xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55 		return false;
56 
57 	if (!i915_gem_object_is_coherent(obj))
58 		return true;
59 
60 	return obj->pin_display;
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142 			    struct drm_file *file)
143 {
144 	struct drm_i915_private *dev_priv = to_i915(dev);
145 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
146 	struct drm_i915_gem_get_aperture *args = data;
147 	struct i915_vma *vma;
148 	size_t pinned;
149 
150 	pinned = 0;
151 	mutex_lock(&dev->struct_mutex);
152 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153 		if (i915_vma_is_pinned(vma))
154 			pinned += vma->node.size;
155 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156 		if (i915_vma_is_pinned(vma))
157 			pinned += vma->node.size;
158 	mutex_unlock(&dev->struct_mutex);
159 
160 	args->aper_size = ggtt->base.total;
161 	args->aper_available_size = args->aper_size - pinned;
162 
163 	return 0;
164 }
165 
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169 	struct address_space *mapping = obj->base.filp->f_mapping;
170 	drm_dma_handle_t *phys;
171 	struct sg_table *st;
172 	struct scatterlist *sg;
173 	char *vaddr;
174 	int i;
175 
176 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177 		return ERR_PTR(-EINVAL);
178 
179 	/* Always aligning to the object size, allows a single allocation
180 	 * to handle all possible callers, and given typical object sizes,
181 	 * the alignment of the buddy allocation will naturally match.
182 	 */
183 	phys = drm_pci_alloc(obj->base.dev,
184 			     obj->base.size,
185 			     roundup_pow_of_two(obj->base.size));
186 	if (!phys)
187 		return ERR_PTR(-ENOMEM);
188 
189 	vaddr = phys->vaddr;
190 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 		struct page *page;
192 		char *src;
193 
194 		page = shmem_read_mapping_page(mapping, i);
195 		if (IS_ERR(page)) {
196 			st = ERR_CAST(page);
197 			goto err_phys;
198 		}
199 
200 		src = kmap_atomic(page);
201 		memcpy(vaddr, src, PAGE_SIZE);
202 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
203 		kunmap_atomic(src);
204 
205 		put_page(page);
206 		vaddr += PAGE_SIZE;
207 	}
208 
209 	i915_gem_chipset_flush(to_i915(obj->base.dev));
210 
211 	st = kmalloc(sizeof(*st), GFP_KERNEL);
212 	if (!st) {
213 		st = ERR_PTR(-ENOMEM);
214 		goto err_phys;
215 	}
216 
217 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218 		kfree(st);
219 		st = ERR_PTR(-ENOMEM);
220 		goto err_phys;
221 	}
222 
223 	sg = st->sgl;
224 	sg->offset = 0;
225 	sg->length = obj->base.size;
226 
227 	sg_dma_address(sg) = phys->busaddr;
228 	sg_dma_len(sg) = obj->base.size;
229 
230 	obj->phys_handle = phys;
231 	return st;
232 
233 err_phys:
234 	drm_pci_free(obj->base.dev, phys);
235 	return st;
236 }
237 
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240 				struct sg_table *pages,
241 				bool needs_clflush)
242 {
243 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244 
245 	if (obj->mm.madv == I915_MADV_DONTNEED)
246 		obj->mm.dirty = false;
247 
248 	if (needs_clflush &&
249 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250 	    !i915_gem_object_is_coherent(obj))
251 		drm_clflush_sg(pages);
252 
253 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256 
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259 			       struct sg_table *pages)
260 {
261 	__i915_gem_object_release_shmem(obj, pages, false);
262 
263 	if (obj->mm.dirty) {
264 		struct address_space *mapping = obj->base.filp->f_mapping;
265 		char *vaddr = obj->phys_handle->vaddr;
266 		int i;
267 
268 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269 			struct page *page;
270 			char *dst;
271 
272 			page = shmem_read_mapping_page(mapping, i);
273 			if (IS_ERR(page))
274 				continue;
275 
276 			dst = kmap_atomic(page);
277 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
278 			memcpy(dst, vaddr, PAGE_SIZE);
279 			kunmap_atomic(dst);
280 
281 			set_page_dirty(page);
282 			if (obj->mm.madv == I915_MADV_WILLNEED)
283 				mark_page_accessed(page);
284 			put_page(page);
285 			vaddr += PAGE_SIZE;
286 		}
287 		obj->mm.dirty = false;
288 	}
289 
290 	sg_free_table(pages);
291 	kfree(pages);
292 
293 	drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295 
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299 	i915_gem_object_unpin_pages(obj);
300 }
301 
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303 	.get_pages = i915_gem_object_get_pages_phys,
304 	.put_pages = i915_gem_object_put_pages_phys,
305 	.release = i915_gem_object_release_phys,
306 };
307 
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309 
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312 	struct i915_vma *vma;
313 	LIST_HEAD(still_in_list);
314 	int ret;
315 
316 	lockdep_assert_held(&obj->base.dev->struct_mutex);
317 
318 	/* Closed vma are removed from the obj->vma_list - but they may
319 	 * still have an active binding on the object. To remove those we
320 	 * must wait for all rendering to complete to the object (as unbinding
321 	 * must anyway), and retire the requests.
322 	 */
323 	ret = i915_gem_object_wait(obj,
324 				   I915_WAIT_INTERRUPTIBLE |
325 				   I915_WAIT_LOCKED |
326 				   I915_WAIT_ALL,
327 				   MAX_SCHEDULE_TIMEOUT,
328 				   NULL);
329 	if (ret)
330 		return ret;
331 
332 	i915_gem_retire_requests(to_i915(obj->base.dev));
333 
334 	while ((vma = list_first_entry_or_null(&obj->vma_list,
335 					       struct i915_vma,
336 					       obj_link))) {
337 		list_move_tail(&vma->obj_link, &still_in_list);
338 		ret = i915_vma_unbind(vma);
339 		if (ret)
340 			break;
341 	}
342 	list_splice(&still_in_list, &obj->vma_list);
343 
344 	return ret;
345 }
346 
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349 			   unsigned int flags,
350 			   long timeout,
351 			   struct intel_rps_client *rps)
352 {
353 	struct drm_i915_gem_request *rq;
354 
355 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356 
357 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 		return timeout;
359 
360 	if (!dma_fence_is_i915(fence))
361 		return dma_fence_wait_timeout(fence,
362 					      flags & I915_WAIT_INTERRUPTIBLE,
363 					      timeout);
364 
365 	rq = to_request(fence);
366 	if (i915_gem_request_completed(rq))
367 		goto out;
368 
369 	/* This client is about to stall waiting for the GPU. In many cases
370 	 * this is undesirable and limits the throughput of the system, as
371 	 * many clients cannot continue processing user input/output whilst
372 	 * blocked. RPS autotuning may take tens of milliseconds to respond
373 	 * to the GPU load and thus incurs additional latency for the client.
374 	 * We can circumvent that by promoting the GPU frequency to maximum
375 	 * before we wait. This makes the GPU throttle up much more quickly
376 	 * (good for benchmarks and user experience, e.g. window animations),
377 	 * but at a cost of spending more power processing the workload
378 	 * (bad for battery). Not all clients even want their results
379 	 * immediately and for them we should just let the GPU select its own
380 	 * frequency to maximise efficiency. To prevent a single client from
381 	 * forcing the clocks too high for the whole system, we only allow
382 	 * each client to waitboost once in a busy period.
383 	 */
384 	if (rps) {
385 		if (INTEL_GEN(rq->i915) >= 6)
386 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387 		else
388 			rps = NULL;
389 	}
390 
391 	timeout = i915_wait_request(rq, flags, timeout);
392 
393 out:
394 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395 		i915_gem_request_retire_upto(rq);
396 
397 	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398 		/* The GPU is now idle and this client has stalled.
399 		 * Since no other client has submitted a request in the
400 		 * meantime, assume that this client is the only one
401 		 * supplying work to the GPU but is unable to keep that
402 		 * work supplied because it is waiting. Since the GPU is
403 		 * then never kept fully busy, RPS autoclocking will
404 		 * keep the clocks relatively low, causing further delays.
405 		 * Compensate by giving the synchronous client credit for
406 		 * a waitboost next time.
407 		 */
408 		spin_lock(&rq->i915->rps.client_lock);
409 		list_del_init(&rps->link);
410 		spin_unlock(&rq->i915->rps.client_lock);
411 	}
412 
413 	return timeout;
414 }
415 
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418 				 unsigned int flags,
419 				 long timeout,
420 				 struct intel_rps_client *rps)
421 {
422 	unsigned int seq = __read_seqcount_begin(&resv->seq);
423 	struct dma_fence *excl;
424 	bool prune_fences = false;
425 
426 	if (flags & I915_WAIT_ALL) {
427 		struct dma_fence **shared;
428 		unsigned int count, i;
429 		int ret;
430 
431 		ret = reservation_object_get_fences_rcu(resv,
432 							&excl, &count, &shared);
433 		if (ret)
434 			return ret;
435 
436 		for (i = 0; i < count; i++) {
437 			timeout = i915_gem_object_wait_fence(shared[i],
438 							     flags, timeout,
439 							     rps);
440 			if (timeout < 0)
441 				break;
442 
443 			dma_fence_put(shared[i]);
444 		}
445 
446 		for (; i < count; i++)
447 			dma_fence_put(shared[i]);
448 		kfree(shared);
449 
450 		prune_fences = count && timeout >= 0;
451 	} else {
452 		excl = reservation_object_get_excl_rcu(resv);
453 	}
454 
455 	if (excl && timeout >= 0) {
456 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457 		prune_fences = timeout >= 0;
458 	}
459 
460 	dma_fence_put(excl);
461 
462 	/* Oportunistically prune the fences iff we know they have *all* been
463 	 * signaled and that the reservation object has not been changed (i.e.
464 	 * no new fences have been added).
465 	 */
466 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467 		if (reservation_object_trylock(resv)) {
468 			if (!__read_seqcount_retry(&resv->seq, seq))
469 				reservation_object_add_excl_fence(resv, NULL);
470 			reservation_object_unlock(resv);
471 		}
472 	}
473 
474 	return timeout;
475 }
476 
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479 	struct drm_i915_gem_request *rq;
480 	struct intel_engine_cs *engine;
481 
482 	if (!dma_fence_is_i915(fence))
483 		return;
484 
485 	rq = to_request(fence);
486 	engine = rq->engine;
487 	if (!engine->schedule)
488 		return;
489 
490 	engine->schedule(rq, prio);
491 }
492 
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495 	/* Recurse once into a fence-array */
496 	if (dma_fence_is_array(fence)) {
497 		struct dma_fence_array *array = to_dma_fence_array(fence);
498 		int i;
499 
500 		for (i = 0; i < array->num_fences; i++)
501 			__fence_set_priority(array->fences[i], prio);
502 	} else {
503 		__fence_set_priority(fence, prio);
504 	}
505 }
506 
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509 			      unsigned int flags,
510 			      int prio)
511 {
512 	struct dma_fence *excl;
513 
514 	if (flags & I915_WAIT_ALL) {
515 		struct dma_fence **shared;
516 		unsigned int count, i;
517 		int ret;
518 
519 		ret = reservation_object_get_fences_rcu(obj->resv,
520 							&excl, &count, &shared);
521 		if (ret)
522 			return ret;
523 
524 		for (i = 0; i < count; i++) {
525 			fence_set_priority(shared[i], prio);
526 			dma_fence_put(shared[i]);
527 		}
528 
529 		kfree(shared);
530 	} else {
531 		excl = reservation_object_get_excl_rcu(obj->resv);
532 	}
533 
534 	if (excl) {
535 		fence_set_priority(excl, prio);
536 		dma_fence_put(excl);
537 	}
538 	return 0;
539 }
540 
541 /**
542  * Waits for rendering to the object to be completed
543  * @obj: i915 gem object
544  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545  * @timeout: how long to wait
546  * @rps: client (user process) to charge for any waitboosting
547  */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 		     unsigned int flags,
551 		     long timeout,
552 		     struct intel_rps_client *rps)
553 {
554 	might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556 	GEM_BUG_ON(debug_locks &&
557 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558 		   !!(flags & I915_WAIT_LOCKED));
559 #endif
560 	GEM_BUG_ON(timeout < 0);
561 
562 	timeout = i915_gem_object_wait_reservation(obj->resv,
563 						   flags, timeout,
564 						   rps);
565 	return timeout < 0 ? timeout : 0;
566 }
567 
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570 	struct drm_i915_file_private *fpriv = file->driver_priv;
571 
572 	return &fpriv->rps;
573 }
574 
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577 			    int align)
578 {
579 	int ret;
580 
581 	if (align > obj->base.size)
582 		return -EINVAL;
583 
584 	if (obj->ops == &i915_gem_phys_ops)
585 		return 0;
586 
587 	if (obj->mm.madv != I915_MADV_WILLNEED)
588 		return -EFAULT;
589 
590 	if (obj->base.filp == NULL)
591 		return -EINVAL;
592 
593 	ret = i915_gem_object_unbind(obj);
594 	if (ret)
595 		return ret;
596 
597 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598 	if (obj->mm.pages)
599 		return -EBUSY;
600 
601 	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602 	obj->ops = &i915_gem_phys_ops;
603 
604 	ret = i915_gem_object_pin_pages(obj);
605 	if (ret)
606 		goto err_xfer;
607 
608 	return 0;
609 
610 err_xfer:
611 	obj->ops = &i915_gem_object_ops;
612 	return ret;
613 }
614 
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617 		     struct drm_i915_gem_pwrite *args,
618 		     struct drm_file *file)
619 {
620 	void *vaddr = obj->phys_handle->vaddr + args->offset;
621 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
622 
623 	/* We manually control the domain here and pretend that it
624 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625 	 */
626 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627 	if (copy_from_user(vaddr, user_data, args->size))
628 		return -EFAULT;
629 
630 	drm_clflush_virt_range(vaddr, args->size);
631 	i915_gem_chipset_flush(to_i915(obj->base.dev));
632 
633 	intel_fb_obj_flush(obj, ORIGIN_CPU);
634 	return 0;
635 }
636 
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641 
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645 	kmem_cache_free(dev_priv->objects, obj);
646 }
647 
648 static int
649 i915_gem_create(struct drm_file *file,
650 		struct drm_i915_private *dev_priv,
651 		uint64_t size,
652 		uint32_t *handle_p)
653 {
654 	struct drm_i915_gem_object *obj;
655 	int ret;
656 	u32 handle;
657 
658 	size = roundup(size, PAGE_SIZE);
659 	if (size == 0)
660 		return -EINVAL;
661 
662 	/* Allocate the new object */
663 	obj = i915_gem_object_create(dev_priv, size);
664 	if (IS_ERR(obj))
665 		return PTR_ERR(obj);
666 
667 	ret = drm_gem_handle_create(file, &obj->base, &handle);
668 	/* drop reference from allocate - handle holds it now */
669 	i915_gem_object_put(obj);
670 	if (ret)
671 		return ret;
672 
673 	*handle_p = handle;
674 	return 0;
675 }
676 
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679 		     struct drm_device *dev,
680 		     struct drm_mode_create_dumb *args)
681 {
682 	/* have to work out size/pitch and return them */
683 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684 	args->size = args->pitch * args->height;
685 	return i915_gem_create(file, to_i915(dev),
686 			       args->size, &args->handle);
687 }
688 
689 /**
690  * Creates a new mm object and returns a handle to it.
691  * @dev: drm device pointer
692  * @data: ioctl data blob
693  * @file: drm file pointer
694  */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697 		      struct drm_file *file)
698 {
699 	struct drm_i915_private *dev_priv = to_i915(dev);
700 	struct drm_i915_gem_create *args = data;
701 
702 	i915_gem_flush_free_objects(dev_priv);
703 
704 	return i915_gem_create(file, dev_priv,
705 			       args->size, &args->handle);
706 }
707 
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710 			const char *gpu_vaddr, int gpu_offset,
711 			int length)
712 {
713 	int ret, cpu_offset = 0;
714 
715 	while (length > 0) {
716 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
717 		int this_length = min(cacheline_end - gpu_offset, length);
718 		int swizzled_gpu_offset = gpu_offset ^ 64;
719 
720 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
721 				     gpu_vaddr + swizzled_gpu_offset,
722 				     this_length);
723 		if (ret)
724 			return ret + length;
725 
726 		cpu_offset += this_length;
727 		gpu_offset += this_length;
728 		length -= this_length;
729 	}
730 
731 	return 0;
732 }
733 
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736 			  const char __user *cpu_vaddr,
737 			  int length)
738 {
739 	int ret, cpu_offset = 0;
740 
741 	while (length > 0) {
742 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
743 		int this_length = min(cacheline_end - gpu_offset, length);
744 		int swizzled_gpu_offset = gpu_offset ^ 64;
745 
746 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747 				       cpu_vaddr + cpu_offset,
748 				       this_length);
749 		if (ret)
750 			return ret + length;
751 
752 		cpu_offset += this_length;
753 		gpu_offset += this_length;
754 		length -= this_length;
755 	}
756 
757 	return 0;
758 }
759 
760 /*
761  * Pins the specified object's pages and synchronizes the object with
762  * GPU accesses. Sets needs_clflush to non-zero if the caller should
763  * flush the object from the CPU cache.
764  */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766 				    unsigned int *needs_clflush)
767 {
768 	int ret;
769 
770 	lockdep_assert_held(&obj->base.dev->struct_mutex);
771 
772 	*needs_clflush = 0;
773 	if (!i915_gem_object_has_struct_page(obj))
774 		return -ENODEV;
775 
776 	ret = i915_gem_object_wait(obj,
777 				   I915_WAIT_INTERRUPTIBLE |
778 				   I915_WAIT_LOCKED,
779 				   MAX_SCHEDULE_TIMEOUT,
780 				   NULL);
781 	if (ret)
782 		return ret;
783 
784 	ret = i915_gem_object_pin_pages(obj);
785 	if (ret)
786 		return ret;
787 
788 	if (i915_gem_object_is_coherent(obj) ||
789 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 		if (ret)
792 			goto err_unpin;
793 		else
794 			goto out;
795 	}
796 
797 	i915_gem_object_flush_gtt_write_domain(obj);
798 
799 	/* If we're not in the cpu read domain, set ourself into the gtt
800 	 * read domain and manually flush cachelines (if required). This
801 	 * optimizes for the case when the gpu will dirty the data
802 	 * anyway again before the next pread happens.
803 	 */
804 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805 		*needs_clflush = CLFLUSH_BEFORE;
806 
807 out:
808 	/* return with the pages pinned */
809 	return 0;
810 
811 err_unpin:
812 	i915_gem_object_unpin_pages(obj);
813 	return ret;
814 }
815 
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817 				     unsigned int *needs_clflush)
818 {
819 	int ret;
820 
821 	lockdep_assert_held(&obj->base.dev->struct_mutex);
822 
823 	*needs_clflush = 0;
824 	if (!i915_gem_object_has_struct_page(obj))
825 		return -ENODEV;
826 
827 	ret = i915_gem_object_wait(obj,
828 				   I915_WAIT_INTERRUPTIBLE |
829 				   I915_WAIT_LOCKED |
830 				   I915_WAIT_ALL,
831 				   MAX_SCHEDULE_TIMEOUT,
832 				   NULL);
833 	if (ret)
834 		return ret;
835 
836 	ret = i915_gem_object_pin_pages(obj);
837 	if (ret)
838 		return ret;
839 
840 	if (i915_gem_object_is_coherent(obj) ||
841 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
843 		if (ret)
844 			goto err_unpin;
845 		else
846 			goto out;
847 	}
848 
849 	i915_gem_object_flush_gtt_write_domain(obj);
850 
851 	/* If we're not in the cpu write domain, set ourself into the
852 	 * gtt write domain and manually flush cachelines (as required).
853 	 * This optimizes for the case when the gpu will use the data
854 	 * right away and we therefore have to clflush anyway.
855 	 */
856 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857 		*needs_clflush |= CLFLUSH_AFTER;
858 
859 	/* Same trick applies to invalidate partially written cachelines read
860 	 * before writing.
861 	 */
862 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863 		*needs_clflush |= CLFLUSH_BEFORE;
864 
865 out:
866 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867 	obj->mm.dirty = true;
868 	/* return with the pages pinned */
869 	return 0;
870 
871 err_unpin:
872 	i915_gem_object_unpin_pages(obj);
873 	return ret;
874 }
875 
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878 			     bool swizzled)
879 {
880 	if (unlikely(swizzled)) {
881 		unsigned long start = (unsigned long) addr;
882 		unsigned long end = (unsigned long) addr + length;
883 
884 		/* For swizzling simply ensure that we always flush both
885 		 * channels. Lame, but simple and it works. Swizzled
886 		 * pwrite/pread is far from a hotpath - current userspace
887 		 * doesn't use it at all. */
888 		start = round_down(start, 128);
889 		end = round_up(end, 128);
890 
891 		drm_clflush_virt_range((void *)start, end - start);
892 	} else {
893 		drm_clflush_virt_range(addr, length);
894 	}
895 
896 }
897 
898 /* Only difference to the fast-path function is that this can handle bit17
899  * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902 		 char __user *user_data,
903 		 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 	char *vaddr;
906 	int ret;
907 
908 	vaddr = kmap(page);
909 	if (needs_clflush)
910 		shmem_clflush_swizzled_range(vaddr + offset, length,
911 					     page_do_bit17_swizzling);
912 
913 	if (page_do_bit17_swizzling)
914 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915 	else
916 		ret = __copy_to_user(user_data, vaddr + offset, length);
917 	kunmap(page);
918 
919 	return ret ? - EFAULT : 0;
920 }
921 
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924 	    bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926 	int ret;
927 
928 	ret = -ENODEV;
929 	if (!page_do_bit17_swizzling) {
930 		char *vaddr = kmap_atomic(page);
931 
932 		if (needs_clflush)
933 			drm_clflush_virt_range(vaddr + offset, length);
934 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935 		kunmap_atomic(vaddr);
936 	}
937 	if (ret == 0)
938 		return 0;
939 
940 	return shmem_pread_slow(page, offset, length, user_data,
941 				page_do_bit17_swizzling, needs_clflush);
942 }
943 
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946 		     struct drm_i915_gem_pread *args)
947 {
948 	char __user *user_data;
949 	u64 remain;
950 	unsigned int obj_do_bit17_swizzling;
951 	unsigned int needs_clflush;
952 	unsigned int idx, offset;
953 	int ret;
954 
955 	obj_do_bit17_swizzling = 0;
956 	if (i915_gem_object_needs_bit17_swizzle(obj))
957 		obj_do_bit17_swizzling = BIT(17);
958 
959 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 	if (ret)
961 		return ret;
962 
963 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964 	mutex_unlock(&obj->base.dev->struct_mutex);
965 	if (ret)
966 		return ret;
967 
968 	remain = args->size;
969 	user_data = u64_to_user_ptr(args->data_ptr);
970 	offset = offset_in_page(args->offset);
971 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972 		struct page *page = i915_gem_object_get_page(obj, idx);
973 		int length;
974 
975 		length = remain;
976 		if (offset + length > PAGE_SIZE)
977 			length = PAGE_SIZE - offset;
978 
979 		ret = shmem_pread(page, offset, length, user_data,
980 				  page_to_phys(page) & obj_do_bit17_swizzling,
981 				  needs_clflush);
982 		if (ret)
983 			break;
984 
985 		remain -= length;
986 		user_data += length;
987 		offset = 0;
988 	}
989 
990 	i915_gem_obj_finish_shmem_access(obj);
991 	return ret;
992 }
993 
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996 	      loff_t base, int offset,
997 	      char __user *user_data, int length)
998 {
999 	void *vaddr;
1000 	unsigned long unwritten;
1001 
1002 	/* We can use the cpu mem copy function because this is X86. */
1003 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005 	io_mapping_unmap_atomic(vaddr);
1006 	if (unwritten) {
1007 		vaddr = (void __force *)
1008 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1010 		io_mapping_unmap(vaddr);
1011 	}
1012 	return unwritten;
1013 }
1014 
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017 		   const struct drm_i915_gem_pread *args)
1018 {
1019 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020 	struct i915_ggtt *ggtt = &i915->ggtt;
1021 	struct drm_mm_node node;
1022 	struct i915_vma *vma;
1023 	void __user *user_data;
1024 	u64 remain, offset;
1025 	int ret;
1026 
1027 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 	if (ret)
1029 		return ret;
1030 
1031 	intel_runtime_pm_get(i915);
1032 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033 				       PIN_MAPPABLE | PIN_NONBLOCK);
1034 	if (!IS_ERR(vma)) {
1035 		node.start = i915_ggtt_offset(vma);
1036 		node.allocated = false;
1037 		ret = i915_vma_put_fence(vma);
1038 		if (ret) {
1039 			i915_vma_unpin(vma);
1040 			vma = ERR_PTR(ret);
1041 		}
1042 	}
1043 	if (IS_ERR(vma)) {
1044 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045 		if (ret)
1046 			goto out_unlock;
1047 		GEM_BUG_ON(!node.allocated);
1048 	}
1049 
1050 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 	if (ret)
1052 		goto out_unpin;
1053 
1054 	mutex_unlock(&i915->drm.struct_mutex);
1055 
1056 	user_data = u64_to_user_ptr(args->data_ptr);
1057 	remain = args->size;
1058 	offset = args->offset;
1059 
1060 	while (remain > 0) {
1061 		/* Operation in this page
1062 		 *
1063 		 * page_base = page offset within aperture
1064 		 * page_offset = offset within page
1065 		 * page_length = bytes to copy for this page
1066 		 */
1067 		u32 page_base = node.start;
1068 		unsigned page_offset = offset_in_page(offset);
1069 		unsigned page_length = PAGE_SIZE - page_offset;
1070 		page_length = remain < page_length ? remain : page_length;
1071 		if (node.allocated) {
1072 			wmb();
1073 			ggtt->base.insert_page(&ggtt->base,
1074 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075 					       node.start, I915_CACHE_NONE, 0);
1076 			wmb();
1077 		} else {
1078 			page_base += offset & PAGE_MASK;
1079 		}
1080 
1081 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082 				  user_data, page_length)) {
1083 			ret = -EFAULT;
1084 			break;
1085 		}
1086 
1087 		remain -= page_length;
1088 		user_data += page_length;
1089 		offset += page_length;
1090 	}
1091 
1092 	mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094 	if (node.allocated) {
1095 		wmb();
1096 		ggtt->base.clear_range(&ggtt->base,
1097 				       node.start, node.size);
1098 		remove_mappable_node(&node);
1099 	} else {
1100 		i915_vma_unpin(vma);
1101 	}
1102 out_unlock:
1103 	intel_runtime_pm_put(i915);
1104 	mutex_unlock(&i915->drm.struct_mutex);
1105 
1106 	return ret;
1107 }
1108 
1109 /**
1110  * Reads data from the object referenced by handle.
1111  * @dev: drm device pointer
1112  * @data: ioctl data blob
1113  * @file: drm file pointer
1114  *
1115  * On error, the contents of *data are undefined.
1116  */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119 		     struct drm_file *file)
1120 {
1121 	struct drm_i915_gem_pread *args = data;
1122 	struct drm_i915_gem_object *obj;
1123 	int ret;
1124 
1125 	if (args->size == 0)
1126 		return 0;
1127 
1128 	if (!access_ok(VERIFY_WRITE,
1129 		       u64_to_user_ptr(args->data_ptr),
1130 		       args->size))
1131 		return -EFAULT;
1132 
1133 	obj = i915_gem_object_lookup(file, args->handle);
1134 	if (!obj)
1135 		return -ENOENT;
1136 
1137 	/* Bounds check source.  */
1138 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139 		ret = -EINVAL;
1140 		goto out;
1141 	}
1142 
1143 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1144 
1145 	ret = i915_gem_object_wait(obj,
1146 				   I915_WAIT_INTERRUPTIBLE,
1147 				   MAX_SCHEDULE_TIMEOUT,
1148 				   to_rps_client(file));
1149 	if (ret)
1150 		goto out;
1151 
1152 	ret = i915_gem_object_pin_pages(obj);
1153 	if (ret)
1154 		goto out;
1155 
1156 	ret = i915_gem_shmem_pread(obj, args);
1157 	if (ret == -EFAULT || ret == -ENODEV)
1158 		ret = i915_gem_gtt_pread(obj, args);
1159 
1160 	i915_gem_object_unpin_pages(obj);
1161 out:
1162 	i915_gem_object_put(obj);
1163 	return ret;
1164 }
1165 
1166 /* This is the fast write path which cannot handle
1167  * page faults in the source data
1168  */
1169 
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172 	   loff_t base, int offset,
1173 	   char __user *user_data, int length)
1174 {
1175 	void *vaddr;
1176 	unsigned long unwritten;
1177 
1178 	/* We can use the cpu mem copy function because this is X86. */
1179 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181 						      user_data, length);
1182 	io_mapping_unmap_atomic(vaddr);
1183 	if (unwritten) {
1184 		vaddr = (void __force *)
1185 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1187 		io_mapping_unmap(vaddr);
1188 	}
1189 
1190 	return unwritten;
1191 }
1192 
1193 /**
1194  * This is the fast pwrite path, where we copy the data directly from the
1195  * user into the GTT, uncached.
1196  * @obj: i915 GEM object
1197  * @args: pwrite arguments structure
1198  */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201 			 const struct drm_i915_gem_pwrite *args)
1202 {
1203 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204 	struct i915_ggtt *ggtt = &i915->ggtt;
1205 	struct drm_mm_node node;
1206 	struct i915_vma *vma;
1207 	u64 remain, offset;
1208 	void __user *user_data;
1209 	int ret;
1210 
1211 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 	if (ret)
1213 		return ret;
1214 
1215 	intel_runtime_pm_get(i915);
1216 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217 				       PIN_MAPPABLE | PIN_NONBLOCK);
1218 	if (!IS_ERR(vma)) {
1219 		node.start = i915_ggtt_offset(vma);
1220 		node.allocated = false;
1221 		ret = i915_vma_put_fence(vma);
1222 		if (ret) {
1223 			i915_vma_unpin(vma);
1224 			vma = ERR_PTR(ret);
1225 		}
1226 	}
1227 	if (IS_ERR(vma)) {
1228 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229 		if (ret)
1230 			goto out_unlock;
1231 		GEM_BUG_ON(!node.allocated);
1232 	}
1233 
1234 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 	if (ret)
1236 		goto out_unpin;
1237 
1238 	mutex_unlock(&i915->drm.struct_mutex);
1239 
1240 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241 
1242 	user_data = u64_to_user_ptr(args->data_ptr);
1243 	offset = args->offset;
1244 	remain = args->size;
1245 	while (remain) {
1246 		/* Operation in this page
1247 		 *
1248 		 * page_base = page offset within aperture
1249 		 * page_offset = offset within page
1250 		 * page_length = bytes to copy for this page
1251 		 */
1252 		u32 page_base = node.start;
1253 		unsigned int page_offset = offset_in_page(offset);
1254 		unsigned int page_length = PAGE_SIZE - page_offset;
1255 		page_length = remain < page_length ? remain : page_length;
1256 		if (node.allocated) {
1257 			wmb(); /* flush the write before we modify the GGTT */
1258 			ggtt->base.insert_page(&ggtt->base,
1259 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260 					       node.start, I915_CACHE_NONE, 0);
1261 			wmb(); /* flush modifications to the GGTT (insert_page) */
1262 		} else {
1263 			page_base += offset & PAGE_MASK;
1264 		}
1265 		/* If we get a fault while copying data, then (presumably) our
1266 		 * source page isn't available.  Return the error and we'll
1267 		 * retry in the slow path.
1268 		 * If the object is non-shmem backed, we retry again with the
1269 		 * path that handles page fault.
1270 		 */
1271 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272 			       user_data, page_length)) {
1273 			ret = -EFAULT;
1274 			break;
1275 		}
1276 
1277 		remain -= page_length;
1278 		user_data += page_length;
1279 		offset += page_length;
1280 	}
1281 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1282 
1283 	mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285 	if (node.allocated) {
1286 		wmb();
1287 		ggtt->base.clear_range(&ggtt->base,
1288 				       node.start, node.size);
1289 		remove_mappable_node(&node);
1290 	} else {
1291 		i915_vma_unpin(vma);
1292 	}
1293 out_unlock:
1294 	intel_runtime_pm_put(i915);
1295 	mutex_unlock(&i915->drm.struct_mutex);
1296 	return ret;
1297 }
1298 
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301 		  char __user *user_data,
1302 		  bool page_do_bit17_swizzling,
1303 		  bool needs_clflush_before,
1304 		  bool needs_clflush_after)
1305 {
1306 	char *vaddr;
1307 	int ret;
1308 
1309 	vaddr = kmap(page);
1310 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311 		shmem_clflush_swizzled_range(vaddr + offset, length,
1312 					     page_do_bit17_swizzling);
1313 	if (page_do_bit17_swizzling)
1314 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315 						length);
1316 	else
1317 		ret = __copy_from_user(vaddr + offset, user_data, length);
1318 	if (needs_clflush_after)
1319 		shmem_clflush_swizzled_range(vaddr + offset, length,
1320 					     page_do_bit17_swizzling);
1321 	kunmap(page);
1322 
1323 	return ret ? -EFAULT : 0;
1324 }
1325 
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327  * Flushes invalid cachelines before writing to the target if
1328  * needs_clflush_before is set and flushes out any written cachelines after
1329  * writing if needs_clflush is set.
1330  */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333 	     bool page_do_bit17_swizzling,
1334 	     bool needs_clflush_before,
1335 	     bool needs_clflush_after)
1336 {
1337 	int ret;
1338 
1339 	ret = -ENODEV;
1340 	if (!page_do_bit17_swizzling) {
1341 		char *vaddr = kmap_atomic(page);
1342 
1343 		if (needs_clflush_before)
1344 			drm_clflush_virt_range(vaddr + offset, len);
1345 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346 		if (needs_clflush_after)
1347 			drm_clflush_virt_range(vaddr + offset, len);
1348 
1349 		kunmap_atomic(vaddr);
1350 	}
1351 	if (ret == 0)
1352 		return ret;
1353 
1354 	return shmem_pwrite_slow(page, offset, len, user_data,
1355 				 page_do_bit17_swizzling,
1356 				 needs_clflush_before,
1357 				 needs_clflush_after);
1358 }
1359 
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362 		      const struct drm_i915_gem_pwrite *args)
1363 {
1364 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 	void __user *user_data;
1366 	u64 remain;
1367 	unsigned int obj_do_bit17_swizzling;
1368 	unsigned int partial_cacheline_write;
1369 	unsigned int needs_clflush;
1370 	unsigned int offset, idx;
1371 	int ret;
1372 
1373 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 	if (ret)
1375 		return ret;
1376 
1377 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378 	mutex_unlock(&i915->drm.struct_mutex);
1379 	if (ret)
1380 		return ret;
1381 
1382 	obj_do_bit17_swizzling = 0;
1383 	if (i915_gem_object_needs_bit17_swizzle(obj))
1384 		obj_do_bit17_swizzling = BIT(17);
1385 
1386 	/* If we don't overwrite a cacheline completely we need to be
1387 	 * careful to have up-to-date data by first clflushing. Don't
1388 	 * overcomplicate things and flush the entire patch.
1389 	 */
1390 	partial_cacheline_write = 0;
1391 	if (needs_clflush & CLFLUSH_BEFORE)
1392 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393 
1394 	user_data = u64_to_user_ptr(args->data_ptr);
1395 	remain = args->size;
1396 	offset = offset_in_page(args->offset);
1397 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398 		struct page *page = i915_gem_object_get_page(obj, idx);
1399 		int length;
1400 
1401 		length = remain;
1402 		if (offset + length > PAGE_SIZE)
1403 			length = PAGE_SIZE - offset;
1404 
1405 		ret = shmem_pwrite(page, offset, length, user_data,
1406 				   page_to_phys(page) & obj_do_bit17_swizzling,
1407 				   (offset | length) & partial_cacheline_write,
1408 				   needs_clflush & CLFLUSH_AFTER);
1409 		if (ret)
1410 			break;
1411 
1412 		remain -= length;
1413 		user_data += length;
1414 		offset = 0;
1415 	}
1416 
1417 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1418 	i915_gem_obj_finish_shmem_access(obj);
1419 	return ret;
1420 }
1421 
1422 /**
1423  * Writes data to the object referenced by handle.
1424  * @dev: drm device
1425  * @data: ioctl data blob
1426  * @file: drm file
1427  *
1428  * On error, the contents of the buffer that were to be modified are undefined.
1429  */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432 		      struct drm_file *file)
1433 {
1434 	struct drm_i915_gem_pwrite *args = data;
1435 	struct drm_i915_gem_object *obj;
1436 	int ret;
1437 
1438 	if (args->size == 0)
1439 		return 0;
1440 
1441 	if (!access_ok(VERIFY_READ,
1442 		       u64_to_user_ptr(args->data_ptr),
1443 		       args->size))
1444 		return -EFAULT;
1445 
1446 	obj = i915_gem_object_lookup(file, args->handle);
1447 	if (!obj)
1448 		return -ENOENT;
1449 
1450 	/* Bounds check destination. */
1451 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452 		ret = -EINVAL;
1453 		goto err;
1454 	}
1455 
1456 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457 
1458 	ret = -ENODEV;
1459 	if (obj->ops->pwrite)
1460 		ret = obj->ops->pwrite(obj, args);
1461 	if (ret != -ENODEV)
1462 		goto err;
1463 
1464 	ret = i915_gem_object_wait(obj,
1465 				   I915_WAIT_INTERRUPTIBLE |
1466 				   I915_WAIT_ALL,
1467 				   MAX_SCHEDULE_TIMEOUT,
1468 				   to_rps_client(file));
1469 	if (ret)
1470 		goto err;
1471 
1472 	ret = i915_gem_object_pin_pages(obj);
1473 	if (ret)
1474 		goto err;
1475 
1476 	ret = -EFAULT;
1477 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1478 	 * it would end up going through the fenced access, and we'll get
1479 	 * different detiling behavior between reading and writing.
1480 	 * pread/pwrite currently are reading and writing from the CPU
1481 	 * perspective, requiring manual detiling by the client.
1482 	 */
1483 	if (!i915_gem_object_has_struct_page(obj) ||
1484 	    cpu_write_needs_clflush(obj))
1485 		/* Note that the gtt paths might fail with non-page-backed user
1486 		 * pointers (e.g. gtt mappings when moving data between
1487 		 * textures). Fallback to the shmem path in that case.
1488 		 */
1489 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1490 
1491 	if (ret == -EFAULT || ret == -ENOSPC) {
1492 		if (obj->phys_handle)
1493 			ret = i915_gem_phys_pwrite(obj, args, file);
1494 		else
1495 			ret = i915_gem_shmem_pwrite(obj, args);
1496 	}
1497 
1498 	i915_gem_object_unpin_pages(obj);
1499 err:
1500 	i915_gem_object_put(obj);
1501 	return ret;
1502 }
1503 
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507 	return (domain == I915_GEM_DOMAIN_GTT ?
1508 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510 
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513 	struct drm_i915_private *i915;
1514 	struct list_head *list;
1515 	struct i915_vma *vma;
1516 
1517 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518 		if (!i915_vma_is_ggtt(vma))
1519 			break;
1520 
1521 		if (i915_vma_is_active(vma))
1522 			continue;
1523 
1524 		if (!drm_mm_node_allocated(&vma->node))
1525 			continue;
1526 
1527 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528 	}
1529 
1530 	i915 = to_i915(obj->base.dev);
1531 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532 	list_move_tail(&obj->global_link, list);
1533 }
1534 
1535 /**
1536  * Called when user space prepares to use an object with the CPU, either
1537  * through the mmap ioctl's mapping or a GTT mapping.
1538  * @dev: drm device
1539  * @data: ioctl data blob
1540  * @file: drm file
1541  */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544 			  struct drm_file *file)
1545 {
1546 	struct drm_i915_gem_set_domain *args = data;
1547 	struct drm_i915_gem_object *obj;
1548 	uint32_t read_domains = args->read_domains;
1549 	uint32_t write_domain = args->write_domain;
1550 	int err;
1551 
1552 	/* Only handle setting domains to types used by the CPU. */
1553 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554 		return -EINVAL;
1555 
1556 	/* Having something in the write domain implies it's in the read
1557 	 * domain, and only that read domain.  Enforce that in the request.
1558 	 */
1559 	if (write_domain != 0 && read_domains != write_domain)
1560 		return -EINVAL;
1561 
1562 	obj = i915_gem_object_lookup(file, args->handle);
1563 	if (!obj)
1564 		return -ENOENT;
1565 
1566 	/* Try to flush the object off the GPU without holding the lock.
1567 	 * We will repeat the flush holding the lock in the normal manner
1568 	 * to catch cases where we are gazumped.
1569 	 */
1570 	err = i915_gem_object_wait(obj,
1571 				   I915_WAIT_INTERRUPTIBLE |
1572 				   (write_domain ? I915_WAIT_ALL : 0),
1573 				   MAX_SCHEDULE_TIMEOUT,
1574 				   to_rps_client(file));
1575 	if (err)
1576 		goto out;
1577 
1578 	/* Flush and acquire obj->pages so that we are coherent through
1579 	 * direct access in memory with previous cached writes through
1580 	 * shmemfs and that our cache domain tracking remains valid.
1581 	 * For example, if the obj->filp was moved to swap without us
1582 	 * being notified and releasing the pages, we would mistakenly
1583 	 * continue to assume that the obj remained out of the CPU cached
1584 	 * domain.
1585 	 */
1586 	err = i915_gem_object_pin_pages(obj);
1587 	if (err)
1588 		goto out;
1589 
1590 	err = i915_mutex_lock_interruptible(dev);
1591 	if (err)
1592 		goto out_unpin;
1593 
1594 	if (read_domains & I915_GEM_DOMAIN_GTT)
1595 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596 	else
1597 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598 
1599 	/* And bump the LRU for this access */
1600 	i915_gem_object_bump_inactive_ggtt(obj);
1601 
1602 	mutex_unlock(&dev->struct_mutex);
1603 
1604 	if (write_domain != 0)
1605 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606 
1607 out_unpin:
1608 	i915_gem_object_unpin_pages(obj);
1609 out:
1610 	i915_gem_object_put(obj);
1611 	return err;
1612 }
1613 
1614 /**
1615  * Called when user space has done writes to this buffer
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622 			 struct drm_file *file)
1623 {
1624 	struct drm_i915_gem_sw_finish *args = data;
1625 	struct drm_i915_gem_object *obj;
1626 
1627 	obj = i915_gem_object_lookup(file, args->handle);
1628 	if (!obj)
1629 		return -ENOENT;
1630 
1631 	/* Pinned buffers may be scanout, so flush the cache */
1632 	i915_gem_object_flush_if_display(obj);
1633 	i915_gem_object_put(obj);
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640  *			 it is mapped to.
1641  * @dev: drm device
1642  * @data: ioctl data blob
1643  * @file: drm file
1644  *
1645  * While the mapping holds a reference on the contents of the object, it doesn't
1646  * imply a ref on the object itself.
1647  *
1648  * IMPORTANT:
1649  *
1650  * DRM driver writers who look a this function as an example for how to do GEM
1651  * mmap support, please don't implement mmap support like here. The modern way
1652  * to implement DRM mmap support is with an mmap offset ioctl (like
1653  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654  * That way debug tooling like valgrind will understand what's going on, hiding
1655  * the mmap call in a driver private ioctl will break that. The i915 driver only
1656  * does cpu mmaps this way because we didn't know better.
1657  */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660 		    struct drm_file *file)
1661 {
1662 	struct drm_i915_gem_mmap *args = data;
1663 	struct drm_i915_gem_object *obj;
1664 	unsigned long addr;
1665 
1666 	if (args->flags & ~(I915_MMAP_WC))
1667 		return -EINVAL;
1668 
1669 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670 		return -ENODEV;
1671 
1672 	obj = i915_gem_object_lookup(file, args->handle);
1673 	if (!obj)
1674 		return -ENOENT;
1675 
1676 	/* prime objects have no backing filp to GEM mmap
1677 	 * pages from.
1678 	 */
1679 	if (!obj->base.filp) {
1680 		i915_gem_object_put(obj);
1681 		return -EINVAL;
1682 	}
1683 
1684 	addr = vm_mmap(obj->base.filp, 0, args->size,
1685 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1686 		       args->offset);
1687 	if (args->flags & I915_MMAP_WC) {
1688 		struct mm_struct *mm = current->mm;
1689 		struct vm_area_struct *vma;
1690 
1691 		if (down_write_killable(&mm->mmap_sem)) {
1692 			i915_gem_object_put(obj);
1693 			return -EINTR;
1694 		}
1695 		vma = find_vma(mm, addr);
1696 		if (vma)
1697 			vma->vm_page_prot =
1698 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 		else
1700 			addr = -ENOMEM;
1701 		up_write(&mm->mmap_sem);
1702 
1703 		/* This may race, but that's ok, it only gets set */
1704 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705 	}
1706 	i915_gem_object_put(obj);
1707 	if (IS_ERR((void *)addr))
1708 		return addr;
1709 
1710 	args->addr_ptr = (uint64_t) addr;
1711 
1712 	return 0;
1713 }
1714 
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719 
1720 /**
1721  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722  *
1723  * A history of the GTT mmap interface:
1724  *
1725  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726  *     aligned and suitable for fencing, and still fit into the available
1727  *     mappable space left by the pinned display objects. A classic problem
1728  *     we called the page-fault-of-doom where we would ping-pong between
1729  *     two objects that could not fit inside the GTT and so the memcpy
1730  *     would page one object in at the expense of the other between every
1731  *     single byte.
1732  *
1733  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735  *     object is too large for the available space (or simply too large
1736  *     for the mappable aperture!), a view is created instead and faulted
1737  *     into userspace. (This view is aligned and sized appropriately for
1738  *     fenced access.)
1739  *
1740  * Restrictions:
1741  *
1742  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1743  *    hangs on some architectures, corruption on others. An attempt to service
1744  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1745  *
1746  *  * the object must be able to fit into RAM (physical memory, though no
1747  *    limited to the mappable aperture).
1748  *
1749  *
1750  * Caveats:
1751  *
1752  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1753  *    all data to system memory. Subsequent access will not be synchronized.
1754  *
1755  *  * all mappings are revoked on runtime device suspend.
1756  *
1757  *  * there are only 8, 16 or 32 fence registers to share between all users
1758  *    (older machines require fence register for display and blitter access
1759  *    as well). Contention of the fence registers will cause the previous users
1760  *    to be unmapped and any new access will generate new page faults.
1761  *
1762  *  * running out of memory while servicing a fault may generate a SIGBUS,
1763  *    rather than the expected SIGSEGV.
1764  */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767 	return 1;
1768 }
1769 
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772 		     pgoff_t page_offset,
1773 		     unsigned int chunk)
1774 {
1775 	struct i915_ggtt_view view;
1776 
1777 	if (i915_gem_object_is_tiled(obj))
1778 		chunk = roundup(chunk, tile_row_pages(obj));
1779 
1780 	view.type = I915_GGTT_VIEW_PARTIAL;
1781 	view.partial.offset = rounddown(page_offset, chunk);
1782 	view.partial.size =
1783 		min_t(unsigned int, chunk,
1784 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785 
1786 	/* If the partial covers the entire object, just create a normal VMA. */
1787 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1788 		view.type = I915_GGTT_VIEW_NORMAL;
1789 
1790 	return view;
1791 }
1792 
1793 /**
1794  * i915_gem_fault - fault a page into the GTT
1795  * @vmf: fault info
1796  *
1797  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798  * from userspace.  The fault handler takes care of binding the object to
1799  * the GTT (if needed), allocating and programming a fence register (again,
1800  * only if needed based on whether the old reg is still valid or the object
1801  * is tiled) and inserting a new PTE into the faulting process.
1802  *
1803  * Note that the faulting process may involve evicting existing objects
1804  * from the GTT and/or fence registers to make room.  So performance may
1805  * suffer if the GTT working set is large or there are few fence registers
1806  * left.
1807  *
1808  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810  */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814 	struct vm_area_struct *area = vmf->vma;
1815 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816 	struct drm_device *dev = obj->base.dev;
1817 	struct drm_i915_private *dev_priv = to_i915(dev);
1818 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820 	struct i915_vma *vma;
1821 	pgoff_t page_offset;
1822 	unsigned int flags;
1823 	int ret;
1824 
1825 	/* We don't use vmf->pgoff since that has the fake offset */
1826 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827 
1828 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1829 
1830 	/* Try to flush the object off the GPU first without holding the lock.
1831 	 * Upon acquiring the lock, we will perform our sanity checks and then
1832 	 * repeat the flush holding the lock in the normal manner to catch cases
1833 	 * where we are gazumped.
1834 	 */
1835 	ret = i915_gem_object_wait(obj,
1836 				   I915_WAIT_INTERRUPTIBLE,
1837 				   MAX_SCHEDULE_TIMEOUT,
1838 				   NULL);
1839 	if (ret)
1840 		goto err;
1841 
1842 	ret = i915_gem_object_pin_pages(obj);
1843 	if (ret)
1844 		goto err;
1845 
1846 	intel_runtime_pm_get(dev_priv);
1847 
1848 	ret = i915_mutex_lock_interruptible(dev);
1849 	if (ret)
1850 		goto err_rpm;
1851 
1852 	/* Access to snoopable pages through the GTT is incoherent. */
1853 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854 		ret = -EFAULT;
1855 		goto err_unlock;
1856 	}
1857 
1858 	/* If the object is smaller than a couple of partial vma, it is
1859 	 * not worth only creating a single partial vma - we may as well
1860 	 * clear enough space for the full object.
1861 	 */
1862 	flags = PIN_MAPPABLE;
1863 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865 
1866 	/* Now pin it into the GTT as needed */
1867 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868 	if (IS_ERR(vma)) {
1869 		/* Use a partial view if it is bigger than available space */
1870 		struct i915_ggtt_view view =
1871 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872 
1873 		/* Userspace is now writing through an untracked VMA, abandon
1874 		 * all hope that the hardware is able to track future writes.
1875 		 */
1876 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877 
1878 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879 	}
1880 	if (IS_ERR(vma)) {
1881 		ret = PTR_ERR(vma);
1882 		goto err_unlock;
1883 	}
1884 
1885 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 	if (ret)
1887 		goto err_unpin;
1888 
1889 	ret = i915_vma_get_fence(vma);
1890 	if (ret)
1891 		goto err_unpin;
1892 
1893 	/* Mark as being mmapped into userspace for later revocation */
1894 	assert_rpm_wakelock_held(dev_priv);
1895 	if (list_empty(&obj->userfault_link))
1896 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897 
1898 	/* Finally, remap it using the new GTT offset */
1899 	ret = remap_io_mapping(area,
1900 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 			       &ggtt->mappable);
1904 
1905 err_unpin:
1906 	__i915_vma_unpin(vma);
1907 err_unlock:
1908 	mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910 	intel_runtime_pm_put(dev_priv);
1911 	i915_gem_object_unpin_pages(obj);
1912 err:
1913 	switch (ret) {
1914 	case -EIO:
1915 		/*
1916 		 * We eat errors when the gpu is terminally wedged to avoid
1917 		 * userspace unduly crashing (gl has no provisions for mmaps to
1918 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919 		 * and so needs to be reported.
1920 		 */
1921 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922 			ret = VM_FAULT_SIGBUS;
1923 			break;
1924 		}
1925 	case -EAGAIN:
1926 		/*
1927 		 * EAGAIN means the gpu is hung and we'll wait for the error
1928 		 * handler to reset everything when re-faulting in
1929 		 * i915_mutex_lock_interruptible.
1930 		 */
1931 	case 0:
1932 	case -ERESTARTSYS:
1933 	case -EINTR:
1934 	case -EBUSY:
1935 		/*
1936 		 * EBUSY is ok: this just means that another thread
1937 		 * already did the job.
1938 		 */
1939 		ret = VM_FAULT_NOPAGE;
1940 		break;
1941 	case -ENOMEM:
1942 		ret = VM_FAULT_OOM;
1943 		break;
1944 	case -ENOSPC:
1945 	case -EFAULT:
1946 		ret = VM_FAULT_SIGBUS;
1947 		break;
1948 	default:
1949 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950 		ret = VM_FAULT_SIGBUS;
1951 		break;
1952 	}
1953 	return ret;
1954 }
1955 
1956 /**
1957  * i915_gem_release_mmap - remove physical page mappings
1958  * @obj: obj in question
1959  *
1960  * Preserve the reservation of the mmapping with the DRM core code, but
1961  * relinquish ownership of the pages back to the system.
1962  *
1963  * It is vital that we remove the page mapping if we have mapped a tiled
1964  * object through the GTT and then lose the fence register due to
1965  * resource pressure. Similarly if the object has been moved out of the
1966  * aperture, than pages mapped into userspace must be revoked. Removing the
1967  * mapping will then trigger a page fault on the next user access, allowing
1968  * fixup by i915_gem_fault().
1969  */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974 
1975 	/* Serialisation between user GTT access and our code depends upon
1976 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1977 	 * pagefault then has to wait until we release the mutex.
1978 	 *
1979 	 * Note that RPM complicates somewhat by adding an additional
1980 	 * requirement that operations to the GGTT be made holding the RPM
1981 	 * wakeref.
1982 	 */
1983 	lockdep_assert_held(&i915->drm.struct_mutex);
1984 	intel_runtime_pm_get(i915);
1985 
1986 	if (list_empty(&obj->userfault_link))
1987 		goto out;
1988 
1989 	list_del_init(&obj->userfault_link);
1990 	drm_vma_node_unmap(&obj->base.vma_node,
1991 			   obj->base.dev->anon_inode->i_mapping);
1992 
1993 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1994 	 * memory transactions from userspace before we return. The TLB
1995 	 * flushing implied above by changing the PTE above *should* be
1996 	 * sufficient, an extra barrier here just provides us with a bit
1997 	 * of paranoid documentation about our requirement to serialise
1998 	 * memory writes before touching registers / GSM.
1999 	 */
2000 	wmb();
2001 
2002 out:
2003 	intel_runtime_pm_put(i915);
2004 }
2005 
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008 	struct drm_i915_gem_object *obj, *on;
2009 	int i;
2010 
2011 	/*
2012 	 * Only called during RPM suspend. All users of the userfault_list
2013 	 * must be holding an RPM wakeref to ensure that this can not
2014 	 * run concurrently with themselves (and use the struct_mutex for
2015 	 * protection between themselves).
2016 	 */
2017 
2018 	list_for_each_entry_safe(obj, on,
2019 				 &dev_priv->mm.userfault_list, userfault_link) {
2020 		list_del_init(&obj->userfault_link);
2021 		drm_vma_node_unmap(&obj->base.vma_node,
2022 				   obj->base.dev->anon_inode->i_mapping);
2023 	}
2024 
2025 	/* The fence will be lost when the device powers down. If any were
2026 	 * in use by hardware (i.e. they are pinned), we should not be powering
2027 	 * down! All other fences will be reacquired by the user upon waking.
2028 	 */
2029 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031 
2032 		/* Ideally we want to assert that the fence register is not
2033 		 * live at this point (i.e. that no piece of code will be
2034 		 * trying to write through fence + GTT, as that both violates
2035 		 * our tracking of activity and associated locking/barriers,
2036 		 * but also is illegal given that the hw is powered down).
2037 		 *
2038 		 * Previously we used reg->pin_count as a "liveness" indicator.
2039 		 * That is not sufficient, and we need a more fine-grained
2040 		 * tool if we want to have a sanity check here.
2041 		 */
2042 
2043 		if (!reg->vma)
2044 			continue;
2045 
2046 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047 		reg->dirty = true;
2048 	}
2049 }
2050 
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054 	int err;
2055 
2056 	err = drm_gem_create_mmap_offset(&obj->base);
2057 	if (likely(!err))
2058 		return 0;
2059 
2060 	/* Attempt to reap some mmap space from dead objects */
2061 	do {
2062 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 		if (err)
2064 			break;
2065 
2066 		i915_gem_drain_freed_objects(dev_priv);
2067 		err = drm_gem_create_mmap_offset(&obj->base);
2068 		if (!err)
2069 			break;
2070 
2071 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2072 
2073 	return err;
2074 }
2075 
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078 	drm_gem_free_mmap_offset(&obj->base);
2079 }
2080 
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083 		  struct drm_device *dev,
2084 		  uint32_t handle,
2085 		  uint64_t *offset)
2086 {
2087 	struct drm_i915_gem_object *obj;
2088 	int ret;
2089 
2090 	obj = i915_gem_object_lookup(file, handle);
2091 	if (!obj)
2092 		return -ENOENT;
2093 
2094 	ret = i915_gem_object_create_mmap_offset(obj);
2095 	if (ret == 0)
2096 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097 
2098 	i915_gem_object_put(obj);
2099 	return ret;
2100 }
2101 
2102 /**
2103  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104  * @dev: DRM device
2105  * @data: GTT mapping ioctl data
2106  * @file: GEM object info
2107  *
2108  * Simply returns the fake offset to userspace so it can mmap it.
2109  * The mmap call will end up in drm_gem_mmap(), which will set things
2110  * up so we can get faults in the handler above.
2111  *
2112  * The fault handler will take care of binding the object into the GTT
2113  * (since it may have been evicted to make room for something), allocating
2114  * a fence register, and mapping the appropriate aperture address into
2115  * userspace.
2116  */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119 			struct drm_file *file)
2120 {
2121 	struct drm_i915_gem_mmap_gtt *args = data;
2122 
2123 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125 
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130 	i915_gem_object_free_mmap_offset(obj);
2131 
2132 	if (obj->base.filp == NULL)
2133 		return;
2134 
2135 	/* Our goal here is to return as much of the memory as
2136 	 * is possible back to the system as we are called from OOM.
2137 	 * To do this we must instruct the shmfs to drop all of its
2138 	 * backing pages, *now*.
2139 	 */
2140 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141 	obj->mm.madv = __I915_MADV_PURGED;
2142 	obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144 
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148 	struct address_space *mapping;
2149 
2150 	lockdep_assert_held(&obj->mm.lock);
2151 	GEM_BUG_ON(obj->mm.pages);
2152 
2153 	switch (obj->mm.madv) {
2154 	case I915_MADV_DONTNEED:
2155 		i915_gem_object_truncate(obj);
2156 	case __I915_MADV_PURGED:
2157 		return;
2158 	}
2159 
2160 	if (obj->base.filp == NULL)
2161 		return;
2162 
2163 	mapping = obj->base.filp->f_mapping,
2164 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166 
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169 			      struct sg_table *pages)
2170 {
2171 	struct sgt_iter sgt_iter;
2172 	struct page *page;
2173 
2174 	__i915_gem_object_release_shmem(obj, pages, true);
2175 
2176 	i915_gem_gtt_finish_pages(obj, pages);
2177 
2178 	if (i915_gem_object_needs_bit17_swizzle(obj))
2179 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2180 
2181 	for_each_sgt_page(page, sgt_iter, pages) {
2182 		if (obj->mm.dirty)
2183 			set_page_dirty(page);
2184 
2185 		if (obj->mm.madv == I915_MADV_WILLNEED)
2186 			mark_page_accessed(page);
2187 
2188 		put_page(page);
2189 	}
2190 	obj->mm.dirty = false;
2191 
2192 	sg_free_table(pages);
2193 	kfree(pages);
2194 }
2195 
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198 	struct radix_tree_iter iter;
2199 	void **slot;
2200 
2201 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204 
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206 				 enum i915_mm_subclass subclass)
2207 {
2208 	struct sg_table *pages;
2209 
2210 	if (i915_gem_object_has_pinned_pages(obj))
2211 		return;
2212 
2213 	GEM_BUG_ON(obj->bind_count);
2214 	if (!READ_ONCE(obj->mm.pages))
2215 		return;
2216 
2217 	/* May be called by shrinker from within get_pages() (on another bo) */
2218 	mutex_lock_nested(&obj->mm.lock, subclass);
2219 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220 		goto unlock;
2221 
2222 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2223 	 * array, hence protect them from being reaped by removing them from gtt
2224 	 * lists early. */
2225 	pages = fetch_and_zero(&obj->mm.pages);
2226 	GEM_BUG_ON(!pages);
2227 
2228 	if (obj->mm.mapping) {
2229 		void *ptr;
2230 
2231 		ptr = ptr_mask_bits(obj->mm.mapping);
2232 		if (is_vmalloc_addr(ptr))
2233 			vunmap(ptr);
2234 		else
2235 			kunmap(kmap_to_page(ptr));
2236 
2237 		obj->mm.mapping = NULL;
2238 	}
2239 
2240 	__i915_gem_object_reset_page_iter(obj);
2241 
2242 	if (!IS_ERR(pages))
2243 		obj->ops->put_pages(obj, pages);
2244 
2245 unlock:
2246 	mutex_unlock(&obj->mm.lock);
2247 }
2248 
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251 	struct sg_table new_st;
2252 	struct scatterlist *sg, *new_sg;
2253 	unsigned int i;
2254 
2255 	if (orig_st->nents == orig_st->orig_nents)
2256 		return false;
2257 
2258 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259 		return false;
2260 
2261 	new_sg = new_st.sgl;
2262 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264 		/* called before being DMA mapped, no need to copy sg->dma_* */
2265 		new_sg = sg_next(new_sg);
2266 	}
2267 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268 
2269 	sg_free_table(orig_st);
2270 
2271 	*orig_st = new_st;
2272 	return true;
2273 }
2274 
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280 	unsigned long i;
2281 	struct address_space *mapping;
2282 	struct sg_table *st;
2283 	struct scatterlist *sg;
2284 	struct sgt_iter sgt_iter;
2285 	struct page *page;
2286 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2287 	unsigned int max_segment;
2288 	int ret;
2289 	gfp_t gfp;
2290 
2291 	/* Assert that the object is not currently in any GPU domain. As it
2292 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2293 	 * a GPU cache
2294 	 */
2295 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297 
2298 	max_segment = swiotlb_max_segment();
2299 	if (!max_segment)
2300 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301 
2302 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2303 	if (st == NULL)
2304 		return ERR_PTR(-ENOMEM);
2305 
2306 rebuild_st:
2307 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308 		kfree(st);
2309 		return ERR_PTR(-ENOMEM);
2310 	}
2311 
2312 	/* Get the list of pages out of our struct file.  They'll be pinned
2313 	 * at this point until we release them.
2314 	 *
2315 	 * Fail silently without starting the shrinker
2316 	 */
2317 	mapping = obj->base.filp->f_mapping;
2318 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2319 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2320 	sg = st->sgl;
2321 	st->nents = 0;
2322 	for (i = 0; i < page_count; i++) {
2323 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2324 		if (unlikely(IS_ERR(page))) {
2325 			i915_gem_shrink(dev_priv,
2326 					page_count,
2327 					I915_SHRINK_BOUND |
2328 					I915_SHRINK_UNBOUND |
2329 					I915_SHRINK_PURGEABLE);
2330 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2331 		}
2332 		if (unlikely(IS_ERR(page))) {
2333 			gfp_t reclaim;
2334 
2335 			/* We've tried hard to allocate the memory by reaping
2336 			 * our own buffer, now let the real VM do its job and
2337 			 * go down in flames if truly OOM.
2338 			 *
2339 			 * However, since graphics tend to be disposable,
2340 			 * defer the oom here by reporting the ENOMEM back
2341 			 * to userspace.
2342 			 */
2343 			reclaim = mapping_gfp_mask(mapping);
2344 			reclaim |= __GFP_NORETRY; /* reclaim, but no oom */
2345 
2346 			page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
2347 			if (IS_ERR(page)) {
2348 				ret = PTR_ERR(page);
2349 				goto err_sg;
2350 			}
2351 		}
2352 		if (!i ||
2353 		    sg->length >= max_segment ||
2354 		    page_to_pfn(page) != last_pfn + 1) {
2355 			if (i)
2356 				sg = sg_next(sg);
2357 			st->nents++;
2358 			sg_set_page(sg, page, PAGE_SIZE, 0);
2359 		} else {
2360 			sg->length += PAGE_SIZE;
2361 		}
2362 		last_pfn = page_to_pfn(page);
2363 
2364 		/* Check that the i965g/gm workaround works. */
2365 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2366 	}
2367 	if (sg) /* loop terminated early; short sg table */
2368 		sg_mark_end(sg);
2369 
2370 	/* Trim unused sg entries to avoid wasting memory. */
2371 	i915_sg_trim(st);
2372 
2373 	ret = i915_gem_gtt_prepare_pages(obj, st);
2374 	if (ret) {
2375 		/* DMA remapping failed? One possible cause is that
2376 		 * it could not reserve enough large entries, asking
2377 		 * for PAGE_SIZE chunks instead may be helpful.
2378 		 */
2379 		if (max_segment > PAGE_SIZE) {
2380 			for_each_sgt_page(page, sgt_iter, st)
2381 				put_page(page);
2382 			sg_free_table(st);
2383 
2384 			max_segment = PAGE_SIZE;
2385 			goto rebuild_st;
2386 		} else {
2387 			dev_warn(&dev_priv->drm.pdev->dev,
2388 				 "Failed to DMA remap %lu pages\n",
2389 				 page_count);
2390 			goto err_pages;
2391 		}
2392 	}
2393 
2394 	if (i915_gem_object_needs_bit17_swizzle(obj))
2395 		i915_gem_object_do_bit_17_swizzle(obj, st);
2396 
2397 	return st;
2398 
2399 err_sg:
2400 	sg_mark_end(sg);
2401 err_pages:
2402 	for_each_sgt_page(page, sgt_iter, st)
2403 		put_page(page);
2404 	sg_free_table(st);
2405 	kfree(st);
2406 
2407 	/* shmemfs first checks if there is enough memory to allocate the page
2408 	 * and reports ENOSPC should there be insufficient, along with the usual
2409 	 * ENOMEM for a genuine allocation failure.
2410 	 *
2411 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2412 	 * space and so want to translate the error from shmemfs back to our
2413 	 * usual understanding of ENOMEM.
2414 	 */
2415 	if (ret == -ENOSPC)
2416 		ret = -ENOMEM;
2417 
2418 	return ERR_PTR(ret);
2419 }
2420 
2421 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2422 				 struct sg_table *pages)
2423 {
2424 	lockdep_assert_held(&obj->mm.lock);
2425 
2426 	obj->mm.get_page.sg_pos = pages->sgl;
2427 	obj->mm.get_page.sg_idx = 0;
2428 
2429 	obj->mm.pages = pages;
2430 
2431 	if (i915_gem_object_is_tiled(obj) &&
2432 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2433 		GEM_BUG_ON(obj->mm.quirked);
2434 		__i915_gem_object_pin_pages(obj);
2435 		obj->mm.quirked = true;
2436 	}
2437 }
2438 
2439 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2440 {
2441 	struct sg_table *pages;
2442 
2443 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2444 
2445 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2446 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2447 		return -EFAULT;
2448 	}
2449 
2450 	pages = obj->ops->get_pages(obj);
2451 	if (unlikely(IS_ERR(pages)))
2452 		return PTR_ERR(pages);
2453 
2454 	__i915_gem_object_set_pages(obj, pages);
2455 	return 0;
2456 }
2457 
2458 /* Ensure that the associated pages are gathered from the backing storage
2459  * and pinned into our object. i915_gem_object_pin_pages() may be called
2460  * multiple times before they are released by a single call to
2461  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2462  * either as a result of memory pressure (reaping pages under the shrinker)
2463  * or as the object is itself released.
2464  */
2465 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2466 {
2467 	int err;
2468 
2469 	err = mutex_lock_interruptible(&obj->mm.lock);
2470 	if (err)
2471 		return err;
2472 
2473 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2474 		err = ____i915_gem_object_get_pages(obj);
2475 		if (err)
2476 			goto unlock;
2477 
2478 		smp_mb__before_atomic();
2479 	}
2480 	atomic_inc(&obj->mm.pages_pin_count);
2481 
2482 unlock:
2483 	mutex_unlock(&obj->mm.lock);
2484 	return err;
2485 }
2486 
2487 /* The 'mapping' part of i915_gem_object_pin_map() below */
2488 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2489 				 enum i915_map_type type)
2490 {
2491 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2492 	struct sg_table *sgt = obj->mm.pages;
2493 	struct sgt_iter sgt_iter;
2494 	struct page *page;
2495 	struct page *stack_pages[32];
2496 	struct page **pages = stack_pages;
2497 	unsigned long i = 0;
2498 	pgprot_t pgprot;
2499 	void *addr;
2500 
2501 	/* A single page can always be kmapped */
2502 	if (n_pages == 1 && type == I915_MAP_WB)
2503 		return kmap(sg_page(sgt->sgl));
2504 
2505 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2506 		/* Too big for stack -- allocate temporary array instead */
2507 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2508 		if (!pages)
2509 			return NULL;
2510 	}
2511 
2512 	for_each_sgt_page(page, sgt_iter, sgt)
2513 		pages[i++] = page;
2514 
2515 	/* Check that we have the expected number of pages */
2516 	GEM_BUG_ON(i != n_pages);
2517 
2518 	switch (type) {
2519 	case I915_MAP_WB:
2520 		pgprot = PAGE_KERNEL;
2521 		break;
2522 	case I915_MAP_WC:
2523 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2524 		break;
2525 	}
2526 	addr = vmap(pages, n_pages, 0, pgprot);
2527 
2528 	if (pages != stack_pages)
2529 		drm_free_large(pages);
2530 
2531 	return addr;
2532 }
2533 
2534 /* get, pin, and map the pages of the object into kernel space */
2535 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2536 			      enum i915_map_type type)
2537 {
2538 	enum i915_map_type has_type;
2539 	bool pinned;
2540 	void *ptr;
2541 	int ret;
2542 
2543 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2544 
2545 	ret = mutex_lock_interruptible(&obj->mm.lock);
2546 	if (ret)
2547 		return ERR_PTR(ret);
2548 
2549 	pinned = true;
2550 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2551 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2552 			ret = ____i915_gem_object_get_pages(obj);
2553 			if (ret)
2554 				goto err_unlock;
2555 
2556 			smp_mb__before_atomic();
2557 		}
2558 		atomic_inc(&obj->mm.pages_pin_count);
2559 		pinned = false;
2560 	}
2561 	GEM_BUG_ON(!obj->mm.pages);
2562 
2563 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2564 	if (ptr && has_type != type) {
2565 		if (pinned) {
2566 			ret = -EBUSY;
2567 			goto err_unpin;
2568 		}
2569 
2570 		if (is_vmalloc_addr(ptr))
2571 			vunmap(ptr);
2572 		else
2573 			kunmap(kmap_to_page(ptr));
2574 
2575 		ptr = obj->mm.mapping = NULL;
2576 	}
2577 
2578 	if (!ptr) {
2579 		ptr = i915_gem_object_map(obj, type);
2580 		if (!ptr) {
2581 			ret = -ENOMEM;
2582 			goto err_unpin;
2583 		}
2584 
2585 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2586 	}
2587 
2588 out_unlock:
2589 	mutex_unlock(&obj->mm.lock);
2590 	return ptr;
2591 
2592 err_unpin:
2593 	atomic_dec(&obj->mm.pages_pin_count);
2594 err_unlock:
2595 	ptr = ERR_PTR(ret);
2596 	goto out_unlock;
2597 }
2598 
2599 static int
2600 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2601 			   const struct drm_i915_gem_pwrite *arg)
2602 {
2603 	struct address_space *mapping = obj->base.filp->f_mapping;
2604 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2605 	u64 remain, offset;
2606 	unsigned int pg;
2607 
2608 	/* Before we instantiate/pin the backing store for our use, we
2609 	 * can prepopulate the shmemfs filp efficiently using a write into
2610 	 * the pagecache. We avoid the penalty of instantiating all the
2611 	 * pages, important if the user is just writing to a few and never
2612 	 * uses the object on the GPU, and using a direct write into shmemfs
2613 	 * allows it to avoid the cost of retrieving a page (either swapin
2614 	 * or clearing-before-use) before it is overwritten.
2615 	 */
2616 	if (READ_ONCE(obj->mm.pages))
2617 		return -ENODEV;
2618 
2619 	/* Before the pages are instantiated the object is treated as being
2620 	 * in the CPU domain. The pages will be clflushed as required before
2621 	 * use, and we can freely write into the pages directly. If userspace
2622 	 * races pwrite with any other operation; corruption will ensue -
2623 	 * that is userspace's prerogative!
2624 	 */
2625 
2626 	remain = arg->size;
2627 	offset = arg->offset;
2628 	pg = offset_in_page(offset);
2629 
2630 	do {
2631 		unsigned int len, unwritten;
2632 		struct page *page;
2633 		void *data, *vaddr;
2634 		int err;
2635 
2636 		len = PAGE_SIZE - pg;
2637 		if (len > remain)
2638 			len = remain;
2639 
2640 		err = pagecache_write_begin(obj->base.filp, mapping,
2641 					    offset, len, 0,
2642 					    &page, &data);
2643 		if (err < 0)
2644 			return err;
2645 
2646 		vaddr = kmap(page);
2647 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2648 		kunmap(page);
2649 
2650 		err = pagecache_write_end(obj->base.filp, mapping,
2651 					  offset, len, len - unwritten,
2652 					  page, data);
2653 		if (err < 0)
2654 			return err;
2655 
2656 		if (unwritten)
2657 			return -EFAULT;
2658 
2659 		remain -= len;
2660 		user_data += len;
2661 		offset += len;
2662 		pg = 0;
2663 	} while (remain);
2664 
2665 	return 0;
2666 }
2667 
2668 static bool ban_context(const struct i915_gem_context *ctx)
2669 {
2670 	return (i915_gem_context_is_bannable(ctx) &&
2671 		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2672 }
2673 
2674 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2675 {
2676 	ctx->guilty_count++;
2677 	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2678 	if (ban_context(ctx))
2679 		i915_gem_context_set_banned(ctx);
2680 
2681 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2682 			 ctx->name, ctx->ban_score,
2683 			 yesno(i915_gem_context_is_banned(ctx)));
2684 
2685 	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2686 		return;
2687 
2688 	ctx->file_priv->context_bans++;
2689 	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2690 			 ctx->name, ctx->file_priv->context_bans);
2691 }
2692 
2693 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2694 {
2695 	ctx->active_count++;
2696 }
2697 
2698 struct drm_i915_gem_request *
2699 i915_gem_find_active_request(struct intel_engine_cs *engine)
2700 {
2701 	struct drm_i915_gem_request *request, *active = NULL;
2702 	unsigned long flags;
2703 
2704 	/* We are called by the error capture and reset at a random
2705 	 * point in time. In particular, note that neither is crucially
2706 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2707 	 * assume that no more writes can happen (we waited long enough for
2708 	 * all writes that were in transaction to be flushed) - adding an
2709 	 * extra delay for a recent interrupt is pointless. Hence, we do
2710 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2711 	 */
2712 	spin_lock_irqsave(&engine->timeline->lock, flags);
2713 	list_for_each_entry(request, &engine->timeline->requests, link) {
2714 		if (__i915_gem_request_completed(request,
2715 						 request->global_seqno))
2716 			continue;
2717 
2718 		GEM_BUG_ON(request->engine != engine);
2719 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2720 				    &request->fence.flags));
2721 
2722 		active = request;
2723 		break;
2724 	}
2725 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2726 
2727 	return active;
2728 }
2729 
2730 static bool engine_stalled(struct intel_engine_cs *engine)
2731 {
2732 	if (!engine->hangcheck.stalled)
2733 		return false;
2734 
2735 	/* Check for possible seqno movement after hang declaration */
2736 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2737 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2738 		return false;
2739 	}
2740 
2741 	return true;
2742 }
2743 
2744 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2745 {
2746 	struct intel_engine_cs *engine;
2747 	enum intel_engine_id id;
2748 	int err = 0;
2749 
2750 	/* Ensure irq handler finishes, and not run again. */
2751 	for_each_engine(engine, dev_priv, id) {
2752 		struct drm_i915_gem_request *request;
2753 
2754 		/* Prevent the signaler thread from updating the request
2755 		 * state (by calling dma_fence_signal) as we are processing
2756 		 * the reset. The write from the GPU of the seqno is
2757 		 * asynchronous and the signaler thread may see a different
2758 		 * value to us and declare the request complete, even though
2759 		 * the reset routine have picked that request as the active
2760 		 * (incomplete) request. This conflict is not handled
2761 		 * gracefully!
2762 		 */
2763 		kthread_park(engine->breadcrumbs.signaler);
2764 
2765 		/* Prevent request submission to the hardware until we have
2766 		 * completed the reset in i915_gem_reset_finish(). If a request
2767 		 * is completed by one engine, it may then queue a request
2768 		 * to a second via its engine->irq_tasklet *just* as we are
2769 		 * calling engine->init_hw() and also writing the ELSP.
2770 		 * Turning off the engine->irq_tasklet until the reset is over
2771 		 * prevents the race.
2772 		 */
2773 		tasklet_kill(&engine->irq_tasklet);
2774 		tasklet_disable(&engine->irq_tasklet);
2775 
2776 		if (engine->irq_seqno_barrier)
2777 			engine->irq_seqno_barrier(engine);
2778 
2779 		if (engine_stalled(engine)) {
2780 			request = i915_gem_find_active_request(engine);
2781 			if (request && request->fence.error == -EIO)
2782 				err = -EIO; /* Previous reset failed! */
2783 		}
2784 	}
2785 
2786 	i915_gem_revoke_fences(dev_priv);
2787 
2788 	return err;
2789 }
2790 
2791 static void skip_request(struct drm_i915_gem_request *request)
2792 {
2793 	void *vaddr = request->ring->vaddr;
2794 	u32 head;
2795 
2796 	/* As this request likely depends on state from the lost
2797 	 * context, clear out all the user operations leaving the
2798 	 * breadcrumb at the end (so we get the fence notifications).
2799 	 */
2800 	head = request->head;
2801 	if (request->postfix < head) {
2802 		memset(vaddr + head, 0, request->ring->size - head);
2803 		head = 0;
2804 	}
2805 	memset(vaddr + head, 0, request->postfix - head);
2806 
2807 	dma_fence_set_error(&request->fence, -EIO);
2808 }
2809 
2810 static void engine_skip_context(struct drm_i915_gem_request *request)
2811 {
2812 	struct intel_engine_cs *engine = request->engine;
2813 	struct i915_gem_context *hung_ctx = request->ctx;
2814 	struct intel_timeline *timeline;
2815 	unsigned long flags;
2816 
2817 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2818 
2819 	spin_lock_irqsave(&engine->timeline->lock, flags);
2820 	spin_lock(&timeline->lock);
2821 
2822 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2823 		if (request->ctx == hung_ctx)
2824 			skip_request(request);
2825 
2826 	list_for_each_entry(request, &timeline->requests, link)
2827 		skip_request(request);
2828 
2829 	spin_unlock(&timeline->lock);
2830 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2831 }
2832 
2833 /* Returns true if the request was guilty of hang */
2834 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2835 {
2836 	/* Read once and return the resolution */
2837 	const bool guilty = engine_stalled(request->engine);
2838 
2839 	/* The guilty request will get skipped on a hung engine.
2840 	 *
2841 	 * Users of client default contexts do not rely on logical
2842 	 * state preserved between batches so it is safe to execute
2843 	 * queued requests following the hang. Non default contexts
2844 	 * rely on preserved state, so skipping a batch loses the
2845 	 * evolution of the state and it needs to be considered corrupted.
2846 	 * Executing more queued batches on top of corrupted state is
2847 	 * risky. But we take the risk by trying to advance through
2848 	 * the queued requests in order to make the client behaviour
2849 	 * more predictable around resets, by not throwing away random
2850 	 * amount of batches it has prepared for execution. Sophisticated
2851 	 * clients can use gem_reset_stats_ioctl and dma fence status
2852 	 * (exported via sync_file info ioctl on explicit fences) to observe
2853 	 * when it loses the context state and should rebuild accordingly.
2854 	 *
2855 	 * The context ban, and ultimately the client ban, mechanism are safety
2856 	 * valves if client submission ends up resulting in nothing more than
2857 	 * subsequent hangs.
2858 	 */
2859 
2860 	if (guilty) {
2861 		i915_gem_context_mark_guilty(request->ctx);
2862 		skip_request(request);
2863 	} else {
2864 		i915_gem_context_mark_innocent(request->ctx);
2865 		dma_fence_set_error(&request->fence, -EAGAIN);
2866 	}
2867 
2868 	return guilty;
2869 }
2870 
2871 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2872 {
2873 	struct drm_i915_gem_request *request;
2874 
2875 	request = i915_gem_find_active_request(engine);
2876 	if (request && i915_gem_reset_request(request)) {
2877 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2878 				 engine->name, request->global_seqno);
2879 
2880 		/* If this context is now banned, skip all pending requests. */
2881 		if (i915_gem_context_is_banned(request->ctx))
2882 			engine_skip_context(request);
2883 	}
2884 
2885 	/* Setup the CS to resume from the breadcrumb of the hung request */
2886 	engine->reset_hw(engine, request);
2887 }
2888 
2889 void i915_gem_reset(struct drm_i915_private *dev_priv)
2890 {
2891 	struct intel_engine_cs *engine;
2892 	enum intel_engine_id id;
2893 
2894 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2895 
2896 	i915_gem_retire_requests(dev_priv);
2897 
2898 	for_each_engine(engine, dev_priv, id) {
2899 		struct i915_gem_context *ctx;
2900 
2901 		i915_gem_reset_engine(engine);
2902 		ctx = fetch_and_zero(&engine->last_retired_context);
2903 		if (ctx)
2904 			engine->context_unpin(engine, ctx);
2905 	}
2906 
2907 	i915_gem_restore_fences(dev_priv);
2908 
2909 	if (dev_priv->gt.awake) {
2910 		intel_sanitize_gt_powersave(dev_priv);
2911 		intel_enable_gt_powersave(dev_priv);
2912 		if (INTEL_GEN(dev_priv) >= 6)
2913 			gen6_rps_busy(dev_priv);
2914 	}
2915 }
2916 
2917 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2918 {
2919 	struct intel_engine_cs *engine;
2920 	enum intel_engine_id id;
2921 
2922 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2923 
2924 	for_each_engine(engine, dev_priv, id) {
2925 		tasklet_enable(&engine->irq_tasklet);
2926 		kthread_unpark(engine->breadcrumbs.signaler);
2927 	}
2928 }
2929 
2930 static void nop_submit_request(struct drm_i915_gem_request *request)
2931 {
2932 	dma_fence_set_error(&request->fence, -EIO);
2933 	i915_gem_request_submit(request);
2934 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2935 }
2936 
2937 static void engine_set_wedged(struct intel_engine_cs *engine)
2938 {
2939 	struct drm_i915_gem_request *request;
2940 	unsigned long flags;
2941 
2942 	/* We need to be sure that no thread is running the old callback as
2943 	 * we install the nop handler (otherwise we would submit a request
2944 	 * to hardware that will never complete). In order to prevent this
2945 	 * race, we wait until the machine is idle before making the swap
2946 	 * (using stop_machine()).
2947 	 */
2948 	engine->submit_request = nop_submit_request;
2949 
2950 	/* Mark all executing requests as skipped */
2951 	spin_lock_irqsave(&engine->timeline->lock, flags);
2952 	list_for_each_entry(request, &engine->timeline->requests, link)
2953 		dma_fence_set_error(&request->fence, -EIO);
2954 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2955 
2956 	/* Mark all pending requests as complete so that any concurrent
2957 	 * (lockless) lookup doesn't try and wait upon the request as we
2958 	 * reset it.
2959 	 */
2960 	intel_engine_init_global_seqno(engine,
2961 				       intel_engine_last_submit(engine));
2962 
2963 	/*
2964 	 * Clear the execlists queue up before freeing the requests, as those
2965 	 * are the ones that keep the context and ringbuffer backing objects
2966 	 * pinned in place.
2967 	 */
2968 
2969 	if (i915.enable_execlists) {
2970 		unsigned long flags;
2971 
2972 		spin_lock_irqsave(&engine->timeline->lock, flags);
2973 
2974 		i915_gem_request_put(engine->execlist_port[0].request);
2975 		i915_gem_request_put(engine->execlist_port[1].request);
2976 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2977 		engine->execlist_queue = RB_ROOT;
2978 		engine->execlist_first = NULL;
2979 
2980 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2981 	}
2982 }
2983 
2984 static int __i915_gem_set_wedged_BKL(void *data)
2985 {
2986 	struct drm_i915_private *i915 = data;
2987 	struct intel_engine_cs *engine;
2988 	enum intel_engine_id id;
2989 
2990 	for_each_engine(engine, i915, id)
2991 		engine_set_wedged(engine);
2992 
2993 	return 0;
2994 }
2995 
2996 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2997 {
2998 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2999 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3000 
3001 	/* Retire completed requests first so the list of inflight/incomplete
3002 	 * requests is accurate and we don't try and mark successful requests
3003 	 * as in error during __i915_gem_set_wedged_BKL().
3004 	 */
3005 	i915_gem_retire_requests(dev_priv);
3006 
3007 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3008 
3009 	i915_gem_context_lost(dev_priv);
3010 
3011 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3012 }
3013 
3014 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3015 {
3016 	struct i915_gem_timeline *tl;
3017 	int i;
3018 
3019 	lockdep_assert_held(&i915->drm.struct_mutex);
3020 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3021 		return true;
3022 
3023 	/* Before unwedging, make sure that all pending operations
3024 	 * are flushed and errored out - we may have requests waiting upon
3025 	 * third party fences. We marked all inflight requests as EIO, and
3026 	 * every execbuf since returned EIO, for consistency we want all
3027 	 * the currently pending requests to also be marked as EIO, which
3028 	 * is done inside our nop_submit_request - and so we must wait.
3029 	 *
3030 	 * No more can be submitted until we reset the wedged bit.
3031 	 */
3032 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3033 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3034 			struct drm_i915_gem_request *rq;
3035 
3036 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3037 						  &i915->drm.struct_mutex);
3038 			if (!rq)
3039 				continue;
3040 
3041 			/* We can't use our normal waiter as we want to
3042 			 * avoid recursively trying to handle the current
3043 			 * reset. The basic dma_fence_default_wait() installs
3044 			 * a callback for dma_fence_signal(), which is
3045 			 * triggered by our nop handler (indirectly, the
3046 			 * callback enables the signaler thread which is
3047 			 * woken by the nop_submit_request() advancing the seqno
3048 			 * and when the seqno passes the fence, the signaler
3049 			 * then signals the fence waking us up).
3050 			 */
3051 			if (dma_fence_default_wait(&rq->fence, true,
3052 						   MAX_SCHEDULE_TIMEOUT) < 0)
3053 				return false;
3054 		}
3055 	}
3056 
3057 	/* Undo nop_submit_request. We prevent all new i915 requests from
3058 	 * being queued (by disallowing execbuf whilst wedged) so having
3059 	 * waited for all active requests above, we know the system is idle
3060 	 * and do not have to worry about a thread being inside
3061 	 * engine->submit_request() as we swap over. So unlike installing
3062 	 * the nop_submit_request on reset, we can do this from normal
3063 	 * context and do not require stop_machine().
3064 	 */
3065 	intel_engines_reset_default_submission(i915);
3066 
3067 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3068 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3069 
3070 	return true;
3071 }
3072 
3073 static void
3074 i915_gem_retire_work_handler(struct work_struct *work)
3075 {
3076 	struct drm_i915_private *dev_priv =
3077 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3078 	struct drm_device *dev = &dev_priv->drm;
3079 
3080 	/* Come back later if the device is busy... */
3081 	if (mutex_trylock(&dev->struct_mutex)) {
3082 		i915_gem_retire_requests(dev_priv);
3083 		mutex_unlock(&dev->struct_mutex);
3084 	}
3085 
3086 	/* Keep the retire handler running until we are finally idle.
3087 	 * We do not need to do this test under locking as in the worst-case
3088 	 * we queue the retire worker once too often.
3089 	 */
3090 	if (READ_ONCE(dev_priv->gt.awake)) {
3091 		i915_queue_hangcheck(dev_priv);
3092 		queue_delayed_work(dev_priv->wq,
3093 				   &dev_priv->gt.retire_work,
3094 				   round_jiffies_up_relative(HZ));
3095 	}
3096 }
3097 
3098 static void
3099 i915_gem_idle_work_handler(struct work_struct *work)
3100 {
3101 	struct drm_i915_private *dev_priv =
3102 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3103 	struct drm_device *dev = &dev_priv->drm;
3104 	struct intel_engine_cs *engine;
3105 	enum intel_engine_id id;
3106 	bool rearm_hangcheck;
3107 
3108 	if (!READ_ONCE(dev_priv->gt.awake))
3109 		return;
3110 
3111 	/*
3112 	 * Wait for last execlists context complete, but bail out in case a
3113 	 * new request is submitted.
3114 	 */
3115 	wait_for(intel_engines_are_idle(dev_priv), 10);
3116 	if (READ_ONCE(dev_priv->gt.active_requests))
3117 		return;
3118 
3119 	rearm_hangcheck =
3120 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3121 
3122 	if (!mutex_trylock(&dev->struct_mutex)) {
3123 		/* Currently busy, come back later */
3124 		mod_delayed_work(dev_priv->wq,
3125 				 &dev_priv->gt.idle_work,
3126 				 msecs_to_jiffies(50));
3127 		goto out_rearm;
3128 	}
3129 
3130 	/*
3131 	 * New request retired after this work handler started, extend active
3132 	 * period until next instance of the work.
3133 	 */
3134 	if (work_pending(work))
3135 		goto out_unlock;
3136 
3137 	if (dev_priv->gt.active_requests)
3138 		goto out_unlock;
3139 
3140 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3141 		DRM_ERROR("Timeout waiting for engines to idle\n");
3142 
3143 	for_each_engine(engine, dev_priv, id) {
3144 		intel_engine_disarm_breadcrumbs(engine);
3145 		i915_gem_batch_pool_fini(&engine->batch_pool);
3146 	}
3147 
3148 	GEM_BUG_ON(!dev_priv->gt.awake);
3149 	dev_priv->gt.awake = false;
3150 	rearm_hangcheck = false;
3151 
3152 	if (INTEL_GEN(dev_priv) >= 6)
3153 		gen6_rps_idle(dev_priv);
3154 	intel_runtime_pm_put(dev_priv);
3155 out_unlock:
3156 	mutex_unlock(&dev->struct_mutex);
3157 
3158 out_rearm:
3159 	if (rearm_hangcheck) {
3160 		GEM_BUG_ON(!dev_priv->gt.awake);
3161 		i915_queue_hangcheck(dev_priv);
3162 	}
3163 }
3164 
3165 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3166 {
3167 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3168 	struct drm_i915_file_private *fpriv = file->driver_priv;
3169 	struct i915_vma *vma, *vn;
3170 
3171 	mutex_lock(&obj->base.dev->struct_mutex);
3172 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3173 		if (vma->vm->file == fpriv)
3174 			i915_vma_close(vma);
3175 
3176 	if (i915_gem_object_is_active(obj) &&
3177 	    !i915_gem_object_has_active_reference(obj)) {
3178 		i915_gem_object_set_active_reference(obj);
3179 		i915_gem_object_get(obj);
3180 	}
3181 	mutex_unlock(&obj->base.dev->struct_mutex);
3182 }
3183 
3184 static unsigned long to_wait_timeout(s64 timeout_ns)
3185 {
3186 	if (timeout_ns < 0)
3187 		return MAX_SCHEDULE_TIMEOUT;
3188 
3189 	if (timeout_ns == 0)
3190 		return 0;
3191 
3192 	return nsecs_to_jiffies_timeout(timeout_ns);
3193 }
3194 
3195 /**
3196  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3197  * @dev: drm device pointer
3198  * @data: ioctl data blob
3199  * @file: drm file pointer
3200  *
3201  * Returns 0 if successful, else an error is returned with the remaining time in
3202  * the timeout parameter.
3203  *  -ETIME: object is still busy after timeout
3204  *  -ERESTARTSYS: signal interrupted the wait
3205  *  -ENONENT: object doesn't exist
3206  * Also possible, but rare:
3207  *  -EAGAIN: GPU wedged
3208  *  -ENOMEM: damn
3209  *  -ENODEV: Internal IRQ fail
3210  *  -E?: The add request failed
3211  *
3212  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3213  * non-zero timeout parameter the wait ioctl will wait for the given number of
3214  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3215  * without holding struct_mutex the object may become re-busied before this
3216  * function completes. A similar but shorter * race condition exists in the busy
3217  * ioctl
3218  */
3219 int
3220 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3221 {
3222 	struct drm_i915_gem_wait *args = data;
3223 	struct drm_i915_gem_object *obj;
3224 	ktime_t start;
3225 	long ret;
3226 
3227 	if (args->flags != 0)
3228 		return -EINVAL;
3229 
3230 	obj = i915_gem_object_lookup(file, args->bo_handle);
3231 	if (!obj)
3232 		return -ENOENT;
3233 
3234 	start = ktime_get();
3235 
3236 	ret = i915_gem_object_wait(obj,
3237 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3238 				   to_wait_timeout(args->timeout_ns),
3239 				   to_rps_client(file));
3240 
3241 	if (args->timeout_ns > 0) {
3242 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3243 		if (args->timeout_ns < 0)
3244 			args->timeout_ns = 0;
3245 
3246 		/*
3247 		 * Apparently ktime isn't accurate enough and occasionally has a
3248 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3249 		 * things up to make the test happy. We allow up to 1 jiffy.
3250 		 *
3251 		 * This is a regression from the timespec->ktime conversion.
3252 		 */
3253 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3254 			args->timeout_ns = 0;
3255 	}
3256 
3257 	i915_gem_object_put(obj);
3258 	return ret;
3259 }
3260 
3261 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3262 {
3263 	int ret, i;
3264 
3265 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3266 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3267 		if (ret)
3268 			return ret;
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3275 {
3276 	return wait_for(intel_engine_is_idle(engine), timeout_ms);
3277 }
3278 
3279 static int wait_for_engines(struct drm_i915_private *i915)
3280 {
3281 	struct intel_engine_cs *engine;
3282 	enum intel_engine_id id;
3283 
3284 	for_each_engine(engine, i915, id) {
3285 		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3286 			i915_gem_set_wedged(i915);
3287 			return -EIO;
3288 		}
3289 
3290 		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3291 			   intel_engine_last_submit(engine));
3292 	}
3293 
3294 	return 0;
3295 }
3296 
3297 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3298 {
3299 	int ret;
3300 
3301 	if (flags & I915_WAIT_LOCKED) {
3302 		struct i915_gem_timeline *tl;
3303 
3304 		lockdep_assert_held(&i915->drm.struct_mutex);
3305 
3306 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3307 			ret = wait_for_timeline(tl, flags);
3308 			if (ret)
3309 				return ret;
3310 		}
3311 
3312 		i915_gem_retire_requests(i915);
3313 		GEM_BUG_ON(i915->gt.active_requests);
3314 
3315 		ret = wait_for_engines(i915);
3316 	} else {
3317 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3318 	}
3319 
3320 	return ret;
3321 }
3322 
3323 /** Flushes the GTT write domain for the object if it's dirty. */
3324 static void
3325 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3326 {
3327 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3328 
3329 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3330 		return;
3331 
3332 	/* No actual flushing is required for the GTT write domain.  Writes
3333 	 * to it "immediately" go to main memory as far as we know, so there's
3334 	 * no chipset flush.  It also doesn't land in render cache.
3335 	 *
3336 	 * However, we do have to enforce the order so that all writes through
3337 	 * the GTT land before any writes to the device, such as updates to
3338 	 * the GATT itself.
3339 	 *
3340 	 * We also have to wait a bit for the writes to land from the GTT.
3341 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3342 	 * timing. This issue has only been observed when switching quickly
3343 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3344 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3345 	 * system agents we cannot reproduce this behaviour).
3346 	 */
3347 	wmb();
3348 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3349 		if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3350 			spin_lock_irq(&dev_priv->uncore.lock);
3351 			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3352 			spin_unlock_irq(&dev_priv->uncore.lock);
3353 			intel_runtime_pm_put(dev_priv);
3354 		}
3355 	}
3356 
3357 	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3358 
3359 	obj->base.write_domain = 0;
3360 }
3361 
3362 /** Flushes the CPU write domain for the object if it's dirty. */
3363 static void
3364 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3365 {
3366 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3367 		return;
3368 
3369 	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3370 	obj->base.write_domain = 0;
3371 }
3372 
3373 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3374 {
3375 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3376 		return;
3377 
3378 	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3379 	obj->base.write_domain = 0;
3380 }
3381 
3382 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3383 {
3384 	if (!READ_ONCE(obj->pin_display))
3385 		return;
3386 
3387 	mutex_lock(&obj->base.dev->struct_mutex);
3388 	__i915_gem_object_flush_for_display(obj);
3389 	mutex_unlock(&obj->base.dev->struct_mutex);
3390 }
3391 
3392 /**
3393  * Moves a single object to the GTT read, and possibly write domain.
3394  * @obj: object to act on
3395  * @write: ask for write access or read only
3396  *
3397  * This function returns when the move is complete, including waiting on
3398  * flushes to occur.
3399  */
3400 int
3401 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3402 {
3403 	int ret;
3404 
3405 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3406 
3407 	ret = i915_gem_object_wait(obj,
3408 				   I915_WAIT_INTERRUPTIBLE |
3409 				   I915_WAIT_LOCKED |
3410 				   (write ? I915_WAIT_ALL : 0),
3411 				   MAX_SCHEDULE_TIMEOUT,
3412 				   NULL);
3413 	if (ret)
3414 		return ret;
3415 
3416 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3417 		return 0;
3418 
3419 	/* Flush and acquire obj->pages so that we are coherent through
3420 	 * direct access in memory with previous cached writes through
3421 	 * shmemfs and that our cache domain tracking remains valid.
3422 	 * For example, if the obj->filp was moved to swap without us
3423 	 * being notified and releasing the pages, we would mistakenly
3424 	 * continue to assume that the obj remained out of the CPU cached
3425 	 * domain.
3426 	 */
3427 	ret = i915_gem_object_pin_pages(obj);
3428 	if (ret)
3429 		return ret;
3430 
3431 	i915_gem_object_flush_cpu_write_domain(obj);
3432 
3433 	/* Serialise direct access to this object with the barriers for
3434 	 * coherent writes from the GPU, by effectively invalidating the
3435 	 * GTT domain upon first access.
3436 	 */
3437 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3438 		mb();
3439 
3440 	/* It should now be out of any other write domains, and we can update
3441 	 * the domain values for our changes.
3442 	 */
3443 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3445 	if (write) {
3446 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448 		obj->mm.dirty = true;
3449 	}
3450 
3451 	i915_gem_object_unpin_pages(obj);
3452 	return 0;
3453 }
3454 
3455 /**
3456  * Changes the cache-level of an object across all VMA.
3457  * @obj: object to act on
3458  * @cache_level: new cache level to set for the object
3459  *
3460  * After this function returns, the object will be in the new cache-level
3461  * across all GTT and the contents of the backing storage will be coherent,
3462  * with respect to the new cache-level. In order to keep the backing storage
3463  * coherent for all users, we only allow a single cache level to be set
3464  * globally on the object and prevent it from being changed whilst the
3465  * hardware is reading from the object. That is if the object is currently
3466  * on the scanout it will be set to uncached (or equivalent display
3467  * cache coherency) and all non-MOCS GPU access will also be uncached so
3468  * that all direct access to the scanout remains coherent.
3469  */
3470 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3471 				    enum i915_cache_level cache_level)
3472 {
3473 	struct i915_vma *vma;
3474 	int ret;
3475 
3476 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3477 
3478 	if (obj->cache_level == cache_level)
3479 		return 0;
3480 
3481 	/* Inspect the list of currently bound VMA and unbind any that would
3482 	 * be invalid given the new cache-level. This is principally to
3483 	 * catch the issue of the CS prefetch crossing page boundaries and
3484 	 * reading an invalid PTE on older architectures.
3485 	 */
3486 restart:
3487 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3488 		if (!drm_mm_node_allocated(&vma->node))
3489 			continue;
3490 
3491 		if (i915_vma_is_pinned(vma)) {
3492 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3493 			return -EBUSY;
3494 		}
3495 
3496 		if (i915_gem_valid_gtt_space(vma, cache_level))
3497 			continue;
3498 
3499 		ret = i915_vma_unbind(vma);
3500 		if (ret)
3501 			return ret;
3502 
3503 		/* As unbinding may affect other elements in the
3504 		 * obj->vma_list (due to side-effects from retiring
3505 		 * an active vma), play safe and restart the iterator.
3506 		 */
3507 		goto restart;
3508 	}
3509 
3510 	/* We can reuse the existing drm_mm nodes but need to change the
3511 	 * cache-level on the PTE. We could simply unbind them all and
3512 	 * rebind with the correct cache-level on next use. However since
3513 	 * we already have a valid slot, dma mapping, pages etc, we may as
3514 	 * rewrite the PTE in the belief that doing so tramples upon less
3515 	 * state and so involves less work.
3516 	 */
3517 	if (obj->bind_count) {
3518 		/* Before we change the PTE, the GPU must not be accessing it.
3519 		 * If we wait upon the object, we know that all the bound
3520 		 * VMA are no longer active.
3521 		 */
3522 		ret = i915_gem_object_wait(obj,
3523 					   I915_WAIT_INTERRUPTIBLE |
3524 					   I915_WAIT_LOCKED |
3525 					   I915_WAIT_ALL,
3526 					   MAX_SCHEDULE_TIMEOUT,
3527 					   NULL);
3528 		if (ret)
3529 			return ret;
3530 
3531 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3532 		    cache_level != I915_CACHE_NONE) {
3533 			/* Access to snoopable pages through the GTT is
3534 			 * incoherent and on some machines causes a hard
3535 			 * lockup. Relinquish the CPU mmaping to force
3536 			 * userspace to refault in the pages and we can
3537 			 * then double check if the GTT mapping is still
3538 			 * valid for that pointer access.
3539 			 */
3540 			i915_gem_release_mmap(obj);
3541 
3542 			/* As we no longer need a fence for GTT access,
3543 			 * we can relinquish it now (and so prevent having
3544 			 * to steal a fence from someone else on the next
3545 			 * fence request). Note GPU activity would have
3546 			 * dropped the fence as all snoopable access is
3547 			 * supposed to be linear.
3548 			 */
3549 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3550 				ret = i915_vma_put_fence(vma);
3551 				if (ret)
3552 					return ret;
3553 			}
3554 		} else {
3555 			/* We either have incoherent backing store and
3556 			 * so no GTT access or the architecture is fully
3557 			 * coherent. In such cases, existing GTT mmaps
3558 			 * ignore the cache bit in the PTE and we can
3559 			 * rewrite it without confusing the GPU or having
3560 			 * to force userspace to fault back in its mmaps.
3561 			 */
3562 		}
3563 
3564 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3565 			if (!drm_mm_node_allocated(&vma->node))
3566 				continue;
3567 
3568 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3569 			if (ret)
3570 				return ret;
3571 		}
3572 	}
3573 
3574 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3575 	    i915_gem_object_is_coherent(obj))
3576 		obj->cache_dirty = true;
3577 
3578 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3579 		vma->node.color = cache_level;
3580 	obj->cache_level = cache_level;
3581 
3582 	return 0;
3583 }
3584 
3585 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3586 			       struct drm_file *file)
3587 {
3588 	struct drm_i915_gem_caching *args = data;
3589 	struct drm_i915_gem_object *obj;
3590 	int err = 0;
3591 
3592 	rcu_read_lock();
3593 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3594 	if (!obj) {
3595 		err = -ENOENT;
3596 		goto out;
3597 	}
3598 
3599 	switch (obj->cache_level) {
3600 	case I915_CACHE_LLC:
3601 	case I915_CACHE_L3_LLC:
3602 		args->caching = I915_CACHING_CACHED;
3603 		break;
3604 
3605 	case I915_CACHE_WT:
3606 		args->caching = I915_CACHING_DISPLAY;
3607 		break;
3608 
3609 	default:
3610 		args->caching = I915_CACHING_NONE;
3611 		break;
3612 	}
3613 out:
3614 	rcu_read_unlock();
3615 	return err;
3616 }
3617 
3618 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3619 			       struct drm_file *file)
3620 {
3621 	struct drm_i915_private *i915 = to_i915(dev);
3622 	struct drm_i915_gem_caching *args = data;
3623 	struct drm_i915_gem_object *obj;
3624 	enum i915_cache_level level;
3625 	int ret = 0;
3626 
3627 	switch (args->caching) {
3628 	case I915_CACHING_NONE:
3629 		level = I915_CACHE_NONE;
3630 		break;
3631 	case I915_CACHING_CACHED:
3632 		/*
3633 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3634 		 * snooped mapping may leave stale data in a corresponding CPU
3635 		 * cacheline, whereas normally such cachelines would get
3636 		 * invalidated.
3637 		 */
3638 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3639 			return -ENODEV;
3640 
3641 		level = I915_CACHE_LLC;
3642 		break;
3643 	case I915_CACHING_DISPLAY:
3644 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3645 		break;
3646 	default:
3647 		return -EINVAL;
3648 	}
3649 
3650 	obj = i915_gem_object_lookup(file, args->handle);
3651 	if (!obj)
3652 		return -ENOENT;
3653 
3654 	if (obj->cache_level == level)
3655 		goto out;
3656 
3657 	ret = i915_gem_object_wait(obj,
3658 				   I915_WAIT_INTERRUPTIBLE,
3659 				   MAX_SCHEDULE_TIMEOUT,
3660 				   to_rps_client(file));
3661 	if (ret)
3662 		goto out;
3663 
3664 	ret = i915_mutex_lock_interruptible(dev);
3665 	if (ret)
3666 		goto out;
3667 
3668 	ret = i915_gem_object_set_cache_level(obj, level);
3669 	mutex_unlock(&dev->struct_mutex);
3670 
3671 out:
3672 	i915_gem_object_put(obj);
3673 	return ret;
3674 }
3675 
3676 /*
3677  * Prepare buffer for display plane (scanout, cursors, etc).
3678  * Can be called from an uninterruptible phase (modesetting) and allows
3679  * any flushes to be pipelined (for pageflips).
3680  */
3681 struct i915_vma *
3682 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3683 				     u32 alignment,
3684 				     const struct i915_ggtt_view *view)
3685 {
3686 	struct i915_vma *vma;
3687 	int ret;
3688 
3689 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3690 
3691 	/* Mark the pin_display early so that we account for the
3692 	 * display coherency whilst setting up the cache domains.
3693 	 */
3694 	obj->pin_display++;
3695 
3696 	/* The display engine is not coherent with the LLC cache on gen6.  As
3697 	 * a result, we make sure that the pinning that is about to occur is
3698 	 * done with uncached PTEs. This is lowest common denominator for all
3699 	 * chipsets.
3700 	 *
3701 	 * However for gen6+, we could do better by using the GFDT bit instead
3702 	 * of uncaching, which would allow us to flush all the LLC-cached data
3703 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3704 	 */
3705 	ret = i915_gem_object_set_cache_level(obj,
3706 					      HAS_WT(to_i915(obj->base.dev)) ?
3707 					      I915_CACHE_WT : I915_CACHE_NONE);
3708 	if (ret) {
3709 		vma = ERR_PTR(ret);
3710 		goto err_unpin_display;
3711 	}
3712 
3713 	/* As the user may map the buffer once pinned in the display plane
3714 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3715 	 * always use map_and_fenceable for all scanout buffers. However,
3716 	 * it may simply be too big to fit into mappable, in which case
3717 	 * put it anyway and hope that userspace can cope (but always first
3718 	 * try to preserve the existing ABI).
3719 	 */
3720 	vma = ERR_PTR(-ENOSPC);
3721 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3722 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3723 					       PIN_MAPPABLE | PIN_NONBLOCK);
3724 	if (IS_ERR(vma)) {
3725 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3726 		unsigned int flags;
3727 
3728 		/* Valleyview is definitely limited to scanning out the first
3729 		 * 512MiB. Lets presume this behaviour was inherited from the
3730 		 * g4x display engine and that all earlier gen are similarly
3731 		 * limited. Testing suggests that it is a little more
3732 		 * complicated than this. For example, Cherryview appears quite
3733 		 * happy to scanout from anywhere within its global aperture.
3734 		 */
3735 		flags = 0;
3736 		if (HAS_GMCH_DISPLAY(i915))
3737 			flags = PIN_MAPPABLE;
3738 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3739 	}
3740 	if (IS_ERR(vma))
3741 		goto err_unpin_display;
3742 
3743 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3744 
3745 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3746 	__i915_gem_object_flush_for_display(obj);
3747 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3748 
3749 	/* It should now be out of any other write domains, and we can update
3750 	 * the domain values for our changes.
3751 	 */
3752 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3753 
3754 	return vma;
3755 
3756 err_unpin_display:
3757 	obj->pin_display--;
3758 	return vma;
3759 }
3760 
3761 void
3762 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3763 {
3764 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3765 
3766 	if (WARN_ON(vma->obj->pin_display == 0))
3767 		return;
3768 
3769 	if (--vma->obj->pin_display == 0)
3770 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3771 
3772 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3773 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3774 
3775 	i915_vma_unpin(vma);
3776 }
3777 
3778 /**
3779  * Moves a single object to the CPU read, and possibly write domain.
3780  * @obj: object to act on
3781  * @write: requesting write or read-only access
3782  *
3783  * This function returns when the move is complete, including waiting on
3784  * flushes to occur.
3785  */
3786 int
3787 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3788 {
3789 	int ret;
3790 
3791 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3792 
3793 	ret = i915_gem_object_wait(obj,
3794 				   I915_WAIT_INTERRUPTIBLE |
3795 				   I915_WAIT_LOCKED |
3796 				   (write ? I915_WAIT_ALL : 0),
3797 				   MAX_SCHEDULE_TIMEOUT,
3798 				   NULL);
3799 	if (ret)
3800 		return ret;
3801 
3802 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3803 		return 0;
3804 
3805 	i915_gem_object_flush_gtt_write_domain(obj);
3806 
3807 	/* Flush the CPU cache if it's still invalid. */
3808 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3809 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3810 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3811 	}
3812 
3813 	/* It should now be out of any other write domains, and we can update
3814 	 * the domain values for our changes.
3815 	 */
3816 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3817 
3818 	/* If we're writing through the CPU, then the GPU read domains will
3819 	 * need to be invalidated at next use.
3820 	 */
3821 	if (write) {
3822 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3823 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 /* Throttle our rendering by waiting until the ring has completed our requests
3830  * emitted over 20 msec ago.
3831  *
3832  * Note that if we were to use the current jiffies each time around the loop,
3833  * we wouldn't escape the function with any frames outstanding if the time to
3834  * render a frame was over 20ms.
3835  *
3836  * This should get us reasonable parallelism between CPU and GPU but also
3837  * relatively low latency when blocking on a particular request to finish.
3838  */
3839 static int
3840 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3841 {
3842 	struct drm_i915_private *dev_priv = to_i915(dev);
3843 	struct drm_i915_file_private *file_priv = file->driver_priv;
3844 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3845 	struct drm_i915_gem_request *request, *target = NULL;
3846 	long ret;
3847 
3848 	/* ABI: return -EIO if already wedged */
3849 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3850 		return -EIO;
3851 
3852 	spin_lock(&file_priv->mm.lock);
3853 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3854 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3855 			break;
3856 
3857 		if (target) {
3858 			list_del(&target->client_link);
3859 			target->file_priv = NULL;
3860 		}
3861 
3862 		target = request;
3863 	}
3864 	if (target)
3865 		i915_gem_request_get(target);
3866 	spin_unlock(&file_priv->mm.lock);
3867 
3868 	if (target == NULL)
3869 		return 0;
3870 
3871 	ret = i915_wait_request(target,
3872 				I915_WAIT_INTERRUPTIBLE,
3873 				MAX_SCHEDULE_TIMEOUT);
3874 	i915_gem_request_put(target);
3875 
3876 	return ret < 0 ? ret : 0;
3877 }
3878 
3879 struct i915_vma *
3880 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3881 			 const struct i915_ggtt_view *view,
3882 			 u64 size,
3883 			 u64 alignment,
3884 			 u64 flags)
3885 {
3886 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3887 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3888 	struct i915_vma *vma;
3889 	int ret;
3890 
3891 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3892 
3893 	vma = i915_vma_instance(obj, vm, view);
3894 	if (unlikely(IS_ERR(vma)))
3895 		return vma;
3896 
3897 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3898 		if (flags & PIN_NONBLOCK &&
3899 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3900 			return ERR_PTR(-ENOSPC);
3901 
3902 		if (flags & PIN_MAPPABLE) {
3903 			/* If the required space is larger than the available
3904 			 * aperture, we will not able to find a slot for the
3905 			 * object and unbinding the object now will be in
3906 			 * vain. Worse, doing so may cause us to ping-pong
3907 			 * the object in and out of the Global GTT and
3908 			 * waste a lot of cycles under the mutex.
3909 			 */
3910 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3911 				return ERR_PTR(-E2BIG);
3912 
3913 			/* If NONBLOCK is set the caller is optimistically
3914 			 * trying to cache the full object within the mappable
3915 			 * aperture, and *must* have a fallback in place for
3916 			 * situations where we cannot bind the object. We
3917 			 * can be a little more lax here and use the fallback
3918 			 * more often to avoid costly migrations of ourselves
3919 			 * and other objects within the aperture.
3920 			 *
3921 			 * Half-the-aperture is used as a simple heuristic.
3922 			 * More interesting would to do search for a free
3923 			 * block prior to making the commitment to unbind.
3924 			 * That caters for the self-harm case, and with a
3925 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3926 			 * we could try to minimise harm to others.
3927 			 */
3928 			if (flags & PIN_NONBLOCK &&
3929 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3930 				return ERR_PTR(-ENOSPC);
3931 		}
3932 
3933 		WARN(i915_vma_is_pinned(vma),
3934 		     "bo is already pinned in ggtt with incorrect alignment:"
3935 		     " offset=%08x, req.alignment=%llx,"
3936 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3937 		     i915_ggtt_offset(vma), alignment,
3938 		     !!(flags & PIN_MAPPABLE),
3939 		     i915_vma_is_map_and_fenceable(vma));
3940 		ret = i915_vma_unbind(vma);
3941 		if (ret)
3942 			return ERR_PTR(ret);
3943 	}
3944 
3945 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3946 	if (ret)
3947 		return ERR_PTR(ret);
3948 
3949 	return vma;
3950 }
3951 
3952 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3953 {
3954 	/* Note that we could alias engines in the execbuf API, but
3955 	 * that would be very unwise as it prevents userspace from
3956 	 * fine control over engine selection. Ahem.
3957 	 *
3958 	 * This should be something like EXEC_MAX_ENGINE instead of
3959 	 * I915_NUM_ENGINES.
3960 	 */
3961 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3962 	return 0x10000 << id;
3963 }
3964 
3965 static __always_inline unsigned int __busy_write_id(unsigned int id)
3966 {
3967 	/* The uABI guarantees an active writer is also amongst the read
3968 	 * engines. This would be true if we accessed the activity tracking
3969 	 * under the lock, but as we perform the lookup of the object and
3970 	 * its activity locklessly we can not guarantee that the last_write
3971 	 * being active implies that we have set the same engine flag from
3972 	 * last_read - hence we always set both read and write busy for
3973 	 * last_write.
3974 	 */
3975 	return id | __busy_read_flag(id);
3976 }
3977 
3978 static __always_inline unsigned int
3979 __busy_set_if_active(const struct dma_fence *fence,
3980 		     unsigned int (*flag)(unsigned int id))
3981 {
3982 	struct drm_i915_gem_request *rq;
3983 
3984 	/* We have to check the current hw status of the fence as the uABI
3985 	 * guarantees forward progress. We could rely on the idle worker
3986 	 * to eventually flush us, but to minimise latency just ask the
3987 	 * hardware.
3988 	 *
3989 	 * Note we only report on the status of native fences.
3990 	 */
3991 	if (!dma_fence_is_i915(fence))
3992 		return 0;
3993 
3994 	/* opencode to_request() in order to avoid const warnings */
3995 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3996 	if (i915_gem_request_completed(rq))
3997 		return 0;
3998 
3999 	return flag(rq->engine->exec_id);
4000 }
4001 
4002 static __always_inline unsigned int
4003 busy_check_reader(const struct dma_fence *fence)
4004 {
4005 	return __busy_set_if_active(fence, __busy_read_flag);
4006 }
4007 
4008 static __always_inline unsigned int
4009 busy_check_writer(const struct dma_fence *fence)
4010 {
4011 	if (!fence)
4012 		return 0;
4013 
4014 	return __busy_set_if_active(fence, __busy_write_id);
4015 }
4016 
4017 int
4018 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4019 		    struct drm_file *file)
4020 {
4021 	struct drm_i915_gem_busy *args = data;
4022 	struct drm_i915_gem_object *obj;
4023 	struct reservation_object_list *list;
4024 	unsigned int seq;
4025 	int err;
4026 
4027 	err = -ENOENT;
4028 	rcu_read_lock();
4029 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4030 	if (!obj)
4031 		goto out;
4032 
4033 	/* A discrepancy here is that we do not report the status of
4034 	 * non-i915 fences, i.e. even though we may report the object as idle,
4035 	 * a call to set-domain may still stall waiting for foreign rendering.
4036 	 * This also means that wait-ioctl may report an object as busy,
4037 	 * where busy-ioctl considers it idle.
4038 	 *
4039 	 * We trade the ability to warn of foreign fences to report on which
4040 	 * i915 engines are active for the object.
4041 	 *
4042 	 * Alternatively, we can trade that extra information on read/write
4043 	 * activity with
4044 	 *	args->busy =
4045 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4046 	 * to report the overall busyness. This is what the wait-ioctl does.
4047 	 *
4048 	 */
4049 retry:
4050 	seq = raw_read_seqcount(&obj->resv->seq);
4051 
4052 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4053 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4054 
4055 	/* Translate shared fences to READ set of engines */
4056 	list = rcu_dereference(obj->resv->fence);
4057 	if (list) {
4058 		unsigned int shared_count = list->shared_count, i;
4059 
4060 		for (i = 0; i < shared_count; ++i) {
4061 			struct dma_fence *fence =
4062 				rcu_dereference(list->shared[i]);
4063 
4064 			args->busy |= busy_check_reader(fence);
4065 		}
4066 	}
4067 
4068 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4069 		goto retry;
4070 
4071 	err = 0;
4072 out:
4073 	rcu_read_unlock();
4074 	return err;
4075 }
4076 
4077 int
4078 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4079 			struct drm_file *file_priv)
4080 {
4081 	return i915_gem_ring_throttle(dev, file_priv);
4082 }
4083 
4084 int
4085 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4086 		       struct drm_file *file_priv)
4087 {
4088 	struct drm_i915_private *dev_priv = to_i915(dev);
4089 	struct drm_i915_gem_madvise *args = data;
4090 	struct drm_i915_gem_object *obj;
4091 	int err;
4092 
4093 	switch (args->madv) {
4094 	case I915_MADV_DONTNEED:
4095 	case I915_MADV_WILLNEED:
4096 	    break;
4097 	default:
4098 	    return -EINVAL;
4099 	}
4100 
4101 	obj = i915_gem_object_lookup(file_priv, args->handle);
4102 	if (!obj)
4103 		return -ENOENT;
4104 
4105 	err = mutex_lock_interruptible(&obj->mm.lock);
4106 	if (err)
4107 		goto out;
4108 
4109 	if (obj->mm.pages &&
4110 	    i915_gem_object_is_tiled(obj) &&
4111 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4112 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4113 			GEM_BUG_ON(!obj->mm.quirked);
4114 			__i915_gem_object_unpin_pages(obj);
4115 			obj->mm.quirked = false;
4116 		}
4117 		if (args->madv == I915_MADV_WILLNEED) {
4118 			GEM_BUG_ON(obj->mm.quirked);
4119 			__i915_gem_object_pin_pages(obj);
4120 			obj->mm.quirked = true;
4121 		}
4122 	}
4123 
4124 	if (obj->mm.madv != __I915_MADV_PURGED)
4125 		obj->mm.madv = args->madv;
4126 
4127 	/* if the object is no longer attached, discard its backing storage */
4128 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4129 		i915_gem_object_truncate(obj);
4130 
4131 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4132 	mutex_unlock(&obj->mm.lock);
4133 
4134 out:
4135 	i915_gem_object_put(obj);
4136 	return err;
4137 }
4138 
4139 static void
4140 frontbuffer_retire(struct i915_gem_active *active,
4141 		   struct drm_i915_gem_request *request)
4142 {
4143 	struct drm_i915_gem_object *obj =
4144 		container_of(active, typeof(*obj), frontbuffer_write);
4145 
4146 	intel_fb_obj_flush(obj, ORIGIN_CS);
4147 }
4148 
4149 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4150 			  const struct drm_i915_gem_object_ops *ops)
4151 {
4152 	mutex_init(&obj->mm.lock);
4153 
4154 	INIT_LIST_HEAD(&obj->global_link);
4155 	INIT_LIST_HEAD(&obj->userfault_link);
4156 	INIT_LIST_HEAD(&obj->obj_exec_link);
4157 	INIT_LIST_HEAD(&obj->vma_list);
4158 	INIT_LIST_HEAD(&obj->batch_pool_link);
4159 
4160 	obj->ops = ops;
4161 
4162 	reservation_object_init(&obj->__builtin_resv);
4163 	obj->resv = &obj->__builtin_resv;
4164 
4165 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4166 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4167 
4168 	obj->mm.madv = I915_MADV_WILLNEED;
4169 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4170 	mutex_init(&obj->mm.get_page.lock);
4171 
4172 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4173 }
4174 
4175 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4176 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4177 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4178 
4179 	.get_pages = i915_gem_object_get_pages_gtt,
4180 	.put_pages = i915_gem_object_put_pages_gtt,
4181 
4182 	.pwrite = i915_gem_object_pwrite_gtt,
4183 };
4184 
4185 struct drm_i915_gem_object *
4186 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4187 {
4188 	struct drm_i915_gem_object *obj;
4189 	struct address_space *mapping;
4190 	gfp_t mask;
4191 	int ret;
4192 
4193 	/* There is a prevalence of the assumption that we fit the object's
4194 	 * page count inside a 32bit _signed_ variable. Let's document this and
4195 	 * catch if we ever need to fix it. In the meantime, if you do spot
4196 	 * such a local variable, please consider fixing!
4197 	 */
4198 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4199 		return ERR_PTR(-E2BIG);
4200 
4201 	if (overflows_type(size, obj->base.size))
4202 		return ERR_PTR(-E2BIG);
4203 
4204 	obj = i915_gem_object_alloc(dev_priv);
4205 	if (obj == NULL)
4206 		return ERR_PTR(-ENOMEM);
4207 
4208 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4209 	if (ret)
4210 		goto fail;
4211 
4212 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4213 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4214 		/* 965gm cannot relocate objects above 4GiB. */
4215 		mask &= ~__GFP_HIGHMEM;
4216 		mask |= __GFP_DMA32;
4217 	}
4218 
4219 	mapping = obj->base.filp->f_mapping;
4220 	mapping_set_gfp_mask(mapping, mask);
4221 
4222 	i915_gem_object_init(obj, &i915_gem_object_ops);
4223 
4224 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226 
4227 	if (HAS_LLC(dev_priv)) {
4228 		/* On some devices, we can have the GPU use the LLC (the CPU
4229 		 * cache) for about a 10% performance improvement
4230 		 * compared to uncached.  Graphics requests other than
4231 		 * display scanout are coherent with the CPU in
4232 		 * accessing this cache.  This means in this mode we
4233 		 * don't need to clflush on the CPU side, and on the
4234 		 * GPU side we only need to flush internal caches to
4235 		 * get data visible to the CPU.
4236 		 *
4237 		 * However, we maintain the display planes as UC, and so
4238 		 * need to rebind when first used as such.
4239 		 */
4240 		obj->cache_level = I915_CACHE_LLC;
4241 	} else
4242 		obj->cache_level = I915_CACHE_NONE;
4243 
4244 	trace_i915_gem_object_create(obj);
4245 
4246 	return obj;
4247 
4248 fail:
4249 	i915_gem_object_free(obj);
4250 	return ERR_PTR(ret);
4251 }
4252 
4253 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4254 {
4255 	/* If we are the last user of the backing storage (be it shmemfs
4256 	 * pages or stolen etc), we know that the pages are going to be
4257 	 * immediately released. In this case, we can then skip copying
4258 	 * back the contents from the GPU.
4259 	 */
4260 
4261 	if (obj->mm.madv != I915_MADV_WILLNEED)
4262 		return false;
4263 
4264 	if (obj->base.filp == NULL)
4265 		return true;
4266 
4267 	/* At first glance, this looks racy, but then again so would be
4268 	 * userspace racing mmap against close. However, the first external
4269 	 * reference to the filp can only be obtained through the
4270 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4271 	 * acquiring such a reference whilst we are in the middle of
4272 	 * freeing the object.
4273 	 */
4274 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4275 }
4276 
4277 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4278 				    struct llist_node *freed)
4279 {
4280 	struct drm_i915_gem_object *obj, *on;
4281 
4282 	mutex_lock(&i915->drm.struct_mutex);
4283 	intel_runtime_pm_get(i915);
4284 	llist_for_each_entry(obj, freed, freed) {
4285 		struct i915_vma *vma, *vn;
4286 
4287 		trace_i915_gem_object_destroy(obj);
4288 
4289 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4290 		list_for_each_entry_safe(vma, vn,
4291 					 &obj->vma_list, obj_link) {
4292 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4293 			GEM_BUG_ON(i915_vma_is_active(vma));
4294 			vma->flags &= ~I915_VMA_PIN_MASK;
4295 			i915_vma_close(vma);
4296 		}
4297 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4298 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4299 
4300 		list_del(&obj->global_link);
4301 	}
4302 	intel_runtime_pm_put(i915);
4303 	mutex_unlock(&i915->drm.struct_mutex);
4304 
4305 	llist_for_each_entry_safe(obj, on, freed, freed) {
4306 		GEM_BUG_ON(obj->bind_count);
4307 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4308 
4309 		if (obj->ops->release)
4310 			obj->ops->release(obj);
4311 
4312 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4313 			atomic_set(&obj->mm.pages_pin_count, 0);
4314 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4315 		GEM_BUG_ON(obj->mm.pages);
4316 
4317 		if (obj->base.import_attach)
4318 			drm_prime_gem_destroy(&obj->base, NULL);
4319 
4320 		reservation_object_fini(&obj->__builtin_resv);
4321 		drm_gem_object_release(&obj->base);
4322 		i915_gem_info_remove_obj(i915, obj->base.size);
4323 
4324 		kfree(obj->bit_17);
4325 		i915_gem_object_free(obj);
4326 	}
4327 }
4328 
4329 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4330 {
4331 	struct llist_node *freed;
4332 
4333 	freed = llist_del_all(&i915->mm.free_list);
4334 	if (unlikely(freed))
4335 		__i915_gem_free_objects(i915, freed);
4336 }
4337 
4338 static void __i915_gem_free_work(struct work_struct *work)
4339 {
4340 	struct drm_i915_private *i915 =
4341 		container_of(work, struct drm_i915_private, mm.free_work);
4342 	struct llist_node *freed;
4343 
4344 	/* All file-owned VMA should have been released by this point through
4345 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4346 	 * However, the object may also be bound into the global GTT (e.g.
4347 	 * older GPUs without per-process support, or for direct access through
4348 	 * the GTT either for the user or for scanout). Those VMA still need to
4349 	 * unbound now.
4350 	 */
4351 
4352 	while ((freed = llist_del_all(&i915->mm.free_list)))
4353 		__i915_gem_free_objects(i915, freed);
4354 }
4355 
4356 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4357 {
4358 	struct drm_i915_gem_object *obj =
4359 		container_of(head, typeof(*obj), rcu);
4360 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4361 
4362 	/* We can't simply use call_rcu() from i915_gem_free_object()
4363 	 * as we need to block whilst unbinding, and the call_rcu
4364 	 * task may be called from softirq context. So we take a
4365 	 * detour through a worker.
4366 	 */
4367 	if (llist_add(&obj->freed, &i915->mm.free_list))
4368 		schedule_work(&i915->mm.free_work);
4369 }
4370 
4371 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4372 {
4373 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4374 
4375 	if (obj->mm.quirked)
4376 		__i915_gem_object_unpin_pages(obj);
4377 
4378 	if (discard_backing_storage(obj))
4379 		obj->mm.madv = I915_MADV_DONTNEED;
4380 
4381 	/* Before we free the object, make sure any pure RCU-only
4382 	 * read-side critical sections are complete, e.g.
4383 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4384 	 * lookup see i915_gem_object_lookup_rcu().
4385 	 */
4386 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4387 }
4388 
4389 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4390 {
4391 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4392 
4393 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4394 	if (i915_gem_object_is_active(obj))
4395 		i915_gem_object_set_active_reference(obj);
4396 	else
4397 		i915_gem_object_put(obj);
4398 }
4399 
4400 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4401 {
4402 	struct intel_engine_cs *engine;
4403 	enum intel_engine_id id;
4404 
4405 	for_each_engine(engine, dev_priv, id)
4406 		GEM_BUG_ON(engine->last_retired_context &&
4407 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4408 }
4409 
4410 void i915_gem_sanitize(struct drm_i915_private *i915)
4411 {
4412 	/*
4413 	 * If we inherit context state from the BIOS or earlier occupants
4414 	 * of the GPU, the GPU may be in an inconsistent state when we
4415 	 * try to take over. The only way to remove the earlier state
4416 	 * is by resetting. However, resetting on earlier gen is tricky as
4417 	 * it may impact the display and we are uncertain about the stability
4418 	 * of the reset, so we only reset recent machines with logical
4419 	 * context support (that must be reset to remove any stray contexts).
4420 	 */
4421 	if (HAS_HW_CONTEXTS(i915)) {
4422 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4423 		WARN_ON(reset && reset != -ENODEV);
4424 	}
4425 }
4426 
4427 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4428 {
4429 	struct drm_device *dev = &dev_priv->drm;
4430 	int ret;
4431 
4432 	intel_runtime_pm_get(dev_priv);
4433 	intel_suspend_gt_powersave(dev_priv);
4434 
4435 	mutex_lock(&dev->struct_mutex);
4436 
4437 	/* We have to flush all the executing contexts to main memory so
4438 	 * that they can saved in the hibernation image. To ensure the last
4439 	 * context image is coherent, we have to switch away from it. That
4440 	 * leaves the dev_priv->kernel_context still active when
4441 	 * we actually suspend, and its image in memory may not match the GPU
4442 	 * state. Fortunately, the kernel_context is disposable and we do
4443 	 * not rely on its state.
4444 	 */
4445 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4446 	if (ret)
4447 		goto err_unlock;
4448 
4449 	ret = i915_gem_wait_for_idle(dev_priv,
4450 				     I915_WAIT_INTERRUPTIBLE |
4451 				     I915_WAIT_LOCKED);
4452 	if (ret)
4453 		goto err_unlock;
4454 
4455 	assert_kernel_context_is_current(dev_priv);
4456 	i915_gem_context_lost(dev_priv);
4457 	mutex_unlock(&dev->struct_mutex);
4458 
4459 	intel_guc_suspend(dev_priv);
4460 
4461 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4462 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4463 
4464 	/* As the idle_work is rearming if it detects a race, play safe and
4465 	 * repeat the flush until it is definitely idle.
4466 	 */
4467 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4468 		;
4469 
4470 	i915_gem_drain_freed_objects(dev_priv);
4471 
4472 	/* Assert that we sucessfully flushed all the work and
4473 	 * reset the GPU back to its idle, low power state.
4474 	 */
4475 	WARN_ON(dev_priv->gt.awake);
4476 	WARN_ON(!intel_engines_are_idle(dev_priv));
4477 
4478 	/*
4479 	 * Neither the BIOS, ourselves or any other kernel
4480 	 * expects the system to be in execlists mode on startup,
4481 	 * so we need to reset the GPU back to legacy mode. And the only
4482 	 * known way to disable logical contexts is through a GPU reset.
4483 	 *
4484 	 * So in order to leave the system in a known default configuration,
4485 	 * always reset the GPU upon unload and suspend. Afterwards we then
4486 	 * clean up the GEM state tracking, flushing off the requests and
4487 	 * leaving the system in a known idle state.
4488 	 *
4489 	 * Note that is of the upmost importance that the GPU is idle and
4490 	 * all stray writes are flushed *before* we dismantle the backing
4491 	 * storage for the pinned objects.
4492 	 *
4493 	 * However, since we are uncertain that resetting the GPU on older
4494 	 * machines is a good idea, we don't - just in case it leaves the
4495 	 * machine in an unusable condition.
4496 	 */
4497 	i915_gem_sanitize(dev_priv);
4498 	goto out_rpm_put;
4499 
4500 err_unlock:
4501 	mutex_unlock(&dev->struct_mutex);
4502 out_rpm_put:
4503 	intel_runtime_pm_put(dev_priv);
4504 	return ret;
4505 }
4506 
4507 void i915_gem_resume(struct drm_i915_private *dev_priv)
4508 {
4509 	struct drm_device *dev = &dev_priv->drm;
4510 
4511 	WARN_ON(dev_priv->gt.awake);
4512 
4513 	mutex_lock(&dev->struct_mutex);
4514 	i915_gem_restore_gtt_mappings(dev_priv);
4515 
4516 	/* As we didn't flush the kernel context before suspend, we cannot
4517 	 * guarantee that the context image is complete. So let's just reset
4518 	 * it and start again.
4519 	 */
4520 	dev_priv->gt.resume(dev_priv);
4521 
4522 	mutex_unlock(&dev->struct_mutex);
4523 }
4524 
4525 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4526 {
4527 	if (INTEL_GEN(dev_priv) < 5 ||
4528 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4529 		return;
4530 
4531 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4532 				 DISP_TILE_SURFACE_SWIZZLING);
4533 
4534 	if (IS_GEN5(dev_priv))
4535 		return;
4536 
4537 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4538 	if (IS_GEN6(dev_priv))
4539 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4540 	else if (IS_GEN7(dev_priv))
4541 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4542 	else if (IS_GEN8(dev_priv))
4543 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4544 	else
4545 		BUG();
4546 }
4547 
4548 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4549 {
4550 	I915_WRITE(RING_CTL(base), 0);
4551 	I915_WRITE(RING_HEAD(base), 0);
4552 	I915_WRITE(RING_TAIL(base), 0);
4553 	I915_WRITE(RING_START(base), 0);
4554 }
4555 
4556 static void init_unused_rings(struct drm_i915_private *dev_priv)
4557 {
4558 	if (IS_I830(dev_priv)) {
4559 		init_unused_ring(dev_priv, PRB1_BASE);
4560 		init_unused_ring(dev_priv, SRB0_BASE);
4561 		init_unused_ring(dev_priv, SRB1_BASE);
4562 		init_unused_ring(dev_priv, SRB2_BASE);
4563 		init_unused_ring(dev_priv, SRB3_BASE);
4564 	} else if (IS_GEN2(dev_priv)) {
4565 		init_unused_ring(dev_priv, SRB0_BASE);
4566 		init_unused_ring(dev_priv, SRB1_BASE);
4567 	} else if (IS_GEN3(dev_priv)) {
4568 		init_unused_ring(dev_priv, PRB1_BASE);
4569 		init_unused_ring(dev_priv, PRB2_BASE);
4570 	}
4571 }
4572 
4573 static int __i915_gem_restart_engines(void *data)
4574 {
4575 	struct drm_i915_private *i915 = data;
4576 	struct intel_engine_cs *engine;
4577 	enum intel_engine_id id;
4578 	int err;
4579 
4580 	for_each_engine(engine, i915, id) {
4581 		err = engine->init_hw(engine);
4582 		if (err)
4583 			return err;
4584 	}
4585 
4586 	return 0;
4587 }
4588 
4589 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4590 {
4591 	int ret;
4592 
4593 	dev_priv->gt.last_init_time = ktime_get();
4594 
4595 	/* Double layer security blanket, see i915_gem_init() */
4596 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4597 
4598 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4599 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4600 
4601 	if (IS_HASWELL(dev_priv))
4602 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4603 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4604 
4605 	if (HAS_PCH_NOP(dev_priv)) {
4606 		if (IS_IVYBRIDGE(dev_priv)) {
4607 			u32 temp = I915_READ(GEN7_MSG_CTL);
4608 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4609 			I915_WRITE(GEN7_MSG_CTL, temp);
4610 		} else if (INTEL_GEN(dev_priv) >= 7) {
4611 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4612 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4613 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4614 		}
4615 	}
4616 
4617 	i915_gem_init_swizzling(dev_priv);
4618 
4619 	/*
4620 	 * At least 830 can leave some of the unused rings
4621 	 * "active" (ie. head != tail) after resume which
4622 	 * will prevent c3 entry. Makes sure all unused rings
4623 	 * are totally idle.
4624 	 */
4625 	init_unused_rings(dev_priv);
4626 
4627 	BUG_ON(!dev_priv->kernel_context);
4628 
4629 	ret = i915_ppgtt_init_hw(dev_priv);
4630 	if (ret) {
4631 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4632 		goto out;
4633 	}
4634 
4635 	/* Need to do basic initialisation of all rings first: */
4636 	ret = __i915_gem_restart_engines(dev_priv);
4637 	if (ret)
4638 		goto out;
4639 
4640 	intel_mocs_init_l3cc_table(dev_priv);
4641 
4642 	/* We can't enable contexts until all firmware is loaded */
4643 	ret = intel_uc_init_hw(dev_priv);
4644 	if (ret)
4645 		goto out;
4646 
4647 out:
4648 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4649 	return ret;
4650 }
4651 
4652 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4653 {
4654 	if (INTEL_INFO(dev_priv)->gen < 6)
4655 		return false;
4656 
4657 	/* TODO: make semaphores and Execlists play nicely together */
4658 	if (i915.enable_execlists)
4659 		return false;
4660 
4661 	if (value >= 0)
4662 		return value;
4663 
4664 #ifdef CONFIG_INTEL_IOMMU
4665 	/* Enable semaphores on SNB when IO remapping is off */
4666 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4667 		return false;
4668 #endif
4669 
4670 	return true;
4671 }
4672 
4673 int i915_gem_init(struct drm_i915_private *dev_priv)
4674 {
4675 	int ret;
4676 
4677 	mutex_lock(&dev_priv->drm.struct_mutex);
4678 
4679 	i915_gem_clflush_init(dev_priv);
4680 
4681 	if (!i915.enable_execlists) {
4682 		dev_priv->gt.resume = intel_legacy_submission_resume;
4683 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4684 	} else {
4685 		dev_priv->gt.resume = intel_lr_context_resume;
4686 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4687 	}
4688 
4689 	/* This is just a security blanket to placate dragons.
4690 	 * On some systems, we very sporadically observe that the first TLBs
4691 	 * used by the CS may be stale, despite us poking the TLB reset. If
4692 	 * we hold the forcewake during initialisation these problems
4693 	 * just magically go away.
4694 	 */
4695 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4696 
4697 	i915_gem_init_userptr(dev_priv);
4698 
4699 	ret = i915_gem_init_ggtt(dev_priv);
4700 	if (ret)
4701 		goto out_unlock;
4702 
4703 	ret = i915_gem_context_init(dev_priv);
4704 	if (ret)
4705 		goto out_unlock;
4706 
4707 	ret = intel_engines_init(dev_priv);
4708 	if (ret)
4709 		goto out_unlock;
4710 
4711 	ret = i915_gem_init_hw(dev_priv);
4712 	if (ret == -EIO) {
4713 		/* Allow engine initialisation to fail by marking the GPU as
4714 		 * wedged. But we only want to do this where the GPU is angry,
4715 		 * for all other failure, such as an allocation failure, bail.
4716 		 */
4717 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4718 		i915_gem_set_wedged(dev_priv);
4719 		ret = 0;
4720 	}
4721 
4722 out_unlock:
4723 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4724 	mutex_unlock(&dev_priv->drm.struct_mutex);
4725 
4726 	return ret;
4727 }
4728 
4729 void i915_gem_init_mmio(struct drm_i915_private *i915)
4730 {
4731 	i915_gem_sanitize(i915);
4732 }
4733 
4734 void
4735 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4736 {
4737 	struct intel_engine_cs *engine;
4738 	enum intel_engine_id id;
4739 
4740 	for_each_engine(engine, dev_priv, id)
4741 		dev_priv->gt.cleanup_engine(engine);
4742 }
4743 
4744 void
4745 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4746 {
4747 	int i;
4748 
4749 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4750 	    !IS_CHERRYVIEW(dev_priv))
4751 		dev_priv->num_fence_regs = 32;
4752 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4753 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4754 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4755 		dev_priv->num_fence_regs = 16;
4756 	else
4757 		dev_priv->num_fence_regs = 8;
4758 
4759 	if (intel_vgpu_active(dev_priv))
4760 		dev_priv->num_fence_regs =
4761 				I915_READ(vgtif_reg(avail_rs.fence_num));
4762 
4763 	/* Initialize fence registers to zero */
4764 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4765 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4766 
4767 		fence->i915 = dev_priv;
4768 		fence->id = i;
4769 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4770 	}
4771 	i915_gem_restore_fences(dev_priv);
4772 
4773 	i915_gem_detect_bit_6_swizzle(dev_priv);
4774 }
4775 
4776 int
4777 i915_gem_load_init(struct drm_i915_private *dev_priv)
4778 {
4779 	int err = -ENOMEM;
4780 
4781 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4782 	if (!dev_priv->objects)
4783 		goto err_out;
4784 
4785 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4786 	if (!dev_priv->vmas)
4787 		goto err_objects;
4788 
4789 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4790 					SLAB_HWCACHE_ALIGN |
4791 					SLAB_RECLAIM_ACCOUNT |
4792 					SLAB_TYPESAFE_BY_RCU);
4793 	if (!dev_priv->requests)
4794 		goto err_vmas;
4795 
4796 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4797 					    SLAB_HWCACHE_ALIGN |
4798 					    SLAB_RECLAIM_ACCOUNT);
4799 	if (!dev_priv->dependencies)
4800 		goto err_requests;
4801 
4802 	mutex_lock(&dev_priv->drm.struct_mutex);
4803 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4804 	err = i915_gem_timeline_init__global(dev_priv);
4805 	mutex_unlock(&dev_priv->drm.struct_mutex);
4806 	if (err)
4807 		goto err_dependencies;
4808 
4809 	INIT_LIST_HEAD(&dev_priv->context_list);
4810 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4811 	init_llist_head(&dev_priv->mm.free_list);
4812 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4813 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4814 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4815 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4816 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4817 			  i915_gem_retire_work_handler);
4818 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4819 			  i915_gem_idle_work_handler);
4820 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4821 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4822 
4823 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4824 
4825 	dev_priv->mm.interruptible = true;
4826 
4827 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4828 
4829 	spin_lock_init(&dev_priv->fb_tracking.lock);
4830 
4831 	return 0;
4832 
4833 err_dependencies:
4834 	kmem_cache_destroy(dev_priv->dependencies);
4835 err_requests:
4836 	kmem_cache_destroy(dev_priv->requests);
4837 err_vmas:
4838 	kmem_cache_destroy(dev_priv->vmas);
4839 err_objects:
4840 	kmem_cache_destroy(dev_priv->objects);
4841 err_out:
4842 	return err;
4843 }
4844 
4845 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4846 {
4847 	i915_gem_drain_freed_objects(dev_priv);
4848 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4849 	WARN_ON(dev_priv->mm.object_count);
4850 
4851 	mutex_lock(&dev_priv->drm.struct_mutex);
4852 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4853 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4854 	mutex_unlock(&dev_priv->drm.struct_mutex);
4855 
4856 	kmem_cache_destroy(dev_priv->dependencies);
4857 	kmem_cache_destroy(dev_priv->requests);
4858 	kmem_cache_destroy(dev_priv->vmas);
4859 	kmem_cache_destroy(dev_priv->objects);
4860 
4861 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4862 	rcu_barrier();
4863 }
4864 
4865 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4866 {
4867 	mutex_lock(&dev_priv->drm.struct_mutex);
4868 	i915_gem_shrink_all(dev_priv);
4869 	mutex_unlock(&dev_priv->drm.struct_mutex);
4870 
4871 	return 0;
4872 }
4873 
4874 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4875 {
4876 	struct drm_i915_gem_object *obj;
4877 	struct list_head *phases[] = {
4878 		&dev_priv->mm.unbound_list,
4879 		&dev_priv->mm.bound_list,
4880 		NULL
4881 	}, **p;
4882 
4883 	/* Called just before we write the hibernation image.
4884 	 *
4885 	 * We need to update the domain tracking to reflect that the CPU
4886 	 * will be accessing all the pages to create and restore from the
4887 	 * hibernation, and so upon restoration those pages will be in the
4888 	 * CPU domain.
4889 	 *
4890 	 * To make sure the hibernation image contains the latest state,
4891 	 * we update that state just before writing out the image.
4892 	 *
4893 	 * To try and reduce the hibernation image, we manually shrink
4894 	 * the objects as well.
4895 	 */
4896 
4897 	mutex_lock(&dev_priv->drm.struct_mutex);
4898 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4899 
4900 	for (p = phases; *p; p++) {
4901 		list_for_each_entry(obj, *p, global_link) {
4902 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4903 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4904 		}
4905 	}
4906 	mutex_unlock(&dev_priv->drm.struct_mutex);
4907 
4908 	return 0;
4909 }
4910 
4911 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4912 {
4913 	struct drm_i915_file_private *file_priv = file->driver_priv;
4914 	struct drm_i915_gem_request *request;
4915 
4916 	/* Clean up our request list when the client is going away, so that
4917 	 * later retire_requests won't dereference our soon-to-be-gone
4918 	 * file_priv.
4919 	 */
4920 	spin_lock(&file_priv->mm.lock);
4921 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4922 		request->file_priv = NULL;
4923 	spin_unlock(&file_priv->mm.lock);
4924 
4925 	if (!list_empty(&file_priv->rps.link)) {
4926 		spin_lock(&to_i915(dev)->rps.client_lock);
4927 		list_del(&file_priv->rps.link);
4928 		spin_unlock(&to_i915(dev)->rps.client_lock);
4929 	}
4930 }
4931 
4932 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4933 {
4934 	struct drm_i915_file_private *file_priv;
4935 	int ret;
4936 
4937 	DRM_DEBUG("\n");
4938 
4939 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4940 	if (!file_priv)
4941 		return -ENOMEM;
4942 
4943 	file->driver_priv = file_priv;
4944 	file_priv->dev_priv = to_i915(dev);
4945 	file_priv->file = file;
4946 	INIT_LIST_HEAD(&file_priv->rps.link);
4947 
4948 	spin_lock_init(&file_priv->mm.lock);
4949 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4950 
4951 	file_priv->bsd_engine = -1;
4952 
4953 	ret = i915_gem_context_open(dev, file);
4954 	if (ret)
4955 		kfree(file_priv);
4956 
4957 	return ret;
4958 }
4959 
4960 /**
4961  * i915_gem_track_fb - update frontbuffer tracking
4962  * @old: current GEM buffer for the frontbuffer slots
4963  * @new: new GEM buffer for the frontbuffer slots
4964  * @frontbuffer_bits: bitmask of frontbuffer slots
4965  *
4966  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4967  * from @old and setting them in @new. Both @old and @new can be NULL.
4968  */
4969 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4970 		       struct drm_i915_gem_object *new,
4971 		       unsigned frontbuffer_bits)
4972 {
4973 	/* Control of individual bits within the mask are guarded by
4974 	 * the owning plane->mutex, i.e. we can never see concurrent
4975 	 * manipulation of individual bits. But since the bitfield as a whole
4976 	 * is updated using RMW, we need to use atomics in order to update
4977 	 * the bits.
4978 	 */
4979 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4980 		     sizeof(atomic_t) * BITS_PER_BYTE);
4981 
4982 	if (old) {
4983 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4984 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4985 	}
4986 
4987 	if (new) {
4988 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4989 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4990 	}
4991 }
4992 
4993 /* Allocate a new GEM object and fill it with the supplied data */
4994 struct drm_i915_gem_object *
4995 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4996 			         const void *data, size_t size)
4997 {
4998 	struct drm_i915_gem_object *obj;
4999 	struct file *file;
5000 	size_t offset;
5001 	int err;
5002 
5003 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5004 	if (IS_ERR(obj))
5005 		return obj;
5006 
5007 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5008 
5009 	file = obj->base.filp;
5010 	offset = 0;
5011 	do {
5012 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5013 		struct page *page;
5014 		void *pgdata, *vaddr;
5015 
5016 		err = pagecache_write_begin(file, file->f_mapping,
5017 					    offset, len, 0,
5018 					    &page, &pgdata);
5019 		if (err < 0)
5020 			goto fail;
5021 
5022 		vaddr = kmap(page);
5023 		memcpy(vaddr, data, len);
5024 		kunmap(page);
5025 
5026 		err = pagecache_write_end(file, file->f_mapping,
5027 					  offset, len, len,
5028 					  page, pgdata);
5029 		if (err < 0)
5030 			goto fail;
5031 
5032 		size -= len;
5033 		data += len;
5034 		offset += len;
5035 	} while (size);
5036 
5037 	return obj;
5038 
5039 fail:
5040 	i915_gem_object_put(obj);
5041 	return ERR_PTR(err);
5042 }
5043 
5044 struct scatterlist *
5045 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5046 		       unsigned int n,
5047 		       unsigned int *offset)
5048 {
5049 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5050 	struct scatterlist *sg;
5051 	unsigned int idx, count;
5052 
5053 	might_sleep();
5054 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5055 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5056 
5057 	/* As we iterate forward through the sg, we record each entry in a
5058 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5059 	 * this index previously, we will have an entry for it.
5060 	 *
5061 	 * Initial lookup is O(N), but this is amortized to O(1) for
5062 	 * sequential page access (where each new request is consecutive
5063 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5064 	 * i.e. O(1) with a large constant!
5065 	 */
5066 	if (n < READ_ONCE(iter->sg_idx))
5067 		goto lookup;
5068 
5069 	mutex_lock(&iter->lock);
5070 
5071 	/* We prefer to reuse the last sg so that repeated lookup of this
5072 	 * (or the subsequent) sg are fast - comparing against the last
5073 	 * sg is faster than going through the radixtree.
5074 	 */
5075 
5076 	sg = iter->sg_pos;
5077 	idx = iter->sg_idx;
5078 	count = __sg_page_count(sg);
5079 
5080 	while (idx + count <= n) {
5081 		unsigned long exception, i;
5082 		int ret;
5083 
5084 		/* If we cannot allocate and insert this entry, or the
5085 		 * individual pages from this range, cancel updating the
5086 		 * sg_idx so that on this lookup we are forced to linearly
5087 		 * scan onwards, but on future lookups we will try the
5088 		 * insertion again (in which case we need to be careful of
5089 		 * the error return reporting that we have already inserted
5090 		 * this index).
5091 		 */
5092 		ret = radix_tree_insert(&iter->radix, idx, sg);
5093 		if (ret && ret != -EEXIST)
5094 			goto scan;
5095 
5096 		exception =
5097 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5098 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5099 		for (i = 1; i < count; i++) {
5100 			ret = radix_tree_insert(&iter->radix, idx + i,
5101 						(void *)exception);
5102 			if (ret && ret != -EEXIST)
5103 				goto scan;
5104 		}
5105 
5106 		idx += count;
5107 		sg = ____sg_next(sg);
5108 		count = __sg_page_count(sg);
5109 	}
5110 
5111 scan:
5112 	iter->sg_pos = sg;
5113 	iter->sg_idx = idx;
5114 
5115 	mutex_unlock(&iter->lock);
5116 
5117 	if (unlikely(n < idx)) /* insertion completed by another thread */
5118 		goto lookup;
5119 
5120 	/* In case we failed to insert the entry into the radixtree, we need
5121 	 * to look beyond the current sg.
5122 	 */
5123 	while (idx + count <= n) {
5124 		idx += count;
5125 		sg = ____sg_next(sg);
5126 		count = __sg_page_count(sg);
5127 	}
5128 
5129 	*offset = n - idx;
5130 	return sg;
5131 
5132 lookup:
5133 	rcu_read_lock();
5134 
5135 	sg = radix_tree_lookup(&iter->radix, n);
5136 	GEM_BUG_ON(!sg);
5137 
5138 	/* If this index is in the middle of multi-page sg entry,
5139 	 * the radixtree will contain an exceptional entry that points
5140 	 * to the start of that range. We will return the pointer to
5141 	 * the base page and the offset of this page within the
5142 	 * sg entry's range.
5143 	 */
5144 	*offset = 0;
5145 	if (unlikely(radix_tree_exception(sg))) {
5146 		unsigned long base =
5147 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5148 
5149 		sg = radix_tree_lookup(&iter->radix, base);
5150 		GEM_BUG_ON(!sg);
5151 
5152 		*offset = n - base;
5153 	}
5154 
5155 	rcu_read_unlock();
5156 
5157 	return sg;
5158 }
5159 
5160 struct page *
5161 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5162 {
5163 	struct scatterlist *sg;
5164 	unsigned int offset;
5165 
5166 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5167 
5168 	sg = i915_gem_object_get_sg(obj, n, &offset);
5169 	return nth_page(sg_page(sg), offset);
5170 }
5171 
5172 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5173 struct page *
5174 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5175 			       unsigned int n)
5176 {
5177 	struct page *page;
5178 
5179 	page = i915_gem_object_get_page(obj, n);
5180 	if (!obj->mm.dirty)
5181 		set_page_dirty(page);
5182 
5183 	return page;
5184 }
5185 
5186 dma_addr_t
5187 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5188 				unsigned long n)
5189 {
5190 	struct scatterlist *sg;
5191 	unsigned int offset;
5192 
5193 	sg = i915_gem_object_get_sg(obj, n, &offset);
5194 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5195 }
5196 
5197 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5198 #include "selftests/scatterlist.c"
5199 #include "selftests/mock_gem_device.c"
5200 #include "selftests/huge_gem_object.c"
5201 #include "selftests/i915_gem_object.c"
5202 #include "selftests/i915_gem_coherency.c"
5203 #endif
5204