xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision e0a37f85fc95e3f2550446316bc4a27d00d75993)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 	unsigned long timeout;
1152 
1153 	if (i915_gem_request_get_ring(req)->irq_refcount)
1154 		return -EBUSY;
1155 
1156 	timeout = jiffies + 1;
1157 	while (!need_resched()) {
1158 		if (i915_gem_request_completed(req, true))
1159 			return 0;
1160 
1161 		if (time_after_eq(jiffies, timeout))
1162 			break;
1163 
1164 		cpu_relax_lowlatency();
1165 	}
1166 	if (i915_gem_request_completed(req, false))
1167 		return 0;
1168 
1169 	return -EAGAIN;
1170 }
1171 
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 			unsigned reset_counter,
1191 			bool interruptible,
1192 			s64 *timeout,
1193 			struct intel_rps_client *rps)
1194 {
1195 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 	struct drm_device *dev = ring->dev;
1197 	struct drm_i915_private *dev_priv = dev->dev_private;
1198 	const bool irq_test_in_progress =
1199 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 	DEFINE_WAIT(wait);
1201 	unsigned long timeout_expire;
1202 	s64 before, now;
1203 	int ret;
1204 
1205 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206 
1207 	if (list_empty(&req->list))
1208 		return 0;
1209 
1210 	if (i915_gem_request_completed(req, true))
1211 		return 0;
1212 
1213 	timeout_expire = timeout ?
1214 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215 
1216 	if (INTEL_INFO(dev_priv)->gen >= 6)
1217 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218 
1219 	/* Record current time in case interrupted by signal, or wedged */
1220 	trace_i915_gem_request_wait_begin(req);
1221 	before = ktime_get_raw_ns();
1222 
1223 	/* Optimistic spin for the next jiffie before touching IRQs */
1224 	ret = __i915_spin_request(req);
1225 	if (ret == 0)
1226 		goto out;
1227 
1228 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 		ret = -ENODEV;
1230 		goto out;
1231 	}
1232 
1233 	for (;;) {
1234 		struct timer_list timer;
1235 
1236 		prepare_to_wait(&ring->irq_queue, &wait,
1237 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238 
1239 		/* We need to check whether any gpu reset happened in between
1240 		 * the caller grabbing the seqno and now ... */
1241 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 			 * is truely gone. */
1244 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 			if (ret == 0)
1246 				ret = -EAGAIN;
1247 			break;
1248 		}
1249 
1250 		if (i915_gem_request_completed(req, false)) {
1251 			ret = 0;
1252 			break;
1253 		}
1254 
1255 		if (interruptible && signal_pending(current)) {
1256 			ret = -ERESTARTSYS;
1257 			break;
1258 		}
1259 
1260 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 			ret = -ETIME;
1262 			break;
1263 		}
1264 
1265 		timer.function = NULL;
1266 		if (timeout || missed_irq(dev_priv, ring)) {
1267 			unsigned long expire;
1268 
1269 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 			mod_timer(&timer, expire);
1272 		}
1273 
1274 		io_schedule();
1275 
1276 		if (timer.function) {
1277 			del_singleshot_timer_sync(&timer);
1278 			destroy_timer_on_stack(&timer);
1279 		}
1280 	}
1281 	if (!irq_test_in_progress)
1282 		ring->irq_put(ring);
1283 
1284 	finish_wait(&ring->irq_queue, &wait);
1285 
1286 out:
1287 	now = ktime_get_raw_ns();
1288 	trace_i915_gem_request_wait_end(req);
1289 
1290 	if (timeout) {
1291 		s64 tres = *timeout - (now - before);
1292 
1293 		*timeout = tres < 0 ? 0 : tres;
1294 
1295 		/*
1296 		 * Apparently ktime isn't accurate enough and occasionally has a
1297 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 		 * things up to make the test happy. We allow up to 1 jiffy.
1299 		 *
1300 		 * This is a regrssion from the timespec->ktime conversion.
1301 		 */
1302 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 			*timeout = 0;
1304 	}
1305 
1306 	return ret;
1307 }
1308 
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 				   struct drm_file *file)
1311 {
1312 	struct drm_i915_private *dev_private;
1313 	struct drm_i915_file_private *file_priv;
1314 
1315 	WARN_ON(!req || !file || req->file_priv);
1316 
1317 	if (!req || !file)
1318 		return -EINVAL;
1319 
1320 	if (req->file_priv)
1321 		return -EINVAL;
1322 
1323 	dev_private = req->ring->dev->dev_private;
1324 	file_priv = file->driver_priv;
1325 
1326 	spin_lock(&file_priv->mm.lock);
1327 	req->file_priv = file_priv;
1328 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 	spin_unlock(&file_priv->mm.lock);
1330 
1331 	req->pid = get_pid(task_pid(current));
1332 
1333 	return 0;
1334 }
1335 
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339 	struct drm_i915_file_private *file_priv = request->file_priv;
1340 
1341 	if (!file_priv)
1342 		return;
1343 
1344 	spin_lock(&file_priv->mm.lock);
1345 	list_del(&request->client_list);
1346 	request->file_priv = NULL;
1347 	spin_unlock(&file_priv->mm.lock);
1348 
1349 	put_pid(request->pid);
1350 	request->pid = NULL;
1351 }
1352 
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355 	trace_i915_gem_request_retire(request);
1356 
1357 	/* We know the GPU must have read the request to have
1358 	 * sent us the seqno + interrupt, so use the position
1359 	 * of tail of the request to update the last known position
1360 	 * of the GPU head.
1361 	 *
1362 	 * Note this requires that we are always called in request
1363 	 * completion order.
1364 	 */
1365 	request->ringbuf->last_retired_head = request->postfix;
1366 
1367 	list_del_init(&request->list);
1368 	i915_gem_request_remove_from_client(request);
1369 
1370 	i915_gem_request_unreference(request);
1371 }
1372 
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 	struct intel_engine_cs *engine = req->ring;
1377 	struct drm_i915_gem_request *tmp;
1378 
1379 	lockdep_assert_held(&engine->dev->struct_mutex);
1380 
1381 	if (list_empty(&req->list))
1382 		return;
1383 
1384 	do {
1385 		tmp = list_first_entry(&engine->request_list,
1386 				       typeof(*tmp), list);
1387 
1388 		i915_gem_request_retire(tmp);
1389 	} while (tmp != req);
1390 
1391 	WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393 
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 	struct drm_device *dev;
1402 	struct drm_i915_private *dev_priv;
1403 	bool interruptible;
1404 	int ret;
1405 
1406 	BUG_ON(req == NULL);
1407 
1408 	dev = req->ring->dev;
1409 	dev_priv = dev->dev_private;
1410 	interruptible = dev_priv->mm.interruptible;
1411 
1412 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413 
1414 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 	if (ret)
1416 		return ret;
1417 
1418 	ret = __i915_wait_request(req,
1419 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1420 				  interruptible, NULL, NULL);
1421 	if (ret)
1422 		return ret;
1423 
1424 	__i915_gem_request_retire__upto(req);
1425 	return 0;
1426 }
1427 
1428 /**
1429  * Ensures that all rendering to the object has completed and the object is
1430  * safe to unbind from the GTT or access from the CPU.
1431  */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 			       bool readonly)
1435 {
1436 	int ret, i;
1437 
1438 	if (!obj->active)
1439 		return 0;
1440 
1441 	if (readonly) {
1442 		if (obj->last_write_req != NULL) {
1443 			ret = i915_wait_request(obj->last_write_req);
1444 			if (ret)
1445 				return ret;
1446 
1447 			i = obj->last_write_req->ring->id;
1448 			if (obj->last_read_req[i] == obj->last_write_req)
1449 				i915_gem_object_retire__read(obj, i);
1450 			else
1451 				i915_gem_object_retire__write(obj);
1452 		}
1453 	} else {
1454 		for (i = 0; i < I915_NUM_RINGS; i++) {
1455 			if (obj->last_read_req[i] == NULL)
1456 				continue;
1457 
1458 			ret = i915_wait_request(obj->last_read_req[i]);
1459 			if (ret)
1460 				return ret;
1461 
1462 			i915_gem_object_retire__read(obj, i);
1463 		}
1464 		RQ_BUG_ON(obj->active);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 			       struct drm_i915_gem_request *req)
1473 {
1474 	int ring = req->ring->id;
1475 
1476 	if (obj->last_read_req[ring] == req)
1477 		i915_gem_object_retire__read(obj, ring);
1478 	else if (obj->last_write_req == req)
1479 		i915_gem_object_retire__write(obj);
1480 
1481 	__i915_gem_request_retire__upto(req);
1482 }
1483 
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485  * as the object state may change during this call.
1486  */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489 					    struct intel_rps_client *rps,
1490 					    bool readonly)
1491 {
1492 	struct drm_device *dev = obj->base.dev;
1493 	struct drm_i915_private *dev_priv = dev->dev_private;
1494 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495 	unsigned reset_counter;
1496 	int ret, i, n = 0;
1497 
1498 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 	BUG_ON(!dev_priv->mm.interruptible);
1500 
1501 	if (!obj->active)
1502 		return 0;
1503 
1504 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505 	if (ret)
1506 		return ret;
1507 
1508 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509 
1510 	if (readonly) {
1511 		struct drm_i915_gem_request *req;
1512 
1513 		req = obj->last_write_req;
1514 		if (req == NULL)
1515 			return 0;
1516 
1517 		requests[n++] = i915_gem_request_reference(req);
1518 	} else {
1519 		for (i = 0; i < I915_NUM_RINGS; i++) {
1520 			struct drm_i915_gem_request *req;
1521 
1522 			req = obj->last_read_req[i];
1523 			if (req == NULL)
1524 				continue;
1525 
1526 			requests[n++] = i915_gem_request_reference(req);
1527 		}
1528 	}
1529 
1530 	mutex_unlock(&dev->struct_mutex);
1531 	for (i = 0; ret == 0 && i < n; i++)
1532 		ret = __i915_wait_request(requests[i], reset_counter, true,
1533 					  NULL, rps);
1534 	mutex_lock(&dev->struct_mutex);
1535 
1536 	for (i = 0; i < n; i++) {
1537 		if (ret == 0)
1538 			i915_gem_object_retire_request(obj, requests[i]);
1539 		i915_gem_request_unreference(requests[i]);
1540 	}
1541 
1542 	return ret;
1543 }
1544 
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547 	struct drm_i915_file_private *fpriv = file->driver_priv;
1548 	return &fpriv->rps;
1549 }
1550 
1551 /**
1552  * Called when user space prepares to use an object with the CPU, either
1553  * through the mmap ioctl's mapping or a GTT mapping.
1554  */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557 			  struct drm_file *file)
1558 {
1559 	struct drm_i915_gem_set_domain *args = data;
1560 	struct drm_i915_gem_object *obj;
1561 	uint32_t read_domains = args->read_domains;
1562 	uint32_t write_domain = args->write_domain;
1563 	int ret;
1564 
1565 	/* Only handle setting domains to types used by the CPU. */
1566 	if (write_domain & I915_GEM_GPU_DOMAINS)
1567 		return -EINVAL;
1568 
1569 	if (read_domains & I915_GEM_GPU_DOMAINS)
1570 		return -EINVAL;
1571 
1572 	/* Having something in the write domain implies it's in the read
1573 	 * domain, and only that read domain.  Enforce that in the request.
1574 	 */
1575 	if (write_domain != 0 && read_domains != write_domain)
1576 		return -EINVAL;
1577 
1578 	ret = i915_mutex_lock_interruptible(dev);
1579 	if (ret)
1580 		return ret;
1581 
1582 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583 	if (&obj->base == NULL) {
1584 		ret = -ENOENT;
1585 		goto unlock;
1586 	}
1587 
1588 	/* Try to flush the object off the GPU without holding the lock.
1589 	 * We will repeat the flush holding the lock in the normal manner
1590 	 * to catch cases where we are gazumped.
1591 	 */
1592 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593 							  to_rps_client(file),
1594 							  !write_domain);
1595 	if (ret)
1596 		goto unref;
1597 
1598 	if (read_domains & I915_GEM_DOMAIN_GTT)
1599 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600 	else
1601 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602 
1603 	if (write_domain != 0)
1604 		intel_fb_obj_invalidate(obj,
1605 					write_domain == I915_GEM_DOMAIN_GTT ?
1606 					ORIGIN_GTT : ORIGIN_CPU);
1607 
1608 unref:
1609 	drm_gem_object_unreference(&obj->base);
1610 unlock:
1611 	mutex_unlock(&dev->struct_mutex);
1612 	return ret;
1613 }
1614 
1615 /**
1616  * Called when user space has done writes to this buffer
1617  */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 			 struct drm_file *file)
1621 {
1622 	struct drm_i915_gem_sw_finish *args = data;
1623 	struct drm_i915_gem_object *obj;
1624 	int ret = 0;
1625 
1626 	ret = i915_mutex_lock_interruptible(dev);
1627 	if (ret)
1628 		return ret;
1629 
1630 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631 	if (&obj->base == NULL) {
1632 		ret = -ENOENT;
1633 		goto unlock;
1634 	}
1635 
1636 	/* Pinned buffers may be scanout, so flush the cache */
1637 	if (obj->pin_display)
1638 		i915_gem_object_flush_cpu_write_domain(obj);
1639 
1640 	drm_gem_object_unreference(&obj->base);
1641 unlock:
1642 	mutex_unlock(&dev->struct_mutex);
1643 	return ret;
1644 }
1645 
1646 /**
1647  * Maps the contents of an object, returning the address it is mapped
1648  * into.
1649  *
1650  * While the mapping holds a reference on the contents of the object, it doesn't
1651  * imply a ref on the object itself.
1652  *
1653  * IMPORTANT:
1654  *
1655  * DRM driver writers who look a this function as an example for how to do GEM
1656  * mmap support, please don't implement mmap support like here. The modern way
1657  * to implement DRM mmap support is with an mmap offset ioctl (like
1658  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659  * That way debug tooling like valgrind will understand what's going on, hiding
1660  * the mmap call in a driver private ioctl will break that. The i915 driver only
1661  * does cpu mmaps this way because we didn't know better.
1662  */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665 		    struct drm_file *file)
1666 {
1667 	struct drm_i915_gem_mmap *args = data;
1668 	struct drm_gem_object *obj;
1669 	unsigned long addr;
1670 
1671 	if (args->flags & ~(I915_MMAP_WC))
1672 		return -EINVAL;
1673 
1674 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 		return -ENODEV;
1676 
1677 	obj = drm_gem_object_lookup(dev, file, args->handle);
1678 	if (obj == NULL)
1679 		return -ENOENT;
1680 
1681 	/* prime objects have no backing filp to GEM mmap
1682 	 * pages from.
1683 	 */
1684 	if (!obj->filp) {
1685 		drm_gem_object_unreference_unlocked(obj);
1686 		return -EINVAL;
1687 	}
1688 
1689 	addr = vm_mmap(obj->filp, 0, args->size,
1690 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1691 		       args->offset);
1692 	if (args->flags & I915_MMAP_WC) {
1693 		struct mm_struct *mm = current->mm;
1694 		struct vm_area_struct *vma;
1695 
1696 		down_write(&mm->mmap_sem);
1697 		vma = find_vma(mm, addr);
1698 		if (vma)
1699 			vma->vm_page_prot =
1700 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 		else
1702 			addr = -ENOMEM;
1703 		up_write(&mm->mmap_sem);
1704 	}
1705 	drm_gem_object_unreference_unlocked(obj);
1706 	if (IS_ERR((void *)addr))
1707 		return addr;
1708 
1709 	args->addr_ptr = (uint64_t) addr;
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  * i915_gem_fault - fault a page into the GTT
1716  * @vma: VMA in question
1717  * @vmf: fault info
1718  *
1719  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720  * from userspace.  The fault handler takes care of binding the object to
1721  * the GTT (if needed), allocating and programming a fence register (again,
1722  * only if needed based on whether the old reg is still valid or the object
1723  * is tiled) and inserting a new PTE into the faulting process.
1724  *
1725  * Note that the faulting process may involve evicting existing objects
1726  * from the GTT and/or fence registers to make room.  So performance may
1727  * suffer if the GTT working set is large or there are few fence registers
1728  * left.
1729  */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 	struct drm_device *dev = obj->base.dev;
1734 	struct drm_i915_private *dev_priv = dev->dev_private;
1735 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1736 	pgoff_t page_offset;
1737 	unsigned long pfn;
1738 	int ret = 0;
1739 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740 
1741 	intel_runtime_pm_get(dev_priv);
1742 
1743 	/* We don't use vmf->pgoff since that has the fake offset */
1744 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 		PAGE_SHIFT;
1746 
1747 	ret = i915_mutex_lock_interruptible(dev);
1748 	if (ret)
1749 		goto out;
1750 
1751 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1752 
1753 	/* Try to flush the object off the GPU first without holding the lock.
1754 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 	 * repeat the flush holding the lock in the normal manner to catch cases
1756 	 * where we are gazumped.
1757 	 */
1758 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 	if (ret)
1760 		goto unlock;
1761 
1762 	/* Access to snoopable pages through the GTT is incoherent. */
1763 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764 		ret = -EFAULT;
1765 		goto unlock;
1766 	}
1767 
1768 	/* Use a partial view if the object is bigger than the aperture. */
1769 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 	    obj->tiling_mode == I915_TILING_NONE) {
1771 		static const unsigned int chunk_size = 256; // 1 MiB
1772 
1773 		memset(&view, 0, sizeof(view));
1774 		view.type = I915_GGTT_VIEW_PARTIAL;
1775 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 		view.params.partial.size =
1777 			min_t(unsigned int,
1778 			      chunk_size,
1779 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 			      view.params.partial.offset);
1781 	}
1782 
1783 	/* Now pin it into the GTT if needed */
1784 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785 	if (ret)
1786 		goto unlock;
1787 
1788 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 	if (ret)
1790 		goto unpin;
1791 
1792 	ret = i915_gem_object_get_fence(obj);
1793 	if (ret)
1794 		goto unpin;
1795 
1796 	/* Finally, remap it using the new GTT offset */
1797 	pfn = dev_priv->gtt.mappable_base +
1798 		i915_gem_obj_ggtt_offset_view(obj, &view);
1799 	pfn >>= PAGE_SHIFT;
1800 
1801 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 		/* Overriding existing pages in partial view does not cause
1803 		 * us any trouble as TLBs are still valid because the fault
1804 		 * is due to userspace losing part of the mapping or never
1805 		 * having accessed it before (at this partials' range).
1806 		 */
1807 		unsigned long base = vma->vm_start +
1808 				     (view.params.partial.offset << PAGE_SHIFT);
1809 		unsigned int i;
1810 
1811 		for (i = 0; i < view.params.partial.size; i++) {
1812 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813 			if (ret)
1814 				break;
1815 		}
1816 
1817 		obj->fault_mappable = true;
1818 	} else {
1819 		if (!obj->fault_mappable) {
1820 			unsigned long size = min_t(unsigned long,
1821 						   vma->vm_end - vma->vm_start,
1822 						   obj->base.size);
1823 			int i;
1824 
1825 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 				ret = vm_insert_pfn(vma,
1827 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 						    pfn + i);
1829 				if (ret)
1830 					break;
1831 			}
1832 
1833 			obj->fault_mappable = true;
1834 		} else
1835 			ret = vm_insert_pfn(vma,
1836 					    (unsigned long)vmf->virtual_address,
1837 					    pfn + page_offset);
1838 	}
1839 unpin:
1840 	i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842 	mutex_unlock(&dev->struct_mutex);
1843 out:
1844 	switch (ret) {
1845 	case -EIO:
1846 		/*
1847 		 * We eat errors when the gpu is terminally wedged to avoid
1848 		 * userspace unduly crashing (gl has no provisions for mmaps to
1849 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 		 * and so needs to be reported.
1851 		 */
1852 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 			ret = VM_FAULT_SIGBUS;
1854 			break;
1855 		}
1856 	case -EAGAIN:
1857 		/*
1858 		 * EAGAIN means the gpu is hung and we'll wait for the error
1859 		 * handler to reset everything when re-faulting in
1860 		 * i915_mutex_lock_interruptible.
1861 		 */
1862 	case 0:
1863 	case -ERESTARTSYS:
1864 	case -EINTR:
1865 	case -EBUSY:
1866 		/*
1867 		 * EBUSY is ok: this just means that another thread
1868 		 * already did the job.
1869 		 */
1870 		ret = VM_FAULT_NOPAGE;
1871 		break;
1872 	case -ENOMEM:
1873 		ret = VM_FAULT_OOM;
1874 		break;
1875 	case -ENOSPC:
1876 	case -EFAULT:
1877 		ret = VM_FAULT_SIGBUS;
1878 		break;
1879 	default:
1880 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 		ret = VM_FAULT_SIGBUS;
1882 		break;
1883 	}
1884 
1885 	intel_runtime_pm_put(dev_priv);
1886 	return ret;
1887 }
1888 
1889 /**
1890  * i915_gem_release_mmap - remove physical page mappings
1891  * @obj: obj in question
1892  *
1893  * Preserve the reservation of the mmapping with the DRM core code, but
1894  * relinquish ownership of the pages back to the system.
1895  *
1896  * It is vital that we remove the page mapping if we have mapped a tiled
1897  * object through the GTT and then lose the fence register due to
1898  * resource pressure. Similarly if the object has been moved out of the
1899  * aperture, than pages mapped into userspace must be revoked. Removing the
1900  * mapping will then trigger a page fault on the next user access, allowing
1901  * fixup by i915_gem_fault().
1902  */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906 	if (!obj->fault_mappable)
1907 		return;
1908 
1909 	drm_vma_node_unmap(&obj->base.vma_node,
1910 			   obj->base.dev->anon_inode->i_mapping);
1911 	obj->fault_mappable = false;
1912 }
1913 
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917 	struct drm_i915_gem_object *obj;
1918 
1919 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 		i915_gem_release_mmap(obj);
1921 }
1922 
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926 	uint32_t gtt_size;
1927 
1928 	if (INTEL_INFO(dev)->gen >= 4 ||
1929 	    tiling_mode == I915_TILING_NONE)
1930 		return size;
1931 
1932 	/* Previous chips need a power-of-two fence region when tiling */
1933 	if (INTEL_INFO(dev)->gen == 3)
1934 		gtt_size = 1024*1024;
1935 	else
1936 		gtt_size = 512*1024;
1937 
1938 	while (gtt_size < size)
1939 		gtt_size <<= 1;
1940 
1941 	return gtt_size;
1942 }
1943 
1944 /**
1945  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946  * @obj: object to check
1947  *
1948  * Return the required GTT alignment for an object, taking into account
1949  * potential fence register mapping.
1950  */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 			   int tiling_mode, bool fenced)
1954 {
1955 	/*
1956 	 * Minimum alignment is 4k (GTT page size), but might be greater
1957 	 * if a fence register is needed for the object.
1958 	 */
1959 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960 	    tiling_mode == I915_TILING_NONE)
1961 		return 4096;
1962 
1963 	/*
1964 	 * Previous chips need to be aligned to the size of the smallest
1965 	 * fence register that can contain the object.
1966 	 */
1967 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969 
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 	int ret;
1974 
1975 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1976 		return 0;
1977 
1978 	dev_priv->mm.shrinker_no_lock_stealing = true;
1979 
1980 	ret = drm_gem_create_mmap_offset(&obj->base);
1981 	if (ret != -ENOSPC)
1982 		goto out;
1983 
1984 	/* Badly fragmented mmap space? The only way we can recover
1985 	 * space is by destroying unwanted objects. We can't randomly release
1986 	 * mmap_offsets as userspace expects them to be persistent for the
1987 	 * lifetime of the objects. The closest we can is to release the
1988 	 * offsets on purgeable objects by truncating it and marking it purged,
1989 	 * which prevents userspace from ever using that object again.
1990 	 */
1991 	i915_gem_shrink(dev_priv,
1992 			obj->base.size >> PAGE_SHIFT,
1993 			I915_SHRINK_BOUND |
1994 			I915_SHRINK_UNBOUND |
1995 			I915_SHRINK_PURGEABLE);
1996 	ret = drm_gem_create_mmap_offset(&obj->base);
1997 	if (ret != -ENOSPC)
1998 		goto out;
1999 
2000 	i915_gem_shrink_all(dev_priv);
2001 	ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003 	dev_priv->mm.shrinker_no_lock_stealing = false;
2004 
2005 	return ret;
2006 }
2007 
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010 	drm_gem_free_mmap_offset(&obj->base);
2011 }
2012 
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015 		  struct drm_device *dev,
2016 		  uint32_t handle,
2017 		  uint64_t *offset)
2018 {
2019 	struct drm_i915_gem_object *obj;
2020 	int ret;
2021 
2022 	ret = i915_mutex_lock_interruptible(dev);
2023 	if (ret)
2024 		return ret;
2025 
2026 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027 	if (&obj->base == NULL) {
2028 		ret = -ENOENT;
2029 		goto unlock;
2030 	}
2031 
2032 	if (obj->madv != I915_MADV_WILLNEED) {
2033 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034 		ret = -EFAULT;
2035 		goto out;
2036 	}
2037 
2038 	ret = i915_gem_object_create_mmap_offset(obj);
2039 	if (ret)
2040 		goto out;
2041 
2042 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043 
2044 out:
2045 	drm_gem_object_unreference(&obj->base);
2046 unlock:
2047 	mutex_unlock(&dev->struct_mutex);
2048 	return ret;
2049 }
2050 
2051 /**
2052  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053  * @dev: DRM device
2054  * @data: GTT mapping ioctl data
2055  * @file: GEM object info
2056  *
2057  * Simply returns the fake offset to userspace so it can mmap it.
2058  * The mmap call will end up in drm_gem_mmap(), which will set things
2059  * up so we can get faults in the handler above.
2060  *
2061  * The fault handler will take care of binding the object into the GTT
2062  * (since it may have been evicted to make room for something), allocating
2063  * a fence register, and mapping the appropriate aperture address into
2064  * userspace.
2065  */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 			struct drm_file *file)
2069 {
2070 	struct drm_i915_gem_mmap_gtt *args = data;
2071 
2072 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074 
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079 	i915_gem_object_free_mmap_offset(obj);
2080 
2081 	if (obj->base.filp == NULL)
2082 		return;
2083 
2084 	/* Our goal here is to return as much of the memory as
2085 	 * is possible back to the system as we are called from OOM.
2086 	 * To do this we must instruct the shmfs to drop all of its
2087 	 * backing pages, *now*.
2088 	 */
2089 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090 	obj->madv = __I915_MADV_PURGED;
2091 }
2092 
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097 	struct address_space *mapping;
2098 
2099 	switch (obj->madv) {
2100 	case I915_MADV_DONTNEED:
2101 		i915_gem_object_truncate(obj);
2102 	case __I915_MADV_PURGED:
2103 		return;
2104 	}
2105 
2106 	if (obj->base.filp == NULL)
2107 		return;
2108 
2109 	mapping = file_inode(obj->base.filp)->i_mapping,
2110 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112 
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116 	struct sg_page_iter sg_iter;
2117 	int ret;
2118 
2119 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2120 
2121 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 	if (ret) {
2123 		/* In the event of a disaster, abandon all caches and
2124 		 * hope for the best.
2125 		 */
2126 		WARN_ON(ret != -EIO);
2127 		i915_gem_clflush_object(obj, true);
2128 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 	}
2130 
2131 	i915_gem_gtt_finish_object(obj);
2132 
2133 	if (i915_gem_object_needs_bit17_swizzle(obj))
2134 		i915_gem_object_save_bit_17_swizzle(obj);
2135 
2136 	if (obj->madv == I915_MADV_DONTNEED)
2137 		obj->dirty = 0;
2138 
2139 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140 		struct page *page = sg_page_iter_page(&sg_iter);
2141 
2142 		if (obj->dirty)
2143 			set_page_dirty(page);
2144 
2145 		if (obj->madv == I915_MADV_WILLNEED)
2146 			mark_page_accessed(page);
2147 
2148 		page_cache_release(page);
2149 	}
2150 	obj->dirty = 0;
2151 
2152 	sg_free_table(obj->pages);
2153 	kfree(obj->pages);
2154 }
2155 
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 
2161 	if (obj->pages == NULL)
2162 		return 0;
2163 
2164 	if (obj->pages_pin_count)
2165 		return -EBUSY;
2166 
2167 	BUG_ON(i915_gem_obj_bound_any(obj));
2168 
2169 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2170 	 * array, hence protect them from being reaped by removing them from gtt
2171 	 * lists early. */
2172 	list_del(&obj->global_list);
2173 
2174 	ops->put_pages(obj);
2175 	obj->pages = NULL;
2176 
2177 	i915_gem_object_invalidate(obj);
2178 
2179 	return 0;
2180 }
2181 
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 	int page_count, i;
2187 	struct address_space *mapping;
2188 	struct sg_table *st;
2189 	struct scatterlist *sg;
2190 	struct sg_page_iter sg_iter;
2191 	struct page *page;
2192 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2193 	int ret;
2194 	gfp_t gfp;
2195 
2196 	/* Assert that the object is not currently in any GPU domain. As it
2197 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 	 * a GPU cache
2199 	 */
2200 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202 
2203 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 	if (st == NULL)
2205 		return -ENOMEM;
2206 
2207 	page_count = obj->base.size / PAGE_SIZE;
2208 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209 		kfree(st);
2210 		return -ENOMEM;
2211 	}
2212 
2213 	/* Get the list of pages out of our struct file.  They'll be pinned
2214 	 * at this point until we release them.
2215 	 *
2216 	 * Fail silently without starting the shrinker
2217 	 */
2218 	mapping = file_inode(obj->base.filp)->i_mapping;
2219 	gfp = mapping_gfp_mask(mapping);
2220 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2221 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2222 	sg = st->sgl;
2223 	st->nents = 0;
2224 	for (i = 0; i < page_count; i++) {
2225 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2226 		if (IS_ERR(page)) {
2227 			i915_gem_shrink(dev_priv,
2228 					page_count,
2229 					I915_SHRINK_BOUND |
2230 					I915_SHRINK_UNBOUND |
2231 					I915_SHRINK_PURGEABLE);
2232 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 		}
2234 		if (IS_ERR(page)) {
2235 			/* We've tried hard to allocate the memory by reaping
2236 			 * our own buffer, now let the real VM do its job and
2237 			 * go down in flames if truly OOM.
2238 			 */
2239 			i915_gem_shrink_all(dev_priv);
2240 			page = shmem_read_mapping_page(mapping, i);
2241 			if (IS_ERR(page)) {
2242 				ret = PTR_ERR(page);
2243 				goto err_pages;
2244 			}
2245 		}
2246 #ifdef CONFIG_SWIOTLB
2247 		if (swiotlb_nr_tbl()) {
2248 			st->nents++;
2249 			sg_set_page(sg, page, PAGE_SIZE, 0);
2250 			sg = sg_next(sg);
2251 			continue;
2252 		}
2253 #endif
2254 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2255 			if (i)
2256 				sg = sg_next(sg);
2257 			st->nents++;
2258 			sg_set_page(sg, page, PAGE_SIZE, 0);
2259 		} else {
2260 			sg->length += PAGE_SIZE;
2261 		}
2262 		last_pfn = page_to_pfn(page);
2263 
2264 		/* Check that the i965g/gm workaround works. */
2265 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266 	}
2267 #ifdef CONFIG_SWIOTLB
2268 	if (!swiotlb_nr_tbl())
2269 #endif
2270 		sg_mark_end(sg);
2271 	obj->pages = st;
2272 
2273 	ret = i915_gem_gtt_prepare_object(obj);
2274 	if (ret)
2275 		goto err_pages;
2276 
2277 	if (i915_gem_object_needs_bit17_swizzle(obj))
2278 		i915_gem_object_do_bit_17_swizzle(obj);
2279 
2280 	if (obj->tiling_mode != I915_TILING_NONE &&
2281 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2282 		i915_gem_object_pin_pages(obj);
2283 
2284 	return 0;
2285 
2286 err_pages:
2287 	sg_mark_end(sg);
2288 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2289 		page_cache_release(sg_page_iter_page(&sg_iter));
2290 	sg_free_table(st);
2291 	kfree(st);
2292 
2293 	/* shmemfs first checks if there is enough memory to allocate the page
2294 	 * and reports ENOSPC should there be insufficient, along with the usual
2295 	 * ENOMEM for a genuine allocation failure.
2296 	 *
2297 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2298 	 * space and so want to translate the error from shmemfs back to our
2299 	 * usual understanding of ENOMEM.
2300 	 */
2301 	if (ret == -ENOSPC)
2302 		ret = -ENOMEM;
2303 
2304 	return ret;
2305 }
2306 
2307 /* Ensure that the associated pages are gathered from the backing storage
2308  * and pinned into our object. i915_gem_object_get_pages() may be called
2309  * multiple times before they are released by a single call to
2310  * i915_gem_object_put_pages() - once the pages are no longer referenced
2311  * either as a result of memory pressure (reaping pages under the shrinker)
2312  * or as the object is itself released.
2313  */
2314 int
2315 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2316 {
2317 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2318 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2319 	int ret;
2320 
2321 	if (obj->pages)
2322 		return 0;
2323 
2324 	if (obj->madv != I915_MADV_WILLNEED) {
2325 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2326 		return -EFAULT;
2327 	}
2328 
2329 	BUG_ON(obj->pages_pin_count);
2330 
2331 	ret = ops->get_pages(obj);
2332 	if (ret)
2333 		return ret;
2334 
2335 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2336 
2337 	obj->get_page.sg = obj->pages->sgl;
2338 	obj->get_page.last = 0;
2339 
2340 	return 0;
2341 }
2342 
2343 void i915_vma_move_to_active(struct i915_vma *vma,
2344 			     struct drm_i915_gem_request *req)
2345 {
2346 	struct drm_i915_gem_object *obj = vma->obj;
2347 	struct intel_engine_cs *ring;
2348 
2349 	ring = i915_gem_request_get_ring(req);
2350 
2351 	/* Add a reference if we're newly entering the active list. */
2352 	if (obj->active == 0)
2353 		drm_gem_object_reference(&obj->base);
2354 	obj->active |= intel_ring_flag(ring);
2355 
2356 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2357 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2358 
2359 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361 
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365 	RQ_BUG_ON(obj->last_write_req == NULL);
2366 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367 
2368 	i915_gem_request_assign(&obj->last_write_req, NULL);
2369 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2370 }
2371 
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375 	struct i915_vma *vma;
2376 
2377 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2379 
2380 	list_del_init(&obj->ring_list[ring]);
2381 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382 
2383 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 		i915_gem_object_retire__write(obj);
2385 
2386 	obj->active &= ~(1 << ring);
2387 	if (obj->active)
2388 		return;
2389 
2390 	/* Bump our place on the bound list to keep it roughly in LRU order
2391 	 * so that we don't steal from recently used but inactive objects
2392 	 * (unless we are forced to ofc!)
2393 	 */
2394 	list_move_tail(&obj->global_list,
2395 		       &to_i915(obj->base.dev)->mm.bound_list);
2396 
2397 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2398 		if (!list_empty(&vma->mm_list))
2399 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2400 	}
2401 
2402 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2403 	drm_gem_object_unreference(&obj->base);
2404 }
2405 
2406 static int
2407 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2408 {
2409 	struct drm_i915_private *dev_priv = dev->dev_private;
2410 	struct intel_engine_cs *ring;
2411 	int ret, i, j;
2412 
2413 	/* Carefully retire all requests without writing to the rings */
2414 	for_each_ring(ring, dev_priv, i) {
2415 		ret = intel_ring_idle(ring);
2416 		if (ret)
2417 			return ret;
2418 	}
2419 	i915_gem_retire_requests(dev);
2420 
2421 	/* Finally reset hw state */
2422 	for_each_ring(ring, dev_priv, i) {
2423 		intel_ring_init_seqno(ring, seqno);
2424 
2425 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2426 			ring->semaphore.sync_seqno[j] = 0;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2433 {
2434 	struct drm_i915_private *dev_priv = dev->dev_private;
2435 	int ret;
2436 
2437 	if (seqno == 0)
2438 		return -EINVAL;
2439 
2440 	/* HWS page needs to be set less than what we
2441 	 * will inject to ring
2442 	 */
2443 	ret = i915_gem_init_seqno(dev, seqno - 1);
2444 	if (ret)
2445 		return ret;
2446 
2447 	/* Carefully set the last_seqno value so that wrap
2448 	 * detection still works
2449 	 */
2450 	dev_priv->next_seqno = seqno;
2451 	dev_priv->last_seqno = seqno - 1;
2452 	if (dev_priv->last_seqno == 0)
2453 		dev_priv->last_seqno--;
2454 
2455 	return 0;
2456 }
2457 
2458 int
2459 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460 {
2461 	struct drm_i915_private *dev_priv = dev->dev_private;
2462 
2463 	/* reserve 0 for non-seqno */
2464 	if (dev_priv->next_seqno == 0) {
2465 		int ret = i915_gem_init_seqno(dev, 0);
2466 		if (ret)
2467 			return ret;
2468 
2469 		dev_priv->next_seqno = 1;
2470 	}
2471 
2472 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2473 	return 0;
2474 }
2475 
2476 /*
2477  * NB: This function is not allowed to fail. Doing so would mean the the
2478  * request is not being tracked for completion but the work itself is
2479  * going to happen on the hardware. This would be a Bad Thing(tm).
2480  */
2481 void __i915_add_request(struct drm_i915_gem_request *request,
2482 			struct drm_i915_gem_object *obj,
2483 			bool flush_caches)
2484 {
2485 	struct intel_engine_cs *ring;
2486 	struct drm_i915_private *dev_priv;
2487 	struct intel_ringbuffer *ringbuf;
2488 	u32 request_start;
2489 	int ret;
2490 
2491 	if (WARN_ON(request == NULL))
2492 		return;
2493 
2494 	ring = request->ring;
2495 	dev_priv = ring->dev->dev_private;
2496 	ringbuf = request->ringbuf;
2497 
2498 	/*
2499 	 * To ensure that this call will not fail, space for its emissions
2500 	 * should already have been reserved in the ring buffer. Let the ring
2501 	 * know that it is time to use that space up.
2502 	 */
2503 	intel_ring_reserved_space_use(ringbuf);
2504 
2505 	request_start = intel_ring_get_tail(ringbuf);
2506 	/*
2507 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2508 	 * after having emitted the batchbuffer command. Hence we need to fix
2509 	 * things up similar to emitting the lazy request. The difference here
2510 	 * is that the flush _must_ happen before the next request, no matter
2511 	 * what.
2512 	 */
2513 	if (flush_caches) {
2514 		if (i915.enable_execlists)
2515 			ret = logical_ring_flush_all_caches(request);
2516 		else
2517 			ret = intel_ring_flush_all_caches(request);
2518 		/* Not allowed to fail! */
2519 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2520 	}
2521 
2522 	/* Record the position of the start of the request so that
2523 	 * should we detect the updated seqno part-way through the
2524 	 * GPU processing the request, we never over-estimate the
2525 	 * position of the head.
2526 	 */
2527 	request->postfix = intel_ring_get_tail(ringbuf);
2528 
2529 	if (i915.enable_execlists)
2530 		ret = ring->emit_request(request);
2531 	else {
2532 		ret = ring->add_request(request);
2533 
2534 		request->tail = intel_ring_get_tail(ringbuf);
2535 	}
2536 	/* Not allowed to fail! */
2537 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2538 
2539 	request->head = request_start;
2540 
2541 	/* Whilst this request exists, batch_obj will be on the
2542 	 * active_list, and so will hold the active reference. Only when this
2543 	 * request is retired will the the batch_obj be moved onto the
2544 	 * inactive_list and lose its active reference. Hence we do not need
2545 	 * to explicitly hold another reference here.
2546 	 */
2547 	request->batch_obj = obj;
2548 
2549 	request->emitted_jiffies = jiffies;
2550 	ring->last_submitted_seqno = request->seqno;
2551 	list_add_tail(&request->list, &ring->request_list);
2552 
2553 	trace_i915_gem_request_add(request);
2554 
2555 	i915_queue_hangcheck(ring->dev);
2556 
2557 	queue_delayed_work(dev_priv->wq,
2558 			   &dev_priv->mm.retire_work,
2559 			   round_jiffies_up_relative(HZ));
2560 	intel_mark_busy(dev_priv->dev);
2561 
2562 	/* Sanity check that the reserved size was large enough. */
2563 	intel_ring_reserved_space_end(ringbuf);
2564 }
2565 
2566 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2567 				   const struct intel_context *ctx)
2568 {
2569 	unsigned long elapsed;
2570 
2571 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2572 
2573 	if (ctx->hang_stats.banned)
2574 		return true;
2575 
2576 	if (ctx->hang_stats.ban_period_seconds &&
2577 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2578 		if (!i915_gem_context_is_default(ctx)) {
2579 			DRM_DEBUG("context hanging too fast, banning!\n");
2580 			return true;
2581 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2582 			if (i915_stop_ring_allow_warn(dev_priv))
2583 				DRM_ERROR("gpu hanging too fast, banning!\n");
2584 			return true;
2585 		}
2586 	}
2587 
2588 	return false;
2589 }
2590 
2591 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2592 				  struct intel_context *ctx,
2593 				  const bool guilty)
2594 {
2595 	struct i915_ctx_hang_stats *hs;
2596 
2597 	if (WARN_ON(!ctx))
2598 		return;
2599 
2600 	hs = &ctx->hang_stats;
2601 
2602 	if (guilty) {
2603 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2604 		hs->batch_active++;
2605 		hs->guilty_ts = get_seconds();
2606 	} else {
2607 		hs->batch_pending++;
2608 	}
2609 }
2610 
2611 void i915_gem_request_free(struct kref *req_ref)
2612 {
2613 	struct drm_i915_gem_request *req = container_of(req_ref,
2614 						 typeof(*req), ref);
2615 	struct intel_context *ctx = req->ctx;
2616 
2617 	if (req->file_priv)
2618 		i915_gem_request_remove_from_client(req);
2619 
2620 	if (ctx) {
2621 		if (i915.enable_execlists) {
2622 			if (ctx != req->ring->default_context)
2623 				intel_lr_context_unpin(req);
2624 		}
2625 
2626 		i915_gem_context_unreference(ctx);
2627 	}
2628 
2629 	kmem_cache_free(req->i915->requests, req);
2630 }
2631 
2632 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633 			   struct intel_context *ctx,
2634 			   struct drm_i915_gem_request **req_out)
2635 {
2636 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2637 	struct drm_i915_gem_request *req;
2638 	int ret;
2639 
2640 	if (!req_out)
2641 		return -EINVAL;
2642 
2643 	*req_out = NULL;
2644 
2645 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2646 	if (req == NULL)
2647 		return -ENOMEM;
2648 
2649 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650 	if (ret)
2651 		goto err;
2652 
2653 	kref_init(&req->ref);
2654 	req->i915 = dev_priv;
2655 	req->ring = ring;
2656 	req->ctx  = ctx;
2657 	i915_gem_context_reference(req->ctx);
2658 
2659 	if (i915.enable_execlists)
2660 		ret = intel_logical_ring_alloc_request_extras(req);
2661 	else
2662 		ret = intel_ring_alloc_request_extras(req);
2663 	if (ret) {
2664 		i915_gem_context_unreference(req->ctx);
2665 		goto err;
2666 	}
2667 
2668 	/*
2669 	 * Reserve space in the ring buffer for all the commands required to
2670 	 * eventually emit this request. This is to guarantee that the
2671 	 * i915_add_request() call can't fail. Note that the reserve may need
2672 	 * to be redone if the request is not actually submitted straight
2673 	 * away, e.g. because a GPU scheduler has deferred it.
2674 	 */
2675 	if (i915.enable_execlists)
2676 		ret = intel_logical_ring_reserve_space(req);
2677 	else
2678 		ret = intel_ring_reserve_space(req);
2679 	if (ret) {
2680 		/*
2681 		 * At this point, the request is fully allocated even if not
2682 		 * fully prepared. Thus it can be cleaned up using the proper
2683 		 * free code.
2684 		 */
2685 		i915_gem_request_cancel(req);
2686 		return ret;
2687 	}
2688 
2689 	*req_out = req;
2690 	return 0;
2691 
2692 err:
2693 	kmem_cache_free(dev_priv->requests, req);
2694 	return ret;
2695 }
2696 
2697 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2698 {
2699 	intel_ring_reserved_space_cancel(req->ringbuf);
2700 
2701 	i915_gem_request_unreference(req);
2702 }
2703 
2704 struct drm_i915_gem_request *
2705 i915_gem_find_active_request(struct intel_engine_cs *ring)
2706 {
2707 	struct drm_i915_gem_request *request;
2708 
2709 	list_for_each_entry(request, &ring->request_list, list) {
2710 		if (i915_gem_request_completed(request, false))
2711 			continue;
2712 
2713 		return request;
2714 	}
2715 
2716 	return NULL;
2717 }
2718 
2719 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2720 				       struct intel_engine_cs *ring)
2721 {
2722 	struct drm_i915_gem_request *request;
2723 	bool ring_hung;
2724 
2725 	request = i915_gem_find_active_request(ring);
2726 
2727 	if (request == NULL)
2728 		return;
2729 
2730 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2731 
2732 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2733 
2734 	list_for_each_entry_continue(request, &ring->request_list, list)
2735 		i915_set_reset_status(dev_priv, request->ctx, false);
2736 }
2737 
2738 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2739 					struct intel_engine_cs *ring)
2740 {
2741 	while (!list_empty(&ring->active_list)) {
2742 		struct drm_i915_gem_object *obj;
2743 
2744 		obj = list_first_entry(&ring->active_list,
2745 				       struct drm_i915_gem_object,
2746 				       ring_list[ring->id]);
2747 
2748 		i915_gem_object_retire__read(obj, ring->id);
2749 	}
2750 
2751 	/*
2752 	 * Clear the execlists queue up before freeing the requests, as those
2753 	 * are the ones that keep the context and ringbuffer backing objects
2754 	 * pinned in place.
2755 	 */
2756 	while (!list_empty(&ring->execlist_queue)) {
2757 		struct drm_i915_gem_request *submit_req;
2758 
2759 		submit_req = list_first_entry(&ring->execlist_queue,
2760 				struct drm_i915_gem_request,
2761 				execlist_link);
2762 		list_del(&submit_req->execlist_link);
2763 
2764 		if (submit_req->ctx != ring->default_context)
2765 			intel_lr_context_unpin(submit_req);
2766 
2767 		i915_gem_request_unreference(submit_req);
2768 	}
2769 
2770 	/*
2771 	 * We must free the requests after all the corresponding objects have
2772 	 * been moved off active lists. Which is the same order as the normal
2773 	 * retire_requests function does. This is important if object hold
2774 	 * implicit references on things like e.g. ppgtt address spaces through
2775 	 * the request.
2776 	 */
2777 	while (!list_empty(&ring->request_list)) {
2778 		struct drm_i915_gem_request *request;
2779 
2780 		request = list_first_entry(&ring->request_list,
2781 					   struct drm_i915_gem_request,
2782 					   list);
2783 
2784 		i915_gem_request_retire(request);
2785 	}
2786 }
2787 
2788 void i915_gem_reset(struct drm_device *dev)
2789 {
2790 	struct drm_i915_private *dev_priv = dev->dev_private;
2791 	struct intel_engine_cs *ring;
2792 	int i;
2793 
2794 	/*
2795 	 * Before we free the objects from the requests, we need to inspect
2796 	 * them for finding the guilty party. As the requests only borrow
2797 	 * their reference to the objects, the inspection must be done first.
2798 	 */
2799 	for_each_ring(ring, dev_priv, i)
2800 		i915_gem_reset_ring_status(dev_priv, ring);
2801 
2802 	for_each_ring(ring, dev_priv, i)
2803 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2804 
2805 	i915_gem_context_reset(dev);
2806 
2807 	i915_gem_restore_fences(dev);
2808 
2809 	WARN_ON(i915_verify_lists(dev));
2810 }
2811 
2812 /**
2813  * This function clears the request list as sequence numbers are passed.
2814  */
2815 void
2816 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2817 {
2818 	WARN_ON(i915_verify_lists(ring->dev));
2819 
2820 	/* Retire requests first as we use it above for the early return.
2821 	 * If we retire requests last, we may use a later seqno and so clear
2822 	 * the requests lists without clearing the active list, leading to
2823 	 * confusion.
2824 	 */
2825 	while (!list_empty(&ring->request_list)) {
2826 		struct drm_i915_gem_request *request;
2827 
2828 		request = list_first_entry(&ring->request_list,
2829 					   struct drm_i915_gem_request,
2830 					   list);
2831 
2832 		if (!i915_gem_request_completed(request, true))
2833 			break;
2834 
2835 		i915_gem_request_retire(request);
2836 	}
2837 
2838 	/* Move any buffers on the active list that are no longer referenced
2839 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2840 	 * before we free the context associated with the requests.
2841 	 */
2842 	while (!list_empty(&ring->active_list)) {
2843 		struct drm_i915_gem_object *obj;
2844 
2845 		obj = list_first_entry(&ring->active_list,
2846 				      struct drm_i915_gem_object,
2847 				      ring_list[ring->id]);
2848 
2849 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2850 			break;
2851 
2852 		i915_gem_object_retire__read(obj, ring->id);
2853 	}
2854 
2855 	if (unlikely(ring->trace_irq_req &&
2856 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2857 		ring->irq_put(ring);
2858 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2859 	}
2860 
2861 	WARN_ON(i915_verify_lists(ring->dev));
2862 }
2863 
2864 bool
2865 i915_gem_retire_requests(struct drm_device *dev)
2866 {
2867 	struct drm_i915_private *dev_priv = dev->dev_private;
2868 	struct intel_engine_cs *ring;
2869 	bool idle = true;
2870 	int i;
2871 
2872 	for_each_ring(ring, dev_priv, i) {
2873 		i915_gem_retire_requests_ring(ring);
2874 		idle &= list_empty(&ring->request_list);
2875 		if (i915.enable_execlists) {
2876 			unsigned long flags;
2877 
2878 			spin_lock_irqsave(&ring->execlist_lock, flags);
2879 			idle &= list_empty(&ring->execlist_queue);
2880 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2881 
2882 			intel_execlists_retire_requests(ring);
2883 		}
2884 	}
2885 
2886 	if (idle)
2887 		mod_delayed_work(dev_priv->wq,
2888 				   &dev_priv->mm.idle_work,
2889 				   msecs_to_jiffies(100));
2890 
2891 	return idle;
2892 }
2893 
2894 static void
2895 i915_gem_retire_work_handler(struct work_struct *work)
2896 {
2897 	struct drm_i915_private *dev_priv =
2898 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2899 	struct drm_device *dev = dev_priv->dev;
2900 	bool idle;
2901 
2902 	/* Come back later if the device is busy... */
2903 	idle = false;
2904 	if (mutex_trylock(&dev->struct_mutex)) {
2905 		idle = i915_gem_retire_requests(dev);
2906 		mutex_unlock(&dev->struct_mutex);
2907 	}
2908 	if (!idle)
2909 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2910 				   round_jiffies_up_relative(HZ));
2911 }
2912 
2913 static void
2914 i915_gem_idle_work_handler(struct work_struct *work)
2915 {
2916 	struct drm_i915_private *dev_priv =
2917 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2918 	struct drm_device *dev = dev_priv->dev;
2919 	struct intel_engine_cs *ring;
2920 	int i;
2921 
2922 	for_each_ring(ring, dev_priv, i)
2923 		if (!list_empty(&ring->request_list))
2924 			return;
2925 
2926 	intel_mark_idle(dev);
2927 
2928 	if (mutex_trylock(&dev->struct_mutex)) {
2929 		struct intel_engine_cs *ring;
2930 		int i;
2931 
2932 		for_each_ring(ring, dev_priv, i)
2933 			i915_gem_batch_pool_fini(&ring->batch_pool);
2934 
2935 		mutex_unlock(&dev->struct_mutex);
2936 	}
2937 }
2938 
2939 /**
2940  * Ensures that an object will eventually get non-busy by flushing any required
2941  * write domains, emitting any outstanding lazy request and retiring and
2942  * completed requests.
2943  */
2944 static int
2945 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2946 {
2947 	int i;
2948 
2949 	if (!obj->active)
2950 		return 0;
2951 
2952 	for (i = 0; i < I915_NUM_RINGS; i++) {
2953 		struct drm_i915_gem_request *req;
2954 
2955 		req = obj->last_read_req[i];
2956 		if (req == NULL)
2957 			continue;
2958 
2959 		if (list_empty(&req->list))
2960 			goto retire;
2961 
2962 		if (i915_gem_request_completed(req, true)) {
2963 			__i915_gem_request_retire__upto(req);
2964 retire:
2965 			i915_gem_object_retire__read(obj, i);
2966 		}
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /**
2973  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2974  * @DRM_IOCTL_ARGS: standard ioctl arguments
2975  *
2976  * Returns 0 if successful, else an error is returned with the remaining time in
2977  * the timeout parameter.
2978  *  -ETIME: object is still busy after timeout
2979  *  -ERESTARTSYS: signal interrupted the wait
2980  *  -ENONENT: object doesn't exist
2981  * Also possible, but rare:
2982  *  -EAGAIN: GPU wedged
2983  *  -ENOMEM: damn
2984  *  -ENODEV: Internal IRQ fail
2985  *  -E?: The add request failed
2986  *
2987  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2988  * non-zero timeout parameter the wait ioctl will wait for the given number of
2989  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2990  * without holding struct_mutex the object may become re-busied before this
2991  * function completes. A similar but shorter * race condition exists in the busy
2992  * ioctl
2993  */
2994 int
2995 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2996 {
2997 	struct drm_i915_private *dev_priv = dev->dev_private;
2998 	struct drm_i915_gem_wait *args = data;
2999 	struct drm_i915_gem_object *obj;
3000 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3001 	unsigned reset_counter;
3002 	int i, n = 0;
3003 	int ret;
3004 
3005 	if (args->flags != 0)
3006 		return -EINVAL;
3007 
3008 	ret = i915_mutex_lock_interruptible(dev);
3009 	if (ret)
3010 		return ret;
3011 
3012 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3013 	if (&obj->base == NULL) {
3014 		mutex_unlock(&dev->struct_mutex);
3015 		return -ENOENT;
3016 	}
3017 
3018 	/* Need to make sure the object gets inactive eventually. */
3019 	ret = i915_gem_object_flush_active(obj);
3020 	if (ret)
3021 		goto out;
3022 
3023 	if (!obj->active)
3024 		goto out;
3025 
3026 	/* Do this after OLR check to make sure we make forward progress polling
3027 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3028 	 */
3029 	if (args->timeout_ns == 0) {
3030 		ret = -ETIME;
3031 		goto out;
3032 	}
3033 
3034 	drm_gem_object_unreference(&obj->base);
3035 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3036 
3037 	for (i = 0; i < I915_NUM_RINGS; i++) {
3038 		if (obj->last_read_req[i] == NULL)
3039 			continue;
3040 
3041 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3042 	}
3043 
3044 	mutex_unlock(&dev->struct_mutex);
3045 
3046 	for (i = 0; i < n; i++) {
3047 		if (ret == 0)
3048 			ret = __i915_wait_request(req[i], reset_counter, true,
3049 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3050 						  file->driver_priv);
3051 		i915_gem_request_unreference__unlocked(req[i]);
3052 	}
3053 	return ret;
3054 
3055 out:
3056 	drm_gem_object_unreference(&obj->base);
3057 	mutex_unlock(&dev->struct_mutex);
3058 	return ret;
3059 }
3060 
3061 static int
3062 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3063 		       struct intel_engine_cs *to,
3064 		       struct drm_i915_gem_request *from_req,
3065 		       struct drm_i915_gem_request **to_req)
3066 {
3067 	struct intel_engine_cs *from;
3068 	int ret;
3069 
3070 	from = i915_gem_request_get_ring(from_req);
3071 	if (to == from)
3072 		return 0;
3073 
3074 	if (i915_gem_request_completed(from_req, true))
3075 		return 0;
3076 
3077 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3078 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3079 		ret = __i915_wait_request(from_req,
3080 					  atomic_read(&i915->gpu_error.reset_counter),
3081 					  i915->mm.interruptible,
3082 					  NULL,
3083 					  &i915->rps.semaphores);
3084 		if (ret)
3085 			return ret;
3086 
3087 		i915_gem_object_retire_request(obj, from_req);
3088 	} else {
3089 		int idx = intel_ring_sync_index(from, to);
3090 		u32 seqno = i915_gem_request_get_seqno(from_req);
3091 
3092 		WARN_ON(!to_req);
3093 
3094 		if (seqno <= from->semaphore.sync_seqno[idx])
3095 			return 0;
3096 
3097 		if (*to_req == NULL) {
3098 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3099 			if (ret)
3100 				return ret;
3101 		}
3102 
3103 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3104 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3105 		if (ret)
3106 			return ret;
3107 
3108 		/* We use last_read_req because sync_to()
3109 		 * might have just caused seqno wrap under
3110 		 * the radar.
3111 		 */
3112 		from->semaphore.sync_seqno[idx] =
3113 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /**
3120  * i915_gem_object_sync - sync an object to a ring.
3121  *
3122  * @obj: object which may be in use on another ring.
3123  * @to: ring we wish to use the object on. May be NULL.
3124  * @to_req: request we wish to use the object for. See below.
3125  *          This will be allocated and returned if a request is
3126  *          required but not passed in.
3127  *
3128  * This code is meant to abstract object synchronization with the GPU.
3129  * Calling with NULL implies synchronizing the object with the CPU
3130  * rather than a particular GPU ring. Conceptually we serialise writes
3131  * between engines inside the GPU. We only allow one engine to write
3132  * into a buffer at any time, but multiple readers. To ensure each has
3133  * a coherent view of memory, we must:
3134  *
3135  * - If there is an outstanding write request to the object, the new
3136  *   request must wait for it to complete (either CPU or in hw, requests
3137  *   on the same ring will be naturally ordered).
3138  *
3139  * - If we are a write request (pending_write_domain is set), the new
3140  *   request must wait for outstanding read requests to complete.
3141  *
3142  * For CPU synchronisation (NULL to) no request is required. For syncing with
3143  * rings to_req must be non-NULL. However, a request does not have to be
3144  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3145  * request will be allocated automatically and returned through *to_req. Note
3146  * that it is not guaranteed that commands will be emitted (because the system
3147  * might already be idle). Hence there is no need to create a request that
3148  * might never have any work submitted. Note further that if a request is
3149  * returned in *to_req, it is the responsibility of the caller to submit
3150  * that request (after potentially adding more work to it).
3151  *
3152  * Returns 0 if successful, else propagates up the lower layer error.
3153  */
3154 int
3155 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3156 		     struct intel_engine_cs *to,
3157 		     struct drm_i915_gem_request **to_req)
3158 {
3159 	const bool readonly = obj->base.pending_write_domain == 0;
3160 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3161 	int ret, i, n;
3162 
3163 	if (!obj->active)
3164 		return 0;
3165 
3166 	if (to == NULL)
3167 		return i915_gem_object_wait_rendering(obj, readonly);
3168 
3169 	n = 0;
3170 	if (readonly) {
3171 		if (obj->last_write_req)
3172 			req[n++] = obj->last_write_req;
3173 	} else {
3174 		for (i = 0; i < I915_NUM_RINGS; i++)
3175 			if (obj->last_read_req[i])
3176 				req[n++] = obj->last_read_req[i];
3177 	}
3178 	for (i = 0; i < n; i++) {
3179 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3180 		if (ret)
3181 			return ret;
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3188 {
3189 	u32 old_write_domain, old_read_domains;
3190 
3191 	/* Force a pagefault for domain tracking on next user access */
3192 	i915_gem_release_mmap(obj);
3193 
3194 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195 		return;
3196 
3197 	/* Wait for any direct GTT access to complete */
3198 	mb();
3199 
3200 	old_read_domains = obj->base.read_domains;
3201 	old_write_domain = obj->base.write_domain;
3202 
3203 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3204 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3205 
3206 	trace_i915_gem_object_change_domain(obj,
3207 					    old_read_domains,
3208 					    old_write_domain);
3209 }
3210 
3211 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3212 {
3213 	struct drm_i915_gem_object *obj = vma->obj;
3214 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3215 	int ret;
3216 
3217 	if (list_empty(&vma->vma_link))
3218 		return 0;
3219 
3220 	if (!drm_mm_node_allocated(&vma->node)) {
3221 		i915_gem_vma_destroy(vma);
3222 		return 0;
3223 	}
3224 
3225 	if (vma->pin_count)
3226 		return -EBUSY;
3227 
3228 	BUG_ON(obj->pages == NULL);
3229 
3230 	if (wait) {
3231 		ret = i915_gem_object_wait_rendering(obj, false);
3232 		if (ret)
3233 			return ret;
3234 	}
3235 
3236 	if (i915_is_ggtt(vma->vm) &&
3237 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238 		i915_gem_object_finish_gtt(obj);
3239 
3240 		/* release the fence reg _after_ flushing */
3241 		ret = i915_gem_object_put_fence(obj);
3242 		if (ret)
3243 			return ret;
3244 	}
3245 
3246 	trace_i915_vma_unbind(vma);
3247 
3248 	vma->vm->unbind_vma(vma);
3249 	vma->bound = 0;
3250 
3251 	list_del_init(&vma->mm_list);
3252 	if (i915_is_ggtt(vma->vm)) {
3253 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 			obj->map_and_fenceable = false;
3255 		} else if (vma->ggtt_view.pages) {
3256 			sg_free_table(vma->ggtt_view.pages);
3257 			kfree(vma->ggtt_view.pages);
3258 		}
3259 		vma->ggtt_view.pages = NULL;
3260 	}
3261 
3262 	drm_mm_remove_node(&vma->node);
3263 	i915_gem_vma_destroy(vma);
3264 
3265 	/* Since the unbound list is global, only move to that list if
3266 	 * no more VMAs exist. */
3267 	if (list_empty(&obj->vma_list))
3268 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269 
3270 	/* And finally now the object is completely decoupled from this vma,
3271 	 * we can drop its hold on the backing storage and allow it to be
3272 	 * reaped by the shrinker.
3273 	 */
3274 	i915_gem_object_unpin_pages(obj);
3275 
3276 	return 0;
3277 }
3278 
3279 int i915_vma_unbind(struct i915_vma *vma)
3280 {
3281 	return __i915_vma_unbind(vma, true);
3282 }
3283 
3284 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3285 {
3286 	return __i915_vma_unbind(vma, false);
3287 }
3288 
3289 int i915_gpu_idle(struct drm_device *dev)
3290 {
3291 	struct drm_i915_private *dev_priv = dev->dev_private;
3292 	struct intel_engine_cs *ring;
3293 	int ret, i;
3294 
3295 	/* Flush everything onto the inactive list. */
3296 	for_each_ring(ring, dev_priv, i) {
3297 		if (!i915.enable_execlists) {
3298 			struct drm_i915_gem_request *req;
3299 
3300 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3301 			if (ret)
3302 				return ret;
3303 
3304 			ret = i915_switch_context(req);
3305 			if (ret) {
3306 				i915_gem_request_cancel(req);
3307 				return ret;
3308 			}
3309 
3310 			i915_add_request_no_flush(req);
3311 		}
3312 
3313 		ret = intel_ring_idle(ring);
3314 		if (ret)
3315 			return ret;
3316 	}
3317 
3318 	WARN_ON(i915_verify_lists(dev));
3319 	return 0;
3320 }
3321 
3322 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3323 				     unsigned long cache_level)
3324 {
3325 	struct drm_mm_node *gtt_space = &vma->node;
3326 	struct drm_mm_node *other;
3327 
3328 	/*
3329 	 * On some machines we have to be careful when putting differing types
3330 	 * of snoopable memory together to avoid the prefetcher crossing memory
3331 	 * domains and dying. During vm initialisation, we decide whether or not
3332 	 * these constraints apply and set the drm_mm.color_adjust
3333 	 * appropriately.
3334 	 */
3335 	if (vma->vm->mm.color_adjust == NULL)
3336 		return true;
3337 
3338 	if (!drm_mm_node_allocated(gtt_space))
3339 		return true;
3340 
3341 	if (list_empty(&gtt_space->node_list))
3342 		return true;
3343 
3344 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3345 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3346 		return false;
3347 
3348 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3349 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3350 		return false;
3351 
3352 	return true;
3353 }
3354 
3355 /**
3356  * Finds free space in the GTT aperture and binds the object or a view of it
3357  * there.
3358  */
3359 static struct i915_vma *
3360 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3361 			   struct i915_address_space *vm,
3362 			   const struct i915_ggtt_view *ggtt_view,
3363 			   unsigned alignment,
3364 			   uint64_t flags)
3365 {
3366 	struct drm_device *dev = obj->base.dev;
3367 	struct drm_i915_private *dev_priv = dev->dev_private;
3368 	u32 fence_alignment, unfenced_alignment;
3369 	u32 search_flag, alloc_flag;
3370 	u64 start, end;
3371 	u64 size, fence_size;
3372 	struct i915_vma *vma;
3373 	int ret;
3374 
3375 	if (i915_is_ggtt(vm)) {
3376 		u32 view_size;
3377 
3378 		if (WARN_ON(!ggtt_view))
3379 			return ERR_PTR(-EINVAL);
3380 
3381 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3382 
3383 		fence_size = i915_gem_get_gtt_size(dev,
3384 						   view_size,
3385 						   obj->tiling_mode);
3386 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3387 							     view_size,
3388 							     obj->tiling_mode,
3389 							     true);
3390 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3391 								view_size,
3392 								obj->tiling_mode,
3393 								false);
3394 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3395 	} else {
3396 		fence_size = i915_gem_get_gtt_size(dev,
3397 						   obj->base.size,
3398 						   obj->tiling_mode);
3399 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3400 							     obj->base.size,
3401 							     obj->tiling_mode,
3402 							     true);
3403 		unfenced_alignment =
3404 			i915_gem_get_gtt_alignment(dev,
3405 						   obj->base.size,
3406 						   obj->tiling_mode,
3407 						   false);
3408 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409 	}
3410 
3411 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3412 	end = vm->total;
3413 	if (flags & PIN_MAPPABLE)
3414 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3415 	if (flags & PIN_ZONE_4G)
3416 		end = min_t(u64, end, (1ULL << 32));
3417 
3418 	if (alignment == 0)
3419 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3420 						unfenced_alignment;
3421 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3422 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3423 			  ggtt_view ? ggtt_view->type : 0,
3424 			  alignment);
3425 		return ERR_PTR(-EINVAL);
3426 	}
3427 
3428 	/* If binding the object/GGTT view requires more space than the entire
3429 	 * aperture has, reject it early before evicting everything in a vain
3430 	 * attempt to find space.
3431 	 */
3432 	if (size > end) {
3433 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3434 			  ggtt_view ? ggtt_view->type : 0,
3435 			  size,
3436 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3437 			  end);
3438 		return ERR_PTR(-E2BIG);
3439 	}
3440 
3441 	ret = i915_gem_object_get_pages(obj);
3442 	if (ret)
3443 		return ERR_PTR(ret);
3444 
3445 	i915_gem_object_pin_pages(obj);
3446 
3447 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3448 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3449 
3450 	if (IS_ERR(vma))
3451 		goto err_unpin;
3452 
3453 	if (flags & PIN_HIGH) {
3454 		search_flag = DRM_MM_SEARCH_BELOW;
3455 		alloc_flag = DRM_MM_CREATE_TOP;
3456 	} else {
3457 		search_flag = DRM_MM_SEARCH_DEFAULT;
3458 		alloc_flag = DRM_MM_CREATE_DEFAULT;
3459 	}
3460 
3461 search_free:
3462 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3463 						  size, alignment,
3464 						  obj->cache_level,
3465 						  start, end,
3466 						  search_flag,
3467 						  alloc_flag);
3468 	if (ret) {
3469 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3470 					       obj->cache_level,
3471 					       start, end,
3472 					       flags);
3473 		if (ret == 0)
3474 			goto search_free;
3475 
3476 		goto err_free_vma;
3477 	}
3478 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3479 		ret = -EINVAL;
3480 		goto err_remove_node;
3481 	}
3482 
3483 	trace_i915_vma_bind(vma, flags);
3484 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3485 	if (ret)
3486 		goto err_remove_node;
3487 
3488 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3489 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3490 
3491 	return vma;
3492 
3493 err_remove_node:
3494 	drm_mm_remove_node(&vma->node);
3495 err_free_vma:
3496 	i915_gem_vma_destroy(vma);
3497 	vma = ERR_PTR(ret);
3498 err_unpin:
3499 	i915_gem_object_unpin_pages(obj);
3500 	return vma;
3501 }
3502 
3503 bool
3504 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3505 			bool force)
3506 {
3507 	/* If we don't have a page list set up, then we're not pinned
3508 	 * to GPU, and we can ignore the cache flush because it'll happen
3509 	 * again at bind time.
3510 	 */
3511 	if (obj->pages == NULL)
3512 		return false;
3513 
3514 	/*
3515 	 * Stolen memory is always coherent with the GPU as it is explicitly
3516 	 * marked as wc by the system, or the system is cache-coherent.
3517 	 */
3518 	if (obj->stolen || obj->phys_handle)
3519 		return false;
3520 
3521 	/* If the GPU is snooping the contents of the CPU cache,
3522 	 * we do not need to manually clear the CPU cache lines.  However,
3523 	 * the caches are only snooped when the render cache is
3524 	 * flushed/invalidated.  As we always have to emit invalidations
3525 	 * and flushes when moving into and out of the RENDER domain, correct
3526 	 * snooping behaviour occurs naturally as the result of our domain
3527 	 * tracking.
3528 	 */
3529 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3530 		obj->cache_dirty = true;
3531 		return false;
3532 	}
3533 
3534 	trace_i915_gem_object_clflush(obj);
3535 	drm_clflush_sg(obj->pages);
3536 	obj->cache_dirty = false;
3537 
3538 	return true;
3539 }
3540 
3541 /** Flushes the GTT write domain for the object if it's dirty. */
3542 static void
3543 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3544 {
3545 	uint32_t old_write_domain;
3546 
3547 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3548 		return;
3549 
3550 	/* No actual flushing is required for the GTT write domain.  Writes
3551 	 * to it immediately go to main memory as far as we know, so there's
3552 	 * no chipset flush.  It also doesn't land in render cache.
3553 	 *
3554 	 * However, we do have to enforce the order so that all writes through
3555 	 * the GTT land before any writes to the device, such as updates to
3556 	 * the GATT itself.
3557 	 */
3558 	wmb();
3559 
3560 	old_write_domain = obj->base.write_domain;
3561 	obj->base.write_domain = 0;
3562 
3563 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3564 
3565 	trace_i915_gem_object_change_domain(obj,
3566 					    obj->base.read_domains,
3567 					    old_write_domain);
3568 }
3569 
3570 /** Flushes the CPU write domain for the object if it's dirty. */
3571 static void
3572 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3573 {
3574 	uint32_t old_write_domain;
3575 
3576 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3577 		return;
3578 
3579 	if (i915_gem_clflush_object(obj, obj->pin_display))
3580 		i915_gem_chipset_flush(obj->base.dev);
3581 
3582 	old_write_domain = obj->base.write_domain;
3583 	obj->base.write_domain = 0;
3584 
3585 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3586 
3587 	trace_i915_gem_object_change_domain(obj,
3588 					    obj->base.read_domains,
3589 					    old_write_domain);
3590 }
3591 
3592 /**
3593  * Moves a single object to the GTT read, and possibly write domain.
3594  *
3595  * This function returns when the move is complete, including waiting on
3596  * flushes to occur.
3597  */
3598 int
3599 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3600 {
3601 	uint32_t old_write_domain, old_read_domains;
3602 	struct i915_vma *vma;
3603 	int ret;
3604 
3605 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3606 		return 0;
3607 
3608 	ret = i915_gem_object_wait_rendering(obj, !write);
3609 	if (ret)
3610 		return ret;
3611 
3612 	/* Flush and acquire obj->pages so that we are coherent through
3613 	 * direct access in memory with previous cached writes through
3614 	 * shmemfs and that our cache domain tracking remains valid.
3615 	 * For example, if the obj->filp was moved to swap without us
3616 	 * being notified and releasing the pages, we would mistakenly
3617 	 * continue to assume that the obj remained out of the CPU cached
3618 	 * domain.
3619 	 */
3620 	ret = i915_gem_object_get_pages(obj);
3621 	if (ret)
3622 		return ret;
3623 
3624 	i915_gem_object_flush_cpu_write_domain(obj);
3625 
3626 	/* Serialise direct access to this object with the barriers for
3627 	 * coherent writes from the GPU, by effectively invalidating the
3628 	 * GTT domain upon first access.
3629 	 */
3630 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3631 		mb();
3632 
3633 	old_write_domain = obj->base.write_domain;
3634 	old_read_domains = obj->base.read_domains;
3635 
3636 	/* It should now be out of any other write domains, and we can update
3637 	 * the domain values for our changes.
3638 	 */
3639 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3640 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3641 	if (write) {
3642 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3643 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3644 		obj->dirty = 1;
3645 	}
3646 
3647 	trace_i915_gem_object_change_domain(obj,
3648 					    old_read_domains,
3649 					    old_write_domain);
3650 
3651 	/* And bump the LRU for this access */
3652 	vma = i915_gem_obj_to_ggtt(obj);
3653 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3654 		list_move_tail(&vma->mm_list,
3655 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3656 
3657 	return 0;
3658 }
3659 
3660 /**
3661  * Changes the cache-level of an object across all VMA.
3662  *
3663  * After this function returns, the object will be in the new cache-level
3664  * across all GTT and the contents of the backing storage will be coherent,
3665  * with respect to the new cache-level. In order to keep the backing storage
3666  * coherent for all users, we only allow a single cache level to be set
3667  * globally on the object and prevent it from being changed whilst the
3668  * hardware is reading from the object. That is if the object is currently
3669  * on the scanout it will be set to uncached (or equivalent display
3670  * cache coherency) and all non-MOCS GPU access will also be uncached so
3671  * that all direct access to the scanout remains coherent.
3672  */
3673 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3674 				    enum i915_cache_level cache_level)
3675 {
3676 	struct drm_device *dev = obj->base.dev;
3677 	struct i915_vma *vma, *next;
3678 	bool bound = false;
3679 	int ret = 0;
3680 
3681 	if (obj->cache_level == cache_level)
3682 		goto out;
3683 
3684 	/* Inspect the list of currently bound VMA and unbind any that would
3685 	 * be invalid given the new cache-level. This is principally to
3686 	 * catch the issue of the CS prefetch crossing page boundaries and
3687 	 * reading an invalid PTE on older architectures.
3688 	 */
3689 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3690 		if (!drm_mm_node_allocated(&vma->node))
3691 			continue;
3692 
3693 		if (vma->pin_count) {
3694 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3695 			return -EBUSY;
3696 		}
3697 
3698 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3699 			ret = i915_vma_unbind(vma);
3700 			if (ret)
3701 				return ret;
3702 		} else
3703 			bound = true;
3704 	}
3705 
3706 	/* We can reuse the existing drm_mm nodes but need to change the
3707 	 * cache-level on the PTE. We could simply unbind them all and
3708 	 * rebind with the correct cache-level on next use. However since
3709 	 * we already have a valid slot, dma mapping, pages etc, we may as
3710 	 * rewrite the PTE in the belief that doing so tramples upon less
3711 	 * state and so involves less work.
3712 	 */
3713 	if (bound) {
3714 		/* Before we change the PTE, the GPU must not be accessing it.
3715 		 * If we wait upon the object, we know that all the bound
3716 		 * VMA are no longer active.
3717 		 */
3718 		ret = i915_gem_object_wait_rendering(obj, false);
3719 		if (ret)
3720 			return ret;
3721 
3722 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3723 			/* Access to snoopable pages through the GTT is
3724 			 * incoherent and on some machines causes a hard
3725 			 * lockup. Relinquish the CPU mmaping to force
3726 			 * userspace to refault in the pages and we can
3727 			 * then double check if the GTT mapping is still
3728 			 * valid for that pointer access.
3729 			 */
3730 			i915_gem_release_mmap(obj);
3731 
3732 			/* As we no longer need a fence for GTT access,
3733 			 * we can relinquish it now (and so prevent having
3734 			 * to steal a fence from someone else on the next
3735 			 * fence request). Note GPU activity would have
3736 			 * dropped the fence as all snoopable access is
3737 			 * supposed to be linear.
3738 			 */
3739 			ret = i915_gem_object_put_fence(obj);
3740 			if (ret)
3741 				return ret;
3742 		} else {
3743 			/* We either have incoherent backing store and
3744 			 * so no GTT access or the architecture is fully
3745 			 * coherent. In such cases, existing GTT mmaps
3746 			 * ignore the cache bit in the PTE and we can
3747 			 * rewrite it without confusing the GPU or having
3748 			 * to force userspace to fault back in its mmaps.
3749 			 */
3750 		}
3751 
3752 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3753 			if (!drm_mm_node_allocated(&vma->node))
3754 				continue;
3755 
3756 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3757 			if (ret)
3758 				return ret;
3759 		}
3760 	}
3761 
3762 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3763 		vma->node.color = cache_level;
3764 	obj->cache_level = cache_level;
3765 
3766 out:
3767 	/* Flush the dirty CPU caches to the backing storage so that the
3768 	 * object is now coherent at its new cache level (with respect
3769 	 * to the access domain).
3770 	 */
3771 	if (obj->cache_dirty &&
3772 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3773 	    cpu_write_needs_clflush(obj)) {
3774 		if (i915_gem_clflush_object(obj, true))
3775 			i915_gem_chipset_flush(obj->base.dev);
3776 	}
3777 
3778 	return 0;
3779 }
3780 
3781 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3782 			       struct drm_file *file)
3783 {
3784 	struct drm_i915_gem_caching *args = data;
3785 	struct drm_i915_gem_object *obj;
3786 
3787 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 	if (&obj->base == NULL)
3789 		return -ENOENT;
3790 
3791 	switch (obj->cache_level) {
3792 	case I915_CACHE_LLC:
3793 	case I915_CACHE_L3_LLC:
3794 		args->caching = I915_CACHING_CACHED;
3795 		break;
3796 
3797 	case I915_CACHE_WT:
3798 		args->caching = I915_CACHING_DISPLAY;
3799 		break;
3800 
3801 	default:
3802 		args->caching = I915_CACHING_NONE;
3803 		break;
3804 	}
3805 
3806 	drm_gem_object_unreference_unlocked(&obj->base);
3807 	return 0;
3808 }
3809 
3810 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3811 			       struct drm_file *file)
3812 {
3813 	struct drm_i915_gem_caching *args = data;
3814 	struct drm_i915_gem_object *obj;
3815 	enum i915_cache_level level;
3816 	int ret;
3817 
3818 	switch (args->caching) {
3819 	case I915_CACHING_NONE:
3820 		level = I915_CACHE_NONE;
3821 		break;
3822 	case I915_CACHING_CACHED:
3823 		/*
3824 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3825 		 * snooped mapping may leave stale data in a corresponding CPU
3826 		 * cacheline, whereas normally such cachelines would get
3827 		 * invalidated.
3828 		 */
3829 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3830 			return -ENODEV;
3831 
3832 		level = I915_CACHE_LLC;
3833 		break;
3834 	case I915_CACHING_DISPLAY:
3835 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3836 		break;
3837 	default:
3838 		return -EINVAL;
3839 	}
3840 
3841 	ret = i915_mutex_lock_interruptible(dev);
3842 	if (ret)
3843 		return ret;
3844 
3845 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3846 	if (&obj->base == NULL) {
3847 		ret = -ENOENT;
3848 		goto unlock;
3849 	}
3850 
3851 	ret = i915_gem_object_set_cache_level(obj, level);
3852 
3853 	drm_gem_object_unreference(&obj->base);
3854 unlock:
3855 	mutex_unlock(&dev->struct_mutex);
3856 	return ret;
3857 }
3858 
3859 /*
3860  * Prepare buffer for display plane (scanout, cursors, etc).
3861  * Can be called from an uninterruptible phase (modesetting) and allows
3862  * any flushes to be pipelined (for pageflips).
3863  */
3864 int
3865 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3866 				     u32 alignment,
3867 				     struct intel_engine_cs *pipelined,
3868 				     struct drm_i915_gem_request **pipelined_request,
3869 				     const struct i915_ggtt_view *view)
3870 {
3871 	u32 old_read_domains, old_write_domain;
3872 	int ret;
3873 
3874 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3875 	if (ret)
3876 		return ret;
3877 
3878 	/* Mark the pin_display early so that we account for the
3879 	 * display coherency whilst setting up the cache domains.
3880 	 */
3881 	obj->pin_display++;
3882 
3883 	/* The display engine is not coherent with the LLC cache on gen6.  As
3884 	 * a result, we make sure that the pinning that is about to occur is
3885 	 * done with uncached PTEs. This is lowest common denominator for all
3886 	 * chipsets.
3887 	 *
3888 	 * However for gen6+, we could do better by using the GFDT bit instead
3889 	 * of uncaching, which would allow us to flush all the LLC-cached data
3890 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3891 	 */
3892 	ret = i915_gem_object_set_cache_level(obj,
3893 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3894 	if (ret)
3895 		goto err_unpin_display;
3896 
3897 	/* As the user may map the buffer once pinned in the display plane
3898 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3899 	 * always use map_and_fenceable for all scanout buffers.
3900 	 */
3901 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3902 				       view->type == I915_GGTT_VIEW_NORMAL ?
3903 				       PIN_MAPPABLE : 0);
3904 	if (ret)
3905 		goto err_unpin_display;
3906 
3907 	i915_gem_object_flush_cpu_write_domain(obj);
3908 
3909 	old_write_domain = obj->base.write_domain;
3910 	old_read_domains = obj->base.read_domains;
3911 
3912 	/* It should now be out of any other write domains, and we can update
3913 	 * the domain values for our changes.
3914 	 */
3915 	obj->base.write_domain = 0;
3916 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3917 
3918 	trace_i915_gem_object_change_domain(obj,
3919 					    old_read_domains,
3920 					    old_write_domain);
3921 
3922 	return 0;
3923 
3924 err_unpin_display:
3925 	obj->pin_display--;
3926 	return ret;
3927 }
3928 
3929 void
3930 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3931 					 const struct i915_ggtt_view *view)
3932 {
3933 	if (WARN_ON(obj->pin_display == 0))
3934 		return;
3935 
3936 	i915_gem_object_ggtt_unpin_view(obj, view);
3937 
3938 	obj->pin_display--;
3939 }
3940 
3941 /**
3942  * Moves a single object to the CPU read, and possibly write domain.
3943  *
3944  * This function returns when the move is complete, including waiting on
3945  * flushes to occur.
3946  */
3947 int
3948 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3949 {
3950 	uint32_t old_write_domain, old_read_domains;
3951 	int ret;
3952 
3953 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3954 		return 0;
3955 
3956 	ret = i915_gem_object_wait_rendering(obj, !write);
3957 	if (ret)
3958 		return ret;
3959 
3960 	i915_gem_object_flush_gtt_write_domain(obj);
3961 
3962 	old_write_domain = obj->base.write_domain;
3963 	old_read_domains = obj->base.read_domains;
3964 
3965 	/* Flush the CPU cache if it's still invalid. */
3966 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3967 		i915_gem_clflush_object(obj, false);
3968 
3969 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3970 	}
3971 
3972 	/* It should now be out of any other write domains, and we can update
3973 	 * the domain values for our changes.
3974 	 */
3975 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3976 
3977 	/* If we're writing through the CPU, then the GPU read domains will
3978 	 * need to be invalidated at next use.
3979 	 */
3980 	if (write) {
3981 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3983 	}
3984 
3985 	trace_i915_gem_object_change_domain(obj,
3986 					    old_read_domains,
3987 					    old_write_domain);
3988 
3989 	return 0;
3990 }
3991 
3992 /* Throttle our rendering by waiting until the ring has completed our requests
3993  * emitted over 20 msec ago.
3994  *
3995  * Note that if we were to use the current jiffies each time around the loop,
3996  * we wouldn't escape the function with any frames outstanding if the time to
3997  * render a frame was over 20ms.
3998  *
3999  * This should get us reasonable parallelism between CPU and GPU but also
4000  * relatively low latency when blocking on a particular request to finish.
4001  */
4002 static int
4003 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4004 {
4005 	struct drm_i915_private *dev_priv = dev->dev_private;
4006 	struct drm_i915_file_private *file_priv = file->driver_priv;
4007 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4008 	struct drm_i915_gem_request *request, *target = NULL;
4009 	unsigned reset_counter;
4010 	int ret;
4011 
4012 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4013 	if (ret)
4014 		return ret;
4015 
4016 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4017 	if (ret)
4018 		return ret;
4019 
4020 	spin_lock(&file_priv->mm.lock);
4021 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4022 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4023 			break;
4024 
4025 		/*
4026 		 * Note that the request might not have been submitted yet.
4027 		 * In which case emitted_jiffies will be zero.
4028 		 */
4029 		if (!request->emitted_jiffies)
4030 			continue;
4031 
4032 		target = request;
4033 	}
4034 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4035 	if (target)
4036 		i915_gem_request_reference(target);
4037 	spin_unlock(&file_priv->mm.lock);
4038 
4039 	if (target == NULL)
4040 		return 0;
4041 
4042 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4043 	if (ret == 0)
4044 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4045 
4046 	i915_gem_request_unreference__unlocked(target);
4047 
4048 	return ret;
4049 }
4050 
4051 static bool
4052 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4053 {
4054 	struct drm_i915_gem_object *obj = vma->obj;
4055 
4056 	if (alignment &&
4057 	    vma->node.start & (alignment - 1))
4058 		return true;
4059 
4060 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4061 		return true;
4062 
4063 	if (flags & PIN_OFFSET_BIAS &&
4064 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4065 		return true;
4066 
4067 	return false;
4068 }
4069 
4070 static int
4071 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4072 		       struct i915_address_space *vm,
4073 		       const struct i915_ggtt_view *ggtt_view,
4074 		       uint32_t alignment,
4075 		       uint64_t flags)
4076 {
4077 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4078 	struct i915_vma *vma;
4079 	unsigned bound;
4080 	int ret;
4081 
4082 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4083 		return -ENODEV;
4084 
4085 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4086 		return -EINVAL;
4087 
4088 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4089 		return -EINVAL;
4090 
4091 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4092 		return -EINVAL;
4093 
4094 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4095 			  i915_gem_obj_to_vma(obj, vm);
4096 
4097 	if (IS_ERR(vma))
4098 		return PTR_ERR(vma);
4099 
4100 	if (vma) {
4101 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4102 			return -EBUSY;
4103 
4104 		if (i915_vma_misplaced(vma, alignment, flags)) {
4105 			WARN(vma->pin_count,
4106 			     "bo is already pinned in %s with incorrect alignment:"
4107 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4108 			     " obj->map_and_fenceable=%d\n",
4109 			     ggtt_view ? "ggtt" : "ppgtt",
4110 			     upper_32_bits(vma->node.start),
4111 			     lower_32_bits(vma->node.start),
4112 			     alignment,
4113 			     !!(flags & PIN_MAPPABLE),
4114 			     obj->map_and_fenceable);
4115 			ret = i915_vma_unbind(vma);
4116 			if (ret)
4117 				return ret;
4118 
4119 			vma = NULL;
4120 		}
4121 	}
4122 
4123 	bound = vma ? vma->bound : 0;
4124 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4125 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4126 						 flags);
4127 		if (IS_ERR(vma))
4128 			return PTR_ERR(vma);
4129 	} else {
4130 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4131 		if (ret)
4132 			return ret;
4133 	}
4134 
4135 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4136 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4137 		bool mappable, fenceable;
4138 		u32 fence_size, fence_alignment;
4139 
4140 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4141 						   obj->base.size,
4142 						   obj->tiling_mode);
4143 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4144 							     obj->base.size,
4145 							     obj->tiling_mode,
4146 							     true);
4147 
4148 		fenceable = (vma->node.size == fence_size &&
4149 			     (vma->node.start & (fence_alignment - 1)) == 0);
4150 
4151 		mappable = (vma->node.start + fence_size <=
4152 			    dev_priv->gtt.mappable_end);
4153 
4154 		obj->map_and_fenceable = mappable && fenceable;
4155 
4156 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4157 	}
4158 
4159 	vma->pin_count++;
4160 	return 0;
4161 }
4162 
4163 int
4164 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4165 		    struct i915_address_space *vm,
4166 		    uint32_t alignment,
4167 		    uint64_t flags)
4168 {
4169 	return i915_gem_object_do_pin(obj, vm,
4170 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4171 				      alignment, flags);
4172 }
4173 
4174 int
4175 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4176 			 const struct i915_ggtt_view *view,
4177 			 uint32_t alignment,
4178 			 uint64_t flags)
4179 {
4180 	if (WARN_ONCE(!view, "no view specified"))
4181 		return -EINVAL;
4182 
4183 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4184 				      alignment, flags | PIN_GLOBAL);
4185 }
4186 
4187 void
4188 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4189 				const struct i915_ggtt_view *view)
4190 {
4191 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4192 
4193 	BUG_ON(!vma);
4194 	WARN_ON(vma->pin_count == 0);
4195 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4196 
4197 	--vma->pin_count;
4198 }
4199 
4200 int
4201 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4202 		    struct drm_file *file)
4203 {
4204 	struct drm_i915_gem_busy *args = data;
4205 	struct drm_i915_gem_object *obj;
4206 	int ret;
4207 
4208 	ret = i915_mutex_lock_interruptible(dev);
4209 	if (ret)
4210 		return ret;
4211 
4212 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4213 	if (&obj->base == NULL) {
4214 		ret = -ENOENT;
4215 		goto unlock;
4216 	}
4217 
4218 	/* Count all active objects as busy, even if they are currently not used
4219 	 * by the gpu. Users of this interface expect objects to eventually
4220 	 * become non-busy without any further actions, therefore emit any
4221 	 * necessary flushes here.
4222 	 */
4223 	ret = i915_gem_object_flush_active(obj);
4224 	if (ret)
4225 		goto unref;
4226 
4227 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4228 	args->busy = obj->active << 16;
4229 	if (obj->last_write_req)
4230 		args->busy |= obj->last_write_req->ring->id;
4231 
4232 unref:
4233 	drm_gem_object_unreference(&obj->base);
4234 unlock:
4235 	mutex_unlock(&dev->struct_mutex);
4236 	return ret;
4237 }
4238 
4239 int
4240 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4241 			struct drm_file *file_priv)
4242 {
4243 	return i915_gem_ring_throttle(dev, file_priv);
4244 }
4245 
4246 int
4247 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4248 		       struct drm_file *file_priv)
4249 {
4250 	struct drm_i915_private *dev_priv = dev->dev_private;
4251 	struct drm_i915_gem_madvise *args = data;
4252 	struct drm_i915_gem_object *obj;
4253 	int ret;
4254 
4255 	switch (args->madv) {
4256 	case I915_MADV_DONTNEED:
4257 	case I915_MADV_WILLNEED:
4258 	    break;
4259 	default:
4260 	    return -EINVAL;
4261 	}
4262 
4263 	ret = i915_mutex_lock_interruptible(dev);
4264 	if (ret)
4265 		return ret;
4266 
4267 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4268 	if (&obj->base == NULL) {
4269 		ret = -ENOENT;
4270 		goto unlock;
4271 	}
4272 
4273 	if (i915_gem_obj_is_pinned(obj)) {
4274 		ret = -EINVAL;
4275 		goto out;
4276 	}
4277 
4278 	if (obj->pages &&
4279 	    obj->tiling_mode != I915_TILING_NONE &&
4280 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4281 		if (obj->madv == I915_MADV_WILLNEED)
4282 			i915_gem_object_unpin_pages(obj);
4283 		if (args->madv == I915_MADV_WILLNEED)
4284 			i915_gem_object_pin_pages(obj);
4285 	}
4286 
4287 	if (obj->madv != __I915_MADV_PURGED)
4288 		obj->madv = args->madv;
4289 
4290 	/* if the object is no longer attached, discard its backing storage */
4291 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4292 		i915_gem_object_truncate(obj);
4293 
4294 	args->retained = obj->madv != __I915_MADV_PURGED;
4295 
4296 out:
4297 	drm_gem_object_unreference(&obj->base);
4298 unlock:
4299 	mutex_unlock(&dev->struct_mutex);
4300 	return ret;
4301 }
4302 
4303 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4304 			  const struct drm_i915_gem_object_ops *ops)
4305 {
4306 	int i;
4307 
4308 	INIT_LIST_HEAD(&obj->global_list);
4309 	for (i = 0; i < I915_NUM_RINGS; i++)
4310 		INIT_LIST_HEAD(&obj->ring_list[i]);
4311 	INIT_LIST_HEAD(&obj->obj_exec_link);
4312 	INIT_LIST_HEAD(&obj->vma_list);
4313 	INIT_LIST_HEAD(&obj->batch_pool_link);
4314 
4315 	obj->ops = ops;
4316 
4317 	obj->fence_reg = I915_FENCE_REG_NONE;
4318 	obj->madv = I915_MADV_WILLNEED;
4319 
4320 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321 }
4322 
4323 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324 	.get_pages = i915_gem_object_get_pages_gtt,
4325 	.put_pages = i915_gem_object_put_pages_gtt,
4326 };
4327 
4328 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329 						  size_t size)
4330 {
4331 	struct drm_i915_gem_object *obj;
4332 	struct address_space *mapping;
4333 	gfp_t mask;
4334 
4335 	obj = i915_gem_object_alloc(dev);
4336 	if (obj == NULL)
4337 		return NULL;
4338 
4339 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4340 		i915_gem_object_free(obj);
4341 		return NULL;
4342 	}
4343 
4344 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346 		/* 965gm cannot relocate objects above 4GiB. */
4347 		mask &= ~__GFP_HIGHMEM;
4348 		mask |= __GFP_DMA32;
4349 	}
4350 
4351 	mapping = file_inode(obj->base.filp)->i_mapping;
4352 	mapping_set_gfp_mask(mapping, mask);
4353 
4354 	i915_gem_object_init(obj, &i915_gem_object_ops);
4355 
4356 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4358 
4359 	if (HAS_LLC(dev)) {
4360 		/* On some devices, we can have the GPU use the LLC (the CPU
4361 		 * cache) for about a 10% performance improvement
4362 		 * compared to uncached.  Graphics requests other than
4363 		 * display scanout are coherent with the CPU in
4364 		 * accessing this cache.  This means in this mode we
4365 		 * don't need to clflush on the CPU side, and on the
4366 		 * GPU side we only need to flush internal caches to
4367 		 * get data visible to the CPU.
4368 		 *
4369 		 * However, we maintain the display planes as UC, and so
4370 		 * need to rebind when first used as such.
4371 		 */
4372 		obj->cache_level = I915_CACHE_LLC;
4373 	} else
4374 		obj->cache_level = I915_CACHE_NONE;
4375 
4376 	trace_i915_gem_object_create(obj);
4377 
4378 	return obj;
4379 }
4380 
4381 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382 {
4383 	/* If we are the last user of the backing storage (be it shmemfs
4384 	 * pages or stolen etc), we know that the pages are going to be
4385 	 * immediately released. In this case, we can then skip copying
4386 	 * back the contents from the GPU.
4387 	 */
4388 
4389 	if (obj->madv != I915_MADV_WILLNEED)
4390 		return false;
4391 
4392 	if (obj->base.filp == NULL)
4393 		return true;
4394 
4395 	/* At first glance, this looks racy, but then again so would be
4396 	 * userspace racing mmap against close. However, the first external
4397 	 * reference to the filp can only be obtained through the
4398 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 	 * acquiring such a reference whilst we are in the middle of
4400 	 * freeing the object.
4401 	 */
4402 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4403 }
4404 
4405 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4406 {
4407 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4408 	struct drm_device *dev = obj->base.dev;
4409 	struct drm_i915_private *dev_priv = dev->dev_private;
4410 	struct i915_vma *vma, *next;
4411 
4412 	intel_runtime_pm_get(dev_priv);
4413 
4414 	trace_i915_gem_object_destroy(obj);
4415 
4416 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4417 		int ret;
4418 
4419 		vma->pin_count = 0;
4420 		ret = i915_vma_unbind(vma);
4421 		if (WARN_ON(ret == -ERESTARTSYS)) {
4422 			bool was_interruptible;
4423 
4424 			was_interruptible = dev_priv->mm.interruptible;
4425 			dev_priv->mm.interruptible = false;
4426 
4427 			WARN_ON(i915_vma_unbind(vma));
4428 
4429 			dev_priv->mm.interruptible = was_interruptible;
4430 		}
4431 	}
4432 
4433 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4434 	 * before progressing. */
4435 	if (obj->stolen)
4436 		i915_gem_object_unpin_pages(obj);
4437 
4438 	WARN_ON(obj->frontbuffer_bits);
4439 
4440 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4441 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4442 	    obj->tiling_mode != I915_TILING_NONE)
4443 		i915_gem_object_unpin_pages(obj);
4444 
4445 	if (WARN_ON(obj->pages_pin_count))
4446 		obj->pages_pin_count = 0;
4447 	if (discard_backing_storage(obj))
4448 		obj->madv = I915_MADV_DONTNEED;
4449 	i915_gem_object_put_pages(obj);
4450 	i915_gem_object_free_mmap_offset(obj);
4451 
4452 	BUG_ON(obj->pages);
4453 
4454 	if (obj->base.import_attach)
4455 		drm_prime_gem_destroy(&obj->base, NULL);
4456 
4457 	if (obj->ops->release)
4458 		obj->ops->release(obj);
4459 
4460 	drm_gem_object_release(&obj->base);
4461 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4462 
4463 	kfree(obj->bit_17);
4464 	i915_gem_object_free(obj);
4465 
4466 	intel_runtime_pm_put(dev_priv);
4467 }
4468 
4469 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4470 				     struct i915_address_space *vm)
4471 {
4472 	struct i915_vma *vma;
4473 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4474 		if (i915_is_ggtt(vma->vm) &&
4475 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4476 			continue;
4477 		if (vma->vm == vm)
4478 			return vma;
4479 	}
4480 	return NULL;
4481 }
4482 
4483 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4484 					   const struct i915_ggtt_view *view)
4485 {
4486 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4487 	struct i915_vma *vma;
4488 
4489 	if (WARN_ONCE(!view, "no view specified"))
4490 		return ERR_PTR(-EINVAL);
4491 
4492 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4493 		if (vma->vm == ggtt &&
4494 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4495 			return vma;
4496 	return NULL;
4497 }
4498 
4499 void i915_gem_vma_destroy(struct i915_vma *vma)
4500 {
4501 	struct i915_address_space *vm = NULL;
4502 	WARN_ON(vma->node.allocated);
4503 
4504 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4505 	if (!list_empty(&vma->exec_list))
4506 		return;
4507 
4508 	vm = vma->vm;
4509 
4510 	if (!i915_is_ggtt(vm))
4511 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4512 
4513 	list_del(&vma->vma_link);
4514 
4515 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4516 }
4517 
4518 static void
4519 i915_gem_stop_ringbuffers(struct drm_device *dev)
4520 {
4521 	struct drm_i915_private *dev_priv = dev->dev_private;
4522 	struct intel_engine_cs *ring;
4523 	int i;
4524 
4525 	for_each_ring(ring, dev_priv, i)
4526 		dev_priv->gt.stop_ring(ring);
4527 }
4528 
4529 int
4530 i915_gem_suspend(struct drm_device *dev)
4531 {
4532 	struct drm_i915_private *dev_priv = dev->dev_private;
4533 	int ret = 0;
4534 
4535 	mutex_lock(&dev->struct_mutex);
4536 	ret = i915_gpu_idle(dev);
4537 	if (ret)
4538 		goto err;
4539 
4540 	i915_gem_retire_requests(dev);
4541 
4542 	i915_gem_stop_ringbuffers(dev);
4543 	mutex_unlock(&dev->struct_mutex);
4544 
4545 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4546 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4547 	flush_delayed_work(&dev_priv->mm.idle_work);
4548 
4549 	/* Assert that we sucessfully flushed all the work and
4550 	 * reset the GPU back to its idle, low power state.
4551 	 */
4552 	WARN_ON(dev_priv->mm.busy);
4553 
4554 	return 0;
4555 
4556 err:
4557 	mutex_unlock(&dev->struct_mutex);
4558 	return ret;
4559 }
4560 
4561 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4562 {
4563 	struct intel_engine_cs *ring = req->ring;
4564 	struct drm_device *dev = ring->dev;
4565 	struct drm_i915_private *dev_priv = dev->dev_private;
4566 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4567 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4568 	int i, ret;
4569 
4570 	if (!HAS_L3_DPF(dev) || !remap_info)
4571 		return 0;
4572 
4573 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4574 	if (ret)
4575 		return ret;
4576 
4577 	/*
4578 	 * Note: We do not worry about the concurrent register cacheline hang
4579 	 * here because no other code should access these registers other than
4580 	 * at initialization time.
4581 	 */
4582 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4583 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4584 		intel_ring_emit(ring, reg_base + i);
4585 		intel_ring_emit(ring, remap_info[i/4]);
4586 	}
4587 
4588 	intel_ring_advance(ring);
4589 
4590 	return ret;
4591 }
4592 
4593 void i915_gem_init_swizzling(struct drm_device *dev)
4594 {
4595 	struct drm_i915_private *dev_priv = dev->dev_private;
4596 
4597 	if (INTEL_INFO(dev)->gen < 5 ||
4598 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4599 		return;
4600 
4601 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4602 				 DISP_TILE_SURFACE_SWIZZLING);
4603 
4604 	if (IS_GEN5(dev))
4605 		return;
4606 
4607 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4608 	if (IS_GEN6(dev))
4609 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4610 	else if (IS_GEN7(dev))
4611 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4612 	else if (IS_GEN8(dev))
4613 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4614 	else
4615 		BUG();
4616 }
4617 
4618 static void init_unused_ring(struct drm_device *dev, u32 base)
4619 {
4620 	struct drm_i915_private *dev_priv = dev->dev_private;
4621 
4622 	I915_WRITE(RING_CTL(base), 0);
4623 	I915_WRITE(RING_HEAD(base), 0);
4624 	I915_WRITE(RING_TAIL(base), 0);
4625 	I915_WRITE(RING_START(base), 0);
4626 }
4627 
4628 static void init_unused_rings(struct drm_device *dev)
4629 {
4630 	if (IS_I830(dev)) {
4631 		init_unused_ring(dev, PRB1_BASE);
4632 		init_unused_ring(dev, SRB0_BASE);
4633 		init_unused_ring(dev, SRB1_BASE);
4634 		init_unused_ring(dev, SRB2_BASE);
4635 		init_unused_ring(dev, SRB3_BASE);
4636 	} else if (IS_GEN2(dev)) {
4637 		init_unused_ring(dev, SRB0_BASE);
4638 		init_unused_ring(dev, SRB1_BASE);
4639 	} else if (IS_GEN3(dev)) {
4640 		init_unused_ring(dev, PRB1_BASE);
4641 		init_unused_ring(dev, PRB2_BASE);
4642 	}
4643 }
4644 
4645 int i915_gem_init_rings(struct drm_device *dev)
4646 {
4647 	struct drm_i915_private *dev_priv = dev->dev_private;
4648 	int ret;
4649 
4650 	ret = intel_init_render_ring_buffer(dev);
4651 	if (ret)
4652 		return ret;
4653 
4654 	if (HAS_BSD(dev)) {
4655 		ret = intel_init_bsd_ring_buffer(dev);
4656 		if (ret)
4657 			goto cleanup_render_ring;
4658 	}
4659 
4660 	if (HAS_BLT(dev)) {
4661 		ret = intel_init_blt_ring_buffer(dev);
4662 		if (ret)
4663 			goto cleanup_bsd_ring;
4664 	}
4665 
4666 	if (HAS_VEBOX(dev)) {
4667 		ret = intel_init_vebox_ring_buffer(dev);
4668 		if (ret)
4669 			goto cleanup_blt_ring;
4670 	}
4671 
4672 	if (HAS_BSD2(dev)) {
4673 		ret = intel_init_bsd2_ring_buffer(dev);
4674 		if (ret)
4675 			goto cleanup_vebox_ring;
4676 	}
4677 
4678 	return 0;
4679 
4680 cleanup_vebox_ring:
4681 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4682 cleanup_blt_ring:
4683 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4684 cleanup_bsd_ring:
4685 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4686 cleanup_render_ring:
4687 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4688 
4689 	return ret;
4690 }
4691 
4692 int
4693 i915_gem_init_hw(struct drm_device *dev)
4694 {
4695 	struct drm_i915_private *dev_priv = dev->dev_private;
4696 	struct intel_engine_cs *ring;
4697 	int ret, i, j;
4698 
4699 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4700 		return -EIO;
4701 
4702 	/* Double layer security blanket, see i915_gem_init() */
4703 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4704 
4705 	if (dev_priv->ellc_size)
4706 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4707 
4708 	if (IS_HASWELL(dev))
4709 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4710 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4711 
4712 	if (HAS_PCH_NOP(dev)) {
4713 		if (IS_IVYBRIDGE(dev)) {
4714 			u32 temp = I915_READ(GEN7_MSG_CTL);
4715 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4716 			I915_WRITE(GEN7_MSG_CTL, temp);
4717 		} else if (INTEL_INFO(dev)->gen >= 7) {
4718 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4719 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4720 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4721 		}
4722 	}
4723 
4724 	i915_gem_init_swizzling(dev);
4725 
4726 	/*
4727 	 * At least 830 can leave some of the unused rings
4728 	 * "active" (ie. head != tail) after resume which
4729 	 * will prevent c3 entry. Makes sure all unused rings
4730 	 * are totally idle.
4731 	 */
4732 	init_unused_rings(dev);
4733 
4734 	BUG_ON(!dev_priv->ring[RCS].default_context);
4735 
4736 	ret = i915_ppgtt_init_hw(dev);
4737 	if (ret) {
4738 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4739 		goto out;
4740 	}
4741 
4742 	/* Need to do basic initialisation of all rings first: */
4743 	for_each_ring(ring, dev_priv, i) {
4744 		ret = ring->init_hw(ring);
4745 		if (ret)
4746 			goto out;
4747 	}
4748 
4749 	/* We can't enable contexts until all firmware is loaded */
4750 	if (HAS_GUC_UCODE(dev)) {
4751 		ret = intel_guc_ucode_load(dev);
4752 		if (ret) {
4753 			/*
4754 			 * If we got an error and GuC submission is enabled, map
4755 			 * the error to -EIO so the GPU will be declared wedged.
4756 			 * OTOH, if we didn't intend to use the GuC anyway, just
4757 			 * discard the error and carry on.
4758 			 */
4759 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4760 				  i915.enable_guc_submission ? "" :
4761 				  " (ignored)");
4762 			ret = i915.enable_guc_submission ? -EIO : 0;
4763 			if (ret)
4764 				goto out;
4765 		}
4766 	}
4767 
4768 	/*
4769 	 * Increment the next seqno by 0x100 so we have a visible break
4770 	 * on re-initialisation
4771 	 */
4772 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4773 	if (ret)
4774 		goto out;
4775 
4776 	/* Now it is safe to go back round and do everything else: */
4777 	for_each_ring(ring, dev_priv, i) {
4778 		struct drm_i915_gem_request *req;
4779 
4780 		WARN_ON(!ring->default_context);
4781 
4782 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4783 		if (ret) {
4784 			i915_gem_cleanup_ringbuffer(dev);
4785 			goto out;
4786 		}
4787 
4788 		if (ring->id == RCS) {
4789 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4790 				i915_gem_l3_remap(req, j);
4791 		}
4792 
4793 		ret = i915_ppgtt_init_ring(req);
4794 		if (ret && ret != -EIO) {
4795 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4796 			i915_gem_request_cancel(req);
4797 			i915_gem_cleanup_ringbuffer(dev);
4798 			goto out;
4799 		}
4800 
4801 		ret = i915_gem_context_enable(req);
4802 		if (ret && ret != -EIO) {
4803 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4804 			i915_gem_request_cancel(req);
4805 			i915_gem_cleanup_ringbuffer(dev);
4806 			goto out;
4807 		}
4808 
4809 		i915_add_request_no_flush(req);
4810 	}
4811 
4812 out:
4813 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4814 	return ret;
4815 }
4816 
4817 int i915_gem_init(struct drm_device *dev)
4818 {
4819 	struct drm_i915_private *dev_priv = dev->dev_private;
4820 	int ret;
4821 
4822 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4823 			i915.enable_execlists);
4824 
4825 	mutex_lock(&dev->struct_mutex);
4826 
4827 	if (IS_VALLEYVIEW(dev)) {
4828 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4829 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4830 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4831 			      VLV_GTLC_ALLOWWAKEACK), 10))
4832 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4833 	}
4834 
4835 	if (!i915.enable_execlists) {
4836 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4837 		dev_priv->gt.init_rings = i915_gem_init_rings;
4838 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4839 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4840 	} else {
4841 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4842 		dev_priv->gt.init_rings = intel_logical_rings_init;
4843 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4844 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4845 	}
4846 
4847 	/* This is just a security blanket to placate dragons.
4848 	 * On some systems, we very sporadically observe that the first TLBs
4849 	 * used by the CS may be stale, despite us poking the TLB reset. If
4850 	 * we hold the forcewake during initialisation these problems
4851 	 * just magically go away.
4852 	 */
4853 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4854 
4855 	ret = i915_gem_init_userptr(dev);
4856 	if (ret)
4857 		goto out_unlock;
4858 
4859 	i915_gem_init_global_gtt(dev);
4860 
4861 	ret = i915_gem_context_init(dev);
4862 	if (ret)
4863 		goto out_unlock;
4864 
4865 	ret = dev_priv->gt.init_rings(dev);
4866 	if (ret)
4867 		goto out_unlock;
4868 
4869 	ret = i915_gem_init_hw(dev);
4870 	if (ret == -EIO) {
4871 		/* Allow ring initialisation to fail by marking the GPU as
4872 		 * wedged. But we only want to do this where the GPU is angry,
4873 		 * for all other failure, such as an allocation failure, bail.
4874 		 */
4875 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4876 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4877 		ret = 0;
4878 	}
4879 
4880 out_unlock:
4881 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4882 	mutex_unlock(&dev->struct_mutex);
4883 
4884 	return ret;
4885 }
4886 
4887 void
4888 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4889 {
4890 	struct drm_i915_private *dev_priv = dev->dev_private;
4891 	struct intel_engine_cs *ring;
4892 	int i;
4893 
4894 	for_each_ring(ring, dev_priv, i)
4895 		dev_priv->gt.cleanup_ring(ring);
4896 
4897     if (i915.enable_execlists)
4898             /*
4899              * Neither the BIOS, ourselves or any other kernel
4900              * expects the system to be in execlists mode on startup,
4901              * so we need to reset the GPU back to legacy mode.
4902              */
4903             intel_gpu_reset(dev);
4904 }
4905 
4906 static void
4907 init_ring_lists(struct intel_engine_cs *ring)
4908 {
4909 	INIT_LIST_HEAD(&ring->active_list);
4910 	INIT_LIST_HEAD(&ring->request_list);
4911 }
4912 
4913 void
4914 i915_gem_load(struct drm_device *dev)
4915 {
4916 	struct drm_i915_private *dev_priv = dev->dev_private;
4917 	int i;
4918 
4919 	dev_priv->objects =
4920 		kmem_cache_create("i915_gem_object",
4921 				  sizeof(struct drm_i915_gem_object), 0,
4922 				  SLAB_HWCACHE_ALIGN,
4923 				  NULL);
4924 	dev_priv->vmas =
4925 		kmem_cache_create("i915_gem_vma",
4926 				  sizeof(struct i915_vma), 0,
4927 				  SLAB_HWCACHE_ALIGN,
4928 				  NULL);
4929 	dev_priv->requests =
4930 		kmem_cache_create("i915_gem_request",
4931 				  sizeof(struct drm_i915_gem_request), 0,
4932 				  SLAB_HWCACHE_ALIGN,
4933 				  NULL);
4934 
4935 	INIT_LIST_HEAD(&dev_priv->vm_list);
4936 	INIT_LIST_HEAD(&dev_priv->context_list);
4937 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4938 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940 	for (i = 0; i < I915_NUM_RINGS; i++)
4941 		init_ring_lists(&dev_priv->ring[i]);
4942 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4943 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4944 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4945 			  i915_gem_retire_work_handler);
4946 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4947 			  i915_gem_idle_work_handler);
4948 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4949 
4950 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4951 
4952 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4953 		dev_priv->num_fence_regs = 32;
4954 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4955 		dev_priv->num_fence_regs = 16;
4956 	else
4957 		dev_priv->num_fence_regs = 8;
4958 
4959 	if (intel_vgpu_active(dev))
4960 		dev_priv->num_fence_regs =
4961 				I915_READ(vgtif_reg(avail_rs.fence_num));
4962 
4963 	/*
4964 	 * Set initial sequence number for requests.
4965 	 * Using this number allows the wraparound to happen early,
4966 	 * catching any obvious problems.
4967 	 */
4968 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
4969 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
4970 
4971 	/* Initialize fence registers to zero */
4972 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973 	i915_gem_restore_fences(dev);
4974 
4975 	i915_gem_detect_bit_6_swizzle(dev);
4976 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4977 
4978 	dev_priv->mm.interruptible = true;
4979 
4980 	i915_gem_shrinker_init(dev_priv);
4981 
4982 	mutex_init(&dev_priv->fb_tracking.lock);
4983 }
4984 
4985 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4986 {
4987 	struct drm_i915_file_private *file_priv = file->driver_priv;
4988 
4989 	/* Clean up our request list when the client is going away, so that
4990 	 * later retire_requests won't dereference our soon-to-be-gone
4991 	 * file_priv.
4992 	 */
4993 	spin_lock(&file_priv->mm.lock);
4994 	while (!list_empty(&file_priv->mm.request_list)) {
4995 		struct drm_i915_gem_request *request;
4996 
4997 		request = list_first_entry(&file_priv->mm.request_list,
4998 					   struct drm_i915_gem_request,
4999 					   client_list);
5000 		list_del(&request->client_list);
5001 		request->file_priv = NULL;
5002 	}
5003 	spin_unlock(&file_priv->mm.lock);
5004 
5005 	if (!list_empty(&file_priv->rps.link)) {
5006 		spin_lock(&to_i915(dev)->rps.client_lock);
5007 		list_del(&file_priv->rps.link);
5008 		spin_unlock(&to_i915(dev)->rps.client_lock);
5009 	}
5010 }
5011 
5012 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5013 {
5014 	struct drm_i915_file_private *file_priv;
5015 	int ret;
5016 
5017 	DRM_DEBUG_DRIVER("\n");
5018 
5019 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5020 	if (!file_priv)
5021 		return -ENOMEM;
5022 
5023 	file->driver_priv = file_priv;
5024 	file_priv->dev_priv = dev->dev_private;
5025 	file_priv->file = file;
5026 	INIT_LIST_HEAD(&file_priv->rps.link);
5027 
5028 	spin_lock_init(&file_priv->mm.lock);
5029 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5030 
5031 	ret = i915_gem_context_open(dev, file);
5032 	if (ret)
5033 		kfree(file_priv);
5034 
5035 	return ret;
5036 }
5037 
5038 /**
5039  * i915_gem_track_fb - update frontbuffer tracking
5040  * @old: current GEM buffer for the frontbuffer slots
5041  * @new: new GEM buffer for the frontbuffer slots
5042  * @frontbuffer_bits: bitmask of frontbuffer slots
5043  *
5044  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5045  * from @old and setting them in @new. Both @old and @new can be NULL.
5046  */
5047 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5048 		       struct drm_i915_gem_object *new,
5049 		       unsigned frontbuffer_bits)
5050 {
5051 	if (old) {
5052 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5053 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5054 		old->frontbuffer_bits &= ~frontbuffer_bits;
5055 	}
5056 
5057 	if (new) {
5058 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5059 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5060 		new->frontbuffer_bits |= frontbuffer_bits;
5061 	}
5062 }
5063 
5064 /* All the new VM stuff */
5065 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5066 			struct i915_address_space *vm)
5067 {
5068 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5069 	struct i915_vma *vma;
5070 
5071 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5072 
5073 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5074 		if (i915_is_ggtt(vma->vm) &&
5075 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5076 			continue;
5077 		if (vma->vm == vm)
5078 			return vma->node.start;
5079 	}
5080 
5081 	WARN(1, "%s vma for this object not found.\n",
5082 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5083 	return -1;
5084 }
5085 
5086 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5087 				  const struct i915_ggtt_view *view)
5088 {
5089 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5090 	struct i915_vma *vma;
5091 
5092 	list_for_each_entry(vma, &o->vma_list, vma_link)
5093 		if (vma->vm == ggtt &&
5094 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5095 			return vma->node.start;
5096 
5097 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5098 	return -1;
5099 }
5100 
5101 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5102 			struct i915_address_space *vm)
5103 {
5104 	struct i915_vma *vma;
5105 
5106 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5107 		if (i915_is_ggtt(vma->vm) &&
5108 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5109 			continue;
5110 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5111 			return true;
5112 	}
5113 
5114 	return false;
5115 }
5116 
5117 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5118 				  const struct i915_ggtt_view *view)
5119 {
5120 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5121 	struct i915_vma *vma;
5122 
5123 	list_for_each_entry(vma, &o->vma_list, vma_link)
5124 		if (vma->vm == ggtt &&
5125 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5126 		    drm_mm_node_allocated(&vma->node))
5127 			return true;
5128 
5129 	return false;
5130 }
5131 
5132 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5133 {
5134 	struct i915_vma *vma;
5135 
5136 	list_for_each_entry(vma, &o->vma_list, vma_link)
5137 		if (drm_mm_node_allocated(&vma->node))
5138 			return true;
5139 
5140 	return false;
5141 }
5142 
5143 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5144 				struct i915_address_space *vm)
5145 {
5146 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5147 	struct i915_vma *vma;
5148 
5149 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5150 
5151 	BUG_ON(list_empty(&o->vma_list));
5152 
5153 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5154 		if (i915_is_ggtt(vma->vm) &&
5155 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5156 			continue;
5157 		if (vma->vm == vm)
5158 			return vma->node.size;
5159 	}
5160 	return 0;
5161 }
5162 
5163 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5164 {
5165 	struct i915_vma *vma;
5166 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5167 		if (vma->pin_count > 0)
5168 			return true;
5169 
5170 	return false;
5171 }
5172 
5173 /* Allocate a new GEM object and fill it with the supplied data */
5174 struct drm_i915_gem_object *
5175 i915_gem_object_create_from_data(struct drm_device *dev,
5176 			         const void *data, size_t size)
5177 {
5178 	struct drm_i915_gem_object *obj;
5179 	struct sg_table *sg;
5180 	size_t bytes;
5181 	int ret;
5182 
5183 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5184 	if (IS_ERR_OR_NULL(obj))
5185 		return obj;
5186 
5187 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5188 	if (ret)
5189 		goto fail;
5190 
5191 	ret = i915_gem_object_get_pages(obj);
5192 	if (ret)
5193 		goto fail;
5194 
5195 	i915_gem_object_pin_pages(obj);
5196 	sg = obj->pages;
5197 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5198 	i915_gem_object_unpin_pages(obj);
5199 
5200 	if (WARN_ON(bytes != size)) {
5201 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5202 		ret = -EFAULT;
5203 		goto fail;
5204 	}
5205 
5206 	return obj;
5207 
5208 fail:
5209 	drm_gem_object_unreference(&obj->base);
5210 	return ERR_PTR(ret);
5211 }
5212