1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include "drmP.h" 29 #include "drm.h" 30 #include "i915_drm.h" 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 38 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj); 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj); 41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, 42 int write); 43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 44 uint64_t offset, 45 uint64_t size); 46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj); 47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj); 48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, 49 unsigned alignment); 50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj); 51 static int i915_gem_evict_something(struct drm_device *dev, int min_size); 52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev); 53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 54 struct drm_i915_gem_pwrite *args, 55 struct drm_file *file_priv); 56 static void i915_gem_free_object_tail(struct drm_gem_object *obj); 57 58 static LIST_HEAD(shrink_list); 59 static DEFINE_SPINLOCK(shrink_list_lock); 60 61 int i915_gem_do_init(struct drm_device *dev, unsigned long start, 62 unsigned long end) 63 { 64 drm_i915_private_t *dev_priv = dev->dev_private; 65 66 if (start >= end || 67 (start & (PAGE_SIZE - 1)) != 0 || 68 (end & (PAGE_SIZE - 1)) != 0) { 69 return -EINVAL; 70 } 71 72 drm_mm_init(&dev_priv->mm.gtt_space, start, 73 end - start); 74 75 dev->gtt_total = (uint32_t) (end - start); 76 77 return 0; 78 } 79 80 int 81 i915_gem_init_ioctl(struct drm_device *dev, void *data, 82 struct drm_file *file_priv) 83 { 84 struct drm_i915_gem_init *args = data; 85 int ret; 86 87 mutex_lock(&dev->struct_mutex); 88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end); 89 mutex_unlock(&dev->struct_mutex); 90 91 return ret; 92 } 93 94 int 95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 96 struct drm_file *file_priv) 97 { 98 struct drm_i915_gem_get_aperture *args = data; 99 100 if (!(dev->driver->driver_features & DRIVER_GEM)) 101 return -ENODEV; 102 103 args->aper_size = dev->gtt_total; 104 args->aper_available_size = (args->aper_size - 105 atomic_read(&dev->pin_memory)); 106 107 return 0; 108 } 109 110 111 /** 112 * Creates a new mm object and returns a handle to it. 113 */ 114 int 115 i915_gem_create_ioctl(struct drm_device *dev, void *data, 116 struct drm_file *file_priv) 117 { 118 struct drm_i915_gem_create *args = data; 119 struct drm_gem_object *obj; 120 int ret; 121 u32 handle; 122 123 args->size = roundup(args->size, PAGE_SIZE); 124 125 /* Allocate the new object */ 126 obj = i915_gem_alloc_object(dev, args->size); 127 if (obj == NULL) 128 return -ENOMEM; 129 130 ret = drm_gem_handle_create(file_priv, obj, &handle); 131 drm_gem_object_unreference_unlocked(obj); 132 if (ret) 133 return ret; 134 135 args->handle = handle; 136 137 return 0; 138 } 139 140 static inline int 141 fast_shmem_read(struct page **pages, 142 loff_t page_base, int page_offset, 143 char __user *data, 144 int length) 145 { 146 char __iomem *vaddr; 147 int unwritten; 148 149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); 150 if (vaddr == NULL) 151 return -ENOMEM; 152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length); 153 kunmap_atomic(vaddr, KM_USER0); 154 155 if (unwritten) 156 return -EFAULT; 157 158 return 0; 159 } 160 161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj) 162 { 163 drm_i915_private_t *dev_priv = obj->dev->dev_private; 164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 165 166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 167 obj_priv->tiling_mode != I915_TILING_NONE; 168 } 169 170 static inline void 171 slow_shmem_copy(struct page *dst_page, 172 int dst_offset, 173 struct page *src_page, 174 int src_offset, 175 int length) 176 { 177 char *dst_vaddr, *src_vaddr; 178 179 dst_vaddr = kmap(dst_page); 180 src_vaddr = kmap(src_page); 181 182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length); 183 184 kunmap(src_page); 185 kunmap(dst_page); 186 } 187 188 static inline void 189 slow_shmem_bit17_copy(struct page *gpu_page, 190 int gpu_offset, 191 struct page *cpu_page, 192 int cpu_offset, 193 int length, 194 int is_read) 195 { 196 char *gpu_vaddr, *cpu_vaddr; 197 198 /* Use the unswizzled path if this page isn't affected. */ 199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) { 200 if (is_read) 201 return slow_shmem_copy(cpu_page, cpu_offset, 202 gpu_page, gpu_offset, length); 203 else 204 return slow_shmem_copy(gpu_page, gpu_offset, 205 cpu_page, cpu_offset, length); 206 } 207 208 gpu_vaddr = kmap(gpu_page); 209 cpu_vaddr = kmap(cpu_page); 210 211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's 212 * XORing with the other bits (A9 for Y, A9 and A10 for X) 213 */ 214 while (length > 0) { 215 int cacheline_end = ALIGN(gpu_offset + 1, 64); 216 int this_length = min(cacheline_end - gpu_offset, length); 217 int swizzled_gpu_offset = gpu_offset ^ 64; 218 219 if (is_read) { 220 memcpy(cpu_vaddr + cpu_offset, 221 gpu_vaddr + swizzled_gpu_offset, 222 this_length); 223 } else { 224 memcpy(gpu_vaddr + swizzled_gpu_offset, 225 cpu_vaddr + cpu_offset, 226 this_length); 227 } 228 cpu_offset += this_length; 229 gpu_offset += this_length; 230 length -= this_length; 231 } 232 233 kunmap(cpu_page); 234 kunmap(gpu_page); 235 } 236 237 /** 238 * This is the fast shmem pread path, which attempts to copy_from_user directly 239 * from the backing pages of the object to the user's address space. On a 240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow(). 241 */ 242 static int 243 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj, 244 struct drm_i915_gem_pread *args, 245 struct drm_file *file_priv) 246 { 247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 248 ssize_t remain; 249 loff_t offset, page_base; 250 char __user *user_data; 251 int page_offset, page_length; 252 int ret; 253 254 user_data = (char __user *) (uintptr_t) args->data_ptr; 255 remain = args->size; 256 257 mutex_lock(&dev->struct_mutex); 258 259 ret = i915_gem_object_get_pages(obj, 0); 260 if (ret != 0) 261 goto fail_unlock; 262 263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, 264 args->size); 265 if (ret != 0) 266 goto fail_put_pages; 267 268 obj_priv = to_intel_bo(obj); 269 offset = args->offset; 270 271 while (remain > 0) { 272 /* Operation in this page 273 * 274 * page_base = page offset within aperture 275 * page_offset = offset within page 276 * page_length = bytes to copy for this page 277 */ 278 page_base = (offset & ~(PAGE_SIZE-1)); 279 page_offset = offset & (PAGE_SIZE-1); 280 page_length = remain; 281 if ((page_offset + remain) > PAGE_SIZE) 282 page_length = PAGE_SIZE - page_offset; 283 284 ret = fast_shmem_read(obj_priv->pages, 285 page_base, page_offset, 286 user_data, page_length); 287 if (ret) 288 goto fail_put_pages; 289 290 remain -= page_length; 291 user_data += page_length; 292 offset += page_length; 293 } 294 295 fail_put_pages: 296 i915_gem_object_put_pages(obj); 297 fail_unlock: 298 mutex_unlock(&dev->struct_mutex); 299 300 return ret; 301 } 302 303 static int 304 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj) 305 { 306 int ret; 307 308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN); 309 310 /* If we've insufficient memory to map in the pages, attempt 311 * to make some space by throwing out some old buffers. 312 */ 313 if (ret == -ENOMEM) { 314 struct drm_device *dev = obj->dev; 315 316 ret = i915_gem_evict_something(dev, obj->size); 317 if (ret) 318 return ret; 319 320 ret = i915_gem_object_get_pages(obj, 0); 321 } 322 323 return ret; 324 } 325 326 /** 327 * This is the fallback shmem pread path, which allocates temporary storage 328 * in kernel space to copy_to_user into outside of the struct_mutex, so we 329 * can copy out of the object's backing pages while holding the struct mutex 330 * and not take page faults. 331 */ 332 static int 333 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj, 334 struct drm_i915_gem_pread *args, 335 struct drm_file *file_priv) 336 { 337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 338 struct mm_struct *mm = current->mm; 339 struct page **user_pages; 340 ssize_t remain; 341 loff_t offset, pinned_pages, i; 342 loff_t first_data_page, last_data_page, num_pages; 343 int shmem_page_index, shmem_page_offset; 344 int data_page_index, data_page_offset; 345 int page_length; 346 int ret; 347 uint64_t data_ptr = args->data_ptr; 348 int do_bit17_swizzling; 349 350 remain = args->size; 351 352 /* Pin the user pages containing the data. We can't fault while 353 * holding the struct mutex, yet we want to hold it while 354 * dereferencing the user data. 355 */ 356 first_data_page = data_ptr / PAGE_SIZE; 357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 358 num_pages = last_data_page - first_data_page + 1; 359 360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 361 if (user_pages == NULL) 362 return -ENOMEM; 363 364 down_read(&mm->mmap_sem); 365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 366 num_pages, 1, 0, user_pages, NULL); 367 up_read(&mm->mmap_sem); 368 if (pinned_pages < num_pages) { 369 ret = -EFAULT; 370 goto fail_put_user_pages; 371 } 372 373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 374 375 mutex_lock(&dev->struct_mutex); 376 377 ret = i915_gem_object_get_pages_or_evict(obj); 378 if (ret) 379 goto fail_unlock; 380 381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, 382 args->size); 383 if (ret != 0) 384 goto fail_put_pages; 385 386 obj_priv = to_intel_bo(obj); 387 offset = args->offset; 388 389 while (remain > 0) { 390 /* Operation in this page 391 * 392 * shmem_page_index = page number within shmem file 393 * shmem_page_offset = offset within page in shmem file 394 * data_page_index = page number in get_user_pages return 395 * data_page_offset = offset with data_page_index page. 396 * page_length = bytes to copy for this page 397 */ 398 shmem_page_index = offset / PAGE_SIZE; 399 shmem_page_offset = offset & ~PAGE_MASK; 400 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 401 data_page_offset = data_ptr & ~PAGE_MASK; 402 403 page_length = remain; 404 if ((shmem_page_offset + page_length) > PAGE_SIZE) 405 page_length = PAGE_SIZE - shmem_page_offset; 406 if ((data_page_offset + page_length) > PAGE_SIZE) 407 page_length = PAGE_SIZE - data_page_offset; 408 409 if (do_bit17_swizzling) { 410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], 411 shmem_page_offset, 412 user_pages[data_page_index], 413 data_page_offset, 414 page_length, 415 1); 416 } else { 417 slow_shmem_copy(user_pages[data_page_index], 418 data_page_offset, 419 obj_priv->pages[shmem_page_index], 420 shmem_page_offset, 421 page_length); 422 } 423 424 remain -= page_length; 425 data_ptr += page_length; 426 offset += page_length; 427 } 428 429 fail_put_pages: 430 i915_gem_object_put_pages(obj); 431 fail_unlock: 432 mutex_unlock(&dev->struct_mutex); 433 fail_put_user_pages: 434 for (i = 0; i < pinned_pages; i++) { 435 SetPageDirty(user_pages[i]); 436 page_cache_release(user_pages[i]); 437 } 438 drm_free_large(user_pages); 439 440 return ret; 441 } 442 443 /** 444 * Reads data from the object referenced by handle. 445 * 446 * On error, the contents of *data are undefined. 447 */ 448 int 449 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 450 struct drm_file *file_priv) 451 { 452 struct drm_i915_gem_pread *args = data; 453 struct drm_gem_object *obj; 454 struct drm_i915_gem_object *obj_priv; 455 int ret; 456 457 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 458 if (obj == NULL) 459 return -EBADF; 460 obj_priv = to_intel_bo(obj); 461 462 /* Bounds check source. 463 * 464 * XXX: This could use review for overflow issues... 465 */ 466 if (args->offset > obj->size || args->size > obj->size || 467 args->offset + args->size > obj->size) { 468 drm_gem_object_unreference_unlocked(obj); 469 return -EINVAL; 470 } 471 472 if (i915_gem_object_needs_bit17_swizzle(obj)) { 473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv); 474 } else { 475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv); 476 if (ret != 0) 477 ret = i915_gem_shmem_pread_slow(dev, obj, args, 478 file_priv); 479 } 480 481 drm_gem_object_unreference_unlocked(obj); 482 483 return ret; 484 } 485 486 /* This is the fast write path which cannot handle 487 * page faults in the source data 488 */ 489 490 static inline int 491 fast_user_write(struct io_mapping *mapping, 492 loff_t page_base, int page_offset, 493 char __user *user_data, 494 int length) 495 { 496 char *vaddr_atomic; 497 unsigned long unwritten; 498 499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0); 500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset, 501 user_data, length); 502 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0); 503 if (unwritten) 504 return -EFAULT; 505 return 0; 506 } 507 508 /* Here's the write path which can sleep for 509 * page faults 510 */ 511 512 static inline void 513 slow_kernel_write(struct io_mapping *mapping, 514 loff_t gtt_base, int gtt_offset, 515 struct page *user_page, int user_offset, 516 int length) 517 { 518 char __iomem *dst_vaddr; 519 char *src_vaddr; 520 521 dst_vaddr = io_mapping_map_wc(mapping, gtt_base); 522 src_vaddr = kmap(user_page); 523 524 memcpy_toio(dst_vaddr + gtt_offset, 525 src_vaddr + user_offset, 526 length); 527 528 kunmap(user_page); 529 io_mapping_unmap(dst_vaddr); 530 } 531 532 static inline int 533 fast_shmem_write(struct page **pages, 534 loff_t page_base, int page_offset, 535 char __user *data, 536 int length) 537 { 538 char __iomem *vaddr; 539 unsigned long unwritten; 540 541 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); 542 if (vaddr == NULL) 543 return -ENOMEM; 544 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length); 545 kunmap_atomic(vaddr, KM_USER0); 546 547 if (unwritten) 548 return -EFAULT; 549 return 0; 550 } 551 552 /** 553 * This is the fast pwrite path, where we copy the data directly from the 554 * user into the GTT, uncached. 555 */ 556 static int 557 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, 558 struct drm_i915_gem_pwrite *args, 559 struct drm_file *file_priv) 560 { 561 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 562 drm_i915_private_t *dev_priv = dev->dev_private; 563 ssize_t remain; 564 loff_t offset, page_base; 565 char __user *user_data; 566 int page_offset, page_length; 567 int ret; 568 569 user_data = (char __user *) (uintptr_t) args->data_ptr; 570 remain = args->size; 571 if (!access_ok(VERIFY_READ, user_data, remain)) 572 return -EFAULT; 573 574 575 mutex_lock(&dev->struct_mutex); 576 ret = i915_gem_object_pin(obj, 0); 577 if (ret) { 578 mutex_unlock(&dev->struct_mutex); 579 return ret; 580 } 581 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 582 if (ret) 583 goto fail; 584 585 obj_priv = to_intel_bo(obj); 586 offset = obj_priv->gtt_offset + args->offset; 587 588 while (remain > 0) { 589 /* Operation in this page 590 * 591 * page_base = page offset within aperture 592 * page_offset = offset within page 593 * page_length = bytes to copy for this page 594 */ 595 page_base = (offset & ~(PAGE_SIZE-1)); 596 page_offset = offset & (PAGE_SIZE-1); 597 page_length = remain; 598 if ((page_offset + remain) > PAGE_SIZE) 599 page_length = PAGE_SIZE - page_offset; 600 601 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base, 602 page_offset, user_data, page_length); 603 604 /* If we get a fault while copying data, then (presumably) our 605 * source page isn't available. Return the error and we'll 606 * retry in the slow path. 607 */ 608 if (ret) 609 goto fail; 610 611 remain -= page_length; 612 user_data += page_length; 613 offset += page_length; 614 } 615 616 fail: 617 i915_gem_object_unpin(obj); 618 mutex_unlock(&dev->struct_mutex); 619 620 return ret; 621 } 622 623 /** 624 * This is the fallback GTT pwrite path, which uses get_user_pages to pin 625 * the memory and maps it using kmap_atomic for copying. 626 * 627 * This code resulted in x11perf -rgb10text consuming about 10% more CPU 628 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit). 629 */ 630 static int 631 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, 632 struct drm_i915_gem_pwrite *args, 633 struct drm_file *file_priv) 634 { 635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 636 drm_i915_private_t *dev_priv = dev->dev_private; 637 ssize_t remain; 638 loff_t gtt_page_base, offset; 639 loff_t first_data_page, last_data_page, num_pages; 640 loff_t pinned_pages, i; 641 struct page **user_pages; 642 struct mm_struct *mm = current->mm; 643 int gtt_page_offset, data_page_offset, data_page_index, page_length; 644 int ret; 645 uint64_t data_ptr = args->data_ptr; 646 647 remain = args->size; 648 649 /* Pin the user pages containing the data. We can't fault while 650 * holding the struct mutex, and all of the pwrite implementations 651 * want to hold it while dereferencing the user data. 652 */ 653 first_data_page = data_ptr / PAGE_SIZE; 654 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 655 num_pages = last_data_page - first_data_page + 1; 656 657 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 658 if (user_pages == NULL) 659 return -ENOMEM; 660 661 down_read(&mm->mmap_sem); 662 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 663 num_pages, 0, 0, user_pages, NULL); 664 up_read(&mm->mmap_sem); 665 if (pinned_pages < num_pages) { 666 ret = -EFAULT; 667 goto out_unpin_pages; 668 } 669 670 mutex_lock(&dev->struct_mutex); 671 ret = i915_gem_object_pin(obj, 0); 672 if (ret) 673 goto out_unlock; 674 675 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 676 if (ret) 677 goto out_unpin_object; 678 679 obj_priv = to_intel_bo(obj); 680 offset = obj_priv->gtt_offset + args->offset; 681 682 while (remain > 0) { 683 /* Operation in this page 684 * 685 * gtt_page_base = page offset within aperture 686 * gtt_page_offset = offset within page in aperture 687 * data_page_index = page number in get_user_pages return 688 * data_page_offset = offset with data_page_index page. 689 * page_length = bytes to copy for this page 690 */ 691 gtt_page_base = offset & PAGE_MASK; 692 gtt_page_offset = offset & ~PAGE_MASK; 693 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 694 data_page_offset = data_ptr & ~PAGE_MASK; 695 696 page_length = remain; 697 if ((gtt_page_offset + page_length) > PAGE_SIZE) 698 page_length = PAGE_SIZE - gtt_page_offset; 699 if ((data_page_offset + page_length) > PAGE_SIZE) 700 page_length = PAGE_SIZE - data_page_offset; 701 702 slow_kernel_write(dev_priv->mm.gtt_mapping, 703 gtt_page_base, gtt_page_offset, 704 user_pages[data_page_index], 705 data_page_offset, 706 page_length); 707 708 remain -= page_length; 709 offset += page_length; 710 data_ptr += page_length; 711 } 712 713 out_unpin_object: 714 i915_gem_object_unpin(obj); 715 out_unlock: 716 mutex_unlock(&dev->struct_mutex); 717 out_unpin_pages: 718 for (i = 0; i < pinned_pages; i++) 719 page_cache_release(user_pages[i]); 720 drm_free_large(user_pages); 721 722 return ret; 723 } 724 725 /** 726 * This is the fast shmem pwrite path, which attempts to directly 727 * copy_from_user into the kmapped pages backing the object. 728 */ 729 static int 730 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, 731 struct drm_i915_gem_pwrite *args, 732 struct drm_file *file_priv) 733 { 734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 735 ssize_t remain; 736 loff_t offset, page_base; 737 char __user *user_data; 738 int page_offset, page_length; 739 int ret; 740 741 user_data = (char __user *) (uintptr_t) args->data_ptr; 742 remain = args->size; 743 744 mutex_lock(&dev->struct_mutex); 745 746 ret = i915_gem_object_get_pages(obj, 0); 747 if (ret != 0) 748 goto fail_unlock; 749 750 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 751 if (ret != 0) 752 goto fail_put_pages; 753 754 obj_priv = to_intel_bo(obj); 755 offset = args->offset; 756 obj_priv->dirty = 1; 757 758 while (remain > 0) { 759 /* Operation in this page 760 * 761 * page_base = page offset within aperture 762 * page_offset = offset within page 763 * page_length = bytes to copy for this page 764 */ 765 page_base = (offset & ~(PAGE_SIZE-1)); 766 page_offset = offset & (PAGE_SIZE-1); 767 page_length = remain; 768 if ((page_offset + remain) > PAGE_SIZE) 769 page_length = PAGE_SIZE - page_offset; 770 771 ret = fast_shmem_write(obj_priv->pages, 772 page_base, page_offset, 773 user_data, page_length); 774 if (ret) 775 goto fail_put_pages; 776 777 remain -= page_length; 778 user_data += page_length; 779 offset += page_length; 780 } 781 782 fail_put_pages: 783 i915_gem_object_put_pages(obj); 784 fail_unlock: 785 mutex_unlock(&dev->struct_mutex); 786 787 return ret; 788 } 789 790 /** 791 * This is the fallback shmem pwrite path, which uses get_user_pages to pin 792 * the memory and maps it using kmap_atomic for copying. 793 * 794 * This avoids taking mmap_sem for faulting on the user's address while the 795 * struct_mutex is held. 796 */ 797 static int 798 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, 799 struct drm_i915_gem_pwrite *args, 800 struct drm_file *file_priv) 801 { 802 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 803 struct mm_struct *mm = current->mm; 804 struct page **user_pages; 805 ssize_t remain; 806 loff_t offset, pinned_pages, i; 807 loff_t first_data_page, last_data_page, num_pages; 808 int shmem_page_index, shmem_page_offset; 809 int data_page_index, data_page_offset; 810 int page_length; 811 int ret; 812 uint64_t data_ptr = args->data_ptr; 813 int do_bit17_swizzling; 814 815 remain = args->size; 816 817 /* Pin the user pages containing the data. We can't fault while 818 * holding the struct mutex, and all of the pwrite implementations 819 * want to hold it while dereferencing the user data. 820 */ 821 first_data_page = data_ptr / PAGE_SIZE; 822 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 823 num_pages = last_data_page - first_data_page + 1; 824 825 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 826 if (user_pages == NULL) 827 return -ENOMEM; 828 829 down_read(&mm->mmap_sem); 830 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 831 num_pages, 0, 0, user_pages, NULL); 832 up_read(&mm->mmap_sem); 833 if (pinned_pages < num_pages) { 834 ret = -EFAULT; 835 goto fail_put_user_pages; 836 } 837 838 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 839 840 mutex_lock(&dev->struct_mutex); 841 842 ret = i915_gem_object_get_pages_or_evict(obj); 843 if (ret) 844 goto fail_unlock; 845 846 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 847 if (ret != 0) 848 goto fail_put_pages; 849 850 obj_priv = to_intel_bo(obj); 851 offset = args->offset; 852 obj_priv->dirty = 1; 853 854 while (remain > 0) { 855 /* Operation in this page 856 * 857 * shmem_page_index = page number within shmem file 858 * shmem_page_offset = offset within page in shmem file 859 * data_page_index = page number in get_user_pages return 860 * data_page_offset = offset with data_page_index page. 861 * page_length = bytes to copy for this page 862 */ 863 shmem_page_index = offset / PAGE_SIZE; 864 shmem_page_offset = offset & ~PAGE_MASK; 865 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 866 data_page_offset = data_ptr & ~PAGE_MASK; 867 868 page_length = remain; 869 if ((shmem_page_offset + page_length) > PAGE_SIZE) 870 page_length = PAGE_SIZE - shmem_page_offset; 871 if ((data_page_offset + page_length) > PAGE_SIZE) 872 page_length = PAGE_SIZE - data_page_offset; 873 874 if (do_bit17_swizzling) { 875 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], 876 shmem_page_offset, 877 user_pages[data_page_index], 878 data_page_offset, 879 page_length, 880 0); 881 } else { 882 slow_shmem_copy(obj_priv->pages[shmem_page_index], 883 shmem_page_offset, 884 user_pages[data_page_index], 885 data_page_offset, 886 page_length); 887 } 888 889 remain -= page_length; 890 data_ptr += page_length; 891 offset += page_length; 892 } 893 894 fail_put_pages: 895 i915_gem_object_put_pages(obj); 896 fail_unlock: 897 mutex_unlock(&dev->struct_mutex); 898 fail_put_user_pages: 899 for (i = 0; i < pinned_pages; i++) 900 page_cache_release(user_pages[i]); 901 drm_free_large(user_pages); 902 903 return ret; 904 } 905 906 /** 907 * Writes data to the object referenced by handle. 908 * 909 * On error, the contents of the buffer that were to be modified are undefined. 910 */ 911 int 912 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 913 struct drm_file *file_priv) 914 { 915 struct drm_i915_gem_pwrite *args = data; 916 struct drm_gem_object *obj; 917 struct drm_i915_gem_object *obj_priv; 918 int ret = 0; 919 920 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 921 if (obj == NULL) 922 return -EBADF; 923 obj_priv = to_intel_bo(obj); 924 925 /* Bounds check destination. 926 * 927 * XXX: This could use review for overflow issues... 928 */ 929 if (args->offset > obj->size || args->size > obj->size || 930 args->offset + args->size > obj->size) { 931 drm_gem_object_unreference_unlocked(obj); 932 return -EINVAL; 933 } 934 935 /* We can only do the GTT pwrite on untiled buffers, as otherwise 936 * it would end up going through the fenced access, and we'll get 937 * different detiling behavior between reading and writing. 938 * pread/pwrite currently are reading and writing from the CPU 939 * perspective, requiring manual detiling by the client. 940 */ 941 if (obj_priv->phys_obj) 942 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv); 943 else if (obj_priv->tiling_mode == I915_TILING_NONE && 944 dev->gtt_total != 0 && 945 obj->write_domain != I915_GEM_DOMAIN_CPU) { 946 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv); 947 if (ret == -EFAULT) { 948 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, 949 file_priv); 950 } 951 } else if (i915_gem_object_needs_bit17_swizzle(obj)) { 952 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv); 953 } else { 954 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv); 955 if (ret == -EFAULT) { 956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, 957 file_priv); 958 } 959 } 960 961 #if WATCH_PWRITE 962 if (ret) 963 DRM_INFO("pwrite failed %d\n", ret); 964 #endif 965 966 drm_gem_object_unreference_unlocked(obj); 967 968 return ret; 969 } 970 971 /** 972 * Called when user space prepares to use an object with the CPU, either 973 * through the mmap ioctl's mapping or a GTT mapping. 974 */ 975 int 976 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 977 struct drm_file *file_priv) 978 { 979 struct drm_i915_private *dev_priv = dev->dev_private; 980 struct drm_i915_gem_set_domain *args = data; 981 struct drm_gem_object *obj; 982 struct drm_i915_gem_object *obj_priv; 983 uint32_t read_domains = args->read_domains; 984 uint32_t write_domain = args->write_domain; 985 int ret; 986 987 if (!(dev->driver->driver_features & DRIVER_GEM)) 988 return -ENODEV; 989 990 /* Only handle setting domains to types used by the CPU. */ 991 if (write_domain & I915_GEM_GPU_DOMAINS) 992 return -EINVAL; 993 994 if (read_domains & I915_GEM_GPU_DOMAINS) 995 return -EINVAL; 996 997 /* Having something in the write domain implies it's in the read 998 * domain, and only that read domain. Enforce that in the request. 999 */ 1000 if (write_domain != 0 && read_domains != write_domain) 1001 return -EINVAL; 1002 1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1004 if (obj == NULL) 1005 return -EBADF; 1006 obj_priv = to_intel_bo(obj); 1007 1008 mutex_lock(&dev->struct_mutex); 1009 1010 intel_mark_busy(dev, obj); 1011 1012 #if WATCH_BUF 1013 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n", 1014 obj, obj->size, read_domains, write_domain); 1015 #endif 1016 if (read_domains & I915_GEM_DOMAIN_GTT) { 1017 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1018 1019 /* Update the LRU on the fence for the CPU access that's 1020 * about to occur. 1021 */ 1022 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { 1023 struct drm_i915_fence_reg *reg = 1024 &dev_priv->fence_regs[obj_priv->fence_reg]; 1025 list_move_tail(®->lru_list, 1026 &dev_priv->mm.fence_list); 1027 } 1028 1029 /* Silently promote "you're not bound, there was nothing to do" 1030 * to success, since the client was just asking us to 1031 * make sure everything was done. 1032 */ 1033 if (ret == -EINVAL) 1034 ret = 0; 1035 } else { 1036 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1037 } 1038 1039 drm_gem_object_unreference(obj); 1040 mutex_unlock(&dev->struct_mutex); 1041 return ret; 1042 } 1043 1044 /** 1045 * Called when user space has done writes to this buffer 1046 */ 1047 int 1048 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1049 struct drm_file *file_priv) 1050 { 1051 struct drm_i915_gem_sw_finish *args = data; 1052 struct drm_gem_object *obj; 1053 struct drm_i915_gem_object *obj_priv; 1054 int ret = 0; 1055 1056 if (!(dev->driver->driver_features & DRIVER_GEM)) 1057 return -ENODEV; 1058 1059 mutex_lock(&dev->struct_mutex); 1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1061 if (obj == NULL) { 1062 mutex_unlock(&dev->struct_mutex); 1063 return -EBADF; 1064 } 1065 1066 #if WATCH_BUF 1067 DRM_INFO("%s: sw_finish %d (%p %zd)\n", 1068 __func__, args->handle, obj, obj->size); 1069 #endif 1070 obj_priv = to_intel_bo(obj); 1071 1072 /* Pinned buffers may be scanout, so flush the cache */ 1073 if (obj_priv->pin_count) 1074 i915_gem_object_flush_cpu_write_domain(obj); 1075 1076 drm_gem_object_unreference(obj); 1077 mutex_unlock(&dev->struct_mutex); 1078 return ret; 1079 } 1080 1081 /** 1082 * Maps the contents of an object, returning the address it is mapped 1083 * into. 1084 * 1085 * While the mapping holds a reference on the contents of the object, it doesn't 1086 * imply a ref on the object itself. 1087 */ 1088 int 1089 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1090 struct drm_file *file_priv) 1091 { 1092 struct drm_i915_gem_mmap *args = data; 1093 struct drm_gem_object *obj; 1094 loff_t offset; 1095 unsigned long addr; 1096 1097 if (!(dev->driver->driver_features & DRIVER_GEM)) 1098 return -ENODEV; 1099 1100 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1101 if (obj == NULL) 1102 return -EBADF; 1103 1104 offset = args->offset; 1105 1106 down_write(¤t->mm->mmap_sem); 1107 addr = do_mmap(obj->filp, 0, args->size, 1108 PROT_READ | PROT_WRITE, MAP_SHARED, 1109 args->offset); 1110 up_write(¤t->mm->mmap_sem); 1111 drm_gem_object_unreference_unlocked(obj); 1112 if (IS_ERR((void *)addr)) 1113 return addr; 1114 1115 args->addr_ptr = (uint64_t) addr; 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * i915_gem_fault - fault a page into the GTT 1122 * vma: VMA in question 1123 * vmf: fault info 1124 * 1125 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1126 * from userspace. The fault handler takes care of binding the object to 1127 * the GTT (if needed), allocating and programming a fence register (again, 1128 * only if needed based on whether the old reg is still valid or the object 1129 * is tiled) and inserting a new PTE into the faulting process. 1130 * 1131 * Note that the faulting process may involve evicting existing objects 1132 * from the GTT and/or fence registers to make room. So performance may 1133 * suffer if the GTT working set is large or there are few fence registers 1134 * left. 1135 */ 1136 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1137 { 1138 struct drm_gem_object *obj = vma->vm_private_data; 1139 struct drm_device *dev = obj->dev; 1140 struct drm_i915_private *dev_priv = dev->dev_private; 1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1142 pgoff_t page_offset; 1143 unsigned long pfn; 1144 int ret = 0; 1145 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1146 1147 /* We don't use vmf->pgoff since that has the fake offset */ 1148 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1149 PAGE_SHIFT; 1150 1151 /* Now bind it into the GTT if needed */ 1152 mutex_lock(&dev->struct_mutex); 1153 if (!obj_priv->gtt_space) { 1154 ret = i915_gem_object_bind_to_gtt(obj, 0); 1155 if (ret) 1156 goto unlock; 1157 1158 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1159 1160 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1161 if (ret) 1162 goto unlock; 1163 } 1164 1165 /* Need a new fence register? */ 1166 if (obj_priv->tiling_mode != I915_TILING_NONE) { 1167 ret = i915_gem_object_get_fence_reg(obj); 1168 if (ret) 1169 goto unlock; 1170 } 1171 1172 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) + 1173 page_offset; 1174 1175 /* Finally, remap it using the new GTT offset */ 1176 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1177 unlock: 1178 mutex_unlock(&dev->struct_mutex); 1179 1180 switch (ret) { 1181 case 0: 1182 case -ERESTARTSYS: 1183 return VM_FAULT_NOPAGE; 1184 case -ENOMEM: 1185 case -EAGAIN: 1186 return VM_FAULT_OOM; 1187 default: 1188 return VM_FAULT_SIGBUS; 1189 } 1190 } 1191 1192 /** 1193 * i915_gem_create_mmap_offset - create a fake mmap offset for an object 1194 * @obj: obj in question 1195 * 1196 * GEM memory mapping works by handing back to userspace a fake mmap offset 1197 * it can use in a subsequent mmap(2) call. The DRM core code then looks 1198 * up the object based on the offset and sets up the various memory mapping 1199 * structures. 1200 * 1201 * This routine allocates and attaches a fake offset for @obj. 1202 */ 1203 static int 1204 i915_gem_create_mmap_offset(struct drm_gem_object *obj) 1205 { 1206 struct drm_device *dev = obj->dev; 1207 struct drm_gem_mm *mm = dev->mm_private; 1208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1209 struct drm_map_list *list; 1210 struct drm_local_map *map; 1211 int ret = 0; 1212 1213 /* Set the object up for mmap'ing */ 1214 list = &obj->map_list; 1215 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL); 1216 if (!list->map) 1217 return -ENOMEM; 1218 1219 map = list->map; 1220 map->type = _DRM_GEM; 1221 map->size = obj->size; 1222 map->handle = obj; 1223 1224 /* Get a DRM GEM mmap offset allocated... */ 1225 list->file_offset_node = drm_mm_search_free(&mm->offset_manager, 1226 obj->size / PAGE_SIZE, 0, 0); 1227 if (!list->file_offset_node) { 1228 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name); 1229 ret = -ENOMEM; 1230 goto out_free_list; 1231 } 1232 1233 list->file_offset_node = drm_mm_get_block(list->file_offset_node, 1234 obj->size / PAGE_SIZE, 0); 1235 if (!list->file_offset_node) { 1236 ret = -ENOMEM; 1237 goto out_free_list; 1238 } 1239 1240 list->hash.key = list->file_offset_node->start; 1241 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) { 1242 DRM_ERROR("failed to add to map hash\n"); 1243 ret = -ENOMEM; 1244 goto out_free_mm; 1245 } 1246 1247 /* By now we should be all set, any drm_mmap request on the offset 1248 * below will get to our mmap & fault handler */ 1249 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT; 1250 1251 return 0; 1252 1253 out_free_mm: 1254 drm_mm_put_block(list->file_offset_node); 1255 out_free_list: 1256 kfree(list->map); 1257 1258 return ret; 1259 } 1260 1261 /** 1262 * i915_gem_release_mmap - remove physical page mappings 1263 * @obj: obj in question 1264 * 1265 * Preserve the reservation of the mmapping with the DRM core code, but 1266 * relinquish ownership of the pages back to the system. 1267 * 1268 * It is vital that we remove the page mapping if we have mapped a tiled 1269 * object through the GTT and then lose the fence register due to 1270 * resource pressure. Similarly if the object has been moved out of the 1271 * aperture, than pages mapped into userspace must be revoked. Removing the 1272 * mapping will then trigger a page fault on the next user access, allowing 1273 * fixup by i915_gem_fault(). 1274 */ 1275 void 1276 i915_gem_release_mmap(struct drm_gem_object *obj) 1277 { 1278 struct drm_device *dev = obj->dev; 1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1280 1281 if (dev->dev_mapping) 1282 unmap_mapping_range(dev->dev_mapping, 1283 obj_priv->mmap_offset, obj->size, 1); 1284 } 1285 1286 static void 1287 i915_gem_free_mmap_offset(struct drm_gem_object *obj) 1288 { 1289 struct drm_device *dev = obj->dev; 1290 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1291 struct drm_gem_mm *mm = dev->mm_private; 1292 struct drm_map_list *list; 1293 1294 list = &obj->map_list; 1295 drm_ht_remove_item(&mm->offset_hash, &list->hash); 1296 1297 if (list->file_offset_node) { 1298 drm_mm_put_block(list->file_offset_node); 1299 list->file_offset_node = NULL; 1300 } 1301 1302 if (list->map) { 1303 kfree(list->map); 1304 list->map = NULL; 1305 } 1306 1307 obj_priv->mmap_offset = 0; 1308 } 1309 1310 /** 1311 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1312 * @obj: object to check 1313 * 1314 * Return the required GTT alignment for an object, taking into account 1315 * potential fence register mapping if needed. 1316 */ 1317 static uint32_t 1318 i915_gem_get_gtt_alignment(struct drm_gem_object *obj) 1319 { 1320 struct drm_device *dev = obj->dev; 1321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1322 int start, i; 1323 1324 /* 1325 * Minimum alignment is 4k (GTT page size), but might be greater 1326 * if a fence register is needed for the object. 1327 */ 1328 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE) 1329 return 4096; 1330 1331 /* 1332 * Previous chips need to be aligned to the size of the smallest 1333 * fence register that can contain the object. 1334 */ 1335 if (IS_I9XX(dev)) 1336 start = 1024*1024; 1337 else 1338 start = 512*1024; 1339 1340 for (i = start; i < obj->size; i <<= 1) 1341 ; 1342 1343 return i; 1344 } 1345 1346 /** 1347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1348 * @dev: DRM device 1349 * @data: GTT mapping ioctl data 1350 * @file_priv: GEM object info 1351 * 1352 * Simply returns the fake offset to userspace so it can mmap it. 1353 * The mmap call will end up in drm_gem_mmap(), which will set things 1354 * up so we can get faults in the handler above. 1355 * 1356 * The fault handler will take care of binding the object into the GTT 1357 * (since it may have been evicted to make room for something), allocating 1358 * a fence register, and mapping the appropriate aperture address into 1359 * userspace. 1360 */ 1361 int 1362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1363 struct drm_file *file_priv) 1364 { 1365 struct drm_i915_gem_mmap_gtt *args = data; 1366 struct drm_i915_private *dev_priv = dev->dev_private; 1367 struct drm_gem_object *obj; 1368 struct drm_i915_gem_object *obj_priv; 1369 int ret; 1370 1371 if (!(dev->driver->driver_features & DRIVER_GEM)) 1372 return -ENODEV; 1373 1374 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1375 if (obj == NULL) 1376 return -EBADF; 1377 1378 mutex_lock(&dev->struct_mutex); 1379 1380 obj_priv = to_intel_bo(obj); 1381 1382 if (obj_priv->madv != I915_MADV_WILLNEED) { 1383 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1384 drm_gem_object_unreference(obj); 1385 mutex_unlock(&dev->struct_mutex); 1386 return -EINVAL; 1387 } 1388 1389 1390 if (!obj_priv->mmap_offset) { 1391 ret = i915_gem_create_mmap_offset(obj); 1392 if (ret) { 1393 drm_gem_object_unreference(obj); 1394 mutex_unlock(&dev->struct_mutex); 1395 return ret; 1396 } 1397 } 1398 1399 args->offset = obj_priv->mmap_offset; 1400 1401 /* 1402 * Pull it into the GTT so that we have a page list (makes the 1403 * initial fault faster and any subsequent flushing possible). 1404 */ 1405 if (!obj_priv->agp_mem) { 1406 ret = i915_gem_object_bind_to_gtt(obj, 0); 1407 if (ret) { 1408 drm_gem_object_unreference(obj); 1409 mutex_unlock(&dev->struct_mutex); 1410 return ret; 1411 } 1412 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1413 } 1414 1415 drm_gem_object_unreference(obj); 1416 mutex_unlock(&dev->struct_mutex); 1417 1418 return 0; 1419 } 1420 1421 void 1422 i915_gem_object_put_pages(struct drm_gem_object *obj) 1423 { 1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1425 int page_count = obj->size / PAGE_SIZE; 1426 int i; 1427 1428 BUG_ON(obj_priv->pages_refcount == 0); 1429 BUG_ON(obj_priv->madv == __I915_MADV_PURGED); 1430 1431 if (--obj_priv->pages_refcount != 0) 1432 return; 1433 1434 if (obj_priv->tiling_mode != I915_TILING_NONE) 1435 i915_gem_object_save_bit_17_swizzle(obj); 1436 1437 if (obj_priv->madv == I915_MADV_DONTNEED) 1438 obj_priv->dirty = 0; 1439 1440 for (i = 0; i < page_count; i++) { 1441 if (obj_priv->dirty) 1442 set_page_dirty(obj_priv->pages[i]); 1443 1444 if (obj_priv->madv == I915_MADV_WILLNEED) 1445 mark_page_accessed(obj_priv->pages[i]); 1446 1447 page_cache_release(obj_priv->pages[i]); 1448 } 1449 obj_priv->dirty = 0; 1450 1451 drm_free_large(obj_priv->pages); 1452 obj_priv->pages = NULL; 1453 } 1454 1455 static void 1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno, 1457 struct intel_ring_buffer *ring) 1458 { 1459 struct drm_device *dev = obj->dev; 1460 drm_i915_private_t *dev_priv = dev->dev_private; 1461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1462 BUG_ON(ring == NULL); 1463 obj_priv->ring = ring; 1464 1465 /* Add a reference if we're newly entering the active list. */ 1466 if (!obj_priv->active) { 1467 drm_gem_object_reference(obj); 1468 obj_priv->active = 1; 1469 } 1470 /* Move from whatever list we were on to the tail of execution. */ 1471 spin_lock(&dev_priv->mm.active_list_lock); 1472 list_move_tail(&obj_priv->list, &ring->active_list); 1473 spin_unlock(&dev_priv->mm.active_list_lock); 1474 obj_priv->last_rendering_seqno = seqno; 1475 } 1476 1477 static void 1478 i915_gem_object_move_to_flushing(struct drm_gem_object *obj) 1479 { 1480 struct drm_device *dev = obj->dev; 1481 drm_i915_private_t *dev_priv = dev->dev_private; 1482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1483 1484 BUG_ON(!obj_priv->active); 1485 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list); 1486 obj_priv->last_rendering_seqno = 0; 1487 } 1488 1489 /* Immediately discard the backing storage */ 1490 static void 1491 i915_gem_object_truncate(struct drm_gem_object *obj) 1492 { 1493 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1494 struct inode *inode; 1495 1496 inode = obj->filp->f_path.dentry->d_inode; 1497 if (inode->i_op->truncate) 1498 inode->i_op->truncate (inode); 1499 1500 obj_priv->madv = __I915_MADV_PURGED; 1501 } 1502 1503 static inline int 1504 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv) 1505 { 1506 return obj_priv->madv == I915_MADV_DONTNEED; 1507 } 1508 1509 static void 1510 i915_gem_object_move_to_inactive(struct drm_gem_object *obj) 1511 { 1512 struct drm_device *dev = obj->dev; 1513 drm_i915_private_t *dev_priv = dev->dev_private; 1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1515 1516 i915_verify_inactive(dev, __FILE__, __LINE__); 1517 if (obj_priv->pin_count != 0) 1518 list_del_init(&obj_priv->list); 1519 else 1520 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1521 1522 BUG_ON(!list_empty(&obj_priv->gpu_write_list)); 1523 1524 obj_priv->last_rendering_seqno = 0; 1525 obj_priv->ring = NULL; 1526 if (obj_priv->active) { 1527 obj_priv->active = 0; 1528 drm_gem_object_unreference(obj); 1529 } 1530 i915_verify_inactive(dev, __FILE__, __LINE__); 1531 } 1532 1533 static void 1534 i915_gem_process_flushing_list(struct drm_device *dev, 1535 uint32_t flush_domains, uint32_t seqno, 1536 struct intel_ring_buffer *ring) 1537 { 1538 drm_i915_private_t *dev_priv = dev->dev_private; 1539 struct drm_i915_gem_object *obj_priv, *next; 1540 1541 list_for_each_entry_safe(obj_priv, next, 1542 &dev_priv->mm.gpu_write_list, 1543 gpu_write_list) { 1544 struct drm_gem_object *obj = &obj_priv->base; 1545 1546 if ((obj->write_domain & flush_domains) == 1547 obj->write_domain && 1548 obj_priv->ring->ring_flag == ring->ring_flag) { 1549 uint32_t old_write_domain = obj->write_domain; 1550 1551 obj->write_domain = 0; 1552 list_del_init(&obj_priv->gpu_write_list); 1553 i915_gem_object_move_to_active(obj, seqno, ring); 1554 1555 /* update the fence lru list */ 1556 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { 1557 struct drm_i915_fence_reg *reg = 1558 &dev_priv->fence_regs[obj_priv->fence_reg]; 1559 list_move_tail(®->lru_list, 1560 &dev_priv->mm.fence_list); 1561 } 1562 1563 trace_i915_gem_object_change_domain(obj, 1564 obj->read_domains, 1565 old_write_domain); 1566 } 1567 } 1568 } 1569 1570 uint32_t 1571 i915_add_request(struct drm_device *dev, struct drm_file *file_priv, 1572 uint32_t flush_domains, struct intel_ring_buffer *ring) 1573 { 1574 drm_i915_private_t *dev_priv = dev->dev_private; 1575 struct drm_i915_file_private *i915_file_priv = NULL; 1576 struct drm_i915_gem_request *request; 1577 uint32_t seqno; 1578 int was_empty; 1579 1580 if (file_priv != NULL) 1581 i915_file_priv = file_priv->driver_priv; 1582 1583 request = kzalloc(sizeof(*request), GFP_KERNEL); 1584 if (request == NULL) 1585 return 0; 1586 1587 seqno = ring->add_request(dev, ring, file_priv, flush_domains); 1588 1589 request->seqno = seqno; 1590 request->ring = ring; 1591 request->emitted_jiffies = jiffies; 1592 was_empty = list_empty(&ring->request_list); 1593 list_add_tail(&request->list, &ring->request_list); 1594 1595 if (i915_file_priv) { 1596 list_add_tail(&request->client_list, 1597 &i915_file_priv->mm.request_list); 1598 } else { 1599 INIT_LIST_HEAD(&request->client_list); 1600 } 1601 1602 /* Associate any objects on the flushing list matching the write 1603 * domain we're flushing with our flush. 1604 */ 1605 if (flush_domains != 0) 1606 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring); 1607 1608 if (!dev_priv->mm.suspended) { 1609 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD); 1610 if (was_empty) 1611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1612 } 1613 return seqno; 1614 } 1615 1616 /** 1617 * Command execution barrier 1618 * 1619 * Ensures that all commands in the ring are finished 1620 * before signalling the CPU 1621 */ 1622 static uint32_t 1623 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring) 1624 { 1625 uint32_t flush_domains = 0; 1626 1627 /* The sampler always gets flushed on i965 (sigh) */ 1628 if (IS_I965G(dev)) 1629 flush_domains |= I915_GEM_DOMAIN_SAMPLER; 1630 1631 ring->flush(dev, ring, 1632 I915_GEM_DOMAIN_COMMAND, flush_domains); 1633 return flush_domains; 1634 } 1635 1636 /** 1637 * Moves buffers associated only with the given active seqno from the active 1638 * to inactive list, potentially freeing them. 1639 */ 1640 static void 1641 i915_gem_retire_request(struct drm_device *dev, 1642 struct drm_i915_gem_request *request) 1643 { 1644 drm_i915_private_t *dev_priv = dev->dev_private; 1645 1646 trace_i915_gem_request_retire(dev, request->seqno); 1647 1648 /* Move any buffers on the active list that are no longer referenced 1649 * by the ringbuffer to the flushing/inactive lists as appropriate. 1650 */ 1651 spin_lock(&dev_priv->mm.active_list_lock); 1652 while (!list_empty(&request->ring->active_list)) { 1653 struct drm_gem_object *obj; 1654 struct drm_i915_gem_object *obj_priv; 1655 1656 obj_priv = list_first_entry(&request->ring->active_list, 1657 struct drm_i915_gem_object, 1658 list); 1659 obj = &obj_priv->base; 1660 1661 /* If the seqno being retired doesn't match the oldest in the 1662 * list, then the oldest in the list must still be newer than 1663 * this seqno. 1664 */ 1665 if (obj_priv->last_rendering_seqno != request->seqno) 1666 goto out; 1667 1668 #if WATCH_LRU 1669 DRM_INFO("%s: retire %d moves to inactive list %p\n", 1670 __func__, request->seqno, obj); 1671 #endif 1672 1673 if (obj->write_domain != 0) 1674 i915_gem_object_move_to_flushing(obj); 1675 else { 1676 /* Take a reference on the object so it won't be 1677 * freed while the spinlock is held. The list 1678 * protection for this spinlock is safe when breaking 1679 * the lock like this since the next thing we do 1680 * is just get the head of the list again. 1681 */ 1682 drm_gem_object_reference(obj); 1683 i915_gem_object_move_to_inactive(obj); 1684 spin_unlock(&dev_priv->mm.active_list_lock); 1685 drm_gem_object_unreference(obj); 1686 spin_lock(&dev_priv->mm.active_list_lock); 1687 } 1688 } 1689 out: 1690 spin_unlock(&dev_priv->mm.active_list_lock); 1691 } 1692 1693 /** 1694 * Returns true if seq1 is later than seq2. 1695 */ 1696 bool 1697 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 1698 { 1699 return (int32_t)(seq1 - seq2) >= 0; 1700 } 1701 1702 uint32_t 1703 i915_get_gem_seqno(struct drm_device *dev, 1704 struct intel_ring_buffer *ring) 1705 { 1706 return ring->get_gem_seqno(dev, ring); 1707 } 1708 1709 /** 1710 * This function clears the request list as sequence numbers are passed. 1711 */ 1712 static void 1713 i915_gem_retire_requests_ring(struct drm_device *dev, 1714 struct intel_ring_buffer *ring) 1715 { 1716 drm_i915_private_t *dev_priv = dev->dev_private; 1717 uint32_t seqno; 1718 1719 if (!ring->status_page.page_addr 1720 || list_empty(&ring->request_list)) 1721 return; 1722 1723 seqno = i915_get_gem_seqno(dev, ring); 1724 1725 while (!list_empty(&ring->request_list)) { 1726 struct drm_i915_gem_request *request; 1727 uint32_t retiring_seqno; 1728 1729 request = list_first_entry(&ring->request_list, 1730 struct drm_i915_gem_request, 1731 list); 1732 retiring_seqno = request->seqno; 1733 1734 if (i915_seqno_passed(seqno, retiring_seqno) || 1735 atomic_read(&dev_priv->mm.wedged)) { 1736 i915_gem_retire_request(dev, request); 1737 1738 list_del(&request->list); 1739 list_del(&request->client_list); 1740 kfree(request); 1741 } else 1742 break; 1743 } 1744 1745 if (unlikely (dev_priv->trace_irq_seqno && 1746 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) { 1747 1748 ring->user_irq_put(dev, ring); 1749 dev_priv->trace_irq_seqno = 0; 1750 } 1751 } 1752 1753 void 1754 i915_gem_retire_requests(struct drm_device *dev) 1755 { 1756 drm_i915_private_t *dev_priv = dev->dev_private; 1757 1758 if (!list_empty(&dev_priv->mm.deferred_free_list)) { 1759 struct drm_i915_gem_object *obj_priv, *tmp; 1760 1761 /* We must be careful that during unbind() we do not 1762 * accidentally infinitely recurse into retire requests. 1763 * Currently: 1764 * retire -> free -> unbind -> wait -> retire_ring 1765 */ 1766 list_for_each_entry_safe(obj_priv, tmp, 1767 &dev_priv->mm.deferred_free_list, 1768 list) 1769 i915_gem_free_object_tail(&obj_priv->base); 1770 } 1771 1772 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring); 1773 if (HAS_BSD(dev)) 1774 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring); 1775 } 1776 1777 void 1778 i915_gem_retire_work_handler(struct work_struct *work) 1779 { 1780 drm_i915_private_t *dev_priv; 1781 struct drm_device *dev; 1782 1783 dev_priv = container_of(work, drm_i915_private_t, 1784 mm.retire_work.work); 1785 dev = dev_priv->dev; 1786 1787 mutex_lock(&dev->struct_mutex); 1788 i915_gem_retire_requests(dev); 1789 1790 if (!dev_priv->mm.suspended && 1791 (!list_empty(&dev_priv->render_ring.request_list) || 1792 (HAS_BSD(dev) && 1793 !list_empty(&dev_priv->bsd_ring.request_list)))) 1794 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1795 mutex_unlock(&dev->struct_mutex); 1796 } 1797 1798 int 1799 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, 1800 int interruptible, struct intel_ring_buffer *ring) 1801 { 1802 drm_i915_private_t *dev_priv = dev->dev_private; 1803 u32 ier; 1804 int ret = 0; 1805 1806 BUG_ON(seqno == 0); 1807 1808 if (atomic_read(&dev_priv->mm.wedged)) 1809 return -EIO; 1810 1811 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) { 1812 if (HAS_PCH_SPLIT(dev)) 1813 ier = I915_READ(DEIER) | I915_READ(GTIER); 1814 else 1815 ier = I915_READ(IER); 1816 if (!ier) { 1817 DRM_ERROR("something (likely vbetool) disabled " 1818 "interrupts, re-enabling\n"); 1819 i915_driver_irq_preinstall(dev); 1820 i915_driver_irq_postinstall(dev); 1821 } 1822 1823 trace_i915_gem_request_wait_begin(dev, seqno); 1824 1825 ring->waiting_gem_seqno = seqno; 1826 ring->user_irq_get(dev, ring); 1827 if (interruptible) 1828 ret = wait_event_interruptible(ring->irq_queue, 1829 i915_seqno_passed( 1830 ring->get_gem_seqno(dev, ring), seqno) 1831 || atomic_read(&dev_priv->mm.wedged)); 1832 else 1833 wait_event(ring->irq_queue, 1834 i915_seqno_passed( 1835 ring->get_gem_seqno(dev, ring), seqno) 1836 || atomic_read(&dev_priv->mm.wedged)); 1837 1838 ring->user_irq_put(dev, ring); 1839 ring->waiting_gem_seqno = 0; 1840 1841 trace_i915_gem_request_wait_end(dev, seqno); 1842 } 1843 if (atomic_read(&dev_priv->mm.wedged)) 1844 ret = -EIO; 1845 1846 if (ret && ret != -ERESTARTSYS) 1847 DRM_ERROR("%s returns %d (awaiting %d at %d)\n", 1848 __func__, ret, seqno, ring->get_gem_seqno(dev, ring)); 1849 1850 /* Directly dispatch request retiring. While we have the work queue 1851 * to handle this, the waiter on a request often wants an associated 1852 * buffer to have made it to the inactive list, and we would need 1853 * a separate wait queue to handle that. 1854 */ 1855 if (ret == 0) 1856 i915_gem_retire_requests_ring(dev, ring); 1857 1858 return ret; 1859 } 1860 1861 /** 1862 * Waits for a sequence number to be signaled, and cleans up the 1863 * request and object lists appropriately for that event. 1864 */ 1865 static int 1866 i915_wait_request(struct drm_device *dev, uint32_t seqno, 1867 struct intel_ring_buffer *ring) 1868 { 1869 return i915_do_wait_request(dev, seqno, 1, ring); 1870 } 1871 1872 static void 1873 i915_gem_flush(struct drm_device *dev, 1874 uint32_t invalidate_domains, 1875 uint32_t flush_domains) 1876 { 1877 drm_i915_private_t *dev_priv = dev->dev_private; 1878 if (flush_domains & I915_GEM_DOMAIN_CPU) 1879 drm_agp_chipset_flush(dev); 1880 dev_priv->render_ring.flush(dev, &dev_priv->render_ring, 1881 invalidate_domains, 1882 flush_domains); 1883 1884 if (HAS_BSD(dev)) 1885 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring, 1886 invalidate_domains, 1887 flush_domains); 1888 } 1889 1890 static void 1891 i915_gem_flush_ring(struct drm_device *dev, 1892 uint32_t invalidate_domains, 1893 uint32_t flush_domains, 1894 struct intel_ring_buffer *ring) 1895 { 1896 if (flush_domains & I915_GEM_DOMAIN_CPU) 1897 drm_agp_chipset_flush(dev); 1898 ring->flush(dev, ring, 1899 invalidate_domains, 1900 flush_domains); 1901 } 1902 1903 /** 1904 * Ensures that all rendering to the object has completed and the object is 1905 * safe to unbind from the GTT or access from the CPU. 1906 */ 1907 static int 1908 i915_gem_object_wait_rendering(struct drm_gem_object *obj) 1909 { 1910 struct drm_device *dev = obj->dev; 1911 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1912 int ret; 1913 1914 /* This function only exists to support waiting for existing rendering, 1915 * not for emitting required flushes. 1916 */ 1917 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0); 1918 1919 /* If there is rendering queued on the buffer being evicted, wait for 1920 * it. 1921 */ 1922 if (obj_priv->active) { 1923 #if WATCH_BUF 1924 DRM_INFO("%s: object %p wait for seqno %08x\n", 1925 __func__, obj, obj_priv->last_rendering_seqno); 1926 #endif 1927 ret = i915_wait_request(dev, 1928 obj_priv->last_rendering_seqno, obj_priv->ring); 1929 if (ret != 0) 1930 return ret; 1931 } 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * Unbinds an object from the GTT aperture. 1938 */ 1939 int 1940 i915_gem_object_unbind(struct drm_gem_object *obj) 1941 { 1942 struct drm_device *dev = obj->dev; 1943 drm_i915_private_t *dev_priv = dev->dev_private; 1944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 1945 int ret = 0; 1946 1947 #if WATCH_BUF 1948 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj); 1949 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space); 1950 #endif 1951 if (obj_priv->gtt_space == NULL) 1952 return 0; 1953 1954 if (obj_priv->pin_count != 0) { 1955 DRM_ERROR("Attempting to unbind pinned buffer\n"); 1956 return -EINVAL; 1957 } 1958 1959 /* blow away mappings if mapped through GTT */ 1960 i915_gem_release_mmap(obj); 1961 1962 /* Move the object to the CPU domain to ensure that 1963 * any possible CPU writes while it's not in the GTT 1964 * are flushed when we go to remap it. This will 1965 * also ensure that all pending GPU writes are finished 1966 * before we unbind. 1967 */ 1968 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 1969 if (ret == -ERESTARTSYS) 1970 return ret; 1971 /* Continue on if we fail due to EIO, the GPU is hung so we 1972 * should be safe and we need to cleanup or else we might 1973 * cause memory corruption through use-after-free. 1974 */ 1975 1976 BUG_ON(obj_priv->active); 1977 1978 /* release the fence reg _after_ flushing */ 1979 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) 1980 i915_gem_clear_fence_reg(obj); 1981 1982 if (obj_priv->agp_mem != NULL) { 1983 drm_unbind_agp(obj_priv->agp_mem); 1984 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE); 1985 obj_priv->agp_mem = NULL; 1986 } 1987 1988 i915_gem_object_put_pages(obj); 1989 BUG_ON(obj_priv->pages_refcount); 1990 1991 if (obj_priv->gtt_space) { 1992 atomic_dec(&dev->gtt_count); 1993 atomic_sub(obj->size, &dev->gtt_memory); 1994 1995 drm_mm_put_block(obj_priv->gtt_space); 1996 obj_priv->gtt_space = NULL; 1997 } 1998 1999 /* Remove ourselves from the LRU list if present. */ 2000 spin_lock(&dev_priv->mm.active_list_lock); 2001 if (!list_empty(&obj_priv->list)) 2002 list_del_init(&obj_priv->list); 2003 spin_unlock(&dev_priv->mm.active_list_lock); 2004 2005 if (i915_gem_object_is_purgeable(obj_priv)) 2006 i915_gem_object_truncate(obj); 2007 2008 trace_i915_gem_object_unbind(obj); 2009 2010 return ret; 2011 } 2012 2013 static struct drm_gem_object * 2014 i915_gem_find_inactive_object(struct drm_device *dev, int min_size) 2015 { 2016 drm_i915_private_t *dev_priv = dev->dev_private; 2017 struct drm_i915_gem_object *obj_priv; 2018 struct drm_gem_object *best = NULL; 2019 struct drm_gem_object *first = NULL; 2020 2021 /* Try to find the smallest clean object */ 2022 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) { 2023 struct drm_gem_object *obj = &obj_priv->base; 2024 if (obj->size >= min_size) { 2025 if ((!obj_priv->dirty || 2026 i915_gem_object_is_purgeable(obj_priv)) && 2027 (!best || obj->size < best->size)) { 2028 best = obj; 2029 if (best->size == min_size) 2030 return best; 2031 } 2032 if (!first) 2033 first = obj; 2034 } 2035 } 2036 2037 return best ? best : first; 2038 } 2039 2040 static int 2041 i915_gpu_idle(struct drm_device *dev) 2042 { 2043 drm_i915_private_t *dev_priv = dev->dev_private; 2044 bool lists_empty; 2045 uint32_t seqno1, seqno2; 2046 int ret; 2047 2048 spin_lock(&dev_priv->mm.active_list_lock); 2049 lists_empty = (list_empty(&dev_priv->mm.flushing_list) && 2050 list_empty(&dev_priv->render_ring.active_list) && 2051 (!HAS_BSD(dev) || 2052 list_empty(&dev_priv->bsd_ring.active_list))); 2053 spin_unlock(&dev_priv->mm.active_list_lock); 2054 2055 if (lists_empty) 2056 return 0; 2057 2058 /* Flush everything onto the inactive list. */ 2059 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 2060 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS, 2061 &dev_priv->render_ring); 2062 if (seqno1 == 0) 2063 return -ENOMEM; 2064 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring); 2065 2066 if (HAS_BSD(dev)) { 2067 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS, 2068 &dev_priv->bsd_ring); 2069 if (seqno2 == 0) 2070 return -ENOMEM; 2071 2072 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring); 2073 if (ret) 2074 return ret; 2075 } 2076 2077 2078 return ret; 2079 } 2080 2081 static int 2082 i915_gem_evict_everything(struct drm_device *dev) 2083 { 2084 drm_i915_private_t *dev_priv = dev->dev_private; 2085 int ret; 2086 bool lists_empty; 2087 2088 spin_lock(&dev_priv->mm.active_list_lock); 2089 lists_empty = (list_empty(&dev_priv->mm.inactive_list) && 2090 list_empty(&dev_priv->mm.flushing_list) && 2091 list_empty(&dev_priv->render_ring.active_list) && 2092 (!HAS_BSD(dev) 2093 || list_empty(&dev_priv->bsd_ring.active_list))); 2094 spin_unlock(&dev_priv->mm.active_list_lock); 2095 2096 if (lists_empty) 2097 return -ENOSPC; 2098 2099 /* Flush everything (on to the inactive lists) and evict */ 2100 ret = i915_gpu_idle(dev); 2101 if (ret) 2102 return ret; 2103 2104 BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); 2105 2106 ret = i915_gem_evict_from_inactive_list(dev); 2107 if (ret) 2108 return ret; 2109 2110 spin_lock(&dev_priv->mm.active_list_lock); 2111 lists_empty = (list_empty(&dev_priv->mm.inactive_list) && 2112 list_empty(&dev_priv->mm.flushing_list) && 2113 list_empty(&dev_priv->render_ring.active_list) && 2114 (!HAS_BSD(dev) 2115 || list_empty(&dev_priv->bsd_ring.active_list))); 2116 spin_unlock(&dev_priv->mm.active_list_lock); 2117 BUG_ON(!lists_empty); 2118 2119 return 0; 2120 } 2121 2122 static int 2123 i915_gem_evict_something(struct drm_device *dev, int min_size) 2124 { 2125 drm_i915_private_t *dev_priv = dev->dev_private; 2126 struct drm_gem_object *obj; 2127 int ret; 2128 2129 struct intel_ring_buffer *render_ring = &dev_priv->render_ring; 2130 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring; 2131 for (;;) { 2132 i915_gem_retire_requests(dev); 2133 2134 /* If there's an inactive buffer available now, grab it 2135 * and be done. 2136 */ 2137 obj = i915_gem_find_inactive_object(dev, min_size); 2138 if (obj) { 2139 struct drm_i915_gem_object *obj_priv; 2140 2141 #if WATCH_LRU 2142 DRM_INFO("%s: evicting %p\n", __func__, obj); 2143 #endif 2144 obj_priv = to_intel_bo(obj); 2145 BUG_ON(obj_priv->pin_count != 0); 2146 BUG_ON(obj_priv->active); 2147 2148 /* Wait on the rendering and unbind the buffer. */ 2149 return i915_gem_object_unbind(obj); 2150 } 2151 2152 /* If we didn't get anything, but the ring is still processing 2153 * things, wait for the next to finish and hopefully leave us 2154 * a buffer to evict. 2155 */ 2156 if (!list_empty(&render_ring->request_list)) { 2157 struct drm_i915_gem_request *request; 2158 2159 request = list_first_entry(&render_ring->request_list, 2160 struct drm_i915_gem_request, 2161 list); 2162 2163 ret = i915_wait_request(dev, 2164 request->seqno, request->ring); 2165 if (ret) 2166 return ret; 2167 2168 continue; 2169 } 2170 2171 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) { 2172 struct drm_i915_gem_request *request; 2173 2174 request = list_first_entry(&bsd_ring->request_list, 2175 struct drm_i915_gem_request, 2176 list); 2177 2178 ret = i915_wait_request(dev, 2179 request->seqno, request->ring); 2180 if (ret) 2181 return ret; 2182 2183 continue; 2184 } 2185 2186 /* If we didn't have anything on the request list but there 2187 * are buffers awaiting a flush, emit one and try again. 2188 * When we wait on it, those buffers waiting for that flush 2189 * will get moved to inactive. 2190 */ 2191 if (!list_empty(&dev_priv->mm.flushing_list)) { 2192 struct drm_i915_gem_object *obj_priv; 2193 2194 /* Find an object that we can immediately reuse */ 2195 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) { 2196 obj = &obj_priv->base; 2197 if (obj->size >= min_size) 2198 break; 2199 2200 obj = NULL; 2201 } 2202 2203 if (obj != NULL) { 2204 uint32_t seqno; 2205 2206 i915_gem_flush_ring(dev, 2207 obj->write_domain, 2208 obj->write_domain, 2209 obj_priv->ring); 2210 seqno = i915_add_request(dev, NULL, 2211 obj->write_domain, 2212 obj_priv->ring); 2213 if (seqno == 0) 2214 return -ENOMEM; 2215 continue; 2216 } 2217 } 2218 2219 /* If we didn't do any of the above, there's no single buffer 2220 * large enough to swap out for the new one, so just evict 2221 * everything and start again. (This should be rare.) 2222 */ 2223 if (!list_empty (&dev_priv->mm.inactive_list)) 2224 return i915_gem_evict_from_inactive_list(dev); 2225 else 2226 return i915_gem_evict_everything(dev); 2227 } 2228 } 2229 2230 int 2231 i915_gem_object_get_pages(struct drm_gem_object *obj, 2232 gfp_t gfpmask) 2233 { 2234 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2235 int page_count, i; 2236 struct address_space *mapping; 2237 struct inode *inode; 2238 struct page *page; 2239 2240 BUG_ON(obj_priv->pages_refcount 2241 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT); 2242 2243 if (obj_priv->pages_refcount++ != 0) 2244 return 0; 2245 2246 /* Get the list of pages out of our struct file. They'll be pinned 2247 * at this point until we release them. 2248 */ 2249 page_count = obj->size / PAGE_SIZE; 2250 BUG_ON(obj_priv->pages != NULL); 2251 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *)); 2252 if (obj_priv->pages == NULL) { 2253 obj_priv->pages_refcount--; 2254 return -ENOMEM; 2255 } 2256 2257 inode = obj->filp->f_path.dentry->d_inode; 2258 mapping = inode->i_mapping; 2259 for (i = 0; i < page_count; i++) { 2260 page = read_cache_page_gfp(mapping, i, 2261 GFP_HIGHUSER | 2262 __GFP_COLD | 2263 __GFP_RECLAIMABLE | 2264 gfpmask); 2265 if (IS_ERR(page)) 2266 goto err_pages; 2267 2268 obj_priv->pages[i] = page; 2269 } 2270 2271 if (obj_priv->tiling_mode != I915_TILING_NONE) 2272 i915_gem_object_do_bit_17_swizzle(obj); 2273 2274 return 0; 2275 2276 err_pages: 2277 while (i--) 2278 page_cache_release(obj_priv->pages[i]); 2279 2280 drm_free_large(obj_priv->pages); 2281 obj_priv->pages = NULL; 2282 obj_priv->pages_refcount--; 2283 return PTR_ERR(page); 2284 } 2285 2286 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg) 2287 { 2288 struct drm_gem_object *obj = reg->obj; 2289 struct drm_device *dev = obj->dev; 2290 drm_i915_private_t *dev_priv = dev->dev_private; 2291 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2292 int regnum = obj_priv->fence_reg; 2293 uint64_t val; 2294 2295 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 2296 0xfffff000) << 32; 2297 val |= obj_priv->gtt_offset & 0xfffff000; 2298 val |= (uint64_t)((obj_priv->stride / 128) - 1) << 2299 SANDYBRIDGE_FENCE_PITCH_SHIFT; 2300 2301 if (obj_priv->tiling_mode == I915_TILING_Y) 2302 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2303 val |= I965_FENCE_REG_VALID; 2304 2305 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val); 2306 } 2307 2308 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg) 2309 { 2310 struct drm_gem_object *obj = reg->obj; 2311 struct drm_device *dev = obj->dev; 2312 drm_i915_private_t *dev_priv = dev->dev_private; 2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2314 int regnum = obj_priv->fence_reg; 2315 uint64_t val; 2316 2317 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 2318 0xfffff000) << 32; 2319 val |= obj_priv->gtt_offset & 0xfffff000; 2320 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2321 if (obj_priv->tiling_mode == I915_TILING_Y) 2322 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2323 val |= I965_FENCE_REG_VALID; 2324 2325 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val); 2326 } 2327 2328 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg) 2329 { 2330 struct drm_gem_object *obj = reg->obj; 2331 struct drm_device *dev = obj->dev; 2332 drm_i915_private_t *dev_priv = dev->dev_private; 2333 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2334 int regnum = obj_priv->fence_reg; 2335 int tile_width; 2336 uint32_t fence_reg, val; 2337 uint32_t pitch_val; 2338 2339 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) || 2340 (obj_priv->gtt_offset & (obj->size - 1))) { 2341 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n", 2342 __func__, obj_priv->gtt_offset, obj->size); 2343 return; 2344 } 2345 2346 if (obj_priv->tiling_mode == I915_TILING_Y && 2347 HAS_128_BYTE_Y_TILING(dev)) 2348 tile_width = 128; 2349 else 2350 tile_width = 512; 2351 2352 /* Note: pitch better be a power of two tile widths */ 2353 pitch_val = obj_priv->stride / tile_width; 2354 pitch_val = ffs(pitch_val) - 1; 2355 2356 if (obj_priv->tiling_mode == I915_TILING_Y && 2357 HAS_128_BYTE_Y_TILING(dev)) 2358 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); 2359 else 2360 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL); 2361 2362 val = obj_priv->gtt_offset; 2363 if (obj_priv->tiling_mode == I915_TILING_Y) 2364 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2365 val |= I915_FENCE_SIZE_BITS(obj->size); 2366 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2367 val |= I830_FENCE_REG_VALID; 2368 2369 if (regnum < 8) 2370 fence_reg = FENCE_REG_830_0 + (regnum * 4); 2371 else 2372 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4); 2373 I915_WRITE(fence_reg, val); 2374 } 2375 2376 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg) 2377 { 2378 struct drm_gem_object *obj = reg->obj; 2379 struct drm_device *dev = obj->dev; 2380 drm_i915_private_t *dev_priv = dev->dev_private; 2381 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2382 int regnum = obj_priv->fence_reg; 2383 uint32_t val; 2384 uint32_t pitch_val; 2385 uint32_t fence_size_bits; 2386 2387 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) || 2388 (obj_priv->gtt_offset & (obj->size - 1))) { 2389 WARN(1, "%s: object 0x%08x not 512K or size aligned\n", 2390 __func__, obj_priv->gtt_offset); 2391 return; 2392 } 2393 2394 pitch_val = obj_priv->stride / 128; 2395 pitch_val = ffs(pitch_val) - 1; 2396 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); 2397 2398 val = obj_priv->gtt_offset; 2399 if (obj_priv->tiling_mode == I915_TILING_Y) 2400 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2401 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size); 2402 WARN_ON(fence_size_bits & ~0x00000f00); 2403 val |= fence_size_bits; 2404 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2405 val |= I830_FENCE_REG_VALID; 2406 2407 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val); 2408 } 2409 2410 static int i915_find_fence_reg(struct drm_device *dev) 2411 { 2412 struct drm_i915_fence_reg *reg = NULL; 2413 struct drm_i915_gem_object *obj_priv = NULL; 2414 struct drm_i915_private *dev_priv = dev->dev_private; 2415 struct drm_gem_object *obj = NULL; 2416 int i, avail, ret; 2417 2418 /* First try to find a free reg */ 2419 avail = 0; 2420 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2421 reg = &dev_priv->fence_regs[i]; 2422 if (!reg->obj) 2423 return i; 2424 2425 obj_priv = to_intel_bo(reg->obj); 2426 if (!obj_priv->pin_count) 2427 avail++; 2428 } 2429 2430 if (avail == 0) 2431 return -ENOSPC; 2432 2433 /* None available, try to steal one or wait for a user to finish */ 2434 i = I915_FENCE_REG_NONE; 2435 list_for_each_entry(reg, &dev_priv->mm.fence_list, 2436 lru_list) { 2437 obj = reg->obj; 2438 obj_priv = to_intel_bo(obj); 2439 2440 if (obj_priv->pin_count) 2441 continue; 2442 2443 /* found one! */ 2444 i = obj_priv->fence_reg; 2445 break; 2446 } 2447 2448 BUG_ON(i == I915_FENCE_REG_NONE); 2449 2450 /* We only have a reference on obj from the active list. put_fence_reg 2451 * might drop that one, causing a use-after-free in it. So hold a 2452 * private reference to obj like the other callers of put_fence_reg 2453 * (set_tiling ioctl) do. */ 2454 drm_gem_object_reference(obj); 2455 ret = i915_gem_object_put_fence_reg(obj); 2456 drm_gem_object_unreference(obj); 2457 if (ret != 0) 2458 return ret; 2459 2460 return i; 2461 } 2462 2463 /** 2464 * i915_gem_object_get_fence_reg - set up a fence reg for an object 2465 * @obj: object to map through a fence reg 2466 * 2467 * When mapping objects through the GTT, userspace wants to be able to write 2468 * to them without having to worry about swizzling if the object is tiled. 2469 * 2470 * This function walks the fence regs looking for a free one for @obj, 2471 * stealing one if it can't find any. 2472 * 2473 * It then sets up the reg based on the object's properties: address, pitch 2474 * and tiling format. 2475 */ 2476 int 2477 i915_gem_object_get_fence_reg(struct drm_gem_object *obj) 2478 { 2479 struct drm_device *dev = obj->dev; 2480 struct drm_i915_private *dev_priv = dev->dev_private; 2481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2482 struct drm_i915_fence_reg *reg = NULL; 2483 int ret; 2484 2485 /* Just update our place in the LRU if our fence is getting used. */ 2486 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { 2487 reg = &dev_priv->fence_regs[obj_priv->fence_reg]; 2488 list_move_tail(®->lru_list, &dev_priv->mm.fence_list); 2489 return 0; 2490 } 2491 2492 switch (obj_priv->tiling_mode) { 2493 case I915_TILING_NONE: 2494 WARN(1, "allocating a fence for non-tiled object?\n"); 2495 break; 2496 case I915_TILING_X: 2497 if (!obj_priv->stride) 2498 return -EINVAL; 2499 WARN((obj_priv->stride & (512 - 1)), 2500 "object 0x%08x is X tiled but has non-512B pitch\n", 2501 obj_priv->gtt_offset); 2502 break; 2503 case I915_TILING_Y: 2504 if (!obj_priv->stride) 2505 return -EINVAL; 2506 WARN((obj_priv->stride & (128 - 1)), 2507 "object 0x%08x is Y tiled but has non-128B pitch\n", 2508 obj_priv->gtt_offset); 2509 break; 2510 } 2511 2512 ret = i915_find_fence_reg(dev); 2513 if (ret < 0) 2514 return ret; 2515 2516 obj_priv->fence_reg = ret; 2517 reg = &dev_priv->fence_regs[obj_priv->fence_reg]; 2518 list_add_tail(®->lru_list, &dev_priv->mm.fence_list); 2519 2520 reg->obj = obj; 2521 2522 if (IS_GEN6(dev)) 2523 sandybridge_write_fence_reg(reg); 2524 else if (IS_I965G(dev)) 2525 i965_write_fence_reg(reg); 2526 else if (IS_I9XX(dev)) 2527 i915_write_fence_reg(reg); 2528 else 2529 i830_write_fence_reg(reg); 2530 2531 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg, 2532 obj_priv->tiling_mode); 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * i915_gem_clear_fence_reg - clear out fence register info 2539 * @obj: object to clear 2540 * 2541 * Zeroes out the fence register itself and clears out the associated 2542 * data structures in dev_priv and obj_priv. 2543 */ 2544 static void 2545 i915_gem_clear_fence_reg(struct drm_gem_object *obj) 2546 { 2547 struct drm_device *dev = obj->dev; 2548 drm_i915_private_t *dev_priv = dev->dev_private; 2549 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2550 struct drm_i915_fence_reg *reg = 2551 &dev_priv->fence_regs[obj_priv->fence_reg]; 2552 2553 if (IS_GEN6(dev)) { 2554 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + 2555 (obj_priv->fence_reg * 8), 0); 2556 } else if (IS_I965G(dev)) { 2557 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0); 2558 } else { 2559 uint32_t fence_reg; 2560 2561 if (obj_priv->fence_reg < 8) 2562 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4; 2563 else 2564 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 2565 8) * 4; 2566 2567 I915_WRITE(fence_reg, 0); 2568 } 2569 2570 reg->obj = NULL; 2571 obj_priv->fence_reg = I915_FENCE_REG_NONE; 2572 list_del_init(®->lru_list); 2573 } 2574 2575 /** 2576 * i915_gem_object_put_fence_reg - waits on outstanding fenced access 2577 * to the buffer to finish, and then resets the fence register. 2578 * @obj: tiled object holding a fence register. 2579 * 2580 * Zeroes out the fence register itself and clears out the associated 2581 * data structures in dev_priv and obj_priv. 2582 */ 2583 int 2584 i915_gem_object_put_fence_reg(struct drm_gem_object *obj) 2585 { 2586 struct drm_device *dev = obj->dev; 2587 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2588 2589 if (obj_priv->fence_reg == I915_FENCE_REG_NONE) 2590 return 0; 2591 2592 /* If we've changed tiling, GTT-mappings of the object 2593 * need to re-fault to ensure that the correct fence register 2594 * setup is in place. 2595 */ 2596 i915_gem_release_mmap(obj); 2597 2598 /* On the i915, GPU access to tiled buffers is via a fence, 2599 * therefore we must wait for any outstanding access to complete 2600 * before clearing the fence. 2601 */ 2602 if (!IS_I965G(dev)) { 2603 int ret; 2604 2605 ret = i915_gem_object_flush_gpu_write_domain(obj); 2606 if (ret != 0) 2607 return ret; 2608 2609 ret = i915_gem_object_wait_rendering(obj); 2610 if (ret != 0) 2611 return ret; 2612 } 2613 2614 i915_gem_object_flush_gtt_write_domain(obj); 2615 i915_gem_clear_fence_reg (obj); 2616 2617 return 0; 2618 } 2619 2620 /** 2621 * Finds free space in the GTT aperture and binds the object there. 2622 */ 2623 static int 2624 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment) 2625 { 2626 struct drm_device *dev = obj->dev; 2627 drm_i915_private_t *dev_priv = dev->dev_private; 2628 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2629 struct drm_mm_node *free_space; 2630 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; 2631 int ret; 2632 2633 if (obj_priv->madv != I915_MADV_WILLNEED) { 2634 DRM_ERROR("Attempting to bind a purgeable object\n"); 2635 return -EINVAL; 2636 } 2637 2638 if (alignment == 0) 2639 alignment = i915_gem_get_gtt_alignment(obj); 2640 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) { 2641 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2642 return -EINVAL; 2643 } 2644 2645 /* If the object is bigger than the entire aperture, reject it early 2646 * before evicting everything in a vain attempt to find space. 2647 */ 2648 if (obj->size > dev->gtt_total) { 2649 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2650 return -E2BIG; 2651 } 2652 2653 search_free: 2654 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, 2655 obj->size, alignment, 0); 2656 if (free_space != NULL) { 2657 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size, 2658 alignment); 2659 if (obj_priv->gtt_space != NULL) 2660 obj_priv->gtt_offset = obj_priv->gtt_space->start; 2661 } 2662 if (obj_priv->gtt_space == NULL) { 2663 /* If the gtt is empty and we're still having trouble 2664 * fitting our object in, we're out of memory. 2665 */ 2666 #if WATCH_LRU 2667 DRM_INFO("%s: GTT full, evicting something\n", __func__); 2668 #endif 2669 ret = i915_gem_evict_something(dev, obj->size); 2670 if (ret) 2671 return ret; 2672 2673 goto search_free; 2674 } 2675 2676 #if WATCH_BUF 2677 DRM_INFO("Binding object of size %zd at 0x%08x\n", 2678 obj->size, obj_priv->gtt_offset); 2679 #endif 2680 ret = i915_gem_object_get_pages(obj, gfpmask); 2681 if (ret) { 2682 drm_mm_put_block(obj_priv->gtt_space); 2683 obj_priv->gtt_space = NULL; 2684 2685 if (ret == -ENOMEM) { 2686 /* first try to clear up some space from the GTT */ 2687 ret = i915_gem_evict_something(dev, obj->size); 2688 if (ret) { 2689 /* now try to shrink everyone else */ 2690 if (gfpmask) { 2691 gfpmask = 0; 2692 goto search_free; 2693 } 2694 2695 return ret; 2696 } 2697 2698 goto search_free; 2699 } 2700 2701 return ret; 2702 } 2703 2704 /* Create an AGP memory structure pointing at our pages, and bind it 2705 * into the GTT. 2706 */ 2707 obj_priv->agp_mem = drm_agp_bind_pages(dev, 2708 obj_priv->pages, 2709 obj->size >> PAGE_SHIFT, 2710 obj_priv->gtt_offset, 2711 obj_priv->agp_type); 2712 if (obj_priv->agp_mem == NULL) { 2713 i915_gem_object_put_pages(obj); 2714 drm_mm_put_block(obj_priv->gtt_space); 2715 obj_priv->gtt_space = NULL; 2716 2717 ret = i915_gem_evict_something(dev, obj->size); 2718 if (ret) 2719 return ret; 2720 2721 goto search_free; 2722 } 2723 atomic_inc(&dev->gtt_count); 2724 atomic_add(obj->size, &dev->gtt_memory); 2725 2726 /* Assert that the object is not currently in any GPU domain. As it 2727 * wasn't in the GTT, there shouldn't be any way it could have been in 2728 * a GPU cache 2729 */ 2730 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 2731 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 2732 2733 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset); 2734 2735 return 0; 2736 } 2737 2738 void 2739 i915_gem_clflush_object(struct drm_gem_object *obj) 2740 { 2741 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2742 2743 /* If we don't have a page list set up, then we're not pinned 2744 * to GPU, and we can ignore the cache flush because it'll happen 2745 * again at bind time. 2746 */ 2747 if (obj_priv->pages == NULL) 2748 return; 2749 2750 trace_i915_gem_object_clflush(obj); 2751 2752 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE); 2753 } 2754 2755 /** Flushes any GPU write domain for the object if it's dirty. */ 2756 static int 2757 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj) 2758 { 2759 struct drm_device *dev = obj->dev; 2760 uint32_t old_write_domain; 2761 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2762 2763 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) 2764 return 0; 2765 2766 /* Queue the GPU write cache flushing we need. */ 2767 old_write_domain = obj->write_domain; 2768 i915_gem_flush(dev, 0, obj->write_domain); 2769 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0) 2770 return -ENOMEM; 2771 2772 trace_i915_gem_object_change_domain(obj, 2773 obj->read_domains, 2774 old_write_domain); 2775 return 0; 2776 } 2777 2778 /** Flushes the GTT write domain for the object if it's dirty. */ 2779 static void 2780 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj) 2781 { 2782 uint32_t old_write_domain; 2783 2784 if (obj->write_domain != I915_GEM_DOMAIN_GTT) 2785 return; 2786 2787 /* No actual flushing is required for the GTT write domain. Writes 2788 * to it immediately go to main memory as far as we know, so there's 2789 * no chipset flush. It also doesn't land in render cache. 2790 */ 2791 old_write_domain = obj->write_domain; 2792 obj->write_domain = 0; 2793 2794 trace_i915_gem_object_change_domain(obj, 2795 obj->read_domains, 2796 old_write_domain); 2797 } 2798 2799 /** Flushes the CPU write domain for the object if it's dirty. */ 2800 static void 2801 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj) 2802 { 2803 struct drm_device *dev = obj->dev; 2804 uint32_t old_write_domain; 2805 2806 if (obj->write_domain != I915_GEM_DOMAIN_CPU) 2807 return; 2808 2809 i915_gem_clflush_object(obj); 2810 drm_agp_chipset_flush(dev); 2811 old_write_domain = obj->write_domain; 2812 obj->write_domain = 0; 2813 2814 trace_i915_gem_object_change_domain(obj, 2815 obj->read_domains, 2816 old_write_domain); 2817 } 2818 2819 int 2820 i915_gem_object_flush_write_domain(struct drm_gem_object *obj) 2821 { 2822 int ret = 0; 2823 2824 switch (obj->write_domain) { 2825 case I915_GEM_DOMAIN_GTT: 2826 i915_gem_object_flush_gtt_write_domain(obj); 2827 break; 2828 case I915_GEM_DOMAIN_CPU: 2829 i915_gem_object_flush_cpu_write_domain(obj); 2830 break; 2831 default: 2832 ret = i915_gem_object_flush_gpu_write_domain(obj); 2833 break; 2834 } 2835 2836 return ret; 2837 } 2838 2839 /** 2840 * Moves a single object to the GTT read, and possibly write domain. 2841 * 2842 * This function returns when the move is complete, including waiting on 2843 * flushes to occur. 2844 */ 2845 int 2846 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write) 2847 { 2848 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2849 uint32_t old_write_domain, old_read_domains; 2850 int ret; 2851 2852 /* Not valid to be called on unbound objects. */ 2853 if (obj_priv->gtt_space == NULL) 2854 return -EINVAL; 2855 2856 ret = i915_gem_object_flush_gpu_write_domain(obj); 2857 if (ret != 0) 2858 return ret; 2859 2860 /* Wait on any GPU rendering and flushing to occur. */ 2861 ret = i915_gem_object_wait_rendering(obj); 2862 if (ret != 0) 2863 return ret; 2864 2865 old_write_domain = obj->write_domain; 2866 old_read_domains = obj->read_domains; 2867 2868 /* If we're writing through the GTT domain, then CPU and GPU caches 2869 * will need to be invalidated at next use. 2870 */ 2871 if (write) 2872 obj->read_domains &= I915_GEM_DOMAIN_GTT; 2873 2874 i915_gem_object_flush_cpu_write_domain(obj); 2875 2876 /* It should now be out of any other write domains, and we can update 2877 * the domain values for our changes. 2878 */ 2879 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 2880 obj->read_domains |= I915_GEM_DOMAIN_GTT; 2881 if (write) { 2882 obj->write_domain = I915_GEM_DOMAIN_GTT; 2883 obj_priv->dirty = 1; 2884 } 2885 2886 trace_i915_gem_object_change_domain(obj, 2887 old_read_domains, 2888 old_write_domain); 2889 2890 return 0; 2891 } 2892 2893 /* 2894 * Prepare buffer for display plane. Use uninterruptible for possible flush 2895 * wait, as in modesetting process we're not supposed to be interrupted. 2896 */ 2897 int 2898 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj) 2899 { 2900 struct drm_device *dev = obj->dev; 2901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 2902 uint32_t old_write_domain, old_read_domains; 2903 int ret; 2904 2905 /* Not valid to be called on unbound objects. */ 2906 if (obj_priv->gtt_space == NULL) 2907 return -EINVAL; 2908 2909 ret = i915_gem_object_flush_gpu_write_domain(obj); 2910 if (ret) 2911 return ret; 2912 2913 /* Wait on any GPU rendering and flushing to occur. */ 2914 if (obj_priv->active) { 2915 #if WATCH_BUF 2916 DRM_INFO("%s: object %p wait for seqno %08x\n", 2917 __func__, obj, obj_priv->last_rendering_seqno); 2918 #endif 2919 ret = i915_do_wait_request(dev, 2920 obj_priv->last_rendering_seqno, 2921 0, 2922 obj_priv->ring); 2923 if (ret != 0) 2924 return ret; 2925 } 2926 2927 i915_gem_object_flush_cpu_write_domain(obj); 2928 2929 old_write_domain = obj->write_domain; 2930 old_read_domains = obj->read_domains; 2931 2932 /* It should now be out of any other write domains, and we can update 2933 * the domain values for our changes. 2934 */ 2935 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 2936 obj->read_domains = I915_GEM_DOMAIN_GTT; 2937 obj->write_domain = I915_GEM_DOMAIN_GTT; 2938 obj_priv->dirty = 1; 2939 2940 trace_i915_gem_object_change_domain(obj, 2941 old_read_domains, 2942 old_write_domain); 2943 2944 return 0; 2945 } 2946 2947 /** 2948 * Moves a single object to the CPU read, and possibly write domain. 2949 * 2950 * This function returns when the move is complete, including waiting on 2951 * flushes to occur. 2952 */ 2953 static int 2954 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write) 2955 { 2956 uint32_t old_write_domain, old_read_domains; 2957 int ret; 2958 2959 ret = i915_gem_object_flush_gpu_write_domain(obj); 2960 if (ret) 2961 return ret; 2962 2963 /* Wait on any GPU rendering and flushing to occur. */ 2964 ret = i915_gem_object_wait_rendering(obj); 2965 if (ret != 0) 2966 return ret; 2967 2968 i915_gem_object_flush_gtt_write_domain(obj); 2969 2970 /* If we have a partially-valid cache of the object in the CPU, 2971 * finish invalidating it and free the per-page flags. 2972 */ 2973 i915_gem_object_set_to_full_cpu_read_domain(obj); 2974 2975 old_write_domain = obj->write_domain; 2976 old_read_domains = obj->read_domains; 2977 2978 /* Flush the CPU cache if it's still invalid. */ 2979 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { 2980 i915_gem_clflush_object(obj); 2981 2982 obj->read_domains |= I915_GEM_DOMAIN_CPU; 2983 } 2984 2985 /* It should now be out of any other write domains, and we can update 2986 * the domain values for our changes. 2987 */ 2988 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 2989 2990 /* If we're writing through the CPU, then the GPU read domains will 2991 * need to be invalidated at next use. 2992 */ 2993 if (write) { 2994 obj->read_domains &= I915_GEM_DOMAIN_CPU; 2995 obj->write_domain = I915_GEM_DOMAIN_CPU; 2996 } 2997 2998 trace_i915_gem_object_change_domain(obj, 2999 old_read_domains, 3000 old_write_domain); 3001 3002 return 0; 3003 } 3004 3005 /* 3006 * Set the next domain for the specified object. This 3007 * may not actually perform the necessary flushing/invaliding though, 3008 * as that may want to be batched with other set_domain operations 3009 * 3010 * This is (we hope) the only really tricky part of gem. The goal 3011 * is fairly simple -- track which caches hold bits of the object 3012 * and make sure they remain coherent. A few concrete examples may 3013 * help to explain how it works. For shorthand, we use the notation 3014 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the 3015 * a pair of read and write domain masks. 3016 * 3017 * Case 1: the batch buffer 3018 * 3019 * 1. Allocated 3020 * 2. Written by CPU 3021 * 3. Mapped to GTT 3022 * 4. Read by GPU 3023 * 5. Unmapped from GTT 3024 * 6. Freed 3025 * 3026 * Let's take these a step at a time 3027 * 3028 * 1. Allocated 3029 * Pages allocated from the kernel may still have 3030 * cache contents, so we set them to (CPU, CPU) always. 3031 * 2. Written by CPU (using pwrite) 3032 * The pwrite function calls set_domain (CPU, CPU) and 3033 * this function does nothing (as nothing changes) 3034 * 3. Mapped by GTT 3035 * This function asserts that the object is not 3036 * currently in any GPU-based read or write domains 3037 * 4. Read by GPU 3038 * i915_gem_execbuffer calls set_domain (COMMAND, 0). 3039 * As write_domain is zero, this function adds in the 3040 * current read domains (CPU+COMMAND, 0). 3041 * flush_domains is set to CPU. 3042 * invalidate_domains is set to COMMAND 3043 * clflush is run to get data out of the CPU caches 3044 * then i915_dev_set_domain calls i915_gem_flush to 3045 * emit an MI_FLUSH and drm_agp_chipset_flush 3046 * 5. Unmapped from GTT 3047 * i915_gem_object_unbind calls set_domain (CPU, CPU) 3048 * flush_domains and invalidate_domains end up both zero 3049 * so no flushing/invalidating happens 3050 * 6. Freed 3051 * yay, done 3052 * 3053 * Case 2: The shared render buffer 3054 * 3055 * 1. Allocated 3056 * 2. Mapped to GTT 3057 * 3. Read/written by GPU 3058 * 4. set_domain to (CPU,CPU) 3059 * 5. Read/written by CPU 3060 * 6. Read/written by GPU 3061 * 3062 * 1. Allocated 3063 * Same as last example, (CPU, CPU) 3064 * 2. Mapped to GTT 3065 * Nothing changes (assertions find that it is not in the GPU) 3066 * 3. Read/written by GPU 3067 * execbuffer calls set_domain (RENDER, RENDER) 3068 * flush_domains gets CPU 3069 * invalidate_domains gets GPU 3070 * clflush (obj) 3071 * MI_FLUSH and drm_agp_chipset_flush 3072 * 4. set_domain (CPU, CPU) 3073 * flush_domains gets GPU 3074 * invalidate_domains gets CPU 3075 * wait_rendering (obj) to make sure all drawing is complete. 3076 * This will include an MI_FLUSH to get the data from GPU 3077 * to memory 3078 * clflush (obj) to invalidate the CPU cache 3079 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) 3080 * 5. Read/written by CPU 3081 * cache lines are loaded and dirtied 3082 * 6. Read written by GPU 3083 * Same as last GPU access 3084 * 3085 * Case 3: The constant buffer 3086 * 3087 * 1. Allocated 3088 * 2. Written by CPU 3089 * 3. Read by GPU 3090 * 4. Updated (written) by CPU again 3091 * 5. Read by GPU 3092 * 3093 * 1. Allocated 3094 * (CPU, CPU) 3095 * 2. Written by CPU 3096 * (CPU, CPU) 3097 * 3. Read by GPU 3098 * (CPU+RENDER, 0) 3099 * flush_domains = CPU 3100 * invalidate_domains = RENDER 3101 * clflush (obj) 3102 * MI_FLUSH 3103 * drm_agp_chipset_flush 3104 * 4. Updated (written) by CPU again 3105 * (CPU, CPU) 3106 * flush_domains = 0 (no previous write domain) 3107 * invalidate_domains = 0 (no new read domains) 3108 * 5. Read by GPU 3109 * (CPU+RENDER, 0) 3110 * flush_domains = CPU 3111 * invalidate_domains = RENDER 3112 * clflush (obj) 3113 * MI_FLUSH 3114 * drm_agp_chipset_flush 3115 */ 3116 static void 3117 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj) 3118 { 3119 struct drm_device *dev = obj->dev; 3120 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 3121 uint32_t invalidate_domains = 0; 3122 uint32_t flush_domains = 0; 3123 uint32_t old_read_domains; 3124 3125 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU); 3126 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU); 3127 3128 intel_mark_busy(dev, obj); 3129 3130 #if WATCH_BUF 3131 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n", 3132 __func__, obj, 3133 obj->read_domains, obj->pending_read_domains, 3134 obj->write_domain, obj->pending_write_domain); 3135 #endif 3136 /* 3137 * If the object isn't moving to a new write domain, 3138 * let the object stay in multiple read domains 3139 */ 3140 if (obj->pending_write_domain == 0) 3141 obj->pending_read_domains |= obj->read_domains; 3142 else 3143 obj_priv->dirty = 1; 3144 3145 /* 3146 * Flush the current write domain if 3147 * the new read domains don't match. Invalidate 3148 * any read domains which differ from the old 3149 * write domain 3150 */ 3151 if (obj->write_domain && 3152 obj->write_domain != obj->pending_read_domains) { 3153 flush_domains |= obj->write_domain; 3154 invalidate_domains |= 3155 obj->pending_read_domains & ~obj->write_domain; 3156 } 3157 /* 3158 * Invalidate any read caches which may have 3159 * stale data. That is, any new read domains. 3160 */ 3161 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains; 3162 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) { 3163 #if WATCH_BUF 3164 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n", 3165 __func__, flush_domains, invalidate_domains); 3166 #endif 3167 i915_gem_clflush_object(obj); 3168 } 3169 3170 old_read_domains = obj->read_domains; 3171 3172 /* The actual obj->write_domain will be updated with 3173 * pending_write_domain after we emit the accumulated flush for all 3174 * of our domain changes in execbuffers (which clears objects' 3175 * write_domains). So if we have a current write domain that we 3176 * aren't changing, set pending_write_domain to that. 3177 */ 3178 if (flush_domains == 0 && obj->pending_write_domain == 0) 3179 obj->pending_write_domain = obj->write_domain; 3180 obj->read_domains = obj->pending_read_domains; 3181 3182 dev->invalidate_domains |= invalidate_domains; 3183 dev->flush_domains |= flush_domains; 3184 #if WATCH_BUF 3185 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n", 3186 __func__, 3187 obj->read_domains, obj->write_domain, 3188 dev->invalidate_domains, dev->flush_domains); 3189 #endif 3190 3191 trace_i915_gem_object_change_domain(obj, 3192 old_read_domains, 3193 obj->write_domain); 3194 } 3195 3196 /** 3197 * Moves the object from a partially CPU read to a full one. 3198 * 3199 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(), 3200 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU). 3201 */ 3202 static void 3203 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj) 3204 { 3205 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 3206 3207 if (!obj_priv->page_cpu_valid) 3208 return; 3209 3210 /* If we're partially in the CPU read domain, finish moving it in. 3211 */ 3212 if (obj->read_domains & I915_GEM_DOMAIN_CPU) { 3213 int i; 3214 3215 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) { 3216 if (obj_priv->page_cpu_valid[i]) 3217 continue; 3218 drm_clflush_pages(obj_priv->pages + i, 1); 3219 } 3220 } 3221 3222 /* Free the page_cpu_valid mappings which are now stale, whether 3223 * or not we've got I915_GEM_DOMAIN_CPU. 3224 */ 3225 kfree(obj_priv->page_cpu_valid); 3226 obj_priv->page_cpu_valid = NULL; 3227 } 3228 3229 /** 3230 * Set the CPU read domain on a range of the object. 3231 * 3232 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's 3233 * not entirely valid. The page_cpu_valid member of the object flags which 3234 * pages have been flushed, and will be respected by 3235 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping 3236 * of the whole object. 3237 * 3238 * This function returns when the move is complete, including waiting on 3239 * flushes to occur. 3240 */ 3241 static int 3242 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 3243 uint64_t offset, uint64_t size) 3244 { 3245 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 3246 uint32_t old_read_domains; 3247 int i, ret; 3248 3249 if (offset == 0 && size == obj->size) 3250 return i915_gem_object_set_to_cpu_domain(obj, 0); 3251 3252 ret = i915_gem_object_flush_gpu_write_domain(obj); 3253 if (ret) 3254 return ret; 3255 3256 /* Wait on any GPU rendering and flushing to occur. */ 3257 ret = i915_gem_object_wait_rendering(obj); 3258 if (ret != 0) 3259 return ret; 3260 i915_gem_object_flush_gtt_write_domain(obj); 3261 3262 /* If we're already fully in the CPU read domain, we're done. */ 3263 if (obj_priv->page_cpu_valid == NULL && 3264 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0) 3265 return 0; 3266 3267 /* Otherwise, create/clear the per-page CPU read domain flag if we're 3268 * newly adding I915_GEM_DOMAIN_CPU 3269 */ 3270 if (obj_priv->page_cpu_valid == NULL) { 3271 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE, 3272 GFP_KERNEL); 3273 if (obj_priv->page_cpu_valid == NULL) 3274 return -ENOMEM; 3275 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) 3276 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE); 3277 3278 /* Flush the cache on any pages that are still invalid from the CPU's 3279 * perspective. 3280 */ 3281 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; 3282 i++) { 3283 if (obj_priv->page_cpu_valid[i]) 3284 continue; 3285 3286 drm_clflush_pages(obj_priv->pages + i, 1); 3287 3288 obj_priv->page_cpu_valid[i] = 1; 3289 } 3290 3291 /* It should now be out of any other write domains, and we can update 3292 * the domain values for our changes. 3293 */ 3294 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3295 3296 old_read_domains = obj->read_domains; 3297 obj->read_domains |= I915_GEM_DOMAIN_CPU; 3298 3299 trace_i915_gem_object_change_domain(obj, 3300 old_read_domains, 3301 obj->write_domain); 3302 3303 return 0; 3304 } 3305 3306 /** 3307 * Pin an object to the GTT and evaluate the relocations landing in it. 3308 */ 3309 static int 3310 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj, 3311 struct drm_file *file_priv, 3312 struct drm_i915_gem_exec_object2 *entry, 3313 struct drm_i915_gem_relocation_entry *relocs) 3314 { 3315 struct drm_device *dev = obj->dev; 3316 drm_i915_private_t *dev_priv = dev->dev_private; 3317 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 3318 int i, ret; 3319 void __iomem *reloc_page; 3320 bool need_fence; 3321 3322 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE && 3323 obj_priv->tiling_mode != I915_TILING_NONE; 3324 3325 /* Check fence reg constraints and rebind if necessary */ 3326 if (need_fence && 3327 !i915_gem_object_fence_offset_ok(obj, 3328 obj_priv->tiling_mode)) { 3329 ret = i915_gem_object_unbind(obj); 3330 if (ret) 3331 return ret; 3332 } 3333 3334 /* Choose the GTT offset for our buffer and put it there. */ 3335 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment); 3336 if (ret) 3337 return ret; 3338 3339 /* 3340 * Pre-965 chips need a fence register set up in order to 3341 * properly handle blits to/from tiled surfaces. 3342 */ 3343 if (need_fence) { 3344 ret = i915_gem_object_get_fence_reg(obj); 3345 if (ret != 0) { 3346 i915_gem_object_unpin(obj); 3347 return ret; 3348 } 3349 } 3350 3351 entry->offset = obj_priv->gtt_offset; 3352 3353 /* Apply the relocations, using the GTT aperture to avoid cache 3354 * flushing requirements. 3355 */ 3356 for (i = 0; i < entry->relocation_count; i++) { 3357 struct drm_i915_gem_relocation_entry *reloc= &relocs[i]; 3358 struct drm_gem_object *target_obj; 3359 struct drm_i915_gem_object *target_obj_priv; 3360 uint32_t reloc_val, reloc_offset; 3361 uint32_t __iomem *reloc_entry; 3362 3363 target_obj = drm_gem_object_lookup(obj->dev, file_priv, 3364 reloc->target_handle); 3365 if (target_obj == NULL) { 3366 i915_gem_object_unpin(obj); 3367 return -EBADF; 3368 } 3369 target_obj_priv = to_intel_bo(target_obj); 3370 3371 #if WATCH_RELOC 3372 DRM_INFO("%s: obj %p offset %08x target %d " 3373 "read %08x write %08x gtt %08x " 3374 "presumed %08x delta %08x\n", 3375 __func__, 3376 obj, 3377 (int) reloc->offset, 3378 (int) reloc->target_handle, 3379 (int) reloc->read_domains, 3380 (int) reloc->write_domain, 3381 (int) target_obj_priv->gtt_offset, 3382 (int) reloc->presumed_offset, 3383 reloc->delta); 3384 #endif 3385 3386 /* The target buffer should have appeared before us in the 3387 * exec_object list, so it should have a GTT space bound by now. 3388 */ 3389 if (target_obj_priv->gtt_space == NULL) { 3390 DRM_ERROR("No GTT space found for object %d\n", 3391 reloc->target_handle); 3392 drm_gem_object_unreference(target_obj); 3393 i915_gem_object_unpin(obj); 3394 return -EINVAL; 3395 } 3396 3397 /* Validate that the target is in a valid r/w GPU domain */ 3398 if (reloc->write_domain & (reloc->write_domain - 1)) { 3399 DRM_ERROR("reloc with multiple write domains: " 3400 "obj %p target %d offset %d " 3401 "read %08x write %08x", 3402 obj, reloc->target_handle, 3403 (int) reloc->offset, 3404 reloc->read_domains, 3405 reloc->write_domain); 3406 return -EINVAL; 3407 } 3408 if (reloc->write_domain & I915_GEM_DOMAIN_CPU || 3409 reloc->read_domains & I915_GEM_DOMAIN_CPU) { 3410 DRM_ERROR("reloc with read/write CPU domains: " 3411 "obj %p target %d offset %d " 3412 "read %08x write %08x", 3413 obj, reloc->target_handle, 3414 (int) reloc->offset, 3415 reloc->read_domains, 3416 reloc->write_domain); 3417 drm_gem_object_unreference(target_obj); 3418 i915_gem_object_unpin(obj); 3419 return -EINVAL; 3420 } 3421 if (reloc->write_domain && target_obj->pending_write_domain && 3422 reloc->write_domain != target_obj->pending_write_domain) { 3423 DRM_ERROR("Write domain conflict: " 3424 "obj %p target %d offset %d " 3425 "new %08x old %08x\n", 3426 obj, reloc->target_handle, 3427 (int) reloc->offset, 3428 reloc->write_domain, 3429 target_obj->pending_write_domain); 3430 drm_gem_object_unreference(target_obj); 3431 i915_gem_object_unpin(obj); 3432 return -EINVAL; 3433 } 3434 3435 target_obj->pending_read_domains |= reloc->read_domains; 3436 target_obj->pending_write_domain |= reloc->write_domain; 3437 3438 /* If the relocation already has the right value in it, no 3439 * more work needs to be done. 3440 */ 3441 if (target_obj_priv->gtt_offset == reloc->presumed_offset) { 3442 drm_gem_object_unreference(target_obj); 3443 continue; 3444 } 3445 3446 /* Check that the relocation address is valid... */ 3447 if (reloc->offset > obj->size - 4) { 3448 DRM_ERROR("Relocation beyond object bounds: " 3449 "obj %p target %d offset %d size %d.\n", 3450 obj, reloc->target_handle, 3451 (int) reloc->offset, (int) obj->size); 3452 drm_gem_object_unreference(target_obj); 3453 i915_gem_object_unpin(obj); 3454 return -EINVAL; 3455 } 3456 if (reloc->offset & 3) { 3457 DRM_ERROR("Relocation not 4-byte aligned: " 3458 "obj %p target %d offset %d.\n", 3459 obj, reloc->target_handle, 3460 (int) reloc->offset); 3461 drm_gem_object_unreference(target_obj); 3462 i915_gem_object_unpin(obj); 3463 return -EINVAL; 3464 } 3465 3466 /* and points to somewhere within the target object. */ 3467 if (reloc->delta >= target_obj->size) { 3468 DRM_ERROR("Relocation beyond target object bounds: " 3469 "obj %p target %d delta %d size %d.\n", 3470 obj, reloc->target_handle, 3471 (int) reloc->delta, (int) target_obj->size); 3472 drm_gem_object_unreference(target_obj); 3473 i915_gem_object_unpin(obj); 3474 return -EINVAL; 3475 } 3476 3477 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 3478 if (ret != 0) { 3479 drm_gem_object_unreference(target_obj); 3480 i915_gem_object_unpin(obj); 3481 return -EINVAL; 3482 } 3483 3484 /* Map the page containing the relocation we're going to 3485 * perform. 3486 */ 3487 reloc_offset = obj_priv->gtt_offset + reloc->offset; 3488 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, 3489 (reloc_offset & 3490 ~(PAGE_SIZE - 1)), 3491 KM_USER0); 3492 reloc_entry = (uint32_t __iomem *)(reloc_page + 3493 (reloc_offset & (PAGE_SIZE - 1))); 3494 reloc_val = target_obj_priv->gtt_offset + reloc->delta; 3495 3496 #if WATCH_BUF 3497 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n", 3498 obj, (unsigned int) reloc->offset, 3499 readl(reloc_entry), reloc_val); 3500 #endif 3501 writel(reloc_val, reloc_entry); 3502 io_mapping_unmap_atomic(reloc_page, KM_USER0); 3503 3504 /* The updated presumed offset for this entry will be 3505 * copied back out to the user. 3506 */ 3507 reloc->presumed_offset = target_obj_priv->gtt_offset; 3508 3509 drm_gem_object_unreference(target_obj); 3510 } 3511 3512 #if WATCH_BUF 3513 if (0) 3514 i915_gem_dump_object(obj, 128, __func__, ~0); 3515 #endif 3516 return 0; 3517 } 3518 3519 /* Throttle our rendering by waiting until the ring has completed our requests 3520 * emitted over 20 msec ago. 3521 * 3522 * Note that if we were to use the current jiffies each time around the loop, 3523 * we wouldn't escape the function with any frames outstanding if the time to 3524 * render a frame was over 20ms. 3525 * 3526 * This should get us reasonable parallelism between CPU and GPU but also 3527 * relatively low latency when blocking on a particular request to finish. 3528 */ 3529 static int 3530 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv) 3531 { 3532 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 3533 int ret = 0; 3534 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3535 3536 mutex_lock(&dev->struct_mutex); 3537 while (!list_empty(&i915_file_priv->mm.request_list)) { 3538 struct drm_i915_gem_request *request; 3539 3540 request = list_first_entry(&i915_file_priv->mm.request_list, 3541 struct drm_i915_gem_request, 3542 client_list); 3543 3544 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3545 break; 3546 3547 ret = i915_wait_request(dev, request->seqno, request->ring); 3548 if (ret != 0) 3549 break; 3550 } 3551 mutex_unlock(&dev->struct_mutex); 3552 3553 return ret; 3554 } 3555 3556 static int 3557 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list, 3558 uint32_t buffer_count, 3559 struct drm_i915_gem_relocation_entry **relocs) 3560 { 3561 uint32_t reloc_count = 0, reloc_index = 0, i; 3562 int ret; 3563 3564 *relocs = NULL; 3565 for (i = 0; i < buffer_count; i++) { 3566 if (reloc_count + exec_list[i].relocation_count < reloc_count) 3567 return -EINVAL; 3568 reloc_count += exec_list[i].relocation_count; 3569 } 3570 3571 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs)); 3572 if (*relocs == NULL) { 3573 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count); 3574 return -ENOMEM; 3575 } 3576 3577 for (i = 0; i < buffer_count; i++) { 3578 struct drm_i915_gem_relocation_entry __user *user_relocs; 3579 3580 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; 3581 3582 ret = copy_from_user(&(*relocs)[reloc_index], 3583 user_relocs, 3584 exec_list[i].relocation_count * 3585 sizeof(**relocs)); 3586 if (ret != 0) { 3587 drm_free_large(*relocs); 3588 *relocs = NULL; 3589 return -EFAULT; 3590 } 3591 3592 reloc_index += exec_list[i].relocation_count; 3593 } 3594 3595 return 0; 3596 } 3597 3598 static int 3599 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list, 3600 uint32_t buffer_count, 3601 struct drm_i915_gem_relocation_entry *relocs) 3602 { 3603 uint32_t reloc_count = 0, i; 3604 int ret = 0; 3605 3606 if (relocs == NULL) 3607 return 0; 3608 3609 for (i = 0; i < buffer_count; i++) { 3610 struct drm_i915_gem_relocation_entry __user *user_relocs; 3611 int unwritten; 3612 3613 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; 3614 3615 unwritten = copy_to_user(user_relocs, 3616 &relocs[reloc_count], 3617 exec_list[i].relocation_count * 3618 sizeof(*relocs)); 3619 3620 if (unwritten) { 3621 ret = -EFAULT; 3622 goto err; 3623 } 3624 3625 reloc_count += exec_list[i].relocation_count; 3626 } 3627 3628 err: 3629 drm_free_large(relocs); 3630 3631 return ret; 3632 } 3633 3634 static int 3635 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec, 3636 uint64_t exec_offset) 3637 { 3638 uint32_t exec_start, exec_len; 3639 3640 exec_start = (uint32_t) exec_offset + exec->batch_start_offset; 3641 exec_len = (uint32_t) exec->batch_len; 3642 3643 if ((exec_start | exec_len) & 0x7) 3644 return -EINVAL; 3645 3646 if (!exec_start) 3647 return -EINVAL; 3648 3649 return 0; 3650 } 3651 3652 static int 3653 i915_gem_wait_for_pending_flip(struct drm_device *dev, 3654 struct drm_gem_object **object_list, 3655 int count) 3656 { 3657 drm_i915_private_t *dev_priv = dev->dev_private; 3658 struct drm_i915_gem_object *obj_priv; 3659 DEFINE_WAIT(wait); 3660 int i, ret = 0; 3661 3662 for (;;) { 3663 prepare_to_wait(&dev_priv->pending_flip_queue, 3664 &wait, TASK_INTERRUPTIBLE); 3665 for (i = 0; i < count; i++) { 3666 obj_priv = to_intel_bo(object_list[i]); 3667 if (atomic_read(&obj_priv->pending_flip) > 0) 3668 break; 3669 } 3670 if (i == count) 3671 break; 3672 3673 if (!signal_pending(current)) { 3674 mutex_unlock(&dev->struct_mutex); 3675 schedule(); 3676 mutex_lock(&dev->struct_mutex); 3677 continue; 3678 } 3679 ret = -ERESTARTSYS; 3680 break; 3681 } 3682 finish_wait(&dev_priv->pending_flip_queue, &wait); 3683 3684 return ret; 3685 } 3686 3687 3688 int 3689 i915_gem_do_execbuffer(struct drm_device *dev, void *data, 3690 struct drm_file *file_priv, 3691 struct drm_i915_gem_execbuffer2 *args, 3692 struct drm_i915_gem_exec_object2 *exec_list) 3693 { 3694 drm_i915_private_t *dev_priv = dev->dev_private; 3695 struct drm_gem_object **object_list = NULL; 3696 struct drm_gem_object *batch_obj; 3697 struct drm_i915_gem_object *obj_priv; 3698 struct drm_clip_rect *cliprects = NULL; 3699 struct drm_i915_gem_relocation_entry *relocs = NULL; 3700 int ret = 0, ret2, i, pinned = 0; 3701 uint64_t exec_offset; 3702 uint32_t seqno, flush_domains, reloc_index; 3703 int pin_tries, flips; 3704 3705 struct intel_ring_buffer *ring = NULL; 3706 3707 #if WATCH_EXEC 3708 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 3709 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 3710 #endif 3711 if (args->flags & I915_EXEC_BSD) { 3712 if (!HAS_BSD(dev)) { 3713 DRM_ERROR("execbuf with wrong flag\n"); 3714 return -EINVAL; 3715 } 3716 ring = &dev_priv->bsd_ring; 3717 } else { 3718 ring = &dev_priv->render_ring; 3719 } 3720 3721 3722 if (args->buffer_count < 1) { 3723 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); 3724 return -EINVAL; 3725 } 3726 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count); 3727 if (object_list == NULL) { 3728 DRM_ERROR("Failed to allocate object list for %d buffers\n", 3729 args->buffer_count); 3730 ret = -ENOMEM; 3731 goto pre_mutex_err; 3732 } 3733 3734 if (args->num_cliprects != 0) { 3735 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects), 3736 GFP_KERNEL); 3737 if (cliprects == NULL) { 3738 ret = -ENOMEM; 3739 goto pre_mutex_err; 3740 } 3741 3742 ret = copy_from_user(cliprects, 3743 (struct drm_clip_rect __user *) 3744 (uintptr_t) args->cliprects_ptr, 3745 sizeof(*cliprects) * args->num_cliprects); 3746 if (ret != 0) { 3747 DRM_ERROR("copy %d cliprects failed: %d\n", 3748 args->num_cliprects, ret); 3749 goto pre_mutex_err; 3750 } 3751 } 3752 3753 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count, 3754 &relocs); 3755 if (ret != 0) 3756 goto pre_mutex_err; 3757 3758 mutex_lock(&dev->struct_mutex); 3759 3760 i915_verify_inactive(dev, __FILE__, __LINE__); 3761 3762 if (atomic_read(&dev_priv->mm.wedged)) { 3763 mutex_unlock(&dev->struct_mutex); 3764 ret = -EIO; 3765 goto pre_mutex_err; 3766 } 3767 3768 if (dev_priv->mm.suspended) { 3769 mutex_unlock(&dev->struct_mutex); 3770 ret = -EBUSY; 3771 goto pre_mutex_err; 3772 } 3773 3774 /* Look up object handles */ 3775 flips = 0; 3776 for (i = 0; i < args->buffer_count; i++) { 3777 object_list[i] = drm_gem_object_lookup(dev, file_priv, 3778 exec_list[i].handle); 3779 if (object_list[i] == NULL) { 3780 DRM_ERROR("Invalid object handle %d at index %d\n", 3781 exec_list[i].handle, i); 3782 /* prevent error path from reading uninitialized data */ 3783 args->buffer_count = i + 1; 3784 ret = -EBADF; 3785 goto err; 3786 } 3787 3788 obj_priv = to_intel_bo(object_list[i]); 3789 if (obj_priv->in_execbuffer) { 3790 DRM_ERROR("Object %p appears more than once in object list\n", 3791 object_list[i]); 3792 /* prevent error path from reading uninitialized data */ 3793 args->buffer_count = i + 1; 3794 ret = -EBADF; 3795 goto err; 3796 } 3797 obj_priv->in_execbuffer = true; 3798 flips += atomic_read(&obj_priv->pending_flip); 3799 } 3800 3801 if (flips > 0) { 3802 ret = i915_gem_wait_for_pending_flip(dev, object_list, 3803 args->buffer_count); 3804 if (ret) 3805 goto err; 3806 } 3807 3808 /* Pin and relocate */ 3809 for (pin_tries = 0; ; pin_tries++) { 3810 ret = 0; 3811 reloc_index = 0; 3812 3813 for (i = 0; i < args->buffer_count; i++) { 3814 object_list[i]->pending_read_domains = 0; 3815 object_list[i]->pending_write_domain = 0; 3816 ret = i915_gem_object_pin_and_relocate(object_list[i], 3817 file_priv, 3818 &exec_list[i], 3819 &relocs[reloc_index]); 3820 if (ret) 3821 break; 3822 pinned = i + 1; 3823 reloc_index += exec_list[i].relocation_count; 3824 } 3825 /* success */ 3826 if (ret == 0) 3827 break; 3828 3829 /* error other than GTT full, or we've already tried again */ 3830 if (ret != -ENOSPC || pin_tries >= 1) { 3831 if (ret != -ERESTARTSYS) { 3832 unsigned long long total_size = 0; 3833 int num_fences = 0; 3834 for (i = 0; i < args->buffer_count; i++) { 3835 obj_priv = to_intel_bo(object_list[i]); 3836 3837 total_size += object_list[i]->size; 3838 num_fences += 3839 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE && 3840 obj_priv->tiling_mode != I915_TILING_NONE; 3841 } 3842 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n", 3843 pinned+1, args->buffer_count, 3844 total_size, num_fences, 3845 ret); 3846 DRM_ERROR("%d objects [%d pinned], " 3847 "%d object bytes [%d pinned], " 3848 "%d/%d gtt bytes\n", 3849 atomic_read(&dev->object_count), 3850 atomic_read(&dev->pin_count), 3851 atomic_read(&dev->object_memory), 3852 atomic_read(&dev->pin_memory), 3853 atomic_read(&dev->gtt_memory), 3854 dev->gtt_total); 3855 } 3856 goto err; 3857 } 3858 3859 /* unpin all of our buffers */ 3860 for (i = 0; i < pinned; i++) 3861 i915_gem_object_unpin(object_list[i]); 3862 pinned = 0; 3863 3864 /* evict everyone we can from the aperture */ 3865 ret = i915_gem_evict_everything(dev); 3866 if (ret && ret != -ENOSPC) 3867 goto err; 3868 } 3869 3870 /* Set the pending read domains for the batch buffer to COMMAND */ 3871 batch_obj = object_list[args->buffer_count-1]; 3872 if (batch_obj->pending_write_domain) { 3873 DRM_ERROR("Attempting to use self-modifying batch buffer\n"); 3874 ret = -EINVAL; 3875 goto err; 3876 } 3877 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND; 3878 3879 /* Sanity check the batch buffer, prior to moving objects */ 3880 exec_offset = exec_list[args->buffer_count - 1].offset; 3881 ret = i915_gem_check_execbuffer (args, exec_offset); 3882 if (ret != 0) { 3883 DRM_ERROR("execbuf with invalid offset/length\n"); 3884 goto err; 3885 } 3886 3887 i915_verify_inactive(dev, __FILE__, __LINE__); 3888 3889 /* Zero the global flush/invalidate flags. These 3890 * will be modified as new domains are computed 3891 * for each object 3892 */ 3893 dev->invalidate_domains = 0; 3894 dev->flush_domains = 0; 3895 3896 for (i = 0; i < args->buffer_count; i++) { 3897 struct drm_gem_object *obj = object_list[i]; 3898 3899 /* Compute new gpu domains and update invalidate/flush */ 3900 i915_gem_object_set_to_gpu_domain(obj); 3901 } 3902 3903 i915_verify_inactive(dev, __FILE__, __LINE__); 3904 3905 if (dev->invalidate_domains | dev->flush_domains) { 3906 #if WATCH_EXEC 3907 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", 3908 __func__, 3909 dev->invalidate_domains, 3910 dev->flush_domains); 3911 #endif 3912 i915_gem_flush(dev, 3913 dev->invalidate_domains, 3914 dev->flush_domains); 3915 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) { 3916 (void)i915_add_request(dev, file_priv, 3917 dev->flush_domains, 3918 &dev_priv->render_ring); 3919 3920 if (HAS_BSD(dev)) 3921 (void)i915_add_request(dev, file_priv, 3922 dev->flush_domains, 3923 &dev_priv->bsd_ring); 3924 } 3925 } 3926 3927 for (i = 0; i < args->buffer_count; i++) { 3928 struct drm_gem_object *obj = object_list[i]; 3929 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 3930 uint32_t old_write_domain = obj->write_domain; 3931 3932 obj->write_domain = obj->pending_write_domain; 3933 if (obj->write_domain) 3934 list_move_tail(&obj_priv->gpu_write_list, 3935 &dev_priv->mm.gpu_write_list); 3936 else 3937 list_del_init(&obj_priv->gpu_write_list); 3938 3939 trace_i915_gem_object_change_domain(obj, 3940 obj->read_domains, 3941 old_write_domain); 3942 } 3943 3944 i915_verify_inactive(dev, __FILE__, __LINE__); 3945 3946 #if WATCH_COHERENCY 3947 for (i = 0; i < args->buffer_count; i++) { 3948 i915_gem_object_check_coherency(object_list[i], 3949 exec_list[i].handle); 3950 } 3951 #endif 3952 3953 #if WATCH_EXEC 3954 i915_gem_dump_object(batch_obj, 3955 args->batch_len, 3956 __func__, 3957 ~0); 3958 #endif 3959 3960 /* Exec the batchbuffer */ 3961 ret = ring->dispatch_gem_execbuffer(dev, ring, args, 3962 cliprects, exec_offset); 3963 if (ret) { 3964 DRM_ERROR("dispatch failed %d\n", ret); 3965 goto err; 3966 } 3967 3968 /* 3969 * Ensure that the commands in the batch buffer are 3970 * finished before the interrupt fires 3971 */ 3972 flush_domains = i915_retire_commands(dev, ring); 3973 3974 i915_verify_inactive(dev, __FILE__, __LINE__); 3975 3976 /* 3977 * Get a seqno representing the execution of the current buffer, 3978 * which we can wait on. We would like to mitigate these interrupts, 3979 * likely by only creating seqnos occasionally (so that we have 3980 * *some* interrupts representing completion of buffers that we can 3981 * wait on when trying to clear up gtt space). 3982 */ 3983 seqno = i915_add_request(dev, file_priv, flush_domains, ring); 3984 BUG_ON(seqno == 0); 3985 for (i = 0; i < args->buffer_count; i++) { 3986 struct drm_gem_object *obj = object_list[i]; 3987 obj_priv = to_intel_bo(obj); 3988 3989 i915_gem_object_move_to_active(obj, seqno, ring); 3990 #if WATCH_LRU 3991 DRM_INFO("%s: move to exec list %p\n", __func__, obj); 3992 #endif 3993 } 3994 #if WATCH_LRU 3995 i915_dump_lru(dev, __func__); 3996 #endif 3997 3998 i915_verify_inactive(dev, __FILE__, __LINE__); 3999 4000 err: 4001 for (i = 0; i < pinned; i++) 4002 i915_gem_object_unpin(object_list[i]); 4003 4004 for (i = 0; i < args->buffer_count; i++) { 4005 if (object_list[i]) { 4006 obj_priv = to_intel_bo(object_list[i]); 4007 obj_priv->in_execbuffer = false; 4008 } 4009 drm_gem_object_unreference(object_list[i]); 4010 } 4011 4012 mutex_unlock(&dev->struct_mutex); 4013 4014 pre_mutex_err: 4015 /* Copy the updated relocations out regardless of current error 4016 * state. Failure to update the relocs would mean that the next 4017 * time userland calls execbuf, it would do so with presumed offset 4018 * state that didn't match the actual object state. 4019 */ 4020 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count, 4021 relocs); 4022 if (ret2 != 0) { 4023 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2); 4024 4025 if (ret == 0) 4026 ret = ret2; 4027 } 4028 4029 drm_free_large(object_list); 4030 kfree(cliprects); 4031 4032 return ret; 4033 } 4034 4035 /* 4036 * Legacy execbuffer just creates an exec2 list from the original exec object 4037 * list array and passes it to the real function. 4038 */ 4039 int 4040 i915_gem_execbuffer(struct drm_device *dev, void *data, 4041 struct drm_file *file_priv) 4042 { 4043 struct drm_i915_gem_execbuffer *args = data; 4044 struct drm_i915_gem_execbuffer2 exec2; 4045 struct drm_i915_gem_exec_object *exec_list = NULL; 4046 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 4047 int ret, i; 4048 4049 #if WATCH_EXEC 4050 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 4051 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 4052 #endif 4053 4054 if (args->buffer_count < 1) { 4055 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); 4056 return -EINVAL; 4057 } 4058 4059 /* Copy in the exec list from userland */ 4060 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); 4061 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); 4062 if (exec_list == NULL || exec2_list == NULL) { 4063 DRM_ERROR("Failed to allocate exec list for %d buffers\n", 4064 args->buffer_count); 4065 drm_free_large(exec_list); 4066 drm_free_large(exec2_list); 4067 return -ENOMEM; 4068 } 4069 ret = copy_from_user(exec_list, 4070 (struct drm_i915_relocation_entry __user *) 4071 (uintptr_t) args->buffers_ptr, 4072 sizeof(*exec_list) * args->buffer_count); 4073 if (ret != 0) { 4074 DRM_ERROR("copy %d exec entries failed %d\n", 4075 args->buffer_count, ret); 4076 drm_free_large(exec_list); 4077 drm_free_large(exec2_list); 4078 return -EFAULT; 4079 } 4080 4081 for (i = 0; i < args->buffer_count; i++) { 4082 exec2_list[i].handle = exec_list[i].handle; 4083 exec2_list[i].relocation_count = exec_list[i].relocation_count; 4084 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 4085 exec2_list[i].alignment = exec_list[i].alignment; 4086 exec2_list[i].offset = exec_list[i].offset; 4087 if (!IS_I965G(dev)) 4088 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 4089 else 4090 exec2_list[i].flags = 0; 4091 } 4092 4093 exec2.buffers_ptr = args->buffers_ptr; 4094 exec2.buffer_count = args->buffer_count; 4095 exec2.batch_start_offset = args->batch_start_offset; 4096 exec2.batch_len = args->batch_len; 4097 exec2.DR1 = args->DR1; 4098 exec2.DR4 = args->DR4; 4099 exec2.num_cliprects = args->num_cliprects; 4100 exec2.cliprects_ptr = args->cliprects_ptr; 4101 exec2.flags = I915_EXEC_RENDER; 4102 4103 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list); 4104 if (!ret) { 4105 /* Copy the new buffer offsets back to the user's exec list. */ 4106 for (i = 0; i < args->buffer_count; i++) 4107 exec_list[i].offset = exec2_list[i].offset; 4108 /* ... and back out to userspace */ 4109 ret = copy_to_user((struct drm_i915_relocation_entry __user *) 4110 (uintptr_t) args->buffers_ptr, 4111 exec_list, 4112 sizeof(*exec_list) * args->buffer_count); 4113 if (ret) { 4114 ret = -EFAULT; 4115 DRM_ERROR("failed to copy %d exec entries " 4116 "back to user (%d)\n", 4117 args->buffer_count, ret); 4118 } 4119 } 4120 4121 drm_free_large(exec_list); 4122 drm_free_large(exec2_list); 4123 return ret; 4124 } 4125 4126 int 4127 i915_gem_execbuffer2(struct drm_device *dev, void *data, 4128 struct drm_file *file_priv) 4129 { 4130 struct drm_i915_gem_execbuffer2 *args = data; 4131 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 4132 int ret; 4133 4134 #if WATCH_EXEC 4135 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 4136 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 4137 #endif 4138 4139 if (args->buffer_count < 1) { 4140 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count); 4141 return -EINVAL; 4142 } 4143 4144 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); 4145 if (exec2_list == NULL) { 4146 DRM_ERROR("Failed to allocate exec list for %d buffers\n", 4147 args->buffer_count); 4148 return -ENOMEM; 4149 } 4150 ret = copy_from_user(exec2_list, 4151 (struct drm_i915_relocation_entry __user *) 4152 (uintptr_t) args->buffers_ptr, 4153 sizeof(*exec2_list) * args->buffer_count); 4154 if (ret != 0) { 4155 DRM_ERROR("copy %d exec entries failed %d\n", 4156 args->buffer_count, ret); 4157 drm_free_large(exec2_list); 4158 return -EFAULT; 4159 } 4160 4161 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list); 4162 if (!ret) { 4163 /* Copy the new buffer offsets back to the user's exec list. */ 4164 ret = copy_to_user((struct drm_i915_relocation_entry __user *) 4165 (uintptr_t) args->buffers_ptr, 4166 exec2_list, 4167 sizeof(*exec2_list) * args->buffer_count); 4168 if (ret) { 4169 ret = -EFAULT; 4170 DRM_ERROR("failed to copy %d exec entries " 4171 "back to user (%d)\n", 4172 args->buffer_count, ret); 4173 } 4174 } 4175 4176 drm_free_large(exec2_list); 4177 return ret; 4178 } 4179 4180 int 4181 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment) 4182 { 4183 struct drm_device *dev = obj->dev; 4184 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 4185 int ret; 4186 4187 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); 4188 4189 i915_verify_inactive(dev, __FILE__, __LINE__); 4190 4191 if (obj_priv->gtt_space != NULL) { 4192 if (alignment == 0) 4193 alignment = i915_gem_get_gtt_alignment(obj); 4194 if (obj_priv->gtt_offset & (alignment - 1)) { 4195 ret = i915_gem_object_unbind(obj); 4196 if (ret) 4197 return ret; 4198 } 4199 } 4200 4201 if (obj_priv->gtt_space == NULL) { 4202 ret = i915_gem_object_bind_to_gtt(obj, alignment); 4203 if (ret) 4204 return ret; 4205 } 4206 4207 obj_priv->pin_count++; 4208 4209 /* If the object is not active and not pending a flush, 4210 * remove it from the inactive list 4211 */ 4212 if (obj_priv->pin_count == 1) { 4213 atomic_inc(&dev->pin_count); 4214 atomic_add(obj->size, &dev->pin_memory); 4215 if (!obj_priv->active && 4216 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 && 4217 !list_empty(&obj_priv->list)) 4218 list_del_init(&obj_priv->list); 4219 } 4220 i915_verify_inactive(dev, __FILE__, __LINE__); 4221 4222 return 0; 4223 } 4224 4225 void 4226 i915_gem_object_unpin(struct drm_gem_object *obj) 4227 { 4228 struct drm_device *dev = obj->dev; 4229 drm_i915_private_t *dev_priv = dev->dev_private; 4230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 4231 4232 i915_verify_inactive(dev, __FILE__, __LINE__); 4233 obj_priv->pin_count--; 4234 BUG_ON(obj_priv->pin_count < 0); 4235 BUG_ON(obj_priv->gtt_space == NULL); 4236 4237 /* If the object is no longer pinned, and is 4238 * neither active nor being flushed, then stick it on 4239 * the inactive list 4240 */ 4241 if (obj_priv->pin_count == 0) { 4242 if (!obj_priv->active && 4243 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) 4244 list_move_tail(&obj_priv->list, 4245 &dev_priv->mm.inactive_list); 4246 atomic_dec(&dev->pin_count); 4247 atomic_sub(obj->size, &dev->pin_memory); 4248 } 4249 i915_verify_inactive(dev, __FILE__, __LINE__); 4250 } 4251 4252 int 4253 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4254 struct drm_file *file_priv) 4255 { 4256 struct drm_i915_gem_pin *args = data; 4257 struct drm_gem_object *obj; 4258 struct drm_i915_gem_object *obj_priv; 4259 int ret; 4260 4261 mutex_lock(&dev->struct_mutex); 4262 4263 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4264 if (obj == NULL) { 4265 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n", 4266 args->handle); 4267 mutex_unlock(&dev->struct_mutex); 4268 return -EBADF; 4269 } 4270 obj_priv = to_intel_bo(obj); 4271 4272 if (obj_priv->madv != I915_MADV_WILLNEED) { 4273 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 4274 drm_gem_object_unreference(obj); 4275 mutex_unlock(&dev->struct_mutex); 4276 return -EINVAL; 4277 } 4278 4279 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) { 4280 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 4281 args->handle); 4282 drm_gem_object_unreference(obj); 4283 mutex_unlock(&dev->struct_mutex); 4284 return -EINVAL; 4285 } 4286 4287 obj_priv->user_pin_count++; 4288 obj_priv->pin_filp = file_priv; 4289 if (obj_priv->user_pin_count == 1) { 4290 ret = i915_gem_object_pin(obj, args->alignment); 4291 if (ret != 0) { 4292 drm_gem_object_unreference(obj); 4293 mutex_unlock(&dev->struct_mutex); 4294 return ret; 4295 } 4296 } 4297 4298 /* XXX - flush the CPU caches for pinned objects 4299 * as the X server doesn't manage domains yet 4300 */ 4301 i915_gem_object_flush_cpu_write_domain(obj); 4302 args->offset = obj_priv->gtt_offset; 4303 drm_gem_object_unreference(obj); 4304 mutex_unlock(&dev->struct_mutex); 4305 4306 return 0; 4307 } 4308 4309 int 4310 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4311 struct drm_file *file_priv) 4312 { 4313 struct drm_i915_gem_pin *args = data; 4314 struct drm_gem_object *obj; 4315 struct drm_i915_gem_object *obj_priv; 4316 4317 mutex_lock(&dev->struct_mutex); 4318 4319 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4320 if (obj == NULL) { 4321 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n", 4322 args->handle); 4323 mutex_unlock(&dev->struct_mutex); 4324 return -EBADF; 4325 } 4326 4327 obj_priv = to_intel_bo(obj); 4328 if (obj_priv->pin_filp != file_priv) { 4329 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4330 args->handle); 4331 drm_gem_object_unreference(obj); 4332 mutex_unlock(&dev->struct_mutex); 4333 return -EINVAL; 4334 } 4335 obj_priv->user_pin_count--; 4336 if (obj_priv->user_pin_count == 0) { 4337 obj_priv->pin_filp = NULL; 4338 i915_gem_object_unpin(obj); 4339 } 4340 4341 drm_gem_object_unreference(obj); 4342 mutex_unlock(&dev->struct_mutex); 4343 return 0; 4344 } 4345 4346 int 4347 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4348 struct drm_file *file_priv) 4349 { 4350 struct drm_i915_gem_busy *args = data; 4351 struct drm_gem_object *obj; 4352 struct drm_i915_gem_object *obj_priv; 4353 4354 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4355 if (obj == NULL) { 4356 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n", 4357 args->handle); 4358 return -EBADF; 4359 } 4360 4361 mutex_lock(&dev->struct_mutex); 4362 /* Update the active list for the hardware's current position. 4363 * Otherwise this only updates on a delayed timer or when irqs are 4364 * actually unmasked, and our working set ends up being larger than 4365 * required. 4366 */ 4367 i915_gem_retire_requests(dev); 4368 4369 obj_priv = to_intel_bo(obj); 4370 /* Don't count being on the flushing list against the object being 4371 * done. Otherwise, a buffer left on the flushing list but not getting 4372 * flushed (because nobody's flushing that domain) won't ever return 4373 * unbusy and get reused by libdrm's bo cache. The other expected 4374 * consumer of this interface, OpenGL's occlusion queries, also specs 4375 * that the objects get unbusy "eventually" without any interference. 4376 */ 4377 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0; 4378 4379 drm_gem_object_unreference(obj); 4380 mutex_unlock(&dev->struct_mutex); 4381 return 0; 4382 } 4383 4384 int 4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4386 struct drm_file *file_priv) 4387 { 4388 return i915_gem_ring_throttle(dev, file_priv); 4389 } 4390 4391 int 4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4393 struct drm_file *file_priv) 4394 { 4395 struct drm_i915_gem_madvise *args = data; 4396 struct drm_gem_object *obj; 4397 struct drm_i915_gem_object *obj_priv; 4398 4399 switch (args->madv) { 4400 case I915_MADV_DONTNEED: 4401 case I915_MADV_WILLNEED: 4402 break; 4403 default: 4404 return -EINVAL; 4405 } 4406 4407 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4408 if (obj == NULL) { 4409 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n", 4410 args->handle); 4411 return -EBADF; 4412 } 4413 4414 mutex_lock(&dev->struct_mutex); 4415 obj_priv = to_intel_bo(obj); 4416 4417 if (obj_priv->pin_count) { 4418 drm_gem_object_unreference(obj); 4419 mutex_unlock(&dev->struct_mutex); 4420 4421 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n"); 4422 return -EINVAL; 4423 } 4424 4425 if (obj_priv->madv != __I915_MADV_PURGED) 4426 obj_priv->madv = args->madv; 4427 4428 /* if the object is no longer bound, discard its backing storage */ 4429 if (i915_gem_object_is_purgeable(obj_priv) && 4430 obj_priv->gtt_space == NULL) 4431 i915_gem_object_truncate(obj); 4432 4433 args->retained = obj_priv->madv != __I915_MADV_PURGED; 4434 4435 drm_gem_object_unreference(obj); 4436 mutex_unlock(&dev->struct_mutex); 4437 4438 return 0; 4439 } 4440 4441 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev, 4442 size_t size) 4443 { 4444 struct drm_i915_gem_object *obj; 4445 4446 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 4447 if (obj == NULL) 4448 return NULL; 4449 4450 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4451 kfree(obj); 4452 return NULL; 4453 } 4454 4455 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4456 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4457 4458 obj->agp_type = AGP_USER_MEMORY; 4459 obj->base.driver_private = NULL; 4460 obj->fence_reg = I915_FENCE_REG_NONE; 4461 INIT_LIST_HEAD(&obj->list); 4462 INIT_LIST_HEAD(&obj->gpu_write_list); 4463 obj->madv = I915_MADV_WILLNEED; 4464 4465 trace_i915_gem_object_create(&obj->base); 4466 4467 return &obj->base; 4468 } 4469 4470 int i915_gem_init_object(struct drm_gem_object *obj) 4471 { 4472 BUG(); 4473 4474 return 0; 4475 } 4476 4477 static void i915_gem_free_object_tail(struct drm_gem_object *obj) 4478 { 4479 struct drm_device *dev = obj->dev; 4480 drm_i915_private_t *dev_priv = dev->dev_private; 4481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 4482 int ret; 4483 4484 ret = i915_gem_object_unbind(obj); 4485 if (ret == -ERESTARTSYS) { 4486 list_move(&obj_priv->list, 4487 &dev_priv->mm.deferred_free_list); 4488 return; 4489 } 4490 4491 if (obj_priv->mmap_offset) 4492 i915_gem_free_mmap_offset(obj); 4493 4494 drm_gem_object_release(obj); 4495 4496 kfree(obj_priv->page_cpu_valid); 4497 kfree(obj_priv->bit_17); 4498 kfree(obj_priv); 4499 } 4500 4501 void i915_gem_free_object(struct drm_gem_object *obj) 4502 { 4503 struct drm_device *dev = obj->dev; 4504 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 4505 4506 trace_i915_gem_object_destroy(obj); 4507 4508 while (obj_priv->pin_count > 0) 4509 i915_gem_object_unpin(obj); 4510 4511 if (obj_priv->phys_obj) 4512 i915_gem_detach_phys_object(dev, obj); 4513 4514 i915_gem_free_object_tail(obj); 4515 } 4516 4517 /** Unbinds all inactive objects. */ 4518 static int 4519 i915_gem_evict_from_inactive_list(struct drm_device *dev) 4520 { 4521 drm_i915_private_t *dev_priv = dev->dev_private; 4522 4523 while (!list_empty(&dev_priv->mm.inactive_list)) { 4524 struct drm_gem_object *obj; 4525 int ret; 4526 4527 obj = &list_first_entry(&dev_priv->mm.inactive_list, 4528 struct drm_i915_gem_object, 4529 list)->base; 4530 4531 ret = i915_gem_object_unbind(obj); 4532 if (ret != 0) { 4533 DRM_ERROR("Error unbinding object: %d\n", ret); 4534 return ret; 4535 } 4536 } 4537 4538 return 0; 4539 } 4540 4541 int 4542 i915_gem_idle(struct drm_device *dev) 4543 { 4544 drm_i915_private_t *dev_priv = dev->dev_private; 4545 int ret; 4546 4547 mutex_lock(&dev->struct_mutex); 4548 4549 if (dev_priv->mm.suspended || 4550 (dev_priv->render_ring.gem_object == NULL) || 4551 (HAS_BSD(dev) && 4552 dev_priv->bsd_ring.gem_object == NULL)) { 4553 mutex_unlock(&dev->struct_mutex); 4554 return 0; 4555 } 4556 4557 ret = i915_gpu_idle(dev); 4558 if (ret) { 4559 mutex_unlock(&dev->struct_mutex); 4560 return ret; 4561 } 4562 4563 /* Under UMS, be paranoid and evict. */ 4564 if (!drm_core_check_feature(dev, DRIVER_MODESET)) { 4565 ret = i915_gem_evict_from_inactive_list(dev); 4566 if (ret) { 4567 mutex_unlock(&dev->struct_mutex); 4568 return ret; 4569 } 4570 } 4571 4572 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4573 * We need to replace this with a semaphore, or something. 4574 * And not confound mm.suspended! 4575 */ 4576 dev_priv->mm.suspended = 1; 4577 del_timer(&dev_priv->hangcheck_timer); 4578 4579 i915_kernel_lost_context(dev); 4580 i915_gem_cleanup_ringbuffer(dev); 4581 4582 mutex_unlock(&dev->struct_mutex); 4583 4584 /* Cancel the retire work handler, which should be idle now. */ 4585 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4586 4587 return 0; 4588 } 4589 4590 /* 4591 * 965+ support PIPE_CONTROL commands, which provide finer grained control 4592 * over cache flushing. 4593 */ 4594 static int 4595 i915_gem_init_pipe_control(struct drm_device *dev) 4596 { 4597 drm_i915_private_t *dev_priv = dev->dev_private; 4598 struct drm_gem_object *obj; 4599 struct drm_i915_gem_object *obj_priv; 4600 int ret; 4601 4602 obj = i915_gem_alloc_object(dev, 4096); 4603 if (obj == NULL) { 4604 DRM_ERROR("Failed to allocate seqno page\n"); 4605 ret = -ENOMEM; 4606 goto err; 4607 } 4608 obj_priv = to_intel_bo(obj); 4609 obj_priv->agp_type = AGP_USER_CACHED_MEMORY; 4610 4611 ret = i915_gem_object_pin(obj, 4096); 4612 if (ret) 4613 goto err_unref; 4614 4615 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset; 4616 dev_priv->seqno_page = kmap(obj_priv->pages[0]); 4617 if (dev_priv->seqno_page == NULL) 4618 goto err_unpin; 4619 4620 dev_priv->seqno_obj = obj; 4621 memset(dev_priv->seqno_page, 0, PAGE_SIZE); 4622 4623 return 0; 4624 4625 err_unpin: 4626 i915_gem_object_unpin(obj); 4627 err_unref: 4628 drm_gem_object_unreference(obj); 4629 err: 4630 return ret; 4631 } 4632 4633 4634 static void 4635 i915_gem_cleanup_pipe_control(struct drm_device *dev) 4636 { 4637 drm_i915_private_t *dev_priv = dev->dev_private; 4638 struct drm_gem_object *obj; 4639 struct drm_i915_gem_object *obj_priv; 4640 4641 obj = dev_priv->seqno_obj; 4642 obj_priv = to_intel_bo(obj); 4643 kunmap(obj_priv->pages[0]); 4644 i915_gem_object_unpin(obj); 4645 drm_gem_object_unreference(obj); 4646 dev_priv->seqno_obj = NULL; 4647 4648 dev_priv->seqno_page = NULL; 4649 } 4650 4651 int 4652 i915_gem_init_ringbuffer(struct drm_device *dev) 4653 { 4654 drm_i915_private_t *dev_priv = dev->dev_private; 4655 int ret; 4656 4657 dev_priv->render_ring = render_ring; 4658 4659 if (!I915_NEED_GFX_HWS(dev)) { 4660 dev_priv->render_ring.status_page.page_addr 4661 = dev_priv->status_page_dmah->vaddr; 4662 memset(dev_priv->render_ring.status_page.page_addr, 4663 0, PAGE_SIZE); 4664 } 4665 4666 if (HAS_PIPE_CONTROL(dev)) { 4667 ret = i915_gem_init_pipe_control(dev); 4668 if (ret) 4669 return ret; 4670 } 4671 4672 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring); 4673 if (ret) 4674 goto cleanup_pipe_control; 4675 4676 if (HAS_BSD(dev)) { 4677 dev_priv->bsd_ring = bsd_ring; 4678 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring); 4679 if (ret) 4680 goto cleanup_render_ring; 4681 } 4682 4683 return 0; 4684 4685 cleanup_render_ring: 4686 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring); 4687 cleanup_pipe_control: 4688 if (HAS_PIPE_CONTROL(dev)) 4689 i915_gem_cleanup_pipe_control(dev); 4690 return ret; 4691 } 4692 4693 void 4694 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4695 { 4696 drm_i915_private_t *dev_priv = dev->dev_private; 4697 4698 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring); 4699 if (HAS_BSD(dev)) 4700 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring); 4701 if (HAS_PIPE_CONTROL(dev)) 4702 i915_gem_cleanup_pipe_control(dev); 4703 } 4704 4705 int 4706 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4707 struct drm_file *file_priv) 4708 { 4709 drm_i915_private_t *dev_priv = dev->dev_private; 4710 int ret; 4711 4712 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4713 return 0; 4714 4715 if (atomic_read(&dev_priv->mm.wedged)) { 4716 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4717 atomic_set(&dev_priv->mm.wedged, 0); 4718 } 4719 4720 mutex_lock(&dev->struct_mutex); 4721 dev_priv->mm.suspended = 0; 4722 4723 ret = i915_gem_init_ringbuffer(dev); 4724 if (ret != 0) { 4725 mutex_unlock(&dev->struct_mutex); 4726 return ret; 4727 } 4728 4729 spin_lock(&dev_priv->mm.active_list_lock); 4730 BUG_ON(!list_empty(&dev_priv->render_ring.active_list)); 4731 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list)); 4732 spin_unlock(&dev_priv->mm.active_list_lock); 4733 4734 BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); 4735 BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); 4736 BUG_ON(!list_empty(&dev_priv->render_ring.request_list)); 4737 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list)); 4738 mutex_unlock(&dev->struct_mutex); 4739 4740 ret = drm_irq_install(dev); 4741 if (ret) 4742 goto cleanup_ringbuffer; 4743 4744 return 0; 4745 4746 cleanup_ringbuffer: 4747 mutex_lock(&dev->struct_mutex); 4748 i915_gem_cleanup_ringbuffer(dev); 4749 dev_priv->mm.suspended = 1; 4750 mutex_unlock(&dev->struct_mutex); 4751 4752 return ret; 4753 } 4754 4755 int 4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4757 struct drm_file *file_priv) 4758 { 4759 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4760 return 0; 4761 4762 drm_irq_uninstall(dev); 4763 return i915_gem_idle(dev); 4764 } 4765 4766 void 4767 i915_gem_lastclose(struct drm_device *dev) 4768 { 4769 int ret; 4770 4771 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4772 return; 4773 4774 ret = i915_gem_idle(dev); 4775 if (ret) 4776 DRM_ERROR("failed to idle hardware: %d\n", ret); 4777 } 4778 4779 void 4780 i915_gem_load(struct drm_device *dev) 4781 { 4782 int i; 4783 drm_i915_private_t *dev_priv = dev->dev_private; 4784 4785 spin_lock_init(&dev_priv->mm.active_list_lock); 4786 INIT_LIST_HEAD(&dev_priv->mm.flushing_list); 4787 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list); 4788 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4789 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4790 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list); 4791 INIT_LIST_HEAD(&dev_priv->render_ring.active_list); 4792 INIT_LIST_HEAD(&dev_priv->render_ring.request_list); 4793 if (HAS_BSD(dev)) { 4794 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list); 4795 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list); 4796 } 4797 for (i = 0; i < 16; i++) 4798 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4799 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4800 i915_gem_retire_work_handler); 4801 spin_lock(&shrink_list_lock); 4802 list_add(&dev_priv->mm.shrink_list, &shrink_list); 4803 spin_unlock(&shrink_list_lock); 4804 4805 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4806 if (IS_GEN3(dev)) { 4807 u32 tmp = I915_READ(MI_ARB_STATE); 4808 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) { 4809 /* arb state is a masked write, so set bit + bit in mask */ 4810 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT); 4811 I915_WRITE(MI_ARB_STATE, tmp); 4812 } 4813 } 4814 4815 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4816 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4817 dev_priv->fence_reg_start = 3; 4818 4819 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4820 dev_priv->num_fence_regs = 16; 4821 else 4822 dev_priv->num_fence_regs = 8; 4823 4824 /* Initialize fence registers to zero */ 4825 if (IS_I965G(dev)) { 4826 for (i = 0; i < 16; i++) 4827 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0); 4828 } else { 4829 for (i = 0; i < 8; i++) 4830 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0); 4831 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4832 for (i = 0; i < 8; i++) 4833 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0); 4834 } 4835 i915_gem_detect_bit_6_swizzle(dev); 4836 init_waitqueue_head(&dev_priv->pending_flip_queue); 4837 } 4838 4839 /* 4840 * Create a physically contiguous memory object for this object 4841 * e.g. for cursor + overlay regs 4842 */ 4843 int i915_gem_init_phys_object(struct drm_device *dev, 4844 int id, int size) 4845 { 4846 drm_i915_private_t *dev_priv = dev->dev_private; 4847 struct drm_i915_gem_phys_object *phys_obj; 4848 int ret; 4849 4850 if (dev_priv->mm.phys_objs[id - 1] || !size) 4851 return 0; 4852 4853 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4854 if (!phys_obj) 4855 return -ENOMEM; 4856 4857 phys_obj->id = id; 4858 4859 phys_obj->handle = drm_pci_alloc(dev, size, 0); 4860 if (!phys_obj->handle) { 4861 ret = -ENOMEM; 4862 goto kfree_obj; 4863 } 4864 #ifdef CONFIG_X86 4865 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4866 #endif 4867 4868 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4869 4870 return 0; 4871 kfree_obj: 4872 kfree(phys_obj); 4873 return ret; 4874 } 4875 4876 void i915_gem_free_phys_object(struct drm_device *dev, int id) 4877 { 4878 drm_i915_private_t *dev_priv = dev->dev_private; 4879 struct drm_i915_gem_phys_object *phys_obj; 4880 4881 if (!dev_priv->mm.phys_objs[id - 1]) 4882 return; 4883 4884 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4885 if (phys_obj->cur_obj) { 4886 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4887 } 4888 4889 #ifdef CONFIG_X86 4890 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4891 #endif 4892 drm_pci_free(dev, phys_obj->handle); 4893 kfree(phys_obj); 4894 dev_priv->mm.phys_objs[id - 1] = NULL; 4895 } 4896 4897 void i915_gem_free_all_phys_object(struct drm_device *dev) 4898 { 4899 int i; 4900 4901 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4902 i915_gem_free_phys_object(dev, i); 4903 } 4904 4905 void i915_gem_detach_phys_object(struct drm_device *dev, 4906 struct drm_gem_object *obj) 4907 { 4908 struct drm_i915_gem_object *obj_priv; 4909 int i; 4910 int ret; 4911 int page_count; 4912 4913 obj_priv = to_intel_bo(obj); 4914 if (!obj_priv->phys_obj) 4915 return; 4916 4917 ret = i915_gem_object_get_pages(obj, 0); 4918 if (ret) 4919 goto out; 4920 4921 page_count = obj->size / PAGE_SIZE; 4922 4923 for (i = 0; i < page_count; i++) { 4924 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0); 4925 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4926 4927 memcpy(dst, src, PAGE_SIZE); 4928 kunmap_atomic(dst, KM_USER0); 4929 } 4930 drm_clflush_pages(obj_priv->pages, page_count); 4931 drm_agp_chipset_flush(dev); 4932 4933 i915_gem_object_put_pages(obj); 4934 out: 4935 obj_priv->phys_obj->cur_obj = NULL; 4936 obj_priv->phys_obj = NULL; 4937 } 4938 4939 int 4940 i915_gem_attach_phys_object(struct drm_device *dev, 4941 struct drm_gem_object *obj, int id) 4942 { 4943 drm_i915_private_t *dev_priv = dev->dev_private; 4944 struct drm_i915_gem_object *obj_priv; 4945 int ret = 0; 4946 int page_count; 4947 int i; 4948 4949 if (id > I915_MAX_PHYS_OBJECT) 4950 return -EINVAL; 4951 4952 obj_priv = to_intel_bo(obj); 4953 4954 if (obj_priv->phys_obj) { 4955 if (obj_priv->phys_obj->id == id) 4956 return 0; 4957 i915_gem_detach_phys_object(dev, obj); 4958 } 4959 4960 4961 /* create a new object */ 4962 if (!dev_priv->mm.phys_objs[id - 1]) { 4963 ret = i915_gem_init_phys_object(dev, id, 4964 obj->size); 4965 if (ret) { 4966 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size); 4967 goto out; 4968 } 4969 } 4970 4971 /* bind to the object */ 4972 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4973 obj_priv->phys_obj->cur_obj = obj; 4974 4975 ret = i915_gem_object_get_pages(obj, 0); 4976 if (ret) { 4977 DRM_ERROR("failed to get page list\n"); 4978 goto out; 4979 } 4980 4981 page_count = obj->size / PAGE_SIZE; 4982 4983 for (i = 0; i < page_count; i++) { 4984 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0); 4985 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4986 4987 memcpy(dst, src, PAGE_SIZE); 4988 kunmap_atomic(src, KM_USER0); 4989 } 4990 4991 i915_gem_object_put_pages(obj); 4992 4993 return 0; 4994 out: 4995 return ret; 4996 } 4997 4998 static int 4999 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 5000 struct drm_i915_gem_pwrite *args, 5001 struct drm_file *file_priv) 5002 { 5003 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); 5004 void *obj_addr; 5005 int ret; 5006 char __user *user_data; 5007 5008 user_data = (char __user *) (uintptr_t) args->data_ptr; 5009 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset; 5010 5011 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size); 5012 ret = copy_from_user(obj_addr, user_data, args->size); 5013 if (ret) 5014 return -EFAULT; 5015 5016 drm_agp_chipset_flush(dev); 5017 return 0; 5018 } 5019 5020 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv) 5021 { 5022 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 5023 5024 /* Clean up our request list when the client is going away, so that 5025 * later retire_requests won't dereference our soon-to-be-gone 5026 * file_priv. 5027 */ 5028 mutex_lock(&dev->struct_mutex); 5029 while (!list_empty(&i915_file_priv->mm.request_list)) 5030 list_del_init(i915_file_priv->mm.request_list.next); 5031 mutex_unlock(&dev->struct_mutex); 5032 } 5033 5034 static int 5035 i915_gpu_is_active(struct drm_device *dev) 5036 { 5037 drm_i915_private_t *dev_priv = dev->dev_private; 5038 int lists_empty; 5039 5040 spin_lock(&dev_priv->mm.active_list_lock); 5041 lists_empty = list_empty(&dev_priv->mm.flushing_list) && 5042 list_empty(&dev_priv->render_ring.active_list); 5043 if (HAS_BSD(dev)) 5044 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list); 5045 spin_unlock(&dev_priv->mm.active_list_lock); 5046 5047 return !lists_empty; 5048 } 5049 5050 static int 5051 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 5052 { 5053 drm_i915_private_t *dev_priv, *next_dev; 5054 struct drm_i915_gem_object *obj_priv, *next_obj; 5055 int cnt = 0; 5056 int would_deadlock = 1; 5057 5058 /* "fast-path" to count number of available objects */ 5059 if (nr_to_scan == 0) { 5060 spin_lock(&shrink_list_lock); 5061 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) { 5062 struct drm_device *dev = dev_priv->dev; 5063 5064 if (mutex_trylock(&dev->struct_mutex)) { 5065 list_for_each_entry(obj_priv, 5066 &dev_priv->mm.inactive_list, 5067 list) 5068 cnt++; 5069 mutex_unlock(&dev->struct_mutex); 5070 } 5071 } 5072 spin_unlock(&shrink_list_lock); 5073 5074 return (cnt / 100) * sysctl_vfs_cache_pressure; 5075 } 5076 5077 spin_lock(&shrink_list_lock); 5078 5079 rescan: 5080 /* first scan for clean buffers */ 5081 list_for_each_entry_safe(dev_priv, next_dev, 5082 &shrink_list, mm.shrink_list) { 5083 struct drm_device *dev = dev_priv->dev; 5084 5085 if (! mutex_trylock(&dev->struct_mutex)) 5086 continue; 5087 5088 spin_unlock(&shrink_list_lock); 5089 i915_gem_retire_requests(dev); 5090 5091 list_for_each_entry_safe(obj_priv, next_obj, 5092 &dev_priv->mm.inactive_list, 5093 list) { 5094 if (i915_gem_object_is_purgeable(obj_priv)) { 5095 i915_gem_object_unbind(&obj_priv->base); 5096 if (--nr_to_scan <= 0) 5097 break; 5098 } 5099 } 5100 5101 spin_lock(&shrink_list_lock); 5102 mutex_unlock(&dev->struct_mutex); 5103 5104 would_deadlock = 0; 5105 5106 if (nr_to_scan <= 0) 5107 break; 5108 } 5109 5110 /* second pass, evict/count anything still on the inactive list */ 5111 list_for_each_entry_safe(dev_priv, next_dev, 5112 &shrink_list, mm.shrink_list) { 5113 struct drm_device *dev = dev_priv->dev; 5114 5115 if (! mutex_trylock(&dev->struct_mutex)) 5116 continue; 5117 5118 spin_unlock(&shrink_list_lock); 5119 5120 list_for_each_entry_safe(obj_priv, next_obj, 5121 &dev_priv->mm.inactive_list, 5122 list) { 5123 if (nr_to_scan > 0) { 5124 i915_gem_object_unbind(&obj_priv->base); 5125 nr_to_scan--; 5126 } else 5127 cnt++; 5128 } 5129 5130 spin_lock(&shrink_list_lock); 5131 mutex_unlock(&dev->struct_mutex); 5132 5133 would_deadlock = 0; 5134 } 5135 5136 if (nr_to_scan) { 5137 int active = 0; 5138 5139 /* 5140 * We are desperate for pages, so as a last resort, wait 5141 * for the GPU to finish and discard whatever we can. 5142 * This has a dramatic impact to reduce the number of 5143 * OOM-killer events whilst running the GPU aggressively. 5144 */ 5145 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) { 5146 struct drm_device *dev = dev_priv->dev; 5147 5148 if (!mutex_trylock(&dev->struct_mutex)) 5149 continue; 5150 5151 spin_unlock(&shrink_list_lock); 5152 5153 if (i915_gpu_is_active(dev)) { 5154 i915_gpu_idle(dev); 5155 active++; 5156 } 5157 5158 spin_lock(&shrink_list_lock); 5159 mutex_unlock(&dev->struct_mutex); 5160 } 5161 5162 if (active) 5163 goto rescan; 5164 } 5165 5166 spin_unlock(&shrink_list_lock); 5167 5168 if (would_deadlock) 5169 return -1; 5170 else if (cnt > 0) 5171 return (cnt / 100) * sysctl_vfs_cache_pressure; 5172 else 5173 return 0; 5174 } 5175 5176 static struct shrinker shrinker = { 5177 .shrink = i915_gem_shrink, 5178 .seeks = DEFAULT_SEEKS, 5179 }; 5180 5181 __init void 5182 i915_gem_shrinker_init(void) 5183 { 5184 register_shrinker(&shrinker); 5185 } 5186 5187 __exit void 5188 i915_gem_shrinker_exit(void) 5189 { 5190 unregister_shrinker(&shrinker); 5191 } 5192