struct drm_i915_gem_object,
2248 				       ring_list);
2249 
2250 		i915_gem_object_move_to_inactive(obj);
2251 	}
2252 }
2253 
2254 void i915_gem_restore_fences(struct drm_device *dev)
2255 {
2256 	struct drm_i915_private *dev_priv = dev->dev_private;
2257 	int i;
2258 
2259 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2260 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2261 		i915_gem_write_fence(dev, i, reg->obj);
2262 	}
2263 }
2264 
2265 void i915_gem_reset(struct drm_device *dev)
2266 {
2267 	struct drm_i915_private *dev_priv = dev->dev_private;
2268 	struct drm_i915_gem_object *obj;
2269 	struct intel_ring_buffer *ring;
2270 	int i;
2271 
2272 	for_each_ring(ring, dev_priv, i)
2273 		i915_gem_reset_ring_lists(dev_priv, ring);
2274 
2275 	/* Move everything out of the GPU domains to ensure we do any
2276 	 * necessary invalidation upon reuse.
2277 	 */
2278 	list_for_each_entry(obj,
2279 			    &dev_priv->mm.inactive_list,
2280 			    mm_list)
2281 	{
2282 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2283 	}
2284 
2285 	i915_gem_restore_fences(dev);
2286 }
2287 
2288 /**
2289  * This function clears the request list as sequence numbers are passed.
2290  */
2291 void
2292 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2293 {
2294 	uint32_t seqno;
2295 
2296 	if (list_empty(&ring->request_list))
2297 		return;
2298 
2299 	WARN_ON(i915_verify_lists(ring->dev));
2300 
2301 	seqno = ring->get_seqno(ring, true);
2302 
2303 	while (!list_empty(&ring->request_list)) {
2304 		struct drm_i915_gem_request *request;
2305 
2306 		request = list_first_entry(&ring->request_list,
2307 					   struct drm_i915_gem_request,
2308 					   list);
2309 
2310 		if (!i915_seqno_passed(seqno, request->seqno))
2311 			break;
2312 
2313 		trace_i915_gem_request_retire(ring, request->seqno);
2314 		/* We know the GPU must have read the request to have
2315 		 * sent us the seqno + interrupt, so use the position
2316 		 * of tail of the request to update the last known position
2317 		 * of the GPU head.
2318 		 */
2319 		ring->last_retired_head = request->tail;
2320 
2321 		i915_gem_free_request(request);
2322 	}
2323 
2324 	/* Move any buffers on the active list that are no longer referenced
2325 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2326 	 */
2327 	while (!list_empty(&ring->active_list)) {
2328 		struct drm_i915_gem_object *obj;
2329 
2330 		obj = list_first_entry(&ring->active_list,
2331 				      struct drm_i915_gem_object,
2332 				      ring_list);
2333 
2334 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2335 			break;
2336 
2337 		i915_gem_object_move_to_inactive(obj);
2338 	}
2339 
2340 	if (unlikely(ring->trace_irq_seqno &&
2341 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2342 		ring->irq_put(ring);
2343 		ring->trace_irq_seqno = 0;
2344 	}
2345 
2346 	WARN_ON(i915_verify_lists(ring->dev));
2347 }
2348 
2349 void
2350 i915_gem_retire_requests(struct drm_device *dev)
2351 {
2352 	drm_i915_private_t *dev_priv = dev->dev_private;
2353 	struct intel_ring_buffer *ring;
2354 	int i;
2355 
2356 	for_each_ring(ring, dev_priv, i)
2357 		i915_gem_retire_requests_ring(ring);
2358 }
2359 
2360 static void
2361 i915_gem_retire_work_handler(struct work_struct *work)
2362 {
2363 	drm_i915_private_t *dev_priv;
2364 	struct drm_device *dev;
2365 	struct intel_ring_buffer *ring;
2366 	bool idle;
2367 	int i;
2368 
2369 	dev_priv = container_of(work, drm_i915_private_t,
2370 				mm.retire_work.work);
2371 	dev = dev_priv->dev;
2372 
2373 	/* Come back later if the device is busy... */
2374 	if (!mutex_trylock(&dev->struct_mutex)) {
2375 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2376 				   round_jiffies_up_relative(HZ));
2377 		return;
2378 	}
2379 
2380 	i915_gem_retire_requests(dev);
2381 
2382 	/* Send a periodic flush down the ring so we don't hold onto GEM
2383 	 * objects indefinitely.
2384 	 */
2385 	idle = true;
2386 	for_each_ring(ring, dev_priv, i) {
2387 		if (ring->gpu_caches_dirty)
2388 			i915_add_request(ring, NULL);
2389 
2390 		idle &= list_empty(&ring->request_list);
2391 	}
2392 
2393 	if (!dev_priv->mm.suspended && !idle)
2394 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2395 				   round_jiffies_up_relative(HZ));
2396 	if (idle)
2397 		intel_mark_idle(dev);
2398 
2399 	mutex_unlock(&dev->struct_mutex);
2400 }
2401 
2402 /**
2403  * Ensures that an object will eventually get non-busy by flushing any required
2404  * write domains, emitting any outstanding lazy request and retiring and
2405  * completed requests.
2406  */
2407 static int
2408 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2409 {
2410 	int ret;
2411 
2412 	if (obj->active) {
2413 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2414 		if (ret)
2415 			return ret;
2416 
2417 		i915_gem_retire_requests_ring(obj->ring);
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 /**
2424  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2425  * @DRM_IOCTL_ARGS: standard ioctl arguments
2426  *
2427  * Returns 0 if successful, else an error is returned with the remaining time in
2428  * the timeout parameter.
2429  *  -ETIME: object is still busy after timeout
2430  *  -ERESTARTSYS: signal interrupted the wait
2431  *  -ENONENT: object doesn't exist
2432  * Also possible, but rare:
2433  *  -EAGAIN: GPU wedged
2434  *  -ENOMEM: damn
2435  *  -ENODEV: Internal IRQ fail
2436  *  -E?: The add request failed
2437  *
2438  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2439  * non-zero timeout parameter the wait ioctl will wait for the given number of
2440  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2441  * without holding struct_mutex the object may become re-busied before this
2442  * function completes. A similar but shorter * race condition exists in the busy
2443  * ioctl
2444  */
2445 int
2446 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2447 {
2448 	drm_i915_private_t *dev_priv = dev->dev_private;
2449 	struct drm_i915_gem_wait *args = data;
2450 	struct drm_i915_gem_object *obj;
2451 	struct intel_ring_buffer *ring = NULL;
2452 	struct timespec timeout_stack, *timeout = NULL;
2453 	unsigned reset_counter;
2454 	u32 seqno = 0;
2455 	int ret = 0;
2456 
2457 	if (args->timeout_ns >= 0) {
2458 		timeout_stack = ns_to_timespec(args->timeout_ns);
2459 		timeout = &timeout_stack;
2460 	}
2461 
2462 	ret = i915_mutex_lock_interruptible(dev);
2463 	if (ret)
2464 		return ret;
2465 
2466 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2467 	if (&obj->base == NULL) {
2468 		mutex_unlock(&dev->struct_mutex);
2469 		return -ENOENT;
2470 	}
2471 
2472 	/* Need to make sure the object gets inactive eventually. */
2473 	ret = i915_gem_object_flush_active(obj);
2474 	if (ret)
2475 		goto out;
2476 
2477 	if (obj->active) {
2478 		seqno = obj->last_read_seqno;
2479 		ring = obj->ring;
2480 	}
2481 
2482 	if (seqno == 0)
2483 		 goto out;
2484 
2485 	/* Do this after OLR check to make sure we make forward progress polling
2486 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2487 	 */
2488 	if (!args->timeout_ns) {
2489 		ret = -ETIME;
2490 		goto out;
2491 	}
2492 
2493 	drm_gem_object_unreference(&obj->base);
2494 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2495 	mutex_unlock(&dev->struct_mutex);
2496 
2497 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2498 	if (timeout)
2499 		args->timeout_ns = timespec_to_ns(timeout);
2500 	return ret;
2501 
2502 out:
2503 	drm_gem_object_unreference(&obj->base);
2504 	mutex_unlock(&dev->struct_mutex);
2505 	return ret;
2506 }
2507 
2508 /**
2509  * i915_gem_object_sync - sync an object to a ring.
2510  *
2511  * @obj: object which may be in use on another ring.
2512  * @to: ring we wish to use the object on. May be NULL.
2513  *
2514  * This code is meant to abstract object synchronization with the GPU.
2515  * Calling with NULL implies synchronizing the object with the CPU
2516  * rather than a particular GPU ring.
2517  *
2518  * Returns 0 if successful, else propagates up the lower layer error.
2519  */
2520 int
2521 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2522 		     struct intel_ring_buffer *to)
2523 {
2524 	struct intel_ring_buffer *from = obj->ring;
2525 	u32 seqno;
2526 	int ret, idx;
2527 
2528 	if (from == NULL || to == from)
2529 		return 0;
2530 
2531 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2532 		return i915_gem_object_wait_rendering(obj, false);
2533 
2534 	idx = intel_ring_sync_index(from, to);
2535 
2536 	seqno = obj->last_read_seqno;
2537 	if (seqno <= from->sync_seqno[idx])
2538 		return 0;
2539 
2540 	ret = i915_gem_check_olr(obj->ring, seqno);
2541 	if (ret)
2542 		return ret;
2543 
2544 	ret = to->sync_to(to, from, seqno);
2545 	if (!ret)
2546 		/* We use last_read_seqno because sync_to()
2547 		 * might have just caused seqno wrap under
2548 		 * the radar.
2549 		 */
2550 		from->sync_seqno[idx] = obj->last_read_seqno;
2551 
2552 	return ret;
2553 }
2554 
2555 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2556 {
2557 	u32 old_write_domain, old_read_domains;
2558 
2559 	/* Force a pagefault for domain tracking on next user access */
2560 	i915_gem_release_mmap(obj);
2561 
2562 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2563 		return;
2564 
2565 	/* Wait for any direct GTT access to complete */
2566 	mb();
2567 
2568 	old_read_domains = obj->base.read_domains;
2569 	old_write_domain = obj->base.write_domain;
2570 
2571 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2572 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2573 
2574 	trace_i915_gem_object_change_domain(obj,
2575 					    old_read_domains,
2576 					    old_write_domain);
2577 }
2578 
2579 /**
2580  * Unbinds an object from the GTT aperture.
2581  */
2582 int
2583 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2584 {
2585 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2586 	int ret;
2587 
2588 	if (obj->gtt_space == NULL)
2589 		return 0;
2590 
2591 	if (obj->pin_count)
2592 		return -EBUSY;
2593 
2594 	BUG_ON(obj->pages == NULL);
2595 
2596 	ret = i915_gem_object_finish_gpu(obj);
2597 	if (ret)
2598 		return ret;
2599 	/* Continue on if we fail due to EIO, the GPU is hung so we
2600 	 * should be safe and we need to cleanup or else we might
2601 	 * cause memory corruption through use-after-free.
2602 	 */
2603 
2604 	i915_gem_object_finish_gtt(obj);
2605 
2606 	/* release the fence reg _after_ flushing */
2607 	ret = i915_gem_object_put_fence(obj);
2608 	if (ret)
2609 		return ret;
2610 
2611 	trace_i915_gem_object_unbind(obj);
2612 
2613 	if (obj->has_global_gtt_mapping)
2614 		i915_gem_gtt_unbind_object(obj);
2615 	if (obj->has_aliasing_ppgtt_mapping) {
2616 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2617 		obj->has_aliasing_ppgtt_mapping = 0;
2618 	}
2619 	i915_gem_gtt_finish_object(obj);
2620 	i915_gem_object_unpin_pages(obj);
2621 
2622 	list_del(&obj->mm_list);
2623 	list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2624 	/* Avoid an unnecessary call to unbind on rebind. */
2625 	obj->map_and_fenceable = true;
2626 
2627 	drm_mm_put_block(obj->gtt_space);
2628 	obj->gtt_space = NULL;
2629 	obj->gtt_offset = 0;
2630 
2631 	return 0;
2632 }
2633 
2634 int i915_gpu_idle(struct drm_device *dev)
2635 {
2636 	drm_i915_private_t *dev_priv = dev->dev_private;
2637 	struct intel_ring_buffer *ring;
2638 	int ret, i;
2639 
2640 	/* Flush everything onto the inactive list. */
2641 	for_each_ring(ring, dev_priv, i) {
2642 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2643 		if (ret)
2644 			return ret;
2645 
2646 		ret = intel_ring_idle(ring);
2647 		if (ret)
2648 			return ret;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2655 				 struct drm_i915_gem_object *obj)
2656 {
2657 	drm_i915_private_t *dev_priv = dev->dev_private;
2658 	int fence_reg;
2659 	int fence_pitch_shift;
2660 
2661 	if (INTEL_INFO(dev)->gen >= 6) {
2662 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2663 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2664 	} else {
2665 		fence_reg = FENCE_REG_965_0;
2666 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2667 	}
2668 
2669 	fence_reg += reg * 8;
2670 
2671 	/* To w/a incoherency with non-atomic 64-bit register updates,
2672 	 * we split the 64-bit update into two 32-bit writes. In order
2673 	 * for a partial fence not to be evaluated between writes, we
2674 	 * precede the update with write to turn off the fence register,
2675 	 * and only enable the fence as the last step.
2676 	 *
2677 	 * For extra levels of paranoia, we make sure each step lands
2678 	 * before applying the next step.
2679 	 */
2680 	I915_WRITE(fence_reg, 0);
2681 	POSTING_READ(fence_reg);
2682 
2683 	if (obj) {
2684 		u32 size = obj->gtt_space->size;
2685 		uint64_t val;
2686 
2687 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2688 				 0xfffff000) << 32;
2689 		val |= obj->gtt_offset & 0xfffff000;
2690 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2691 		if (obj->tiling_mode == I915_TILING_Y)
2692 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2693 		val |= I965_FENCE_REG_VALID;
2694 
2695 		I915_WRITE(fence_reg + 4, val >> 32);
2696 		POSTING_READ(fence_reg + 4);
2697 
2698 		I915_WRITE(fence_reg + 0, val);
2699 		POSTING_READ(fence_reg);
2700 	} else {
2701 		I915_WRITE(fence_reg + 4, 0);
2702 		POSTING_READ(fence_reg + 4);
2703 	}
2704 }
2705 
2706 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2707 				 struct drm_i915_gem_object *obj)
2708 {
2709 	drm_i915_private_t *dev_priv = dev->dev_private;
2710 	u32 val;
2711 
2712 	if (obj) {
2713 		u32 size = obj->gtt_space->size;
2714 		int pitch_val;
2715 		int tile_width;
2716 
2717 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2718 		     (size & -size) != size ||
2719 		     (obj->gtt_offset & (size - 1)),
2720 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2721 		     obj->gtt_offset, obj->map_and_fenceable, size);
2722 
2723 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2724 			tile_width = 128;
2725 		else
2726 			tile_width = 512;
2727 
2728 		/* Note: pitch better be a power of two tile widths */
2729 		pitch_val = obj->stride / tile_width;
2730 		pitch_val = ffs(pitch_val) - 1;
2731 
2732 		val = obj->gtt_offset;
2733 		if (obj->tiling_mode == I915_TILING_Y)
2734 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2735 		val |= I915_FENCE_SIZE_BITS(size);
2736 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2737 		val |= I830_FENCE_REG_VALID;
2738 	} else
2739 		val = 0;
2740 
2741 	if (reg < 8)
2742 		reg = FENCE_REG_830_0 + reg * 4;
2743 	else
2744 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2745 
2746 	I915_WRITE(reg, val);
2747 	POSTING_READ(reg);
2748 }
2749 
2750 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2751 				struct drm_i915_gem_object *obj)
2752 {
2753 	drm_i915_private_t *dev_priv = dev->dev_private;
2754 	uint32_t val;
2755 
2756 	if (obj) {
2757 		u32 size = obj->gtt_space->size;
2758 		uint32_t pitch_val;
2759 
2760 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2761 		     (size & -size) != size ||
2762 		     (obj->gtt_offset & (size - 1)),
2763 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2764 		     obj->gtt_offset, size);
2765 
2766 		pitch_val = obj->stride / 128;
2767 		pitch_val = ffs(pitch_val) - 1;
2768 
2769 		val = obj->gtt_offset;
2770 		if (obj->tiling_mode == I915_TILING_Y)
2771 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2772 		val |= I830_FENCE_SIZE_BITS(size);
2773 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2774 		val |= I830_FENCE_REG_VALID;
2775 	} else
2776 		val = 0;
2777 
2778 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2779 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2780 }
2781 
2782 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2783 {
2784 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2785 }
2786 
2787 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2788 				 struct drm_i915_gem_object *obj)
2789 {
2790 	struct drm_i915_private *dev_priv = dev->dev_private;
2791 
2792 	/* Ensure that all CPU reads are completed before installing a fence
2793 	 * and all writes before removing the fence.
2794 	 */
2795 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2796 		mb();
2797 
2798 	switch (INTEL_INFO(dev)->gen) {
2799 	case 7:
2800 	case 6:
2801 	case 5:
2802 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2803 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2804 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2805 	default: BUG();
2806 	}
2807 
2808 	/* And similarly be paranoid that no direct access to this region
2809 	 * is reordered to before the fence is installed.
2810 	 */
2811 	if (i915_gem_object_needs_mb(obj))
2812 		mb();
2813 }
2814 
2815 static inline int fence_number(struct drm_i915_private *dev_priv,
2816 			       struct drm_i915_fence_reg *fence)
2817 {
2818 	return fence - dev_priv->fence_regs;
2819 }
2820 
2821 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2822 					 struct drm_i915_fence_reg *fence,
2823 					 bool enable)
2824 {
2825 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2826 	int reg = fence_number(dev_priv, fence);
2827 
2828 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2829 
2830 	if (enable) {
2831 		obj->fence_reg = reg;
2832 		fence->obj = obj;
2833 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2834 	} else {
2835 		obj->fence_reg = I915_FENCE_REG_NONE;
2836 		fence->obj = NULL;
2837 		list_del_init(&fence->lru_list);
2838 	}
2839 }
2840 
2841 static int
2842 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2843 {
2844 	if (obj->last_fenced_seqno) {
2845 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2846 		if (ret)
2847 			return ret;
2848 
2849 		obj->last_fenced_seqno = 0;
2850 	}
2851 
2852 	obj->fenced_gpu_access = false;
2853 	return 0;
2854 }
2855 
2856 int
2857 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2858 {
2859 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2860 	struct drm_i915_fence_reg *fence;
2861 	int ret;
2862 
2863 	ret = i915_gem_object_wait_fence(obj);
2864 	if (ret)
2865 		return ret;
2866 
2867 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2868 		return 0;
2869 
2870 	fence = &dev_priv->fence_regs[obj->fence_reg];
2871 
2872 	i915_gem_object_fence_lost(obj);
2873 	i915_gem_object_update_fence(obj, fence, false);
2874 
2875 	return 0;
2876 }
2877 
2878 static struct drm_i915_fence_reg *
2879 i915_find_fence_reg(struct drm_device *dev)
2880 {
2881 	struct drm_i915_private *dev_priv = dev->dev_private;
2882 	struct drm_i915_fence_reg *reg, *avail;
2883 	int i;
2884 
2885 	/* First try to find a free reg */
2886 	avail = NULL;
2887 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2888 		reg = &dev_priv->fence_regs[i];
2889 		if (!reg->obj)
2890 			return reg;
2891 
2892 		if (!reg->pin_count)
2893 			avail = reg;
2894 	}
2895 
2896 	if (avail == NULL)
2897 		return NULL;
2898 
2899 	/* None available, try to steal one or wait for a user to finish */
2900 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2901 		if (reg->pin_count)
2902 			continue;
2903 
2904 		return reg;
2905 	}
2906 
2907 	return NULL;
2908 }
2909 
2910 /**
2911  * i915_gem_object_get_fence - set up fencing for an object
2912  * @obj: object to map through a fence reg
2913  *
2914  * When mapping objects through the GTT, userspace wants to be able to write
2915  * to them without having to worry about swizzling if the object is tiled.
2916  * This function walks the fence regs looking for a free one for @obj,
2917  * stealing one if it can't find any.
2918  *
2919  * It then sets up the reg based on the object's properties: address, pitch
2920  * and tiling format.
2921  *
2922  * For an untiled surface, this removes any existing fence.
2923  */
2924 int
2925 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2926 {
2927 	struct drm_device *dev = obj->base.dev;
2928 	struct drm_i915_private *dev_priv = dev->dev_private;
2929 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2930 	struct drm_i915_fence_reg *reg;
2931 	int ret;
2932 
2933 	/* Have we updated the tiling parameters upon the object and so
2934 	 * will need to serialise the write to the associated fence register?
2935 	 */
2936 	if (obj->fence_dirty) {
2937 		ret = i915_gem_object_wait_fence(obj);
2938 		if (ret)
2939 			return ret;
2940 	}
2941 
2942 	/* Just update our place in the LRU if our fence is getting reused. */
2943 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2944 		reg = &dev_priv->fence_regs[obj->fence_reg];
2945 		if (!obj->fence_dirty) {
2946 			list_move_tail(&reg->lru_list,
2947 				       &dev_priv->mm.fence_list);
2948 			return 0;
2949 		}
2950 	} else if (enable) {
2951 		reg = i915_find_fence_reg(dev);
2952 		if (reg == NULL)
2953 			return -EDEADLK;
2954 
2955 		if (reg->obj) {
2956 			struct drm_i915_gem_object *old = reg->obj;
2957 
2958 			ret = i915_gem_object_wait_fence(old);
2959 			if (ret)
2960 				return ret;
2961 
2962 			i915_gem_object_fence_lost(old);
2963 		}
2964 	} else
2965 		return 0;
2966 
2967 	i915_gem_object_update_fence(obj, reg, enable);
2968 	obj->fence_dirty = false;
2969 
2970 	return 0;
2971 }
2972 
2973 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2974 				     struct drm_mm_node *gtt_space,
2975 				     unsigned long cache_level)
2976 {
2977 	struct drm_mm_node *other;
2978 
2979 	/* On non-LLC machines we have to be careful when putting differing
2980 	 * types of snoopable memory together to avoid the prefetcher
2981 	 * crossing memory domains and dying.
2982 	 */
2983 	if (HAS_LLC(dev))
2984 		return true;
2985 
2986 	if (gtt_space == NULL)
2987 		return true;
2988 
2989 	if (list_empty(&gtt_space->node_list))
2990 		return true;
2991 
2992 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2993 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2994 		return false;
2995 
2996 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2997 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2998 		return false;
2999 
3000 	return true;
3001 }
3002 
3003 static void i915_gem_verify_gtt(struct drm_device *dev)
3004 {
3005 #if WATCH_GTT
3006 	struct drm_i915_private *dev_priv = dev->dev_private;
3007 	struct drm_i915_gem_object *obj;
3008 	int err = 0;
3009 
3010 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3011 		if (obj->gtt_space == NULL) {
3012 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3013 			err++;
3014 			continue;
3015 		}
3016 
3017 		if (obj->cache_level != obj->gtt_space->color) {
3018 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3019 			       obj->gtt_space->start,
3020 			       obj->gtt_space->start + obj->gtt_space->size,
3021 			       obj->cache_level,
3022 			       obj->gtt_space->color);
3023 			err++;
3024 			continue;
3025 		}
3026 
3027 		if (!i915_gem_valid_gtt_space(dev,
3028 					      obj->gtt_space,
3029 					      obj->cache_level)) {
3030 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3031 			       obj->gtt_space->start,
3032 			       obj->gtt_space->start + obj->gtt_space->size,
3033 			       obj->cache_level);
3034 			err++;
3035 			continue;
3036 		}
3037 	}
3038 
3039 	WARN_ON(err);
3040 #endif
3041 }
3042 
3043 /**
3044  * Finds free space in the GTT aperture and binds the object there.
3045  */
3046 static int
3047 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3048 			    unsigned alignment,
3049 			    bool map_and_fenceable,
3050 			    bool nonblocking)
3051 {
3052 	struct drm_device *dev = obj->base.dev;
3053 	drm_i915_private_t *dev_priv = dev->dev_private;
3054 	struct drm_mm_node *node;
3055 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3056 	bool mappable, fenceable;
3057 	size_t gtt_max = map_and_fenceable ?
3058 		dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3059 	int ret;
3060 
3061 	fence_size = i915_gem_get_gtt_size(dev,
3062 					   obj->base.size,
3063 					   obj->tiling_mode);
3064 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3065 						     obj->base.size,
3066 						     obj->tiling_mode, true);
3067 	unfenced_alignment =
3068 		i915_gem_get_gtt_alignment(dev,
3069 						    obj->base.size,
3070 						    obj->tiling_mode, false);
3071 
3072 	if (alignment == 0)
3073 		alignment = map_and_fenceable ? fence_alignment :
3074 						unfenced_alignment;
3075 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3076 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3077 		return -EINVAL;
3078 	}
3079 
3080 	size = map_and_fenceable ? fence_size : obj->base.size;
3081 
3082 	/* If the object is bigger than the entire aperture, reject it early
3083 	 * before evicting everything in a vain attempt to find space.
3084 	 */
3085 	if (obj->base.size > gtt_max) {
3086 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3087 			  obj->base.size,
3088 			  map_and_fenceable ? "mappable" : "total",
3089 			  gtt_max);
3090 		return -E2BIG;
3091 	}
3092 
3093 	ret = i915_gem_object_get_pages(obj);
3094 	if (ret)
3095 		return ret;
3096 
3097 	i915_gem_object_pin_pages(obj);
3098 
3099 	node = kzalloc(sizeof(*node), GFP_KERNEL);
3100 	if (node == NULL) {
3101 		i915_gem_object_unpin_pages(obj);
3102 		return -ENOMEM;
3103 	}
3104 
3105 search_free:
3106 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3107 						  size, alignment,
3108 						  obj->cache_level, 0, gtt_max);
3109 	if (ret) {
3110 		ret = i915_gem_evict_something(dev, size, alignment,
3111 					       obj->cache_level,
3112 					       map_and_fenceable,
3113 					       nonblocking);
3114 		if (ret == 0)
3115 			goto search_free;
3116 
3117 		i915_gem_object_unpin_pages(obj);
3118 		kfree(node);
3119 		return ret;
3120 	}
3121 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3122 		i915_gem_object_unpin_pages(obj);
3123 		drm_mm_put_block(node);
3124 		return -EINVAL;
3125 	}
3126 
3127 	ret = i915_gem_gtt_prepare_object(obj);
3128 	if (ret) {
3129 		i915_gem_object_unpin_pages(obj);
3130 		drm_mm_put_block(node);
3131 		return ret;
3132 	}
3133 
3134 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3135 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3136 
3137 	obj->gtt_space = node;
3138 	obj->gtt_offset = node->start;
3139 
3140 	fenceable =
3141 		node->size == fence_size &&
3142 		(node->start & (fence_alignment - 1)) == 0;
3143 
3144 	mappable =
3145 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3146 
3147 	obj->map_and_fenceable = mappable && fenceable;
3148 
3149 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3150 	i915_gem_verify_gtt(dev);
3151 	return 0;
3152 }
3153 
3154 void
3155 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3156 {
3157 	/* If we don't have a page list set up, then we're not pinned
3158 	 * to GPU, and we can ignore the cache flush because it'll happen
3159 	 * again at bind time.
3160 	 */
3161 	if (obj->pages == NULL)
3162 		return;
3163 
3164 	/*
3165 	 * Stolen memory is always coherent with the GPU as it is explicitly
3166 	 * marked as wc by the system, or the system is cache-coherent.
3167 	 */
3168 	if (obj->stolen)
3169 		return;
3170 
3171 	/* If the GPU is snooping the contents of the CPU cache,
3172 	 * we do not need to manually clear the CPU cache lines.  However,
3173 	 * the caches are only snooped when the render cache is
3174 	 * flushed/invalidated.  As we always have to emit invalidations
3175 	 * and flushes when moving into and out of the RENDER domain, correct
3176 	 * snooping behaviour occurs naturally as the result of our domain
3177 	 * tracking.
3178 	 */
3179 	if (obj->cache_level != I915_CACHE_NONE)
3180 		return;
3181 
3182 	trace_i915_gem_object_clflush(obj);
3183 
3184 	drm_clflush_sg(obj->pages);
3185 }
3186 
3187 /** Flushes the GTT write domain for the object if it's dirty. */
3188 static void
3189 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3190 {
3191 	uint32_t old_write_domain;
3192 
3193 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3194 		return;
3195 
3196 	/* No actual flushing is required for the GTT write domain.  Writes
3197 	 * to it immediately go to main memory as far as we know, so there's
3198 	 * no chipset flush.  It also doesn't land in render cache.
3199 	 *
3200 	 * However, we do have to enforce the order so that all writes through
3201 	 * the GTT land before any writes to the device, such as updates to
3202 	 * the GATT itself.
3203 	 */
3204 	wmb();
3205 
3206 	old_write_domain = obj->base.write_domain;
3207 	obj->base.write_domain = 0;
3208 
3209 	trace_i915_gem_object_change_domain(obj,
3210 					    obj->base.read_domains,
3211 					    old_write_domain);
3212 }
3213 
3214 /** Flushes the CPU write domain for the object if it's dirty. */
3215 static void
3216 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3217 {
3218 	uint32_t old_write_domain;
3219 
3220 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3221 		return;
3222 
3223 	i915_gem_clflush_object(obj);
3224 	i915_gem_chipset_flush(obj->base.dev);
3225 	old_write_domain = obj->base.write_domain;
3226 	obj->base.write_domain = 0;
3227 
3228 	trace_i915_gem_object_change_domain(obj,
3229 					    obj->base.read_domains,
3230 					    old_write_domain);
3231 }
3232 
3233 /**
3234  * Moves a single object to the GTT read, and possibly write domain.
3235  *
3236  * This function returns when the move is complete, including waiting on
3237  * flushes to occur.
3238  */
3239 int
3240 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3241 {
3242 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3243 	uint32_t old_write_domain, old_read_domains;
3244 	int ret;
3245 
3246 	/* Not valid to be called on unbound objects. */
3247 	if (obj->gtt_space == NULL)
3248 		return -EINVAL;
3249 
3250 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3251 		return 0;
3252 
3253 	ret = i915_gem_object_wait_rendering(obj, !write);
3254 	if (ret)
3255 		return ret;
3256 
3257 	i915_gem_object_flush_cpu_write_domain(obj);
3258 
3259 	/* Serialise direct access to this object with the barriers for
3260 	 * coherent writes from the GPU, by effectively invalidating the
3261 	 * GTT domain upon first access.
3262 	 */
3263 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3264 		mb();
3265 
3266 	old_write_domain = obj->base.write_domain;
3267 	old_read_domains = obj->base.read_domains;
3268 
3269 	/* It should now be out of any other write domains, and we can update
3270 	 * the domain values for our changes.
3271 	 */
3272 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3273 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3274 	if (write) {
3275 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3276 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3277 		obj->dirty = 1;
3278 	}
3279 
3280 	trace_i915_gem_object_change_domain(obj,
3281 					    old_read_domains,
3282 					    old_write_domain);
3283 
3284 	/* And bump the LRU for this access */
3285 	if (i915_gem_object_is_inactive(obj))
3286 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3287 
3288 	return 0;
3289 }
3290 
3291 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3292 				    enum i915_cache_level cache_level)
3293 {
3294 	struct drm_device *dev = obj->base.dev;
3295 	drm_i915_private_t *dev_priv = dev->dev_private;
3296 	int ret;
3297 
3298 	if (obj->cache_level == cache_level)
3299 		return 0;
3300 
3301 	if (obj->pin_count) {
3302 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3303 		return -EBUSY;
3304 	}
3305 
3306 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3307 		ret = i915_gem_object_unbind(obj);
3308 		if (ret)
3309 			return ret;
3310 	}
3311 
3312 	if (obj->gtt_space) {
3313 		ret = i915_gem_object_finish_gpu(obj);
3314 		if (ret)
3315 			return ret;
3316 
3317 		i915_gem_object_finish_gtt(obj);
3318 
3319 		/* Before SandyBridge, you could not use tiling or fence
3320 		 * registers with snooped memory, so relinquish any fences
3321 		 * currently pointing to our region in the aperture.
3322 		 */
3323 		if (INTEL_INFO(dev)->gen < 6) {
3324 			ret = i915_gem_object_put_fence(obj);
3325 			if (ret)
3326 				return ret;
3327 		}
3328 
3329 		if (obj->has_global_gtt_mapping)
3330 			i915_gem_gtt_bind_object(obj, cache_level);
3331 		if (obj->has_aliasing_ppgtt_mapping)
3332 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3333 					       obj, cache_level);
3334 
3335 		obj->gtt_space->color = cache_level;
3336 	}
3337 
3338 	if (cache_level == I915_CACHE_NONE) {
3339 		u32 old_read_domains, old_write_domain;
3340 
3341 		/* If we're coming from LLC cached, then we haven't
3342 		 * actually been tracking whether the data is in the
3343 		 * CPU cache or not, since we only allow one bit set
3344 		 * in obj->write_domain and have been skipping the clflushes.
3345 		 * Just set it to the CPU cache for now.
3346 		 */
3347 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3348 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3349 
3350 		old_read_domains = obj->base.read_domains;
3351 		old_write_domain = obj->base.write_domain;
3352 
3353 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3354 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3355 
3356 		trace_i915_gem_object_change_domain(obj,
3357 						    old_read_domains,
3358 						    old_write_domain);
3359 	}
3360 
3361 	obj->cache_level = cache_level;
3362 	i915_gem_verify_gtt(dev);
3363 	return 0;
3364 }
3365 
3366 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3367 			       struct drm_file *file)
3368 {
3369 	struct drm_i915_gem_caching *args = data;
3370 	struct drm_i915_gem_object *obj;
3371 	int ret;
3372 
3373 	ret = i915_mutex_lock_interruptible(dev);
3374 	if (ret)
3375 		return ret;
3376 
3377 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3378 	if (&obj->base == NULL) {
3379 		ret = -ENOENT;
3380 		goto unlock;
3381 	}
3382 
3383 	args->caching = obj->cache_level != I915_CACHE_NONE;
3384 
3385 	drm_gem_object_unreference(&obj->base);
3386 unlock:
3387 	mutex_unlock(&dev->struct_mutex);
3388 	return ret;
3389 }
3390 
3391 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3392 			       struct drm_file *file)
3393 {
3394 	struct drm_i915_gem_caching *args = data;
3395 	struct drm_i915_gem_object *obj;
3396 	enum i915_cache_level level;
3397 	int ret;
3398 
3399 	switch (args->caching) {
3400 	case I915_CACHING_NONE:
3401 		level = I915_CACHE_NONE;
3402 		break;
3403 	case I915_CACHING_CACHED:
3404 		level = I915_CACHE_LLC;
3405 		break;
3406 	default:
3407 		return -EINVAL;
3408 	}
3409 
3410 	ret = i915_mutex_lock_interruptible(dev);
3411 	if (ret)
3412 		return ret;
3413 
3414 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3415 	if (&obj->base == NULL) {
3416 		ret = -ENOENT;
3417 		goto unlock;
3418 	}
3419 
3420 	ret = i915_gem_object_set_cache_level(obj, level);
3421 
3422 	drm_gem_object_unreference(&obj->base);
3423 unlock:
3424 	mutex_unlock(&dev->struct_mutex);
3425 	return ret;
3426 }
3427 
3428 /*
3429  * Prepare buffer for display plane (scanout, cursors, etc).
3430  * Can be called from an uninterruptible phase (modesetting) and allows
3431  * any flushes to be pipelined (for pageflips).
3432  */
3433 int
3434 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3435 				     u32 alignment,
3436 				     struct intel_ring_buffer *pipelined)
3437 {
3438 	u32 old_read_domains, old_write_domain;
3439 	int ret;
3440 
3441 	if (pipelined != obj->ring) {
3442 		ret = i915_gem_object_sync(obj, pipelined);
3443 		if (ret)
3444 			return ret;
3445 	}
3446 
3447 	/* The display engine is not coherent with the LLC cache on gen6.  As
3448 	 * a result, we make sure that the pinning that is about to occur is
3449 	 * done with uncached PTEs. This is lowest common denominator for all
3450 	 * chipsets.
3451 	 *
3452 	 * However for gen6+, we could do better by using the GFDT bit instead
3453 	 * of uncaching, which would allow us to flush all the LLC-cached data
3454 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3455 	 */
3456 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3457 	if (ret)
3458 		return ret;
3459 
3460 	/* As the user may map the buffer once pinned in the display plane
3461 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3462 	 * always use map_and_fenceable for all scanout buffers.
3463 	 */
3464 	ret = i915_gem_object_pin(obj, alignment, true, false);
3465 	if (ret)
3466 		return ret;
3467 
3468 	i915_gem_object_flush_cpu_write_domain(obj);
3469 
3470 	old_write_domain = obj->base.write_domain;
3471 	old_read_domains = obj->base.read_domains;
3472 
3473 	/* It should now be out of any other write domains, and we can update
3474 	 * the domain values for our changes.
3475 	 */
3476 	obj->base.write_domain = 0;
3477 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3478 
3479 	trace_i915_gem_object_change_domain(obj,
3480 					    old_read_domains,
3481 					    old_write_domain);
3482 
3483 	return 0;
3484 }
3485 
3486 int
3487 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3488 {
3489 	int ret;
3490 
3491 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3492 		return 0;
3493 
3494 	ret = i915_gem_object_wait_rendering(obj, false);
3495 	if (ret)
3496 		return ret;
3497 
3498 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3499 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3500 	return 0;
3501 }
3502 
3503 /**
3504  * Moves a single object to the CPU read, and possibly write domain.
3505  *
3506  * This function returns when the move is complete, including waiting on
3507  * flushes to occur.
3508  */
3509 int
3510 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3511 {
3512 	uint32_t old_write_domain, old_read_domains;
3513 	int ret;
3514 
3515 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3516 		return 0;
3517 
3518 	ret = i915_gem_object_wait_rendering(obj, !write);
3519 	if (ret)
3520 		return ret;
3521 
3522 	i915_gem_object_flush_gtt_write_domain(obj);
3523 
3524 	old_write_domain = obj->base.write_domain;
3525 	old_read_domains = obj->base.read_domains;
3526 
3527 	/* Flush the CPU cache if it's still invalid. */
3528 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3529 		i915_gem_clflush_object(obj);
3530 
3531 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3532 	}
3533 
3534 	/* It should now be out of any other write domains, and we can update
3535 	 * the domain values for our changes.
3536 	 */
3537 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3538 
3539 	/* If we're writing through the CPU, then the GPU read domains will
3540 	 * need to be invalidated at next use.
3541 	 */
3542 	if (write) {
3543 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3544 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3545 	}
3546 
3547 	trace_i915_gem_object_change_domain(obj,
3548 					    old_read_domains,
3549 					    old_write_domain);
3550 
3551 	return 0;
3552 }
3553 
3554 /* Throttle our rendering by waiting until the ring has completed our requests
3555  * emitted over 20 msec ago.
3556  *
3557  * Note that if we were to use the current jiffies each time around the loop,
3558  * we wouldn't escape the function with any frames outstanding if the time to
3559  * render a frame was over 20ms.
3560  *
3561  * This should get us reasonable parallelism between CPU and GPU but also
3562  * relatively low latency when blocking on a particular request to finish.
3563  */
3564 static int
3565 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3566 {
3567 	struct drm_i915_private *dev_priv = dev->dev_private;
3568 	struct drm_i915_file_private *file_priv = file->driver_priv;
3569 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3570 	struct drm_i915_gem_request *request;
3571 	struct intel_ring_buffer *ring = NULL;
3572 	unsigned reset_counter;
3573 	u32 seqno = 0;
3574 	int ret;
3575 
3576 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3577 	if (ret)
3578 		return ret;
3579 
3580 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3581 	if (ret)
3582 		return ret;
3583 
3584 	spin_lock(&file_priv->mm.lock);
3585 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3586 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3587 			break;
3588 
3589 		ring = request->ring;
3590 		seqno = request->seqno;
3591 	}
3592 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3593 	spin_unlock(&file_priv->mm.lock);
3594 
3595 	if (seqno == 0)
3596 		return 0;
3597 
3598 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3599 	if (ret == 0)
3600 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3601 
3602 	return ret;
3603 }
3604 
3605 int
3606 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3607 		    uint32_t alignment,
3608 		    bool map_and_fenceable,
3609 		    bool nonblocking)
3610 {
3611 	int ret;
3612 
3613 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3614 		return -EBUSY;
3615 
3616 	if (obj->gtt_space != NULL) {
3617 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3618 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3619 			WARN(obj->pin_count,
3620 			     "bo is already pinned with incorrect alignment:"
3621 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3622 			     " obj->map_and_fenceable=%d\n",
3623 			     obj->gtt_offset, alignment,
3624 			     map_and_fenceable,
3625 			     obj->map_and_fenceable);
3626 			ret = i915_gem_object_unbind(obj);
3627 			if (ret)
3628 				return ret;
3629 		}
3630 	}
3631 
3632 	if (obj->gtt_space == NULL) {
3633 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3634 
3635 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3636 						  map_and_fenceable,
3637 						  nonblocking);
3638 		if (ret)
3639 			return ret;
3640 
3641 		if (!dev_priv->mm.aliasing_ppgtt)
3642 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3643 	}
3644 
3645 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3646 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3647 
3648 	obj->pin_count++;
3649 	obj->pin_mappable |= map_and_fenceable;
3650 
3651 	return 0;
3652 }
3653 
3654 void
3655 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3656 {
3657 	BUG_ON(obj->pin_count == 0);
3658 	BUG_ON(obj->gtt_space == NULL);
3659 
3660 	if (--obj->pin_count == 0)
3661 		obj->pin_mappable = false;
3662 }
3663 
3664 int
3665 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3666 		   struct drm_file *file)
3667 {
3668 	struct drm_i915_gem_pin *args = data;
3669 	struct drm_i915_gem_object *obj;
3670 	int ret;
3671 
3672 	ret = i915_mutex_lock_interruptible(dev);
3673 	if (ret)
3674 		return ret;
3675 
3676 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3677 	if (&obj->base == NULL) {
3678 		ret = -ENOENT;
3679 		goto unlock;
3680 	}
3681 
3682 	if (obj->madv != I915_MADV_WILLNEED) {
3683 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3684 		ret = -EINVAL;
3685 		goto out;
3686 	}
3687 
3688 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3689 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3690 			  args->handle);
3691 		ret = -EINVAL;
3692 		goto out;
3693 	}
3694 
3695 	if (obj->user_pin_count == 0) {
3696 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3697 		if (ret)
3698 			goto out;
3699 	}
3700 
3701 	obj->user_pin_count++;
3702 	obj->pin_filp = file;
3703 
3704 	/* XXX - flush the CPU caches for pinned objects
3705 	 * as the X server doesn't manage domains yet
3706 	 */
3707 	i915_gem_object_flush_cpu_write_domain(obj);
3708 	args->offset = obj->gtt_offset;
3709 out:
3710 	drm_gem_object_unreference(&obj->base);
3711 unlock:
3712 	mutex_unlock(&dev->struct_mutex);
3713 	return ret;
3714 }
3715 
3716 int
3717 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3718 		     struct drm_file *file)
3719 {
3720 	struct drm_i915_gem_pin *args = data;
3721 	struct drm_i915_gem_object *obj;
3722 	int ret;
3723 
3724 	ret = i915_mutex_lock_interruptible(dev);
3725 	if (ret)
3726 		return ret;
3727 
3728 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3729 	if (&obj->base == NULL) {
3730 		ret = -ENOENT;
3731 		goto unlock;
3732 	}
3733 
3734 	if (obj->pin_filp != file) {
3735 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3736 			  args->handle);
3737 		ret = -EINVAL;
3738 		goto out;
3739 	}
3740 	obj->user_pin_count--;
3741 	if (obj->user_pin_count == 0) {
3742 		obj->pin_filp = NULL;
3743 		i915_gem_object_unpin(obj);
3744 	}
3745 
3746 out:
3747 	drm_gem_object_unreference(&obj->base);
3748 unlock:
3749 	mutex_unlock(&dev->struct_mutex);
3750 	return ret;
3751 }
3752 
3753 int
3754 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3755 		    struct drm_file *file)
3756 {
3757 	struct drm_i915_gem_busy *args = data;
3758 	struct drm_i915_gem_object *obj;
3759 	int ret;
3760 
3761 	ret = i915_mutex_lock_interruptible(dev);
3762 	if (ret)
3763 		return ret;
3764 
3765 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3766 	if (&obj->base == NULL) {
3767 		ret = -ENOENT;
3768 		goto unlock;
3769 	}
3770 
3771 	/* Count all active objects as busy, even if they are currently not used
3772 	 * by the gpu. Users of this interface expect objects to eventually
3773 	 * become non-busy without any further actions, therefore emit any
3774 	 * necessary flushes here.
3775 	 */
3776 	ret = i915_gem_object_flush_active(obj);
3777 
3778 	args->busy = obj->active;
3779 	if (obj->ring) {
3780 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3781 		args->busy |= intel_ring_flag(obj->ring) << 16;
3782 	}
3783 
3784 	drm_gem_object_unreference(&obj->base);
3785 unlock:
3786 	mutex_unlock(&dev->struct_mutex);
3787 	return ret;
3788 }
3789 
3790 int
3791 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3792 			struct drm_file *file_priv)
3793 {
3794 	return i915_gem_ring_throttle(dev, file_priv);
3795 }
3796 
3797 int
3798 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3799 		       struct drm_file *file_priv)
3800 {
3801 	struct drm_i915_gem_madvise *args = data;
3802 	struct drm_i915_gem_object *obj;
3803 	int ret;
3804 
3805 	switch (args->madv) {
3806 	case I915_MADV_DONTNEED:
3807 	case I915_MADV_WILLNEED:
3808 	    break;
3809 	default:
3810 	    return -EINVAL;
3811 	}
3812 
3813 	ret = i915_mutex_lock_interruptible(dev);
3814 	if (ret)
3815 		return ret;
3816 
3817 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3818 	if (&obj->base == NULL) {
3819 		ret = -ENOENT;
3820 		goto unlock;
3821 	}
3822 
3823 	if (obj->pin_count) {
3824 		ret = -EINVAL;
3825 		goto out;
3826 	}
3827 
3828 	if (obj->madv != __I915_MADV_PURGED)
3829 		obj->madv = args->madv;
3830 
3831 	/* if the object is no longer attached, discard its backing storage */
3832 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3833 		i915_gem_object_truncate(obj);
3834 
3835 	args->retained = obj->madv != __I915_MADV_PURGED;
3836 
3837 out:
3838 	drm_gem_object_unreference(&obj->base);
3839 unlock:
3840 	mutex_unlock(&dev->struct_mutex);
3841 	return ret;
3842 }
3843 
3844 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3845 			  const struct drm_i915_gem_object_ops *ops)
3846 {
3847 	INIT_LIST_HEAD(&obj->mm_list);
3848 	INIT_LIST_HEAD(&obj->global_list);
3849 	INIT_LIST_HEAD(&obj->ring_list);
3850 	INIT_LIST_HEAD(&obj->exec_list);
3851 
3852 	obj->ops = ops;
3853 
3854 	obj->fence_reg = I915_FENCE_REG_NONE;
3855 	obj->madv = I915_MADV_WILLNEED;
3856 	/* Avoid an unnecessary call to unbind on the first bind. */
3857 	obj->map_and_fenceable = true;
3858 
3859 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3860 }
3861 
3862 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3863 	.get_pages = i915_gem_object_get_pages_gtt,
3864 	.put_pages = i915_gem_object_put_pages_gtt,
3865 };
3866 
3867 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3868 						  size_t size)
3869 {
3870 	struct drm_i915_gem_object *obj;
3871 	struct address_space *mapping;
3872 	gfp_t mask;
3873 
3874 	obj = i915_gem_object_alloc(dev);
3875 	if (obj == NULL)
3876 		return NULL;
3877 
3878 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3879 		i915_gem_object_free(obj);
3880 		return NULL;
3881 	}
3882 
3883 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3884 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3885 		/* 965gm cannot relocate objects above 4GiB. */
3886 		mask &= ~__GFP_HIGHMEM;
3887 		mask |= __GFP_DMA32;
3888 	}
3889 
3890 	mapping = file_inode(obj->base.filp)->i_mapping;
3891 	mapping_set_gfp_mask(mapping, mask);
3892 
3893 	i915_gem_object_init(obj, &i915_gem_object_ops);
3894 
3895 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3896 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3897 
3898 	if (HAS_LLC(dev)) {
3899 		/* On some devices, we can have the GPU use the LLC (the CPU
3900 		 * cache) for about a 10% performance improvement
3901 		 * compared to uncached.  Graphics requests other than
3902 		 * display scanout are coherent with the CPU in
3903 		 * accessing this cache.  This means in this mode we
3904 		 * don't need to clflush on the CPU side, and on the
3905 		 * GPU side we only need to flush internal caches to
3906 		 * get data visible to the CPU.
3907 		 *
3908 		 * However, we maintain the display planes as UC, and so
3909 		 * need to rebind when first used as such.
3910 		 */
3911 		obj->cache_level = I915_CACHE_LLC;
3912 	} else
3913 		obj->cache_level = I915_CACHE_NONE;
3914 
3915 	return obj;
3916 }
3917 
3918 int i915_gem_init_object(struct drm_gem_object *obj)
3919 {
3920 	BUG();
3921 
3922 	return 0;
3923 }
3924 
3925 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3926 {
3927 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3928 	struct drm_device *dev = obj->base.dev;
3929 	drm_i915_private_t *dev_priv = dev->dev_private;
3930 
3931 	trace_i915_gem_object_destroy(obj);
3932 
3933 	if (obj->phys_obj)
3934 		i915_gem_detach_phys_object(dev, obj);
3935 
3936 	obj->pin_count = 0;
3937 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3938 		bool was_interruptible;
3939 
3940 		was_interruptible = dev_priv->mm.interruptible;
3941 		dev_priv->mm.interruptible = false;
3942 
3943 		WARN_ON(i915_gem_object_unbind(obj));
3944 
3945 		dev_priv->mm.interruptible = was_interruptible;
3946 	}
3947 
3948 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3949 	 * before progressing. */
3950 	if (obj->stolen)
3951 		i915_gem_object_unpin_pages(obj);
3952 
3953 	if (WARN_ON(obj->pages_pin_count))
3954 		obj->pages_pin_count = 0;
3955 	i915_gem_object_put_pages(obj);
3956 	i915_gem_object_free_mmap_offset(obj);
3957 	i915_gem_object_release_stolen(obj);
3958 
3959 	BUG_ON(obj->pages);
3960 
3961 	if (obj->base.import_attach)
3962 		drm_prime_gem_destroy(&obj->base, NULL);
3963 
3964 	drm_gem_object_release(&obj->base);
3965 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3966 
3967 	kfree(obj->bit_17);
3968 	i915_gem_object_free(obj);
3969 }
3970 
3971 int
3972 i915_gem_idle(struct drm_device *dev)
3973 {
3974 	drm_i915_private_t *dev_priv = dev->dev_private;
3975 	int ret;
3976 
3977 	mutex_lock(&dev->struct_mutex);
3978 
3979 	if (dev_priv->mm.suspended) {
3980 		mutex_unlock(&dev->struct_mutex);
3981 		return 0;
3982 	}
3983 
3984 	ret = i915_gpu_idle(dev);
3985 	if (ret) {
3986 		mutex_unlock(&dev->struct_mutex);
3987 		return ret;
3988 	}
3989 	i915_gem_retire_requests(dev);
3990 
3991 	/* Under UMS, be paranoid and evict. */
3992 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3993 		i915_gem_evict_everything(dev);
3994 
3995 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3996 	 * We need to replace this with a semaphore, or something.
3997 	 * And not confound mm.suspended!
3998 	 */
3999 	dev_priv->mm.suspended = 1;
4000 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4001 
4002 	i915_kernel_lost_context(dev);
4003 	i915_gem_cleanup_ringbuffer(dev);
4004 
4005 	mutex_unlock(&dev->struct_mutex);
4006 
4007 	/* Cancel the retire work handler, which should be idle now. */
4008 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4009 
4010 	return 0;
4011 }
4012 
4013 void i915_gem_l3_remap(struct drm_device *dev)
4014 {
4015 	drm_i915_private_t *dev_priv = dev->dev_private;
4016 	u32 misccpctl;
4017 	int i;
4018 
4019 	if (!HAS_L3_GPU_CACHE(dev))
4020 		return;
4021 
4022 	if (!dev_priv->l3_parity.remap_info)
4023 		return;
4024 
4025 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4026 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4027 	POSTING_READ(GEN7_MISCCPCTL);
4028 
4029 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4030 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4031 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4032 			DRM_DEBUG("0x%x was already programmed to %x\n",
4033 				  GEN7_L3LOG_BASE + i, remap);
4034 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4035 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4036 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4037 	}
4038 
4039 	/* Make sure all the writes land before disabling dop clock gating */
4040 	POSTING_READ(GEN7_L3LOG_BASE);
4041 
4042 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4043 }
4044 
4045 void i915_gem_init_swizzling(struct drm_device *dev)
4046 {
4047 	drm_i915_private_t *dev_priv = dev->dev_private;
4048 
4049 	if (INTEL_INFO(dev)->gen < 5 ||
4050 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4051 		return;
4052 
4053 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4054 				 DISP_TILE_SURFACE_SWIZZLING);
4055 
4056 	if (IS_GEN5(dev))
4057 		return;
4058 
4059 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4060 	if (IS_GEN6(dev))
4061 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4062 	else if (IS_GEN7(dev))
4063 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4064 	else
4065 		BUG();
4066 }
4067 
4068 static bool
4069 intel_enable_blt(struct drm_device *dev)
4070 {
4071 	if (!HAS_BLT(dev))
4072 		return false;
4073 
4074 	/* The blitter was dysfunctional on early prototypes */
4075 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4076 		DRM_INFO("BLT not supported on this pre-production hardware;"
4077 			 " graphics performance will be degraded.\n");
4078 		return false;
4079 	}
4080 
4081 	return true;
4082 }
4083 
4084 static int i915_gem_init_rings(struct drm_device *dev)
4085 {
4086 	struct drm_i915_private *dev_priv = dev->dev_private;
4087 	int ret;
4088 
4089 	ret = intel_init_render_ring_buffer(dev);
4090 	if (ret)
4091 		return ret;
4092 
4093 	if (HAS_BSD(dev)) {
4094 		ret = intel_init_bsd_ring_buffer(dev);
4095 		if (ret)
4096 			goto cleanup_render_ring;
4097 	}
4098 
4099 	if (intel_enable_blt(dev)) {
4100 		ret = intel_init_blt_ring_buffer(dev);
4101 		if (ret)
4102 			goto cleanup_bsd_ring;
4103 	}
4104 
4105 	if (HAS_VEBOX(dev)) {
4106 		ret = intel_init_vebox_ring_buffer(dev);
4107 		if (ret)
4108 			goto cleanup_blt_ring;
4109 	}
4110 
4111 
4112 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4113 	if (ret)
4114 		goto cleanup_vebox_ring;
4115 
4116 	return 0;
4117 
4118 cleanup_vebox_ring:
4119 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4120 cleanup_blt_ring:
4121 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4122 cleanup_bsd_ring:
4123 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4124 cleanup_render_ring:
4125 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4126 
4127 	return ret;
4128 }
4129 
4130 int
4131 i915_gem_init_hw(struct drm_device *dev)
4132 {
4133 	drm_i915_private_t *dev_priv = dev->dev_private;
4134 	int ret;
4135 
4136 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4137 		return -EIO;
4138 
4139 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4140 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4141 
4142 	if (HAS_PCH_NOP(dev)) {
4143 		u32 temp = I915_READ(GEN7_MSG_CTL);
4144 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4145 		I915_WRITE(GEN7_MSG_CTL, temp);
4146 	}
4147 
4148 	i915_gem_l3_remap(dev);
4149 
4150 	i915_gem_init_swizzling(dev);
4151 
4152 	ret = i915_gem_init_rings(dev);
4153 	if (ret)
4154 		return ret;
4155 
4156 	/*
4157 	 * XXX: There was some w/a described somewhere suggesting loading
4158 	 * contexts before PPGTT.
4159 	 */
4160 	i915_gem_context_init(dev);
4161 	if (dev_priv->mm.aliasing_ppgtt) {
4162 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4163 		if (ret) {
4164 			i915_gem_cleanup_aliasing_ppgtt(dev);
4165 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4166 		}
4167 	}
4168 
4169 	return 0;
4170 }
4171 
4172 int i915_gem_init(struct drm_device *dev)
4173 {
4174 	struct drm_i915_private *dev_priv = dev->dev_private;
4175 	int ret;
4176 
4177 	mutex_lock(&dev->struct_mutex);
4178 
4179 	if (IS_VALLEYVIEW(dev)) {
4180 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4181 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4182 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4183 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4184 	}
4185 
4186 	i915_gem_init_global_gtt(dev);
4187 
4188 	ret = i915_gem_init_hw(dev);
4189 	mutex_unlock(&dev->struct_mutex);
4190 	if (ret) {
4191 		i915_gem_cleanup_aliasing_ppgtt(dev);
4192 		return ret;
4193 	}
4194 
4195 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4196 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4197 		dev_priv->dri1.allow_batchbuffer = 1;
4198 	return 0;
4199 }
4200 
4201 void
4202 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4203 {
4204 	drm_i915_private_t *dev_priv = dev->dev_private;
4205 	struct intel_ring_buffer *ring;
4206 	int i;
4207 
4208 	for_each_ring(ring, dev_priv, i)
4209 		intel_cleanup_ring_buffer(ring);
4210 }
4211 
4212 int
4213 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4214 		       struct drm_file *file_priv)
4215 {
4216 	drm_i915_private_t *dev_priv = dev->dev_private;
4217 	int ret;
4218 
4219 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4220 		return 0;
4221 
4222 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4223 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4224 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4225 	}
4226 
4227 	mutex_lock(&dev->struct_mutex);
4228 	dev_priv->mm.suspended = 0;
4229 
4230 	ret = i915_gem_init_hw(dev);
4231 	if (ret != 0) {
4232 		mutex_unlock(&dev->struct_mutex);
4233 		return ret;
4234 	}
4235 
4236 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4237 	mutex_unlock(&dev->struct_mutex);
4238 
4239 	ret = drm_irq_install(dev);
4240 	if (ret)
4241 		goto cleanup_ringbuffer;
4242 
4243 	return 0;
4244 
4245 cleanup_ringbuffer:
4246 	mutex_lock(&dev->struct_mutex);
4247 	i915_gem_cleanup_ringbuffer(dev);
4248 	dev_priv->mm.suspended = 1;
4249 	mutex_unlock(&dev->struct_mutex);
4250 
4251 	return ret;
4252 }
4253 
4254 int
4255 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4256 		       struct drm_file *file_priv)
4257 {
4258 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4259 		return 0;
4260 
4261 	drm_irq_uninstall(dev);
4262 	return i915_gem_idle(dev);
4263 }
4264 
4265 void
4266 i915_gem_lastclose(struct drm_device *dev)
4267 {
4268 	int ret;
4269 
4270 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4271 		return;
4272 
4273 	ret = i915_gem_idle(dev);
4274 	if (ret)
4275 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4276 }
4277 
4278 static void
4279 init_ring_lists(struct intel_ring_buffer *ring)
4280 {
4281 	INIT_LIST_HEAD(&ring->active_list);
4282 	INIT_LIST_HEAD(&ring->request_list);
4283 }
4284 
4285 void
4286 i915_gem_load(struct drm_device *dev)
4287 {
4288 	drm_i915_private_t *dev_priv = dev->dev_private;
4289 	int i;
4290 
4291 	dev_priv->slab =
4292 		kmem_cache_create("i915_gem_object",
4293 				  sizeof(struct drm_i915_gem_object), 0,
4294 				  SLAB_HWCACHE_ALIGN,
4295 				  NULL);
4296 
4297 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4298 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4299 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4300 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4301 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4302 	for (i = 0; i < I915_NUM_RINGS; i++)
4303 		init_ring_lists(&dev_priv->ring[i]);
4304 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4305 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4306 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4307 			  i915_gem_retire_work_handler);
4308 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4309 
4310 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4311 	if (IS_GEN3(dev)) {
4312 		I915_WRITE(MI_ARB_STATE,
4313 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4314 	}
4315 
4316 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4317 
4318 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4319 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4320 		dev_priv->fence_reg_start = 3;
4321 
4322 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4323 		dev_priv->num_fence_regs = 32;
4324 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4325 		dev_priv->num_fence_regs = 16;
4326 	else
4327 		dev_priv->num_fence_regs = 8;
4328 
4329 	/* Initialize fence registers to zero */
4330 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4331 	i915_gem_restore_fences(dev);
4332 
4333 	i915_gem_detect_bit_6_swizzle(dev);
4334 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4335 
4336 	dev_priv->mm.interruptible = true;
4337 
4338 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4339 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4340 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4341 }
4342 
4343 /*
4344  * Create a physically contiguous memory object for this object
4345  * e.g. for cursor + overlay regs
4346  */
4347 static int i915_gem_init_phys_object(struct drm_device *dev,
4348 				     int id, int size, int align)
4349 {
4350 	drm_i915_private_t *dev_priv = dev->dev_private;
4351 	struct drm_i915_gem_phys_object *phys_obj;
4352 	int ret;
4353 
4354 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4355 		return 0;
4356 
4357 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4358 	if (!phys_obj)
4359 		return -ENOMEM;
4360 
4361 	phys_obj->id = id;
4362 
4363 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4364 	if (!phys_obj->handle) {
4365 		ret = -ENOMEM;
4366 		goto kfree_obj;
4367 	}
4368 #ifdef CONFIG_X86
4369 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4370 #endif
4371 
4372 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4373 
4374 	return 0;
4375 kfree_obj:
4376 	kfree(phys_obj);
4377 	return ret;
4378 }
4379 
4380 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4381 {
4382 	drm_i915_private_t *dev_priv = dev->dev_private;
4383 	struct drm_i915_gem_phys_object *phys_obj;
4384 
4385 	if (!dev_priv->mm.phys_objs[id - 1])
4386 		return;
4387 
4388 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4389 	if (phys_obj->cur_obj) {
4390 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4391 	}
4392 
4393 #ifdef CONFIG_X86
4394 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4395 #endif
4396 	drm_pci_free(dev, phys_obj->handle);
4397 	kfree(phys_obj);
4398 	dev_priv->mm.phys_objs[id - 1] = NULL;
4399 }
4400 
4401 void i915_gem_free_all_phys_object(struct drm_device *dev)
4402 {
4403 	int i;
4404 
4405 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4406 		i915_gem_free_phys_object(dev, i);
4407 }
4408 
4409 void i915_gem_detach_phys_object(struct drm_device *dev,
4410 				 struct drm_i915_gem_object *obj)
4411 {
4412 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4413 	char *vaddr;
4414 	int i;
4415 	int page_count;
4416 
4417 	if (!obj->phys_obj)
4418 		return;
4419 	vaddr = obj->phys_obj->handle->vaddr;
4420 
4421 	page_count = obj->base.size / PAGE_SIZE;
4422 	for (i = 0; i < page_count; i++) {
4423 		struct page *page = shmem_read_mapping_page(mapping, i);
4424 		if (!IS_ERR(page)) {
4425 			char *dst = kmap_atomic(page);
4426 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4427 			kunmap_atomic(dst);
4428 
4429 			drm_clflush_pages(&page, 1);
4430 
4431 			set_page_dirty(page);
4432 			mark_page_accessed(page);
4433 			page_cache_release(page);
4434 		}
4435 	}
4436 	i915_gem_chipset_flush(dev);
4437 
4438 	obj->phys_obj->cur_obj = NULL;
4439 	obj->phys_obj = NULL;
4440 }
4441 
4442 int
4443 i915_gem_attach_phys_object(struct drm_device *dev,
4444 			    struct drm_i915_gem_object *obj,
4445 			    int id,
4446 			    int align)
4447 {
4448 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4449 	drm_i915_private_t *dev_priv = dev->dev_private;
4450 	int ret = 0;
4451 	int page_count;
4452 	int i;
4453 
4454 	if (id > I915_MAX_PHYS_OBJECT)
4455 		return -EINVAL;
4456 
4457 	if (obj->phys_obj) {
4458 		if (obj->phys_obj->id == id)
4459 			return 0;
4460 		i915_gem_detach_phys_object(dev, obj);
4461 	}
4462 
4463 	/* create a new object */
4464 	if (!dev_priv->mm.phys_objs[id - 1]) {
4465 		ret = i915_gem_init_phys_object(dev, id,
4466 						obj->base.size, align);
4467 		if (ret) {
4468 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4469 				  id, obj->base.size);
4470 			return ret;
4471 		}
4472 	}
4473 
4474 	/* bind to the object */
4475 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4476 	obj->phys_obj->cur_obj = obj;
4477 
4478 	page_count = obj->base.size / PAGE_SIZE;
4479 
4480 	for (i = 0; i < page_count; i++) {
4481 		struct page *page;
4482 		char *dst, *src;
4483 
4484 		page = shmem_read_mapping_page(mapping, i);
4485 		if (IS_ERR(page))
4486 			return PTR_ERR(page);
4487 
4488 		src = kmap_atomic(page);
4489 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4490 		memcpy(dst, src, PAGE_SIZE);
4491 		kunmap_atomic(src);
4492 
4493 		mark_page_accessed(page);
4494 		page_cache_release(page);
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 static int
4501 i915_gem_phys_pwrite(struct drm_device *dev,
4502 		     struct drm_i915_gem_object *obj,
4503 		     struct drm_i915_gem_pwrite *args,
4504 		     struct drm_file *file_priv)
4505 {
4506 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4507 	char __user *user_data = to_user_ptr(args->data_ptr);
4508 
4509 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4510 		unsigned long unwritten;
4511 
4512 		/* The physical object once assigned is fixed for the lifetime
4513 		 * of the obj, so we can safely drop the lock and continue
4514 		 * to access vaddr.
4515 		 */
4516 		mutex_unlock(&dev->struct_mutex);
4517 		unwritten = copy_from_user(vaddr, user_data, args->size);
4518 		mutex_lock(&dev->struct_mutex);
4519 		if (unwritten)
4520 			return -EFAULT;
4521 	}
4522 
4523 	i915_gem_chipset_flush(dev);
4524 	return 0;
4525 }
4526 
4527 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4528 {
4529 	struct drm_i915_file_private *file_priv = file->driver_priv;
4530 
4531 	/* Clean up our request list when the client is going away, so that
4532 	 * later retire_requests won't dereference our soon-to-be-gone
4533 	 * file_priv.
4534 	 */
4535 	spin_lock(&file_priv->mm.lock);
4536 	while (!list_empty(&file_priv->mm.request_list)) {
4537 		struct drm_i915_gem_request *request;
4538 
4539 		request = list_first_entry(&file_priv->mm.request_list,
4540 					   struct drm_i915_gem_request,
4541 					   client_list);
4542 		list_del(&request->client_list);
4543 		request->file_priv = NULL;
4544 	}
4545 	spin_unlock(&file_priv->mm.lock);
4546 }
4547 
4548 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4549 {
4550 	if (!mutex_is_locked(mutex))
4551 		return false;
4552 
4553 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4554 	return mutex->owner == task;
4555 #else
4556 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4557 	return false;
4558 #endif
4559 }
4560 
4561 static int
4562 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4563 {
4564 	struct drm_i915_private *dev_priv =
4565 		container_of(shrinker,
4566 			     struct drm_i915_private,
4567 			     mm.inactive_shrinker);
4568 	struct drm_device *dev = dev_priv->dev;
4569 	struct drm_i915_gem_object *obj;
4570 	int nr_to_scan = sc->nr_to_scan;
4571 	bool unlock = true;
4572 	int cnt;
4573 
4574 	if (!mutex_trylock(&dev->struct_mutex)) {
4575 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4576 			return 0;
4577 
4578 		if (dev_priv->mm.shrinker_no_lock_stealing)
4579 			return 0;
4580 
4581 		unlock = false;
4582 	}
4583 
4584 	if (nr_to_scan) {
4585 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4586 		if (nr_to_scan > 0)
4587 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4588 							false);
4589 		if (nr_to_scan > 0)
4590 			i915_gem_shrink_all(dev_priv);
4591 	}
4592 
4593 	cnt = 0;
4594 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4595 		if (obj->pages_pin_count == 0)
4596 			cnt += obj->base.size >> PAGE_SHIFT;
4597 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4598 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4599 			cnt += obj->base.size >> PAGE_SHIFT;
4600 
4601 	if (unlock)
4602 		mutex_unlock(&dev->struct_mutex);
4603 	return cnt;
4604 }
4605