1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_vgpu.h" 33 #include "i915_trace.h" 34 #include "intel_drv.h" 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 #define RQ_BUG_ON(expr) 42 43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 45 static void 46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj); 47 static void 48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring); 49 50 static bool cpu_cache_is_coherent(struct drm_device *dev, 51 enum i915_cache_level level) 52 { 53 return HAS_LLC(dev) || level != I915_CACHE_NONE; 54 } 55 56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 57 { 58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 59 return true; 60 61 return obj->pin_display; 62 } 63 64 /* some bookkeeping */ 65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 66 size_t size) 67 { 68 spin_lock(&dev_priv->mm.object_stat_lock); 69 dev_priv->mm.object_count++; 70 dev_priv->mm.object_memory += size; 71 spin_unlock(&dev_priv->mm.object_stat_lock); 72 } 73 74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 75 size_t size) 76 { 77 spin_lock(&dev_priv->mm.object_stat_lock); 78 dev_priv->mm.object_count--; 79 dev_priv->mm.object_memory -= size; 80 spin_unlock(&dev_priv->mm.object_stat_lock); 81 } 82 83 static int 84 i915_gem_wait_for_error(struct i915_gpu_error *error) 85 { 86 int ret; 87 88 #define EXIT_COND (!i915_reset_in_progress(error) || \ 89 i915_terminally_wedged(error)) 90 if (EXIT_COND) 91 return 0; 92 93 /* 94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 95 * userspace. If it takes that long something really bad is going on and 96 * we should simply try to bail out and fail as gracefully as possible. 97 */ 98 ret = wait_event_interruptible_timeout(error->reset_queue, 99 EXIT_COND, 100 10*HZ); 101 if (ret == 0) { 102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 103 return -EIO; 104 } else if (ret < 0) { 105 return ret; 106 } 107 #undef EXIT_COND 108 109 return 0; 110 } 111 112 int i915_mutex_lock_interruptible(struct drm_device *dev) 113 { 114 struct drm_i915_private *dev_priv = dev->dev_private; 115 int ret; 116 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 118 if (ret) 119 return ret; 120 121 ret = mutex_lock_interruptible(&dev->struct_mutex); 122 if (ret) 123 return ret; 124 125 WARN_ON(i915_verify_lists(dev)); 126 return 0; 127 } 128 129 int 130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 131 struct drm_file *file) 132 { 133 struct drm_i915_private *dev_priv = dev->dev_private; 134 struct drm_i915_gem_get_aperture *args = data; 135 struct i915_gtt *ggtt = &dev_priv->gtt; 136 struct i915_vma *vma; 137 size_t pinned; 138 139 pinned = 0; 140 mutex_lock(&dev->struct_mutex); 141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list) 142 if (vma->pin_count) 143 pinned += vma->node.size; 144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list) 145 if (vma->pin_count) 146 pinned += vma->node.size; 147 mutex_unlock(&dev->struct_mutex); 148 149 args->aper_size = dev_priv->gtt.base.total; 150 args->aper_available_size = args->aper_size - pinned; 151 152 return 0; 153 } 154 155 static int 156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 157 { 158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 159 char *vaddr = obj->phys_handle->vaddr; 160 struct sg_table *st; 161 struct scatterlist *sg; 162 int i; 163 164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 165 return -EINVAL; 166 167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 168 struct page *page; 169 char *src; 170 171 page = shmem_read_mapping_page(mapping, i); 172 if (IS_ERR(page)) 173 return PTR_ERR(page); 174 175 src = kmap_atomic(page); 176 memcpy(vaddr, src, PAGE_SIZE); 177 drm_clflush_virt_range(vaddr, PAGE_SIZE); 178 kunmap_atomic(src); 179 180 page_cache_release(page); 181 vaddr += PAGE_SIZE; 182 } 183 184 i915_gem_chipset_flush(obj->base.dev); 185 186 st = kmalloc(sizeof(*st), GFP_KERNEL); 187 if (st == NULL) 188 return -ENOMEM; 189 190 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 191 kfree(st); 192 return -ENOMEM; 193 } 194 195 sg = st->sgl; 196 sg->offset = 0; 197 sg->length = obj->base.size; 198 199 sg_dma_address(sg) = obj->phys_handle->busaddr; 200 sg_dma_len(sg) = obj->base.size; 201 202 obj->pages = st; 203 return 0; 204 } 205 206 static void 207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 208 { 209 int ret; 210 211 BUG_ON(obj->madv == __I915_MADV_PURGED); 212 213 ret = i915_gem_object_set_to_cpu_domain(obj, true); 214 if (ret) { 215 /* In the event of a disaster, abandon all caches and 216 * hope for the best. 217 */ 218 WARN_ON(ret != -EIO); 219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 220 } 221 222 if (obj->madv == I915_MADV_DONTNEED) 223 obj->dirty = 0; 224 225 if (obj->dirty) { 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 227 char *vaddr = obj->phys_handle->vaddr; 228 int i; 229 230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 231 struct page *page; 232 char *dst; 233 234 page = shmem_read_mapping_page(mapping, i); 235 if (IS_ERR(page)) 236 continue; 237 238 dst = kmap_atomic(page); 239 drm_clflush_virt_range(vaddr, PAGE_SIZE); 240 memcpy(dst, vaddr, PAGE_SIZE); 241 kunmap_atomic(dst); 242 243 set_page_dirty(page); 244 if (obj->madv == I915_MADV_WILLNEED) 245 mark_page_accessed(page); 246 page_cache_release(page); 247 vaddr += PAGE_SIZE; 248 } 249 obj->dirty = 0; 250 } 251 252 sg_free_table(obj->pages); 253 kfree(obj->pages); 254 } 255 256 static void 257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 258 { 259 drm_pci_free(obj->base.dev, obj->phys_handle); 260 } 261 262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 263 .get_pages = i915_gem_object_get_pages_phys, 264 .put_pages = i915_gem_object_put_pages_phys, 265 .release = i915_gem_object_release_phys, 266 }; 267 268 static int 269 drop_pages(struct drm_i915_gem_object *obj) 270 { 271 struct i915_vma *vma, *next; 272 int ret; 273 274 drm_gem_object_reference(&obj->base); 275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) 276 if (i915_vma_unbind(vma)) 277 break; 278 279 ret = i915_gem_object_put_pages(obj); 280 drm_gem_object_unreference(&obj->base); 281 282 return ret; 283 } 284 285 int 286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 287 int align) 288 { 289 drm_dma_handle_t *phys; 290 int ret; 291 292 if (obj->phys_handle) { 293 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 294 return -EBUSY; 295 296 return 0; 297 } 298 299 if (obj->madv != I915_MADV_WILLNEED) 300 return -EFAULT; 301 302 if (obj->base.filp == NULL) 303 return -EINVAL; 304 305 ret = drop_pages(obj); 306 if (ret) 307 return ret; 308 309 /* create a new object */ 310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 311 if (!phys) 312 return -ENOMEM; 313 314 obj->phys_handle = phys; 315 obj->ops = &i915_gem_phys_ops; 316 317 return i915_gem_object_get_pages(obj); 318 } 319 320 static int 321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 322 struct drm_i915_gem_pwrite *args, 323 struct drm_file *file_priv) 324 { 325 struct drm_device *dev = obj->base.dev; 326 void *vaddr = obj->phys_handle->vaddr + args->offset; 327 char __user *user_data = to_user_ptr(args->data_ptr); 328 int ret = 0; 329 330 /* We manually control the domain here and pretend that it 331 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 332 */ 333 ret = i915_gem_object_wait_rendering(obj, false); 334 if (ret) 335 return ret; 336 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 339 unsigned long unwritten; 340 341 /* The physical object once assigned is fixed for the lifetime 342 * of the obj, so we can safely drop the lock and continue 343 * to access vaddr. 344 */ 345 mutex_unlock(&dev->struct_mutex); 346 unwritten = copy_from_user(vaddr, user_data, args->size); 347 mutex_lock(&dev->struct_mutex); 348 if (unwritten) { 349 ret = -EFAULT; 350 goto out; 351 } 352 } 353 354 drm_clflush_virt_range(vaddr, args->size); 355 i915_gem_chipset_flush(dev); 356 357 out: 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 359 return ret; 360 } 361 362 void *i915_gem_object_alloc(struct drm_device *dev) 363 { 364 struct drm_i915_private *dev_priv = dev->dev_private; 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 366 } 367 368 void i915_gem_object_free(struct drm_i915_gem_object *obj) 369 { 370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 371 kmem_cache_free(dev_priv->objects, obj); 372 } 373 374 static int 375 i915_gem_create(struct drm_file *file, 376 struct drm_device *dev, 377 uint64_t size, 378 uint32_t *handle_p) 379 { 380 struct drm_i915_gem_object *obj; 381 int ret; 382 u32 handle; 383 384 size = roundup(size, PAGE_SIZE); 385 if (size == 0) 386 return -EINVAL; 387 388 /* Allocate the new object */ 389 obj = i915_gem_alloc_object(dev, size); 390 if (obj == NULL) 391 return -ENOMEM; 392 393 ret = drm_gem_handle_create(file, &obj->base, &handle); 394 /* drop reference from allocate - handle holds it now */ 395 drm_gem_object_unreference_unlocked(&obj->base); 396 if (ret) 397 return ret; 398 399 *handle_p = handle; 400 return 0; 401 } 402 403 int 404 i915_gem_dumb_create(struct drm_file *file, 405 struct drm_device *dev, 406 struct drm_mode_create_dumb *args) 407 { 408 /* have to work out size/pitch and return them */ 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 410 args->size = args->pitch * args->height; 411 return i915_gem_create(file, dev, 412 args->size, &args->handle); 413 } 414 415 /** 416 * Creates a new mm object and returns a handle to it. 417 */ 418 int 419 i915_gem_create_ioctl(struct drm_device *dev, void *data, 420 struct drm_file *file) 421 { 422 struct drm_i915_gem_create *args = data; 423 424 return i915_gem_create(file, dev, 425 args->size, &args->handle); 426 } 427 428 static inline int 429 __copy_to_user_swizzled(char __user *cpu_vaddr, 430 const char *gpu_vaddr, int gpu_offset, 431 int length) 432 { 433 int ret, cpu_offset = 0; 434 435 while (length > 0) { 436 int cacheline_end = ALIGN(gpu_offset + 1, 64); 437 int this_length = min(cacheline_end - gpu_offset, length); 438 int swizzled_gpu_offset = gpu_offset ^ 64; 439 440 ret = __copy_to_user(cpu_vaddr + cpu_offset, 441 gpu_vaddr + swizzled_gpu_offset, 442 this_length); 443 if (ret) 444 return ret + length; 445 446 cpu_offset += this_length; 447 gpu_offset += this_length; 448 length -= this_length; 449 } 450 451 return 0; 452 } 453 454 static inline int 455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 456 const char __user *cpu_vaddr, 457 int length) 458 { 459 int ret, cpu_offset = 0; 460 461 while (length > 0) { 462 int cacheline_end = ALIGN(gpu_offset + 1, 64); 463 int this_length = min(cacheline_end - gpu_offset, length); 464 int swizzled_gpu_offset = gpu_offset ^ 64; 465 466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 467 cpu_vaddr + cpu_offset, 468 this_length); 469 if (ret) 470 return ret + length; 471 472 cpu_offset += this_length; 473 gpu_offset += this_length; 474 length -= this_length; 475 } 476 477 return 0; 478 } 479 480 /* 481 * Pins the specified object's pages and synchronizes the object with 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should 483 * flush the object from the CPU cache. 484 */ 485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 486 int *needs_clflush) 487 { 488 int ret; 489 490 *needs_clflush = 0; 491 492 if (!obj->base.filp) 493 return -EINVAL; 494 495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 496 /* If we're not in the cpu read domain, set ourself into the gtt 497 * read domain and manually flush cachelines (if required). This 498 * optimizes for the case when the gpu will dirty the data 499 * anyway again before the next pread happens. */ 500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 501 obj->cache_level); 502 ret = i915_gem_object_wait_rendering(obj, true); 503 if (ret) 504 return ret; 505 } 506 507 ret = i915_gem_object_get_pages(obj); 508 if (ret) 509 return ret; 510 511 i915_gem_object_pin_pages(obj); 512 513 return ret; 514 } 515 516 /* Per-page copy function for the shmem pread fastpath. 517 * Flushes invalid cachelines before reading the target if 518 * needs_clflush is set. */ 519 static int 520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 521 char __user *user_data, 522 bool page_do_bit17_swizzling, bool needs_clflush) 523 { 524 char *vaddr; 525 int ret; 526 527 if (unlikely(page_do_bit17_swizzling)) 528 return -EINVAL; 529 530 vaddr = kmap_atomic(page); 531 if (needs_clflush) 532 drm_clflush_virt_range(vaddr + shmem_page_offset, 533 page_length); 534 ret = __copy_to_user_inatomic(user_data, 535 vaddr + shmem_page_offset, 536 page_length); 537 kunmap_atomic(vaddr); 538 539 return ret ? -EFAULT : 0; 540 } 541 542 static void 543 shmem_clflush_swizzled_range(char *addr, unsigned long length, 544 bool swizzled) 545 { 546 if (unlikely(swizzled)) { 547 unsigned long start = (unsigned long) addr; 548 unsigned long end = (unsigned long) addr + length; 549 550 /* For swizzling simply ensure that we always flush both 551 * channels. Lame, but simple and it works. Swizzled 552 * pwrite/pread is far from a hotpath - current userspace 553 * doesn't use it at all. */ 554 start = round_down(start, 128); 555 end = round_up(end, 128); 556 557 drm_clflush_virt_range((void *)start, end - start); 558 } else { 559 drm_clflush_virt_range(addr, length); 560 } 561 562 } 563 564 /* Only difference to the fast-path function is that this can handle bit17 565 * and uses non-atomic copy and kmap functions. */ 566 static int 567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 568 char __user *user_data, 569 bool page_do_bit17_swizzling, bool needs_clflush) 570 { 571 char *vaddr; 572 int ret; 573 574 vaddr = kmap(page); 575 if (needs_clflush) 576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 577 page_length, 578 page_do_bit17_swizzling); 579 580 if (page_do_bit17_swizzling) 581 ret = __copy_to_user_swizzled(user_data, 582 vaddr, shmem_page_offset, 583 page_length); 584 else 585 ret = __copy_to_user(user_data, 586 vaddr + shmem_page_offset, 587 page_length); 588 kunmap(page); 589 590 return ret ? - EFAULT : 0; 591 } 592 593 static int 594 i915_gem_shmem_pread(struct drm_device *dev, 595 struct drm_i915_gem_object *obj, 596 struct drm_i915_gem_pread *args, 597 struct drm_file *file) 598 { 599 char __user *user_data; 600 ssize_t remain; 601 loff_t offset; 602 int shmem_page_offset, page_length, ret = 0; 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 604 int prefaulted = 0; 605 int needs_clflush = 0; 606 struct sg_page_iter sg_iter; 607 608 user_data = to_user_ptr(args->data_ptr); 609 remain = args->size; 610 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 612 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 614 if (ret) 615 return ret; 616 617 offset = args->offset; 618 619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 620 offset >> PAGE_SHIFT) { 621 struct page *page = sg_page_iter_page(&sg_iter); 622 623 if (remain <= 0) 624 break; 625 626 /* Operation in this page 627 * 628 * shmem_page_offset = offset within page in shmem file 629 * page_length = bytes to copy for this page 630 */ 631 shmem_page_offset = offset_in_page(offset); 632 page_length = remain; 633 if ((shmem_page_offset + page_length) > PAGE_SIZE) 634 page_length = PAGE_SIZE - shmem_page_offset; 635 636 page_do_bit17_swizzling = obj_do_bit17_swizzling && 637 (page_to_phys(page) & (1 << 17)) != 0; 638 639 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 640 user_data, page_do_bit17_swizzling, 641 needs_clflush); 642 if (ret == 0) 643 goto next_page; 644 645 mutex_unlock(&dev->struct_mutex); 646 647 if (likely(!i915.prefault_disable) && !prefaulted) { 648 ret = fault_in_multipages_writeable(user_data, remain); 649 /* Userspace is tricking us, but we've already clobbered 650 * its pages with the prefault and promised to write the 651 * data up to the first fault. Hence ignore any errors 652 * and just continue. */ 653 (void)ret; 654 prefaulted = 1; 655 } 656 657 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 658 user_data, page_do_bit17_swizzling, 659 needs_clflush); 660 661 mutex_lock(&dev->struct_mutex); 662 663 if (ret) 664 goto out; 665 666 next_page: 667 remain -= page_length; 668 user_data += page_length; 669 offset += page_length; 670 } 671 672 out: 673 i915_gem_object_unpin_pages(obj); 674 675 return ret; 676 } 677 678 /** 679 * Reads data from the object referenced by handle. 680 * 681 * On error, the contents of *data are undefined. 682 */ 683 int 684 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 685 struct drm_file *file) 686 { 687 struct drm_i915_gem_pread *args = data; 688 struct drm_i915_gem_object *obj; 689 int ret = 0; 690 691 if (args->size == 0) 692 return 0; 693 694 if (!access_ok(VERIFY_WRITE, 695 to_user_ptr(args->data_ptr), 696 args->size)) 697 return -EFAULT; 698 699 ret = i915_mutex_lock_interruptible(dev); 700 if (ret) 701 return ret; 702 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 704 if (&obj->base == NULL) { 705 ret = -ENOENT; 706 goto unlock; 707 } 708 709 /* Bounds check source. */ 710 if (args->offset > obj->base.size || 711 args->size > obj->base.size - args->offset) { 712 ret = -EINVAL; 713 goto out; 714 } 715 716 /* prime objects have no backing filp to GEM pread/pwrite 717 * pages from. 718 */ 719 if (!obj->base.filp) { 720 ret = -EINVAL; 721 goto out; 722 } 723 724 trace_i915_gem_object_pread(obj, args->offset, args->size); 725 726 ret = i915_gem_shmem_pread(dev, obj, args, file); 727 728 out: 729 drm_gem_object_unreference(&obj->base); 730 unlock: 731 mutex_unlock(&dev->struct_mutex); 732 return ret; 733 } 734 735 /* This is the fast write path which cannot handle 736 * page faults in the source data 737 */ 738 739 static inline int 740 fast_user_write(struct io_mapping *mapping, 741 loff_t page_base, int page_offset, 742 char __user *user_data, 743 int length) 744 { 745 void __iomem *vaddr_atomic; 746 void *vaddr; 747 unsigned long unwritten; 748 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 750 /* We can use the cpu mem copy function because this is X86. */ 751 vaddr = (void __force*)vaddr_atomic + page_offset; 752 unwritten = __copy_from_user_inatomic_nocache(vaddr, 753 user_data, length); 754 io_mapping_unmap_atomic(vaddr_atomic); 755 return unwritten; 756 } 757 758 /** 759 * This is the fast pwrite path, where we copy the data directly from the 760 * user into the GTT, uncached. 761 */ 762 static int 763 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 764 struct drm_i915_gem_object *obj, 765 struct drm_i915_gem_pwrite *args, 766 struct drm_file *file) 767 { 768 struct drm_i915_private *dev_priv = dev->dev_private; 769 ssize_t remain; 770 loff_t offset, page_base; 771 char __user *user_data; 772 int page_offset, page_length, ret; 773 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 775 if (ret) 776 goto out; 777 778 ret = i915_gem_object_set_to_gtt_domain(obj, true); 779 if (ret) 780 goto out_unpin; 781 782 ret = i915_gem_object_put_fence(obj); 783 if (ret) 784 goto out_unpin; 785 786 user_data = to_user_ptr(args->data_ptr); 787 remain = args->size; 788 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 790 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT); 792 793 while (remain > 0) { 794 /* Operation in this page 795 * 796 * page_base = page offset within aperture 797 * page_offset = offset within page 798 * page_length = bytes to copy for this page 799 */ 800 page_base = offset & PAGE_MASK; 801 page_offset = offset_in_page(offset); 802 page_length = remain; 803 if ((page_offset + remain) > PAGE_SIZE) 804 page_length = PAGE_SIZE - page_offset; 805 806 /* If we get a fault while copying data, then (presumably) our 807 * source page isn't available. Return the error and we'll 808 * retry in the slow path. 809 */ 810 if (fast_user_write(dev_priv->gtt.mappable, page_base, 811 page_offset, user_data, page_length)) { 812 ret = -EFAULT; 813 goto out_flush; 814 } 815 816 remain -= page_length; 817 user_data += page_length; 818 offset += page_length; 819 } 820 821 out_flush: 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 823 out_unpin: 824 i915_gem_object_ggtt_unpin(obj); 825 out: 826 return ret; 827 } 828 829 /* Per-page copy function for the shmem pwrite fastpath. 830 * Flushes invalid cachelines before writing to the target if 831 * needs_clflush_before is set and flushes out any written cachelines after 832 * writing if needs_clflush is set. */ 833 static int 834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 835 char __user *user_data, 836 bool page_do_bit17_swizzling, 837 bool needs_clflush_before, 838 bool needs_clflush_after) 839 { 840 char *vaddr; 841 int ret; 842 843 if (unlikely(page_do_bit17_swizzling)) 844 return -EINVAL; 845 846 vaddr = kmap_atomic(page); 847 if (needs_clflush_before) 848 drm_clflush_virt_range(vaddr + shmem_page_offset, 849 page_length); 850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 851 user_data, page_length); 852 if (needs_clflush_after) 853 drm_clflush_virt_range(vaddr + shmem_page_offset, 854 page_length); 855 kunmap_atomic(vaddr); 856 857 return ret ? -EFAULT : 0; 858 } 859 860 /* Only difference to the fast-path function is that this can handle bit17 861 * and uses non-atomic copy and kmap functions. */ 862 static int 863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 864 char __user *user_data, 865 bool page_do_bit17_swizzling, 866 bool needs_clflush_before, 867 bool needs_clflush_after) 868 { 869 char *vaddr; 870 int ret; 871 872 vaddr = kmap(page); 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 875 page_length, 876 page_do_bit17_swizzling); 877 if (page_do_bit17_swizzling) 878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 879 user_data, 880 page_length); 881 else 882 ret = __copy_from_user(vaddr + shmem_page_offset, 883 user_data, 884 page_length); 885 if (needs_clflush_after) 886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 887 page_length, 888 page_do_bit17_swizzling); 889 kunmap(page); 890 891 return ret ? -EFAULT : 0; 892 } 893 894 static int 895 i915_gem_shmem_pwrite(struct drm_device *dev, 896 struct drm_i915_gem_object *obj, 897 struct drm_i915_gem_pwrite *args, 898 struct drm_file *file) 899 { 900 ssize_t remain; 901 loff_t offset; 902 char __user *user_data; 903 int shmem_page_offset, page_length, ret = 0; 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 905 int hit_slowpath = 0; 906 int needs_clflush_after = 0; 907 int needs_clflush_before = 0; 908 struct sg_page_iter sg_iter; 909 910 user_data = to_user_ptr(args->data_ptr); 911 remain = args->size; 912 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 914 915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 916 /* If we're not in the cpu write domain, set ourself into the gtt 917 * write domain and manually flush cachelines (if required). This 918 * optimizes for the case when the gpu will use the data 919 * right away and we therefore have to clflush anyway. */ 920 needs_clflush_after = cpu_write_needs_clflush(obj); 921 ret = i915_gem_object_wait_rendering(obj, false); 922 if (ret) 923 return ret; 924 } 925 /* Same trick applies to invalidate partially written cachelines read 926 * before writing. */ 927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 928 needs_clflush_before = 929 !cpu_cache_is_coherent(dev, obj->cache_level); 930 931 ret = i915_gem_object_get_pages(obj); 932 if (ret) 933 return ret; 934 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 936 937 i915_gem_object_pin_pages(obj); 938 939 offset = args->offset; 940 obj->dirty = 1; 941 942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 943 offset >> PAGE_SHIFT) { 944 struct page *page = sg_page_iter_page(&sg_iter); 945 int partial_cacheline_write; 946 947 if (remain <= 0) 948 break; 949 950 /* Operation in this page 951 * 952 * shmem_page_offset = offset within page in shmem file 953 * page_length = bytes to copy for this page 954 */ 955 shmem_page_offset = offset_in_page(offset); 956 957 page_length = remain; 958 if ((shmem_page_offset + page_length) > PAGE_SIZE) 959 page_length = PAGE_SIZE - shmem_page_offset; 960 961 /* If we don't overwrite a cacheline completely we need to be 962 * careful to have up-to-date data by first clflushing. Don't 963 * overcomplicate things and flush the entire patch. */ 964 partial_cacheline_write = needs_clflush_before && 965 ((shmem_page_offset | page_length) 966 & (boot_cpu_data.x86_clflush_size - 1)); 967 968 page_do_bit17_swizzling = obj_do_bit17_swizzling && 969 (page_to_phys(page) & (1 << 17)) != 0; 970 971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 972 user_data, page_do_bit17_swizzling, 973 partial_cacheline_write, 974 needs_clflush_after); 975 if (ret == 0) 976 goto next_page; 977 978 hit_slowpath = 1; 979 mutex_unlock(&dev->struct_mutex); 980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 981 user_data, page_do_bit17_swizzling, 982 partial_cacheline_write, 983 needs_clflush_after); 984 985 mutex_lock(&dev->struct_mutex); 986 987 if (ret) 988 goto out; 989 990 next_page: 991 remain -= page_length; 992 user_data += page_length; 993 offset += page_length; 994 } 995 996 out: 997 i915_gem_object_unpin_pages(obj); 998 999 if (hit_slowpath) { 1000 /* 1001 * Fixup: Flush cpu caches in case we didn't flush the dirty 1002 * cachelines in-line while writing and the object moved 1003 * out of the cpu write domain while we've dropped the lock. 1004 */ 1005 if (!needs_clflush_after && 1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1007 if (i915_gem_clflush_object(obj, obj->pin_display)) 1008 i915_gem_chipset_flush(dev); 1009 } 1010 } 1011 1012 if (needs_clflush_after) 1013 i915_gem_chipset_flush(dev); 1014 1015 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 1016 return ret; 1017 } 1018 1019 /** 1020 * Writes data to the object referenced by handle. 1021 * 1022 * On error, the contents of the buffer that were to be modified are undefined. 1023 */ 1024 int 1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1026 struct drm_file *file) 1027 { 1028 struct drm_i915_private *dev_priv = dev->dev_private; 1029 struct drm_i915_gem_pwrite *args = data; 1030 struct drm_i915_gem_object *obj; 1031 int ret; 1032 1033 if (args->size == 0) 1034 return 0; 1035 1036 if (!access_ok(VERIFY_READ, 1037 to_user_ptr(args->data_ptr), 1038 args->size)) 1039 return -EFAULT; 1040 1041 if (likely(!i915.prefault_disable)) { 1042 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1043 args->size); 1044 if (ret) 1045 return -EFAULT; 1046 } 1047 1048 intel_runtime_pm_get(dev_priv); 1049 1050 ret = i915_mutex_lock_interruptible(dev); 1051 if (ret) 1052 goto put_rpm; 1053 1054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1055 if (&obj->base == NULL) { 1056 ret = -ENOENT; 1057 goto unlock; 1058 } 1059 1060 /* Bounds check destination. */ 1061 if (args->offset > obj->base.size || 1062 args->size > obj->base.size - args->offset) { 1063 ret = -EINVAL; 1064 goto out; 1065 } 1066 1067 /* prime objects have no backing filp to GEM pread/pwrite 1068 * pages from. 1069 */ 1070 if (!obj->base.filp) { 1071 ret = -EINVAL; 1072 goto out; 1073 } 1074 1075 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1076 1077 ret = -EFAULT; 1078 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1079 * it would end up going through the fenced access, and we'll get 1080 * different detiling behavior between reading and writing. 1081 * pread/pwrite currently are reading and writing from the CPU 1082 * perspective, requiring manual detiling by the client. 1083 */ 1084 if (obj->tiling_mode == I915_TILING_NONE && 1085 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1086 cpu_write_needs_clflush(obj)) { 1087 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1088 /* Note that the gtt paths might fail with non-page-backed user 1089 * pointers (e.g. gtt mappings when moving data between 1090 * textures). Fallback to the shmem path in that case. */ 1091 } 1092 1093 if (ret == -EFAULT || ret == -ENOSPC) { 1094 if (obj->phys_handle) 1095 ret = i915_gem_phys_pwrite(obj, args, file); 1096 else 1097 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1098 } 1099 1100 out: 1101 drm_gem_object_unreference(&obj->base); 1102 unlock: 1103 mutex_unlock(&dev->struct_mutex); 1104 put_rpm: 1105 intel_runtime_pm_put(dev_priv); 1106 1107 return ret; 1108 } 1109 1110 int 1111 i915_gem_check_wedge(struct i915_gpu_error *error, 1112 bool interruptible) 1113 { 1114 if (i915_reset_in_progress(error)) { 1115 /* Non-interruptible callers can't handle -EAGAIN, hence return 1116 * -EIO unconditionally for these. */ 1117 if (!interruptible) 1118 return -EIO; 1119 1120 /* Recovery complete, but the reset failed ... */ 1121 if (i915_terminally_wedged(error)) 1122 return -EIO; 1123 1124 /* 1125 * Check if GPU Reset is in progress - we need intel_ring_begin 1126 * to work properly to reinit the hw state while the gpu is 1127 * still marked as reset-in-progress. Handle this with a flag. 1128 */ 1129 if (!error->reload_in_reset) 1130 return -EAGAIN; 1131 } 1132 1133 return 0; 1134 } 1135 1136 static void fake_irq(unsigned long data) 1137 { 1138 wake_up_process((struct task_struct *)data); 1139 } 1140 1141 static bool missed_irq(struct drm_i915_private *dev_priv, 1142 struct intel_engine_cs *ring) 1143 { 1144 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1145 } 1146 1147 static int __i915_spin_request(struct drm_i915_gem_request *req) 1148 { 1149 unsigned long timeout; 1150 1151 if (i915_gem_request_get_ring(req)->irq_refcount) 1152 return -EBUSY; 1153 1154 timeout = jiffies + 1; 1155 while (!need_resched()) { 1156 if (i915_gem_request_completed(req, true)) 1157 return 0; 1158 1159 if (time_after_eq(jiffies, timeout)) 1160 break; 1161 1162 cpu_relax_lowlatency(); 1163 } 1164 if (i915_gem_request_completed(req, false)) 1165 return 0; 1166 1167 return -EAGAIN; 1168 } 1169 1170 /** 1171 * __i915_wait_request - wait until execution of request has finished 1172 * @req: duh! 1173 * @reset_counter: reset sequence associated with the given request 1174 * @interruptible: do an interruptible wait (normally yes) 1175 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1176 * 1177 * Note: It is of utmost importance that the passed in seqno and reset_counter 1178 * values have been read by the caller in an smp safe manner. Where read-side 1179 * locks are involved, it is sufficient to read the reset_counter before 1180 * unlocking the lock that protects the seqno. For lockless tricks, the 1181 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1182 * inserted. 1183 * 1184 * Returns 0 if the request was found within the alloted time. Else returns the 1185 * errno with remaining time filled in timeout argument. 1186 */ 1187 int __i915_wait_request(struct drm_i915_gem_request *req, 1188 unsigned reset_counter, 1189 bool interruptible, 1190 s64 *timeout, 1191 struct intel_rps_client *rps) 1192 { 1193 struct intel_engine_cs *ring = i915_gem_request_get_ring(req); 1194 struct drm_device *dev = ring->dev; 1195 struct drm_i915_private *dev_priv = dev->dev_private; 1196 const bool irq_test_in_progress = 1197 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1198 DEFINE_WAIT(wait); 1199 unsigned long timeout_expire; 1200 s64 before, now; 1201 int ret; 1202 1203 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1204 1205 if (list_empty(&req->list)) 1206 return 0; 1207 1208 if (i915_gem_request_completed(req, true)) 1209 return 0; 1210 1211 timeout_expire = timeout ? 1212 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0; 1213 1214 if (INTEL_INFO(dev_priv)->gen >= 6) 1215 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies); 1216 1217 /* Record current time in case interrupted by signal, or wedged */ 1218 trace_i915_gem_request_wait_begin(req); 1219 before = ktime_get_raw_ns(); 1220 1221 /* Optimistic spin for the next jiffie before touching IRQs */ 1222 ret = __i915_spin_request(req); 1223 if (ret == 0) 1224 goto out; 1225 1226 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) { 1227 ret = -ENODEV; 1228 goto out; 1229 } 1230 1231 for (;;) { 1232 struct timer_list timer; 1233 1234 prepare_to_wait(&ring->irq_queue, &wait, 1235 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1236 1237 /* We need to check whether any gpu reset happened in between 1238 * the caller grabbing the seqno and now ... */ 1239 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1240 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1241 * is truely gone. */ 1242 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1243 if (ret == 0) 1244 ret = -EAGAIN; 1245 break; 1246 } 1247 1248 if (i915_gem_request_completed(req, false)) { 1249 ret = 0; 1250 break; 1251 } 1252 1253 if (interruptible && signal_pending(current)) { 1254 ret = -ERESTARTSYS; 1255 break; 1256 } 1257 1258 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1259 ret = -ETIME; 1260 break; 1261 } 1262 1263 timer.function = NULL; 1264 if (timeout || missed_irq(dev_priv, ring)) { 1265 unsigned long expire; 1266 1267 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1268 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1269 mod_timer(&timer, expire); 1270 } 1271 1272 io_schedule(); 1273 1274 if (timer.function) { 1275 del_singleshot_timer_sync(&timer); 1276 destroy_timer_on_stack(&timer); 1277 } 1278 } 1279 if (!irq_test_in_progress) 1280 ring->irq_put(ring); 1281 1282 finish_wait(&ring->irq_queue, &wait); 1283 1284 out: 1285 now = ktime_get_raw_ns(); 1286 trace_i915_gem_request_wait_end(req); 1287 1288 if (timeout) { 1289 s64 tres = *timeout - (now - before); 1290 1291 *timeout = tres < 0 ? 0 : tres; 1292 1293 /* 1294 * Apparently ktime isn't accurate enough and occasionally has a 1295 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 1296 * things up to make the test happy. We allow up to 1 jiffy. 1297 * 1298 * This is a regrssion from the timespec->ktime conversion. 1299 */ 1300 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) 1301 *timeout = 0; 1302 } 1303 1304 return ret; 1305 } 1306 1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 1308 struct drm_file *file) 1309 { 1310 struct drm_i915_private *dev_private; 1311 struct drm_i915_file_private *file_priv; 1312 1313 WARN_ON(!req || !file || req->file_priv); 1314 1315 if (!req || !file) 1316 return -EINVAL; 1317 1318 if (req->file_priv) 1319 return -EINVAL; 1320 1321 dev_private = req->ring->dev->dev_private; 1322 file_priv = file->driver_priv; 1323 1324 spin_lock(&file_priv->mm.lock); 1325 req->file_priv = file_priv; 1326 list_add_tail(&req->client_list, &file_priv->mm.request_list); 1327 spin_unlock(&file_priv->mm.lock); 1328 1329 req->pid = get_pid(task_pid(current)); 1330 1331 return 0; 1332 } 1333 1334 static inline void 1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 1336 { 1337 struct drm_i915_file_private *file_priv = request->file_priv; 1338 1339 if (!file_priv) 1340 return; 1341 1342 spin_lock(&file_priv->mm.lock); 1343 list_del(&request->client_list); 1344 request->file_priv = NULL; 1345 spin_unlock(&file_priv->mm.lock); 1346 1347 put_pid(request->pid); 1348 request->pid = NULL; 1349 } 1350 1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request) 1352 { 1353 trace_i915_gem_request_retire(request); 1354 1355 /* We know the GPU must have read the request to have 1356 * sent us the seqno + interrupt, so use the position 1357 * of tail of the request to update the last known position 1358 * of the GPU head. 1359 * 1360 * Note this requires that we are always called in request 1361 * completion order. 1362 */ 1363 request->ringbuf->last_retired_head = request->postfix; 1364 1365 list_del_init(&request->list); 1366 i915_gem_request_remove_from_client(request); 1367 1368 i915_gem_request_unreference(request); 1369 } 1370 1371 static void 1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req) 1373 { 1374 struct intel_engine_cs *engine = req->ring; 1375 struct drm_i915_gem_request *tmp; 1376 1377 lockdep_assert_held(&engine->dev->struct_mutex); 1378 1379 if (list_empty(&req->list)) 1380 return; 1381 1382 do { 1383 tmp = list_first_entry(&engine->request_list, 1384 typeof(*tmp), list); 1385 1386 i915_gem_request_retire(tmp); 1387 } while (tmp != req); 1388 1389 WARN_ON(i915_verify_lists(engine->dev)); 1390 } 1391 1392 /** 1393 * Waits for a request to be signaled, and cleans up the 1394 * request and object lists appropriately for that event. 1395 */ 1396 int 1397 i915_wait_request(struct drm_i915_gem_request *req) 1398 { 1399 struct drm_device *dev; 1400 struct drm_i915_private *dev_priv; 1401 bool interruptible; 1402 int ret; 1403 1404 BUG_ON(req == NULL); 1405 1406 dev = req->ring->dev; 1407 dev_priv = dev->dev_private; 1408 interruptible = dev_priv->mm.interruptible; 1409 1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1411 1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1413 if (ret) 1414 return ret; 1415 1416 ret = __i915_wait_request(req, 1417 atomic_read(&dev_priv->gpu_error.reset_counter), 1418 interruptible, NULL, NULL); 1419 if (ret) 1420 return ret; 1421 1422 __i915_gem_request_retire__upto(req); 1423 return 0; 1424 } 1425 1426 /** 1427 * Ensures that all rendering to the object has completed and the object is 1428 * safe to unbind from the GTT or access from the CPU. 1429 */ 1430 int 1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1432 bool readonly) 1433 { 1434 int ret, i; 1435 1436 if (!obj->active) 1437 return 0; 1438 1439 if (readonly) { 1440 if (obj->last_write_req != NULL) { 1441 ret = i915_wait_request(obj->last_write_req); 1442 if (ret) 1443 return ret; 1444 1445 i = obj->last_write_req->ring->id; 1446 if (obj->last_read_req[i] == obj->last_write_req) 1447 i915_gem_object_retire__read(obj, i); 1448 else 1449 i915_gem_object_retire__write(obj); 1450 } 1451 } else { 1452 for (i = 0; i < I915_NUM_RINGS; i++) { 1453 if (obj->last_read_req[i] == NULL) 1454 continue; 1455 1456 ret = i915_wait_request(obj->last_read_req[i]); 1457 if (ret) 1458 return ret; 1459 1460 i915_gem_object_retire__read(obj, i); 1461 } 1462 RQ_BUG_ON(obj->active); 1463 } 1464 1465 return 0; 1466 } 1467 1468 static void 1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj, 1470 struct drm_i915_gem_request *req) 1471 { 1472 int ring = req->ring->id; 1473 1474 if (obj->last_read_req[ring] == req) 1475 i915_gem_object_retire__read(obj, ring); 1476 else if (obj->last_write_req == req) 1477 i915_gem_object_retire__write(obj); 1478 1479 __i915_gem_request_retire__upto(req); 1480 } 1481 1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1483 * as the object state may change during this call. 1484 */ 1485 static __must_check int 1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1487 struct intel_rps_client *rps, 1488 bool readonly) 1489 { 1490 struct drm_device *dev = obj->base.dev; 1491 struct drm_i915_private *dev_priv = dev->dev_private; 1492 struct drm_i915_gem_request *requests[I915_NUM_RINGS]; 1493 unsigned reset_counter; 1494 int ret, i, n = 0; 1495 1496 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1497 BUG_ON(!dev_priv->mm.interruptible); 1498 1499 if (!obj->active) 1500 return 0; 1501 1502 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1503 if (ret) 1504 return ret; 1505 1506 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1507 1508 if (readonly) { 1509 struct drm_i915_gem_request *req; 1510 1511 req = obj->last_write_req; 1512 if (req == NULL) 1513 return 0; 1514 1515 requests[n++] = i915_gem_request_reference(req); 1516 } else { 1517 for (i = 0; i < I915_NUM_RINGS; i++) { 1518 struct drm_i915_gem_request *req; 1519 1520 req = obj->last_read_req[i]; 1521 if (req == NULL) 1522 continue; 1523 1524 requests[n++] = i915_gem_request_reference(req); 1525 } 1526 } 1527 1528 mutex_unlock(&dev->struct_mutex); 1529 for (i = 0; ret == 0 && i < n; i++) 1530 ret = __i915_wait_request(requests[i], reset_counter, true, 1531 NULL, rps); 1532 mutex_lock(&dev->struct_mutex); 1533 1534 for (i = 0; i < n; i++) { 1535 if (ret == 0) 1536 i915_gem_object_retire_request(obj, requests[i]); 1537 i915_gem_request_unreference(requests[i]); 1538 } 1539 1540 return ret; 1541 } 1542 1543 static struct intel_rps_client *to_rps_client(struct drm_file *file) 1544 { 1545 struct drm_i915_file_private *fpriv = file->driver_priv; 1546 return &fpriv->rps; 1547 } 1548 1549 /** 1550 * Called when user space prepares to use an object with the CPU, either 1551 * through the mmap ioctl's mapping or a GTT mapping. 1552 */ 1553 int 1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1555 struct drm_file *file) 1556 { 1557 struct drm_i915_gem_set_domain *args = data; 1558 struct drm_i915_gem_object *obj; 1559 uint32_t read_domains = args->read_domains; 1560 uint32_t write_domain = args->write_domain; 1561 int ret; 1562 1563 /* Only handle setting domains to types used by the CPU. */ 1564 if (write_domain & I915_GEM_GPU_DOMAINS) 1565 return -EINVAL; 1566 1567 if (read_domains & I915_GEM_GPU_DOMAINS) 1568 return -EINVAL; 1569 1570 /* Having something in the write domain implies it's in the read 1571 * domain, and only that read domain. Enforce that in the request. 1572 */ 1573 if (write_domain != 0 && read_domains != write_domain) 1574 return -EINVAL; 1575 1576 ret = i915_mutex_lock_interruptible(dev); 1577 if (ret) 1578 return ret; 1579 1580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1581 if (&obj->base == NULL) { 1582 ret = -ENOENT; 1583 goto unlock; 1584 } 1585 1586 /* Try to flush the object off the GPU without holding the lock. 1587 * We will repeat the flush holding the lock in the normal manner 1588 * to catch cases where we are gazumped. 1589 */ 1590 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1591 to_rps_client(file), 1592 !write_domain); 1593 if (ret) 1594 goto unref; 1595 1596 if (read_domains & I915_GEM_DOMAIN_GTT) 1597 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1598 else 1599 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1600 1601 if (write_domain != 0) 1602 intel_fb_obj_invalidate(obj, 1603 write_domain == I915_GEM_DOMAIN_GTT ? 1604 ORIGIN_GTT : ORIGIN_CPU); 1605 1606 unref: 1607 drm_gem_object_unreference(&obj->base); 1608 unlock: 1609 mutex_unlock(&dev->struct_mutex); 1610 return ret; 1611 } 1612 1613 /** 1614 * Called when user space has done writes to this buffer 1615 */ 1616 int 1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1618 struct drm_file *file) 1619 { 1620 struct drm_i915_gem_sw_finish *args = data; 1621 struct drm_i915_gem_object *obj; 1622 int ret = 0; 1623 1624 ret = i915_mutex_lock_interruptible(dev); 1625 if (ret) 1626 return ret; 1627 1628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1629 if (&obj->base == NULL) { 1630 ret = -ENOENT; 1631 goto unlock; 1632 } 1633 1634 /* Pinned buffers may be scanout, so flush the cache */ 1635 if (obj->pin_display) 1636 i915_gem_object_flush_cpu_write_domain(obj); 1637 1638 drm_gem_object_unreference(&obj->base); 1639 unlock: 1640 mutex_unlock(&dev->struct_mutex); 1641 return ret; 1642 } 1643 1644 /** 1645 * Maps the contents of an object, returning the address it is mapped 1646 * into. 1647 * 1648 * While the mapping holds a reference on the contents of the object, it doesn't 1649 * imply a ref on the object itself. 1650 * 1651 * IMPORTANT: 1652 * 1653 * DRM driver writers who look a this function as an example for how to do GEM 1654 * mmap support, please don't implement mmap support like here. The modern way 1655 * to implement DRM mmap support is with an mmap offset ioctl (like 1656 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1657 * That way debug tooling like valgrind will understand what's going on, hiding 1658 * the mmap call in a driver private ioctl will break that. The i915 driver only 1659 * does cpu mmaps this way because we didn't know better. 1660 */ 1661 int 1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1663 struct drm_file *file) 1664 { 1665 struct drm_i915_gem_mmap *args = data; 1666 struct drm_gem_object *obj; 1667 unsigned long addr; 1668 1669 if (args->flags & ~(I915_MMAP_WC)) 1670 return -EINVAL; 1671 1672 if (args->flags & I915_MMAP_WC && !cpu_has_pat) 1673 return -ENODEV; 1674 1675 obj = drm_gem_object_lookup(dev, file, args->handle); 1676 if (obj == NULL) 1677 return -ENOENT; 1678 1679 /* prime objects have no backing filp to GEM mmap 1680 * pages from. 1681 */ 1682 if (!obj->filp) { 1683 drm_gem_object_unreference_unlocked(obj); 1684 return -EINVAL; 1685 } 1686 1687 addr = vm_mmap(obj->filp, 0, args->size, 1688 PROT_READ | PROT_WRITE, MAP_SHARED, 1689 args->offset); 1690 if (args->flags & I915_MMAP_WC) { 1691 struct mm_struct *mm = current->mm; 1692 struct vm_area_struct *vma; 1693 1694 down_write(&mm->mmap_sem); 1695 vma = find_vma(mm, addr); 1696 if (vma) 1697 vma->vm_page_prot = 1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1699 else 1700 addr = -ENOMEM; 1701 up_write(&mm->mmap_sem); 1702 } 1703 drm_gem_object_unreference_unlocked(obj); 1704 if (IS_ERR((void *)addr)) 1705 return addr; 1706 1707 args->addr_ptr = (uint64_t) addr; 1708 1709 return 0; 1710 } 1711 1712 /** 1713 * i915_gem_fault - fault a page into the GTT 1714 * vma: VMA in question 1715 * vmf: fault info 1716 * 1717 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1718 * from userspace. The fault handler takes care of binding the object to 1719 * the GTT (if needed), allocating and programming a fence register (again, 1720 * only if needed based on whether the old reg is still valid or the object 1721 * is tiled) and inserting a new PTE into the faulting process. 1722 * 1723 * Note that the faulting process may involve evicting existing objects 1724 * from the GTT and/or fence registers to make room. So performance may 1725 * suffer if the GTT working set is large or there are few fence registers 1726 * left. 1727 */ 1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1729 { 1730 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1731 struct drm_device *dev = obj->base.dev; 1732 struct drm_i915_private *dev_priv = dev->dev_private; 1733 struct i915_ggtt_view view = i915_ggtt_view_normal; 1734 pgoff_t page_offset; 1735 unsigned long pfn; 1736 int ret = 0; 1737 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1738 1739 intel_runtime_pm_get(dev_priv); 1740 1741 /* We don't use vmf->pgoff since that has the fake offset */ 1742 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1743 PAGE_SHIFT; 1744 1745 ret = i915_mutex_lock_interruptible(dev); 1746 if (ret) 1747 goto out; 1748 1749 trace_i915_gem_object_fault(obj, page_offset, true, write); 1750 1751 /* Try to flush the object off the GPU first without holding the lock. 1752 * Upon reacquiring the lock, we will perform our sanity checks and then 1753 * repeat the flush holding the lock in the normal manner to catch cases 1754 * where we are gazumped. 1755 */ 1756 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1757 if (ret) 1758 goto unlock; 1759 1760 /* Access to snoopable pages through the GTT is incoherent. */ 1761 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1762 ret = -EFAULT; 1763 goto unlock; 1764 } 1765 1766 /* Use a partial view if the object is bigger than the aperture. */ 1767 if (obj->base.size >= dev_priv->gtt.mappable_end && 1768 obj->tiling_mode == I915_TILING_NONE) { 1769 static const unsigned int chunk_size = 256; // 1 MiB 1770 1771 memset(&view, 0, sizeof(view)); 1772 view.type = I915_GGTT_VIEW_PARTIAL; 1773 view.params.partial.offset = rounddown(page_offset, chunk_size); 1774 view.params.partial.size = 1775 min_t(unsigned int, 1776 chunk_size, 1777 (vma->vm_end - vma->vm_start)/PAGE_SIZE - 1778 view.params.partial.offset); 1779 } 1780 1781 /* Now pin it into the GTT if needed */ 1782 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE); 1783 if (ret) 1784 goto unlock; 1785 1786 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1787 if (ret) 1788 goto unpin; 1789 1790 ret = i915_gem_object_get_fence(obj); 1791 if (ret) 1792 goto unpin; 1793 1794 /* Finally, remap it using the new GTT offset */ 1795 pfn = dev_priv->gtt.mappable_base + 1796 i915_gem_obj_ggtt_offset_view(obj, &view); 1797 pfn >>= PAGE_SHIFT; 1798 1799 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) { 1800 /* Overriding existing pages in partial view does not cause 1801 * us any trouble as TLBs are still valid because the fault 1802 * is due to userspace losing part of the mapping or never 1803 * having accessed it before (at this partials' range). 1804 */ 1805 unsigned long base = vma->vm_start + 1806 (view.params.partial.offset << PAGE_SHIFT); 1807 unsigned int i; 1808 1809 for (i = 0; i < view.params.partial.size; i++) { 1810 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i); 1811 if (ret) 1812 break; 1813 } 1814 1815 obj->fault_mappable = true; 1816 } else { 1817 if (!obj->fault_mappable) { 1818 unsigned long size = min_t(unsigned long, 1819 vma->vm_end - vma->vm_start, 1820 obj->base.size); 1821 int i; 1822 1823 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1824 ret = vm_insert_pfn(vma, 1825 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1826 pfn + i); 1827 if (ret) 1828 break; 1829 } 1830 1831 obj->fault_mappable = true; 1832 } else 1833 ret = vm_insert_pfn(vma, 1834 (unsigned long)vmf->virtual_address, 1835 pfn + page_offset); 1836 } 1837 unpin: 1838 i915_gem_object_ggtt_unpin_view(obj, &view); 1839 unlock: 1840 mutex_unlock(&dev->struct_mutex); 1841 out: 1842 switch (ret) { 1843 case -EIO: 1844 /* 1845 * We eat errors when the gpu is terminally wedged to avoid 1846 * userspace unduly crashing (gl has no provisions for mmaps to 1847 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1848 * and so needs to be reported. 1849 */ 1850 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1851 ret = VM_FAULT_SIGBUS; 1852 break; 1853 } 1854 case -EAGAIN: 1855 /* 1856 * EAGAIN means the gpu is hung and we'll wait for the error 1857 * handler to reset everything when re-faulting in 1858 * i915_mutex_lock_interruptible. 1859 */ 1860 case 0: 1861 case -ERESTARTSYS: 1862 case -EINTR: 1863 case -EBUSY: 1864 /* 1865 * EBUSY is ok: this just means that another thread 1866 * already did the job. 1867 */ 1868 ret = VM_FAULT_NOPAGE; 1869 break; 1870 case -ENOMEM: 1871 ret = VM_FAULT_OOM; 1872 break; 1873 case -ENOSPC: 1874 case -EFAULT: 1875 ret = VM_FAULT_SIGBUS; 1876 break; 1877 default: 1878 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1879 ret = VM_FAULT_SIGBUS; 1880 break; 1881 } 1882 1883 intel_runtime_pm_put(dev_priv); 1884 return ret; 1885 } 1886 1887 /** 1888 * i915_gem_release_mmap - remove physical page mappings 1889 * @obj: obj in question 1890 * 1891 * Preserve the reservation of the mmapping with the DRM core code, but 1892 * relinquish ownership of the pages back to the system. 1893 * 1894 * It is vital that we remove the page mapping if we have mapped a tiled 1895 * object through the GTT and then lose the fence register due to 1896 * resource pressure. Similarly if the object has been moved out of the 1897 * aperture, than pages mapped into userspace must be revoked. Removing the 1898 * mapping will then trigger a page fault on the next user access, allowing 1899 * fixup by i915_gem_fault(). 1900 */ 1901 void 1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1903 { 1904 if (!obj->fault_mappable) 1905 return; 1906 1907 drm_vma_node_unmap(&obj->base.vma_node, 1908 obj->base.dev->anon_inode->i_mapping); 1909 obj->fault_mappable = false; 1910 } 1911 1912 void 1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1914 { 1915 struct drm_i915_gem_object *obj; 1916 1917 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1918 i915_gem_release_mmap(obj); 1919 } 1920 1921 uint32_t 1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1923 { 1924 uint32_t gtt_size; 1925 1926 if (INTEL_INFO(dev)->gen >= 4 || 1927 tiling_mode == I915_TILING_NONE) 1928 return size; 1929 1930 /* Previous chips need a power-of-two fence region when tiling */ 1931 if (INTEL_INFO(dev)->gen == 3) 1932 gtt_size = 1024*1024; 1933 else 1934 gtt_size = 512*1024; 1935 1936 while (gtt_size < size) 1937 gtt_size <<= 1; 1938 1939 return gtt_size; 1940 } 1941 1942 /** 1943 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1944 * @obj: object to check 1945 * 1946 * Return the required GTT alignment for an object, taking into account 1947 * potential fence register mapping. 1948 */ 1949 uint32_t 1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1951 int tiling_mode, bool fenced) 1952 { 1953 /* 1954 * Minimum alignment is 4k (GTT page size), but might be greater 1955 * if a fence register is needed for the object. 1956 */ 1957 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1958 tiling_mode == I915_TILING_NONE) 1959 return 4096; 1960 1961 /* 1962 * Previous chips need to be aligned to the size of the smallest 1963 * fence register that can contain the object. 1964 */ 1965 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1966 } 1967 1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1969 { 1970 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1971 int ret; 1972 1973 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1974 return 0; 1975 1976 dev_priv->mm.shrinker_no_lock_stealing = true; 1977 1978 ret = drm_gem_create_mmap_offset(&obj->base); 1979 if (ret != -ENOSPC) 1980 goto out; 1981 1982 /* Badly fragmented mmap space? The only way we can recover 1983 * space is by destroying unwanted objects. We can't randomly release 1984 * mmap_offsets as userspace expects them to be persistent for the 1985 * lifetime of the objects. The closest we can is to release the 1986 * offsets on purgeable objects by truncating it and marking it purged, 1987 * which prevents userspace from ever using that object again. 1988 */ 1989 i915_gem_shrink(dev_priv, 1990 obj->base.size >> PAGE_SHIFT, 1991 I915_SHRINK_BOUND | 1992 I915_SHRINK_UNBOUND | 1993 I915_SHRINK_PURGEABLE); 1994 ret = drm_gem_create_mmap_offset(&obj->base); 1995 if (ret != -ENOSPC) 1996 goto out; 1997 1998 i915_gem_shrink_all(dev_priv); 1999 ret = drm_gem_create_mmap_offset(&obj->base); 2000 out: 2001 dev_priv->mm.shrinker_no_lock_stealing = false; 2002 2003 return ret; 2004 } 2005 2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2007 { 2008 drm_gem_free_mmap_offset(&obj->base); 2009 } 2010 2011 int 2012 i915_gem_mmap_gtt(struct drm_file *file, 2013 struct drm_device *dev, 2014 uint32_t handle, 2015 uint64_t *offset) 2016 { 2017 struct drm_i915_gem_object *obj; 2018 int ret; 2019 2020 ret = i915_mutex_lock_interruptible(dev); 2021 if (ret) 2022 return ret; 2023 2024 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 2025 if (&obj->base == NULL) { 2026 ret = -ENOENT; 2027 goto unlock; 2028 } 2029 2030 if (obj->madv != I915_MADV_WILLNEED) { 2031 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 2032 ret = -EFAULT; 2033 goto out; 2034 } 2035 2036 ret = i915_gem_object_create_mmap_offset(obj); 2037 if (ret) 2038 goto out; 2039 2040 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2041 2042 out: 2043 drm_gem_object_unreference(&obj->base); 2044 unlock: 2045 mutex_unlock(&dev->struct_mutex); 2046 return ret; 2047 } 2048 2049 /** 2050 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2051 * @dev: DRM device 2052 * @data: GTT mapping ioctl data 2053 * @file: GEM object info 2054 * 2055 * Simply returns the fake offset to userspace so it can mmap it. 2056 * The mmap call will end up in drm_gem_mmap(), which will set things 2057 * up so we can get faults in the handler above. 2058 * 2059 * The fault handler will take care of binding the object into the GTT 2060 * (since it may have been evicted to make room for something), allocating 2061 * a fence register, and mapping the appropriate aperture address into 2062 * userspace. 2063 */ 2064 int 2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2066 struct drm_file *file) 2067 { 2068 struct drm_i915_gem_mmap_gtt *args = data; 2069 2070 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2071 } 2072 2073 /* Immediately discard the backing storage */ 2074 static void 2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2076 { 2077 i915_gem_object_free_mmap_offset(obj); 2078 2079 if (obj->base.filp == NULL) 2080 return; 2081 2082 /* Our goal here is to return as much of the memory as 2083 * is possible back to the system as we are called from OOM. 2084 * To do this we must instruct the shmfs to drop all of its 2085 * backing pages, *now*. 2086 */ 2087 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2088 obj->madv = __I915_MADV_PURGED; 2089 } 2090 2091 /* Try to discard unwanted pages */ 2092 static void 2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2094 { 2095 struct address_space *mapping; 2096 2097 switch (obj->madv) { 2098 case I915_MADV_DONTNEED: 2099 i915_gem_object_truncate(obj); 2100 case __I915_MADV_PURGED: 2101 return; 2102 } 2103 2104 if (obj->base.filp == NULL) 2105 return; 2106 2107 mapping = file_inode(obj->base.filp)->i_mapping, 2108 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2109 } 2110 2111 static void 2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 2113 { 2114 struct sg_page_iter sg_iter; 2115 int ret; 2116 2117 BUG_ON(obj->madv == __I915_MADV_PURGED); 2118 2119 ret = i915_gem_object_set_to_cpu_domain(obj, true); 2120 if (ret) { 2121 /* In the event of a disaster, abandon all caches and 2122 * hope for the best. 2123 */ 2124 WARN_ON(ret != -EIO); 2125 i915_gem_clflush_object(obj, true); 2126 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2127 } 2128 2129 i915_gem_gtt_finish_object(obj); 2130 2131 if (i915_gem_object_needs_bit17_swizzle(obj)) 2132 i915_gem_object_save_bit_17_swizzle(obj); 2133 2134 if (obj->madv == I915_MADV_DONTNEED) 2135 obj->dirty = 0; 2136 2137 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 2138 struct page *page = sg_page_iter_page(&sg_iter); 2139 2140 if (obj->dirty) 2141 set_page_dirty(page); 2142 2143 if (obj->madv == I915_MADV_WILLNEED) 2144 mark_page_accessed(page); 2145 2146 page_cache_release(page); 2147 } 2148 obj->dirty = 0; 2149 2150 sg_free_table(obj->pages); 2151 kfree(obj->pages); 2152 } 2153 2154 int 2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2156 { 2157 const struct drm_i915_gem_object_ops *ops = obj->ops; 2158 2159 if (obj->pages == NULL) 2160 return 0; 2161 2162 if (obj->pages_pin_count) 2163 return -EBUSY; 2164 2165 BUG_ON(i915_gem_obj_bound_any(obj)); 2166 2167 /* ->put_pages might need to allocate memory for the bit17 swizzle 2168 * array, hence protect them from being reaped by removing them from gtt 2169 * lists early. */ 2170 list_del(&obj->global_list); 2171 2172 ops->put_pages(obj); 2173 obj->pages = NULL; 2174 2175 i915_gem_object_invalidate(obj); 2176 2177 return 0; 2178 } 2179 2180 static int 2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2182 { 2183 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2184 int page_count, i; 2185 struct address_space *mapping; 2186 struct sg_table *st; 2187 struct scatterlist *sg; 2188 struct sg_page_iter sg_iter; 2189 struct page *page; 2190 unsigned long last_pfn = 0; /* suppress gcc warning */ 2191 int ret; 2192 gfp_t gfp; 2193 2194 /* Assert that the object is not currently in any GPU domain. As it 2195 * wasn't in the GTT, there shouldn't be any way it could have been in 2196 * a GPU cache 2197 */ 2198 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2199 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2200 2201 st = kmalloc(sizeof(*st), GFP_KERNEL); 2202 if (st == NULL) 2203 return -ENOMEM; 2204 2205 page_count = obj->base.size / PAGE_SIZE; 2206 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2207 kfree(st); 2208 return -ENOMEM; 2209 } 2210 2211 /* Get the list of pages out of our struct file. They'll be pinned 2212 * at this point until we release them. 2213 * 2214 * Fail silently without starting the shrinker 2215 */ 2216 mapping = file_inode(obj->base.filp)->i_mapping; 2217 gfp = mapping_gfp_mask(mapping); 2218 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2219 gfp &= ~(__GFP_IO | __GFP_WAIT); 2220 sg = st->sgl; 2221 st->nents = 0; 2222 for (i = 0; i < page_count; i++) { 2223 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2224 if (IS_ERR(page)) { 2225 i915_gem_shrink(dev_priv, 2226 page_count, 2227 I915_SHRINK_BOUND | 2228 I915_SHRINK_UNBOUND | 2229 I915_SHRINK_PURGEABLE); 2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2231 } 2232 if (IS_ERR(page)) { 2233 /* We've tried hard to allocate the memory by reaping 2234 * our own buffer, now let the real VM do its job and 2235 * go down in flames if truly OOM. 2236 */ 2237 i915_gem_shrink_all(dev_priv); 2238 page = shmem_read_mapping_page(mapping, i); 2239 if (IS_ERR(page)) { 2240 ret = PTR_ERR(page); 2241 goto err_pages; 2242 } 2243 } 2244 #ifdef CONFIG_SWIOTLB 2245 if (swiotlb_nr_tbl()) { 2246 st->nents++; 2247 sg_set_page(sg, page, PAGE_SIZE, 0); 2248 sg = sg_next(sg); 2249 continue; 2250 } 2251 #endif 2252 if (!i || page_to_pfn(page) != last_pfn + 1) { 2253 if (i) 2254 sg = sg_next(sg); 2255 st->nents++; 2256 sg_set_page(sg, page, PAGE_SIZE, 0); 2257 } else { 2258 sg->length += PAGE_SIZE; 2259 } 2260 last_pfn = page_to_pfn(page); 2261 2262 /* Check that the i965g/gm workaround works. */ 2263 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2264 } 2265 #ifdef CONFIG_SWIOTLB 2266 if (!swiotlb_nr_tbl()) 2267 #endif 2268 sg_mark_end(sg); 2269 obj->pages = st; 2270 2271 ret = i915_gem_gtt_prepare_object(obj); 2272 if (ret) 2273 goto err_pages; 2274 2275 if (i915_gem_object_needs_bit17_swizzle(obj)) 2276 i915_gem_object_do_bit_17_swizzle(obj); 2277 2278 if (obj->tiling_mode != I915_TILING_NONE && 2279 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2280 i915_gem_object_pin_pages(obj); 2281 2282 return 0; 2283 2284 err_pages: 2285 sg_mark_end(sg); 2286 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2287 page_cache_release(sg_page_iter_page(&sg_iter)); 2288 sg_free_table(st); 2289 kfree(st); 2290 2291 /* shmemfs first checks if there is enough memory to allocate the page 2292 * and reports ENOSPC should there be insufficient, along with the usual 2293 * ENOMEM for a genuine allocation failure. 2294 * 2295 * We use ENOSPC in our driver to mean that we have run out of aperture 2296 * space and so want to translate the error from shmemfs back to our 2297 * usual understanding of ENOMEM. 2298 */ 2299 if (ret == -ENOSPC) 2300 ret = -ENOMEM; 2301 2302 return ret; 2303 } 2304 2305 /* Ensure that the associated pages are gathered from the backing storage 2306 * and pinned into our object. i915_gem_object_get_pages() may be called 2307 * multiple times before they are released by a single call to 2308 * i915_gem_object_put_pages() - once the pages are no longer referenced 2309 * either as a result of memory pressure (reaping pages under the shrinker) 2310 * or as the object is itself released. 2311 */ 2312 int 2313 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2314 { 2315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2316 const struct drm_i915_gem_object_ops *ops = obj->ops; 2317 int ret; 2318 2319 if (obj->pages) 2320 return 0; 2321 2322 if (obj->madv != I915_MADV_WILLNEED) { 2323 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2324 return -EFAULT; 2325 } 2326 2327 BUG_ON(obj->pages_pin_count); 2328 2329 ret = ops->get_pages(obj); 2330 if (ret) 2331 return ret; 2332 2333 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2334 2335 obj->get_page.sg = obj->pages->sgl; 2336 obj->get_page.last = 0; 2337 2338 return 0; 2339 } 2340 2341 void i915_vma_move_to_active(struct i915_vma *vma, 2342 struct drm_i915_gem_request *req) 2343 { 2344 struct drm_i915_gem_object *obj = vma->obj; 2345 struct intel_engine_cs *ring; 2346 2347 ring = i915_gem_request_get_ring(req); 2348 2349 /* Add a reference if we're newly entering the active list. */ 2350 if (obj->active == 0) 2351 drm_gem_object_reference(&obj->base); 2352 obj->active |= intel_ring_flag(ring); 2353 2354 list_move_tail(&obj->ring_list[ring->id], &ring->active_list); 2355 i915_gem_request_assign(&obj->last_read_req[ring->id], req); 2356 2357 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2358 } 2359 2360 static void 2361 i915_gem_object_retire__write(struct drm_i915_gem_object *obj) 2362 { 2363 RQ_BUG_ON(obj->last_write_req == NULL); 2364 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring))); 2365 2366 i915_gem_request_assign(&obj->last_write_req, NULL); 2367 intel_fb_obj_flush(obj, true, ORIGIN_CS); 2368 } 2369 2370 static void 2371 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring) 2372 { 2373 struct i915_vma *vma; 2374 2375 RQ_BUG_ON(obj->last_read_req[ring] == NULL); 2376 RQ_BUG_ON(!(obj->active & (1 << ring))); 2377 2378 list_del_init(&obj->ring_list[ring]); 2379 i915_gem_request_assign(&obj->last_read_req[ring], NULL); 2380 2381 if (obj->last_write_req && obj->last_write_req->ring->id == ring) 2382 i915_gem_object_retire__write(obj); 2383 2384 obj->active &= ~(1 << ring); 2385 if (obj->active) 2386 return; 2387 2388 /* Bump our place on the bound list to keep it roughly in LRU order 2389 * so that we don't steal from recently used but inactive objects 2390 * (unless we are forced to ofc!) 2391 */ 2392 list_move_tail(&obj->global_list, 2393 &to_i915(obj->base.dev)->mm.bound_list); 2394 2395 list_for_each_entry(vma, &obj->vma_list, vma_link) { 2396 if (!list_empty(&vma->mm_list)) 2397 list_move_tail(&vma->mm_list, &vma->vm->inactive_list); 2398 } 2399 2400 i915_gem_request_assign(&obj->last_fenced_req, NULL); 2401 drm_gem_object_unreference(&obj->base); 2402 } 2403 2404 static int 2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2406 { 2407 struct drm_i915_private *dev_priv = dev->dev_private; 2408 struct intel_engine_cs *ring; 2409 int ret, i, j; 2410 2411 /* Carefully retire all requests without writing to the rings */ 2412 for_each_ring(ring, dev_priv, i) { 2413 ret = intel_ring_idle(ring); 2414 if (ret) 2415 return ret; 2416 } 2417 i915_gem_retire_requests(dev); 2418 2419 /* Finally reset hw state */ 2420 for_each_ring(ring, dev_priv, i) { 2421 intel_ring_init_seqno(ring, seqno); 2422 2423 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2424 ring->semaphore.sync_seqno[j] = 0; 2425 } 2426 2427 return 0; 2428 } 2429 2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2431 { 2432 struct drm_i915_private *dev_priv = dev->dev_private; 2433 int ret; 2434 2435 if (seqno == 0) 2436 return -EINVAL; 2437 2438 /* HWS page needs to be set less than what we 2439 * will inject to ring 2440 */ 2441 ret = i915_gem_init_seqno(dev, seqno - 1); 2442 if (ret) 2443 return ret; 2444 2445 /* Carefully set the last_seqno value so that wrap 2446 * detection still works 2447 */ 2448 dev_priv->next_seqno = seqno; 2449 dev_priv->last_seqno = seqno - 1; 2450 if (dev_priv->last_seqno == 0) 2451 dev_priv->last_seqno--; 2452 2453 return 0; 2454 } 2455 2456 int 2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2458 { 2459 struct drm_i915_private *dev_priv = dev->dev_private; 2460 2461 /* reserve 0 for non-seqno */ 2462 if (dev_priv->next_seqno == 0) { 2463 int ret = i915_gem_init_seqno(dev, 0); 2464 if (ret) 2465 return ret; 2466 2467 dev_priv->next_seqno = 1; 2468 } 2469 2470 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2471 return 0; 2472 } 2473 2474 /* 2475 * NB: This function is not allowed to fail. Doing so would mean the the 2476 * request is not being tracked for completion but the work itself is 2477 * going to happen on the hardware. This would be a Bad Thing(tm). 2478 */ 2479 void __i915_add_request(struct drm_i915_gem_request *request, 2480 struct drm_i915_gem_object *obj, 2481 bool flush_caches) 2482 { 2483 struct intel_engine_cs *ring; 2484 struct drm_i915_private *dev_priv; 2485 struct intel_ringbuffer *ringbuf; 2486 u32 request_start; 2487 int ret; 2488 2489 if (WARN_ON(request == NULL)) 2490 return; 2491 2492 ring = request->ring; 2493 dev_priv = ring->dev->dev_private; 2494 ringbuf = request->ringbuf; 2495 2496 /* 2497 * To ensure that this call will not fail, space for its emissions 2498 * should already have been reserved in the ring buffer. Let the ring 2499 * know that it is time to use that space up. 2500 */ 2501 intel_ring_reserved_space_use(ringbuf); 2502 2503 request_start = intel_ring_get_tail(ringbuf); 2504 /* 2505 * Emit any outstanding flushes - execbuf can fail to emit the flush 2506 * after having emitted the batchbuffer command. Hence we need to fix 2507 * things up similar to emitting the lazy request. The difference here 2508 * is that the flush _must_ happen before the next request, no matter 2509 * what. 2510 */ 2511 if (flush_caches) { 2512 if (i915.enable_execlists) 2513 ret = logical_ring_flush_all_caches(request); 2514 else 2515 ret = intel_ring_flush_all_caches(request); 2516 /* Not allowed to fail! */ 2517 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret); 2518 } 2519 2520 /* Record the position of the start of the request so that 2521 * should we detect the updated seqno part-way through the 2522 * GPU processing the request, we never over-estimate the 2523 * position of the head. 2524 */ 2525 request->postfix = intel_ring_get_tail(ringbuf); 2526 2527 if (i915.enable_execlists) 2528 ret = ring->emit_request(request); 2529 else { 2530 ret = ring->add_request(request); 2531 2532 request->tail = intel_ring_get_tail(ringbuf); 2533 } 2534 /* Not allowed to fail! */ 2535 WARN(ret, "emit|add_request failed: %d!\n", ret); 2536 2537 request->head = request_start; 2538 2539 /* Whilst this request exists, batch_obj will be on the 2540 * active_list, and so will hold the active reference. Only when this 2541 * request is retired will the the batch_obj be moved onto the 2542 * inactive_list and lose its active reference. Hence we do not need 2543 * to explicitly hold another reference here. 2544 */ 2545 request->batch_obj = obj; 2546 2547 request->emitted_jiffies = jiffies; 2548 ring->last_submitted_seqno = request->seqno; 2549 list_add_tail(&request->list, &ring->request_list); 2550 2551 trace_i915_gem_request_add(request); 2552 2553 i915_queue_hangcheck(ring->dev); 2554 2555 queue_delayed_work(dev_priv->wq, 2556 &dev_priv->mm.retire_work, 2557 round_jiffies_up_relative(HZ)); 2558 intel_mark_busy(dev_priv->dev); 2559 2560 /* Sanity check that the reserved size was large enough. */ 2561 intel_ring_reserved_space_end(ringbuf); 2562 } 2563 2564 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2565 const struct intel_context *ctx) 2566 { 2567 unsigned long elapsed; 2568 2569 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2570 2571 if (ctx->hang_stats.banned) 2572 return true; 2573 2574 if (ctx->hang_stats.ban_period_seconds && 2575 elapsed <= ctx->hang_stats.ban_period_seconds) { 2576 if (!i915_gem_context_is_default(ctx)) { 2577 DRM_DEBUG("context hanging too fast, banning!\n"); 2578 return true; 2579 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2580 if (i915_stop_ring_allow_warn(dev_priv)) 2581 DRM_ERROR("gpu hanging too fast, banning!\n"); 2582 return true; 2583 } 2584 } 2585 2586 return false; 2587 } 2588 2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2590 struct intel_context *ctx, 2591 const bool guilty) 2592 { 2593 struct i915_ctx_hang_stats *hs; 2594 2595 if (WARN_ON(!ctx)) 2596 return; 2597 2598 hs = &ctx->hang_stats; 2599 2600 if (guilty) { 2601 hs->banned = i915_context_is_banned(dev_priv, ctx); 2602 hs->batch_active++; 2603 hs->guilty_ts = get_seconds(); 2604 } else { 2605 hs->batch_pending++; 2606 } 2607 } 2608 2609 void i915_gem_request_free(struct kref *req_ref) 2610 { 2611 struct drm_i915_gem_request *req = container_of(req_ref, 2612 typeof(*req), ref); 2613 struct intel_context *ctx = req->ctx; 2614 2615 if (req->file_priv) 2616 i915_gem_request_remove_from_client(req); 2617 2618 if (ctx) { 2619 if (i915.enable_execlists) { 2620 if (ctx != req->ring->default_context) 2621 intel_lr_context_unpin(req); 2622 } 2623 2624 i915_gem_context_unreference(ctx); 2625 } 2626 2627 kmem_cache_free(req->i915->requests, req); 2628 } 2629 2630 int i915_gem_request_alloc(struct intel_engine_cs *ring, 2631 struct intel_context *ctx, 2632 struct drm_i915_gem_request **req_out) 2633 { 2634 struct drm_i915_private *dev_priv = to_i915(ring->dev); 2635 struct drm_i915_gem_request *req; 2636 int ret; 2637 2638 if (!req_out) 2639 return -EINVAL; 2640 2641 *req_out = NULL; 2642 2643 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL); 2644 if (req == NULL) 2645 return -ENOMEM; 2646 2647 ret = i915_gem_get_seqno(ring->dev, &req->seqno); 2648 if (ret) 2649 goto err; 2650 2651 kref_init(&req->ref); 2652 req->i915 = dev_priv; 2653 req->ring = ring; 2654 req->ctx = ctx; 2655 i915_gem_context_reference(req->ctx); 2656 2657 if (i915.enable_execlists) 2658 ret = intel_logical_ring_alloc_request_extras(req); 2659 else 2660 ret = intel_ring_alloc_request_extras(req); 2661 if (ret) { 2662 i915_gem_context_unreference(req->ctx); 2663 goto err; 2664 } 2665 2666 /* 2667 * Reserve space in the ring buffer for all the commands required to 2668 * eventually emit this request. This is to guarantee that the 2669 * i915_add_request() call can't fail. Note that the reserve may need 2670 * to be redone if the request is not actually submitted straight 2671 * away, e.g. because a GPU scheduler has deferred it. 2672 */ 2673 if (i915.enable_execlists) 2674 ret = intel_logical_ring_reserve_space(req); 2675 else 2676 ret = intel_ring_reserve_space(req); 2677 if (ret) { 2678 /* 2679 * At this point, the request is fully allocated even if not 2680 * fully prepared. Thus it can be cleaned up using the proper 2681 * free code. 2682 */ 2683 i915_gem_request_cancel(req); 2684 return ret; 2685 } 2686 2687 *req_out = req; 2688 return 0; 2689 2690 err: 2691 kmem_cache_free(dev_priv->requests, req); 2692 return ret; 2693 } 2694 2695 void i915_gem_request_cancel(struct drm_i915_gem_request *req) 2696 { 2697 intel_ring_reserved_space_cancel(req->ringbuf); 2698 2699 i915_gem_request_unreference(req); 2700 } 2701 2702 struct drm_i915_gem_request * 2703 i915_gem_find_active_request(struct intel_engine_cs *ring) 2704 { 2705 struct drm_i915_gem_request *request; 2706 2707 list_for_each_entry(request, &ring->request_list, list) { 2708 if (i915_gem_request_completed(request, false)) 2709 continue; 2710 2711 return request; 2712 } 2713 2714 return NULL; 2715 } 2716 2717 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2718 struct intel_engine_cs *ring) 2719 { 2720 struct drm_i915_gem_request *request; 2721 bool ring_hung; 2722 2723 request = i915_gem_find_active_request(ring); 2724 2725 if (request == NULL) 2726 return; 2727 2728 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2729 2730 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2731 2732 list_for_each_entry_continue(request, &ring->request_list, list) 2733 i915_set_reset_status(dev_priv, request->ctx, false); 2734 } 2735 2736 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2737 struct intel_engine_cs *ring) 2738 { 2739 while (!list_empty(&ring->active_list)) { 2740 struct drm_i915_gem_object *obj; 2741 2742 obj = list_first_entry(&ring->active_list, 2743 struct drm_i915_gem_object, 2744 ring_list[ring->id]); 2745 2746 i915_gem_object_retire__read(obj, ring->id); 2747 } 2748 2749 /* 2750 * Clear the execlists queue up before freeing the requests, as those 2751 * are the ones that keep the context and ringbuffer backing objects 2752 * pinned in place. 2753 */ 2754 while (!list_empty(&ring->execlist_queue)) { 2755 struct drm_i915_gem_request *submit_req; 2756 2757 submit_req = list_first_entry(&ring->execlist_queue, 2758 struct drm_i915_gem_request, 2759 execlist_link); 2760 list_del(&submit_req->execlist_link); 2761 2762 if (submit_req->ctx != ring->default_context) 2763 intel_lr_context_unpin(submit_req); 2764 2765 i915_gem_request_unreference(submit_req); 2766 } 2767 2768 /* 2769 * We must free the requests after all the corresponding objects have 2770 * been moved off active lists. Which is the same order as the normal 2771 * retire_requests function does. This is important if object hold 2772 * implicit references on things like e.g. ppgtt address spaces through 2773 * the request. 2774 */ 2775 while (!list_empty(&ring->request_list)) { 2776 struct drm_i915_gem_request *request; 2777 2778 request = list_first_entry(&ring->request_list, 2779 struct drm_i915_gem_request, 2780 list); 2781 2782 i915_gem_request_retire(request); 2783 } 2784 } 2785 2786 void i915_gem_reset(struct drm_device *dev) 2787 { 2788 struct drm_i915_private *dev_priv = dev->dev_private; 2789 struct intel_engine_cs *ring; 2790 int i; 2791 2792 /* 2793 * Before we free the objects from the requests, we need to inspect 2794 * them for finding the guilty party. As the requests only borrow 2795 * their reference to the objects, the inspection must be done first. 2796 */ 2797 for_each_ring(ring, dev_priv, i) 2798 i915_gem_reset_ring_status(dev_priv, ring); 2799 2800 for_each_ring(ring, dev_priv, i) 2801 i915_gem_reset_ring_cleanup(dev_priv, ring); 2802 2803 i915_gem_context_reset(dev); 2804 2805 i915_gem_restore_fences(dev); 2806 2807 WARN_ON(i915_verify_lists(dev)); 2808 } 2809 2810 /** 2811 * This function clears the request list as sequence numbers are passed. 2812 */ 2813 void 2814 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2815 { 2816 WARN_ON(i915_verify_lists(ring->dev)); 2817 2818 /* Retire requests first as we use it above for the early return. 2819 * If we retire requests last, we may use a later seqno and so clear 2820 * the requests lists without clearing the active list, leading to 2821 * confusion. 2822 */ 2823 while (!list_empty(&ring->request_list)) { 2824 struct drm_i915_gem_request *request; 2825 2826 request = list_first_entry(&ring->request_list, 2827 struct drm_i915_gem_request, 2828 list); 2829 2830 if (!i915_gem_request_completed(request, true)) 2831 break; 2832 2833 i915_gem_request_retire(request); 2834 } 2835 2836 /* Move any buffers on the active list that are no longer referenced 2837 * by the ringbuffer to the flushing/inactive lists as appropriate, 2838 * before we free the context associated with the requests. 2839 */ 2840 while (!list_empty(&ring->active_list)) { 2841 struct drm_i915_gem_object *obj; 2842 2843 obj = list_first_entry(&ring->active_list, 2844 struct drm_i915_gem_object, 2845 ring_list[ring->id]); 2846 2847 if (!list_empty(&obj->last_read_req[ring->id]->list)) 2848 break; 2849 2850 i915_gem_object_retire__read(obj, ring->id); 2851 } 2852 2853 if (unlikely(ring->trace_irq_req && 2854 i915_gem_request_completed(ring->trace_irq_req, true))) { 2855 ring->irq_put(ring); 2856 i915_gem_request_assign(&ring->trace_irq_req, NULL); 2857 } 2858 2859 WARN_ON(i915_verify_lists(ring->dev)); 2860 } 2861 2862 bool 2863 i915_gem_retire_requests(struct drm_device *dev) 2864 { 2865 struct drm_i915_private *dev_priv = dev->dev_private; 2866 struct intel_engine_cs *ring; 2867 bool idle = true; 2868 int i; 2869 2870 for_each_ring(ring, dev_priv, i) { 2871 i915_gem_retire_requests_ring(ring); 2872 idle &= list_empty(&ring->request_list); 2873 if (i915.enable_execlists) { 2874 unsigned long flags; 2875 2876 spin_lock_irqsave(&ring->execlist_lock, flags); 2877 idle &= list_empty(&ring->execlist_queue); 2878 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2879 2880 intel_execlists_retire_requests(ring); 2881 } 2882 } 2883 2884 if (idle) 2885 mod_delayed_work(dev_priv->wq, 2886 &dev_priv->mm.idle_work, 2887 msecs_to_jiffies(100)); 2888 2889 return idle; 2890 } 2891 2892 static void 2893 i915_gem_retire_work_handler(struct work_struct *work) 2894 { 2895 struct drm_i915_private *dev_priv = 2896 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2897 struct drm_device *dev = dev_priv->dev; 2898 bool idle; 2899 2900 /* Come back later if the device is busy... */ 2901 idle = false; 2902 if (mutex_trylock(&dev->struct_mutex)) { 2903 idle = i915_gem_retire_requests(dev); 2904 mutex_unlock(&dev->struct_mutex); 2905 } 2906 if (!idle) 2907 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2908 round_jiffies_up_relative(HZ)); 2909 } 2910 2911 static void 2912 i915_gem_idle_work_handler(struct work_struct *work) 2913 { 2914 struct drm_i915_private *dev_priv = 2915 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2916 struct drm_device *dev = dev_priv->dev; 2917 struct intel_engine_cs *ring; 2918 int i; 2919 2920 for_each_ring(ring, dev_priv, i) 2921 if (!list_empty(&ring->request_list)) 2922 return; 2923 2924 intel_mark_idle(dev); 2925 2926 if (mutex_trylock(&dev->struct_mutex)) { 2927 struct intel_engine_cs *ring; 2928 int i; 2929 2930 for_each_ring(ring, dev_priv, i) 2931 i915_gem_batch_pool_fini(&ring->batch_pool); 2932 2933 mutex_unlock(&dev->struct_mutex); 2934 } 2935 } 2936 2937 /** 2938 * Ensures that an object will eventually get non-busy by flushing any required 2939 * write domains, emitting any outstanding lazy request and retiring and 2940 * completed requests. 2941 */ 2942 static int 2943 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2944 { 2945 int i; 2946 2947 if (!obj->active) 2948 return 0; 2949 2950 for (i = 0; i < I915_NUM_RINGS; i++) { 2951 struct drm_i915_gem_request *req; 2952 2953 req = obj->last_read_req[i]; 2954 if (req == NULL) 2955 continue; 2956 2957 if (list_empty(&req->list)) 2958 goto retire; 2959 2960 if (i915_gem_request_completed(req, true)) { 2961 __i915_gem_request_retire__upto(req); 2962 retire: 2963 i915_gem_object_retire__read(obj, i); 2964 } 2965 } 2966 2967 return 0; 2968 } 2969 2970 /** 2971 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2972 * @DRM_IOCTL_ARGS: standard ioctl arguments 2973 * 2974 * Returns 0 if successful, else an error is returned with the remaining time in 2975 * the timeout parameter. 2976 * -ETIME: object is still busy after timeout 2977 * -ERESTARTSYS: signal interrupted the wait 2978 * -ENONENT: object doesn't exist 2979 * Also possible, but rare: 2980 * -EAGAIN: GPU wedged 2981 * -ENOMEM: damn 2982 * -ENODEV: Internal IRQ fail 2983 * -E?: The add request failed 2984 * 2985 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2986 * non-zero timeout parameter the wait ioctl will wait for the given number of 2987 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2988 * without holding struct_mutex the object may become re-busied before this 2989 * function completes. A similar but shorter * race condition exists in the busy 2990 * ioctl 2991 */ 2992 int 2993 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2994 { 2995 struct drm_i915_private *dev_priv = dev->dev_private; 2996 struct drm_i915_gem_wait *args = data; 2997 struct drm_i915_gem_object *obj; 2998 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 2999 unsigned reset_counter; 3000 int i, n = 0; 3001 int ret; 3002 3003 if (args->flags != 0) 3004 return -EINVAL; 3005 3006 ret = i915_mutex_lock_interruptible(dev); 3007 if (ret) 3008 return ret; 3009 3010 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 3011 if (&obj->base == NULL) { 3012 mutex_unlock(&dev->struct_mutex); 3013 return -ENOENT; 3014 } 3015 3016 /* Need to make sure the object gets inactive eventually. */ 3017 ret = i915_gem_object_flush_active(obj); 3018 if (ret) 3019 goto out; 3020 3021 if (!obj->active) 3022 goto out; 3023 3024 /* Do this after OLR check to make sure we make forward progress polling 3025 * on this IOCTL with a timeout == 0 (like busy ioctl) 3026 */ 3027 if (args->timeout_ns == 0) { 3028 ret = -ETIME; 3029 goto out; 3030 } 3031 3032 drm_gem_object_unreference(&obj->base); 3033 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3034 3035 for (i = 0; i < I915_NUM_RINGS; i++) { 3036 if (obj->last_read_req[i] == NULL) 3037 continue; 3038 3039 req[n++] = i915_gem_request_reference(obj->last_read_req[i]); 3040 } 3041 3042 mutex_unlock(&dev->struct_mutex); 3043 3044 for (i = 0; i < n; i++) { 3045 if (ret == 0) 3046 ret = __i915_wait_request(req[i], reset_counter, true, 3047 args->timeout_ns > 0 ? &args->timeout_ns : NULL, 3048 file->driver_priv); 3049 i915_gem_request_unreference__unlocked(req[i]); 3050 } 3051 return ret; 3052 3053 out: 3054 drm_gem_object_unreference(&obj->base); 3055 mutex_unlock(&dev->struct_mutex); 3056 return ret; 3057 } 3058 3059 static int 3060 __i915_gem_object_sync(struct drm_i915_gem_object *obj, 3061 struct intel_engine_cs *to, 3062 struct drm_i915_gem_request *from_req, 3063 struct drm_i915_gem_request **to_req) 3064 { 3065 struct intel_engine_cs *from; 3066 int ret; 3067 3068 from = i915_gem_request_get_ring(from_req); 3069 if (to == from) 3070 return 0; 3071 3072 if (i915_gem_request_completed(from_req, true)) 3073 return 0; 3074 3075 if (!i915_semaphore_is_enabled(obj->base.dev)) { 3076 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3077 ret = __i915_wait_request(from_req, 3078 atomic_read(&i915->gpu_error.reset_counter), 3079 i915->mm.interruptible, 3080 NULL, 3081 &i915->rps.semaphores); 3082 if (ret) 3083 return ret; 3084 3085 i915_gem_object_retire_request(obj, from_req); 3086 } else { 3087 int idx = intel_ring_sync_index(from, to); 3088 u32 seqno = i915_gem_request_get_seqno(from_req); 3089 3090 WARN_ON(!to_req); 3091 3092 if (seqno <= from->semaphore.sync_seqno[idx]) 3093 return 0; 3094 3095 if (*to_req == NULL) { 3096 ret = i915_gem_request_alloc(to, to->default_context, to_req); 3097 if (ret) 3098 return ret; 3099 } 3100 3101 trace_i915_gem_ring_sync_to(*to_req, from, from_req); 3102 ret = to->semaphore.sync_to(*to_req, from, seqno); 3103 if (ret) 3104 return ret; 3105 3106 /* We use last_read_req because sync_to() 3107 * might have just caused seqno wrap under 3108 * the radar. 3109 */ 3110 from->semaphore.sync_seqno[idx] = 3111 i915_gem_request_get_seqno(obj->last_read_req[from->id]); 3112 } 3113 3114 return 0; 3115 } 3116 3117 /** 3118 * i915_gem_object_sync - sync an object to a ring. 3119 * 3120 * @obj: object which may be in use on another ring. 3121 * @to: ring we wish to use the object on. May be NULL. 3122 * @to_req: request we wish to use the object for. See below. 3123 * This will be allocated and returned if a request is 3124 * required but not passed in. 3125 * 3126 * This code is meant to abstract object synchronization with the GPU. 3127 * Calling with NULL implies synchronizing the object with the CPU 3128 * rather than a particular GPU ring. Conceptually we serialise writes 3129 * between engines inside the GPU. We only allow one engine to write 3130 * into a buffer at any time, but multiple readers. To ensure each has 3131 * a coherent view of memory, we must: 3132 * 3133 * - If there is an outstanding write request to the object, the new 3134 * request must wait for it to complete (either CPU or in hw, requests 3135 * on the same ring will be naturally ordered). 3136 * 3137 * - If we are a write request (pending_write_domain is set), the new 3138 * request must wait for outstanding read requests to complete. 3139 * 3140 * For CPU synchronisation (NULL to) no request is required. For syncing with 3141 * rings to_req must be non-NULL. However, a request does not have to be 3142 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a 3143 * request will be allocated automatically and returned through *to_req. Note 3144 * that it is not guaranteed that commands will be emitted (because the system 3145 * might already be idle). Hence there is no need to create a request that 3146 * might never have any work submitted. Note further that if a request is 3147 * returned in *to_req, it is the responsibility of the caller to submit 3148 * that request (after potentially adding more work to it). 3149 * 3150 * Returns 0 if successful, else propagates up the lower layer error. 3151 */ 3152 int 3153 i915_gem_object_sync(struct drm_i915_gem_object *obj, 3154 struct intel_engine_cs *to, 3155 struct drm_i915_gem_request **to_req) 3156 { 3157 const bool readonly = obj->base.pending_write_domain == 0; 3158 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 3159 int ret, i, n; 3160 3161 if (!obj->active) 3162 return 0; 3163 3164 if (to == NULL) 3165 return i915_gem_object_wait_rendering(obj, readonly); 3166 3167 n = 0; 3168 if (readonly) { 3169 if (obj->last_write_req) 3170 req[n++] = obj->last_write_req; 3171 } else { 3172 for (i = 0; i < I915_NUM_RINGS; i++) 3173 if (obj->last_read_req[i]) 3174 req[n++] = obj->last_read_req[i]; 3175 } 3176 for (i = 0; i < n; i++) { 3177 ret = __i915_gem_object_sync(obj, to, req[i], to_req); 3178 if (ret) 3179 return ret; 3180 } 3181 3182 return 0; 3183 } 3184 3185 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 3186 { 3187 u32 old_write_domain, old_read_domains; 3188 3189 /* Force a pagefault for domain tracking on next user access */ 3190 i915_gem_release_mmap(obj); 3191 3192 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3193 return; 3194 3195 /* Wait for any direct GTT access to complete */ 3196 mb(); 3197 3198 old_read_domains = obj->base.read_domains; 3199 old_write_domain = obj->base.write_domain; 3200 3201 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 3202 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 3203 3204 trace_i915_gem_object_change_domain(obj, 3205 old_read_domains, 3206 old_write_domain); 3207 } 3208 3209 int i915_vma_unbind(struct i915_vma *vma) 3210 { 3211 struct drm_i915_gem_object *obj = vma->obj; 3212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3213 int ret; 3214 3215 if (list_empty(&vma->vma_link)) 3216 return 0; 3217 3218 if (!drm_mm_node_allocated(&vma->node)) { 3219 i915_gem_vma_destroy(vma); 3220 return 0; 3221 } 3222 3223 if (vma->pin_count) 3224 return -EBUSY; 3225 3226 BUG_ON(obj->pages == NULL); 3227 3228 ret = i915_gem_object_wait_rendering(obj, false); 3229 if (ret) 3230 return ret; 3231 /* Continue on if we fail due to EIO, the GPU is hung so we 3232 * should be safe and we need to cleanup or else we might 3233 * cause memory corruption through use-after-free. 3234 */ 3235 3236 if (i915_is_ggtt(vma->vm) && 3237 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3238 i915_gem_object_finish_gtt(obj); 3239 3240 /* release the fence reg _after_ flushing */ 3241 ret = i915_gem_object_put_fence(obj); 3242 if (ret) 3243 return ret; 3244 } 3245 3246 trace_i915_vma_unbind(vma); 3247 3248 vma->vm->unbind_vma(vma); 3249 vma->bound = 0; 3250 3251 list_del_init(&vma->mm_list); 3252 if (i915_is_ggtt(vma->vm)) { 3253 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3254 obj->map_and_fenceable = false; 3255 } else if (vma->ggtt_view.pages) { 3256 sg_free_table(vma->ggtt_view.pages); 3257 kfree(vma->ggtt_view.pages); 3258 } 3259 vma->ggtt_view.pages = NULL; 3260 } 3261 3262 drm_mm_remove_node(&vma->node); 3263 i915_gem_vma_destroy(vma); 3264 3265 /* Since the unbound list is global, only move to that list if 3266 * no more VMAs exist. */ 3267 if (list_empty(&obj->vma_list)) 3268 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 3269 3270 /* And finally now the object is completely decoupled from this vma, 3271 * we can drop its hold on the backing storage and allow it to be 3272 * reaped by the shrinker. 3273 */ 3274 i915_gem_object_unpin_pages(obj); 3275 3276 return 0; 3277 } 3278 3279 int i915_gpu_idle(struct drm_device *dev) 3280 { 3281 struct drm_i915_private *dev_priv = dev->dev_private; 3282 struct intel_engine_cs *ring; 3283 int ret, i; 3284 3285 /* Flush everything onto the inactive list. */ 3286 for_each_ring(ring, dev_priv, i) { 3287 if (!i915.enable_execlists) { 3288 struct drm_i915_gem_request *req; 3289 3290 ret = i915_gem_request_alloc(ring, ring->default_context, &req); 3291 if (ret) 3292 return ret; 3293 3294 ret = i915_switch_context(req); 3295 if (ret) { 3296 i915_gem_request_cancel(req); 3297 return ret; 3298 } 3299 3300 i915_add_request_no_flush(req); 3301 } 3302 3303 ret = intel_ring_idle(ring); 3304 if (ret) 3305 return ret; 3306 } 3307 3308 WARN_ON(i915_verify_lists(dev)); 3309 return 0; 3310 } 3311 3312 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 3313 unsigned long cache_level) 3314 { 3315 struct drm_mm_node *gtt_space = &vma->node; 3316 struct drm_mm_node *other; 3317 3318 /* 3319 * On some machines we have to be careful when putting differing types 3320 * of snoopable memory together to avoid the prefetcher crossing memory 3321 * domains and dying. During vm initialisation, we decide whether or not 3322 * these constraints apply and set the drm_mm.color_adjust 3323 * appropriately. 3324 */ 3325 if (vma->vm->mm.color_adjust == NULL) 3326 return true; 3327 3328 if (!drm_mm_node_allocated(gtt_space)) 3329 return true; 3330 3331 if (list_empty(>t_space->node_list)) 3332 return true; 3333 3334 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3335 if (other->allocated && !other->hole_follows && other->color != cache_level) 3336 return false; 3337 3338 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3339 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3340 return false; 3341 3342 return true; 3343 } 3344 3345 /** 3346 * Finds free space in the GTT aperture and binds the object or a view of it 3347 * there. 3348 */ 3349 static struct i915_vma * 3350 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3351 struct i915_address_space *vm, 3352 const struct i915_ggtt_view *ggtt_view, 3353 unsigned alignment, 3354 uint64_t flags) 3355 { 3356 struct drm_device *dev = obj->base.dev; 3357 struct drm_i915_private *dev_priv = dev->dev_private; 3358 u32 size, fence_size, fence_alignment, unfenced_alignment; 3359 u64 start = 3360 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3361 u64 end = 3362 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3363 struct i915_vma *vma; 3364 int ret; 3365 3366 if (i915_is_ggtt(vm)) { 3367 u32 view_size; 3368 3369 if (WARN_ON(!ggtt_view)) 3370 return ERR_PTR(-EINVAL); 3371 3372 view_size = i915_ggtt_view_size(obj, ggtt_view); 3373 3374 fence_size = i915_gem_get_gtt_size(dev, 3375 view_size, 3376 obj->tiling_mode); 3377 fence_alignment = i915_gem_get_gtt_alignment(dev, 3378 view_size, 3379 obj->tiling_mode, 3380 true); 3381 unfenced_alignment = i915_gem_get_gtt_alignment(dev, 3382 view_size, 3383 obj->tiling_mode, 3384 false); 3385 size = flags & PIN_MAPPABLE ? fence_size : view_size; 3386 } else { 3387 fence_size = i915_gem_get_gtt_size(dev, 3388 obj->base.size, 3389 obj->tiling_mode); 3390 fence_alignment = i915_gem_get_gtt_alignment(dev, 3391 obj->base.size, 3392 obj->tiling_mode, 3393 true); 3394 unfenced_alignment = 3395 i915_gem_get_gtt_alignment(dev, 3396 obj->base.size, 3397 obj->tiling_mode, 3398 false); 3399 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3400 } 3401 3402 if (alignment == 0) 3403 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3404 unfenced_alignment; 3405 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3406 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n", 3407 ggtt_view ? ggtt_view->type : 0, 3408 alignment); 3409 return ERR_PTR(-EINVAL); 3410 } 3411 3412 /* If binding the object/GGTT view requires more space than the entire 3413 * aperture has, reject it early before evicting everything in a vain 3414 * attempt to find space. 3415 */ 3416 if (size > end) { 3417 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n", 3418 ggtt_view ? ggtt_view->type : 0, 3419 size, 3420 flags & PIN_MAPPABLE ? "mappable" : "total", 3421 end); 3422 return ERR_PTR(-E2BIG); 3423 } 3424 3425 ret = i915_gem_object_get_pages(obj); 3426 if (ret) 3427 return ERR_PTR(ret); 3428 3429 i915_gem_object_pin_pages(obj); 3430 3431 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) : 3432 i915_gem_obj_lookup_or_create_vma(obj, vm); 3433 3434 if (IS_ERR(vma)) 3435 goto err_unpin; 3436 3437 search_free: 3438 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3439 size, alignment, 3440 obj->cache_level, 3441 start, end, 3442 DRM_MM_SEARCH_DEFAULT, 3443 DRM_MM_CREATE_DEFAULT); 3444 if (ret) { 3445 ret = i915_gem_evict_something(dev, vm, size, alignment, 3446 obj->cache_level, 3447 start, end, 3448 flags); 3449 if (ret == 0) 3450 goto search_free; 3451 3452 goto err_free_vma; 3453 } 3454 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { 3455 ret = -EINVAL; 3456 goto err_remove_node; 3457 } 3458 3459 trace_i915_vma_bind(vma, flags); 3460 ret = i915_vma_bind(vma, obj->cache_level, flags); 3461 if (ret) 3462 goto err_remove_node; 3463 3464 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3465 list_add_tail(&vma->mm_list, &vm->inactive_list); 3466 3467 return vma; 3468 3469 err_remove_node: 3470 drm_mm_remove_node(&vma->node); 3471 err_free_vma: 3472 i915_gem_vma_destroy(vma); 3473 vma = ERR_PTR(ret); 3474 err_unpin: 3475 i915_gem_object_unpin_pages(obj); 3476 return vma; 3477 } 3478 3479 bool 3480 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3481 bool force) 3482 { 3483 /* If we don't have a page list set up, then we're not pinned 3484 * to GPU, and we can ignore the cache flush because it'll happen 3485 * again at bind time. 3486 */ 3487 if (obj->pages == NULL) 3488 return false; 3489 3490 /* 3491 * Stolen memory is always coherent with the GPU as it is explicitly 3492 * marked as wc by the system, or the system is cache-coherent. 3493 */ 3494 if (obj->stolen || obj->phys_handle) 3495 return false; 3496 3497 /* If the GPU is snooping the contents of the CPU cache, 3498 * we do not need to manually clear the CPU cache lines. However, 3499 * the caches are only snooped when the render cache is 3500 * flushed/invalidated. As we always have to emit invalidations 3501 * and flushes when moving into and out of the RENDER domain, correct 3502 * snooping behaviour occurs naturally as the result of our domain 3503 * tracking. 3504 */ 3505 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { 3506 obj->cache_dirty = true; 3507 return false; 3508 } 3509 3510 trace_i915_gem_object_clflush(obj); 3511 drm_clflush_sg(obj->pages); 3512 obj->cache_dirty = false; 3513 3514 return true; 3515 } 3516 3517 /** Flushes the GTT write domain for the object if it's dirty. */ 3518 static void 3519 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3520 { 3521 uint32_t old_write_domain; 3522 3523 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3524 return; 3525 3526 /* No actual flushing is required for the GTT write domain. Writes 3527 * to it immediately go to main memory as far as we know, so there's 3528 * no chipset flush. It also doesn't land in render cache. 3529 * 3530 * However, we do have to enforce the order so that all writes through 3531 * the GTT land before any writes to the device, such as updates to 3532 * the GATT itself. 3533 */ 3534 wmb(); 3535 3536 old_write_domain = obj->base.write_domain; 3537 obj->base.write_domain = 0; 3538 3539 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 3540 3541 trace_i915_gem_object_change_domain(obj, 3542 obj->base.read_domains, 3543 old_write_domain); 3544 } 3545 3546 /** Flushes the CPU write domain for the object if it's dirty. */ 3547 static void 3548 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3549 { 3550 uint32_t old_write_domain; 3551 3552 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3553 return; 3554 3555 if (i915_gem_clflush_object(obj, obj->pin_display)) 3556 i915_gem_chipset_flush(obj->base.dev); 3557 3558 old_write_domain = obj->base.write_domain; 3559 obj->base.write_domain = 0; 3560 3561 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 3562 3563 trace_i915_gem_object_change_domain(obj, 3564 obj->base.read_domains, 3565 old_write_domain); 3566 } 3567 3568 /** 3569 * Moves a single object to the GTT read, and possibly write domain. 3570 * 3571 * This function returns when the move is complete, including waiting on 3572 * flushes to occur. 3573 */ 3574 int 3575 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3576 { 3577 uint32_t old_write_domain, old_read_domains; 3578 struct i915_vma *vma; 3579 int ret; 3580 3581 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3582 return 0; 3583 3584 ret = i915_gem_object_wait_rendering(obj, !write); 3585 if (ret) 3586 return ret; 3587 3588 /* Flush and acquire obj->pages so that we are coherent through 3589 * direct access in memory with previous cached writes through 3590 * shmemfs and that our cache domain tracking remains valid. 3591 * For example, if the obj->filp was moved to swap without us 3592 * being notified and releasing the pages, we would mistakenly 3593 * continue to assume that the obj remained out of the CPU cached 3594 * domain. 3595 */ 3596 ret = i915_gem_object_get_pages(obj); 3597 if (ret) 3598 return ret; 3599 3600 i915_gem_object_flush_cpu_write_domain(obj); 3601 3602 /* Serialise direct access to this object with the barriers for 3603 * coherent writes from the GPU, by effectively invalidating the 3604 * GTT domain upon first access. 3605 */ 3606 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3607 mb(); 3608 3609 old_write_domain = obj->base.write_domain; 3610 old_read_domains = obj->base.read_domains; 3611 3612 /* It should now be out of any other write domains, and we can update 3613 * the domain values for our changes. 3614 */ 3615 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3616 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3617 if (write) { 3618 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3619 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3620 obj->dirty = 1; 3621 } 3622 3623 trace_i915_gem_object_change_domain(obj, 3624 old_read_domains, 3625 old_write_domain); 3626 3627 /* And bump the LRU for this access */ 3628 vma = i915_gem_obj_to_ggtt(obj); 3629 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active) 3630 list_move_tail(&vma->mm_list, 3631 &to_i915(obj->base.dev)->gtt.base.inactive_list); 3632 3633 return 0; 3634 } 3635 3636 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3637 enum i915_cache_level cache_level) 3638 { 3639 struct drm_device *dev = obj->base.dev; 3640 struct i915_vma *vma, *next; 3641 int ret; 3642 3643 if (obj->cache_level == cache_level) 3644 return 0; 3645 3646 if (i915_gem_obj_is_pinned(obj)) { 3647 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3648 return -EBUSY; 3649 } 3650 3651 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3652 if (!i915_gem_valid_gtt_space(vma, cache_level)) { 3653 ret = i915_vma_unbind(vma); 3654 if (ret) 3655 return ret; 3656 } 3657 } 3658 3659 if (i915_gem_obj_bound_any(obj)) { 3660 ret = i915_gem_object_wait_rendering(obj, false); 3661 if (ret) 3662 return ret; 3663 3664 i915_gem_object_finish_gtt(obj); 3665 3666 /* Before SandyBridge, you could not use tiling or fence 3667 * registers with snooped memory, so relinquish any fences 3668 * currently pointing to our region in the aperture. 3669 */ 3670 if (INTEL_INFO(dev)->gen < 6) { 3671 ret = i915_gem_object_put_fence(obj); 3672 if (ret) 3673 return ret; 3674 } 3675 3676 list_for_each_entry(vma, &obj->vma_list, vma_link) 3677 if (drm_mm_node_allocated(&vma->node)) { 3678 ret = i915_vma_bind(vma, cache_level, 3679 PIN_UPDATE); 3680 if (ret) 3681 return ret; 3682 } 3683 } 3684 3685 list_for_each_entry(vma, &obj->vma_list, vma_link) 3686 vma->node.color = cache_level; 3687 obj->cache_level = cache_level; 3688 3689 if (obj->cache_dirty && 3690 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 3691 cpu_write_needs_clflush(obj)) { 3692 if (i915_gem_clflush_object(obj, true)) 3693 i915_gem_chipset_flush(obj->base.dev); 3694 } 3695 3696 return 0; 3697 } 3698 3699 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3700 struct drm_file *file) 3701 { 3702 struct drm_i915_gem_caching *args = data; 3703 struct drm_i915_gem_object *obj; 3704 3705 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3706 if (&obj->base == NULL) 3707 return -ENOENT; 3708 3709 switch (obj->cache_level) { 3710 case I915_CACHE_LLC: 3711 case I915_CACHE_L3_LLC: 3712 args->caching = I915_CACHING_CACHED; 3713 break; 3714 3715 case I915_CACHE_WT: 3716 args->caching = I915_CACHING_DISPLAY; 3717 break; 3718 3719 default: 3720 args->caching = I915_CACHING_NONE; 3721 break; 3722 } 3723 3724 drm_gem_object_unreference_unlocked(&obj->base); 3725 return 0; 3726 } 3727 3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3729 struct drm_file *file) 3730 { 3731 struct drm_i915_gem_caching *args = data; 3732 struct drm_i915_gem_object *obj; 3733 enum i915_cache_level level; 3734 int ret; 3735 3736 switch (args->caching) { 3737 case I915_CACHING_NONE: 3738 level = I915_CACHE_NONE; 3739 break; 3740 case I915_CACHING_CACHED: 3741 level = I915_CACHE_LLC; 3742 break; 3743 case I915_CACHING_DISPLAY: 3744 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3745 break; 3746 default: 3747 return -EINVAL; 3748 } 3749 3750 ret = i915_mutex_lock_interruptible(dev); 3751 if (ret) 3752 return ret; 3753 3754 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3755 if (&obj->base == NULL) { 3756 ret = -ENOENT; 3757 goto unlock; 3758 } 3759 3760 ret = i915_gem_object_set_cache_level(obj, level); 3761 3762 drm_gem_object_unreference(&obj->base); 3763 unlock: 3764 mutex_unlock(&dev->struct_mutex); 3765 return ret; 3766 } 3767 3768 /* 3769 * Prepare buffer for display plane (scanout, cursors, etc). 3770 * Can be called from an uninterruptible phase (modesetting) and allows 3771 * any flushes to be pipelined (for pageflips). 3772 */ 3773 int 3774 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3775 u32 alignment, 3776 struct intel_engine_cs *pipelined, 3777 struct drm_i915_gem_request **pipelined_request, 3778 const struct i915_ggtt_view *view) 3779 { 3780 u32 old_read_domains, old_write_domain; 3781 int ret; 3782 3783 ret = i915_gem_object_sync(obj, pipelined, pipelined_request); 3784 if (ret) 3785 return ret; 3786 3787 /* Mark the pin_display early so that we account for the 3788 * display coherency whilst setting up the cache domains. 3789 */ 3790 obj->pin_display++; 3791 3792 /* The display engine is not coherent with the LLC cache on gen6. As 3793 * a result, we make sure that the pinning that is about to occur is 3794 * done with uncached PTEs. This is lowest common denominator for all 3795 * chipsets. 3796 * 3797 * However for gen6+, we could do better by using the GFDT bit instead 3798 * of uncaching, which would allow us to flush all the LLC-cached data 3799 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3800 */ 3801 ret = i915_gem_object_set_cache_level(obj, 3802 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3803 if (ret) 3804 goto err_unpin_display; 3805 3806 /* As the user may map the buffer once pinned in the display plane 3807 * (e.g. libkms for the bootup splash), we have to ensure that we 3808 * always use map_and_fenceable for all scanout buffers. 3809 */ 3810 ret = i915_gem_object_ggtt_pin(obj, view, alignment, 3811 view->type == I915_GGTT_VIEW_NORMAL ? 3812 PIN_MAPPABLE : 0); 3813 if (ret) 3814 goto err_unpin_display; 3815 3816 i915_gem_object_flush_cpu_write_domain(obj); 3817 3818 old_write_domain = obj->base.write_domain; 3819 old_read_domains = obj->base.read_domains; 3820 3821 /* It should now be out of any other write domains, and we can update 3822 * the domain values for our changes. 3823 */ 3824 obj->base.write_domain = 0; 3825 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3826 3827 trace_i915_gem_object_change_domain(obj, 3828 old_read_domains, 3829 old_write_domain); 3830 3831 return 0; 3832 3833 err_unpin_display: 3834 obj->pin_display--; 3835 return ret; 3836 } 3837 3838 void 3839 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3840 const struct i915_ggtt_view *view) 3841 { 3842 if (WARN_ON(obj->pin_display == 0)) 3843 return; 3844 3845 i915_gem_object_ggtt_unpin_view(obj, view); 3846 3847 obj->pin_display--; 3848 } 3849 3850 /** 3851 * Moves a single object to the CPU read, and possibly write domain. 3852 * 3853 * This function returns when the move is complete, including waiting on 3854 * flushes to occur. 3855 */ 3856 int 3857 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3858 { 3859 uint32_t old_write_domain, old_read_domains; 3860 int ret; 3861 3862 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3863 return 0; 3864 3865 ret = i915_gem_object_wait_rendering(obj, !write); 3866 if (ret) 3867 return ret; 3868 3869 i915_gem_object_flush_gtt_write_domain(obj); 3870 3871 old_write_domain = obj->base.write_domain; 3872 old_read_domains = obj->base.read_domains; 3873 3874 /* Flush the CPU cache if it's still invalid. */ 3875 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3876 i915_gem_clflush_object(obj, false); 3877 3878 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3879 } 3880 3881 /* It should now be out of any other write domains, and we can update 3882 * the domain values for our changes. 3883 */ 3884 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3885 3886 /* If we're writing through the CPU, then the GPU read domains will 3887 * need to be invalidated at next use. 3888 */ 3889 if (write) { 3890 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3891 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3892 } 3893 3894 trace_i915_gem_object_change_domain(obj, 3895 old_read_domains, 3896 old_write_domain); 3897 3898 return 0; 3899 } 3900 3901 /* Throttle our rendering by waiting until the ring has completed our requests 3902 * emitted over 20 msec ago. 3903 * 3904 * Note that if we were to use the current jiffies each time around the loop, 3905 * we wouldn't escape the function with any frames outstanding if the time to 3906 * render a frame was over 20ms. 3907 * 3908 * This should get us reasonable parallelism between CPU and GPU but also 3909 * relatively low latency when blocking on a particular request to finish. 3910 */ 3911 static int 3912 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3913 { 3914 struct drm_i915_private *dev_priv = dev->dev_private; 3915 struct drm_i915_file_private *file_priv = file->driver_priv; 3916 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 3917 struct drm_i915_gem_request *request, *target = NULL; 3918 unsigned reset_counter; 3919 int ret; 3920 3921 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3922 if (ret) 3923 return ret; 3924 3925 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3926 if (ret) 3927 return ret; 3928 3929 spin_lock(&file_priv->mm.lock); 3930 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3931 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3932 break; 3933 3934 /* 3935 * Note that the request might not have been submitted yet. 3936 * In which case emitted_jiffies will be zero. 3937 */ 3938 if (!request->emitted_jiffies) 3939 continue; 3940 3941 target = request; 3942 } 3943 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3944 if (target) 3945 i915_gem_request_reference(target); 3946 spin_unlock(&file_priv->mm.lock); 3947 3948 if (target == NULL) 3949 return 0; 3950 3951 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL); 3952 if (ret == 0) 3953 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3954 3955 i915_gem_request_unreference__unlocked(target); 3956 3957 return ret; 3958 } 3959 3960 static bool 3961 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 3962 { 3963 struct drm_i915_gem_object *obj = vma->obj; 3964 3965 if (alignment && 3966 vma->node.start & (alignment - 1)) 3967 return true; 3968 3969 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 3970 return true; 3971 3972 if (flags & PIN_OFFSET_BIAS && 3973 vma->node.start < (flags & PIN_OFFSET_MASK)) 3974 return true; 3975 3976 return false; 3977 } 3978 3979 static int 3980 i915_gem_object_do_pin(struct drm_i915_gem_object *obj, 3981 struct i915_address_space *vm, 3982 const struct i915_ggtt_view *ggtt_view, 3983 uint32_t alignment, 3984 uint64_t flags) 3985 { 3986 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3987 struct i915_vma *vma; 3988 unsigned bound; 3989 int ret; 3990 3991 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 3992 return -ENODEV; 3993 3994 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 3995 return -EINVAL; 3996 3997 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) 3998 return -EINVAL; 3999 4000 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) 4001 return -EINVAL; 4002 4003 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) : 4004 i915_gem_obj_to_vma(obj, vm); 4005 4006 if (IS_ERR(vma)) 4007 return PTR_ERR(vma); 4008 4009 if (vma) { 4010 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4011 return -EBUSY; 4012 4013 if (i915_vma_misplaced(vma, alignment, flags)) { 4014 unsigned long offset; 4015 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) : 4016 i915_gem_obj_offset(obj, vm); 4017 WARN(vma->pin_count, 4018 "bo is already pinned in %s with incorrect alignment:" 4019 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4020 " obj->map_and_fenceable=%d\n", 4021 ggtt_view ? "ggtt" : "ppgtt", 4022 offset, 4023 alignment, 4024 !!(flags & PIN_MAPPABLE), 4025 obj->map_and_fenceable); 4026 ret = i915_vma_unbind(vma); 4027 if (ret) 4028 return ret; 4029 4030 vma = NULL; 4031 } 4032 } 4033 4034 bound = vma ? vma->bound : 0; 4035 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4036 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment, 4037 flags); 4038 if (IS_ERR(vma)) 4039 return PTR_ERR(vma); 4040 } else { 4041 ret = i915_vma_bind(vma, obj->cache_level, flags); 4042 if (ret) 4043 return ret; 4044 } 4045 4046 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL && 4047 (bound ^ vma->bound) & GLOBAL_BIND) { 4048 bool mappable, fenceable; 4049 u32 fence_size, fence_alignment; 4050 4051 fence_size = i915_gem_get_gtt_size(obj->base.dev, 4052 obj->base.size, 4053 obj->tiling_mode); 4054 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, 4055 obj->base.size, 4056 obj->tiling_mode, 4057 true); 4058 4059 fenceable = (vma->node.size == fence_size && 4060 (vma->node.start & (fence_alignment - 1)) == 0); 4061 4062 mappable = (vma->node.start + fence_size <= 4063 dev_priv->gtt.mappable_end); 4064 4065 obj->map_and_fenceable = mappable && fenceable; 4066 4067 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 4068 } 4069 4070 vma->pin_count++; 4071 return 0; 4072 } 4073 4074 int 4075 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4076 struct i915_address_space *vm, 4077 uint32_t alignment, 4078 uint64_t flags) 4079 { 4080 return i915_gem_object_do_pin(obj, vm, 4081 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL, 4082 alignment, flags); 4083 } 4084 4085 int 4086 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4087 const struct i915_ggtt_view *view, 4088 uint32_t alignment, 4089 uint64_t flags) 4090 { 4091 if (WARN_ONCE(!view, "no view specified")) 4092 return -EINVAL; 4093 4094 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view, 4095 alignment, flags | PIN_GLOBAL); 4096 } 4097 4098 void 4099 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 4100 const struct i915_ggtt_view *view) 4101 { 4102 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view); 4103 4104 BUG_ON(!vma); 4105 WARN_ON(vma->pin_count == 0); 4106 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view)); 4107 4108 --vma->pin_count; 4109 } 4110 4111 int 4112 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4113 struct drm_file *file) 4114 { 4115 struct drm_i915_gem_busy *args = data; 4116 struct drm_i915_gem_object *obj; 4117 int ret; 4118 4119 ret = i915_mutex_lock_interruptible(dev); 4120 if (ret) 4121 return ret; 4122 4123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4124 if (&obj->base == NULL) { 4125 ret = -ENOENT; 4126 goto unlock; 4127 } 4128 4129 /* Count all active objects as busy, even if they are currently not used 4130 * by the gpu. Users of this interface expect objects to eventually 4131 * become non-busy without any further actions, therefore emit any 4132 * necessary flushes here. 4133 */ 4134 ret = i915_gem_object_flush_active(obj); 4135 if (ret) 4136 goto unref; 4137 4138 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4139 args->busy = obj->active << 16; 4140 if (obj->last_write_req) 4141 args->busy |= obj->last_write_req->ring->id; 4142 4143 unref: 4144 drm_gem_object_unreference(&obj->base); 4145 unlock: 4146 mutex_unlock(&dev->struct_mutex); 4147 return ret; 4148 } 4149 4150 int 4151 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4152 struct drm_file *file_priv) 4153 { 4154 return i915_gem_ring_throttle(dev, file_priv); 4155 } 4156 4157 int 4158 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4159 struct drm_file *file_priv) 4160 { 4161 struct drm_i915_private *dev_priv = dev->dev_private; 4162 struct drm_i915_gem_madvise *args = data; 4163 struct drm_i915_gem_object *obj; 4164 int ret; 4165 4166 switch (args->madv) { 4167 case I915_MADV_DONTNEED: 4168 case I915_MADV_WILLNEED: 4169 break; 4170 default: 4171 return -EINVAL; 4172 } 4173 4174 ret = i915_mutex_lock_interruptible(dev); 4175 if (ret) 4176 return ret; 4177 4178 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4179 if (&obj->base == NULL) { 4180 ret = -ENOENT; 4181 goto unlock; 4182 } 4183 4184 if (i915_gem_obj_is_pinned(obj)) { 4185 ret = -EINVAL; 4186 goto out; 4187 } 4188 4189 if (obj->pages && 4190 obj->tiling_mode != I915_TILING_NONE && 4191 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4192 if (obj->madv == I915_MADV_WILLNEED) 4193 i915_gem_object_unpin_pages(obj); 4194 if (args->madv == I915_MADV_WILLNEED) 4195 i915_gem_object_pin_pages(obj); 4196 } 4197 4198 if (obj->madv != __I915_MADV_PURGED) 4199 obj->madv = args->madv; 4200 4201 /* if the object is no longer attached, discard its backing storage */ 4202 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) 4203 i915_gem_object_truncate(obj); 4204 4205 args->retained = obj->madv != __I915_MADV_PURGED; 4206 4207 out: 4208 drm_gem_object_unreference(&obj->base); 4209 unlock: 4210 mutex_unlock(&dev->struct_mutex); 4211 return ret; 4212 } 4213 4214 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4215 const struct drm_i915_gem_object_ops *ops) 4216 { 4217 int i; 4218 4219 INIT_LIST_HEAD(&obj->global_list); 4220 for (i = 0; i < I915_NUM_RINGS; i++) 4221 INIT_LIST_HEAD(&obj->ring_list[i]); 4222 INIT_LIST_HEAD(&obj->obj_exec_link); 4223 INIT_LIST_HEAD(&obj->vma_list); 4224 INIT_LIST_HEAD(&obj->batch_pool_link); 4225 4226 obj->ops = ops; 4227 4228 obj->fence_reg = I915_FENCE_REG_NONE; 4229 obj->madv = I915_MADV_WILLNEED; 4230 4231 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4232 } 4233 4234 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4235 .get_pages = i915_gem_object_get_pages_gtt, 4236 .put_pages = i915_gem_object_put_pages_gtt, 4237 }; 4238 4239 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4240 size_t size) 4241 { 4242 struct drm_i915_gem_object *obj; 4243 struct address_space *mapping; 4244 gfp_t mask; 4245 4246 obj = i915_gem_object_alloc(dev); 4247 if (obj == NULL) 4248 return NULL; 4249 4250 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4251 i915_gem_object_free(obj); 4252 return NULL; 4253 } 4254 4255 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4256 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4257 /* 965gm cannot relocate objects above 4GiB. */ 4258 mask &= ~__GFP_HIGHMEM; 4259 mask |= __GFP_DMA32; 4260 } 4261 4262 mapping = file_inode(obj->base.filp)->i_mapping; 4263 mapping_set_gfp_mask(mapping, mask); 4264 4265 i915_gem_object_init(obj, &i915_gem_object_ops); 4266 4267 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4268 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4269 4270 if (HAS_LLC(dev)) { 4271 /* On some devices, we can have the GPU use the LLC (the CPU 4272 * cache) for about a 10% performance improvement 4273 * compared to uncached. Graphics requests other than 4274 * display scanout are coherent with the CPU in 4275 * accessing this cache. This means in this mode we 4276 * don't need to clflush on the CPU side, and on the 4277 * GPU side we only need to flush internal caches to 4278 * get data visible to the CPU. 4279 * 4280 * However, we maintain the display planes as UC, and so 4281 * need to rebind when first used as such. 4282 */ 4283 obj->cache_level = I915_CACHE_LLC; 4284 } else 4285 obj->cache_level = I915_CACHE_NONE; 4286 4287 trace_i915_gem_object_create(obj); 4288 4289 return obj; 4290 } 4291 4292 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4293 { 4294 /* If we are the last user of the backing storage (be it shmemfs 4295 * pages or stolen etc), we know that the pages are going to be 4296 * immediately released. In this case, we can then skip copying 4297 * back the contents from the GPU. 4298 */ 4299 4300 if (obj->madv != I915_MADV_WILLNEED) 4301 return false; 4302 4303 if (obj->base.filp == NULL) 4304 return true; 4305 4306 /* At first glance, this looks racy, but then again so would be 4307 * userspace racing mmap against close. However, the first external 4308 * reference to the filp can only be obtained through the 4309 * i915_gem_mmap_ioctl() which safeguards us against the user 4310 * acquiring such a reference whilst we are in the middle of 4311 * freeing the object. 4312 */ 4313 return atomic_long_read(&obj->base.filp->f_count) == 1; 4314 } 4315 4316 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4317 { 4318 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4319 struct drm_device *dev = obj->base.dev; 4320 struct drm_i915_private *dev_priv = dev->dev_private; 4321 struct i915_vma *vma, *next; 4322 4323 intel_runtime_pm_get(dev_priv); 4324 4325 trace_i915_gem_object_destroy(obj); 4326 4327 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4328 int ret; 4329 4330 vma->pin_count = 0; 4331 ret = i915_vma_unbind(vma); 4332 if (WARN_ON(ret == -ERESTARTSYS)) { 4333 bool was_interruptible; 4334 4335 was_interruptible = dev_priv->mm.interruptible; 4336 dev_priv->mm.interruptible = false; 4337 4338 WARN_ON(i915_vma_unbind(vma)); 4339 4340 dev_priv->mm.interruptible = was_interruptible; 4341 } 4342 } 4343 4344 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4345 * before progressing. */ 4346 if (obj->stolen) 4347 i915_gem_object_unpin_pages(obj); 4348 4349 WARN_ON(obj->frontbuffer_bits); 4350 4351 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4352 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4353 obj->tiling_mode != I915_TILING_NONE) 4354 i915_gem_object_unpin_pages(obj); 4355 4356 if (WARN_ON(obj->pages_pin_count)) 4357 obj->pages_pin_count = 0; 4358 if (discard_backing_storage(obj)) 4359 obj->madv = I915_MADV_DONTNEED; 4360 i915_gem_object_put_pages(obj); 4361 i915_gem_object_free_mmap_offset(obj); 4362 4363 BUG_ON(obj->pages); 4364 4365 if (obj->base.import_attach) 4366 drm_prime_gem_destroy(&obj->base, NULL); 4367 4368 if (obj->ops->release) 4369 obj->ops->release(obj); 4370 4371 drm_gem_object_release(&obj->base); 4372 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4373 4374 kfree(obj->bit_17); 4375 i915_gem_object_free(obj); 4376 4377 intel_runtime_pm_put(dev_priv); 4378 } 4379 4380 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4381 struct i915_address_space *vm) 4382 { 4383 struct i915_vma *vma; 4384 list_for_each_entry(vma, &obj->vma_list, vma_link) { 4385 if (i915_is_ggtt(vma->vm) && 4386 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 4387 continue; 4388 if (vma->vm == vm) 4389 return vma; 4390 } 4391 return NULL; 4392 } 4393 4394 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 4395 const struct i915_ggtt_view *view) 4396 { 4397 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); 4398 struct i915_vma *vma; 4399 4400 if (WARN_ONCE(!view, "no view specified")) 4401 return ERR_PTR(-EINVAL); 4402 4403 list_for_each_entry(vma, &obj->vma_list, vma_link) 4404 if (vma->vm == ggtt && 4405 i915_ggtt_view_equal(&vma->ggtt_view, view)) 4406 return vma; 4407 return NULL; 4408 } 4409 4410 void i915_gem_vma_destroy(struct i915_vma *vma) 4411 { 4412 struct i915_address_space *vm = NULL; 4413 WARN_ON(vma->node.allocated); 4414 4415 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4416 if (!list_empty(&vma->exec_list)) 4417 return; 4418 4419 vm = vma->vm; 4420 4421 if (!i915_is_ggtt(vm)) 4422 i915_ppgtt_put(i915_vm_to_ppgtt(vm)); 4423 4424 list_del(&vma->vma_link); 4425 4426 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma); 4427 } 4428 4429 static void 4430 i915_gem_stop_ringbuffers(struct drm_device *dev) 4431 { 4432 struct drm_i915_private *dev_priv = dev->dev_private; 4433 struct intel_engine_cs *ring; 4434 int i; 4435 4436 for_each_ring(ring, dev_priv, i) 4437 dev_priv->gt.stop_ring(ring); 4438 } 4439 4440 int 4441 i915_gem_suspend(struct drm_device *dev) 4442 { 4443 struct drm_i915_private *dev_priv = dev->dev_private; 4444 int ret = 0; 4445 4446 mutex_lock(&dev->struct_mutex); 4447 ret = i915_gpu_idle(dev); 4448 if (ret) 4449 goto err; 4450 4451 i915_gem_retire_requests(dev); 4452 4453 i915_gem_stop_ringbuffers(dev); 4454 mutex_unlock(&dev->struct_mutex); 4455 4456 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4457 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4458 flush_delayed_work(&dev_priv->mm.idle_work); 4459 4460 /* Assert that we sucessfully flushed all the work and 4461 * reset the GPU back to its idle, low power state. 4462 */ 4463 WARN_ON(dev_priv->mm.busy); 4464 4465 return 0; 4466 4467 err: 4468 mutex_unlock(&dev->struct_mutex); 4469 return ret; 4470 } 4471 4472 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice) 4473 { 4474 struct intel_engine_cs *ring = req->ring; 4475 struct drm_device *dev = ring->dev; 4476 struct drm_i915_private *dev_priv = dev->dev_private; 4477 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4478 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4479 int i, ret; 4480 4481 if (!HAS_L3_DPF(dev) || !remap_info) 4482 return 0; 4483 4484 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3); 4485 if (ret) 4486 return ret; 4487 4488 /* 4489 * Note: We do not worry about the concurrent register cacheline hang 4490 * here because no other code should access these registers other than 4491 * at initialization time. 4492 */ 4493 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4494 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4495 intel_ring_emit(ring, reg_base + i); 4496 intel_ring_emit(ring, remap_info[i/4]); 4497 } 4498 4499 intel_ring_advance(ring); 4500 4501 return ret; 4502 } 4503 4504 void i915_gem_init_swizzling(struct drm_device *dev) 4505 { 4506 struct drm_i915_private *dev_priv = dev->dev_private; 4507 4508 if (INTEL_INFO(dev)->gen < 5 || 4509 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4510 return; 4511 4512 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4513 DISP_TILE_SURFACE_SWIZZLING); 4514 4515 if (IS_GEN5(dev)) 4516 return; 4517 4518 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4519 if (IS_GEN6(dev)) 4520 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4521 else if (IS_GEN7(dev)) 4522 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4523 else if (IS_GEN8(dev)) 4524 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4525 else 4526 BUG(); 4527 } 4528 4529 static bool 4530 intel_enable_blt(struct drm_device *dev) 4531 { 4532 if (!HAS_BLT(dev)) 4533 return false; 4534 4535 /* The blitter was dysfunctional on early prototypes */ 4536 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4537 DRM_INFO("BLT not supported on this pre-production hardware;" 4538 " graphics performance will be degraded.\n"); 4539 return false; 4540 } 4541 4542 return true; 4543 } 4544 4545 static void init_unused_ring(struct drm_device *dev, u32 base) 4546 { 4547 struct drm_i915_private *dev_priv = dev->dev_private; 4548 4549 I915_WRITE(RING_CTL(base), 0); 4550 I915_WRITE(RING_HEAD(base), 0); 4551 I915_WRITE(RING_TAIL(base), 0); 4552 I915_WRITE(RING_START(base), 0); 4553 } 4554 4555 static void init_unused_rings(struct drm_device *dev) 4556 { 4557 if (IS_I830(dev)) { 4558 init_unused_ring(dev, PRB1_BASE); 4559 init_unused_ring(dev, SRB0_BASE); 4560 init_unused_ring(dev, SRB1_BASE); 4561 init_unused_ring(dev, SRB2_BASE); 4562 init_unused_ring(dev, SRB3_BASE); 4563 } else if (IS_GEN2(dev)) { 4564 init_unused_ring(dev, SRB0_BASE); 4565 init_unused_ring(dev, SRB1_BASE); 4566 } else if (IS_GEN3(dev)) { 4567 init_unused_ring(dev, PRB1_BASE); 4568 init_unused_ring(dev, PRB2_BASE); 4569 } 4570 } 4571 4572 int i915_gem_init_rings(struct drm_device *dev) 4573 { 4574 struct drm_i915_private *dev_priv = dev->dev_private; 4575 int ret; 4576 4577 ret = intel_init_render_ring_buffer(dev); 4578 if (ret) 4579 return ret; 4580 4581 if (HAS_BSD(dev)) { 4582 ret = intel_init_bsd_ring_buffer(dev); 4583 if (ret) 4584 goto cleanup_render_ring; 4585 } 4586 4587 if (intel_enable_blt(dev)) { 4588 ret = intel_init_blt_ring_buffer(dev); 4589 if (ret) 4590 goto cleanup_bsd_ring; 4591 } 4592 4593 if (HAS_VEBOX(dev)) { 4594 ret = intel_init_vebox_ring_buffer(dev); 4595 if (ret) 4596 goto cleanup_blt_ring; 4597 } 4598 4599 if (HAS_BSD2(dev)) { 4600 ret = intel_init_bsd2_ring_buffer(dev); 4601 if (ret) 4602 goto cleanup_vebox_ring; 4603 } 4604 4605 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4606 if (ret) 4607 goto cleanup_bsd2_ring; 4608 4609 return 0; 4610 4611 cleanup_bsd2_ring: 4612 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4613 cleanup_vebox_ring: 4614 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4615 cleanup_blt_ring: 4616 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4617 cleanup_bsd_ring: 4618 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4619 cleanup_render_ring: 4620 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4621 4622 return ret; 4623 } 4624 4625 int 4626 i915_gem_init_hw(struct drm_device *dev) 4627 { 4628 struct drm_i915_private *dev_priv = dev->dev_private; 4629 struct intel_engine_cs *ring; 4630 int ret, i, j; 4631 4632 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4633 return -EIO; 4634 4635 /* Double layer security blanket, see i915_gem_init() */ 4636 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4637 4638 if (dev_priv->ellc_size) 4639 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4640 4641 if (IS_HASWELL(dev)) 4642 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4643 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4644 4645 if (HAS_PCH_NOP(dev)) { 4646 if (IS_IVYBRIDGE(dev)) { 4647 u32 temp = I915_READ(GEN7_MSG_CTL); 4648 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4649 I915_WRITE(GEN7_MSG_CTL, temp); 4650 } else if (INTEL_INFO(dev)->gen >= 7) { 4651 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4652 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4653 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4654 } 4655 } 4656 4657 i915_gem_init_swizzling(dev); 4658 4659 /* 4660 * At least 830 can leave some of the unused rings 4661 * "active" (ie. head != tail) after resume which 4662 * will prevent c3 entry. Makes sure all unused rings 4663 * are totally idle. 4664 */ 4665 init_unused_rings(dev); 4666 4667 BUG_ON(!dev_priv->ring[RCS].default_context); 4668 4669 ret = i915_ppgtt_init_hw(dev); 4670 if (ret) { 4671 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4672 goto out; 4673 } 4674 4675 /* Need to do basic initialisation of all rings first: */ 4676 for_each_ring(ring, dev_priv, i) { 4677 ret = ring->init_hw(ring); 4678 if (ret) 4679 goto out; 4680 } 4681 4682 /* Now it is safe to go back round and do everything else: */ 4683 for_each_ring(ring, dev_priv, i) { 4684 struct drm_i915_gem_request *req; 4685 4686 WARN_ON(!ring->default_context); 4687 4688 ret = i915_gem_request_alloc(ring, ring->default_context, &req); 4689 if (ret) { 4690 i915_gem_cleanup_ringbuffer(dev); 4691 goto out; 4692 } 4693 4694 if (ring->id == RCS) { 4695 for (j = 0; j < NUM_L3_SLICES(dev); j++) 4696 i915_gem_l3_remap(req, j); 4697 } 4698 4699 ret = i915_ppgtt_init_ring(req); 4700 if (ret && ret != -EIO) { 4701 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret); 4702 i915_gem_request_cancel(req); 4703 i915_gem_cleanup_ringbuffer(dev); 4704 goto out; 4705 } 4706 4707 ret = i915_gem_context_enable(req); 4708 if (ret && ret != -EIO) { 4709 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret); 4710 i915_gem_request_cancel(req); 4711 i915_gem_cleanup_ringbuffer(dev); 4712 goto out; 4713 } 4714 4715 i915_add_request_no_flush(req); 4716 } 4717 4718 out: 4719 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4720 return ret; 4721 } 4722 4723 int i915_gem_init(struct drm_device *dev) 4724 { 4725 struct drm_i915_private *dev_priv = dev->dev_private; 4726 int ret; 4727 4728 i915.enable_execlists = intel_sanitize_enable_execlists(dev, 4729 i915.enable_execlists); 4730 4731 mutex_lock(&dev->struct_mutex); 4732 4733 if (IS_VALLEYVIEW(dev)) { 4734 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4735 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4736 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4737 VLV_GTLC_ALLOWWAKEACK), 10)) 4738 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4739 } 4740 4741 if (!i915.enable_execlists) { 4742 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission; 4743 dev_priv->gt.init_rings = i915_gem_init_rings; 4744 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; 4745 dev_priv->gt.stop_ring = intel_stop_ring_buffer; 4746 } else { 4747 dev_priv->gt.execbuf_submit = intel_execlists_submission; 4748 dev_priv->gt.init_rings = intel_logical_rings_init; 4749 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; 4750 dev_priv->gt.stop_ring = intel_logical_ring_stop; 4751 } 4752 4753 /* This is just a security blanket to placate dragons. 4754 * On some systems, we very sporadically observe that the first TLBs 4755 * used by the CS may be stale, despite us poking the TLB reset. If 4756 * we hold the forcewake during initialisation these problems 4757 * just magically go away. 4758 */ 4759 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4760 4761 ret = i915_gem_init_userptr(dev); 4762 if (ret) 4763 goto out_unlock; 4764 4765 i915_gem_init_global_gtt(dev); 4766 4767 ret = i915_gem_context_init(dev); 4768 if (ret) 4769 goto out_unlock; 4770 4771 ret = dev_priv->gt.init_rings(dev); 4772 if (ret) 4773 goto out_unlock; 4774 4775 ret = i915_gem_init_hw(dev); 4776 if (ret == -EIO) { 4777 /* Allow ring initialisation to fail by marking the GPU as 4778 * wedged. But we only want to do this where the GPU is angry, 4779 * for all other failure, such as an allocation failure, bail. 4780 */ 4781 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4782 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4783 ret = 0; 4784 } 4785 4786 out_unlock: 4787 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4788 mutex_unlock(&dev->struct_mutex); 4789 4790 return ret; 4791 } 4792 4793 void 4794 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4795 { 4796 struct drm_i915_private *dev_priv = dev->dev_private; 4797 struct intel_engine_cs *ring; 4798 int i; 4799 4800 for_each_ring(ring, dev_priv, i) 4801 dev_priv->gt.cleanup_ring(ring); 4802 4803 if (i915.enable_execlists) 4804 /* 4805 * Neither the BIOS, ourselves or any other kernel 4806 * expects the system to be in execlists mode on startup, 4807 * so we need to reset the GPU back to legacy mode. 4808 */ 4809 intel_gpu_reset(dev); 4810 } 4811 4812 static void 4813 init_ring_lists(struct intel_engine_cs *ring) 4814 { 4815 INIT_LIST_HEAD(&ring->active_list); 4816 INIT_LIST_HEAD(&ring->request_list); 4817 } 4818 4819 void i915_init_vm(struct drm_i915_private *dev_priv, 4820 struct i915_address_space *vm) 4821 { 4822 if (!i915_is_ggtt(vm)) 4823 drm_mm_init(&vm->mm, vm->start, vm->total); 4824 vm->dev = dev_priv->dev; 4825 INIT_LIST_HEAD(&vm->active_list); 4826 INIT_LIST_HEAD(&vm->inactive_list); 4827 INIT_LIST_HEAD(&vm->global_link); 4828 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4829 } 4830 4831 void 4832 i915_gem_load(struct drm_device *dev) 4833 { 4834 struct drm_i915_private *dev_priv = dev->dev_private; 4835 int i; 4836 4837 dev_priv->objects = 4838 kmem_cache_create("i915_gem_object", 4839 sizeof(struct drm_i915_gem_object), 0, 4840 SLAB_HWCACHE_ALIGN, 4841 NULL); 4842 dev_priv->vmas = 4843 kmem_cache_create("i915_gem_vma", 4844 sizeof(struct i915_vma), 0, 4845 SLAB_HWCACHE_ALIGN, 4846 NULL); 4847 dev_priv->requests = 4848 kmem_cache_create("i915_gem_request", 4849 sizeof(struct drm_i915_gem_request), 0, 4850 SLAB_HWCACHE_ALIGN, 4851 NULL); 4852 4853 INIT_LIST_HEAD(&dev_priv->vm_list); 4854 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4855 4856 INIT_LIST_HEAD(&dev_priv->context_list); 4857 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4858 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4859 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4860 for (i = 0; i < I915_NUM_RINGS; i++) 4861 init_ring_lists(&dev_priv->ring[i]); 4862 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4863 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4864 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4865 i915_gem_retire_work_handler); 4866 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4867 i915_gem_idle_work_handler); 4868 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4869 4870 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4871 4872 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4873 dev_priv->num_fence_regs = 32; 4874 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4875 dev_priv->num_fence_regs = 16; 4876 else 4877 dev_priv->num_fence_regs = 8; 4878 4879 if (intel_vgpu_active(dev)) 4880 dev_priv->num_fence_regs = 4881 I915_READ(vgtif_reg(avail_rs.fence_num)); 4882 4883 /* Initialize fence registers to zero */ 4884 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4885 i915_gem_restore_fences(dev); 4886 4887 i915_gem_detect_bit_6_swizzle(dev); 4888 init_waitqueue_head(&dev_priv->pending_flip_queue); 4889 4890 dev_priv->mm.interruptible = true; 4891 4892 i915_gem_shrinker_init(dev_priv); 4893 4894 mutex_init(&dev_priv->fb_tracking.lock); 4895 } 4896 4897 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4898 { 4899 struct drm_i915_file_private *file_priv = file->driver_priv; 4900 4901 /* Clean up our request list when the client is going away, so that 4902 * later retire_requests won't dereference our soon-to-be-gone 4903 * file_priv. 4904 */ 4905 spin_lock(&file_priv->mm.lock); 4906 while (!list_empty(&file_priv->mm.request_list)) { 4907 struct drm_i915_gem_request *request; 4908 4909 request = list_first_entry(&file_priv->mm.request_list, 4910 struct drm_i915_gem_request, 4911 client_list); 4912 list_del(&request->client_list); 4913 request->file_priv = NULL; 4914 } 4915 spin_unlock(&file_priv->mm.lock); 4916 4917 if (!list_empty(&file_priv->rps.link)) { 4918 spin_lock(&to_i915(dev)->rps.client_lock); 4919 list_del(&file_priv->rps.link); 4920 spin_unlock(&to_i915(dev)->rps.client_lock); 4921 } 4922 } 4923 4924 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4925 { 4926 struct drm_i915_file_private *file_priv; 4927 int ret; 4928 4929 DRM_DEBUG_DRIVER("\n"); 4930 4931 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4932 if (!file_priv) 4933 return -ENOMEM; 4934 4935 file->driver_priv = file_priv; 4936 file_priv->dev_priv = dev->dev_private; 4937 file_priv->file = file; 4938 INIT_LIST_HEAD(&file_priv->rps.link); 4939 4940 spin_lock_init(&file_priv->mm.lock); 4941 INIT_LIST_HEAD(&file_priv->mm.request_list); 4942 4943 ret = i915_gem_context_open(dev, file); 4944 if (ret) 4945 kfree(file_priv); 4946 4947 return ret; 4948 } 4949 4950 /** 4951 * i915_gem_track_fb - update frontbuffer tracking 4952 * old: current GEM buffer for the frontbuffer slots 4953 * new: new GEM buffer for the frontbuffer slots 4954 * frontbuffer_bits: bitmask of frontbuffer slots 4955 * 4956 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 4957 * from @old and setting them in @new. Both @old and @new can be NULL. 4958 */ 4959 void i915_gem_track_fb(struct drm_i915_gem_object *old, 4960 struct drm_i915_gem_object *new, 4961 unsigned frontbuffer_bits) 4962 { 4963 if (old) { 4964 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 4965 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 4966 old->frontbuffer_bits &= ~frontbuffer_bits; 4967 } 4968 4969 if (new) { 4970 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 4971 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 4972 new->frontbuffer_bits |= frontbuffer_bits; 4973 } 4974 } 4975 4976 /* All the new VM stuff */ 4977 unsigned long 4978 i915_gem_obj_offset(struct drm_i915_gem_object *o, 4979 struct i915_address_space *vm) 4980 { 4981 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4982 struct i915_vma *vma; 4983 4984 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 4985 4986 list_for_each_entry(vma, &o->vma_list, vma_link) { 4987 if (i915_is_ggtt(vma->vm) && 4988 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 4989 continue; 4990 if (vma->vm == vm) 4991 return vma->node.start; 4992 } 4993 4994 WARN(1, "%s vma for this object not found.\n", 4995 i915_is_ggtt(vm) ? "global" : "ppgtt"); 4996 return -1; 4997 } 4998 4999 unsigned long 5000 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 5001 const struct i915_ggtt_view *view) 5002 { 5003 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5004 struct i915_vma *vma; 5005 5006 list_for_each_entry(vma, &o->vma_list, vma_link) 5007 if (vma->vm == ggtt && 5008 i915_ggtt_view_equal(&vma->ggtt_view, view)) 5009 return vma->node.start; 5010 5011 WARN(1, "global vma for this object not found. (view=%u)\n", view->type); 5012 return -1; 5013 } 5014 5015 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5016 struct i915_address_space *vm) 5017 { 5018 struct i915_vma *vma; 5019 5020 list_for_each_entry(vma, &o->vma_list, vma_link) { 5021 if (i915_is_ggtt(vma->vm) && 5022 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5023 continue; 5024 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5025 return true; 5026 } 5027 5028 return false; 5029 } 5030 5031 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 5032 const struct i915_ggtt_view *view) 5033 { 5034 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5035 struct i915_vma *vma; 5036 5037 list_for_each_entry(vma, &o->vma_list, vma_link) 5038 if (vma->vm == ggtt && 5039 i915_ggtt_view_equal(&vma->ggtt_view, view) && 5040 drm_mm_node_allocated(&vma->node)) 5041 return true; 5042 5043 return false; 5044 } 5045 5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5047 { 5048 struct i915_vma *vma; 5049 5050 list_for_each_entry(vma, &o->vma_list, vma_link) 5051 if (drm_mm_node_allocated(&vma->node)) 5052 return true; 5053 5054 return false; 5055 } 5056 5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5058 struct i915_address_space *vm) 5059 { 5060 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5061 struct i915_vma *vma; 5062 5063 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5064 5065 BUG_ON(list_empty(&o->vma_list)); 5066 5067 list_for_each_entry(vma, &o->vma_list, vma_link) { 5068 if (i915_is_ggtt(vma->vm) && 5069 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5070 continue; 5071 if (vma->vm == vm) 5072 return vma->node.size; 5073 } 5074 return 0; 5075 } 5076 5077 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj) 5078 { 5079 struct i915_vma *vma; 5080 list_for_each_entry(vma, &obj->vma_list, vma_link) 5081 if (vma->pin_count > 0) 5082 return true; 5083 5084 return false; 5085 } 5086 5087 /* Allocate a new GEM object and fill it with the supplied data */ 5088 struct drm_i915_gem_object * 5089 i915_gem_object_create_from_data(struct drm_device *dev, 5090 const void *data, size_t size) 5091 { 5092 struct drm_i915_gem_object *obj; 5093 struct sg_table *sg; 5094 size_t bytes; 5095 int ret; 5096 5097 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE)); 5098 if (IS_ERR_OR_NULL(obj)) 5099 return obj; 5100 5101 ret = i915_gem_object_set_to_cpu_domain(obj, true); 5102 if (ret) 5103 goto fail; 5104 5105 ret = i915_gem_object_get_pages(obj); 5106 if (ret) 5107 goto fail; 5108 5109 i915_gem_object_pin_pages(obj); 5110 sg = obj->pages; 5111 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); 5112 i915_gem_object_unpin_pages(obj); 5113 5114 if (WARN_ON(bytes != size)) { 5115 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); 5116 ret = -EFAULT; 5117 goto fail; 5118 } 5119 5120 return obj; 5121 5122 fail: 5123 drm_gem_object_unreference(&obj->base); 5124 return ERR_PTR(ret); 5125 } 5126